Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.166
      1 /*	$NetBSD: subr_pool.c,v 1.166 2008/07/09 02:43:53 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.166 2008/07/09 02:43:53 yamt Exp $");
     35 
     36 #include "opt_ddb.h"
     37 #include "opt_pool.h"
     38 #include "opt_poollog.h"
     39 #include "opt_lockdebug.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/bitops.h>
     44 #include <sys/proc.h>
     45 #include <sys/errno.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/pool.h>
     49 #include <sys/syslog.h>
     50 #include <sys/debug.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/xcall.h>
     53 #include <sys/cpu.h>
     54 #include <sys/atomic.h>
     55 
     56 #include <uvm/uvm.h>
     57 
     58 /*
     59  * Pool resource management utility.
     60  *
     61  * Memory is allocated in pages which are split into pieces according to
     62  * the pool item size. Each page is kept on one of three lists in the
     63  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     64  * for empty, full and partially-full pages respectively. The individual
     65  * pool items are on a linked list headed by `ph_itemlist' in each page
     66  * header. The memory for building the page list is either taken from
     67  * the allocated pages themselves (for small pool items) or taken from
     68  * an internal pool of page headers (`phpool').
     69  */
     70 
     71 /* List of all pools */
     72 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     73 
     74 /* Private pool for page header structures */
     75 #define	PHPOOL_MAX	8
     76 static struct pool phpool[PHPOOL_MAX];
     77 #define	PHPOOL_FREELIST_NELEM(idx) \
     78 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87 
     88 static void *pool_page_alloc_meta(struct pool *, int);
     89 static void pool_page_free_meta(struct pool *, void *);
     90 
     91 /* allocator for pool metadata */
     92 struct pool_allocator pool_allocator_meta = {
     93 	pool_page_alloc_meta, pool_page_free_meta,
     94 	.pa_backingmapptr = &kmem_map,
     95 };
     96 
     97 /* # of seconds to retain page after last use */
     98 int pool_inactive_time = 10;
     99 
    100 /* Next candidate for drainage (see pool_drain()) */
    101 static struct pool	*drainpp;
    102 
    103 /* This lock protects both pool_head and drainpp. */
    104 static kmutex_t pool_head_lock;
    105 static kcondvar_t pool_busy;
    106 
    107 typedef uint32_t pool_item_bitmap_t;
    108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    110 
    111 struct pool_item_header {
    112 	/* Page headers */
    113 	LIST_ENTRY(pool_item_header)
    114 				ph_pagelist;	/* pool page list */
    115 	SPLAY_ENTRY(pool_item_header)
    116 				ph_node;	/* Off-page page headers */
    117 	void *			ph_page;	/* this page's address */
    118 	uint32_t		ph_time;	/* last referenced */
    119 	uint16_t		ph_nmissing;	/* # of chunks in use */
    120 	uint16_t		ph_off;		/* start offset in page */
    121 	union {
    122 		/* !PR_NOTOUCH */
    123 		struct {
    124 			LIST_HEAD(, pool_item)
    125 				phu_itemlist;	/* chunk list for this page */
    126 		} phu_normal;
    127 		/* PR_NOTOUCH */
    128 		struct {
    129 			pool_item_bitmap_t phu_bitmap[1];
    130 		} phu_notouch;
    131 	} ph_u;
    132 };
    133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeaddeadU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references up
    157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    158  * object from the pool, it calls the object's constructor and places it
    159  * into a cache group.  When a cache group frees an object back to the
    160  * pool, it first calls the object's destructor.  This allows the object
    161  * to persist in constructed form while freed to the cache.
    162  *
    163  * The pool references each cache, so that when a pool is drained by the
    164  * pagedaemon, it can drain each individual cache as well.  Each time a
    165  * cache is drained, the most idle cache group is freed to the pool in
    166  * its entirety.
    167  *
    168  * Pool caches are layed on top of pools.  By layering them, we can avoid
    169  * the complexity of cache management for pools which would not benefit
    170  * from it.
    171  */
    172 
    173 static struct pool pcg_normal_pool;
    174 static struct pool pcg_large_pool;
    175 static struct pool cache_pool;
    176 static struct pool cache_cpu_pool;
    177 
    178 /* List of all caches. */
    179 TAILQ_HEAD(,pool_cache) pool_cache_head =
    180     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    181 
    182 int pool_cache_disable;		/* global disable for caching */
    183 static pcg_t pcg_dummy;		/* zero sized: always empty, yet always full */
    184 
    185 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    186 				    void *);
    187 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    188 				    void **, paddr_t *, int);
    189 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    190 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    191 static void	pool_cache_xcall(pool_cache_t);
    192 
    193 static int	pool_catchup(struct pool *);
    194 static void	pool_prime_page(struct pool *, void *,
    195 		    struct pool_item_header *);
    196 static void	pool_update_curpage(struct pool *);
    197 
    198 static int	pool_grow(struct pool *, int);
    199 static void	*pool_allocator_alloc(struct pool *, int);
    200 static void	pool_allocator_free(struct pool *, void *);
    201 
    202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    203 	void (*)(const char *, ...));
    204 static void pool_print1(struct pool *, const char *,
    205 	void (*)(const char *, ...));
    206 
    207 static int pool_chk_page(struct pool *, const char *,
    208 			 struct pool_item_header *);
    209 
    210 /*
    211  * Pool log entry. An array of these is allocated in pool_init().
    212  */
    213 struct pool_log {
    214 	const char	*pl_file;
    215 	long		pl_line;
    216 	int		pl_action;
    217 #define	PRLOG_GET	1
    218 #define	PRLOG_PUT	2
    219 	void		*pl_addr;
    220 };
    221 
    222 #ifdef POOL_DIAGNOSTIC
    223 /* Number of entries in pool log buffers */
    224 #ifndef POOL_LOGSIZE
    225 #define	POOL_LOGSIZE	10
    226 #endif
    227 
    228 int pool_logsize = POOL_LOGSIZE;
    229 
    230 static inline void
    231 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    232 {
    233 	int n = pp->pr_curlogentry;
    234 	struct pool_log *pl;
    235 
    236 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    237 		return;
    238 
    239 	/*
    240 	 * Fill in the current entry. Wrap around and overwrite
    241 	 * the oldest entry if necessary.
    242 	 */
    243 	pl = &pp->pr_log[n];
    244 	pl->pl_file = file;
    245 	pl->pl_line = line;
    246 	pl->pl_action = action;
    247 	pl->pl_addr = v;
    248 	if (++n >= pp->pr_logsize)
    249 		n = 0;
    250 	pp->pr_curlogentry = n;
    251 }
    252 
    253 static void
    254 pr_printlog(struct pool *pp, struct pool_item *pi,
    255     void (*pr)(const char *, ...))
    256 {
    257 	int i = pp->pr_logsize;
    258 	int n = pp->pr_curlogentry;
    259 
    260 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    261 		return;
    262 
    263 	/*
    264 	 * Print all entries in this pool's log.
    265 	 */
    266 	while (i-- > 0) {
    267 		struct pool_log *pl = &pp->pr_log[n];
    268 		if (pl->pl_action != 0) {
    269 			if (pi == NULL || pi == pl->pl_addr) {
    270 				(*pr)("\tlog entry %d:\n", i);
    271 				(*pr)("\t\taction = %s, addr = %p\n",
    272 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    273 				    pl->pl_addr);
    274 				(*pr)("\t\tfile: %s at line %lu\n",
    275 				    pl->pl_file, pl->pl_line);
    276 			}
    277 		}
    278 		if (++n >= pp->pr_logsize)
    279 			n = 0;
    280 	}
    281 }
    282 
    283 static inline void
    284 pr_enter(struct pool *pp, const char *file, long line)
    285 {
    286 
    287 	if (__predict_false(pp->pr_entered_file != NULL)) {
    288 		printf("pool %s: reentrancy at file %s line %ld\n",
    289 		    pp->pr_wchan, file, line);
    290 		printf("         previous entry at file %s line %ld\n",
    291 		    pp->pr_entered_file, pp->pr_entered_line);
    292 		panic("pr_enter");
    293 	}
    294 
    295 	pp->pr_entered_file = file;
    296 	pp->pr_entered_line = line;
    297 }
    298 
    299 static inline void
    300 pr_leave(struct pool *pp)
    301 {
    302 
    303 	if (__predict_false(pp->pr_entered_file == NULL)) {
    304 		printf("pool %s not entered?\n", pp->pr_wchan);
    305 		panic("pr_leave");
    306 	}
    307 
    308 	pp->pr_entered_file = NULL;
    309 	pp->pr_entered_line = 0;
    310 }
    311 
    312 static inline void
    313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    314 {
    315 
    316 	if (pp->pr_entered_file != NULL)
    317 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    318 		    pp->pr_entered_file, pp->pr_entered_line);
    319 }
    320 #else
    321 #define	pr_log(pp, v, action, file, line)
    322 #define	pr_printlog(pp, pi, pr)
    323 #define	pr_enter(pp, file, line)
    324 #define	pr_leave(pp)
    325 #define	pr_enter_check(pp, pr)
    326 #endif /* POOL_DIAGNOSTIC */
    327 
    328 static inline unsigned int
    329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    330     const void *v)
    331 {
    332 	const char *cp = v;
    333 	unsigned int idx;
    334 
    335 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    336 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    337 	KASSERT(idx < pp->pr_itemsperpage);
    338 	return idx;
    339 }
    340 
    341 static inline void
    342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    343     void *obj)
    344 {
    345 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    346 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    347 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    348 
    349 	KASSERT((*bitmap & mask) == 0);
    350 	*bitmap |= mask;
    351 }
    352 
    353 static inline void *
    354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    355 {
    356 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    357 	unsigned int idx;
    358 	int i;
    359 
    360 	for (i = 0; ; i++) {
    361 		int bit;
    362 
    363 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    364 		bit = ffs32(bitmap[i]);
    365 		if (bit) {
    366 			pool_item_bitmap_t mask;
    367 
    368 			bit--;
    369 			idx = (i * BITMAP_SIZE) + bit;
    370 			mask = 1 << bit;
    371 			KASSERT((bitmap[i] & mask) != 0);
    372 			bitmap[i] &= ~mask;
    373 			break;
    374 		}
    375 	}
    376 	KASSERT(idx < pp->pr_itemsperpage);
    377 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    378 }
    379 
    380 static inline void
    381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    382 {
    383 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    384 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    385 	int i;
    386 
    387 	for (i = 0; i < n; i++) {
    388 		bitmap[i] = (pool_item_bitmap_t)-1;
    389 	}
    390 }
    391 
    392 static inline int
    393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    394 {
    395 
    396 	/*
    397 	 * we consider pool_item_header with smaller ph_page bigger.
    398 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    399 	 */
    400 
    401 	if (a->ph_page < b->ph_page)
    402 		return (1);
    403 	else if (a->ph_page > b->ph_page)
    404 		return (-1);
    405 	else
    406 		return (0);
    407 }
    408 
    409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    411 
    412 static inline struct pool_item_header *
    413 pr_find_pagehead_noalign(struct pool *pp, void *v)
    414 {
    415 	struct pool_item_header *ph, tmp;
    416 
    417 	tmp.ph_page = (void *)(uintptr_t)v;
    418 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    419 	if (ph == NULL) {
    420 		ph = SPLAY_ROOT(&pp->pr_phtree);
    421 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    422 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    423 		}
    424 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    425 	}
    426 
    427 	return ph;
    428 }
    429 
    430 /*
    431  * Return the pool page header based on item address.
    432  */
    433 static inline struct pool_item_header *
    434 pr_find_pagehead(struct pool *pp, void *v)
    435 {
    436 	struct pool_item_header *ph, tmp;
    437 
    438 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    439 		ph = pr_find_pagehead_noalign(pp, v);
    440 	} else {
    441 		void *page =
    442 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    443 
    444 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    445 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    446 		} else {
    447 			tmp.ph_page = page;
    448 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    449 		}
    450 	}
    451 
    452 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    453 	    ((char *)ph->ph_page <= (char *)v &&
    454 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    455 	return ph;
    456 }
    457 
    458 static void
    459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    460 {
    461 	struct pool_item_header *ph;
    462 
    463 	while ((ph = LIST_FIRST(pq)) != NULL) {
    464 		LIST_REMOVE(ph, ph_pagelist);
    465 		pool_allocator_free(pp, ph->ph_page);
    466 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    467 			pool_put(pp->pr_phpool, ph);
    468 	}
    469 }
    470 
    471 /*
    472  * Remove a page from the pool.
    473  */
    474 static inline void
    475 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    476      struct pool_pagelist *pq)
    477 {
    478 
    479 	KASSERT(mutex_owned(&pp->pr_lock));
    480 
    481 	/*
    482 	 * If the page was idle, decrement the idle page count.
    483 	 */
    484 	if (ph->ph_nmissing == 0) {
    485 #ifdef DIAGNOSTIC
    486 		if (pp->pr_nidle == 0)
    487 			panic("pr_rmpage: nidle inconsistent");
    488 		if (pp->pr_nitems < pp->pr_itemsperpage)
    489 			panic("pr_rmpage: nitems inconsistent");
    490 #endif
    491 		pp->pr_nidle--;
    492 	}
    493 
    494 	pp->pr_nitems -= pp->pr_itemsperpage;
    495 
    496 	/*
    497 	 * Unlink the page from the pool and queue it for release.
    498 	 */
    499 	LIST_REMOVE(ph, ph_pagelist);
    500 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    501 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    502 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    503 
    504 	pp->pr_npages--;
    505 	pp->pr_npagefree++;
    506 
    507 	pool_update_curpage(pp);
    508 }
    509 
    510 static bool
    511 pa_starved_p(struct pool_allocator *pa)
    512 {
    513 
    514 	if (pa->pa_backingmap != NULL) {
    515 		return vm_map_starved_p(pa->pa_backingmap);
    516 	}
    517 	return false;
    518 }
    519 
    520 static int
    521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    522 {
    523 	struct pool *pp = obj;
    524 	struct pool_allocator *pa = pp->pr_alloc;
    525 
    526 	KASSERT(&pp->pr_reclaimerentry == ce);
    527 	pool_reclaim(pp);
    528 	if (!pa_starved_p(pa)) {
    529 		return CALLBACK_CHAIN_ABORT;
    530 	}
    531 	return CALLBACK_CHAIN_CONTINUE;
    532 }
    533 
    534 static void
    535 pool_reclaim_register(struct pool *pp)
    536 {
    537 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    538 	int s;
    539 
    540 	if (map == NULL) {
    541 		return;
    542 	}
    543 
    544 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    545 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    546 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    547 	splx(s);
    548 }
    549 
    550 static void
    551 pool_reclaim_unregister(struct pool *pp)
    552 {
    553 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    554 	int s;
    555 
    556 	if (map == NULL) {
    557 		return;
    558 	}
    559 
    560 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    561 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    562 	    &pp->pr_reclaimerentry);
    563 	splx(s);
    564 }
    565 
    566 static void
    567 pa_reclaim_register(struct pool_allocator *pa)
    568 {
    569 	struct vm_map *map = *pa->pa_backingmapptr;
    570 	struct pool *pp;
    571 
    572 	KASSERT(pa->pa_backingmap == NULL);
    573 	if (map == NULL) {
    574 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    575 		return;
    576 	}
    577 	pa->pa_backingmap = map;
    578 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    579 		pool_reclaim_register(pp);
    580 	}
    581 }
    582 
    583 /*
    584  * Initialize all the pools listed in the "pools" link set.
    585  */
    586 void
    587 pool_subsystem_init(void)
    588 {
    589 	struct pool_allocator *pa;
    590 	__link_set_decl(pools, struct link_pool_init);
    591 	struct link_pool_init * const *pi;
    592 
    593 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    594 	cv_init(&pool_busy, "poolbusy");
    595 
    596 	__link_set_foreach(pi, pools)
    597 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    598 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    599 		    (*pi)->palloc, (*pi)->ipl);
    600 
    601 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    602 		KASSERT(pa->pa_backingmapptr != NULL);
    603 		KASSERT(*pa->pa_backingmapptr != NULL);
    604 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    605 		pa_reclaim_register(pa);
    606 	}
    607 
    608 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    609 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    610 
    611 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    612 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    613 }
    614 
    615 /*
    616  * Initialize the given pool resource structure.
    617  *
    618  * We export this routine to allow other kernel parts to declare
    619  * static pools that must be initialized before malloc() is available.
    620  */
    621 void
    622 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    623     const char *wchan, struct pool_allocator *palloc, int ipl)
    624 {
    625 	struct pool *pp1;
    626 	size_t trysize, phsize;
    627 	int off, slack;
    628 
    629 #ifdef DEBUG
    630 	/*
    631 	 * Check that the pool hasn't already been initialised and
    632 	 * added to the list of all pools.
    633 	 */
    634 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    635 		if (pp == pp1)
    636 			panic("pool_init: pool %s already initialised",
    637 			    wchan);
    638 	}
    639 #endif
    640 
    641 #ifdef POOL_DIAGNOSTIC
    642 	/*
    643 	 * Always log if POOL_DIAGNOSTIC is defined.
    644 	 */
    645 	if (pool_logsize != 0)
    646 		flags |= PR_LOGGING;
    647 #endif
    648 
    649 	if (palloc == NULL)
    650 		palloc = &pool_allocator_kmem;
    651 #ifdef POOL_SUBPAGE
    652 	if (size > palloc->pa_pagesz) {
    653 		if (palloc == &pool_allocator_kmem)
    654 			palloc = &pool_allocator_kmem_fullpage;
    655 		else if (palloc == &pool_allocator_nointr)
    656 			palloc = &pool_allocator_nointr_fullpage;
    657 	}
    658 #endif /* POOL_SUBPAGE */
    659 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    660 		if (palloc->pa_pagesz == 0)
    661 			palloc->pa_pagesz = PAGE_SIZE;
    662 
    663 		TAILQ_INIT(&palloc->pa_list);
    664 
    665 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    666 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    667 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    668 
    669 		if (palloc->pa_backingmapptr != NULL) {
    670 			pa_reclaim_register(palloc);
    671 		}
    672 		palloc->pa_flags |= PA_INITIALIZED;
    673 	}
    674 
    675 	if (align == 0)
    676 		align = ALIGN(1);
    677 
    678 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    679 		size = sizeof(struct pool_item);
    680 
    681 	size = roundup(size, align);
    682 #ifdef DIAGNOSTIC
    683 	if (size > palloc->pa_pagesz)
    684 		panic("pool_init: pool item size (%zu) too large", size);
    685 #endif
    686 
    687 	/*
    688 	 * Initialize the pool structure.
    689 	 */
    690 	LIST_INIT(&pp->pr_emptypages);
    691 	LIST_INIT(&pp->pr_fullpages);
    692 	LIST_INIT(&pp->pr_partpages);
    693 	pp->pr_cache = NULL;
    694 	pp->pr_curpage = NULL;
    695 	pp->pr_npages = 0;
    696 	pp->pr_minitems = 0;
    697 	pp->pr_minpages = 0;
    698 	pp->pr_maxpages = UINT_MAX;
    699 	pp->pr_roflags = flags;
    700 	pp->pr_flags = 0;
    701 	pp->pr_size = size;
    702 	pp->pr_align = align;
    703 	pp->pr_wchan = wchan;
    704 	pp->pr_alloc = palloc;
    705 	pp->pr_nitems = 0;
    706 	pp->pr_nout = 0;
    707 	pp->pr_hardlimit = UINT_MAX;
    708 	pp->pr_hardlimit_warning = NULL;
    709 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    710 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    711 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    712 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    713 	pp->pr_drain_hook = NULL;
    714 	pp->pr_drain_hook_arg = NULL;
    715 	pp->pr_freecheck = NULL;
    716 
    717 	/*
    718 	 * Decide whether to put the page header off page to avoid
    719 	 * wasting too large a part of the page or too big item.
    720 	 * Off-page page headers go on a hash table, so we can match
    721 	 * a returned item with its header based on the page address.
    722 	 * We use 1/16 of the page size and about 8 times of the item
    723 	 * size as the threshold (XXX: tune)
    724 	 *
    725 	 * However, we'll put the header into the page if we can put
    726 	 * it without wasting any items.
    727 	 *
    728 	 * Silently enforce `0 <= ioff < align'.
    729 	 */
    730 	pp->pr_itemoffset = ioff %= align;
    731 	/* See the comment below about reserved bytes. */
    732 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    733 	phsize = ALIGN(sizeof(struct pool_item_header));
    734 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    735 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    736 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    737 		/* Use the end of the page for the page header */
    738 		pp->pr_roflags |= PR_PHINPAGE;
    739 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    740 	} else {
    741 		/* The page header will be taken from our page header pool */
    742 		pp->pr_phoffset = 0;
    743 		off = palloc->pa_pagesz;
    744 		SPLAY_INIT(&pp->pr_phtree);
    745 	}
    746 
    747 	/*
    748 	 * Alignment is to take place at `ioff' within the item. This means
    749 	 * we must reserve up to `align - 1' bytes on the page to allow
    750 	 * appropriate positioning of each item.
    751 	 */
    752 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    753 	KASSERT(pp->pr_itemsperpage != 0);
    754 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    755 		int idx;
    756 
    757 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    758 		    idx++) {
    759 			/* nothing */
    760 		}
    761 		if (idx >= PHPOOL_MAX) {
    762 			/*
    763 			 * if you see this panic, consider to tweak
    764 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    765 			 */
    766 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    767 			    pp->pr_wchan, pp->pr_itemsperpage);
    768 		}
    769 		pp->pr_phpool = &phpool[idx];
    770 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    771 		pp->pr_phpool = &phpool[0];
    772 	}
    773 #if defined(DIAGNOSTIC)
    774 	else {
    775 		pp->pr_phpool = NULL;
    776 	}
    777 #endif
    778 
    779 	/*
    780 	 * Use the slack between the chunks and the page header
    781 	 * for "cache coloring".
    782 	 */
    783 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    784 	pp->pr_maxcolor = (slack / align) * align;
    785 	pp->pr_curcolor = 0;
    786 
    787 	pp->pr_nget = 0;
    788 	pp->pr_nfail = 0;
    789 	pp->pr_nput = 0;
    790 	pp->pr_npagealloc = 0;
    791 	pp->pr_npagefree = 0;
    792 	pp->pr_hiwat = 0;
    793 	pp->pr_nidle = 0;
    794 	pp->pr_refcnt = 0;
    795 
    796 #ifdef POOL_DIAGNOSTIC
    797 	if (flags & PR_LOGGING) {
    798 		if (kmem_map == NULL ||
    799 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    800 		     M_TEMP, M_NOWAIT)) == NULL)
    801 			pp->pr_roflags &= ~PR_LOGGING;
    802 		pp->pr_curlogentry = 0;
    803 		pp->pr_logsize = pool_logsize;
    804 	}
    805 #endif
    806 
    807 	pp->pr_entered_file = NULL;
    808 	pp->pr_entered_line = 0;
    809 
    810 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    811 	cv_init(&pp->pr_cv, wchan);
    812 	pp->pr_ipl = ipl;
    813 
    814 	/*
    815 	 * Initialize private page header pool and cache magazine pool if we
    816 	 * haven't done so yet.
    817 	 * XXX LOCKING.
    818 	 */
    819 	if (phpool[0].pr_size == 0) {
    820 		int idx;
    821 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    822 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    823 			int nelem;
    824 			size_t sz;
    825 
    826 			nelem = PHPOOL_FREELIST_NELEM(idx);
    827 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    828 			    "phpool-%d", nelem);
    829 			sz = sizeof(struct pool_item_header);
    830 			if (nelem) {
    831 				sz = offsetof(struct pool_item_header,
    832 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    833 			}
    834 			pool_init(&phpool[idx], sz, 0, 0, 0,
    835 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    836 		}
    837 #ifdef POOL_SUBPAGE
    838 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    839 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    840 #endif
    841 
    842 		size = sizeof(pcg_t) +
    843 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    844 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    845 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    846 
    847 		size = sizeof(pcg_t) +
    848 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    849 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    850 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    851 	}
    852 
    853 	/* Insert into the list of all pools. */
    854 	if (__predict_true(!cold))
    855 		mutex_enter(&pool_head_lock);
    856 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    857 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    858 			break;
    859 	}
    860 	if (pp1 == NULL)
    861 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    862 	else
    863 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    864 	if (__predict_true(!cold))
    865 		mutex_exit(&pool_head_lock);
    866 
    867 		/* Insert this into the list of pools using this allocator. */
    868 	if (__predict_true(!cold))
    869 		mutex_enter(&palloc->pa_lock);
    870 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    871 	if (__predict_true(!cold))
    872 		mutex_exit(&palloc->pa_lock);
    873 
    874 	pool_reclaim_register(pp);
    875 }
    876 
    877 /*
    878  * De-commision a pool resource.
    879  */
    880 void
    881 pool_destroy(struct pool *pp)
    882 {
    883 	struct pool_pagelist pq;
    884 	struct pool_item_header *ph;
    885 
    886 	/* Remove from global pool list */
    887 	mutex_enter(&pool_head_lock);
    888 	while (pp->pr_refcnt != 0)
    889 		cv_wait(&pool_busy, &pool_head_lock);
    890 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    891 	if (drainpp == pp)
    892 		drainpp = NULL;
    893 	mutex_exit(&pool_head_lock);
    894 
    895 	/* Remove this pool from its allocator's list of pools. */
    896 	pool_reclaim_unregister(pp);
    897 	mutex_enter(&pp->pr_alloc->pa_lock);
    898 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    899 	mutex_exit(&pp->pr_alloc->pa_lock);
    900 
    901 	mutex_enter(&pp->pr_lock);
    902 
    903 	KASSERT(pp->pr_cache == NULL);
    904 
    905 #ifdef DIAGNOSTIC
    906 	if (pp->pr_nout != 0) {
    907 		pr_printlog(pp, NULL, printf);
    908 		panic("pool_destroy: pool busy: still out: %u",
    909 		    pp->pr_nout);
    910 	}
    911 #endif
    912 
    913 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    914 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    915 
    916 	/* Remove all pages */
    917 	LIST_INIT(&pq);
    918 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    919 		pr_rmpage(pp, ph, &pq);
    920 
    921 	mutex_exit(&pp->pr_lock);
    922 
    923 	pr_pagelist_free(pp, &pq);
    924 
    925 #ifdef POOL_DIAGNOSTIC
    926 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    927 		free(pp->pr_log, M_TEMP);
    928 #endif
    929 
    930 	cv_destroy(&pp->pr_cv);
    931 	mutex_destroy(&pp->pr_lock);
    932 }
    933 
    934 void
    935 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    936 {
    937 
    938 	/* XXX no locking -- must be used just after pool_init() */
    939 #ifdef DIAGNOSTIC
    940 	if (pp->pr_drain_hook != NULL)
    941 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    942 #endif
    943 	pp->pr_drain_hook = fn;
    944 	pp->pr_drain_hook_arg = arg;
    945 }
    946 
    947 static struct pool_item_header *
    948 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    949 {
    950 	struct pool_item_header *ph;
    951 
    952 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    953 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    954 	else
    955 		ph = pool_get(pp->pr_phpool, flags);
    956 
    957 	return (ph);
    958 }
    959 
    960 /*
    961  * Grab an item from the pool.
    962  */
    963 void *
    964 #ifdef POOL_DIAGNOSTIC
    965 _pool_get(struct pool *pp, int flags, const char *file, long line)
    966 #else
    967 pool_get(struct pool *pp, int flags)
    968 #endif
    969 {
    970 	struct pool_item *pi;
    971 	struct pool_item_header *ph;
    972 	void *v;
    973 
    974 #ifdef DIAGNOSTIC
    975 	if (__predict_false(pp->pr_itemsperpage == 0))
    976 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    977 		    "pool not initialized?", pp);
    978 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    979 			    (flags & PR_WAITOK) != 0))
    980 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    981 
    982 #endif /* DIAGNOSTIC */
    983 #ifdef LOCKDEBUG
    984 	if (flags & PR_WAITOK) {
    985 		ASSERT_SLEEPABLE();
    986 	}
    987 #endif
    988 
    989 	mutex_enter(&pp->pr_lock);
    990 	pr_enter(pp, file, line);
    991 
    992  startover:
    993 	/*
    994 	 * Check to see if we've reached the hard limit.  If we have,
    995 	 * and we can wait, then wait until an item has been returned to
    996 	 * the pool.
    997 	 */
    998 #ifdef DIAGNOSTIC
    999 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1000 		pr_leave(pp);
   1001 		mutex_exit(&pp->pr_lock);
   1002 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1003 	}
   1004 #endif
   1005 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1006 		if (pp->pr_drain_hook != NULL) {
   1007 			/*
   1008 			 * Since the drain hook is going to free things
   1009 			 * back to the pool, unlock, call the hook, re-lock,
   1010 			 * and check the hardlimit condition again.
   1011 			 */
   1012 			pr_leave(pp);
   1013 			mutex_exit(&pp->pr_lock);
   1014 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1015 			mutex_enter(&pp->pr_lock);
   1016 			pr_enter(pp, file, line);
   1017 			if (pp->pr_nout < pp->pr_hardlimit)
   1018 				goto startover;
   1019 		}
   1020 
   1021 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1022 			/*
   1023 			 * XXX: A warning isn't logged in this case.  Should
   1024 			 * it be?
   1025 			 */
   1026 			pp->pr_flags |= PR_WANTED;
   1027 			pr_leave(pp);
   1028 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1029 			pr_enter(pp, file, line);
   1030 			goto startover;
   1031 		}
   1032 
   1033 		/*
   1034 		 * Log a message that the hard limit has been hit.
   1035 		 */
   1036 		if (pp->pr_hardlimit_warning != NULL &&
   1037 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1038 			      &pp->pr_hardlimit_ratecap))
   1039 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1040 
   1041 		pp->pr_nfail++;
   1042 
   1043 		pr_leave(pp);
   1044 		mutex_exit(&pp->pr_lock);
   1045 		return (NULL);
   1046 	}
   1047 
   1048 	/*
   1049 	 * The convention we use is that if `curpage' is not NULL, then
   1050 	 * it points at a non-empty bucket. In particular, `curpage'
   1051 	 * never points at a page header which has PR_PHINPAGE set and
   1052 	 * has no items in its bucket.
   1053 	 */
   1054 	if ((ph = pp->pr_curpage) == NULL) {
   1055 		int error;
   1056 
   1057 #ifdef DIAGNOSTIC
   1058 		if (pp->pr_nitems != 0) {
   1059 			mutex_exit(&pp->pr_lock);
   1060 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1061 			    pp->pr_wchan, pp->pr_nitems);
   1062 			panic("pool_get: nitems inconsistent");
   1063 		}
   1064 #endif
   1065 
   1066 		/*
   1067 		 * Call the back-end page allocator for more memory.
   1068 		 * Release the pool lock, as the back-end page allocator
   1069 		 * may block.
   1070 		 */
   1071 		pr_leave(pp);
   1072 		error = pool_grow(pp, flags);
   1073 		pr_enter(pp, file, line);
   1074 		if (error != 0) {
   1075 			/*
   1076 			 * We were unable to allocate a page or item
   1077 			 * header, but we released the lock during
   1078 			 * allocation, so perhaps items were freed
   1079 			 * back to the pool.  Check for this case.
   1080 			 */
   1081 			if (pp->pr_curpage != NULL)
   1082 				goto startover;
   1083 
   1084 			pp->pr_nfail++;
   1085 			pr_leave(pp);
   1086 			mutex_exit(&pp->pr_lock);
   1087 			return (NULL);
   1088 		}
   1089 
   1090 		/* Start the allocation process over. */
   1091 		goto startover;
   1092 	}
   1093 	if (pp->pr_roflags & PR_NOTOUCH) {
   1094 #ifdef DIAGNOSTIC
   1095 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1096 			pr_leave(pp);
   1097 			mutex_exit(&pp->pr_lock);
   1098 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1099 		}
   1100 #endif
   1101 		v = pr_item_notouch_get(pp, ph);
   1102 #ifdef POOL_DIAGNOSTIC
   1103 		pr_log(pp, v, PRLOG_GET, file, line);
   1104 #endif
   1105 	} else {
   1106 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1107 		if (__predict_false(v == NULL)) {
   1108 			pr_leave(pp);
   1109 			mutex_exit(&pp->pr_lock);
   1110 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1111 		}
   1112 #ifdef DIAGNOSTIC
   1113 		if (__predict_false(pp->pr_nitems == 0)) {
   1114 			pr_leave(pp);
   1115 			mutex_exit(&pp->pr_lock);
   1116 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1117 			    pp->pr_wchan, pp->pr_nitems);
   1118 			panic("pool_get: nitems inconsistent");
   1119 		}
   1120 #endif
   1121 
   1122 #ifdef POOL_DIAGNOSTIC
   1123 		pr_log(pp, v, PRLOG_GET, file, line);
   1124 #endif
   1125 
   1126 #ifdef DIAGNOSTIC
   1127 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1128 			pr_printlog(pp, pi, printf);
   1129 			panic("pool_get(%s): free list modified: "
   1130 			    "magic=%x; page %p; item addr %p\n",
   1131 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1132 		}
   1133 #endif
   1134 
   1135 		/*
   1136 		 * Remove from item list.
   1137 		 */
   1138 		LIST_REMOVE(pi, pi_list);
   1139 	}
   1140 	pp->pr_nitems--;
   1141 	pp->pr_nout++;
   1142 	if (ph->ph_nmissing == 0) {
   1143 #ifdef DIAGNOSTIC
   1144 		if (__predict_false(pp->pr_nidle == 0))
   1145 			panic("pool_get: nidle inconsistent");
   1146 #endif
   1147 		pp->pr_nidle--;
   1148 
   1149 		/*
   1150 		 * This page was previously empty.  Move it to the list of
   1151 		 * partially-full pages.  This page is already curpage.
   1152 		 */
   1153 		LIST_REMOVE(ph, ph_pagelist);
   1154 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1155 	}
   1156 	ph->ph_nmissing++;
   1157 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1158 #ifdef DIAGNOSTIC
   1159 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1160 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1161 			pr_leave(pp);
   1162 			mutex_exit(&pp->pr_lock);
   1163 			panic("pool_get: %s: nmissing inconsistent",
   1164 			    pp->pr_wchan);
   1165 		}
   1166 #endif
   1167 		/*
   1168 		 * This page is now full.  Move it to the full list
   1169 		 * and select a new current page.
   1170 		 */
   1171 		LIST_REMOVE(ph, ph_pagelist);
   1172 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1173 		pool_update_curpage(pp);
   1174 	}
   1175 
   1176 	pp->pr_nget++;
   1177 	pr_leave(pp);
   1178 
   1179 	/*
   1180 	 * If we have a low water mark and we are now below that low
   1181 	 * water mark, add more items to the pool.
   1182 	 */
   1183 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1184 		/*
   1185 		 * XXX: Should we log a warning?  Should we set up a timeout
   1186 		 * to try again in a second or so?  The latter could break
   1187 		 * a caller's assumptions about interrupt protection, etc.
   1188 		 */
   1189 	}
   1190 
   1191 	mutex_exit(&pp->pr_lock);
   1192 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1193 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1194 	return (v);
   1195 }
   1196 
   1197 /*
   1198  * Internal version of pool_put().  Pool is already locked/entered.
   1199  */
   1200 static void
   1201 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1202 {
   1203 	struct pool_item *pi = v;
   1204 	struct pool_item_header *ph;
   1205 
   1206 	KASSERT(mutex_owned(&pp->pr_lock));
   1207 	FREECHECK_IN(&pp->pr_freecheck, v);
   1208 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1209 
   1210 #ifdef DIAGNOSTIC
   1211 	if (__predict_false(pp->pr_nout == 0)) {
   1212 		printf("pool %s: putting with none out\n",
   1213 		    pp->pr_wchan);
   1214 		panic("pool_put");
   1215 	}
   1216 #endif
   1217 
   1218 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1219 		pr_printlog(pp, NULL, printf);
   1220 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1221 	}
   1222 
   1223 	/*
   1224 	 * Return to item list.
   1225 	 */
   1226 	if (pp->pr_roflags & PR_NOTOUCH) {
   1227 		pr_item_notouch_put(pp, ph, v);
   1228 	} else {
   1229 #ifdef DIAGNOSTIC
   1230 		pi->pi_magic = PI_MAGIC;
   1231 #endif
   1232 #ifdef DEBUG
   1233 		{
   1234 			int i, *ip = v;
   1235 
   1236 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1237 				*ip++ = PI_MAGIC;
   1238 			}
   1239 		}
   1240 #endif
   1241 
   1242 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1243 	}
   1244 	KDASSERT(ph->ph_nmissing != 0);
   1245 	ph->ph_nmissing--;
   1246 	pp->pr_nput++;
   1247 	pp->pr_nitems++;
   1248 	pp->pr_nout--;
   1249 
   1250 	/* Cancel "pool empty" condition if it exists */
   1251 	if (pp->pr_curpage == NULL)
   1252 		pp->pr_curpage = ph;
   1253 
   1254 	if (pp->pr_flags & PR_WANTED) {
   1255 		pp->pr_flags &= ~PR_WANTED;
   1256 		cv_broadcast(&pp->pr_cv);
   1257 	}
   1258 
   1259 	/*
   1260 	 * If this page is now empty, do one of two things:
   1261 	 *
   1262 	 *	(1) If we have more pages than the page high water mark,
   1263 	 *	    free the page back to the system.  ONLY CONSIDER
   1264 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1265 	 *	    CLAIM.
   1266 	 *
   1267 	 *	(2) Otherwise, move the page to the empty page list.
   1268 	 *
   1269 	 * Either way, select a new current page (so we use a partially-full
   1270 	 * page if one is available).
   1271 	 */
   1272 	if (ph->ph_nmissing == 0) {
   1273 		pp->pr_nidle++;
   1274 		if (pp->pr_npages > pp->pr_minpages &&
   1275 		    pp->pr_npages > pp->pr_maxpages) {
   1276 			pr_rmpage(pp, ph, pq);
   1277 		} else {
   1278 			LIST_REMOVE(ph, ph_pagelist);
   1279 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1280 
   1281 			/*
   1282 			 * Update the timestamp on the page.  A page must
   1283 			 * be idle for some period of time before it can
   1284 			 * be reclaimed by the pagedaemon.  This minimizes
   1285 			 * ping-pong'ing for memory.
   1286 			 *
   1287 			 * note for 64-bit time_t: truncating to 32-bit is not
   1288 			 * a problem for our usage.
   1289 			 */
   1290 			ph->ph_time = time_uptime;
   1291 		}
   1292 		pool_update_curpage(pp);
   1293 	}
   1294 
   1295 	/*
   1296 	 * If the page was previously completely full, move it to the
   1297 	 * partially-full list and make it the current page.  The next
   1298 	 * allocation will get the item from this page, instead of
   1299 	 * further fragmenting the pool.
   1300 	 */
   1301 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1302 		LIST_REMOVE(ph, ph_pagelist);
   1303 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1304 		pp->pr_curpage = ph;
   1305 	}
   1306 }
   1307 
   1308 /*
   1309  * Return resource to the pool.
   1310  */
   1311 #ifdef POOL_DIAGNOSTIC
   1312 void
   1313 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1314 {
   1315 	struct pool_pagelist pq;
   1316 
   1317 	LIST_INIT(&pq);
   1318 
   1319 	mutex_enter(&pp->pr_lock);
   1320 	pr_enter(pp, file, line);
   1321 
   1322 	pr_log(pp, v, PRLOG_PUT, file, line);
   1323 
   1324 	pool_do_put(pp, v, &pq);
   1325 
   1326 	pr_leave(pp);
   1327 	mutex_exit(&pp->pr_lock);
   1328 
   1329 	pr_pagelist_free(pp, &pq);
   1330 }
   1331 #undef pool_put
   1332 #endif /* POOL_DIAGNOSTIC */
   1333 
   1334 void
   1335 pool_put(struct pool *pp, void *v)
   1336 {
   1337 	struct pool_pagelist pq;
   1338 
   1339 	LIST_INIT(&pq);
   1340 
   1341 	mutex_enter(&pp->pr_lock);
   1342 	pool_do_put(pp, v, &pq);
   1343 	mutex_exit(&pp->pr_lock);
   1344 
   1345 	pr_pagelist_free(pp, &pq);
   1346 }
   1347 
   1348 #ifdef POOL_DIAGNOSTIC
   1349 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1350 #endif
   1351 
   1352 /*
   1353  * pool_grow: grow a pool by a page.
   1354  *
   1355  * => called with pool locked.
   1356  * => unlock and relock the pool.
   1357  * => return with pool locked.
   1358  */
   1359 
   1360 static int
   1361 pool_grow(struct pool *pp, int flags)
   1362 {
   1363 	struct pool_item_header *ph = NULL;
   1364 	char *cp;
   1365 
   1366 	mutex_exit(&pp->pr_lock);
   1367 	cp = pool_allocator_alloc(pp, flags);
   1368 	if (__predict_true(cp != NULL)) {
   1369 		ph = pool_alloc_item_header(pp, cp, flags);
   1370 	}
   1371 	if (__predict_false(cp == NULL || ph == NULL)) {
   1372 		if (cp != NULL) {
   1373 			pool_allocator_free(pp, cp);
   1374 		}
   1375 		mutex_enter(&pp->pr_lock);
   1376 		return ENOMEM;
   1377 	}
   1378 
   1379 	mutex_enter(&pp->pr_lock);
   1380 	pool_prime_page(pp, cp, ph);
   1381 	pp->pr_npagealloc++;
   1382 	return 0;
   1383 }
   1384 
   1385 /*
   1386  * Add N items to the pool.
   1387  */
   1388 int
   1389 pool_prime(struct pool *pp, int n)
   1390 {
   1391 	int newpages;
   1392 	int error = 0;
   1393 
   1394 	mutex_enter(&pp->pr_lock);
   1395 
   1396 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1397 
   1398 	while (newpages-- > 0) {
   1399 		error = pool_grow(pp, PR_NOWAIT);
   1400 		if (error) {
   1401 			break;
   1402 		}
   1403 		pp->pr_minpages++;
   1404 	}
   1405 
   1406 	if (pp->pr_minpages >= pp->pr_maxpages)
   1407 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1408 
   1409 	mutex_exit(&pp->pr_lock);
   1410 	return error;
   1411 }
   1412 
   1413 /*
   1414  * Add a page worth of items to the pool.
   1415  *
   1416  * Note, we must be called with the pool descriptor LOCKED.
   1417  */
   1418 static void
   1419 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1420 {
   1421 	struct pool_item *pi;
   1422 	void *cp = storage;
   1423 	const unsigned int align = pp->pr_align;
   1424 	const unsigned int ioff = pp->pr_itemoffset;
   1425 	int n;
   1426 
   1427 	KASSERT(mutex_owned(&pp->pr_lock));
   1428 
   1429 #ifdef DIAGNOSTIC
   1430 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1431 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1432 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1433 #endif
   1434 
   1435 	/*
   1436 	 * Insert page header.
   1437 	 */
   1438 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1439 	LIST_INIT(&ph->ph_itemlist);
   1440 	ph->ph_page = storage;
   1441 	ph->ph_nmissing = 0;
   1442 	ph->ph_time = time_uptime;
   1443 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1444 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1445 
   1446 	pp->pr_nidle++;
   1447 
   1448 	/*
   1449 	 * Color this page.
   1450 	 */
   1451 	ph->ph_off = pp->pr_curcolor;
   1452 	cp = (char *)cp + ph->ph_off;
   1453 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1454 		pp->pr_curcolor = 0;
   1455 
   1456 	/*
   1457 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1458 	 */
   1459 	if (ioff != 0)
   1460 		cp = (char *)cp + align - ioff;
   1461 
   1462 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1463 
   1464 	/*
   1465 	 * Insert remaining chunks on the bucket list.
   1466 	 */
   1467 	n = pp->pr_itemsperpage;
   1468 	pp->pr_nitems += n;
   1469 
   1470 	if (pp->pr_roflags & PR_NOTOUCH) {
   1471 		pr_item_notouch_init(pp, ph);
   1472 	} else {
   1473 		while (n--) {
   1474 			pi = (struct pool_item *)cp;
   1475 
   1476 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1477 
   1478 			/* Insert on page list */
   1479 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1480 #ifdef DIAGNOSTIC
   1481 			pi->pi_magic = PI_MAGIC;
   1482 #endif
   1483 			cp = (char *)cp + pp->pr_size;
   1484 
   1485 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1486 		}
   1487 	}
   1488 
   1489 	/*
   1490 	 * If the pool was depleted, point at the new page.
   1491 	 */
   1492 	if (pp->pr_curpage == NULL)
   1493 		pp->pr_curpage = ph;
   1494 
   1495 	if (++pp->pr_npages > pp->pr_hiwat)
   1496 		pp->pr_hiwat = pp->pr_npages;
   1497 }
   1498 
   1499 /*
   1500  * Used by pool_get() when nitems drops below the low water mark.  This
   1501  * is used to catch up pr_nitems with the low water mark.
   1502  *
   1503  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1504  *
   1505  * Note 2, we must be called with the pool already locked, and we return
   1506  * with it locked.
   1507  */
   1508 static int
   1509 pool_catchup(struct pool *pp)
   1510 {
   1511 	int error = 0;
   1512 
   1513 	while (POOL_NEEDS_CATCHUP(pp)) {
   1514 		error = pool_grow(pp, PR_NOWAIT);
   1515 		if (error) {
   1516 			break;
   1517 		}
   1518 	}
   1519 	return error;
   1520 }
   1521 
   1522 static void
   1523 pool_update_curpage(struct pool *pp)
   1524 {
   1525 
   1526 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1527 	if (pp->pr_curpage == NULL) {
   1528 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1529 	}
   1530 }
   1531 
   1532 void
   1533 pool_setlowat(struct pool *pp, int n)
   1534 {
   1535 
   1536 	mutex_enter(&pp->pr_lock);
   1537 
   1538 	pp->pr_minitems = n;
   1539 	pp->pr_minpages = (n == 0)
   1540 		? 0
   1541 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1542 
   1543 	/* Make sure we're caught up with the newly-set low water mark. */
   1544 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1545 		/*
   1546 		 * XXX: Should we log a warning?  Should we set up a timeout
   1547 		 * to try again in a second or so?  The latter could break
   1548 		 * a caller's assumptions about interrupt protection, etc.
   1549 		 */
   1550 	}
   1551 
   1552 	mutex_exit(&pp->pr_lock);
   1553 }
   1554 
   1555 void
   1556 pool_sethiwat(struct pool *pp, int n)
   1557 {
   1558 
   1559 	mutex_enter(&pp->pr_lock);
   1560 
   1561 	pp->pr_maxpages = (n == 0)
   1562 		? 0
   1563 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1564 
   1565 	mutex_exit(&pp->pr_lock);
   1566 }
   1567 
   1568 void
   1569 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1570 {
   1571 
   1572 	mutex_enter(&pp->pr_lock);
   1573 
   1574 	pp->pr_hardlimit = n;
   1575 	pp->pr_hardlimit_warning = warnmess;
   1576 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1577 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1578 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1579 
   1580 	/*
   1581 	 * In-line version of pool_sethiwat(), because we don't want to
   1582 	 * release the lock.
   1583 	 */
   1584 	pp->pr_maxpages = (n == 0)
   1585 		? 0
   1586 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1587 
   1588 	mutex_exit(&pp->pr_lock);
   1589 }
   1590 
   1591 /*
   1592  * Release all complete pages that have not been used recently.
   1593  */
   1594 int
   1595 #ifdef POOL_DIAGNOSTIC
   1596 _pool_reclaim(struct pool *pp, const char *file, long line)
   1597 #else
   1598 pool_reclaim(struct pool *pp)
   1599 #endif
   1600 {
   1601 	struct pool_item_header *ph, *phnext;
   1602 	struct pool_pagelist pq;
   1603 	uint32_t curtime;
   1604 	bool klock;
   1605 	int rv;
   1606 
   1607 	if (pp->pr_drain_hook != NULL) {
   1608 		/*
   1609 		 * The drain hook must be called with the pool unlocked.
   1610 		 */
   1611 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1612 	}
   1613 
   1614 	/*
   1615 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1616 	 * to block.
   1617 	 */
   1618 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1619 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1620 		KERNEL_LOCK(1, NULL);
   1621 		klock = true;
   1622 	} else
   1623 		klock = false;
   1624 
   1625 	/* Reclaim items from the pool's cache (if any). */
   1626 	if (pp->pr_cache != NULL)
   1627 		pool_cache_invalidate(pp->pr_cache);
   1628 
   1629 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1630 		if (klock) {
   1631 			KERNEL_UNLOCK_ONE(NULL);
   1632 		}
   1633 		return (0);
   1634 	}
   1635 	pr_enter(pp, file, line);
   1636 
   1637 	LIST_INIT(&pq);
   1638 
   1639 	curtime = time_uptime;
   1640 
   1641 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1642 		phnext = LIST_NEXT(ph, ph_pagelist);
   1643 
   1644 		/* Check our minimum page claim */
   1645 		if (pp->pr_npages <= pp->pr_minpages)
   1646 			break;
   1647 
   1648 		KASSERT(ph->ph_nmissing == 0);
   1649 		if (curtime - ph->ph_time < pool_inactive_time
   1650 		    && !pa_starved_p(pp->pr_alloc))
   1651 			continue;
   1652 
   1653 		/*
   1654 		 * If freeing this page would put us below
   1655 		 * the low water mark, stop now.
   1656 		 */
   1657 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1658 		    pp->pr_minitems)
   1659 			break;
   1660 
   1661 		pr_rmpage(pp, ph, &pq);
   1662 	}
   1663 
   1664 	pr_leave(pp);
   1665 	mutex_exit(&pp->pr_lock);
   1666 
   1667 	if (LIST_EMPTY(&pq))
   1668 		rv = 0;
   1669 	else {
   1670 		pr_pagelist_free(pp, &pq);
   1671 		rv = 1;
   1672 	}
   1673 
   1674 	if (klock) {
   1675 		KERNEL_UNLOCK_ONE(NULL);
   1676 	}
   1677 
   1678 	return (rv);
   1679 }
   1680 
   1681 /*
   1682  * Drain pools, one at a time.  This is a two stage process;
   1683  * drain_start kicks off a cross call to drain CPU-level caches
   1684  * if the pool has an associated pool_cache.  drain_end waits
   1685  * for those cross calls to finish, and then drains the cache
   1686  * (if any) and pool.
   1687  *
   1688  * Note, must never be called from interrupt context.
   1689  */
   1690 void
   1691 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1692 {
   1693 	struct pool *pp;
   1694 
   1695 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1696 
   1697 	pp = NULL;
   1698 
   1699 	/* Find next pool to drain, and add a reference. */
   1700 	mutex_enter(&pool_head_lock);
   1701 	do {
   1702 		if (drainpp == NULL) {
   1703 			drainpp = TAILQ_FIRST(&pool_head);
   1704 		}
   1705 		if (drainpp != NULL) {
   1706 			pp = drainpp;
   1707 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1708 		}
   1709 		/*
   1710 		 * Skip completely idle pools.  We depend on at least
   1711 		 * one pool in the system being active.
   1712 		 */
   1713 	} while (pp == NULL || pp->pr_npages == 0);
   1714 	pp->pr_refcnt++;
   1715 	mutex_exit(&pool_head_lock);
   1716 
   1717 	/* If there is a pool_cache, drain CPU level caches. */
   1718 	*ppp = pp;
   1719 	if (pp->pr_cache != NULL) {
   1720 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1721 		    pp->pr_cache, NULL);
   1722 	}
   1723 }
   1724 
   1725 void
   1726 pool_drain_end(struct pool *pp, uint64_t where)
   1727 {
   1728 
   1729 	if (pp == NULL)
   1730 		return;
   1731 
   1732 	KASSERT(pp->pr_refcnt > 0);
   1733 
   1734 	/* Wait for remote draining to complete. */
   1735 	if (pp->pr_cache != NULL)
   1736 		xc_wait(where);
   1737 
   1738 	/* Drain the cache (if any) and pool.. */
   1739 	pool_reclaim(pp);
   1740 
   1741 	/* Finally, unlock the pool. */
   1742 	mutex_enter(&pool_head_lock);
   1743 	pp->pr_refcnt--;
   1744 	cv_broadcast(&pool_busy);
   1745 	mutex_exit(&pool_head_lock);
   1746 }
   1747 
   1748 /*
   1749  * Diagnostic helpers.
   1750  */
   1751 void
   1752 pool_print(struct pool *pp, const char *modif)
   1753 {
   1754 
   1755 	pool_print1(pp, modif, printf);
   1756 }
   1757 
   1758 void
   1759 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1760 {
   1761 	struct pool *pp;
   1762 
   1763 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1764 		pool_printit(pp, modif, pr);
   1765 	}
   1766 }
   1767 
   1768 void
   1769 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1770 {
   1771 
   1772 	if (pp == NULL) {
   1773 		(*pr)("Must specify a pool to print.\n");
   1774 		return;
   1775 	}
   1776 
   1777 	pool_print1(pp, modif, pr);
   1778 }
   1779 
   1780 static void
   1781 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1782     void (*pr)(const char *, ...))
   1783 {
   1784 	struct pool_item_header *ph;
   1785 #ifdef DIAGNOSTIC
   1786 	struct pool_item *pi;
   1787 #endif
   1788 
   1789 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1790 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1791 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1792 #ifdef DIAGNOSTIC
   1793 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1794 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1795 				if (pi->pi_magic != PI_MAGIC) {
   1796 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1797 					    pi, pi->pi_magic);
   1798 				}
   1799 			}
   1800 		}
   1801 #endif
   1802 	}
   1803 }
   1804 
   1805 static void
   1806 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1807 {
   1808 	struct pool_item_header *ph;
   1809 	pool_cache_t pc;
   1810 	pcg_t *pcg;
   1811 	pool_cache_cpu_t *cc;
   1812 	uint64_t cpuhit, cpumiss;
   1813 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1814 	char c;
   1815 
   1816 	while ((c = *modif++) != '\0') {
   1817 		if (c == 'l')
   1818 			print_log = 1;
   1819 		if (c == 'p')
   1820 			print_pagelist = 1;
   1821 		if (c == 'c')
   1822 			print_cache = 1;
   1823 	}
   1824 
   1825 	if ((pc = pp->pr_cache) != NULL) {
   1826 		(*pr)("POOL CACHE");
   1827 	} else {
   1828 		(*pr)("POOL");
   1829 	}
   1830 
   1831 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1832 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1833 	    pp->pr_roflags);
   1834 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1835 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1836 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1837 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1838 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1839 
   1840 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1841 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1842 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1843 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1844 
   1845 	if (print_pagelist == 0)
   1846 		goto skip_pagelist;
   1847 
   1848 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1849 		(*pr)("\n\tempty page list:\n");
   1850 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1851 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1852 		(*pr)("\n\tfull page list:\n");
   1853 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1854 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1855 		(*pr)("\n\tpartial-page list:\n");
   1856 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1857 
   1858 	if (pp->pr_curpage == NULL)
   1859 		(*pr)("\tno current page\n");
   1860 	else
   1861 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1862 
   1863  skip_pagelist:
   1864 	if (print_log == 0)
   1865 		goto skip_log;
   1866 
   1867 	(*pr)("\n");
   1868 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1869 		(*pr)("\tno log\n");
   1870 	else {
   1871 		pr_printlog(pp, NULL, pr);
   1872 	}
   1873 
   1874  skip_log:
   1875 
   1876 #define PR_GROUPLIST(pcg)						\
   1877 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1878 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1879 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1880 		    POOL_PADDR_INVALID) {				\
   1881 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1882 			    pcg->pcg_objects[i].pcgo_va,		\
   1883 			    (unsigned long long)			\
   1884 			    pcg->pcg_objects[i].pcgo_pa);		\
   1885 		} else {						\
   1886 			(*pr)("\t\t\t%p\n",				\
   1887 			    pcg->pcg_objects[i].pcgo_va);		\
   1888 		}							\
   1889 	}
   1890 
   1891 	if (pc != NULL) {
   1892 		cpuhit = 0;
   1893 		cpumiss = 0;
   1894 		for (i = 0; i < MAXCPUS; i++) {
   1895 			if ((cc = pc->pc_cpus[i]) == NULL)
   1896 				continue;
   1897 			cpuhit += cc->cc_hits;
   1898 			cpumiss += cc->cc_misses;
   1899 		}
   1900 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1901 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1902 		    pc->pc_hits, pc->pc_misses);
   1903 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1904 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1905 		    pc->pc_contended);
   1906 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1907 		    pc->pc_nempty, pc->pc_nfull);
   1908 		if (print_cache) {
   1909 			(*pr)("\tfull cache groups:\n");
   1910 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1911 			    pcg = pcg->pcg_next) {
   1912 				PR_GROUPLIST(pcg);
   1913 			}
   1914 			(*pr)("\tempty cache groups:\n");
   1915 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1916 			    pcg = pcg->pcg_next) {
   1917 				PR_GROUPLIST(pcg);
   1918 			}
   1919 		}
   1920 	}
   1921 #undef PR_GROUPLIST
   1922 
   1923 	pr_enter_check(pp, pr);
   1924 }
   1925 
   1926 static int
   1927 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1928 {
   1929 	struct pool_item *pi;
   1930 	void *page;
   1931 	int n;
   1932 
   1933 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1934 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1935 		if (page != ph->ph_page &&
   1936 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1937 			if (label != NULL)
   1938 				printf("%s: ", label);
   1939 			printf("pool(%p:%s): page inconsistency: page %p;"
   1940 			       " at page head addr %p (p %p)\n", pp,
   1941 				pp->pr_wchan, ph->ph_page,
   1942 				ph, page);
   1943 			return 1;
   1944 		}
   1945 	}
   1946 
   1947 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1948 		return 0;
   1949 
   1950 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1951 	     pi != NULL;
   1952 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1953 
   1954 #ifdef DIAGNOSTIC
   1955 		if (pi->pi_magic != PI_MAGIC) {
   1956 			if (label != NULL)
   1957 				printf("%s: ", label);
   1958 			printf("pool(%s): free list modified: magic=%x;"
   1959 			       " page %p; item ordinal %d; addr %p\n",
   1960 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1961 				n, pi);
   1962 			panic("pool");
   1963 		}
   1964 #endif
   1965 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1966 			continue;
   1967 		}
   1968 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1969 		if (page == ph->ph_page)
   1970 			continue;
   1971 
   1972 		if (label != NULL)
   1973 			printf("%s: ", label);
   1974 		printf("pool(%p:%s): page inconsistency: page %p;"
   1975 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1976 			pp->pr_wchan, ph->ph_page,
   1977 			n, pi, page);
   1978 		return 1;
   1979 	}
   1980 	return 0;
   1981 }
   1982 
   1983 
   1984 int
   1985 pool_chk(struct pool *pp, const char *label)
   1986 {
   1987 	struct pool_item_header *ph;
   1988 	int r = 0;
   1989 
   1990 	mutex_enter(&pp->pr_lock);
   1991 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1992 		r = pool_chk_page(pp, label, ph);
   1993 		if (r) {
   1994 			goto out;
   1995 		}
   1996 	}
   1997 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1998 		r = pool_chk_page(pp, label, ph);
   1999 		if (r) {
   2000 			goto out;
   2001 		}
   2002 	}
   2003 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2004 		r = pool_chk_page(pp, label, ph);
   2005 		if (r) {
   2006 			goto out;
   2007 		}
   2008 	}
   2009 
   2010 out:
   2011 	mutex_exit(&pp->pr_lock);
   2012 	return (r);
   2013 }
   2014 
   2015 /*
   2016  * pool_cache_init:
   2017  *
   2018  *	Initialize a pool cache.
   2019  */
   2020 pool_cache_t
   2021 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2022     const char *wchan, struct pool_allocator *palloc, int ipl,
   2023     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2024 {
   2025 	pool_cache_t pc;
   2026 
   2027 	pc = pool_get(&cache_pool, PR_WAITOK);
   2028 	if (pc == NULL)
   2029 		return NULL;
   2030 
   2031 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2032 	   palloc, ipl, ctor, dtor, arg);
   2033 
   2034 	return pc;
   2035 }
   2036 
   2037 /*
   2038  * pool_cache_bootstrap:
   2039  *
   2040  *	Kernel-private version of pool_cache_init().  The caller
   2041  *	provides initial storage.
   2042  */
   2043 void
   2044 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2045     u_int align_offset, u_int flags, const char *wchan,
   2046     struct pool_allocator *palloc, int ipl,
   2047     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2048     void *arg)
   2049 {
   2050 	CPU_INFO_ITERATOR cii;
   2051 	pool_cache_t pc1;
   2052 	struct cpu_info *ci;
   2053 	struct pool *pp;
   2054 
   2055 	pp = &pc->pc_pool;
   2056 	if (palloc == NULL && ipl == IPL_NONE)
   2057 		palloc = &pool_allocator_nointr;
   2058 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2059 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2060 
   2061 	if (ctor == NULL) {
   2062 		ctor = (int (*)(void *, void *, int))nullop;
   2063 	}
   2064 	if (dtor == NULL) {
   2065 		dtor = (void (*)(void *, void *))nullop;
   2066 	}
   2067 
   2068 	pc->pc_emptygroups = NULL;
   2069 	pc->pc_fullgroups = NULL;
   2070 	pc->pc_partgroups = NULL;
   2071 	pc->pc_ctor = ctor;
   2072 	pc->pc_dtor = dtor;
   2073 	pc->pc_arg  = arg;
   2074 	pc->pc_hits  = 0;
   2075 	pc->pc_misses = 0;
   2076 	pc->pc_nempty = 0;
   2077 	pc->pc_npart = 0;
   2078 	pc->pc_nfull = 0;
   2079 	pc->pc_contended = 0;
   2080 	pc->pc_refcnt = 0;
   2081 	pc->pc_freecheck = NULL;
   2082 
   2083 	if ((flags & PR_LARGECACHE) != 0) {
   2084 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2085 		pc->pc_pcgpool = &pcg_large_pool;
   2086 	} else {
   2087 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2088 		pc->pc_pcgpool = &pcg_normal_pool;
   2089 	}
   2090 
   2091 	/* Allocate per-CPU caches. */
   2092 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2093 	pc->pc_ncpu = 0;
   2094 	if (ncpu < 2) {
   2095 		/* XXX For sparc: boot CPU is not attached yet. */
   2096 		pool_cache_cpu_init1(curcpu(), pc);
   2097 	} else {
   2098 		for (CPU_INFO_FOREACH(cii, ci)) {
   2099 			pool_cache_cpu_init1(ci, pc);
   2100 		}
   2101 	}
   2102 
   2103 	/* Add to list of all pools. */
   2104 	if (__predict_true(!cold))
   2105 		mutex_enter(&pool_head_lock);
   2106 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2107 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2108 			break;
   2109 	}
   2110 	if (pc1 == NULL)
   2111 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2112 	else
   2113 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2114 	if (__predict_true(!cold))
   2115 		mutex_exit(&pool_head_lock);
   2116 
   2117 	membar_sync();
   2118 	pp->pr_cache = pc;
   2119 }
   2120 
   2121 /*
   2122  * pool_cache_destroy:
   2123  *
   2124  *	Destroy a pool cache.
   2125  */
   2126 void
   2127 pool_cache_destroy(pool_cache_t pc)
   2128 {
   2129 	struct pool *pp = &pc->pc_pool;
   2130 	pool_cache_cpu_t *cc;
   2131 	pcg_t *pcg;
   2132 	int i;
   2133 
   2134 	/* Remove it from the global list. */
   2135 	mutex_enter(&pool_head_lock);
   2136 	while (pc->pc_refcnt != 0)
   2137 		cv_wait(&pool_busy, &pool_head_lock);
   2138 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2139 	mutex_exit(&pool_head_lock);
   2140 
   2141 	/* First, invalidate the entire cache. */
   2142 	pool_cache_invalidate(pc);
   2143 
   2144 	/* Disassociate it from the pool. */
   2145 	mutex_enter(&pp->pr_lock);
   2146 	pp->pr_cache = NULL;
   2147 	mutex_exit(&pp->pr_lock);
   2148 
   2149 	/* Destroy per-CPU data */
   2150 	for (i = 0; i < MAXCPUS; i++) {
   2151 		if ((cc = pc->pc_cpus[i]) == NULL)
   2152 			continue;
   2153 		if ((pcg = cc->cc_current) != &pcg_dummy) {
   2154 			pcg->pcg_next = NULL;
   2155 			pool_cache_invalidate_groups(pc, pcg);
   2156 		}
   2157 		if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2158 			pcg->pcg_next = NULL;
   2159 			pool_cache_invalidate_groups(pc, pcg);
   2160 		}
   2161 		if (cc != &pc->pc_cpu0)
   2162 			pool_put(&cache_cpu_pool, cc);
   2163 	}
   2164 
   2165 	/* Finally, destroy it. */
   2166 	mutex_destroy(&pc->pc_lock);
   2167 	pool_destroy(pp);
   2168 	pool_put(&cache_pool, pc);
   2169 }
   2170 
   2171 /*
   2172  * pool_cache_cpu_init1:
   2173  *
   2174  *	Called for each pool_cache whenever a new CPU is attached.
   2175  */
   2176 static void
   2177 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2178 {
   2179 	pool_cache_cpu_t *cc;
   2180 	int index;
   2181 
   2182 	index = ci->ci_index;
   2183 
   2184 	KASSERT(index < MAXCPUS);
   2185 
   2186 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2187 		KASSERT(cc->cc_cpuindex == index);
   2188 		return;
   2189 	}
   2190 
   2191 	/*
   2192 	 * The first CPU is 'free'.  This needs to be the case for
   2193 	 * bootstrap - we may not be able to allocate yet.
   2194 	 */
   2195 	if (pc->pc_ncpu == 0) {
   2196 		cc = &pc->pc_cpu0;
   2197 		pc->pc_ncpu = 1;
   2198 	} else {
   2199 		mutex_enter(&pc->pc_lock);
   2200 		pc->pc_ncpu++;
   2201 		mutex_exit(&pc->pc_lock);
   2202 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2203 	}
   2204 
   2205 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2206 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2207 	cc->cc_cache = pc;
   2208 	cc->cc_cpuindex = index;
   2209 	cc->cc_hits = 0;
   2210 	cc->cc_misses = 0;
   2211 	cc->cc_current = &pcg_dummy;
   2212 	cc->cc_previous = &pcg_dummy;
   2213 
   2214 	pc->pc_cpus[index] = cc;
   2215 }
   2216 
   2217 /*
   2218  * pool_cache_cpu_init:
   2219  *
   2220  *	Called whenever a new CPU is attached.
   2221  */
   2222 void
   2223 pool_cache_cpu_init(struct cpu_info *ci)
   2224 {
   2225 	pool_cache_t pc;
   2226 
   2227 	mutex_enter(&pool_head_lock);
   2228 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2229 		pc->pc_refcnt++;
   2230 		mutex_exit(&pool_head_lock);
   2231 
   2232 		pool_cache_cpu_init1(ci, pc);
   2233 
   2234 		mutex_enter(&pool_head_lock);
   2235 		pc->pc_refcnt--;
   2236 		cv_broadcast(&pool_busy);
   2237 	}
   2238 	mutex_exit(&pool_head_lock);
   2239 }
   2240 
   2241 /*
   2242  * pool_cache_reclaim:
   2243  *
   2244  *	Reclaim memory from a pool cache.
   2245  */
   2246 bool
   2247 pool_cache_reclaim(pool_cache_t pc)
   2248 {
   2249 
   2250 	return pool_reclaim(&pc->pc_pool);
   2251 }
   2252 
   2253 static void
   2254 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2255 {
   2256 
   2257 	(*pc->pc_dtor)(pc->pc_arg, object);
   2258 	pool_put(&pc->pc_pool, object);
   2259 }
   2260 
   2261 /*
   2262  * pool_cache_destruct_object:
   2263  *
   2264  *	Force destruction of an object and its release back into
   2265  *	the pool.
   2266  */
   2267 void
   2268 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2269 {
   2270 
   2271 	FREECHECK_IN(&pc->pc_freecheck, object);
   2272 
   2273 	pool_cache_destruct_object1(pc, object);
   2274 }
   2275 
   2276 /*
   2277  * pool_cache_invalidate_groups:
   2278  *
   2279  *	Invalidate a chain of groups and destruct all objects.
   2280  */
   2281 static void
   2282 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2283 {
   2284 	void *object;
   2285 	pcg_t *next;
   2286 	int i;
   2287 
   2288 	for (; pcg != NULL; pcg = next) {
   2289 		next = pcg->pcg_next;
   2290 
   2291 		for (i = 0; i < pcg->pcg_avail; i++) {
   2292 			object = pcg->pcg_objects[i].pcgo_va;
   2293 			pool_cache_destruct_object1(pc, object);
   2294 		}
   2295 
   2296 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2297 			pool_put(&pcg_large_pool, pcg);
   2298 		} else {
   2299 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2300 			pool_put(&pcg_normal_pool, pcg);
   2301 		}
   2302 	}
   2303 }
   2304 
   2305 /*
   2306  * pool_cache_invalidate:
   2307  *
   2308  *	Invalidate a pool cache (destruct and release all of the
   2309  *	cached objects).  Does not reclaim objects from the pool.
   2310  */
   2311 void
   2312 pool_cache_invalidate(pool_cache_t pc)
   2313 {
   2314 	pcg_t *full, *empty, *part;
   2315 
   2316 	mutex_enter(&pc->pc_lock);
   2317 	full = pc->pc_fullgroups;
   2318 	empty = pc->pc_emptygroups;
   2319 	part = pc->pc_partgroups;
   2320 	pc->pc_fullgroups = NULL;
   2321 	pc->pc_emptygroups = NULL;
   2322 	pc->pc_partgroups = NULL;
   2323 	pc->pc_nfull = 0;
   2324 	pc->pc_nempty = 0;
   2325 	pc->pc_npart = 0;
   2326 	mutex_exit(&pc->pc_lock);
   2327 
   2328 	pool_cache_invalidate_groups(pc, full);
   2329 	pool_cache_invalidate_groups(pc, empty);
   2330 	pool_cache_invalidate_groups(pc, part);
   2331 }
   2332 
   2333 void
   2334 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2335 {
   2336 
   2337 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2338 }
   2339 
   2340 void
   2341 pool_cache_setlowat(pool_cache_t pc, int n)
   2342 {
   2343 
   2344 	pool_setlowat(&pc->pc_pool, n);
   2345 }
   2346 
   2347 void
   2348 pool_cache_sethiwat(pool_cache_t pc, int n)
   2349 {
   2350 
   2351 	pool_sethiwat(&pc->pc_pool, n);
   2352 }
   2353 
   2354 void
   2355 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2356 {
   2357 
   2358 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2359 }
   2360 
   2361 static bool __noinline
   2362 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2363 		    paddr_t *pap, int flags)
   2364 {
   2365 	pcg_t *pcg, *cur;
   2366 	uint64_t ncsw;
   2367 	pool_cache_t pc;
   2368 	void *object;
   2369 
   2370 	pc = cc->cc_cache;
   2371 	cc->cc_misses++;
   2372 
   2373 	/*
   2374 	 * Nothing was available locally.  Try and grab a group
   2375 	 * from the cache.
   2376 	 */
   2377 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2378 		ncsw = curlwp->l_ncsw;
   2379 		mutex_enter(&pc->pc_lock);
   2380 		pc->pc_contended++;
   2381 
   2382 		/*
   2383 		 * If we context switched while locking, then
   2384 		 * our view of the per-CPU data is invalid:
   2385 		 * retry.
   2386 		 */
   2387 		if (curlwp->l_ncsw != ncsw) {
   2388 			mutex_exit(&pc->pc_lock);
   2389 			return true;
   2390 		}
   2391 	}
   2392 
   2393 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2394 		/*
   2395 		 * If there's a full group, release our empty
   2396 		 * group back to the cache.  Install the full
   2397 		 * group as cc_current and return.
   2398 		 */
   2399 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2400 			KASSERT(cur->pcg_avail == 0);
   2401 			cur->pcg_next = pc->pc_emptygroups;
   2402 			pc->pc_emptygroups = cur;
   2403 			pc->pc_nempty++;
   2404 		}
   2405 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2406 		cc->cc_current = pcg;
   2407 		pc->pc_fullgroups = pcg->pcg_next;
   2408 		pc->pc_hits++;
   2409 		pc->pc_nfull--;
   2410 		mutex_exit(&pc->pc_lock);
   2411 		return true;
   2412 	}
   2413 
   2414 	/*
   2415 	 * Nothing available locally or in cache.  Take the slow
   2416 	 * path: fetch a new object from the pool and construct
   2417 	 * it.
   2418 	 */
   2419 	pc->pc_misses++;
   2420 	mutex_exit(&pc->pc_lock);
   2421 	splx(s);
   2422 
   2423 	object = pool_get(&pc->pc_pool, flags);
   2424 	*objectp = object;
   2425 	if (__predict_false(object == NULL))
   2426 		return false;
   2427 
   2428 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2429 		pool_put(&pc->pc_pool, object);
   2430 		*objectp = NULL;
   2431 		return false;
   2432 	}
   2433 
   2434 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2435 	    (pc->pc_pool.pr_align - 1)) == 0);
   2436 
   2437 	if (pap != NULL) {
   2438 #ifdef POOL_VTOPHYS
   2439 		*pap = POOL_VTOPHYS(object);
   2440 #else
   2441 		*pap = POOL_PADDR_INVALID;
   2442 #endif
   2443 	}
   2444 
   2445 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2446 	return false;
   2447 }
   2448 
   2449 /*
   2450  * pool_cache_get{,_paddr}:
   2451  *
   2452  *	Get an object from a pool cache (optionally returning
   2453  *	the physical address of the object).
   2454  */
   2455 void *
   2456 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2457 {
   2458 	pool_cache_cpu_t *cc;
   2459 	pcg_t *pcg;
   2460 	void *object;
   2461 	int s;
   2462 
   2463 #ifdef LOCKDEBUG
   2464 	if (flags & PR_WAITOK) {
   2465 		ASSERT_SLEEPABLE();
   2466 	}
   2467 #endif
   2468 
   2469 	/* Lock out interrupts and disable preemption. */
   2470 	s = splvm();
   2471 	while (/* CONSTCOND */ true) {
   2472 		/* Try and allocate an object from the current group. */
   2473 		cc = pc->pc_cpus[curcpu()->ci_index];
   2474 		KASSERT(cc->cc_cache == pc);
   2475 	 	pcg = cc->cc_current;
   2476 		if (__predict_true(pcg->pcg_avail > 0)) {
   2477 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2478 			if (__predict_false(pap != NULL))
   2479 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2480 #if defined(DIAGNOSTIC)
   2481 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2482 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2483 			KASSERT(object != NULL);
   2484 #endif
   2485 			cc->cc_hits++;
   2486 			splx(s);
   2487 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2488 			return object;
   2489 		}
   2490 
   2491 		/*
   2492 		 * That failed.  If the previous group isn't empty, swap
   2493 		 * it with the current group and allocate from there.
   2494 		 */
   2495 		pcg = cc->cc_previous;
   2496 		if (__predict_true(pcg->pcg_avail > 0)) {
   2497 			cc->cc_previous = cc->cc_current;
   2498 			cc->cc_current = pcg;
   2499 			continue;
   2500 		}
   2501 
   2502 		/*
   2503 		 * Can't allocate from either group: try the slow path.
   2504 		 * If get_slow() allocated an object for us, or if
   2505 		 * no more objects are available, it will return false.
   2506 		 * Otherwise, we need to retry.
   2507 		 */
   2508 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2509 			break;
   2510 	}
   2511 
   2512 	return object;
   2513 }
   2514 
   2515 static bool __noinline
   2516 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2517 {
   2518 	pcg_t *pcg, *cur;
   2519 	uint64_t ncsw;
   2520 	pool_cache_t pc;
   2521 
   2522 	pc = cc->cc_cache;
   2523 	cc->cc_misses++;
   2524 
   2525 	/* Lock the cache. */
   2526 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2527 		ncsw = curlwp->l_ncsw;
   2528 		mutex_enter(&pc->pc_lock);
   2529 		pc->pc_contended++;
   2530 
   2531 		/*
   2532 		 * If we context switched while locking, then our view of
   2533 		 * the per-CPU data is invalid: retry.
   2534 		 */
   2535 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2536 			mutex_exit(&pc->pc_lock);
   2537 			return true;
   2538 		}
   2539 	}
   2540 
   2541 	/* If there are no empty groups in the cache then allocate one. */
   2542 	if (__predict_false((pcg = pc->pc_emptygroups) == NULL)) {
   2543 		if (__predict_true(!pool_cache_disable)) {
   2544 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2545 		}
   2546 		if (__predict_true(pcg != NULL)) {
   2547 			pcg->pcg_avail = 0;
   2548 			pcg->pcg_size = pc->pc_pcgsize;
   2549 		}
   2550 	} else {
   2551 		pc->pc_emptygroups = pcg->pcg_next;
   2552 		pc->pc_nempty--;
   2553 	}
   2554 
   2555 	/*
   2556 	 * If there's a empty group, release our full group back
   2557 	 * to the cache.  Install the empty group to the local CPU
   2558 	 * and return.
   2559 	 */
   2560 	if (pcg != NULL) {
   2561 		KASSERT(pcg->pcg_avail == 0);
   2562 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2563 			cc->cc_previous = pcg;
   2564 		} else {
   2565 			cur = cc->cc_current;
   2566 			if (__predict_true(cur != &pcg_dummy)) {
   2567 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2568 				cur->pcg_next = pc->pc_fullgroups;
   2569 				pc->pc_fullgroups = cur;
   2570 				pc->pc_nfull++;
   2571 			}
   2572 			cc->cc_current = pcg;
   2573 		}
   2574 		pc->pc_hits++;
   2575 		mutex_exit(&pc->pc_lock);
   2576 		return true;
   2577 	}
   2578 
   2579 	/*
   2580 	 * Nothing available locally or in cache, and we didn't
   2581 	 * allocate an empty group.  Take the slow path and destroy
   2582 	 * the object here and now.
   2583 	 */
   2584 	pc->pc_misses++;
   2585 	mutex_exit(&pc->pc_lock);
   2586 	splx(s);
   2587 	pool_cache_destruct_object(pc, object);
   2588 
   2589 	return false;
   2590 }
   2591 
   2592 /*
   2593  * pool_cache_put{,_paddr}:
   2594  *
   2595  *	Put an object back to the pool cache (optionally caching the
   2596  *	physical address of the object).
   2597  */
   2598 void
   2599 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2600 {
   2601 	pool_cache_cpu_t *cc;
   2602 	pcg_t *pcg;
   2603 	int s;
   2604 
   2605 	FREECHECK_IN(&pc->pc_freecheck, object);
   2606 
   2607 	/* Lock out interrupts and disable preemption. */
   2608 	s = splvm();
   2609 	while (/* CONSTCOND */ true) {
   2610 		/* If the current group isn't full, release it there. */
   2611 		cc = pc->pc_cpus[curcpu()->ci_index];
   2612 		KASSERT(cc->cc_cache == pc);
   2613 	 	pcg = cc->cc_current;
   2614 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2615 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2616 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2617 			pcg->pcg_avail++;
   2618 			cc->cc_hits++;
   2619 			splx(s);
   2620 			return;
   2621 		}
   2622 
   2623 		/*
   2624 		 * That failed.  If the previous group isn't full, swap
   2625 		 * it with the current group and try again.
   2626 		 */
   2627 		pcg = cc->cc_previous;
   2628 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2629 			cc->cc_previous = cc->cc_current;
   2630 			cc->cc_current = pcg;
   2631 			continue;
   2632 		}
   2633 
   2634 		/*
   2635 		 * Can't free to either group: try the slow path.
   2636 		 * If put_slow() releases the object for us, it
   2637 		 * will return false.  Otherwise we need to retry.
   2638 		 */
   2639 		if (!pool_cache_put_slow(cc, s, object))
   2640 			break;
   2641 	}
   2642 }
   2643 
   2644 /*
   2645  * pool_cache_xcall:
   2646  *
   2647  *	Transfer objects from the per-CPU cache to the global cache.
   2648  *	Run within a cross-call thread.
   2649  */
   2650 static void
   2651 pool_cache_xcall(pool_cache_t pc)
   2652 {
   2653 	pool_cache_cpu_t *cc;
   2654 	pcg_t *prev, *cur, **list;
   2655 	int s;
   2656 
   2657 	s = splvm();
   2658 	mutex_enter(&pc->pc_lock);
   2659 	cc = pc->pc_cpus[curcpu()->ci_index];
   2660 	cur = cc->cc_current;
   2661 	cc->cc_current = &pcg_dummy;
   2662 	prev = cc->cc_previous;
   2663 	cc->cc_previous = &pcg_dummy;
   2664 	if (cur != &pcg_dummy) {
   2665 		if (cur->pcg_avail == cur->pcg_size) {
   2666 			list = &pc->pc_fullgroups;
   2667 			pc->pc_nfull++;
   2668 		} else if (cur->pcg_avail == 0) {
   2669 			list = &pc->pc_emptygroups;
   2670 			pc->pc_nempty++;
   2671 		} else {
   2672 			list = &pc->pc_partgroups;
   2673 			pc->pc_npart++;
   2674 		}
   2675 		cur->pcg_next = *list;
   2676 		*list = cur;
   2677 	}
   2678 	if (prev != &pcg_dummy) {
   2679 		if (prev->pcg_avail == prev->pcg_size) {
   2680 			list = &pc->pc_fullgroups;
   2681 			pc->pc_nfull++;
   2682 		} else if (prev->pcg_avail == 0) {
   2683 			list = &pc->pc_emptygroups;
   2684 			pc->pc_nempty++;
   2685 		} else {
   2686 			list = &pc->pc_partgroups;
   2687 			pc->pc_npart++;
   2688 		}
   2689 		prev->pcg_next = *list;
   2690 		*list = prev;
   2691 	}
   2692 	mutex_exit(&pc->pc_lock);
   2693 	splx(s);
   2694 }
   2695 
   2696 /*
   2697  * Pool backend allocators.
   2698  *
   2699  * Each pool has a backend allocator that handles allocation, deallocation,
   2700  * and any additional draining that might be needed.
   2701  *
   2702  * We provide two standard allocators:
   2703  *
   2704  *	pool_allocator_kmem - the default when no allocator is specified
   2705  *
   2706  *	pool_allocator_nointr - used for pools that will not be accessed
   2707  *	in interrupt context.
   2708  */
   2709 void	*pool_page_alloc(struct pool *, int);
   2710 void	pool_page_free(struct pool *, void *);
   2711 
   2712 #ifdef POOL_SUBPAGE
   2713 struct pool_allocator pool_allocator_kmem_fullpage = {
   2714 	pool_page_alloc, pool_page_free, 0,
   2715 	.pa_backingmapptr = &kmem_map,
   2716 };
   2717 #else
   2718 struct pool_allocator pool_allocator_kmem = {
   2719 	pool_page_alloc, pool_page_free, 0,
   2720 	.pa_backingmapptr = &kmem_map,
   2721 };
   2722 #endif
   2723 
   2724 void	*pool_page_alloc_nointr(struct pool *, int);
   2725 void	pool_page_free_nointr(struct pool *, void *);
   2726 
   2727 #ifdef POOL_SUBPAGE
   2728 struct pool_allocator pool_allocator_nointr_fullpage = {
   2729 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2730 	.pa_backingmapptr = &kernel_map,
   2731 };
   2732 #else
   2733 struct pool_allocator pool_allocator_nointr = {
   2734 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2735 	.pa_backingmapptr = &kernel_map,
   2736 };
   2737 #endif
   2738 
   2739 #ifdef POOL_SUBPAGE
   2740 void	*pool_subpage_alloc(struct pool *, int);
   2741 void	pool_subpage_free(struct pool *, void *);
   2742 
   2743 struct pool_allocator pool_allocator_kmem = {
   2744 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2745 	.pa_backingmapptr = &kmem_map,
   2746 };
   2747 
   2748 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2749 void	pool_subpage_free_nointr(struct pool *, void *);
   2750 
   2751 struct pool_allocator pool_allocator_nointr = {
   2752 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2753 	.pa_backingmapptr = &kmem_map,
   2754 };
   2755 #endif /* POOL_SUBPAGE */
   2756 
   2757 static void *
   2758 pool_allocator_alloc(struct pool *pp, int flags)
   2759 {
   2760 	struct pool_allocator *pa = pp->pr_alloc;
   2761 	void *res;
   2762 
   2763 	res = (*pa->pa_alloc)(pp, flags);
   2764 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2765 		/*
   2766 		 * We only run the drain hook here if PR_NOWAIT.
   2767 		 * In other cases, the hook will be run in
   2768 		 * pool_reclaim().
   2769 		 */
   2770 		if (pp->pr_drain_hook != NULL) {
   2771 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2772 			res = (*pa->pa_alloc)(pp, flags);
   2773 		}
   2774 	}
   2775 	return res;
   2776 }
   2777 
   2778 static void
   2779 pool_allocator_free(struct pool *pp, void *v)
   2780 {
   2781 	struct pool_allocator *pa = pp->pr_alloc;
   2782 
   2783 	(*pa->pa_free)(pp, v);
   2784 }
   2785 
   2786 void *
   2787 pool_page_alloc(struct pool *pp, int flags)
   2788 {
   2789 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2790 
   2791 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2792 }
   2793 
   2794 void
   2795 pool_page_free(struct pool *pp, void *v)
   2796 {
   2797 
   2798 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2799 }
   2800 
   2801 static void *
   2802 pool_page_alloc_meta(struct pool *pp, int flags)
   2803 {
   2804 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2805 
   2806 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2807 }
   2808 
   2809 static void
   2810 pool_page_free_meta(struct pool *pp, void *v)
   2811 {
   2812 
   2813 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2814 }
   2815 
   2816 #ifdef POOL_SUBPAGE
   2817 /* Sub-page allocator, for machines with large hardware pages. */
   2818 void *
   2819 pool_subpage_alloc(struct pool *pp, int flags)
   2820 {
   2821 	return pool_get(&psppool, flags);
   2822 }
   2823 
   2824 void
   2825 pool_subpage_free(struct pool *pp, void *v)
   2826 {
   2827 	pool_put(&psppool, v);
   2828 }
   2829 
   2830 /* We don't provide a real nointr allocator.  Maybe later. */
   2831 void *
   2832 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2833 {
   2834 
   2835 	return (pool_subpage_alloc(pp, flags));
   2836 }
   2837 
   2838 void
   2839 pool_subpage_free_nointr(struct pool *pp, void *v)
   2840 {
   2841 
   2842 	pool_subpage_free(pp, v);
   2843 }
   2844 #endif /* POOL_SUBPAGE */
   2845 void *
   2846 pool_page_alloc_nointr(struct pool *pp, int flags)
   2847 {
   2848 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2849 
   2850 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2851 }
   2852 
   2853 void
   2854 pool_page_free_nointr(struct pool *pp, void *v)
   2855 {
   2856 
   2857 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2858 }
   2859 
   2860 #if defined(DDB)
   2861 static bool
   2862 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2863 {
   2864 
   2865 	return (uintptr_t)ph->ph_page <= addr &&
   2866 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2867 }
   2868 
   2869 static bool
   2870 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2871 {
   2872 
   2873 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2874 }
   2875 
   2876 static bool
   2877 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2878 {
   2879 	int i;
   2880 
   2881 	if (pcg == NULL) {
   2882 		return false;
   2883 	}
   2884 	for (i = 0; i < pcg->pcg_avail; i++) {
   2885 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2886 			return true;
   2887 		}
   2888 	}
   2889 	return false;
   2890 }
   2891 
   2892 static bool
   2893 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2894 {
   2895 
   2896 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2897 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2898 		pool_item_bitmap_t *bitmap =
   2899 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2900 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2901 
   2902 		return (*bitmap & mask) == 0;
   2903 	} else {
   2904 		struct pool_item *pi;
   2905 
   2906 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2907 			if (pool_in_item(pp, pi, addr)) {
   2908 				return false;
   2909 			}
   2910 		}
   2911 		return true;
   2912 	}
   2913 }
   2914 
   2915 void
   2916 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2917 {
   2918 	struct pool *pp;
   2919 
   2920 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2921 		struct pool_item_header *ph;
   2922 		uintptr_t item;
   2923 		bool allocated = true;
   2924 		bool incache = false;
   2925 		bool incpucache = false;
   2926 		char cpucachestr[32];
   2927 
   2928 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2929 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2930 				if (pool_in_page(pp, ph, addr)) {
   2931 					goto found;
   2932 				}
   2933 			}
   2934 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2935 				if (pool_in_page(pp, ph, addr)) {
   2936 					allocated =
   2937 					    pool_allocated(pp, ph, addr);
   2938 					goto found;
   2939 				}
   2940 			}
   2941 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2942 				if (pool_in_page(pp, ph, addr)) {
   2943 					allocated = false;
   2944 					goto found;
   2945 				}
   2946 			}
   2947 			continue;
   2948 		} else {
   2949 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2950 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2951 				continue;
   2952 			}
   2953 			allocated = pool_allocated(pp, ph, addr);
   2954 		}
   2955 found:
   2956 		if (allocated && pp->pr_cache) {
   2957 			pool_cache_t pc = pp->pr_cache;
   2958 			struct pool_cache_group *pcg;
   2959 			int i;
   2960 
   2961 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2962 			    pcg = pcg->pcg_next) {
   2963 				if (pool_in_cg(pp, pcg, addr)) {
   2964 					incache = true;
   2965 					goto print;
   2966 				}
   2967 			}
   2968 			for (i = 0; i < MAXCPUS; i++) {
   2969 				pool_cache_cpu_t *cc;
   2970 
   2971 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2972 					continue;
   2973 				}
   2974 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2975 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2976 					struct cpu_info *ci =
   2977 					    cpu_lookup_byindex(i);
   2978 
   2979 					incpucache = true;
   2980 					snprintf(cpucachestr,
   2981 					    sizeof(cpucachestr),
   2982 					    "cached by CPU %u",
   2983 					    ci->ci_index);
   2984 					goto print;
   2985 				}
   2986 			}
   2987 		}
   2988 print:
   2989 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2990 		item = item + rounddown(addr - item, pp->pr_size);
   2991 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2992 		    (void *)addr, item, (size_t)(addr - item),
   2993 		    pp->pr_wchan,
   2994 		    incpucache ? cpucachestr :
   2995 		    incache ? "cached" : allocated ? "allocated" : "free");
   2996 	}
   2997 }
   2998 #endif /* defined(DDB) */
   2999