Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.176
      1 /*	$NetBSD: subr_pool.c,v 1.176 2009/10/15 20:50:12 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.176 2009/10/15 20:50:12 thorpej Exp $");
     35 
     36 #include "opt_ddb.h"
     37 #include "opt_pool.h"
     38 #include "opt_poollog.h"
     39 #include "opt_lockdebug.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/bitops.h>
     44 #include <sys/proc.h>
     45 #include <sys/errno.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/pool.h>
     49 #include <sys/syslog.h>
     50 #include <sys/debug.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/xcall.h>
     53 #include <sys/cpu.h>
     54 #include <sys/atomic.h>
     55 
     56 #include <uvm/uvm.h>
     57 
     58 /*
     59  * Pool resource management utility.
     60  *
     61  * Memory is allocated in pages which are split into pieces according to
     62  * the pool item size. Each page is kept on one of three lists in the
     63  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     64  * for empty, full and partially-full pages respectively. The individual
     65  * pool items are on a linked list headed by `ph_itemlist' in each page
     66  * header. The memory for building the page list is either taken from
     67  * the allocated pages themselves (for small pool items) or taken from
     68  * an internal pool of page headers (`phpool').
     69  */
     70 
     71 /* List of all pools */
     72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     73 
     74 /* Private pool for page header structures */
     75 #define	PHPOOL_MAX	8
     76 static struct pool phpool[PHPOOL_MAX];
     77 #define	PHPOOL_FREELIST_NELEM(idx) \
     78 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87 
     88 static void *pool_page_alloc_meta(struct pool *, int);
     89 static void pool_page_free_meta(struct pool *, void *);
     90 
     91 /* allocator for pool metadata */
     92 struct pool_allocator pool_allocator_meta = {
     93 	pool_page_alloc_meta, pool_page_free_meta,
     94 	.pa_backingmapptr = &kmem_map,
     95 };
     96 
     97 /* # of seconds to retain page after last use */
     98 int pool_inactive_time = 10;
     99 
    100 /* Next candidate for drainage (see pool_drain()) */
    101 static struct pool	*drainpp;
    102 
    103 /* This lock protects both pool_head and drainpp. */
    104 static kmutex_t pool_head_lock;
    105 static kcondvar_t pool_busy;
    106 
    107 typedef uint32_t pool_item_bitmap_t;
    108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    110 
    111 struct pool_item_header {
    112 	/* Page headers */
    113 	LIST_ENTRY(pool_item_header)
    114 				ph_pagelist;	/* pool page list */
    115 	SPLAY_ENTRY(pool_item_header)
    116 				ph_node;	/* Off-page page headers */
    117 	void *			ph_page;	/* this page's address */
    118 	uint32_t		ph_time;	/* last referenced */
    119 	uint16_t		ph_nmissing;	/* # of chunks in use */
    120 	uint16_t		ph_off;		/* start offset in page */
    121 	union {
    122 		/* !PR_NOTOUCH */
    123 		struct {
    124 			LIST_HEAD(, pool_item)
    125 				phu_itemlist;	/* chunk list for this page */
    126 		} phu_normal;
    127 		/* PR_NOTOUCH */
    128 		struct {
    129 			pool_item_bitmap_t phu_bitmap[1];
    130 		} phu_notouch;
    131 	} ph_u;
    132 };
    133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeaddeadU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references up
    157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    158  * object from the pool, it calls the object's constructor and places it
    159  * into a cache group.  When a cache group frees an object back to the
    160  * pool, it first calls the object's destructor.  This allows the object
    161  * to persist in constructed form while freed to the cache.
    162  *
    163  * The pool references each cache, so that when a pool is drained by the
    164  * pagedaemon, it can drain each individual cache as well.  Each time a
    165  * cache is drained, the most idle cache group is freed to the pool in
    166  * its entirety.
    167  *
    168  * Pool caches are layed on top of pools.  By layering them, we can avoid
    169  * the complexity of cache management for pools which would not benefit
    170  * from it.
    171  */
    172 
    173 static struct pool pcg_normal_pool;
    174 static struct pool pcg_large_pool;
    175 static struct pool cache_pool;
    176 static struct pool cache_cpu_pool;
    177 
    178 /* List of all caches. */
    179 TAILQ_HEAD(,pool_cache) pool_cache_head =
    180     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    181 
    182 int pool_cache_disable;		/* global disable for caching */
    183 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    184 
    185 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    186 				    void *);
    187 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    188 				    void **, paddr_t *, int);
    189 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    190 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    191 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    192 static void	pool_cache_xcall(pool_cache_t);
    193 
    194 static int	pool_catchup(struct pool *);
    195 static void	pool_prime_page(struct pool *, void *,
    196 		    struct pool_item_header *);
    197 static void	pool_update_curpage(struct pool *);
    198 
    199 static int	pool_grow(struct pool *, int);
    200 static void	*pool_allocator_alloc(struct pool *, int);
    201 static void	pool_allocator_free(struct pool *, void *);
    202 
    203 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    204 	void (*)(const char *, ...));
    205 static void pool_print1(struct pool *, const char *,
    206 	void (*)(const char *, ...));
    207 
    208 static int pool_chk_page(struct pool *, const char *,
    209 			 struct pool_item_header *);
    210 
    211 /*
    212  * Pool log entry. An array of these is allocated in pool_init().
    213  */
    214 struct pool_log {
    215 	const char	*pl_file;
    216 	long		pl_line;
    217 	int		pl_action;
    218 #define	PRLOG_GET	1
    219 #define	PRLOG_PUT	2
    220 	void		*pl_addr;
    221 };
    222 
    223 #ifdef POOL_DIAGNOSTIC
    224 /* Number of entries in pool log buffers */
    225 #ifndef POOL_LOGSIZE
    226 #define	POOL_LOGSIZE	10
    227 #endif
    228 
    229 int pool_logsize = POOL_LOGSIZE;
    230 
    231 static inline void
    232 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    233 {
    234 	int n = pp->pr_curlogentry;
    235 	struct pool_log *pl;
    236 
    237 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    238 		return;
    239 
    240 	/*
    241 	 * Fill in the current entry. Wrap around and overwrite
    242 	 * the oldest entry if necessary.
    243 	 */
    244 	pl = &pp->pr_log[n];
    245 	pl->pl_file = file;
    246 	pl->pl_line = line;
    247 	pl->pl_action = action;
    248 	pl->pl_addr = v;
    249 	if (++n >= pp->pr_logsize)
    250 		n = 0;
    251 	pp->pr_curlogentry = n;
    252 }
    253 
    254 static void
    255 pr_printlog(struct pool *pp, struct pool_item *pi,
    256     void (*pr)(const char *, ...))
    257 {
    258 	int i = pp->pr_logsize;
    259 	int n = pp->pr_curlogentry;
    260 
    261 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    262 		return;
    263 
    264 	/*
    265 	 * Print all entries in this pool's log.
    266 	 */
    267 	while (i-- > 0) {
    268 		struct pool_log *pl = &pp->pr_log[n];
    269 		if (pl->pl_action != 0) {
    270 			if (pi == NULL || pi == pl->pl_addr) {
    271 				(*pr)("\tlog entry %d:\n", i);
    272 				(*pr)("\t\taction = %s, addr = %p\n",
    273 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    274 				    pl->pl_addr);
    275 				(*pr)("\t\tfile: %s at line %lu\n",
    276 				    pl->pl_file, pl->pl_line);
    277 			}
    278 		}
    279 		if (++n >= pp->pr_logsize)
    280 			n = 0;
    281 	}
    282 }
    283 
    284 static inline void
    285 pr_enter(struct pool *pp, const char *file, long line)
    286 {
    287 
    288 	if (__predict_false(pp->pr_entered_file != NULL)) {
    289 		printf("pool %s: reentrancy at file %s line %ld\n",
    290 		    pp->pr_wchan, file, line);
    291 		printf("         previous entry at file %s line %ld\n",
    292 		    pp->pr_entered_file, pp->pr_entered_line);
    293 		panic("pr_enter");
    294 	}
    295 
    296 	pp->pr_entered_file = file;
    297 	pp->pr_entered_line = line;
    298 }
    299 
    300 static inline void
    301 pr_leave(struct pool *pp)
    302 {
    303 
    304 	if (__predict_false(pp->pr_entered_file == NULL)) {
    305 		printf("pool %s not entered?\n", pp->pr_wchan);
    306 		panic("pr_leave");
    307 	}
    308 
    309 	pp->pr_entered_file = NULL;
    310 	pp->pr_entered_line = 0;
    311 }
    312 
    313 static inline void
    314 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    315 {
    316 
    317 	if (pp->pr_entered_file != NULL)
    318 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    319 		    pp->pr_entered_file, pp->pr_entered_line);
    320 }
    321 #else
    322 #define	pr_log(pp, v, action, file, line)
    323 #define	pr_printlog(pp, pi, pr)
    324 #define	pr_enter(pp, file, line)
    325 #define	pr_leave(pp)
    326 #define	pr_enter_check(pp, pr)
    327 #endif /* POOL_DIAGNOSTIC */
    328 
    329 static inline unsigned int
    330 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    331     const void *v)
    332 {
    333 	const char *cp = v;
    334 	unsigned int idx;
    335 
    336 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    337 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    338 	KASSERT(idx < pp->pr_itemsperpage);
    339 	return idx;
    340 }
    341 
    342 static inline void
    343 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    344     void *obj)
    345 {
    346 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    347 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    348 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    349 
    350 	KASSERT((*bitmap & mask) == 0);
    351 	*bitmap |= mask;
    352 }
    353 
    354 static inline void *
    355 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    356 {
    357 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    358 	unsigned int idx;
    359 	int i;
    360 
    361 	for (i = 0; ; i++) {
    362 		int bit;
    363 
    364 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    365 		bit = ffs32(bitmap[i]);
    366 		if (bit) {
    367 			pool_item_bitmap_t mask;
    368 
    369 			bit--;
    370 			idx = (i * BITMAP_SIZE) + bit;
    371 			mask = 1 << bit;
    372 			KASSERT((bitmap[i] & mask) != 0);
    373 			bitmap[i] &= ~mask;
    374 			break;
    375 		}
    376 	}
    377 	KASSERT(idx < pp->pr_itemsperpage);
    378 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    379 }
    380 
    381 static inline void
    382 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    383 {
    384 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    385 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    386 	int i;
    387 
    388 	for (i = 0; i < n; i++) {
    389 		bitmap[i] = (pool_item_bitmap_t)-1;
    390 	}
    391 }
    392 
    393 static inline int
    394 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    395 {
    396 
    397 	/*
    398 	 * we consider pool_item_header with smaller ph_page bigger.
    399 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    400 	 */
    401 
    402 	if (a->ph_page < b->ph_page)
    403 		return (1);
    404 	else if (a->ph_page > b->ph_page)
    405 		return (-1);
    406 	else
    407 		return (0);
    408 }
    409 
    410 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    411 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    412 
    413 static inline struct pool_item_header *
    414 pr_find_pagehead_noalign(struct pool *pp, void *v)
    415 {
    416 	struct pool_item_header *ph, tmp;
    417 
    418 	tmp.ph_page = (void *)(uintptr_t)v;
    419 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    420 	if (ph == NULL) {
    421 		ph = SPLAY_ROOT(&pp->pr_phtree);
    422 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    423 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    424 		}
    425 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    426 	}
    427 
    428 	return ph;
    429 }
    430 
    431 /*
    432  * Return the pool page header based on item address.
    433  */
    434 static inline struct pool_item_header *
    435 pr_find_pagehead(struct pool *pp, void *v)
    436 {
    437 	struct pool_item_header *ph, tmp;
    438 
    439 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    440 		ph = pr_find_pagehead_noalign(pp, v);
    441 	} else {
    442 		void *page =
    443 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    444 
    445 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    446 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    447 		} else {
    448 			tmp.ph_page = page;
    449 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    450 		}
    451 	}
    452 
    453 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    454 	    ((char *)ph->ph_page <= (char *)v &&
    455 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    456 	return ph;
    457 }
    458 
    459 static void
    460 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    461 {
    462 	struct pool_item_header *ph;
    463 
    464 	while ((ph = LIST_FIRST(pq)) != NULL) {
    465 		LIST_REMOVE(ph, ph_pagelist);
    466 		pool_allocator_free(pp, ph->ph_page);
    467 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    468 			pool_put(pp->pr_phpool, ph);
    469 	}
    470 }
    471 
    472 /*
    473  * Remove a page from the pool.
    474  */
    475 static inline void
    476 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    477      struct pool_pagelist *pq)
    478 {
    479 
    480 	KASSERT(mutex_owned(&pp->pr_lock));
    481 
    482 	/*
    483 	 * If the page was idle, decrement the idle page count.
    484 	 */
    485 	if (ph->ph_nmissing == 0) {
    486 #ifdef DIAGNOSTIC
    487 		if (pp->pr_nidle == 0)
    488 			panic("pr_rmpage: nidle inconsistent");
    489 		if (pp->pr_nitems < pp->pr_itemsperpage)
    490 			panic("pr_rmpage: nitems inconsistent");
    491 #endif
    492 		pp->pr_nidle--;
    493 	}
    494 
    495 	pp->pr_nitems -= pp->pr_itemsperpage;
    496 
    497 	/*
    498 	 * Unlink the page from the pool and queue it for release.
    499 	 */
    500 	LIST_REMOVE(ph, ph_pagelist);
    501 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    502 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    503 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    504 
    505 	pp->pr_npages--;
    506 	pp->pr_npagefree++;
    507 
    508 	pool_update_curpage(pp);
    509 }
    510 
    511 static bool
    512 pa_starved_p(struct pool_allocator *pa)
    513 {
    514 
    515 	if (pa->pa_backingmap != NULL) {
    516 		return vm_map_starved_p(pa->pa_backingmap);
    517 	}
    518 	return false;
    519 }
    520 
    521 static int
    522 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    523 {
    524 	struct pool *pp = obj;
    525 	struct pool_allocator *pa = pp->pr_alloc;
    526 
    527 	KASSERT(&pp->pr_reclaimerentry == ce);
    528 	pool_reclaim(pp);
    529 	if (!pa_starved_p(pa)) {
    530 		return CALLBACK_CHAIN_ABORT;
    531 	}
    532 	return CALLBACK_CHAIN_CONTINUE;
    533 }
    534 
    535 static void
    536 pool_reclaim_register(struct pool *pp)
    537 {
    538 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    539 	int s;
    540 
    541 	if (map == NULL) {
    542 		return;
    543 	}
    544 
    545 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    546 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    547 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    548 	splx(s);
    549 }
    550 
    551 static void
    552 pool_reclaim_unregister(struct pool *pp)
    553 {
    554 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    555 	int s;
    556 
    557 	if (map == NULL) {
    558 		return;
    559 	}
    560 
    561 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    562 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    563 	    &pp->pr_reclaimerentry);
    564 	splx(s);
    565 }
    566 
    567 static void
    568 pa_reclaim_register(struct pool_allocator *pa)
    569 {
    570 	struct vm_map *map = *pa->pa_backingmapptr;
    571 	struct pool *pp;
    572 
    573 	KASSERT(pa->pa_backingmap == NULL);
    574 	if (map == NULL) {
    575 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    576 		return;
    577 	}
    578 	pa->pa_backingmap = map;
    579 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    580 		pool_reclaim_register(pp);
    581 	}
    582 }
    583 
    584 /*
    585  * Initialize all the pools listed in the "pools" link set.
    586  */
    587 void
    588 pool_subsystem_init(void)
    589 {
    590 	struct pool_allocator *pa;
    591 
    592 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    593 	cv_init(&pool_busy, "poolbusy");
    594 
    595 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    596 		KASSERT(pa->pa_backingmapptr != NULL);
    597 		KASSERT(*pa->pa_backingmapptr != NULL);
    598 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    599 		pa_reclaim_register(pa);
    600 	}
    601 
    602 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    603 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    604 
    605 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    606 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    607 }
    608 
    609 /*
    610  * Initialize the given pool resource structure.
    611  *
    612  * We export this routine to allow other kernel parts to declare
    613  * static pools that must be initialized before malloc() is available.
    614  */
    615 void
    616 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    617     const char *wchan, struct pool_allocator *palloc, int ipl)
    618 {
    619 	struct pool *pp1;
    620 	size_t trysize, phsize;
    621 	int off, slack;
    622 
    623 #ifdef DEBUG
    624 	/*
    625 	 * Check that the pool hasn't already been initialised and
    626 	 * added to the list of all pools.
    627 	 */
    628 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    629 		if (pp == pp1)
    630 			panic("pool_init: pool %s already initialised",
    631 			    wchan);
    632 	}
    633 #endif
    634 
    635 #ifdef POOL_DIAGNOSTIC
    636 	/*
    637 	 * Always log if POOL_DIAGNOSTIC is defined.
    638 	 */
    639 	if (pool_logsize != 0)
    640 		flags |= PR_LOGGING;
    641 #endif
    642 
    643 	if (palloc == NULL)
    644 		palloc = &pool_allocator_kmem;
    645 #ifdef POOL_SUBPAGE
    646 	if (size > palloc->pa_pagesz) {
    647 		if (palloc == &pool_allocator_kmem)
    648 			palloc = &pool_allocator_kmem_fullpage;
    649 		else if (palloc == &pool_allocator_nointr)
    650 			palloc = &pool_allocator_nointr_fullpage;
    651 	}
    652 #endif /* POOL_SUBPAGE */
    653 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    654 		if (palloc->pa_pagesz == 0)
    655 			palloc->pa_pagesz = PAGE_SIZE;
    656 
    657 		TAILQ_INIT(&palloc->pa_list);
    658 
    659 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    660 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    661 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    662 
    663 		if (palloc->pa_backingmapptr != NULL) {
    664 			pa_reclaim_register(palloc);
    665 		}
    666 		palloc->pa_flags |= PA_INITIALIZED;
    667 	}
    668 
    669 	if (align == 0)
    670 		align = ALIGN(1);
    671 
    672 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    673 		size = sizeof(struct pool_item);
    674 
    675 	size = roundup(size, align);
    676 #ifdef DIAGNOSTIC
    677 	if (size > palloc->pa_pagesz)
    678 		panic("pool_init: pool item size (%zu) too large", size);
    679 #endif
    680 
    681 	/*
    682 	 * Initialize the pool structure.
    683 	 */
    684 	LIST_INIT(&pp->pr_emptypages);
    685 	LIST_INIT(&pp->pr_fullpages);
    686 	LIST_INIT(&pp->pr_partpages);
    687 	pp->pr_cache = NULL;
    688 	pp->pr_curpage = NULL;
    689 	pp->pr_npages = 0;
    690 	pp->pr_minitems = 0;
    691 	pp->pr_minpages = 0;
    692 	pp->pr_maxpages = UINT_MAX;
    693 	pp->pr_roflags = flags;
    694 	pp->pr_flags = 0;
    695 	pp->pr_size = size;
    696 	pp->pr_align = align;
    697 	pp->pr_wchan = wchan;
    698 	pp->pr_alloc = palloc;
    699 	pp->pr_nitems = 0;
    700 	pp->pr_nout = 0;
    701 	pp->pr_hardlimit = UINT_MAX;
    702 	pp->pr_hardlimit_warning = NULL;
    703 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    704 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    705 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    706 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    707 	pp->pr_drain_hook = NULL;
    708 	pp->pr_drain_hook_arg = NULL;
    709 	pp->pr_freecheck = NULL;
    710 
    711 	/*
    712 	 * Decide whether to put the page header off page to avoid
    713 	 * wasting too large a part of the page or too big item.
    714 	 * Off-page page headers go on a hash table, so we can match
    715 	 * a returned item with its header based on the page address.
    716 	 * We use 1/16 of the page size and about 8 times of the item
    717 	 * size as the threshold (XXX: tune)
    718 	 *
    719 	 * However, we'll put the header into the page if we can put
    720 	 * it without wasting any items.
    721 	 *
    722 	 * Silently enforce `0 <= ioff < align'.
    723 	 */
    724 	pp->pr_itemoffset = ioff %= align;
    725 	/* See the comment below about reserved bytes. */
    726 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    727 	phsize = ALIGN(sizeof(struct pool_item_header));
    728 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    729 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    730 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    731 		/* Use the end of the page for the page header */
    732 		pp->pr_roflags |= PR_PHINPAGE;
    733 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    734 	} else {
    735 		/* The page header will be taken from our page header pool */
    736 		pp->pr_phoffset = 0;
    737 		off = palloc->pa_pagesz;
    738 		SPLAY_INIT(&pp->pr_phtree);
    739 	}
    740 
    741 	/*
    742 	 * Alignment is to take place at `ioff' within the item. This means
    743 	 * we must reserve up to `align - 1' bytes on the page to allow
    744 	 * appropriate positioning of each item.
    745 	 */
    746 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    747 	KASSERT(pp->pr_itemsperpage != 0);
    748 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    749 		int idx;
    750 
    751 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    752 		    idx++) {
    753 			/* nothing */
    754 		}
    755 		if (idx >= PHPOOL_MAX) {
    756 			/*
    757 			 * if you see this panic, consider to tweak
    758 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    759 			 */
    760 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    761 			    pp->pr_wchan, pp->pr_itemsperpage);
    762 		}
    763 		pp->pr_phpool = &phpool[idx];
    764 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    765 		pp->pr_phpool = &phpool[0];
    766 	}
    767 #if defined(DIAGNOSTIC)
    768 	else {
    769 		pp->pr_phpool = NULL;
    770 	}
    771 #endif
    772 
    773 	/*
    774 	 * Use the slack between the chunks and the page header
    775 	 * for "cache coloring".
    776 	 */
    777 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    778 	pp->pr_maxcolor = (slack / align) * align;
    779 	pp->pr_curcolor = 0;
    780 
    781 	pp->pr_nget = 0;
    782 	pp->pr_nfail = 0;
    783 	pp->pr_nput = 0;
    784 	pp->pr_npagealloc = 0;
    785 	pp->pr_npagefree = 0;
    786 	pp->pr_hiwat = 0;
    787 	pp->pr_nidle = 0;
    788 	pp->pr_refcnt = 0;
    789 
    790 #ifdef POOL_DIAGNOSTIC
    791 	if (flags & PR_LOGGING) {
    792 		if (kmem_map == NULL ||
    793 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    794 		     M_TEMP, M_NOWAIT)) == NULL)
    795 			pp->pr_roflags &= ~PR_LOGGING;
    796 		pp->pr_curlogentry = 0;
    797 		pp->pr_logsize = pool_logsize;
    798 	}
    799 #endif
    800 
    801 	pp->pr_entered_file = NULL;
    802 	pp->pr_entered_line = 0;
    803 
    804 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    805 	cv_init(&pp->pr_cv, wchan);
    806 	pp->pr_ipl = ipl;
    807 
    808 	/*
    809 	 * Initialize private page header pool and cache magazine pool if we
    810 	 * haven't done so yet.
    811 	 * XXX LOCKING.
    812 	 */
    813 	if (phpool[0].pr_size == 0) {
    814 		int idx;
    815 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    816 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    817 			int nelem;
    818 			size_t sz;
    819 
    820 			nelem = PHPOOL_FREELIST_NELEM(idx);
    821 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    822 			    "phpool-%d", nelem);
    823 			sz = sizeof(struct pool_item_header);
    824 			if (nelem) {
    825 				sz = offsetof(struct pool_item_header,
    826 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    827 			}
    828 			pool_init(&phpool[idx], sz, 0, 0, 0,
    829 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    830 		}
    831 #ifdef POOL_SUBPAGE
    832 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    833 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    834 #endif
    835 
    836 		size = sizeof(pcg_t) +
    837 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    838 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    839 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    840 
    841 		size = sizeof(pcg_t) +
    842 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    843 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    844 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    845 	}
    846 
    847 	/* Insert into the list of all pools. */
    848 	if (__predict_true(!cold))
    849 		mutex_enter(&pool_head_lock);
    850 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    851 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    852 			break;
    853 	}
    854 	if (pp1 == NULL)
    855 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    856 	else
    857 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    858 	if (__predict_true(!cold))
    859 		mutex_exit(&pool_head_lock);
    860 
    861 	/* Insert this into the list of pools using this allocator. */
    862 	if (__predict_true(!cold))
    863 		mutex_enter(&palloc->pa_lock);
    864 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    865 	if (__predict_true(!cold))
    866 		mutex_exit(&palloc->pa_lock);
    867 
    868 	pool_reclaim_register(pp);
    869 }
    870 
    871 /*
    872  * De-commision a pool resource.
    873  */
    874 void
    875 pool_destroy(struct pool *pp)
    876 {
    877 	struct pool_pagelist pq;
    878 	struct pool_item_header *ph;
    879 
    880 	/* Remove from global pool list */
    881 	mutex_enter(&pool_head_lock);
    882 	while (pp->pr_refcnt != 0)
    883 		cv_wait(&pool_busy, &pool_head_lock);
    884 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    885 	if (drainpp == pp)
    886 		drainpp = NULL;
    887 	mutex_exit(&pool_head_lock);
    888 
    889 	/* Remove this pool from its allocator's list of pools. */
    890 	pool_reclaim_unregister(pp);
    891 	mutex_enter(&pp->pr_alloc->pa_lock);
    892 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    893 	mutex_exit(&pp->pr_alloc->pa_lock);
    894 
    895 	mutex_enter(&pp->pr_lock);
    896 
    897 	KASSERT(pp->pr_cache == NULL);
    898 
    899 #ifdef DIAGNOSTIC
    900 	if (pp->pr_nout != 0) {
    901 		pr_printlog(pp, NULL, printf);
    902 		panic("pool_destroy: pool busy: still out: %u",
    903 		    pp->pr_nout);
    904 	}
    905 #endif
    906 
    907 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    908 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    909 
    910 	/* Remove all pages */
    911 	LIST_INIT(&pq);
    912 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    913 		pr_rmpage(pp, ph, &pq);
    914 
    915 	mutex_exit(&pp->pr_lock);
    916 
    917 	pr_pagelist_free(pp, &pq);
    918 
    919 #ifdef POOL_DIAGNOSTIC
    920 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    921 		free(pp->pr_log, M_TEMP);
    922 #endif
    923 
    924 	cv_destroy(&pp->pr_cv);
    925 	mutex_destroy(&pp->pr_lock);
    926 }
    927 
    928 void
    929 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    930 {
    931 
    932 	/* XXX no locking -- must be used just after pool_init() */
    933 #ifdef DIAGNOSTIC
    934 	if (pp->pr_drain_hook != NULL)
    935 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    936 #endif
    937 	pp->pr_drain_hook = fn;
    938 	pp->pr_drain_hook_arg = arg;
    939 }
    940 
    941 static struct pool_item_header *
    942 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    943 {
    944 	struct pool_item_header *ph;
    945 
    946 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    947 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    948 	else
    949 		ph = pool_get(pp->pr_phpool, flags);
    950 
    951 	return (ph);
    952 }
    953 
    954 /*
    955  * Grab an item from the pool.
    956  */
    957 void *
    958 #ifdef POOL_DIAGNOSTIC
    959 _pool_get(struct pool *pp, int flags, const char *file, long line)
    960 #else
    961 pool_get(struct pool *pp, int flags)
    962 #endif
    963 {
    964 	struct pool_item *pi;
    965 	struct pool_item_header *ph;
    966 	void *v;
    967 
    968 #ifdef DIAGNOSTIC
    969 	if (__predict_false(pp->pr_itemsperpage == 0))
    970 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    971 		    "pool not initialized?", pp);
    972 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    973 			    (flags & PR_WAITOK) != 0))
    974 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    975 
    976 #endif /* DIAGNOSTIC */
    977 #ifdef LOCKDEBUG
    978 	if (flags & PR_WAITOK) {
    979 		ASSERT_SLEEPABLE();
    980 	}
    981 #endif
    982 
    983 	mutex_enter(&pp->pr_lock);
    984 	pr_enter(pp, file, line);
    985 
    986  startover:
    987 	/*
    988 	 * Check to see if we've reached the hard limit.  If we have,
    989 	 * and we can wait, then wait until an item has been returned to
    990 	 * the pool.
    991 	 */
    992 #ifdef DIAGNOSTIC
    993 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    994 		pr_leave(pp);
    995 		mutex_exit(&pp->pr_lock);
    996 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    997 	}
    998 #endif
    999 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1000 		if (pp->pr_drain_hook != NULL) {
   1001 			/*
   1002 			 * Since the drain hook is going to free things
   1003 			 * back to the pool, unlock, call the hook, re-lock,
   1004 			 * and check the hardlimit condition again.
   1005 			 */
   1006 			pr_leave(pp);
   1007 			mutex_exit(&pp->pr_lock);
   1008 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1009 			mutex_enter(&pp->pr_lock);
   1010 			pr_enter(pp, file, line);
   1011 			if (pp->pr_nout < pp->pr_hardlimit)
   1012 				goto startover;
   1013 		}
   1014 
   1015 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1016 			/*
   1017 			 * XXX: A warning isn't logged in this case.  Should
   1018 			 * it be?
   1019 			 */
   1020 			pp->pr_flags |= PR_WANTED;
   1021 			pr_leave(pp);
   1022 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1023 			pr_enter(pp, file, line);
   1024 			goto startover;
   1025 		}
   1026 
   1027 		/*
   1028 		 * Log a message that the hard limit has been hit.
   1029 		 */
   1030 		if (pp->pr_hardlimit_warning != NULL &&
   1031 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1032 			      &pp->pr_hardlimit_ratecap))
   1033 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1034 
   1035 		pp->pr_nfail++;
   1036 
   1037 		pr_leave(pp);
   1038 		mutex_exit(&pp->pr_lock);
   1039 		return (NULL);
   1040 	}
   1041 
   1042 	/*
   1043 	 * The convention we use is that if `curpage' is not NULL, then
   1044 	 * it points at a non-empty bucket. In particular, `curpage'
   1045 	 * never points at a page header which has PR_PHINPAGE set and
   1046 	 * has no items in its bucket.
   1047 	 */
   1048 	if ((ph = pp->pr_curpage) == NULL) {
   1049 		int error;
   1050 
   1051 #ifdef DIAGNOSTIC
   1052 		if (pp->pr_nitems != 0) {
   1053 			mutex_exit(&pp->pr_lock);
   1054 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1055 			    pp->pr_wchan, pp->pr_nitems);
   1056 			panic("pool_get: nitems inconsistent");
   1057 		}
   1058 #endif
   1059 
   1060 		/*
   1061 		 * Call the back-end page allocator for more memory.
   1062 		 * Release the pool lock, as the back-end page allocator
   1063 		 * may block.
   1064 		 */
   1065 		pr_leave(pp);
   1066 		error = pool_grow(pp, flags);
   1067 		pr_enter(pp, file, line);
   1068 		if (error != 0) {
   1069 			/*
   1070 			 * We were unable to allocate a page or item
   1071 			 * header, but we released the lock during
   1072 			 * allocation, so perhaps items were freed
   1073 			 * back to the pool.  Check for this case.
   1074 			 */
   1075 			if (pp->pr_curpage != NULL)
   1076 				goto startover;
   1077 
   1078 			pp->pr_nfail++;
   1079 			pr_leave(pp);
   1080 			mutex_exit(&pp->pr_lock);
   1081 			return (NULL);
   1082 		}
   1083 
   1084 		/* Start the allocation process over. */
   1085 		goto startover;
   1086 	}
   1087 	if (pp->pr_roflags & PR_NOTOUCH) {
   1088 #ifdef DIAGNOSTIC
   1089 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1090 			pr_leave(pp);
   1091 			mutex_exit(&pp->pr_lock);
   1092 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1093 		}
   1094 #endif
   1095 		v = pr_item_notouch_get(pp, ph);
   1096 #ifdef POOL_DIAGNOSTIC
   1097 		pr_log(pp, v, PRLOG_GET, file, line);
   1098 #endif
   1099 	} else {
   1100 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1101 		if (__predict_false(v == NULL)) {
   1102 			pr_leave(pp);
   1103 			mutex_exit(&pp->pr_lock);
   1104 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1105 		}
   1106 #ifdef DIAGNOSTIC
   1107 		if (__predict_false(pp->pr_nitems == 0)) {
   1108 			pr_leave(pp);
   1109 			mutex_exit(&pp->pr_lock);
   1110 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1111 			    pp->pr_wchan, pp->pr_nitems);
   1112 			panic("pool_get: nitems inconsistent");
   1113 		}
   1114 #endif
   1115 
   1116 #ifdef POOL_DIAGNOSTIC
   1117 		pr_log(pp, v, PRLOG_GET, file, line);
   1118 #endif
   1119 
   1120 #ifdef DIAGNOSTIC
   1121 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1122 			pr_printlog(pp, pi, printf);
   1123 			panic("pool_get(%s): free list modified: "
   1124 			    "magic=%x; page %p; item addr %p\n",
   1125 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1126 		}
   1127 #endif
   1128 
   1129 		/*
   1130 		 * Remove from item list.
   1131 		 */
   1132 		LIST_REMOVE(pi, pi_list);
   1133 	}
   1134 	pp->pr_nitems--;
   1135 	pp->pr_nout++;
   1136 	if (ph->ph_nmissing == 0) {
   1137 #ifdef DIAGNOSTIC
   1138 		if (__predict_false(pp->pr_nidle == 0))
   1139 			panic("pool_get: nidle inconsistent");
   1140 #endif
   1141 		pp->pr_nidle--;
   1142 
   1143 		/*
   1144 		 * This page was previously empty.  Move it to the list of
   1145 		 * partially-full pages.  This page is already curpage.
   1146 		 */
   1147 		LIST_REMOVE(ph, ph_pagelist);
   1148 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1149 	}
   1150 	ph->ph_nmissing++;
   1151 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1152 #ifdef DIAGNOSTIC
   1153 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1154 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1155 			pr_leave(pp);
   1156 			mutex_exit(&pp->pr_lock);
   1157 			panic("pool_get: %s: nmissing inconsistent",
   1158 			    pp->pr_wchan);
   1159 		}
   1160 #endif
   1161 		/*
   1162 		 * This page is now full.  Move it to the full list
   1163 		 * and select a new current page.
   1164 		 */
   1165 		LIST_REMOVE(ph, ph_pagelist);
   1166 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1167 		pool_update_curpage(pp);
   1168 	}
   1169 
   1170 	pp->pr_nget++;
   1171 	pr_leave(pp);
   1172 
   1173 	/*
   1174 	 * If we have a low water mark and we are now below that low
   1175 	 * water mark, add more items to the pool.
   1176 	 */
   1177 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1178 		/*
   1179 		 * XXX: Should we log a warning?  Should we set up a timeout
   1180 		 * to try again in a second or so?  The latter could break
   1181 		 * a caller's assumptions about interrupt protection, etc.
   1182 		 */
   1183 	}
   1184 
   1185 	mutex_exit(&pp->pr_lock);
   1186 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1187 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1188 	return (v);
   1189 }
   1190 
   1191 /*
   1192  * Internal version of pool_put().  Pool is already locked/entered.
   1193  */
   1194 static void
   1195 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1196 {
   1197 	struct pool_item *pi = v;
   1198 	struct pool_item_header *ph;
   1199 
   1200 	KASSERT(mutex_owned(&pp->pr_lock));
   1201 	FREECHECK_IN(&pp->pr_freecheck, v);
   1202 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1203 
   1204 #ifdef DIAGNOSTIC
   1205 	if (__predict_false(pp->pr_nout == 0)) {
   1206 		printf("pool %s: putting with none out\n",
   1207 		    pp->pr_wchan);
   1208 		panic("pool_put");
   1209 	}
   1210 #endif
   1211 
   1212 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1213 		pr_printlog(pp, NULL, printf);
   1214 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1215 	}
   1216 
   1217 	/*
   1218 	 * Return to item list.
   1219 	 */
   1220 	if (pp->pr_roflags & PR_NOTOUCH) {
   1221 		pr_item_notouch_put(pp, ph, v);
   1222 	} else {
   1223 #ifdef DIAGNOSTIC
   1224 		pi->pi_magic = PI_MAGIC;
   1225 #endif
   1226 #ifdef DEBUG
   1227 		{
   1228 			int i, *ip = v;
   1229 
   1230 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1231 				*ip++ = PI_MAGIC;
   1232 			}
   1233 		}
   1234 #endif
   1235 
   1236 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1237 	}
   1238 	KDASSERT(ph->ph_nmissing != 0);
   1239 	ph->ph_nmissing--;
   1240 	pp->pr_nput++;
   1241 	pp->pr_nitems++;
   1242 	pp->pr_nout--;
   1243 
   1244 	/* Cancel "pool empty" condition if it exists */
   1245 	if (pp->pr_curpage == NULL)
   1246 		pp->pr_curpage = ph;
   1247 
   1248 	if (pp->pr_flags & PR_WANTED) {
   1249 		pp->pr_flags &= ~PR_WANTED;
   1250 		cv_broadcast(&pp->pr_cv);
   1251 	}
   1252 
   1253 	/*
   1254 	 * If this page is now empty, do one of two things:
   1255 	 *
   1256 	 *	(1) If we have more pages than the page high water mark,
   1257 	 *	    free the page back to the system.  ONLY CONSIDER
   1258 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1259 	 *	    CLAIM.
   1260 	 *
   1261 	 *	(2) Otherwise, move the page to the empty page list.
   1262 	 *
   1263 	 * Either way, select a new current page (so we use a partially-full
   1264 	 * page if one is available).
   1265 	 */
   1266 	if (ph->ph_nmissing == 0) {
   1267 		pp->pr_nidle++;
   1268 		if (pp->pr_npages > pp->pr_minpages &&
   1269 		    pp->pr_npages > pp->pr_maxpages) {
   1270 			pr_rmpage(pp, ph, pq);
   1271 		} else {
   1272 			LIST_REMOVE(ph, ph_pagelist);
   1273 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1274 
   1275 			/*
   1276 			 * Update the timestamp on the page.  A page must
   1277 			 * be idle for some period of time before it can
   1278 			 * be reclaimed by the pagedaemon.  This minimizes
   1279 			 * ping-pong'ing for memory.
   1280 			 *
   1281 			 * note for 64-bit time_t: truncating to 32-bit is not
   1282 			 * a problem for our usage.
   1283 			 */
   1284 			ph->ph_time = time_uptime;
   1285 		}
   1286 		pool_update_curpage(pp);
   1287 	}
   1288 
   1289 	/*
   1290 	 * If the page was previously completely full, move it to the
   1291 	 * partially-full list and make it the current page.  The next
   1292 	 * allocation will get the item from this page, instead of
   1293 	 * further fragmenting the pool.
   1294 	 */
   1295 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1296 		LIST_REMOVE(ph, ph_pagelist);
   1297 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1298 		pp->pr_curpage = ph;
   1299 	}
   1300 }
   1301 
   1302 /*
   1303  * Return resource to the pool.
   1304  */
   1305 #ifdef POOL_DIAGNOSTIC
   1306 void
   1307 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1308 {
   1309 	struct pool_pagelist pq;
   1310 
   1311 	LIST_INIT(&pq);
   1312 
   1313 	mutex_enter(&pp->pr_lock);
   1314 	pr_enter(pp, file, line);
   1315 
   1316 	pr_log(pp, v, PRLOG_PUT, file, line);
   1317 
   1318 	pool_do_put(pp, v, &pq);
   1319 
   1320 	pr_leave(pp);
   1321 	mutex_exit(&pp->pr_lock);
   1322 
   1323 	pr_pagelist_free(pp, &pq);
   1324 }
   1325 #undef pool_put
   1326 #endif /* POOL_DIAGNOSTIC */
   1327 
   1328 void
   1329 pool_put(struct pool *pp, void *v)
   1330 {
   1331 	struct pool_pagelist pq;
   1332 
   1333 	LIST_INIT(&pq);
   1334 
   1335 	mutex_enter(&pp->pr_lock);
   1336 	pool_do_put(pp, v, &pq);
   1337 	mutex_exit(&pp->pr_lock);
   1338 
   1339 	pr_pagelist_free(pp, &pq);
   1340 }
   1341 
   1342 #ifdef POOL_DIAGNOSTIC
   1343 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1344 #endif
   1345 
   1346 /*
   1347  * pool_grow: grow a pool by a page.
   1348  *
   1349  * => called with pool locked.
   1350  * => unlock and relock the pool.
   1351  * => return with pool locked.
   1352  */
   1353 
   1354 static int
   1355 pool_grow(struct pool *pp, int flags)
   1356 {
   1357 	struct pool_item_header *ph = NULL;
   1358 	char *cp;
   1359 
   1360 	mutex_exit(&pp->pr_lock);
   1361 	cp = pool_allocator_alloc(pp, flags);
   1362 	if (__predict_true(cp != NULL)) {
   1363 		ph = pool_alloc_item_header(pp, cp, flags);
   1364 	}
   1365 	if (__predict_false(cp == NULL || ph == NULL)) {
   1366 		if (cp != NULL) {
   1367 			pool_allocator_free(pp, cp);
   1368 		}
   1369 		mutex_enter(&pp->pr_lock);
   1370 		return ENOMEM;
   1371 	}
   1372 
   1373 	mutex_enter(&pp->pr_lock);
   1374 	pool_prime_page(pp, cp, ph);
   1375 	pp->pr_npagealloc++;
   1376 	return 0;
   1377 }
   1378 
   1379 /*
   1380  * Add N items to the pool.
   1381  */
   1382 int
   1383 pool_prime(struct pool *pp, int n)
   1384 {
   1385 	int newpages;
   1386 	int error = 0;
   1387 
   1388 	mutex_enter(&pp->pr_lock);
   1389 
   1390 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1391 
   1392 	while (newpages-- > 0) {
   1393 		error = pool_grow(pp, PR_NOWAIT);
   1394 		if (error) {
   1395 			break;
   1396 		}
   1397 		pp->pr_minpages++;
   1398 	}
   1399 
   1400 	if (pp->pr_minpages >= pp->pr_maxpages)
   1401 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1402 
   1403 	mutex_exit(&pp->pr_lock);
   1404 	return error;
   1405 }
   1406 
   1407 /*
   1408  * Add a page worth of items to the pool.
   1409  *
   1410  * Note, we must be called with the pool descriptor LOCKED.
   1411  */
   1412 static void
   1413 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1414 {
   1415 	struct pool_item *pi;
   1416 	void *cp = storage;
   1417 	const unsigned int align = pp->pr_align;
   1418 	const unsigned int ioff = pp->pr_itemoffset;
   1419 	int n;
   1420 
   1421 	KASSERT(mutex_owned(&pp->pr_lock));
   1422 
   1423 #ifdef DIAGNOSTIC
   1424 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1425 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1426 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1427 #endif
   1428 
   1429 	/*
   1430 	 * Insert page header.
   1431 	 */
   1432 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1433 	LIST_INIT(&ph->ph_itemlist);
   1434 	ph->ph_page = storage;
   1435 	ph->ph_nmissing = 0;
   1436 	ph->ph_time = time_uptime;
   1437 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1438 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1439 
   1440 	pp->pr_nidle++;
   1441 
   1442 	/*
   1443 	 * Color this page.
   1444 	 */
   1445 	ph->ph_off = pp->pr_curcolor;
   1446 	cp = (char *)cp + ph->ph_off;
   1447 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1448 		pp->pr_curcolor = 0;
   1449 
   1450 	/*
   1451 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1452 	 */
   1453 	if (ioff != 0)
   1454 		cp = (char *)cp + align - ioff;
   1455 
   1456 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1457 
   1458 	/*
   1459 	 * Insert remaining chunks on the bucket list.
   1460 	 */
   1461 	n = pp->pr_itemsperpage;
   1462 	pp->pr_nitems += n;
   1463 
   1464 	if (pp->pr_roflags & PR_NOTOUCH) {
   1465 		pr_item_notouch_init(pp, ph);
   1466 	} else {
   1467 		while (n--) {
   1468 			pi = (struct pool_item *)cp;
   1469 
   1470 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1471 
   1472 			/* Insert on page list */
   1473 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1474 #ifdef DIAGNOSTIC
   1475 			pi->pi_magic = PI_MAGIC;
   1476 #endif
   1477 			cp = (char *)cp + pp->pr_size;
   1478 
   1479 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1480 		}
   1481 	}
   1482 
   1483 	/*
   1484 	 * If the pool was depleted, point at the new page.
   1485 	 */
   1486 	if (pp->pr_curpage == NULL)
   1487 		pp->pr_curpage = ph;
   1488 
   1489 	if (++pp->pr_npages > pp->pr_hiwat)
   1490 		pp->pr_hiwat = pp->pr_npages;
   1491 }
   1492 
   1493 /*
   1494  * Used by pool_get() when nitems drops below the low water mark.  This
   1495  * is used to catch up pr_nitems with the low water mark.
   1496  *
   1497  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1498  *
   1499  * Note 2, we must be called with the pool already locked, and we return
   1500  * with it locked.
   1501  */
   1502 static int
   1503 pool_catchup(struct pool *pp)
   1504 {
   1505 	int error = 0;
   1506 
   1507 	while (POOL_NEEDS_CATCHUP(pp)) {
   1508 		error = pool_grow(pp, PR_NOWAIT);
   1509 		if (error) {
   1510 			break;
   1511 		}
   1512 	}
   1513 	return error;
   1514 }
   1515 
   1516 static void
   1517 pool_update_curpage(struct pool *pp)
   1518 {
   1519 
   1520 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1521 	if (pp->pr_curpage == NULL) {
   1522 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1523 	}
   1524 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1525 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1526 }
   1527 
   1528 void
   1529 pool_setlowat(struct pool *pp, int n)
   1530 {
   1531 
   1532 	mutex_enter(&pp->pr_lock);
   1533 
   1534 	pp->pr_minitems = n;
   1535 	pp->pr_minpages = (n == 0)
   1536 		? 0
   1537 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1538 
   1539 	/* Make sure we're caught up with the newly-set low water mark. */
   1540 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1541 		/*
   1542 		 * XXX: Should we log a warning?  Should we set up a timeout
   1543 		 * to try again in a second or so?  The latter could break
   1544 		 * a caller's assumptions about interrupt protection, etc.
   1545 		 */
   1546 	}
   1547 
   1548 	mutex_exit(&pp->pr_lock);
   1549 }
   1550 
   1551 void
   1552 pool_sethiwat(struct pool *pp, int n)
   1553 {
   1554 
   1555 	mutex_enter(&pp->pr_lock);
   1556 
   1557 	pp->pr_maxpages = (n == 0)
   1558 		? 0
   1559 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1560 
   1561 	mutex_exit(&pp->pr_lock);
   1562 }
   1563 
   1564 void
   1565 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1566 {
   1567 
   1568 	mutex_enter(&pp->pr_lock);
   1569 
   1570 	pp->pr_hardlimit = n;
   1571 	pp->pr_hardlimit_warning = warnmess;
   1572 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1573 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1574 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1575 
   1576 	/*
   1577 	 * In-line version of pool_sethiwat(), because we don't want to
   1578 	 * release the lock.
   1579 	 */
   1580 	pp->pr_maxpages = (n == 0)
   1581 		? 0
   1582 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1583 
   1584 	mutex_exit(&pp->pr_lock);
   1585 }
   1586 
   1587 /*
   1588  * Release all complete pages that have not been used recently.
   1589  */
   1590 int
   1591 #ifdef POOL_DIAGNOSTIC
   1592 _pool_reclaim(struct pool *pp, const char *file, long line)
   1593 #else
   1594 pool_reclaim(struct pool *pp)
   1595 #endif
   1596 {
   1597 	struct pool_item_header *ph, *phnext;
   1598 	struct pool_pagelist pq;
   1599 	uint32_t curtime;
   1600 	bool klock;
   1601 	int rv;
   1602 
   1603 	if (pp->pr_drain_hook != NULL) {
   1604 		/*
   1605 		 * The drain hook must be called with the pool unlocked.
   1606 		 */
   1607 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1608 	}
   1609 
   1610 	/*
   1611 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1612 	 * to block.
   1613 	 */
   1614 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1615 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1616 		KERNEL_LOCK(1, NULL);
   1617 		klock = true;
   1618 	} else
   1619 		klock = false;
   1620 
   1621 	/* Reclaim items from the pool's cache (if any). */
   1622 	if (pp->pr_cache != NULL)
   1623 		pool_cache_invalidate(pp->pr_cache);
   1624 
   1625 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1626 		if (klock) {
   1627 			KERNEL_UNLOCK_ONE(NULL);
   1628 		}
   1629 		return (0);
   1630 	}
   1631 	pr_enter(pp, file, line);
   1632 
   1633 	LIST_INIT(&pq);
   1634 
   1635 	curtime = time_uptime;
   1636 
   1637 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1638 		phnext = LIST_NEXT(ph, ph_pagelist);
   1639 
   1640 		/* Check our minimum page claim */
   1641 		if (pp->pr_npages <= pp->pr_minpages)
   1642 			break;
   1643 
   1644 		KASSERT(ph->ph_nmissing == 0);
   1645 		if (curtime - ph->ph_time < pool_inactive_time
   1646 		    && !pa_starved_p(pp->pr_alloc))
   1647 			continue;
   1648 
   1649 		/*
   1650 		 * If freeing this page would put us below
   1651 		 * the low water mark, stop now.
   1652 		 */
   1653 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1654 		    pp->pr_minitems)
   1655 			break;
   1656 
   1657 		pr_rmpage(pp, ph, &pq);
   1658 	}
   1659 
   1660 	pr_leave(pp);
   1661 	mutex_exit(&pp->pr_lock);
   1662 
   1663 	if (LIST_EMPTY(&pq))
   1664 		rv = 0;
   1665 	else {
   1666 		pr_pagelist_free(pp, &pq);
   1667 		rv = 1;
   1668 	}
   1669 
   1670 	if (klock) {
   1671 		KERNEL_UNLOCK_ONE(NULL);
   1672 	}
   1673 
   1674 	return (rv);
   1675 }
   1676 
   1677 /*
   1678  * Drain pools, one at a time.  This is a two stage process;
   1679  * drain_start kicks off a cross call to drain CPU-level caches
   1680  * if the pool has an associated pool_cache.  drain_end waits
   1681  * for those cross calls to finish, and then drains the cache
   1682  * (if any) and pool.
   1683  *
   1684  * Note, must never be called from interrupt context.
   1685  */
   1686 void
   1687 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1688 {
   1689 	struct pool *pp;
   1690 
   1691 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1692 
   1693 	pp = NULL;
   1694 
   1695 	/* Find next pool to drain, and add a reference. */
   1696 	mutex_enter(&pool_head_lock);
   1697 	do {
   1698 		if (drainpp == NULL) {
   1699 			drainpp = TAILQ_FIRST(&pool_head);
   1700 		}
   1701 		if (drainpp != NULL) {
   1702 			pp = drainpp;
   1703 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1704 		}
   1705 		/*
   1706 		 * Skip completely idle pools.  We depend on at least
   1707 		 * one pool in the system being active.
   1708 		 */
   1709 	} while (pp == NULL || pp->pr_npages == 0);
   1710 	pp->pr_refcnt++;
   1711 	mutex_exit(&pool_head_lock);
   1712 
   1713 	/* If there is a pool_cache, drain CPU level caches. */
   1714 	*ppp = pp;
   1715 	if (pp->pr_cache != NULL) {
   1716 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1717 		    pp->pr_cache, NULL);
   1718 	}
   1719 }
   1720 
   1721 void
   1722 pool_drain_end(struct pool *pp, uint64_t where)
   1723 {
   1724 
   1725 	if (pp == NULL)
   1726 		return;
   1727 
   1728 	KASSERT(pp->pr_refcnt > 0);
   1729 
   1730 	/* Wait for remote draining to complete. */
   1731 	if (pp->pr_cache != NULL)
   1732 		xc_wait(where);
   1733 
   1734 	/* Drain the cache (if any) and pool.. */
   1735 	pool_reclaim(pp);
   1736 
   1737 	/* Finally, unlock the pool. */
   1738 	mutex_enter(&pool_head_lock);
   1739 	pp->pr_refcnt--;
   1740 	cv_broadcast(&pool_busy);
   1741 	mutex_exit(&pool_head_lock);
   1742 }
   1743 
   1744 /*
   1745  * Diagnostic helpers.
   1746  */
   1747 void
   1748 pool_print(struct pool *pp, const char *modif)
   1749 {
   1750 
   1751 	pool_print1(pp, modif, printf);
   1752 }
   1753 
   1754 void
   1755 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1756 {
   1757 	struct pool *pp;
   1758 
   1759 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1760 		pool_printit(pp, modif, pr);
   1761 	}
   1762 }
   1763 
   1764 void
   1765 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1766 {
   1767 
   1768 	if (pp == NULL) {
   1769 		(*pr)("Must specify a pool to print.\n");
   1770 		return;
   1771 	}
   1772 
   1773 	pool_print1(pp, modif, pr);
   1774 }
   1775 
   1776 static void
   1777 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1778     void (*pr)(const char *, ...))
   1779 {
   1780 	struct pool_item_header *ph;
   1781 #ifdef DIAGNOSTIC
   1782 	struct pool_item *pi;
   1783 #endif
   1784 
   1785 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1786 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1787 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1788 #ifdef DIAGNOSTIC
   1789 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1790 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1791 				if (pi->pi_magic != PI_MAGIC) {
   1792 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1793 					    pi, pi->pi_magic);
   1794 				}
   1795 			}
   1796 		}
   1797 #endif
   1798 	}
   1799 }
   1800 
   1801 static void
   1802 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1803 {
   1804 	struct pool_item_header *ph;
   1805 	pool_cache_t pc;
   1806 	pcg_t *pcg;
   1807 	pool_cache_cpu_t *cc;
   1808 	uint64_t cpuhit, cpumiss;
   1809 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1810 	char c;
   1811 
   1812 	while ((c = *modif++) != '\0') {
   1813 		if (c == 'l')
   1814 			print_log = 1;
   1815 		if (c == 'p')
   1816 			print_pagelist = 1;
   1817 		if (c == 'c')
   1818 			print_cache = 1;
   1819 	}
   1820 
   1821 	if ((pc = pp->pr_cache) != NULL) {
   1822 		(*pr)("POOL CACHE");
   1823 	} else {
   1824 		(*pr)("POOL");
   1825 	}
   1826 
   1827 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1828 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1829 	    pp->pr_roflags);
   1830 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1831 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1832 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1833 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1834 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1835 
   1836 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1837 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1838 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1839 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1840 
   1841 	if (print_pagelist == 0)
   1842 		goto skip_pagelist;
   1843 
   1844 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1845 		(*pr)("\n\tempty page list:\n");
   1846 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1847 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1848 		(*pr)("\n\tfull page list:\n");
   1849 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1850 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1851 		(*pr)("\n\tpartial-page list:\n");
   1852 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1853 
   1854 	if (pp->pr_curpage == NULL)
   1855 		(*pr)("\tno current page\n");
   1856 	else
   1857 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1858 
   1859  skip_pagelist:
   1860 	if (print_log == 0)
   1861 		goto skip_log;
   1862 
   1863 	(*pr)("\n");
   1864 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1865 		(*pr)("\tno log\n");
   1866 	else {
   1867 		pr_printlog(pp, NULL, pr);
   1868 	}
   1869 
   1870  skip_log:
   1871 
   1872 #define PR_GROUPLIST(pcg)						\
   1873 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1874 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1875 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1876 		    POOL_PADDR_INVALID) {				\
   1877 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1878 			    pcg->pcg_objects[i].pcgo_va,		\
   1879 			    (unsigned long long)			\
   1880 			    pcg->pcg_objects[i].pcgo_pa);		\
   1881 		} else {						\
   1882 			(*pr)("\t\t\t%p\n",				\
   1883 			    pcg->pcg_objects[i].pcgo_va);		\
   1884 		}							\
   1885 	}
   1886 
   1887 	if (pc != NULL) {
   1888 		cpuhit = 0;
   1889 		cpumiss = 0;
   1890 		for (i = 0; i < MAXCPUS; i++) {
   1891 			if ((cc = pc->pc_cpus[i]) == NULL)
   1892 				continue;
   1893 			cpuhit += cc->cc_hits;
   1894 			cpumiss += cc->cc_misses;
   1895 		}
   1896 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1897 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1898 		    pc->pc_hits, pc->pc_misses);
   1899 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1900 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1901 		    pc->pc_contended);
   1902 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1903 		    pc->pc_nempty, pc->pc_nfull);
   1904 		if (print_cache) {
   1905 			(*pr)("\tfull cache groups:\n");
   1906 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1907 			    pcg = pcg->pcg_next) {
   1908 				PR_GROUPLIST(pcg);
   1909 			}
   1910 			(*pr)("\tempty cache groups:\n");
   1911 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1912 			    pcg = pcg->pcg_next) {
   1913 				PR_GROUPLIST(pcg);
   1914 			}
   1915 		}
   1916 	}
   1917 #undef PR_GROUPLIST
   1918 
   1919 	pr_enter_check(pp, pr);
   1920 }
   1921 
   1922 static int
   1923 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1924 {
   1925 	struct pool_item *pi;
   1926 	void *page;
   1927 	int n;
   1928 
   1929 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1930 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1931 		if (page != ph->ph_page &&
   1932 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1933 			if (label != NULL)
   1934 				printf("%s: ", label);
   1935 			printf("pool(%p:%s): page inconsistency: page %p;"
   1936 			       " at page head addr %p (p %p)\n", pp,
   1937 				pp->pr_wchan, ph->ph_page,
   1938 				ph, page);
   1939 			return 1;
   1940 		}
   1941 	}
   1942 
   1943 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1944 		return 0;
   1945 
   1946 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1947 	     pi != NULL;
   1948 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1949 
   1950 #ifdef DIAGNOSTIC
   1951 		if (pi->pi_magic != PI_MAGIC) {
   1952 			if (label != NULL)
   1953 				printf("%s: ", label);
   1954 			printf("pool(%s): free list modified: magic=%x;"
   1955 			       " page %p; item ordinal %d; addr %p\n",
   1956 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1957 				n, pi);
   1958 			panic("pool");
   1959 		}
   1960 #endif
   1961 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1962 			continue;
   1963 		}
   1964 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1965 		if (page == ph->ph_page)
   1966 			continue;
   1967 
   1968 		if (label != NULL)
   1969 			printf("%s: ", label);
   1970 		printf("pool(%p:%s): page inconsistency: page %p;"
   1971 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1972 			pp->pr_wchan, ph->ph_page,
   1973 			n, pi, page);
   1974 		return 1;
   1975 	}
   1976 	return 0;
   1977 }
   1978 
   1979 
   1980 int
   1981 pool_chk(struct pool *pp, const char *label)
   1982 {
   1983 	struct pool_item_header *ph;
   1984 	int r = 0;
   1985 
   1986 	mutex_enter(&pp->pr_lock);
   1987 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1988 		r = pool_chk_page(pp, label, ph);
   1989 		if (r) {
   1990 			goto out;
   1991 		}
   1992 	}
   1993 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1994 		r = pool_chk_page(pp, label, ph);
   1995 		if (r) {
   1996 			goto out;
   1997 		}
   1998 	}
   1999 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2000 		r = pool_chk_page(pp, label, ph);
   2001 		if (r) {
   2002 			goto out;
   2003 		}
   2004 	}
   2005 
   2006 out:
   2007 	mutex_exit(&pp->pr_lock);
   2008 	return (r);
   2009 }
   2010 
   2011 /*
   2012  * pool_cache_init:
   2013  *
   2014  *	Initialize a pool cache.
   2015  */
   2016 pool_cache_t
   2017 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2018     const char *wchan, struct pool_allocator *palloc, int ipl,
   2019     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2020 {
   2021 	pool_cache_t pc;
   2022 
   2023 	pc = pool_get(&cache_pool, PR_WAITOK);
   2024 	if (pc == NULL)
   2025 		return NULL;
   2026 
   2027 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2028 	   palloc, ipl, ctor, dtor, arg);
   2029 
   2030 	return pc;
   2031 }
   2032 
   2033 /*
   2034  * pool_cache_bootstrap:
   2035  *
   2036  *	Kernel-private version of pool_cache_init().  The caller
   2037  *	provides initial storage.
   2038  */
   2039 void
   2040 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2041     u_int align_offset, u_int flags, const char *wchan,
   2042     struct pool_allocator *palloc, int ipl,
   2043     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2044     void *arg)
   2045 {
   2046 	CPU_INFO_ITERATOR cii;
   2047 	pool_cache_t pc1;
   2048 	struct cpu_info *ci;
   2049 	struct pool *pp;
   2050 
   2051 	pp = &pc->pc_pool;
   2052 	if (palloc == NULL && ipl == IPL_NONE)
   2053 		palloc = &pool_allocator_nointr;
   2054 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2055 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2056 
   2057 	if (ctor == NULL) {
   2058 		ctor = (int (*)(void *, void *, int))nullop;
   2059 	}
   2060 	if (dtor == NULL) {
   2061 		dtor = (void (*)(void *, void *))nullop;
   2062 	}
   2063 
   2064 	pc->pc_emptygroups = NULL;
   2065 	pc->pc_fullgroups = NULL;
   2066 	pc->pc_partgroups = NULL;
   2067 	pc->pc_ctor = ctor;
   2068 	pc->pc_dtor = dtor;
   2069 	pc->pc_arg  = arg;
   2070 	pc->pc_hits  = 0;
   2071 	pc->pc_misses = 0;
   2072 	pc->pc_nempty = 0;
   2073 	pc->pc_npart = 0;
   2074 	pc->pc_nfull = 0;
   2075 	pc->pc_contended = 0;
   2076 	pc->pc_refcnt = 0;
   2077 	pc->pc_freecheck = NULL;
   2078 
   2079 	if ((flags & PR_LARGECACHE) != 0) {
   2080 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2081 		pc->pc_pcgpool = &pcg_large_pool;
   2082 	} else {
   2083 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2084 		pc->pc_pcgpool = &pcg_normal_pool;
   2085 	}
   2086 
   2087 	/* Allocate per-CPU caches. */
   2088 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2089 	pc->pc_ncpu = 0;
   2090 	if (ncpu < 2) {
   2091 		/* XXX For sparc: boot CPU is not attached yet. */
   2092 		pool_cache_cpu_init1(curcpu(), pc);
   2093 	} else {
   2094 		for (CPU_INFO_FOREACH(cii, ci)) {
   2095 			pool_cache_cpu_init1(ci, pc);
   2096 		}
   2097 	}
   2098 
   2099 	/* Add to list of all pools. */
   2100 	if (__predict_true(!cold))
   2101 		mutex_enter(&pool_head_lock);
   2102 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2103 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2104 			break;
   2105 	}
   2106 	if (pc1 == NULL)
   2107 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2108 	else
   2109 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2110 	if (__predict_true(!cold))
   2111 		mutex_exit(&pool_head_lock);
   2112 
   2113 	membar_sync();
   2114 	pp->pr_cache = pc;
   2115 }
   2116 
   2117 /*
   2118  * pool_cache_destroy:
   2119  *
   2120  *	Destroy a pool cache.
   2121  */
   2122 void
   2123 pool_cache_destroy(pool_cache_t pc)
   2124 {
   2125 	struct pool *pp = &pc->pc_pool;
   2126 	u_int i;
   2127 
   2128 	/* Remove it from the global list. */
   2129 	mutex_enter(&pool_head_lock);
   2130 	while (pc->pc_refcnt != 0)
   2131 		cv_wait(&pool_busy, &pool_head_lock);
   2132 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2133 	mutex_exit(&pool_head_lock);
   2134 
   2135 	/* First, invalidate the entire cache. */
   2136 	pool_cache_invalidate(pc);
   2137 
   2138 	/* Disassociate it from the pool. */
   2139 	mutex_enter(&pp->pr_lock);
   2140 	pp->pr_cache = NULL;
   2141 	mutex_exit(&pp->pr_lock);
   2142 
   2143 	/* Destroy per-CPU data */
   2144 	for (i = 0; i < MAXCPUS; i++)
   2145 		pool_cache_invalidate_cpu(pc, i);
   2146 
   2147 	/* Finally, destroy it. */
   2148 	mutex_destroy(&pc->pc_lock);
   2149 	pool_destroy(pp);
   2150 	pool_put(&cache_pool, pc);
   2151 }
   2152 
   2153 /*
   2154  * pool_cache_cpu_init1:
   2155  *
   2156  *	Called for each pool_cache whenever a new CPU is attached.
   2157  */
   2158 static void
   2159 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2160 {
   2161 	pool_cache_cpu_t *cc;
   2162 	int index;
   2163 
   2164 	index = ci->ci_index;
   2165 
   2166 	KASSERT(index < MAXCPUS);
   2167 
   2168 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2169 		KASSERT(cc->cc_cpuindex == index);
   2170 		return;
   2171 	}
   2172 
   2173 	/*
   2174 	 * The first CPU is 'free'.  This needs to be the case for
   2175 	 * bootstrap - we may not be able to allocate yet.
   2176 	 */
   2177 	if (pc->pc_ncpu == 0) {
   2178 		cc = &pc->pc_cpu0;
   2179 		pc->pc_ncpu = 1;
   2180 	} else {
   2181 		mutex_enter(&pc->pc_lock);
   2182 		pc->pc_ncpu++;
   2183 		mutex_exit(&pc->pc_lock);
   2184 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2185 	}
   2186 
   2187 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2188 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2189 	cc->cc_cache = pc;
   2190 	cc->cc_cpuindex = index;
   2191 	cc->cc_hits = 0;
   2192 	cc->cc_misses = 0;
   2193 	cc->cc_current = __UNCONST(&pcg_dummy);
   2194 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2195 
   2196 	pc->pc_cpus[index] = cc;
   2197 }
   2198 
   2199 /*
   2200  * pool_cache_cpu_init:
   2201  *
   2202  *	Called whenever a new CPU is attached.
   2203  */
   2204 void
   2205 pool_cache_cpu_init(struct cpu_info *ci)
   2206 {
   2207 	pool_cache_t pc;
   2208 
   2209 	mutex_enter(&pool_head_lock);
   2210 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2211 		pc->pc_refcnt++;
   2212 		mutex_exit(&pool_head_lock);
   2213 
   2214 		pool_cache_cpu_init1(ci, pc);
   2215 
   2216 		mutex_enter(&pool_head_lock);
   2217 		pc->pc_refcnt--;
   2218 		cv_broadcast(&pool_busy);
   2219 	}
   2220 	mutex_exit(&pool_head_lock);
   2221 }
   2222 
   2223 /*
   2224  * pool_cache_reclaim:
   2225  *
   2226  *	Reclaim memory from a pool cache.
   2227  */
   2228 bool
   2229 pool_cache_reclaim(pool_cache_t pc)
   2230 {
   2231 
   2232 	return pool_reclaim(&pc->pc_pool);
   2233 }
   2234 
   2235 static void
   2236 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2237 {
   2238 
   2239 	(*pc->pc_dtor)(pc->pc_arg, object);
   2240 	pool_put(&pc->pc_pool, object);
   2241 }
   2242 
   2243 /*
   2244  * pool_cache_destruct_object:
   2245  *
   2246  *	Force destruction of an object and its release back into
   2247  *	the pool.
   2248  */
   2249 void
   2250 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2251 {
   2252 
   2253 	FREECHECK_IN(&pc->pc_freecheck, object);
   2254 
   2255 	pool_cache_destruct_object1(pc, object);
   2256 }
   2257 
   2258 /*
   2259  * pool_cache_invalidate_groups:
   2260  *
   2261  *	Invalidate a chain of groups and destruct all objects.
   2262  */
   2263 static void
   2264 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2265 {
   2266 	void *object;
   2267 	pcg_t *next;
   2268 	int i;
   2269 
   2270 	for (; pcg != NULL; pcg = next) {
   2271 		next = pcg->pcg_next;
   2272 
   2273 		for (i = 0; i < pcg->pcg_avail; i++) {
   2274 			object = pcg->pcg_objects[i].pcgo_va;
   2275 			pool_cache_destruct_object1(pc, object);
   2276 		}
   2277 
   2278 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2279 			pool_put(&pcg_large_pool, pcg);
   2280 		} else {
   2281 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2282 			pool_put(&pcg_normal_pool, pcg);
   2283 		}
   2284 	}
   2285 }
   2286 
   2287 /*
   2288  * pool_cache_invalidate:
   2289  *
   2290  *	Invalidate a pool cache (destruct and release all of the
   2291  *	cached objects).  Does not reclaim objects from the pool.
   2292  *
   2293  *	Note: For pool caches that provide constructed objects, there
   2294  *	is an assumption that another level of synchronization is occurring
   2295  *	between the input to the constructor and the cache invalidation.
   2296  */
   2297 void
   2298 pool_cache_invalidate(pool_cache_t pc)
   2299 {
   2300 	pcg_t *full, *empty, *part;
   2301 	uint64_t where;
   2302 
   2303 	if (ncpu < 2) {
   2304 		/*
   2305 		 * We might be called early enough in the boot process
   2306 		 * for the CPU data structures to not be fully initialized.
   2307 		 * In this case, simply gather the local CPU's cache now
   2308 		 * since it will be the only one running.
   2309 		 */
   2310 		pool_cache_xcall(pc);
   2311 	} else {
   2312 		/*
   2313 		 * Gather all of the CPU-specific caches into the
   2314 		 * global cache.
   2315 		 */
   2316 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2317 		xc_wait(where);
   2318 	}
   2319 
   2320 	mutex_enter(&pc->pc_lock);
   2321 	full = pc->pc_fullgroups;
   2322 	empty = pc->pc_emptygroups;
   2323 	part = pc->pc_partgroups;
   2324 	pc->pc_fullgroups = NULL;
   2325 	pc->pc_emptygroups = NULL;
   2326 	pc->pc_partgroups = NULL;
   2327 	pc->pc_nfull = 0;
   2328 	pc->pc_nempty = 0;
   2329 	pc->pc_npart = 0;
   2330 	mutex_exit(&pc->pc_lock);
   2331 
   2332 	pool_cache_invalidate_groups(pc, full);
   2333 	pool_cache_invalidate_groups(pc, empty);
   2334 	pool_cache_invalidate_groups(pc, part);
   2335 }
   2336 
   2337 /*
   2338  * pool_cache_invalidate_cpu:
   2339  *
   2340  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2341  *	identified by its associated index.
   2342  *	It is caller's responsibility to ensure that no operation is
   2343  *	taking place on this pool cache while doing this invalidation.
   2344  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2345  *	pool cached objects from a CPU different from the one currently running
   2346  *	may result in an undefined behaviour.
   2347  */
   2348 static void
   2349 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2350 {
   2351 
   2352 	pool_cache_cpu_t *cc;
   2353 	pcg_t *pcg;
   2354 
   2355 	if ((cc = pc->pc_cpus[index]) == NULL)
   2356 		return;
   2357 
   2358 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2359 		pcg->pcg_next = NULL;
   2360 		pool_cache_invalidate_groups(pc, pcg);
   2361 	}
   2362 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2363 		pcg->pcg_next = NULL;
   2364 		pool_cache_invalidate_groups(pc, pcg);
   2365 	}
   2366 	if (cc != &pc->pc_cpu0)
   2367 		pool_put(&cache_cpu_pool, cc);
   2368 
   2369 }
   2370 
   2371 void
   2372 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2373 {
   2374 
   2375 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2376 }
   2377 
   2378 void
   2379 pool_cache_setlowat(pool_cache_t pc, int n)
   2380 {
   2381 
   2382 	pool_setlowat(&pc->pc_pool, n);
   2383 }
   2384 
   2385 void
   2386 pool_cache_sethiwat(pool_cache_t pc, int n)
   2387 {
   2388 
   2389 	pool_sethiwat(&pc->pc_pool, n);
   2390 }
   2391 
   2392 void
   2393 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2394 {
   2395 
   2396 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2397 }
   2398 
   2399 static bool __noinline
   2400 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2401 		    paddr_t *pap, int flags)
   2402 {
   2403 	pcg_t *pcg, *cur;
   2404 	uint64_t ncsw;
   2405 	pool_cache_t pc;
   2406 	void *object;
   2407 
   2408 	KASSERT(cc->cc_current->pcg_avail == 0);
   2409 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2410 
   2411 	pc = cc->cc_cache;
   2412 	cc->cc_misses++;
   2413 
   2414 	/*
   2415 	 * Nothing was available locally.  Try and grab a group
   2416 	 * from the cache.
   2417 	 */
   2418 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2419 		ncsw = curlwp->l_ncsw;
   2420 		mutex_enter(&pc->pc_lock);
   2421 		pc->pc_contended++;
   2422 
   2423 		/*
   2424 		 * If we context switched while locking, then
   2425 		 * our view of the per-CPU data is invalid:
   2426 		 * retry.
   2427 		 */
   2428 		if (curlwp->l_ncsw != ncsw) {
   2429 			mutex_exit(&pc->pc_lock);
   2430 			return true;
   2431 		}
   2432 	}
   2433 
   2434 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2435 		/*
   2436 		 * If there's a full group, release our empty
   2437 		 * group back to the cache.  Install the full
   2438 		 * group as cc_current and return.
   2439 		 */
   2440 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2441 			KASSERT(cur->pcg_avail == 0);
   2442 			cur->pcg_next = pc->pc_emptygroups;
   2443 			pc->pc_emptygroups = cur;
   2444 			pc->pc_nempty++;
   2445 		}
   2446 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2447 		cc->cc_current = pcg;
   2448 		pc->pc_fullgroups = pcg->pcg_next;
   2449 		pc->pc_hits++;
   2450 		pc->pc_nfull--;
   2451 		mutex_exit(&pc->pc_lock);
   2452 		return true;
   2453 	}
   2454 
   2455 	/*
   2456 	 * Nothing available locally or in cache.  Take the slow
   2457 	 * path: fetch a new object from the pool and construct
   2458 	 * it.
   2459 	 */
   2460 	pc->pc_misses++;
   2461 	mutex_exit(&pc->pc_lock);
   2462 	splx(s);
   2463 
   2464 	object = pool_get(&pc->pc_pool, flags);
   2465 	*objectp = object;
   2466 	if (__predict_false(object == NULL))
   2467 		return false;
   2468 
   2469 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2470 		pool_put(&pc->pc_pool, object);
   2471 		*objectp = NULL;
   2472 		return false;
   2473 	}
   2474 
   2475 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2476 	    (pc->pc_pool.pr_align - 1)) == 0);
   2477 
   2478 	if (pap != NULL) {
   2479 #ifdef POOL_VTOPHYS
   2480 		*pap = POOL_VTOPHYS(object);
   2481 #else
   2482 		*pap = POOL_PADDR_INVALID;
   2483 #endif
   2484 	}
   2485 
   2486 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2487 	return false;
   2488 }
   2489 
   2490 /*
   2491  * pool_cache_get{,_paddr}:
   2492  *
   2493  *	Get an object from a pool cache (optionally returning
   2494  *	the physical address of the object).
   2495  */
   2496 void *
   2497 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2498 {
   2499 	pool_cache_cpu_t *cc;
   2500 	pcg_t *pcg;
   2501 	void *object;
   2502 	int s;
   2503 
   2504 #ifdef LOCKDEBUG
   2505 	if (flags & PR_WAITOK) {
   2506 		ASSERT_SLEEPABLE();
   2507 	}
   2508 #endif
   2509 
   2510 	/* Lock out interrupts and disable preemption. */
   2511 	s = splvm();
   2512 	while (/* CONSTCOND */ true) {
   2513 		/* Try and allocate an object from the current group. */
   2514 		cc = pc->pc_cpus[curcpu()->ci_index];
   2515 		KASSERT(cc->cc_cache == pc);
   2516 	 	pcg = cc->cc_current;
   2517 		if (__predict_true(pcg->pcg_avail > 0)) {
   2518 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2519 			if (__predict_false(pap != NULL))
   2520 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2521 #if defined(DIAGNOSTIC)
   2522 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2523 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2524 			KASSERT(object != NULL);
   2525 #endif
   2526 			cc->cc_hits++;
   2527 			splx(s);
   2528 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2529 			return object;
   2530 		}
   2531 
   2532 		/*
   2533 		 * That failed.  If the previous group isn't empty, swap
   2534 		 * it with the current group and allocate from there.
   2535 		 */
   2536 		pcg = cc->cc_previous;
   2537 		if (__predict_true(pcg->pcg_avail > 0)) {
   2538 			cc->cc_previous = cc->cc_current;
   2539 			cc->cc_current = pcg;
   2540 			continue;
   2541 		}
   2542 
   2543 		/*
   2544 		 * Can't allocate from either group: try the slow path.
   2545 		 * If get_slow() allocated an object for us, or if
   2546 		 * no more objects are available, it will return false.
   2547 		 * Otherwise, we need to retry.
   2548 		 */
   2549 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2550 			break;
   2551 	}
   2552 
   2553 	return object;
   2554 }
   2555 
   2556 static bool __noinline
   2557 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2558 {
   2559 	pcg_t *pcg, *cur;
   2560 	uint64_t ncsw;
   2561 	pool_cache_t pc;
   2562 
   2563 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2564 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2565 
   2566 	pc = cc->cc_cache;
   2567 	pcg = NULL;
   2568 	cc->cc_misses++;
   2569 
   2570 	/*
   2571 	 * If there are no empty groups in the cache then allocate one
   2572 	 * while still unlocked.
   2573 	 */
   2574 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2575 		if (__predict_true(!pool_cache_disable)) {
   2576 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2577 		}
   2578 		if (__predict_true(pcg != NULL)) {
   2579 			pcg->pcg_avail = 0;
   2580 			pcg->pcg_size = pc->pc_pcgsize;
   2581 		}
   2582 	}
   2583 
   2584 	/* Lock the cache. */
   2585 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2586 		ncsw = curlwp->l_ncsw;
   2587 		mutex_enter(&pc->pc_lock);
   2588 		pc->pc_contended++;
   2589 
   2590 		/*
   2591 		 * If we context switched while locking, then our view of
   2592 		 * the per-CPU data is invalid: retry.
   2593 		 */
   2594 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2595 			mutex_exit(&pc->pc_lock);
   2596 			if (pcg != NULL) {
   2597 				pool_put(pc->pc_pcgpool, pcg);
   2598 			}
   2599 			return true;
   2600 		}
   2601 	}
   2602 
   2603 	/* If there are no empty groups in the cache then allocate one. */
   2604 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2605 		pcg = pc->pc_emptygroups;
   2606 		pc->pc_emptygroups = pcg->pcg_next;
   2607 		pc->pc_nempty--;
   2608 	}
   2609 
   2610 	/*
   2611 	 * If there's a empty group, release our full group back
   2612 	 * to the cache.  Install the empty group to the local CPU
   2613 	 * and return.
   2614 	 */
   2615 	if (pcg != NULL) {
   2616 		KASSERT(pcg->pcg_avail == 0);
   2617 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2618 			cc->cc_previous = pcg;
   2619 		} else {
   2620 			cur = cc->cc_current;
   2621 			if (__predict_true(cur != &pcg_dummy)) {
   2622 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2623 				cur->pcg_next = pc->pc_fullgroups;
   2624 				pc->pc_fullgroups = cur;
   2625 				pc->pc_nfull++;
   2626 			}
   2627 			cc->cc_current = pcg;
   2628 		}
   2629 		pc->pc_hits++;
   2630 		mutex_exit(&pc->pc_lock);
   2631 		return true;
   2632 	}
   2633 
   2634 	/*
   2635 	 * Nothing available locally or in cache, and we didn't
   2636 	 * allocate an empty group.  Take the slow path and destroy
   2637 	 * the object here and now.
   2638 	 */
   2639 	pc->pc_misses++;
   2640 	mutex_exit(&pc->pc_lock);
   2641 	splx(s);
   2642 	pool_cache_destruct_object(pc, object);
   2643 
   2644 	return false;
   2645 }
   2646 
   2647 /*
   2648  * pool_cache_put{,_paddr}:
   2649  *
   2650  *	Put an object back to the pool cache (optionally caching the
   2651  *	physical address of the object).
   2652  */
   2653 void
   2654 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2655 {
   2656 	pool_cache_cpu_t *cc;
   2657 	pcg_t *pcg;
   2658 	int s;
   2659 
   2660 	KASSERT(object != NULL);
   2661 	FREECHECK_IN(&pc->pc_freecheck, object);
   2662 
   2663 	/* Lock out interrupts and disable preemption. */
   2664 	s = splvm();
   2665 	while (/* CONSTCOND */ true) {
   2666 		/* If the current group isn't full, release it there. */
   2667 		cc = pc->pc_cpus[curcpu()->ci_index];
   2668 		KASSERT(cc->cc_cache == pc);
   2669 	 	pcg = cc->cc_current;
   2670 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2671 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2672 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2673 			pcg->pcg_avail++;
   2674 			cc->cc_hits++;
   2675 			splx(s);
   2676 			return;
   2677 		}
   2678 
   2679 		/*
   2680 		 * That failed.  If the previous group isn't full, swap
   2681 		 * it with the current group and try again.
   2682 		 */
   2683 		pcg = cc->cc_previous;
   2684 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2685 			cc->cc_previous = cc->cc_current;
   2686 			cc->cc_current = pcg;
   2687 			continue;
   2688 		}
   2689 
   2690 		/*
   2691 		 * Can't free to either group: try the slow path.
   2692 		 * If put_slow() releases the object for us, it
   2693 		 * will return false.  Otherwise we need to retry.
   2694 		 */
   2695 		if (!pool_cache_put_slow(cc, s, object))
   2696 			break;
   2697 	}
   2698 }
   2699 
   2700 /*
   2701  * pool_cache_xcall:
   2702  *
   2703  *	Transfer objects from the per-CPU cache to the global cache.
   2704  *	Run within a cross-call thread.
   2705  */
   2706 static void
   2707 pool_cache_xcall(pool_cache_t pc)
   2708 {
   2709 	pool_cache_cpu_t *cc;
   2710 	pcg_t *prev, *cur, **list;
   2711 	int s;
   2712 
   2713 	s = splvm();
   2714 	mutex_enter(&pc->pc_lock);
   2715 	cc = pc->pc_cpus[curcpu()->ci_index];
   2716 	cur = cc->cc_current;
   2717 	cc->cc_current = __UNCONST(&pcg_dummy);
   2718 	prev = cc->cc_previous;
   2719 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2720 	if (cur != &pcg_dummy) {
   2721 		if (cur->pcg_avail == cur->pcg_size) {
   2722 			list = &pc->pc_fullgroups;
   2723 			pc->pc_nfull++;
   2724 		} else if (cur->pcg_avail == 0) {
   2725 			list = &pc->pc_emptygroups;
   2726 			pc->pc_nempty++;
   2727 		} else {
   2728 			list = &pc->pc_partgroups;
   2729 			pc->pc_npart++;
   2730 		}
   2731 		cur->pcg_next = *list;
   2732 		*list = cur;
   2733 	}
   2734 	if (prev != &pcg_dummy) {
   2735 		if (prev->pcg_avail == prev->pcg_size) {
   2736 			list = &pc->pc_fullgroups;
   2737 			pc->pc_nfull++;
   2738 		} else if (prev->pcg_avail == 0) {
   2739 			list = &pc->pc_emptygroups;
   2740 			pc->pc_nempty++;
   2741 		} else {
   2742 			list = &pc->pc_partgroups;
   2743 			pc->pc_npart++;
   2744 		}
   2745 		prev->pcg_next = *list;
   2746 		*list = prev;
   2747 	}
   2748 	mutex_exit(&pc->pc_lock);
   2749 	splx(s);
   2750 }
   2751 
   2752 /*
   2753  * Pool backend allocators.
   2754  *
   2755  * Each pool has a backend allocator that handles allocation, deallocation,
   2756  * and any additional draining that might be needed.
   2757  *
   2758  * We provide two standard allocators:
   2759  *
   2760  *	pool_allocator_kmem - the default when no allocator is specified
   2761  *
   2762  *	pool_allocator_nointr - used for pools that will not be accessed
   2763  *	in interrupt context.
   2764  */
   2765 void	*pool_page_alloc(struct pool *, int);
   2766 void	pool_page_free(struct pool *, void *);
   2767 
   2768 #ifdef POOL_SUBPAGE
   2769 struct pool_allocator pool_allocator_kmem_fullpage = {
   2770 	pool_page_alloc, pool_page_free, 0,
   2771 	.pa_backingmapptr = &kmem_map,
   2772 };
   2773 #else
   2774 struct pool_allocator pool_allocator_kmem = {
   2775 	pool_page_alloc, pool_page_free, 0,
   2776 	.pa_backingmapptr = &kmem_map,
   2777 };
   2778 #endif
   2779 
   2780 void	*pool_page_alloc_nointr(struct pool *, int);
   2781 void	pool_page_free_nointr(struct pool *, void *);
   2782 
   2783 #ifdef POOL_SUBPAGE
   2784 struct pool_allocator pool_allocator_nointr_fullpage = {
   2785 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2786 	.pa_backingmapptr = &kernel_map,
   2787 };
   2788 #else
   2789 struct pool_allocator pool_allocator_nointr = {
   2790 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2791 	.pa_backingmapptr = &kernel_map,
   2792 };
   2793 #endif
   2794 
   2795 #ifdef POOL_SUBPAGE
   2796 void	*pool_subpage_alloc(struct pool *, int);
   2797 void	pool_subpage_free(struct pool *, void *);
   2798 
   2799 struct pool_allocator pool_allocator_kmem = {
   2800 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2801 	.pa_backingmapptr = &kmem_map,
   2802 };
   2803 
   2804 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2805 void	pool_subpage_free_nointr(struct pool *, void *);
   2806 
   2807 struct pool_allocator pool_allocator_nointr = {
   2808 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2809 	.pa_backingmapptr = &kmem_map,
   2810 };
   2811 #endif /* POOL_SUBPAGE */
   2812 
   2813 static void *
   2814 pool_allocator_alloc(struct pool *pp, int flags)
   2815 {
   2816 	struct pool_allocator *pa = pp->pr_alloc;
   2817 	void *res;
   2818 
   2819 	res = (*pa->pa_alloc)(pp, flags);
   2820 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2821 		/*
   2822 		 * We only run the drain hook here if PR_NOWAIT.
   2823 		 * In other cases, the hook will be run in
   2824 		 * pool_reclaim().
   2825 		 */
   2826 		if (pp->pr_drain_hook != NULL) {
   2827 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2828 			res = (*pa->pa_alloc)(pp, flags);
   2829 		}
   2830 	}
   2831 	return res;
   2832 }
   2833 
   2834 static void
   2835 pool_allocator_free(struct pool *pp, void *v)
   2836 {
   2837 	struct pool_allocator *pa = pp->pr_alloc;
   2838 
   2839 	(*pa->pa_free)(pp, v);
   2840 }
   2841 
   2842 void *
   2843 pool_page_alloc(struct pool *pp, int flags)
   2844 {
   2845 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2846 
   2847 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2848 }
   2849 
   2850 void
   2851 pool_page_free(struct pool *pp, void *v)
   2852 {
   2853 
   2854 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2855 }
   2856 
   2857 static void *
   2858 pool_page_alloc_meta(struct pool *pp, int flags)
   2859 {
   2860 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2861 
   2862 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2863 }
   2864 
   2865 static void
   2866 pool_page_free_meta(struct pool *pp, void *v)
   2867 {
   2868 
   2869 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2870 }
   2871 
   2872 #ifdef POOL_SUBPAGE
   2873 /* Sub-page allocator, for machines with large hardware pages. */
   2874 void *
   2875 pool_subpage_alloc(struct pool *pp, int flags)
   2876 {
   2877 	return pool_get(&psppool, flags);
   2878 }
   2879 
   2880 void
   2881 pool_subpage_free(struct pool *pp, void *v)
   2882 {
   2883 	pool_put(&psppool, v);
   2884 }
   2885 
   2886 /* We don't provide a real nointr allocator.  Maybe later. */
   2887 void *
   2888 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2889 {
   2890 
   2891 	return (pool_subpage_alloc(pp, flags));
   2892 }
   2893 
   2894 void
   2895 pool_subpage_free_nointr(struct pool *pp, void *v)
   2896 {
   2897 
   2898 	pool_subpage_free(pp, v);
   2899 }
   2900 #endif /* POOL_SUBPAGE */
   2901 void *
   2902 pool_page_alloc_nointr(struct pool *pp, int flags)
   2903 {
   2904 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2905 
   2906 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2907 }
   2908 
   2909 void
   2910 pool_page_free_nointr(struct pool *pp, void *v)
   2911 {
   2912 
   2913 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2914 }
   2915 
   2916 #if defined(DDB)
   2917 static bool
   2918 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2919 {
   2920 
   2921 	return (uintptr_t)ph->ph_page <= addr &&
   2922 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2923 }
   2924 
   2925 static bool
   2926 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2927 {
   2928 
   2929 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2930 }
   2931 
   2932 static bool
   2933 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2934 {
   2935 	int i;
   2936 
   2937 	if (pcg == NULL) {
   2938 		return false;
   2939 	}
   2940 	for (i = 0; i < pcg->pcg_avail; i++) {
   2941 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2942 			return true;
   2943 		}
   2944 	}
   2945 	return false;
   2946 }
   2947 
   2948 static bool
   2949 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2950 {
   2951 
   2952 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2953 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2954 		pool_item_bitmap_t *bitmap =
   2955 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2956 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2957 
   2958 		return (*bitmap & mask) == 0;
   2959 	} else {
   2960 		struct pool_item *pi;
   2961 
   2962 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2963 			if (pool_in_item(pp, pi, addr)) {
   2964 				return false;
   2965 			}
   2966 		}
   2967 		return true;
   2968 	}
   2969 }
   2970 
   2971 void
   2972 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2973 {
   2974 	struct pool *pp;
   2975 
   2976 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2977 		struct pool_item_header *ph;
   2978 		uintptr_t item;
   2979 		bool allocated = true;
   2980 		bool incache = false;
   2981 		bool incpucache = false;
   2982 		char cpucachestr[32];
   2983 
   2984 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2985 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2986 				if (pool_in_page(pp, ph, addr)) {
   2987 					goto found;
   2988 				}
   2989 			}
   2990 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2991 				if (pool_in_page(pp, ph, addr)) {
   2992 					allocated =
   2993 					    pool_allocated(pp, ph, addr);
   2994 					goto found;
   2995 				}
   2996 			}
   2997 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2998 				if (pool_in_page(pp, ph, addr)) {
   2999 					allocated = false;
   3000 					goto found;
   3001 				}
   3002 			}
   3003 			continue;
   3004 		} else {
   3005 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3006 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3007 				continue;
   3008 			}
   3009 			allocated = pool_allocated(pp, ph, addr);
   3010 		}
   3011 found:
   3012 		if (allocated && pp->pr_cache) {
   3013 			pool_cache_t pc = pp->pr_cache;
   3014 			struct pool_cache_group *pcg;
   3015 			int i;
   3016 
   3017 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3018 			    pcg = pcg->pcg_next) {
   3019 				if (pool_in_cg(pp, pcg, addr)) {
   3020 					incache = true;
   3021 					goto print;
   3022 				}
   3023 			}
   3024 			for (i = 0; i < MAXCPUS; i++) {
   3025 				pool_cache_cpu_t *cc;
   3026 
   3027 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3028 					continue;
   3029 				}
   3030 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3031 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3032 					struct cpu_info *ci =
   3033 					    cpu_lookup(i);
   3034 
   3035 					incpucache = true;
   3036 					snprintf(cpucachestr,
   3037 					    sizeof(cpucachestr),
   3038 					    "cached by CPU %u",
   3039 					    ci->ci_index);
   3040 					goto print;
   3041 				}
   3042 			}
   3043 		}
   3044 print:
   3045 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3046 		item = item + rounddown(addr - item, pp->pr_size);
   3047 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3048 		    (void *)addr, item, (size_t)(addr - item),
   3049 		    pp->pr_wchan,
   3050 		    incpucache ? cpucachestr :
   3051 		    incache ? "cached" : allocated ? "allocated" : "free");
   3052 	}
   3053 }
   3054 #endif /* defined(DDB) */
   3055