subr_pool.c revision 1.161.2.1 1 /* $NetBSD: subr_pool.c,v 1.161.2.1 2008/07/18 16:37:49 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.161.2.1 2008/07/18 16:37:49 simonb Exp $");
35
36 #include "opt_ddb.h"
37 #include "opt_pool.h"
38 #include "opt_poollog.h"
39 #include "opt_lockdebug.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
55
56 #include <uvm/uvm.h>
57
58 /*
59 * Pool resource management utility.
60 *
61 * Memory is allocated in pages which are split into pieces according to
62 * the pool item size. Each page is kept on one of three lists in the
63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64 * for empty, full and partially-full pages respectively. The individual
65 * pool items are on a linked list headed by `ph_itemlist' in each page
66 * header. The memory for building the page list is either taken from
67 * the allocated pages themselves (for small pool items) or taken from
68 * an internal pool of page headers (`phpool').
69 */
70
71 /* List of all pools */
72 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
73
74 /* Private pool for page header structures */
75 #define PHPOOL_MAX 8
76 static struct pool phpool[PHPOOL_MAX];
77 #define PHPOOL_FREELIST_NELEM(idx) \
78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
106
107 typedef uint32_t pool_item_bitmap_t;
108 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define BITMAP_MASK (BITMAP_SIZE - 1)
110
111 struct pool_item_header {
112 /* Page headers */
113 LIST_ENTRY(pool_item_header)
114 ph_pagelist; /* pool page list */
115 SPLAY_ENTRY(pool_item_header)
116 ph_node; /* Off-page page headers */
117 void * ph_page; /* this page's address */
118 uint32_t ph_time; /* last referenced */
119 uint16_t ph_nmissing; /* # of chunks in use */
120 uint16_t ph_off; /* start offset in page */
121 union {
122 /* !PR_NOTOUCH */
123 struct {
124 LIST_HEAD(, pool_item)
125 phu_itemlist; /* chunk list for this page */
126 } phu_normal;
127 /* PR_NOTOUCH */
128 struct {
129 pool_item_bitmap_t phu_bitmap[1];
130 } phu_notouch;
131 } ph_u;
132 };
133 #define ph_itemlist ph_u.phu_normal.phu_itemlist
134 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
135
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 u_int pi_magic;
139 #endif
140 #define PI_MAGIC 0xdeaddeadU
141 /* Other entries use only this list entry */
142 LIST_ENTRY(pool_item) pi_list;
143 };
144
145 #define POOL_NEEDS_CATCHUP(pp) \
146 ((pp)->pr_nitems < (pp)->pr_minitems)
147
148 /*
149 * Pool cache management.
150 *
151 * Pool caches provide a way for constructed objects to be cached by the
152 * pool subsystem. This can lead to performance improvements by avoiding
153 * needless object construction/destruction; it is deferred until absolutely
154 * necessary.
155 *
156 * Caches are grouped into cache groups. Each cache group references up
157 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
158 * object from the pool, it calls the object's constructor and places it
159 * into a cache group. When a cache group frees an object back to the
160 * pool, it first calls the object's destructor. This allows the object
161 * to persist in constructed form while freed to the cache.
162 *
163 * The pool references each cache, so that when a pool is drained by the
164 * pagedaemon, it can drain each individual cache as well. Each time a
165 * cache is drained, the most idle cache group is freed to the pool in
166 * its entirety.
167 *
168 * Pool caches are layed on top of pools. By layering them, we can avoid
169 * the complexity of cache management for pools which would not benefit
170 * from it.
171 */
172
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177
178 /* List of all caches. */
179 TAILQ_HEAD(,pool_cache) pool_cache_head =
180 TAILQ_HEAD_INITIALIZER(pool_cache_head);
181
182 int pool_cache_disable; /* global disable for caching */
183 static pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
184
185 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
186 void *);
187 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
188 void **, paddr_t *, int);
189 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
190 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
191 static void pool_cache_xcall(pool_cache_t);
192
193 static int pool_catchup(struct pool *);
194 static void pool_prime_page(struct pool *, void *,
195 struct pool_item_header *);
196 static void pool_update_curpage(struct pool *);
197
198 static int pool_grow(struct pool *, int);
199 static void *pool_allocator_alloc(struct pool *, int);
200 static void pool_allocator_free(struct pool *, void *);
201
202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
203 void (*)(const char *, ...));
204 static void pool_print1(struct pool *, const char *,
205 void (*)(const char *, ...));
206
207 static int pool_chk_page(struct pool *, const char *,
208 struct pool_item_header *);
209
210 /*
211 * Pool log entry. An array of these is allocated in pool_init().
212 */
213 struct pool_log {
214 const char *pl_file;
215 long pl_line;
216 int pl_action;
217 #define PRLOG_GET 1
218 #define PRLOG_PUT 2
219 void *pl_addr;
220 };
221
222 #ifdef POOL_DIAGNOSTIC
223 /* Number of entries in pool log buffers */
224 #ifndef POOL_LOGSIZE
225 #define POOL_LOGSIZE 10
226 #endif
227
228 int pool_logsize = POOL_LOGSIZE;
229
230 static inline void
231 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
232 {
233 int n = pp->pr_curlogentry;
234 struct pool_log *pl;
235
236 if ((pp->pr_roflags & PR_LOGGING) == 0)
237 return;
238
239 /*
240 * Fill in the current entry. Wrap around and overwrite
241 * the oldest entry if necessary.
242 */
243 pl = &pp->pr_log[n];
244 pl->pl_file = file;
245 pl->pl_line = line;
246 pl->pl_action = action;
247 pl->pl_addr = v;
248 if (++n >= pp->pr_logsize)
249 n = 0;
250 pp->pr_curlogentry = n;
251 }
252
253 static void
254 pr_printlog(struct pool *pp, struct pool_item *pi,
255 void (*pr)(const char *, ...))
256 {
257 int i = pp->pr_logsize;
258 int n = pp->pr_curlogentry;
259
260 if ((pp->pr_roflags & PR_LOGGING) == 0)
261 return;
262
263 /*
264 * Print all entries in this pool's log.
265 */
266 while (i-- > 0) {
267 struct pool_log *pl = &pp->pr_log[n];
268 if (pl->pl_action != 0) {
269 if (pi == NULL || pi == pl->pl_addr) {
270 (*pr)("\tlog entry %d:\n", i);
271 (*pr)("\t\taction = %s, addr = %p\n",
272 pl->pl_action == PRLOG_GET ? "get" : "put",
273 pl->pl_addr);
274 (*pr)("\t\tfile: %s at line %lu\n",
275 pl->pl_file, pl->pl_line);
276 }
277 }
278 if (++n >= pp->pr_logsize)
279 n = 0;
280 }
281 }
282
283 static inline void
284 pr_enter(struct pool *pp, const char *file, long line)
285 {
286
287 if (__predict_false(pp->pr_entered_file != NULL)) {
288 printf("pool %s: reentrancy at file %s line %ld\n",
289 pp->pr_wchan, file, line);
290 printf(" previous entry at file %s line %ld\n",
291 pp->pr_entered_file, pp->pr_entered_line);
292 panic("pr_enter");
293 }
294
295 pp->pr_entered_file = file;
296 pp->pr_entered_line = line;
297 }
298
299 static inline void
300 pr_leave(struct pool *pp)
301 {
302
303 if (__predict_false(pp->pr_entered_file == NULL)) {
304 printf("pool %s not entered?\n", pp->pr_wchan);
305 panic("pr_leave");
306 }
307
308 pp->pr_entered_file = NULL;
309 pp->pr_entered_line = 0;
310 }
311
312 static inline void
313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
314 {
315
316 if (pp->pr_entered_file != NULL)
317 (*pr)("\n\tcurrently entered from file %s line %ld\n",
318 pp->pr_entered_file, pp->pr_entered_line);
319 }
320 #else
321 #define pr_log(pp, v, action, file, line)
322 #define pr_printlog(pp, pi, pr)
323 #define pr_enter(pp, file, line)
324 #define pr_leave(pp)
325 #define pr_enter_check(pp, pr)
326 #endif /* POOL_DIAGNOSTIC */
327
328 static inline unsigned int
329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
330 const void *v)
331 {
332 const char *cp = v;
333 unsigned int idx;
334
335 KASSERT(pp->pr_roflags & PR_NOTOUCH);
336 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
337 KASSERT(idx < pp->pr_itemsperpage);
338 return idx;
339 }
340
341 static inline void
342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
343 void *obj)
344 {
345 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
346 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
347 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
348
349 KASSERT((*bitmap & mask) == 0);
350 *bitmap |= mask;
351 }
352
353 static inline void *
354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
355 {
356 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
357 unsigned int idx;
358 int i;
359
360 for (i = 0; ; i++) {
361 int bit;
362
363 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
364 bit = ffs32(bitmap[i]);
365 if (bit) {
366 pool_item_bitmap_t mask;
367
368 bit--;
369 idx = (i * BITMAP_SIZE) + bit;
370 mask = 1 << bit;
371 KASSERT((bitmap[i] & mask) != 0);
372 bitmap[i] &= ~mask;
373 break;
374 }
375 }
376 KASSERT(idx < pp->pr_itemsperpage);
377 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
378 }
379
380 static inline void
381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
382 {
383 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
384 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
385 int i;
386
387 for (i = 0; i < n; i++) {
388 bitmap[i] = (pool_item_bitmap_t)-1;
389 }
390 }
391
392 static inline int
393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
394 {
395
396 /*
397 * we consider pool_item_header with smaller ph_page bigger.
398 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
399 */
400
401 if (a->ph_page < b->ph_page)
402 return (1);
403 else if (a->ph_page > b->ph_page)
404 return (-1);
405 else
406 return (0);
407 }
408
409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
411
412 static inline struct pool_item_header *
413 pr_find_pagehead_noalign(struct pool *pp, void *v)
414 {
415 struct pool_item_header *ph, tmp;
416
417 tmp.ph_page = (void *)(uintptr_t)v;
418 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
419 if (ph == NULL) {
420 ph = SPLAY_ROOT(&pp->pr_phtree);
421 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
422 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
423 }
424 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
425 }
426
427 return ph;
428 }
429
430 /*
431 * Return the pool page header based on item address.
432 */
433 static inline struct pool_item_header *
434 pr_find_pagehead(struct pool *pp, void *v)
435 {
436 struct pool_item_header *ph, tmp;
437
438 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
439 ph = pr_find_pagehead_noalign(pp, v);
440 } else {
441 void *page =
442 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
443
444 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
445 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
446 } else {
447 tmp.ph_page = page;
448 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
449 }
450 }
451
452 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
453 ((char *)ph->ph_page <= (char *)v &&
454 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
455 return ph;
456 }
457
458 static void
459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
460 {
461 struct pool_item_header *ph;
462
463 while ((ph = LIST_FIRST(pq)) != NULL) {
464 LIST_REMOVE(ph, ph_pagelist);
465 pool_allocator_free(pp, ph->ph_page);
466 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 pool_put(pp->pr_phpool, ph);
468 }
469 }
470
471 /*
472 * Remove a page from the pool.
473 */
474 static inline void
475 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
476 struct pool_pagelist *pq)
477 {
478
479 KASSERT(mutex_owned(&pp->pr_lock));
480
481 /*
482 * If the page was idle, decrement the idle page count.
483 */
484 if (ph->ph_nmissing == 0) {
485 #ifdef DIAGNOSTIC
486 if (pp->pr_nidle == 0)
487 panic("pr_rmpage: nidle inconsistent");
488 if (pp->pr_nitems < pp->pr_itemsperpage)
489 panic("pr_rmpage: nitems inconsistent");
490 #endif
491 pp->pr_nidle--;
492 }
493
494 pp->pr_nitems -= pp->pr_itemsperpage;
495
496 /*
497 * Unlink the page from the pool and queue it for release.
498 */
499 LIST_REMOVE(ph, ph_pagelist);
500 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
501 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
502 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
503
504 pp->pr_npages--;
505 pp->pr_npagefree++;
506
507 pool_update_curpage(pp);
508 }
509
510 static bool
511 pa_starved_p(struct pool_allocator *pa)
512 {
513
514 if (pa->pa_backingmap != NULL) {
515 return vm_map_starved_p(pa->pa_backingmap);
516 }
517 return false;
518 }
519
520 static int
521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
522 {
523 struct pool *pp = obj;
524 struct pool_allocator *pa = pp->pr_alloc;
525
526 KASSERT(&pp->pr_reclaimerentry == ce);
527 pool_reclaim(pp);
528 if (!pa_starved_p(pa)) {
529 return CALLBACK_CHAIN_ABORT;
530 }
531 return CALLBACK_CHAIN_CONTINUE;
532 }
533
534 static void
535 pool_reclaim_register(struct pool *pp)
536 {
537 struct vm_map *map = pp->pr_alloc->pa_backingmap;
538 int s;
539
540 if (map == NULL) {
541 return;
542 }
543
544 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
545 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
546 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
547 splx(s);
548 }
549
550 static void
551 pool_reclaim_unregister(struct pool *pp)
552 {
553 struct vm_map *map = pp->pr_alloc->pa_backingmap;
554 int s;
555
556 if (map == NULL) {
557 return;
558 }
559
560 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
561 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
562 &pp->pr_reclaimerentry);
563 splx(s);
564 }
565
566 static void
567 pa_reclaim_register(struct pool_allocator *pa)
568 {
569 struct vm_map *map = *pa->pa_backingmapptr;
570 struct pool *pp;
571
572 KASSERT(pa->pa_backingmap == NULL);
573 if (map == NULL) {
574 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
575 return;
576 }
577 pa->pa_backingmap = map;
578 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
579 pool_reclaim_register(pp);
580 }
581 }
582
583 /*
584 * Initialize all the pools listed in the "pools" link set.
585 */
586 void
587 pool_subsystem_init(void)
588 {
589 struct pool_allocator *pa;
590 __link_set_decl(pools, struct link_pool_init);
591 struct link_pool_init * const *pi;
592
593 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
594 cv_init(&pool_busy, "poolbusy");
595
596 __link_set_foreach(pi, pools)
597 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
598 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
599 (*pi)->palloc, (*pi)->ipl);
600
601 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
602 KASSERT(pa->pa_backingmapptr != NULL);
603 KASSERT(*pa->pa_backingmapptr != NULL);
604 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
605 pa_reclaim_register(pa);
606 }
607
608 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
609 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
610
611 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
612 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
613 }
614
615 /*
616 * Initialize the given pool resource structure.
617 *
618 * We export this routine to allow other kernel parts to declare
619 * static pools that must be initialized before malloc() is available.
620 */
621 void
622 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
623 const char *wchan, struct pool_allocator *palloc, int ipl)
624 {
625 struct pool *pp1;
626 size_t trysize, phsize;
627 int off, slack;
628
629 #ifdef DEBUG
630 /*
631 * Check that the pool hasn't already been initialised and
632 * added to the list of all pools.
633 */
634 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
635 if (pp == pp1)
636 panic("pool_init: pool %s already initialised",
637 wchan);
638 }
639 #endif
640
641 #ifdef POOL_DIAGNOSTIC
642 /*
643 * Always log if POOL_DIAGNOSTIC is defined.
644 */
645 if (pool_logsize != 0)
646 flags |= PR_LOGGING;
647 #endif
648
649 if (palloc == NULL)
650 palloc = &pool_allocator_kmem;
651 #ifdef POOL_SUBPAGE
652 if (size > palloc->pa_pagesz) {
653 if (palloc == &pool_allocator_kmem)
654 palloc = &pool_allocator_kmem_fullpage;
655 else if (palloc == &pool_allocator_nointr)
656 palloc = &pool_allocator_nointr_fullpage;
657 }
658 #endif /* POOL_SUBPAGE */
659 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
660 if (palloc->pa_pagesz == 0)
661 palloc->pa_pagesz = PAGE_SIZE;
662
663 TAILQ_INIT(&palloc->pa_list);
664
665 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
666 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
667 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
668
669 if (palloc->pa_backingmapptr != NULL) {
670 pa_reclaim_register(palloc);
671 }
672 palloc->pa_flags |= PA_INITIALIZED;
673 }
674
675 if (align == 0)
676 align = ALIGN(1);
677
678 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
679 size = sizeof(struct pool_item);
680
681 size = roundup(size, align);
682 #ifdef DIAGNOSTIC
683 if (size > palloc->pa_pagesz)
684 panic("pool_init: pool item size (%zu) too large", size);
685 #endif
686
687 /*
688 * Initialize the pool structure.
689 */
690 LIST_INIT(&pp->pr_emptypages);
691 LIST_INIT(&pp->pr_fullpages);
692 LIST_INIT(&pp->pr_partpages);
693 pp->pr_cache = NULL;
694 pp->pr_curpage = NULL;
695 pp->pr_npages = 0;
696 pp->pr_minitems = 0;
697 pp->pr_minpages = 0;
698 pp->pr_maxpages = UINT_MAX;
699 pp->pr_roflags = flags;
700 pp->pr_flags = 0;
701 pp->pr_size = size;
702 pp->pr_align = align;
703 pp->pr_wchan = wchan;
704 pp->pr_alloc = palloc;
705 pp->pr_nitems = 0;
706 pp->pr_nout = 0;
707 pp->pr_hardlimit = UINT_MAX;
708 pp->pr_hardlimit_warning = NULL;
709 pp->pr_hardlimit_ratecap.tv_sec = 0;
710 pp->pr_hardlimit_ratecap.tv_usec = 0;
711 pp->pr_hardlimit_warning_last.tv_sec = 0;
712 pp->pr_hardlimit_warning_last.tv_usec = 0;
713 pp->pr_drain_hook = NULL;
714 pp->pr_drain_hook_arg = NULL;
715 pp->pr_freecheck = NULL;
716
717 /*
718 * Decide whether to put the page header off page to avoid
719 * wasting too large a part of the page or too big item.
720 * Off-page page headers go on a hash table, so we can match
721 * a returned item with its header based on the page address.
722 * We use 1/16 of the page size and about 8 times of the item
723 * size as the threshold (XXX: tune)
724 *
725 * However, we'll put the header into the page if we can put
726 * it without wasting any items.
727 *
728 * Silently enforce `0 <= ioff < align'.
729 */
730 pp->pr_itemoffset = ioff %= align;
731 /* See the comment below about reserved bytes. */
732 trysize = palloc->pa_pagesz - ((align - ioff) % align);
733 phsize = ALIGN(sizeof(struct pool_item_header));
734 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
735 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
736 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
737 /* Use the end of the page for the page header */
738 pp->pr_roflags |= PR_PHINPAGE;
739 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
740 } else {
741 /* The page header will be taken from our page header pool */
742 pp->pr_phoffset = 0;
743 off = palloc->pa_pagesz;
744 SPLAY_INIT(&pp->pr_phtree);
745 }
746
747 /*
748 * Alignment is to take place at `ioff' within the item. This means
749 * we must reserve up to `align - 1' bytes on the page to allow
750 * appropriate positioning of each item.
751 */
752 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
753 KASSERT(pp->pr_itemsperpage != 0);
754 if ((pp->pr_roflags & PR_NOTOUCH)) {
755 int idx;
756
757 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
758 idx++) {
759 /* nothing */
760 }
761 if (idx >= PHPOOL_MAX) {
762 /*
763 * if you see this panic, consider to tweak
764 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
765 */
766 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
767 pp->pr_wchan, pp->pr_itemsperpage);
768 }
769 pp->pr_phpool = &phpool[idx];
770 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
771 pp->pr_phpool = &phpool[0];
772 }
773 #if defined(DIAGNOSTIC)
774 else {
775 pp->pr_phpool = NULL;
776 }
777 #endif
778
779 /*
780 * Use the slack between the chunks and the page header
781 * for "cache coloring".
782 */
783 slack = off - pp->pr_itemsperpage * pp->pr_size;
784 pp->pr_maxcolor = (slack / align) * align;
785 pp->pr_curcolor = 0;
786
787 pp->pr_nget = 0;
788 pp->pr_nfail = 0;
789 pp->pr_nput = 0;
790 pp->pr_npagealloc = 0;
791 pp->pr_npagefree = 0;
792 pp->pr_hiwat = 0;
793 pp->pr_nidle = 0;
794 pp->pr_refcnt = 0;
795
796 #ifdef POOL_DIAGNOSTIC
797 if (flags & PR_LOGGING) {
798 if (kmem_map == NULL ||
799 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
800 M_TEMP, M_NOWAIT)) == NULL)
801 pp->pr_roflags &= ~PR_LOGGING;
802 pp->pr_curlogentry = 0;
803 pp->pr_logsize = pool_logsize;
804 }
805 #endif
806
807 pp->pr_entered_file = NULL;
808 pp->pr_entered_line = 0;
809
810 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
811 cv_init(&pp->pr_cv, wchan);
812 pp->pr_ipl = ipl;
813
814 /*
815 * Initialize private page header pool and cache magazine pool if we
816 * haven't done so yet.
817 * XXX LOCKING.
818 */
819 if (phpool[0].pr_size == 0) {
820 int idx;
821 for (idx = 0; idx < PHPOOL_MAX; idx++) {
822 static char phpool_names[PHPOOL_MAX][6+1+6+1];
823 int nelem;
824 size_t sz;
825
826 nelem = PHPOOL_FREELIST_NELEM(idx);
827 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
828 "phpool-%d", nelem);
829 sz = sizeof(struct pool_item_header);
830 if (nelem) {
831 sz = offsetof(struct pool_item_header,
832 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
833 }
834 pool_init(&phpool[idx], sz, 0, 0, 0,
835 phpool_names[idx], &pool_allocator_meta, IPL_VM);
836 }
837 #ifdef POOL_SUBPAGE
838 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
839 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
840 #endif
841
842 size = sizeof(pcg_t) +
843 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
844 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
845 "pcgnormal", &pool_allocator_meta, IPL_VM);
846
847 size = sizeof(pcg_t) +
848 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
849 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
850 "pcglarge", &pool_allocator_meta, IPL_VM);
851 }
852
853 /* Insert into the list of all pools. */
854 if (__predict_true(!cold))
855 mutex_enter(&pool_head_lock);
856 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
857 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
858 break;
859 }
860 if (pp1 == NULL)
861 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
862 else
863 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
864 if (__predict_true(!cold))
865 mutex_exit(&pool_head_lock);
866
867 /* Insert this into the list of pools using this allocator. */
868 if (__predict_true(!cold))
869 mutex_enter(&palloc->pa_lock);
870 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
871 if (__predict_true(!cold))
872 mutex_exit(&palloc->pa_lock);
873
874 pool_reclaim_register(pp);
875 }
876
877 /*
878 * De-commision a pool resource.
879 */
880 void
881 pool_destroy(struct pool *pp)
882 {
883 struct pool_pagelist pq;
884 struct pool_item_header *ph;
885
886 /* Remove from global pool list */
887 mutex_enter(&pool_head_lock);
888 while (pp->pr_refcnt != 0)
889 cv_wait(&pool_busy, &pool_head_lock);
890 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
891 if (drainpp == pp)
892 drainpp = NULL;
893 mutex_exit(&pool_head_lock);
894
895 /* Remove this pool from its allocator's list of pools. */
896 pool_reclaim_unregister(pp);
897 mutex_enter(&pp->pr_alloc->pa_lock);
898 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
899 mutex_exit(&pp->pr_alloc->pa_lock);
900
901 mutex_enter(&pp->pr_lock);
902
903 KASSERT(pp->pr_cache == NULL);
904
905 #ifdef DIAGNOSTIC
906 if (pp->pr_nout != 0) {
907 pr_printlog(pp, NULL, printf);
908 panic("pool_destroy: pool busy: still out: %u",
909 pp->pr_nout);
910 }
911 #endif
912
913 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
914 KASSERT(LIST_EMPTY(&pp->pr_partpages));
915
916 /* Remove all pages */
917 LIST_INIT(&pq);
918 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
919 pr_rmpage(pp, ph, &pq);
920
921 mutex_exit(&pp->pr_lock);
922
923 pr_pagelist_free(pp, &pq);
924
925 #ifdef POOL_DIAGNOSTIC
926 if ((pp->pr_roflags & PR_LOGGING) != 0)
927 free(pp->pr_log, M_TEMP);
928 #endif
929
930 cv_destroy(&pp->pr_cv);
931 mutex_destroy(&pp->pr_lock);
932 }
933
934 void
935 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
936 {
937
938 /* XXX no locking -- must be used just after pool_init() */
939 #ifdef DIAGNOSTIC
940 if (pp->pr_drain_hook != NULL)
941 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
942 #endif
943 pp->pr_drain_hook = fn;
944 pp->pr_drain_hook_arg = arg;
945 }
946
947 static struct pool_item_header *
948 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
949 {
950 struct pool_item_header *ph;
951
952 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
953 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
954 else
955 ph = pool_get(pp->pr_phpool, flags);
956
957 return (ph);
958 }
959
960 /*
961 * Grab an item from the pool.
962 */
963 void *
964 #ifdef POOL_DIAGNOSTIC
965 _pool_get(struct pool *pp, int flags, const char *file, long line)
966 #else
967 pool_get(struct pool *pp, int flags)
968 #endif
969 {
970 struct pool_item *pi;
971 struct pool_item_header *ph;
972 void *v;
973
974 #ifdef DIAGNOSTIC
975 if (__predict_false(pp->pr_itemsperpage == 0))
976 panic("pool_get: pool %p: pr_itemsperpage is zero, "
977 "pool not initialized?", pp);
978 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
979 (flags & PR_WAITOK) != 0))
980 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
981
982 #endif /* DIAGNOSTIC */
983 #ifdef LOCKDEBUG
984 if (flags & PR_WAITOK) {
985 ASSERT_SLEEPABLE();
986 }
987 #endif
988
989 mutex_enter(&pp->pr_lock);
990 pr_enter(pp, file, line);
991
992 startover:
993 /*
994 * Check to see if we've reached the hard limit. If we have,
995 * and we can wait, then wait until an item has been returned to
996 * the pool.
997 */
998 #ifdef DIAGNOSTIC
999 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1000 pr_leave(pp);
1001 mutex_exit(&pp->pr_lock);
1002 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1003 }
1004 #endif
1005 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1006 if (pp->pr_drain_hook != NULL) {
1007 /*
1008 * Since the drain hook is going to free things
1009 * back to the pool, unlock, call the hook, re-lock,
1010 * and check the hardlimit condition again.
1011 */
1012 pr_leave(pp);
1013 mutex_exit(&pp->pr_lock);
1014 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1015 mutex_enter(&pp->pr_lock);
1016 pr_enter(pp, file, line);
1017 if (pp->pr_nout < pp->pr_hardlimit)
1018 goto startover;
1019 }
1020
1021 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1022 /*
1023 * XXX: A warning isn't logged in this case. Should
1024 * it be?
1025 */
1026 pp->pr_flags |= PR_WANTED;
1027 pr_leave(pp);
1028 cv_wait(&pp->pr_cv, &pp->pr_lock);
1029 pr_enter(pp, file, line);
1030 goto startover;
1031 }
1032
1033 /*
1034 * Log a message that the hard limit has been hit.
1035 */
1036 if (pp->pr_hardlimit_warning != NULL &&
1037 ratecheck(&pp->pr_hardlimit_warning_last,
1038 &pp->pr_hardlimit_ratecap))
1039 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1040
1041 pp->pr_nfail++;
1042
1043 pr_leave(pp);
1044 mutex_exit(&pp->pr_lock);
1045 return (NULL);
1046 }
1047
1048 /*
1049 * The convention we use is that if `curpage' is not NULL, then
1050 * it points at a non-empty bucket. In particular, `curpage'
1051 * never points at a page header which has PR_PHINPAGE set and
1052 * has no items in its bucket.
1053 */
1054 if ((ph = pp->pr_curpage) == NULL) {
1055 int error;
1056
1057 #ifdef DIAGNOSTIC
1058 if (pp->pr_nitems != 0) {
1059 mutex_exit(&pp->pr_lock);
1060 printf("pool_get: %s: curpage NULL, nitems %u\n",
1061 pp->pr_wchan, pp->pr_nitems);
1062 panic("pool_get: nitems inconsistent");
1063 }
1064 #endif
1065
1066 /*
1067 * Call the back-end page allocator for more memory.
1068 * Release the pool lock, as the back-end page allocator
1069 * may block.
1070 */
1071 pr_leave(pp);
1072 error = pool_grow(pp, flags);
1073 pr_enter(pp, file, line);
1074 if (error != 0) {
1075 /*
1076 * We were unable to allocate a page or item
1077 * header, but we released the lock during
1078 * allocation, so perhaps items were freed
1079 * back to the pool. Check for this case.
1080 */
1081 if (pp->pr_curpage != NULL)
1082 goto startover;
1083
1084 pp->pr_nfail++;
1085 pr_leave(pp);
1086 mutex_exit(&pp->pr_lock);
1087 return (NULL);
1088 }
1089
1090 /* Start the allocation process over. */
1091 goto startover;
1092 }
1093 if (pp->pr_roflags & PR_NOTOUCH) {
1094 #ifdef DIAGNOSTIC
1095 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1096 pr_leave(pp);
1097 mutex_exit(&pp->pr_lock);
1098 panic("pool_get: %s: page empty", pp->pr_wchan);
1099 }
1100 #endif
1101 v = pr_item_notouch_get(pp, ph);
1102 #ifdef POOL_DIAGNOSTIC
1103 pr_log(pp, v, PRLOG_GET, file, line);
1104 #endif
1105 } else {
1106 v = pi = LIST_FIRST(&ph->ph_itemlist);
1107 if (__predict_false(v == NULL)) {
1108 pr_leave(pp);
1109 mutex_exit(&pp->pr_lock);
1110 panic("pool_get: %s: page empty", pp->pr_wchan);
1111 }
1112 #ifdef DIAGNOSTIC
1113 if (__predict_false(pp->pr_nitems == 0)) {
1114 pr_leave(pp);
1115 mutex_exit(&pp->pr_lock);
1116 printf("pool_get: %s: items on itemlist, nitems %u\n",
1117 pp->pr_wchan, pp->pr_nitems);
1118 panic("pool_get: nitems inconsistent");
1119 }
1120 #endif
1121
1122 #ifdef POOL_DIAGNOSTIC
1123 pr_log(pp, v, PRLOG_GET, file, line);
1124 #endif
1125
1126 #ifdef DIAGNOSTIC
1127 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1128 pr_printlog(pp, pi, printf);
1129 panic("pool_get(%s): free list modified: "
1130 "magic=%x; page %p; item addr %p\n",
1131 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1132 }
1133 #endif
1134
1135 /*
1136 * Remove from item list.
1137 */
1138 LIST_REMOVE(pi, pi_list);
1139 }
1140 pp->pr_nitems--;
1141 pp->pr_nout++;
1142 if (ph->ph_nmissing == 0) {
1143 #ifdef DIAGNOSTIC
1144 if (__predict_false(pp->pr_nidle == 0))
1145 panic("pool_get: nidle inconsistent");
1146 #endif
1147 pp->pr_nidle--;
1148
1149 /*
1150 * This page was previously empty. Move it to the list of
1151 * partially-full pages. This page is already curpage.
1152 */
1153 LIST_REMOVE(ph, ph_pagelist);
1154 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1155 }
1156 ph->ph_nmissing++;
1157 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1158 #ifdef DIAGNOSTIC
1159 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1160 !LIST_EMPTY(&ph->ph_itemlist))) {
1161 pr_leave(pp);
1162 mutex_exit(&pp->pr_lock);
1163 panic("pool_get: %s: nmissing inconsistent",
1164 pp->pr_wchan);
1165 }
1166 #endif
1167 /*
1168 * This page is now full. Move it to the full list
1169 * and select a new current page.
1170 */
1171 LIST_REMOVE(ph, ph_pagelist);
1172 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1173 pool_update_curpage(pp);
1174 }
1175
1176 pp->pr_nget++;
1177 pr_leave(pp);
1178
1179 /*
1180 * If we have a low water mark and we are now below that low
1181 * water mark, add more items to the pool.
1182 */
1183 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1184 /*
1185 * XXX: Should we log a warning? Should we set up a timeout
1186 * to try again in a second or so? The latter could break
1187 * a caller's assumptions about interrupt protection, etc.
1188 */
1189 }
1190
1191 mutex_exit(&pp->pr_lock);
1192 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1193 FREECHECK_OUT(&pp->pr_freecheck, v);
1194 return (v);
1195 }
1196
1197 /*
1198 * Internal version of pool_put(). Pool is already locked/entered.
1199 */
1200 static void
1201 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1202 {
1203 struct pool_item *pi = v;
1204 struct pool_item_header *ph;
1205
1206 KASSERT(mutex_owned(&pp->pr_lock));
1207 FREECHECK_IN(&pp->pr_freecheck, v);
1208 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1209
1210 #ifdef DIAGNOSTIC
1211 if (__predict_false(pp->pr_nout == 0)) {
1212 printf("pool %s: putting with none out\n",
1213 pp->pr_wchan);
1214 panic("pool_put");
1215 }
1216 #endif
1217
1218 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1219 pr_printlog(pp, NULL, printf);
1220 panic("pool_put: %s: page header missing", pp->pr_wchan);
1221 }
1222
1223 /*
1224 * Return to item list.
1225 */
1226 if (pp->pr_roflags & PR_NOTOUCH) {
1227 pr_item_notouch_put(pp, ph, v);
1228 } else {
1229 #ifdef DIAGNOSTIC
1230 pi->pi_magic = PI_MAGIC;
1231 #endif
1232 #ifdef DEBUG
1233 {
1234 int i, *ip = v;
1235
1236 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1237 *ip++ = PI_MAGIC;
1238 }
1239 }
1240 #endif
1241
1242 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1243 }
1244 KDASSERT(ph->ph_nmissing != 0);
1245 ph->ph_nmissing--;
1246 pp->pr_nput++;
1247 pp->pr_nitems++;
1248 pp->pr_nout--;
1249
1250 /* Cancel "pool empty" condition if it exists */
1251 if (pp->pr_curpage == NULL)
1252 pp->pr_curpage = ph;
1253
1254 if (pp->pr_flags & PR_WANTED) {
1255 pp->pr_flags &= ~PR_WANTED;
1256 cv_broadcast(&pp->pr_cv);
1257 }
1258
1259 /*
1260 * If this page is now empty, do one of two things:
1261 *
1262 * (1) If we have more pages than the page high water mark,
1263 * free the page back to the system. ONLY CONSIDER
1264 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1265 * CLAIM.
1266 *
1267 * (2) Otherwise, move the page to the empty page list.
1268 *
1269 * Either way, select a new current page (so we use a partially-full
1270 * page if one is available).
1271 */
1272 if (ph->ph_nmissing == 0) {
1273 pp->pr_nidle++;
1274 if (pp->pr_npages > pp->pr_minpages &&
1275 pp->pr_npages > pp->pr_maxpages) {
1276 pr_rmpage(pp, ph, pq);
1277 } else {
1278 LIST_REMOVE(ph, ph_pagelist);
1279 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1280
1281 /*
1282 * Update the timestamp on the page. A page must
1283 * be idle for some period of time before it can
1284 * be reclaimed by the pagedaemon. This minimizes
1285 * ping-pong'ing for memory.
1286 *
1287 * note for 64-bit time_t: truncating to 32-bit is not
1288 * a problem for our usage.
1289 */
1290 ph->ph_time = time_uptime;
1291 }
1292 pool_update_curpage(pp);
1293 }
1294
1295 /*
1296 * If the page was previously completely full, move it to the
1297 * partially-full list and make it the current page. The next
1298 * allocation will get the item from this page, instead of
1299 * further fragmenting the pool.
1300 */
1301 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1302 LIST_REMOVE(ph, ph_pagelist);
1303 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1304 pp->pr_curpage = ph;
1305 }
1306 }
1307
1308 /*
1309 * Return resource to the pool.
1310 */
1311 #ifdef POOL_DIAGNOSTIC
1312 void
1313 _pool_put(struct pool *pp, void *v, const char *file, long line)
1314 {
1315 struct pool_pagelist pq;
1316
1317 LIST_INIT(&pq);
1318
1319 mutex_enter(&pp->pr_lock);
1320 pr_enter(pp, file, line);
1321
1322 pr_log(pp, v, PRLOG_PUT, file, line);
1323
1324 pool_do_put(pp, v, &pq);
1325
1326 pr_leave(pp);
1327 mutex_exit(&pp->pr_lock);
1328
1329 pr_pagelist_free(pp, &pq);
1330 }
1331 #undef pool_put
1332 #endif /* POOL_DIAGNOSTIC */
1333
1334 void
1335 pool_put(struct pool *pp, void *v)
1336 {
1337 struct pool_pagelist pq;
1338
1339 LIST_INIT(&pq);
1340
1341 mutex_enter(&pp->pr_lock);
1342 pool_do_put(pp, v, &pq);
1343 mutex_exit(&pp->pr_lock);
1344
1345 pr_pagelist_free(pp, &pq);
1346 }
1347
1348 #ifdef POOL_DIAGNOSTIC
1349 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1350 #endif
1351
1352 /*
1353 * pool_grow: grow a pool by a page.
1354 *
1355 * => called with pool locked.
1356 * => unlock and relock the pool.
1357 * => return with pool locked.
1358 */
1359
1360 static int
1361 pool_grow(struct pool *pp, int flags)
1362 {
1363 struct pool_item_header *ph = NULL;
1364 char *cp;
1365
1366 mutex_exit(&pp->pr_lock);
1367 cp = pool_allocator_alloc(pp, flags);
1368 if (__predict_true(cp != NULL)) {
1369 ph = pool_alloc_item_header(pp, cp, flags);
1370 }
1371 if (__predict_false(cp == NULL || ph == NULL)) {
1372 if (cp != NULL) {
1373 pool_allocator_free(pp, cp);
1374 }
1375 mutex_enter(&pp->pr_lock);
1376 return ENOMEM;
1377 }
1378
1379 mutex_enter(&pp->pr_lock);
1380 pool_prime_page(pp, cp, ph);
1381 pp->pr_npagealloc++;
1382 return 0;
1383 }
1384
1385 /*
1386 * Add N items to the pool.
1387 */
1388 int
1389 pool_prime(struct pool *pp, int n)
1390 {
1391 int newpages;
1392 int error = 0;
1393
1394 mutex_enter(&pp->pr_lock);
1395
1396 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1397
1398 while (newpages-- > 0) {
1399 error = pool_grow(pp, PR_NOWAIT);
1400 if (error) {
1401 break;
1402 }
1403 pp->pr_minpages++;
1404 }
1405
1406 if (pp->pr_minpages >= pp->pr_maxpages)
1407 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1408
1409 mutex_exit(&pp->pr_lock);
1410 return error;
1411 }
1412
1413 /*
1414 * Add a page worth of items to the pool.
1415 *
1416 * Note, we must be called with the pool descriptor LOCKED.
1417 */
1418 static void
1419 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1420 {
1421 struct pool_item *pi;
1422 void *cp = storage;
1423 const unsigned int align = pp->pr_align;
1424 const unsigned int ioff = pp->pr_itemoffset;
1425 int n;
1426
1427 KASSERT(mutex_owned(&pp->pr_lock));
1428
1429 #ifdef DIAGNOSTIC
1430 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1431 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1432 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1433 #endif
1434
1435 /*
1436 * Insert page header.
1437 */
1438 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1439 LIST_INIT(&ph->ph_itemlist);
1440 ph->ph_page = storage;
1441 ph->ph_nmissing = 0;
1442 ph->ph_time = time_uptime;
1443 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1444 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1445
1446 pp->pr_nidle++;
1447
1448 /*
1449 * Color this page.
1450 */
1451 ph->ph_off = pp->pr_curcolor;
1452 cp = (char *)cp + ph->ph_off;
1453 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1454 pp->pr_curcolor = 0;
1455
1456 /*
1457 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1458 */
1459 if (ioff != 0)
1460 cp = (char *)cp + align - ioff;
1461
1462 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1463
1464 /*
1465 * Insert remaining chunks on the bucket list.
1466 */
1467 n = pp->pr_itemsperpage;
1468 pp->pr_nitems += n;
1469
1470 if (pp->pr_roflags & PR_NOTOUCH) {
1471 pr_item_notouch_init(pp, ph);
1472 } else {
1473 while (n--) {
1474 pi = (struct pool_item *)cp;
1475
1476 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1477
1478 /* Insert on page list */
1479 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1480 #ifdef DIAGNOSTIC
1481 pi->pi_magic = PI_MAGIC;
1482 #endif
1483 cp = (char *)cp + pp->pr_size;
1484
1485 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1486 }
1487 }
1488
1489 /*
1490 * If the pool was depleted, point at the new page.
1491 */
1492 if (pp->pr_curpage == NULL)
1493 pp->pr_curpage = ph;
1494
1495 if (++pp->pr_npages > pp->pr_hiwat)
1496 pp->pr_hiwat = pp->pr_npages;
1497 }
1498
1499 /*
1500 * Used by pool_get() when nitems drops below the low water mark. This
1501 * is used to catch up pr_nitems with the low water mark.
1502 *
1503 * Note 1, we never wait for memory here, we let the caller decide what to do.
1504 *
1505 * Note 2, we must be called with the pool already locked, and we return
1506 * with it locked.
1507 */
1508 static int
1509 pool_catchup(struct pool *pp)
1510 {
1511 int error = 0;
1512
1513 while (POOL_NEEDS_CATCHUP(pp)) {
1514 error = pool_grow(pp, PR_NOWAIT);
1515 if (error) {
1516 break;
1517 }
1518 }
1519 return error;
1520 }
1521
1522 static void
1523 pool_update_curpage(struct pool *pp)
1524 {
1525
1526 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1527 if (pp->pr_curpage == NULL) {
1528 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1529 }
1530 }
1531
1532 void
1533 pool_setlowat(struct pool *pp, int n)
1534 {
1535
1536 mutex_enter(&pp->pr_lock);
1537
1538 pp->pr_minitems = n;
1539 pp->pr_minpages = (n == 0)
1540 ? 0
1541 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1542
1543 /* Make sure we're caught up with the newly-set low water mark. */
1544 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1545 /*
1546 * XXX: Should we log a warning? Should we set up a timeout
1547 * to try again in a second or so? The latter could break
1548 * a caller's assumptions about interrupt protection, etc.
1549 */
1550 }
1551
1552 mutex_exit(&pp->pr_lock);
1553 }
1554
1555 void
1556 pool_sethiwat(struct pool *pp, int n)
1557 {
1558
1559 mutex_enter(&pp->pr_lock);
1560
1561 pp->pr_maxpages = (n == 0)
1562 ? 0
1563 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1564
1565 mutex_exit(&pp->pr_lock);
1566 }
1567
1568 void
1569 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1570 {
1571
1572 mutex_enter(&pp->pr_lock);
1573
1574 pp->pr_hardlimit = n;
1575 pp->pr_hardlimit_warning = warnmess;
1576 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1577 pp->pr_hardlimit_warning_last.tv_sec = 0;
1578 pp->pr_hardlimit_warning_last.tv_usec = 0;
1579
1580 /*
1581 * In-line version of pool_sethiwat(), because we don't want to
1582 * release the lock.
1583 */
1584 pp->pr_maxpages = (n == 0)
1585 ? 0
1586 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1587
1588 mutex_exit(&pp->pr_lock);
1589 }
1590
1591 /*
1592 * Release all complete pages that have not been used recently.
1593 */
1594 int
1595 #ifdef POOL_DIAGNOSTIC
1596 _pool_reclaim(struct pool *pp, const char *file, long line)
1597 #else
1598 pool_reclaim(struct pool *pp)
1599 #endif
1600 {
1601 struct pool_item_header *ph, *phnext;
1602 struct pool_pagelist pq;
1603 uint32_t curtime;
1604 bool klock;
1605 int rv;
1606
1607 if (pp->pr_drain_hook != NULL) {
1608 /*
1609 * The drain hook must be called with the pool unlocked.
1610 */
1611 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1612 }
1613
1614 /*
1615 * XXXSMP Because we do not want to cause non-MPSAFE code
1616 * to block.
1617 */
1618 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1619 pp->pr_ipl == IPL_SOFTSERIAL) {
1620 KERNEL_LOCK(1, NULL);
1621 klock = true;
1622 } else
1623 klock = false;
1624
1625 /* Reclaim items from the pool's cache (if any). */
1626 if (pp->pr_cache != NULL)
1627 pool_cache_invalidate(pp->pr_cache);
1628
1629 if (mutex_tryenter(&pp->pr_lock) == 0) {
1630 if (klock) {
1631 KERNEL_UNLOCK_ONE(NULL);
1632 }
1633 return (0);
1634 }
1635 pr_enter(pp, file, line);
1636
1637 LIST_INIT(&pq);
1638
1639 curtime = time_uptime;
1640
1641 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1642 phnext = LIST_NEXT(ph, ph_pagelist);
1643
1644 /* Check our minimum page claim */
1645 if (pp->pr_npages <= pp->pr_minpages)
1646 break;
1647
1648 KASSERT(ph->ph_nmissing == 0);
1649 if (curtime - ph->ph_time < pool_inactive_time
1650 && !pa_starved_p(pp->pr_alloc))
1651 continue;
1652
1653 /*
1654 * If freeing this page would put us below
1655 * the low water mark, stop now.
1656 */
1657 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1658 pp->pr_minitems)
1659 break;
1660
1661 pr_rmpage(pp, ph, &pq);
1662 }
1663
1664 pr_leave(pp);
1665 mutex_exit(&pp->pr_lock);
1666
1667 if (LIST_EMPTY(&pq))
1668 rv = 0;
1669 else {
1670 pr_pagelist_free(pp, &pq);
1671 rv = 1;
1672 }
1673
1674 if (klock) {
1675 KERNEL_UNLOCK_ONE(NULL);
1676 }
1677
1678 return (rv);
1679 }
1680
1681 /*
1682 * Drain pools, one at a time. This is a two stage process;
1683 * drain_start kicks off a cross call to drain CPU-level caches
1684 * if the pool has an associated pool_cache. drain_end waits
1685 * for those cross calls to finish, and then drains the cache
1686 * (if any) and pool.
1687 *
1688 * Note, must never be called from interrupt context.
1689 */
1690 void
1691 pool_drain_start(struct pool **ppp, uint64_t *wp)
1692 {
1693 struct pool *pp;
1694
1695 KASSERT(!TAILQ_EMPTY(&pool_head));
1696
1697 pp = NULL;
1698
1699 /* Find next pool to drain, and add a reference. */
1700 mutex_enter(&pool_head_lock);
1701 do {
1702 if (drainpp == NULL) {
1703 drainpp = TAILQ_FIRST(&pool_head);
1704 }
1705 if (drainpp != NULL) {
1706 pp = drainpp;
1707 drainpp = TAILQ_NEXT(pp, pr_poollist);
1708 }
1709 /*
1710 * Skip completely idle pools. We depend on at least
1711 * one pool in the system being active.
1712 */
1713 } while (pp == NULL || pp->pr_npages == 0);
1714 pp->pr_refcnt++;
1715 mutex_exit(&pool_head_lock);
1716
1717 /* If there is a pool_cache, drain CPU level caches. */
1718 *ppp = pp;
1719 if (pp->pr_cache != NULL) {
1720 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1721 pp->pr_cache, NULL);
1722 }
1723 }
1724
1725 void
1726 pool_drain_end(struct pool *pp, uint64_t where)
1727 {
1728
1729 if (pp == NULL)
1730 return;
1731
1732 KASSERT(pp->pr_refcnt > 0);
1733
1734 /* Wait for remote draining to complete. */
1735 if (pp->pr_cache != NULL)
1736 xc_wait(where);
1737
1738 /* Drain the cache (if any) and pool.. */
1739 pool_reclaim(pp);
1740
1741 /* Finally, unlock the pool. */
1742 mutex_enter(&pool_head_lock);
1743 pp->pr_refcnt--;
1744 cv_broadcast(&pool_busy);
1745 mutex_exit(&pool_head_lock);
1746 }
1747
1748 /*
1749 * Diagnostic helpers.
1750 */
1751 void
1752 pool_print(struct pool *pp, const char *modif)
1753 {
1754
1755 pool_print1(pp, modif, printf);
1756 }
1757
1758 void
1759 pool_printall(const char *modif, void (*pr)(const char *, ...))
1760 {
1761 struct pool *pp;
1762
1763 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1764 pool_printit(pp, modif, pr);
1765 }
1766 }
1767
1768 void
1769 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1770 {
1771
1772 if (pp == NULL) {
1773 (*pr)("Must specify a pool to print.\n");
1774 return;
1775 }
1776
1777 pool_print1(pp, modif, pr);
1778 }
1779
1780 static void
1781 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1782 void (*pr)(const char *, ...))
1783 {
1784 struct pool_item_header *ph;
1785 #ifdef DIAGNOSTIC
1786 struct pool_item *pi;
1787 #endif
1788
1789 LIST_FOREACH(ph, pl, ph_pagelist) {
1790 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1791 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1792 #ifdef DIAGNOSTIC
1793 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1794 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1795 if (pi->pi_magic != PI_MAGIC) {
1796 (*pr)("\t\t\titem %p, magic 0x%x\n",
1797 pi, pi->pi_magic);
1798 }
1799 }
1800 }
1801 #endif
1802 }
1803 }
1804
1805 static void
1806 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1807 {
1808 struct pool_item_header *ph;
1809 pool_cache_t pc;
1810 pcg_t *pcg;
1811 pool_cache_cpu_t *cc;
1812 uint64_t cpuhit, cpumiss;
1813 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1814 char c;
1815
1816 while ((c = *modif++) != '\0') {
1817 if (c == 'l')
1818 print_log = 1;
1819 if (c == 'p')
1820 print_pagelist = 1;
1821 if (c == 'c')
1822 print_cache = 1;
1823 }
1824
1825 if ((pc = pp->pr_cache) != NULL) {
1826 (*pr)("POOL CACHE");
1827 } else {
1828 (*pr)("POOL");
1829 }
1830
1831 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1832 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1833 pp->pr_roflags);
1834 (*pr)("\talloc %p\n", pp->pr_alloc);
1835 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1836 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1837 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1838 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1839
1840 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1841 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1842 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1843 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1844
1845 if (print_pagelist == 0)
1846 goto skip_pagelist;
1847
1848 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1849 (*pr)("\n\tempty page list:\n");
1850 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1851 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1852 (*pr)("\n\tfull page list:\n");
1853 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1854 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1855 (*pr)("\n\tpartial-page list:\n");
1856 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1857
1858 if (pp->pr_curpage == NULL)
1859 (*pr)("\tno current page\n");
1860 else
1861 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1862
1863 skip_pagelist:
1864 if (print_log == 0)
1865 goto skip_log;
1866
1867 (*pr)("\n");
1868 if ((pp->pr_roflags & PR_LOGGING) == 0)
1869 (*pr)("\tno log\n");
1870 else {
1871 pr_printlog(pp, NULL, pr);
1872 }
1873
1874 skip_log:
1875
1876 #define PR_GROUPLIST(pcg) \
1877 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1878 for (i = 0; i < pcg->pcg_size; i++) { \
1879 if (pcg->pcg_objects[i].pcgo_pa != \
1880 POOL_PADDR_INVALID) { \
1881 (*pr)("\t\t\t%p, 0x%llx\n", \
1882 pcg->pcg_objects[i].pcgo_va, \
1883 (unsigned long long) \
1884 pcg->pcg_objects[i].pcgo_pa); \
1885 } else { \
1886 (*pr)("\t\t\t%p\n", \
1887 pcg->pcg_objects[i].pcgo_va); \
1888 } \
1889 }
1890
1891 if (pc != NULL) {
1892 cpuhit = 0;
1893 cpumiss = 0;
1894 for (i = 0; i < MAXCPUS; i++) {
1895 if ((cc = pc->pc_cpus[i]) == NULL)
1896 continue;
1897 cpuhit += cc->cc_hits;
1898 cpumiss += cc->cc_misses;
1899 }
1900 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1901 (*pr)("\tcache layer hits %llu misses %llu\n",
1902 pc->pc_hits, pc->pc_misses);
1903 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1904 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1905 pc->pc_contended);
1906 (*pr)("\tcache layer empty groups %u full groups %u\n",
1907 pc->pc_nempty, pc->pc_nfull);
1908 if (print_cache) {
1909 (*pr)("\tfull cache groups:\n");
1910 for (pcg = pc->pc_fullgroups; pcg != NULL;
1911 pcg = pcg->pcg_next) {
1912 PR_GROUPLIST(pcg);
1913 }
1914 (*pr)("\tempty cache groups:\n");
1915 for (pcg = pc->pc_emptygroups; pcg != NULL;
1916 pcg = pcg->pcg_next) {
1917 PR_GROUPLIST(pcg);
1918 }
1919 }
1920 }
1921 #undef PR_GROUPLIST
1922
1923 pr_enter_check(pp, pr);
1924 }
1925
1926 static int
1927 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1928 {
1929 struct pool_item *pi;
1930 void *page;
1931 int n;
1932
1933 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1934 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1935 if (page != ph->ph_page &&
1936 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1937 if (label != NULL)
1938 printf("%s: ", label);
1939 printf("pool(%p:%s): page inconsistency: page %p;"
1940 " at page head addr %p (p %p)\n", pp,
1941 pp->pr_wchan, ph->ph_page,
1942 ph, page);
1943 return 1;
1944 }
1945 }
1946
1947 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1948 return 0;
1949
1950 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1951 pi != NULL;
1952 pi = LIST_NEXT(pi,pi_list), n++) {
1953
1954 #ifdef DIAGNOSTIC
1955 if (pi->pi_magic != PI_MAGIC) {
1956 if (label != NULL)
1957 printf("%s: ", label);
1958 printf("pool(%s): free list modified: magic=%x;"
1959 " page %p; item ordinal %d; addr %p\n",
1960 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1961 n, pi);
1962 panic("pool");
1963 }
1964 #endif
1965 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1966 continue;
1967 }
1968 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1969 if (page == ph->ph_page)
1970 continue;
1971
1972 if (label != NULL)
1973 printf("%s: ", label);
1974 printf("pool(%p:%s): page inconsistency: page %p;"
1975 " item ordinal %d; addr %p (p %p)\n", pp,
1976 pp->pr_wchan, ph->ph_page,
1977 n, pi, page);
1978 return 1;
1979 }
1980 return 0;
1981 }
1982
1983
1984 int
1985 pool_chk(struct pool *pp, const char *label)
1986 {
1987 struct pool_item_header *ph;
1988 int r = 0;
1989
1990 mutex_enter(&pp->pr_lock);
1991 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1992 r = pool_chk_page(pp, label, ph);
1993 if (r) {
1994 goto out;
1995 }
1996 }
1997 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1998 r = pool_chk_page(pp, label, ph);
1999 if (r) {
2000 goto out;
2001 }
2002 }
2003 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2004 r = pool_chk_page(pp, label, ph);
2005 if (r) {
2006 goto out;
2007 }
2008 }
2009
2010 out:
2011 mutex_exit(&pp->pr_lock);
2012 return (r);
2013 }
2014
2015 /*
2016 * pool_cache_init:
2017 *
2018 * Initialize a pool cache.
2019 */
2020 pool_cache_t
2021 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2022 const char *wchan, struct pool_allocator *palloc, int ipl,
2023 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2024 {
2025 pool_cache_t pc;
2026
2027 pc = pool_get(&cache_pool, PR_WAITOK);
2028 if (pc == NULL)
2029 return NULL;
2030
2031 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2032 palloc, ipl, ctor, dtor, arg);
2033
2034 return pc;
2035 }
2036
2037 /*
2038 * pool_cache_bootstrap:
2039 *
2040 * Kernel-private version of pool_cache_init(). The caller
2041 * provides initial storage.
2042 */
2043 void
2044 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2045 u_int align_offset, u_int flags, const char *wchan,
2046 struct pool_allocator *palloc, int ipl,
2047 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2048 void *arg)
2049 {
2050 CPU_INFO_ITERATOR cii;
2051 pool_cache_t pc1;
2052 struct cpu_info *ci;
2053 struct pool *pp;
2054
2055 pp = &pc->pc_pool;
2056 if (palloc == NULL && ipl == IPL_NONE)
2057 palloc = &pool_allocator_nointr;
2058 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2059 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2060
2061 if (ctor == NULL) {
2062 ctor = (int (*)(void *, void *, int))nullop;
2063 }
2064 if (dtor == NULL) {
2065 dtor = (void (*)(void *, void *))nullop;
2066 }
2067
2068 pc->pc_emptygroups = NULL;
2069 pc->pc_fullgroups = NULL;
2070 pc->pc_partgroups = NULL;
2071 pc->pc_ctor = ctor;
2072 pc->pc_dtor = dtor;
2073 pc->pc_arg = arg;
2074 pc->pc_hits = 0;
2075 pc->pc_misses = 0;
2076 pc->pc_nempty = 0;
2077 pc->pc_npart = 0;
2078 pc->pc_nfull = 0;
2079 pc->pc_contended = 0;
2080 pc->pc_refcnt = 0;
2081 pc->pc_freecheck = NULL;
2082
2083 if ((flags & PR_LARGECACHE) != 0) {
2084 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2085 pc->pc_pcgpool = &pcg_large_pool;
2086 } else {
2087 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2088 pc->pc_pcgpool = &pcg_normal_pool;
2089 }
2090
2091 /* Allocate per-CPU caches. */
2092 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2093 pc->pc_ncpu = 0;
2094 if (ncpu < 2) {
2095 /* XXX For sparc: boot CPU is not attached yet. */
2096 pool_cache_cpu_init1(curcpu(), pc);
2097 } else {
2098 for (CPU_INFO_FOREACH(cii, ci)) {
2099 pool_cache_cpu_init1(ci, pc);
2100 }
2101 }
2102
2103 /* Add to list of all pools. */
2104 if (__predict_true(!cold))
2105 mutex_enter(&pool_head_lock);
2106 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2107 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2108 break;
2109 }
2110 if (pc1 == NULL)
2111 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2112 else
2113 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2114 if (__predict_true(!cold))
2115 mutex_exit(&pool_head_lock);
2116
2117 membar_sync();
2118 pp->pr_cache = pc;
2119 }
2120
2121 /*
2122 * pool_cache_destroy:
2123 *
2124 * Destroy a pool cache.
2125 */
2126 void
2127 pool_cache_destroy(pool_cache_t pc)
2128 {
2129 struct pool *pp = &pc->pc_pool;
2130 pool_cache_cpu_t *cc;
2131 pcg_t *pcg;
2132 int i;
2133
2134 /* Remove it from the global list. */
2135 mutex_enter(&pool_head_lock);
2136 while (pc->pc_refcnt != 0)
2137 cv_wait(&pool_busy, &pool_head_lock);
2138 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2139 mutex_exit(&pool_head_lock);
2140
2141 /* First, invalidate the entire cache. */
2142 pool_cache_invalidate(pc);
2143
2144 /* Disassociate it from the pool. */
2145 mutex_enter(&pp->pr_lock);
2146 pp->pr_cache = NULL;
2147 mutex_exit(&pp->pr_lock);
2148
2149 /* Destroy per-CPU data */
2150 for (i = 0; i < MAXCPUS; i++) {
2151 if ((cc = pc->pc_cpus[i]) == NULL)
2152 continue;
2153 if ((pcg = cc->cc_current) != &pcg_dummy) {
2154 pcg->pcg_next = NULL;
2155 pool_cache_invalidate_groups(pc, pcg);
2156 }
2157 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2158 pcg->pcg_next = NULL;
2159 pool_cache_invalidate_groups(pc, pcg);
2160 }
2161 if (cc != &pc->pc_cpu0)
2162 pool_put(&cache_cpu_pool, cc);
2163 }
2164
2165 /* Finally, destroy it. */
2166 mutex_destroy(&pc->pc_lock);
2167 pool_destroy(pp);
2168 pool_put(&cache_pool, pc);
2169 }
2170
2171 /*
2172 * pool_cache_cpu_init1:
2173 *
2174 * Called for each pool_cache whenever a new CPU is attached.
2175 */
2176 static void
2177 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2178 {
2179 pool_cache_cpu_t *cc;
2180 int index;
2181
2182 index = ci->ci_index;
2183
2184 KASSERT(index < MAXCPUS);
2185
2186 if ((cc = pc->pc_cpus[index]) != NULL) {
2187 KASSERT(cc->cc_cpuindex == index);
2188 return;
2189 }
2190
2191 /*
2192 * The first CPU is 'free'. This needs to be the case for
2193 * bootstrap - we may not be able to allocate yet.
2194 */
2195 if (pc->pc_ncpu == 0) {
2196 cc = &pc->pc_cpu0;
2197 pc->pc_ncpu = 1;
2198 } else {
2199 mutex_enter(&pc->pc_lock);
2200 pc->pc_ncpu++;
2201 mutex_exit(&pc->pc_lock);
2202 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2203 }
2204
2205 cc->cc_ipl = pc->pc_pool.pr_ipl;
2206 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2207 cc->cc_cache = pc;
2208 cc->cc_cpuindex = index;
2209 cc->cc_hits = 0;
2210 cc->cc_misses = 0;
2211 cc->cc_current = &pcg_dummy;
2212 cc->cc_previous = &pcg_dummy;
2213
2214 pc->pc_cpus[index] = cc;
2215 }
2216
2217 /*
2218 * pool_cache_cpu_init:
2219 *
2220 * Called whenever a new CPU is attached.
2221 */
2222 void
2223 pool_cache_cpu_init(struct cpu_info *ci)
2224 {
2225 pool_cache_t pc;
2226
2227 mutex_enter(&pool_head_lock);
2228 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2229 pc->pc_refcnt++;
2230 mutex_exit(&pool_head_lock);
2231
2232 pool_cache_cpu_init1(ci, pc);
2233
2234 mutex_enter(&pool_head_lock);
2235 pc->pc_refcnt--;
2236 cv_broadcast(&pool_busy);
2237 }
2238 mutex_exit(&pool_head_lock);
2239 }
2240
2241 /*
2242 * pool_cache_reclaim:
2243 *
2244 * Reclaim memory from a pool cache.
2245 */
2246 bool
2247 pool_cache_reclaim(pool_cache_t pc)
2248 {
2249
2250 return pool_reclaim(&pc->pc_pool);
2251 }
2252
2253 static void
2254 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2255 {
2256
2257 (*pc->pc_dtor)(pc->pc_arg, object);
2258 pool_put(&pc->pc_pool, object);
2259 }
2260
2261 /*
2262 * pool_cache_destruct_object:
2263 *
2264 * Force destruction of an object and its release back into
2265 * the pool.
2266 */
2267 void
2268 pool_cache_destruct_object(pool_cache_t pc, void *object)
2269 {
2270
2271 FREECHECK_IN(&pc->pc_freecheck, object);
2272
2273 pool_cache_destruct_object1(pc, object);
2274 }
2275
2276 /*
2277 * pool_cache_invalidate_groups:
2278 *
2279 * Invalidate a chain of groups and destruct all objects.
2280 */
2281 static void
2282 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2283 {
2284 void *object;
2285 pcg_t *next;
2286 int i;
2287
2288 for (; pcg != NULL; pcg = next) {
2289 next = pcg->pcg_next;
2290
2291 for (i = 0; i < pcg->pcg_avail; i++) {
2292 object = pcg->pcg_objects[i].pcgo_va;
2293 pool_cache_destruct_object1(pc, object);
2294 }
2295
2296 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2297 pool_put(&pcg_large_pool, pcg);
2298 } else {
2299 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2300 pool_put(&pcg_normal_pool, pcg);
2301 }
2302 }
2303 }
2304
2305 /*
2306 * pool_cache_invalidate:
2307 *
2308 * Invalidate a pool cache (destruct and release all of the
2309 * cached objects). Does not reclaim objects from the pool.
2310 */
2311 void
2312 pool_cache_invalidate(pool_cache_t pc)
2313 {
2314 pcg_t *full, *empty, *part;
2315
2316 mutex_enter(&pc->pc_lock);
2317 full = pc->pc_fullgroups;
2318 empty = pc->pc_emptygroups;
2319 part = pc->pc_partgroups;
2320 pc->pc_fullgroups = NULL;
2321 pc->pc_emptygroups = NULL;
2322 pc->pc_partgroups = NULL;
2323 pc->pc_nfull = 0;
2324 pc->pc_nempty = 0;
2325 pc->pc_npart = 0;
2326 mutex_exit(&pc->pc_lock);
2327
2328 pool_cache_invalidate_groups(pc, full);
2329 pool_cache_invalidate_groups(pc, empty);
2330 pool_cache_invalidate_groups(pc, part);
2331 }
2332
2333 void
2334 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2335 {
2336
2337 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2338 }
2339
2340 void
2341 pool_cache_setlowat(pool_cache_t pc, int n)
2342 {
2343
2344 pool_setlowat(&pc->pc_pool, n);
2345 }
2346
2347 void
2348 pool_cache_sethiwat(pool_cache_t pc, int n)
2349 {
2350
2351 pool_sethiwat(&pc->pc_pool, n);
2352 }
2353
2354 void
2355 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2356 {
2357
2358 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2359 }
2360
2361 static bool __noinline
2362 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2363 paddr_t *pap, int flags)
2364 {
2365 pcg_t *pcg, *cur;
2366 uint64_t ncsw;
2367 pool_cache_t pc;
2368 void *object;
2369
2370 pc = cc->cc_cache;
2371 cc->cc_misses++;
2372
2373 /*
2374 * Nothing was available locally. Try and grab a group
2375 * from the cache.
2376 */
2377 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2378 ncsw = curlwp->l_ncsw;
2379 mutex_enter(&pc->pc_lock);
2380 pc->pc_contended++;
2381
2382 /*
2383 * If we context switched while locking, then
2384 * our view of the per-CPU data is invalid:
2385 * retry.
2386 */
2387 if (curlwp->l_ncsw != ncsw) {
2388 mutex_exit(&pc->pc_lock);
2389 return true;
2390 }
2391 }
2392
2393 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2394 /*
2395 * If there's a full group, release our empty
2396 * group back to the cache. Install the full
2397 * group as cc_current and return.
2398 */
2399 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2400 KASSERT(cur->pcg_avail == 0);
2401 cur->pcg_next = pc->pc_emptygroups;
2402 pc->pc_emptygroups = cur;
2403 pc->pc_nempty++;
2404 }
2405 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2406 cc->cc_current = pcg;
2407 pc->pc_fullgroups = pcg->pcg_next;
2408 pc->pc_hits++;
2409 pc->pc_nfull--;
2410 mutex_exit(&pc->pc_lock);
2411 return true;
2412 }
2413
2414 /*
2415 * Nothing available locally or in cache. Take the slow
2416 * path: fetch a new object from the pool and construct
2417 * it.
2418 */
2419 pc->pc_misses++;
2420 mutex_exit(&pc->pc_lock);
2421 splx(s);
2422
2423 object = pool_get(&pc->pc_pool, flags);
2424 *objectp = object;
2425 if (__predict_false(object == NULL))
2426 return false;
2427
2428 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2429 pool_put(&pc->pc_pool, object);
2430 *objectp = NULL;
2431 return false;
2432 }
2433
2434 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2435 (pc->pc_pool.pr_align - 1)) == 0);
2436
2437 if (pap != NULL) {
2438 #ifdef POOL_VTOPHYS
2439 *pap = POOL_VTOPHYS(object);
2440 #else
2441 *pap = POOL_PADDR_INVALID;
2442 #endif
2443 }
2444
2445 FREECHECK_OUT(&pc->pc_freecheck, object);
2446 return false;
2447 }
2448
2449 /*
2450 * pool_cache_get{,_paddr}:
2451 *
2452 * Get an object from a pool cache (optionally returning
2453 * the physical address of the object).
2454 */
2455 void *
2456 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2457 {
2458 pool_cache_cpu_t *cc;
2459 pcg_t *pcg;
2460 void *object;
2461 int s;
2462
2463 #ifdef LOCKDEBUG
2464 if (flags & PR_WAITOK) {
2465 ASSERT_SLEEPABLE();
2466 }
2467 #endif
2468
2469 /* Lock out interrupts and disable preemption. */
2470 s = splvm();
2471 while (/* CONSTCOND */ true) {
2472 /* Try and allocate an object from the current group. */
2473 cc = pc->pc_cpus[curcpu()->ci_index];
2474 KASSERT(cc->cc_cache == pc);
2475 pcg = cc->cc_current;
2476 if (__predict_true(pcg->pcg_avail > 0)) {
2477 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2478 if (__predict_false(pap != NULL))
2479 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2480 #if defined(DIAGNOSTIC)
2481 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2482 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2483 KASSERT(object != NULL);
2484 #endif
2485 cc->cc_hits++;
2486 splx(s);
2487 FREECHECK_OUT(&pc->pc_freecheck, object);
2488 return object;
2489 }
2490
2491 /*
2492 * That failed. If the previous group isn't empty, swap
2493 * it with the current group and allocate from there.
2494 */
2495 pcg = cc->cc_previous;
2496 if (__predict_true(pcg->pcg_avail > 0)) {
2497 cc->cc_previous = cc->cc_current;
2498 cc->cc_current = pcg;
2499 continue;
2500 }
2501
2502 /*
2503 * Can't allocate from either group: try the slow path.
2504 * If get_slow() allocated an object for us, or if
2505 * no more objects are available, it will return false.
2506 * Otherwise, we need to retry.
2507 */
2508 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2509 break;
2510 }
2511
2512 return object;
2513 }
2514
2515 static bool __noinline
2516 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2517 {
2518 pcg_t *pcg, *cur;
2519 uint64_t ncsw;
2520 pool_cache_t pc;
2521
2522 pc = cc->cc_cache;
2523 cc->cc_misses++;
2524
2525 /* Lock the cache. */
2526 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2527 ncsw = curlwp->l_ncsw;
2528 mutex_enter(&pc->pc_lock);
2529 pc->pc_contended++;
2530
2531 /*
2532 * If we context switched while locking, then our view of
2533 * the per-CPU data is invalid: retry.
2534 */
2535 if (__predict_false(curlwp->l_ncsw != ncsw)) {
2536 mutex_exit(&pc->pc_lock);
2537 return true;
2538 }
2539 }
2540
2541 /* If there are no empty groups in the cache then allocate one. */
2542 if (__predict_false((pcg = pc->pc_emptygroups) == NULL)) {
2543 if (__predict_true(!pool_cache_disable)) {
2544 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2545 }
2546 if (__predict_true(pcg != NULL)) {
2547 pcg->pcg_avail = 0;
2548 pcg->pcg_size = pc->pc_pcgsize;
2549 }
2550 } else {
2551 pc->pc_emptygroups = pcg->pcg_next;
2552 pc->pc_nempty--;
2553 }
2554
2555 /*
2556 * If there's a empty group, release our full group back
2557 * to the cache. Install the empty group to the local CPU
2558 * and return.
2559 */
2560 if (pcg != NULL) {
2561 KASSERT(pcg->pcg_avail == 0);
2562 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2563 cc->cc_previous = pcg;
2564 } else {
2565 cur = cc->cc_current;
2566 if (__predict_true(cur != &pcg_dummy)) {
2567 KASSERT(cur->pcg_avail == cur->pcg_size);
2568 cur->pcg_next = pc->pc_fullgroups;
2569 pc->pc_fullgroups = cur;
2570 pc->pc_nfull++;
2571 }
2572 cc->cc_current = pcg;
2573 }
2574 pc->pc_hits++;
2575 mutex_exit(&pc->pc_lock);
2576 return true;
2577 }
2578
2579 /*
2580 * Nothing available locally or in cache, and we didn't
2581 * allocate an empty group. Take the slow path and destroy
2582 * the object here and now.
2583 */
2584 pc->pc_misses++;
2585 mutex_exit(&pc->pc_lock);
2586 splx(s);
2587 pool_cache_destruct_object(pc, object);
2588
2589 return false;
2590 }
2591
2592 /*
2593 * pool_cache_put{,_paddr}:
2594 *
2595 * Put an object back to the pool cache (optionally caching the
2596 * physical address of the object).
2597 */
2598 void
2599 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2600 {
2601 pool_cache_cpu_t *cc;
2602 pcg_t *pcg;
2603 int s;
2604
2605 FREECHECK_IN(&pc->pc_freecheck, object);
2606
2607 /* Lock out interrupts and disable preemption. */
2608 s = splvm();
2609 while (/* CONSTCOND */ true) {
2610 /* If the current group isn't full, release it there. */
2611 cc = pc->pc_cpus[curcpu()->ci_index];
2612 KASSERT(cc->cc_cache == pc);
2613 pcg = cc->cc_current;
2614 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2615 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2616 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2617 pcg->pcg_avail++;
2618 cc->cc_hits++;
2619 splx(s);
2620 return;
2621 }
2622
2623 /*
2624 * That failed. If the previous group isn't full, swap
2625 * it with the current group and try again.
2626 */
2627 pcg = cc->cc_previous;
2628 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2629 cc->cc_previous = cc->cc_current;
2630 cc->cc_current = pcg;
2631 continue;
2632 }
2633
2634 /*
2635 * Can't free to either group: try the slow path.
2636 * If put_slow() releases the object for us, it
2637 * will return false. Otherwise we need to retry.
2638 */
2639 if (!pool_cache_put_slow(cc, s, object))
2640 break;
2641 }
2642 }
2643
2644 /*
2645 * pool_cache_xcall:
2646 *
2647 * Transfer objects from the per-CPU cache to the global cache.
2648 * Run within a cross-call thread.
2649 */
2650 static void
2651 pool_cache_xcall(pool_cache_t pc)
2652 {
2653 pool_cache_cpu_t *cc;
2654 pcg_t *prev, *cur, **list;
2655 int s;
2656
2657 s = splvm();
2658 mutex_enter(&pc->pc_lock);
2659 cc = pc->pc_cpus[curcpu()->ci_index];
2660 cur = cc->cc_current;
2661 cc->cc_current = &pcg_dummy;
2662 prev = cc->cc_previous;
2663 cc->cc_previous = &pcg_dummy;
2664 if (cur != &pcg_dummy) {
2665 if (cur->pcg_avail == cur->pcg_size) {
2666 list = &pc->pc_fullgroups;
2667 pc->pc_nfull++;
2668 } else if (cur->pcg_avail == 0) {
2669 list = &pc->pc_emptygroups;
2670 pc->pc_nempty++;
2671 } else {
2672 list = &pc->pc_partgroups;
2673 pc->pc_npart++;
2674 }
2675 cur->pcg_next = *list;
2676 *list = cur;
2677 }
2678 if (prev != &pcg_dummy) {
2679 if (prev->pcg_avail == prev->pcg_size) {
2680 list = &pc->pc_fullgroups;
2681 pc->pc_nfull++;
2682 } else if (prev->pcg_avail == 0) {
2683 list = &pc->pc_emptygroups;
2684 pc->pc_nempty++;
2685 } else {
2686 list = &pc->pc_partgroups;
2687 pc->pc_npart++;
2688 }
2689 prev->pcg_next = *list;
2690 *list = prev;
2691 }
2692 mutex_exit(&pc->pc_lock);
2693 splx(s);
2694 }
2695
2696 /*
2697 * Pool backend allocators.
2698 *
2699 * Each pool has a backend allocator that handles allocation, deallocation,
2700 * and any additional draining that might be needed.
2701 *
2702 * We provide two standard allocators:
2703 *
2704 * pool_allocator_kmem - the default when no allocator is specified
2705 *
2706 * pool_allocator_nointr - used for pools that will not be accessed
2707 * in interrupt context.
2708 */
2709 void *pool_page_alloc(struct pool *, int);
2710 void pool_page_free(struct pool *, void *);
2711
2712 #ifdef POOL_SUBPAGE
2713 struct pool_allocator pool_allocator_kmem_fullpage = {
2714 pool_page_alloc, pool_page_free, 0,
2715 .pa_backingmapptr = &kmem_map,
2716 };
2717 #else
2718 struct pool_allocator pool_allocator_kmem = {
2719 pool_page_alloc, pool_page_free, 0,
2720 .pa_backingmapptr = &kmem_map,
2721 };
2722 #endif
2723
2724 void *pool_page_alloc_nointr(struct pool *, int);
2725 void pool_page_free_nointr(struct pool *, void *);
2726
2727 #ifdef POOL_SUBPAGE
2728 struct pool_allocator pool_allocator_nointr_fullpage = {
2729 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2730 .pa_backingmapptr = &kernel_map,
2731 };
2732 #else
2733 struct pool_allocator pool_allocator_nointr = {
2734 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2735 .pa_backingmapptr = &kernel_map,
2736 };
2737 #endif
2738
2739 #ifdef POOL_SUBPAGE
2740 void *pool_subpage_alloc(struct pool *, int);
2741 void pool_subpage_free(struct pool *, void *);
2742
2743 struct pool_allocator pool_allocator_kmem = {
2744 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2745 .pa_backingmapptr = &kmem_map,
2746 };
2747
2748 void *pool_subpage_alloc_nointr(struct pool *, int);
2749 void pool_subpage_free_nointr(struct pool *, void *);
2750
2751 struct pool_allocator pool_allocator_nointr = {
2752 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2753 .pa_backingmapptr = &kmem_map,
2754 };
2755 #endif /* POOL_SUBPAGE */
2756
2757 static void *
2758 pool_allocator_alloc(struct pool *pp, int flags)
2759 {
2760 struct pool_allocator *pa = pp->pr_alloc;
2761 void *res;
2762
2763 res = (*pa->pa_alloc)(pp, flags);
2764 if (res == NULL && (flags & PR_WAITOK) == 0) {
2765 /*
2766 * We only run the drain hook here if PR_NOWAIT.
2767 * In other cases, the hook will be run in
2768 * pool_reclaim().
2769 */
2770 if (pp->pr_drain_hook != NULL) {
2771 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2772 res = (*pa->pa_alloc)(pp, flags);
2773 }
2774 }
2775 return res;
2776 }
2777
2778 static void
2779 pool_allocator_free(struct pool *pp, void *v)
2780 {
2781 struct pool_allocator *pa = pp->pr_alloc;
2782
2783 (*pa->pa_free)(pp, v);
2784 }
2785
2786 void *
2787 pool_page_alloc(struct pool *pp, int flags)
2788 {
2789 bool waitok = (flags & PR_WAITOK) ? true : false;
2790
2791 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2792 }
2793
2794 void
2795 pool_page_free(struct pool *pp, void *v)
2796 {
2797
2798 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2799 }
2800
2801 static void *
2802 pool_page_alloc_meta(struct pool *pp, int flags)
2803 {
2804 bool waitok = (flags & PR_WAITOK) ? true : false;
2805
2806 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2807 }
2808
2809 static void
2810 pool_page_free_meta(struct pool *pp, void *v)
2811 {
2812
2813 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2814 }
2815
2816 #ifdef POOL_SUBPAGE
2817 /* Sub-page allocator, for machines with large hardware pages. */
2818 void *
2819 pool_subpage_alloc(struct pool *pp, int flags)
2820 {
2821 return pool_get(&psppool, flags);
2822 }
2823
2824 void
2825 pool_subpage_free(struct pool *pp, void *v)
2826 {
2827 pool_put(&psppool, v);
2828 }
2829
2830 /* We don't provide a real nointr allocator. Maybe later. */
2831 void *
2832 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2833 {
2834
2835 return (pool_subpage_alloc(pp, flags));
2836 }
2837
2838 void
2839 pool_subpage_free_nointr(struct pool *pp, void *v)
2840 {
2841
2842 pool_subpage_free(pp, v);
2843 }
2844 #endif /* POOL_SUBPAGE */
2845 void *
2846 pool_page_alloc_nointr(struct pool *pp, int flags)
2847 {
2848 bool waitok = (flags & PR_WAITOK) ? true : false;
2849
2850 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2851 }
2852
2853 void
2854 pool_page_free_nointr(struct pool *pp, void *v)
2855 {
2856
2857 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2858 }
2859
2860 #if defined(DDB)
2861 static bool
2862 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2863 {
2864
2865 return (uintptr_t)ph->ph_page <= addr &&
2866 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2867 }
2868
2869 static bool
2870 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2871 {
2872
2873 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2874 }
2875
2876 static bool
2877 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2878 {
2879 int i;
2880
2881 if (pcg == NULL) {
2882 return false;
2883 }
2884 for (i = 0; i < pcg->pcg_avail; i++) {
2885 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2886 return true;
2887 }
2888 }
2889 return false;
2890 }
2891
2892 static bool
2893 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2894 {
2895
2896 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2897 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2898 pool_item_bitmap_t *bitmap =
2899 ph->ph_bitmap + (idx / BITMAP_SIZE);
2900 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2901
2902 return (*bitmap & mask) == 0;
2903 } else {
2904 struct pool_item *pi;
2905
2906 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2907 if (pool_in_item(pp, pi, addr)) {
2908 return false;
2909 }
2910 }
2911 return true;
2912 }
2913 }
2914
2915 void
2916 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2917 {
2918 struct pool *pp;
2919
2920 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2921 struct pool_item_header *ph;
2922 uintptr_t item;
2923 bool allocated = true;
2924 bool incache = false;
2925 bool incpucache = false;
2926 char cpucachestr[32];
2927
2928 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2929 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2930 if (pool_in_page(pp, ph, addr)) {
2931 goto found;
2932 }
2933 }
2934 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2935 if (pool_in_page(pp, ph, addr)) {
2936 allocated =
2937 pool_allocated(pp, ph, addr);
2938 goto found;
2939 }
2940 }
2941 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2942 if (pool_in_page(pp, ph, addr)) {
2943 allocated = false;
2944 goto found;
2945 }
2946 }
2947 continue;
2948 } else {
2949 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2950 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2951 continue;
2952 }
2953 allocated = pool_allocated(pp, ph, addr);
2954 }
2955 found:
2956 if (allocated && pp->pr_cache) {
2957 pool_cache_t pc = pp->pr_cache;
2958 struct pool_cache_group *pcg;
2959 int i;
2960
2961 for (pcg = pc->pc_fullgroups; pcg != NULL;
2962 pcg = pcg->pcg_next) {
2963 if (pool_in_cg(pp, pcg, addr)) {
2964 incache = true;
2965 goto print;
2966 }
2967 }
2968 for (i = 0; i < MAXCPUS; i++) {
2969 pool_cache_cpu_t *cc;
2970
2971 if ((cc = pc->pc_cpus[i]) == NULL) {
2972 continue;
2973 }
2974 if (pool_in_cg(pp, cc->cc_current, addr) ||
2975 pool_in_cg(pp, cc->cc_previous, addr)) {
2976 struct cpu_info *ci =
2977 cpu_lookup_byindex(i);
2978
2979 incpucache = true;
2980 snprintf(cpucachestr,
2981 sizeof(cpucachestr),
2982 "cached by CPU %u",
2983 ci->ci_index);
2984 goto print;
2985 }
2986 }
2987 }
2988 print:
2989 item = (uintptr_t)ph->ph_page + ph->ph_off;
2990 item = item + rounddown(addr - item, pp->pr_size);
2991 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2992 (void *)addr, item, (size_t)(addr - item),
2993 pp->pr_wchan,
2994 incpucache ? cpucachestr :
2995 incache ? "cached" : allocated ? "allocated" : "free");
2996 }
2997 }
2998 #endif /* defined(DDB) */
2999