Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.178
      1 /*	$NetBSD: subr_pool.c,v 1.178 2009/12/30 18:57:17 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.178 2009/12/30 18:57:17 elad Exp $");
     35 
     36 #include "opt_ddb.h"
     37 #include "opt_pool.h"
     38 #include "opt_poollog.h"
     39 #include "opt_lockdebug.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/bitops.h>
     44 #include <sys/proc.h>
     45 #include <sys/errno.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/pool.h>
     49 #include <sys/syslog.h>
     50 #include <sys/debug.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/xcall.h>
     53 #include <sys/cpu.h>
     54 #include <sys/atomic.h>
     55 
     56 #include <uvm/uvm.h>
     57 
     58 /*
     59  * Pool resource management utility.
     60  *
     61  * Memory is allocated in pages which are split into pieces according to
     62  * the pool item size. Each page is kept on one of three lists in the
     63  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     64  * for empty, full and partially-full pages respectively. The individual
     65  * pool items are on a linked list headed by `ph_itemlist' in each page
     66  * header. The memory for building the page list is either taken from
     67  * the allocated pages themselves (for small pool items) or taken from
     68  * an internal pool of page headers (`phpool').
     69  */
     70 
     71 /* List of all pools */
     72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     73 
     74 /* Private pool for page header structures */
     75 #define	PHPOOL_MAX	8
     76 static struct pool phpool[PHPOOL_MAX];
     77 #define	PHPOOL_FREELIST_NELEM(idx) \
     78 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87 
     88 static void *pool_page_alloc_meta(struct pool *, int);
     89 static void pool_page_free_meta(struct pool *, void *);
     90 
     91 /* allocator for pool metadata */
     92 struct pool_allocator pool_allocator_meta = {
     93 	pool_page_alloc_meta, pool_page_free_meta,
     94 	.pa_backingmapptr = &kmem_map,
     95 };
     96 
     97 /* # of seconds to retain page after last use */
     98 int pool_inactive_time = 10;
     99 
    100 /* Next candidate for drainage (see pool_drain()) */
    101 static struct pool	*drainpp;
    102 
    103 /* This lock protects both pool_head and drainpp. */
    104 static kmutex_t pool_head_lock;
    105 static kcondvar_t pool_busy;
    106 
    107 /* This lock protects initialization of a potentially shared pool allocator */
    108 static kmutex_t pool_allocator_lock;
    109 
    110 typedef uint32_t pool_item_bitmap_t;
    111 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    112 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    113 
    114 struct pool_item_header {
    115 	/* Page headers */
    116 	LIST_ENTRY(pool_item_header)
    117 				ph_pagelist;	/* pool page list */
    118 	SPLAY_ENTRY(pool_item_header)
    119 				ph_node;	/* Off-page page headers */
    120 	void *			ph_page;	/* this page's address */
    121 	uint32_t		ph_time;	/* last referenced */
    122 	uint16_t		ph_nmissing;	/* # of chunks in use */
    123 	uint16_t		ph_off;		/* start offset in page */
    124 	union {
    125 		/* !PR_NOTOUCH */
    126 		struct {
    127 			LIST_HEAD(, pool_item)
    128 				phu_itemlist;	/* chunk list for this page */
    129 		} phu_normal;
    130 		/* PR_NOTOUCH */
    131 		struct {
    132 			pool_item_bitmap_t phu_bitmap[1];
    133 		} phu_notouch;
    134 	} ph_u;
    135 };
    136 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    137 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    138 
    139 struct pool_item {
    140 #ifdef DIAGNOSTIC
    141 	u_int pi_magic;
    142 #endif
    143 #define	PI_MAGIC 0xdeaddeadU
    144 	/* Other entries use only this list entry */
    145 	LIST_ENTRY(pool_item)	pi_list;
    146 };
    147 
    148 #define	POOL_NEEDS_CATCHUP(pp)						\
    149 	((pp)->pr_nitems < (pp)->pr_minitems)
    150 
    151 /*
    152  * Pool cache management.
    153  *
    154  * Pool caches provide a way for constructed objects to be cached by the
    155  * pool subsystem.  This can lead to performance improvements by avoiding
    156  * needless object construction/destruction; it is deferred until absolutely
    157  * necessary.
    158  *
    159  * Caches are grouped into cache groups.  Each cache group references up
    160  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    161  * object from the pool, it calls the object's constructor and places it
    162  * into a cache group.  When a cache group frees an object back to the
    163  * pool, it first calls the object's destructor.  This allows the object
    164  * to persist in constructed form while freed to the cache.
    165  *
    166  * The pool references each cache, so that when a pool is drained by the
    167  * pagedaemon, it can drain each individual cache as well.  Each time a
    168  * cache is drained, the most idle cache group is freed to the pool in
    169  * its entirety.
    170  *
    171  * Pool caches are layed on top of pools.  By layering them, we can avoid
    172  * the complexity of cache management for pools which would not benefit
    173  * from it.
    174  */
    175 
    176 static struct pool pcg_normal_pool;
    177 static struct pool pcg_large_pool;
    178 static struct pool cache_pool;
    179 static struct pool cache_cpu_pool;
    180 
    181 /* List of all caches. */
    182 TAILQ_HEAD(,pool_cache) pool_cache_head =
    183     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    184 
    185 int pool_cache_disable;		/* global disable for caching */
    186 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    187 
    188 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    189 				    void *);
    190 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    191 				    void **, paddr_t *, int);
    192 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    195 static void	pool_cache_xcall(pool_cache_t);
    196 
    197 static int	pool_catchup(struct pool *);
    198 static void	pool_prime_page(struct pool *, void *,
    199 		    struct pool_item_header *);
    200 static void	pool_update_curpage(struct pool *);
    201 
    202 static int	pool_grow(struct pool *, int);
    203 static void	*pool_allocator_alloc(struct pool *, int);
    204 static void	pool_allocator_free(struct pool *, void *);
    205 
    206 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    207 	void (*)(const char *, ...));
    208 static void pool_print1(struct pool *, const char *,
    209 	void (*)(const char *, ...));
    210 
    211 static int pool_chk_page(struct pool *, const char *,
    212 			 struct pool_item_header *);
    213 
    214 /*
    215  * Pool log entry. An array of these is allocated in pool_init().
    216  */
    217 struct pool_log {
    218 	const char	*pl_file;
    219 	long		pl_line;
    220 	int		pl_action;
    221 #define	PRLOG_GET	1
    222 #define	PRLOG_PUT	2
    223 	void		*pl_addr;
    224 };
    225 
    226 #ifdef POOL_DIAGNOSTIC
    227 /* Number of entries in pool log buffers */
    228 #ifndef POOL_LOGSIZE
    229 #define	POOL_LOGSIZE	10
    230 #endif
    231 
    232 int pool_logsize = POOL_LOGSIZE;
    233 
    234 static inline void
    235 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    236 {
    237 	int n = pp->pr_curlogentry;
    238 	struct pool_log *pl;
    239 
    240 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    241 		return;
    242 
    243 	/*
    244 	 * Fill in the current entry. Wrap around and overwrite
    245 	 * the oldest entry if necessary.
    246 	 */
    247 	pl = &pp->pr_log[n];
    248 	pl->pl_file = file;
    249 	pl->pl_line = line;
    250 	pl->pl_action = action;
    251 	pl->pl_addr = v;
    252 	if (++n >= pp->pr_logsize)
    253 		n = 0;
    254 	pp->pr_curlogentry = n;
    255 }
    256 
    257 static void
    258 pr_printlog(struct pool *pp, struct pool_item *pi,
    259     void (*pr)(const char *, ...))
    260 {
    261 	int i = pp->pr_logsize;
    262 	int n = pp->pr_curlogentry;
    263 
    264 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    265 		return;
    266 
    267 	/*
    268 	 * Print all entries in this pool's log.
    269 	 */
    270 	while (i-- > 0) {
    271 		struct pool_log *pl = &pp->pr_log[n];
    272 		if (pl->pl_action != 0) {
    273 			if (pi == NULL || pi == pl->pl_addr) {
    274 				(*pr)("\tlog entry %d:\n", i);
    275 				(*pr)("\t\taction = %s, addr = %p\n",
    276 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    277 				    pl->pl_addr);
    278 				(*pr)("\t\tfile: %s at line %lu\n",
    279 				    pl->pl_file, pl->pl_line);
    280 			}
    281 		}
    282 		if (++n >= pp->pr_logsize)
    283 			n = 0;
    284 	}
    285 }
    286 
    287 static inline void
    288 pr_enter(struct pool *pp, const char *file, long line)
    289 {
    290 
    291 	if (__predict_false(pp->pr_entered_file != NULL)) {
    292 		printf("pool %s: reentrancy at file %s line %ld\n",
    293 		    pp->pr_wchan, file, line);
    294 		printf("         previous entry at file %s line %ld\n",
    295 		    pp->pr_entered_file, pp->pr_entered_line);
    296 		panic("pr_enter");
    297 	}
    298 
    299 	pp->pr_entered_file = file;
    300 	pp->pr_entered_line = line;
    301 }
    302 
    303 static inline void
    304 pr_leave(struct pool *pp)
    305 {
    306 
    307 	if (__predict_false(pp->pr_entered_file == NULL)) {
    308 		printf("pool %s not entered?\n", pp->pr_wchan);
    309 		panic("pr_leave");
    310 	}
    311 
    312 	pp->pr_entered_file = NULL;
    313 	pp->pr_entered_line = 0;
    314 }
    315 
    316 static inline void
    317 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    318 {
    319 
    320 	if (pp->pr_entered_file != NULL)
    321 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    322 		    pp->pr_entered_file, pp->pr_entered_line);
    323 }
    324 #else
    325 #define	pr_log(pp, v, action, file, line)
    326 #define	pr_printlog(pp, pi, pr)
    327 #define	pr_enter(pp, file, line)
    328 #define	pr_leave(pp)
    329 #define	pr_enter_check(pp, pr)
    330 #endif /* POOL_DIAGNOSTIC */
    331 
    332 static inline unsigned int
    333 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    334     const void *v)
    335 {
    336 	const char *cp = v;
    337 	unsigned int idx;
    338 
    339 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    340 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    341 	KASSERT(idx < pp->pr_itemsperpage);
    342 	return idx;
    343 }
    344 
    345 static inline void
    346 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    347     void *obj)
    348 {
    349 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    350 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    351 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    352 
    353 	KASSERT((*bitmap & mask) == 0);
    354 	*bitmap |= mask;
    355 }
    356 
    357 static inline void *
    358 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    359 {
    360 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    361 	unsigned int idx;
    362 	int i;
    363 
    364 	for (i = 0; ; i++) {
    365 		int bit;
    366 
    367 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    368 		bit = ffs32(bitmap[i]);
    369 		if (bit) {
    370 			pool_item_bitmap_t mask;
    371 
    372 			bit--;
    373 			idx = (i * BITMAP_SIZE) + bit;
    374 			mask = 1 << bit;
    375 			KASSERT((bitmap[i] & mask) != 0);
    376 			bitmap[i] &= ~mask;
    377 			break;
    378 		}
    379 	}
    380 	KASSERT(idx < pp->pr_itemsperpage);
    381 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    382 }
    383 
    384 static inline void
    385 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    386 {
    387 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    388 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    389 	int i;
    390 
    391 	for (i = 0; i < n; i++) {
    392 		bitmap[i] = (pool_item_bitmap_t)-1;
    393 	}
    394 }
    395 
    396 static inline int
    397 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    398 {
    399 
    400 	/*
    401 	 * we consider pool_item_header with smaller ph_page bigger.
    402 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    403 	 */
    404 
    405 	if (a->ph_page < b->ph_page)
    406 		return (1);
    407 	else if (a->ph_page > b->ph_page)
    408 		return (-1);
    409 	else
    410 		return (0);
    411 }
    412 
    413 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    414 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    415 
    416 static inline struct pool_item_header *
    417 pr_find_pagehead_noalign(struct pool *pp, void *v)
    418 {
    419 	struct pool_item_header *ph, tmp;
    420 
    421 	tmp.ph_page = (void *)(uintptr_t)v;
    422 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    423 	if (ph == NULL) {
    424 		ph = SPLAY_ROOT(&pp->pr_phtree);
    425 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    426 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    427 		}
    428 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    429 	}
    430 
    431 	return ph;
    432 }
    433 
    434 /*
    435  * Return the pool page header based on item address.
    436  */
    437 static inline struct pool_item_header *
    438 pr_find_pagehead(struct pool *pp, void *v)
    439 {
    440 	struct pool_item_header *ph, tmp;
    441 
    442 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    443 		ph = pr_find_pagehead_noalign(pp, v);
    444 	} else {
    445 		void *page =
    446 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    447 
    448 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    449 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    450 		} else {
    451 			tmp.ph_page = page;
    452 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    453 		}
    454 	}
    455 
    456 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    457 	    ((char *)ph->ph_page <= (char *)v &&
    458 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    459 	return ph;
    460 }
    461 
    462 static void
    463 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    464 {
    465 	struct pool_item_header *ph;
    466 
    467 	while ((ph = LIST_FIRST(pq)) != NULL) {
    468 		LIST_REMOVE(ph, ph_pagelist);
    469 		pool_allocator_free(pp, ph->ph_page);
    470 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    471 			pool_put(pp->pr_phpool, ph);
    472 	}
    473 }
    474 
    475 /*
    476  * Remove a page from the pool.
    477  */
    478 static inline void
    479 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    480      struct pool_pagelist *pq)
    481 {
    482 
    483 	KASSERT(mutex_owned(&pp->pr_lock));
    484 
    485 	/*
    486 	 * If the page was idle, decrement the idle page count.
    487 	 */
    488 	if (ph->ph_nmissing == 0) {
    489 #ifdef DIAGNOSTIC
    490 		if (pp->pr_nidle == 0)
    491 			panic("pr_rmpage: nidle inconsistent");
    492 		if (pp->pr_nitems < pp->pr_itemsperpage)
    493 			panic("pr_rmpage: nitems inconsistent");
    494 #endif
    495 		pp->pr_nidle--;
    496 	}
    497 
    498 	pp->pr_nitems -= pp->pr_itemsperpage;
    499 
    500 	/*
    501 	 * Unlink the page from the pool and queue it for release.
    502 	 */
    503 	LIST_REMOVE(ph, ph_pagelist);
    504 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    505 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    506 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    507 
    508 	pp->pr_npages--;
    509 	pp->pr_npagefree++;
    510 
    511 	pool_update_curpage(pp);
    512 }
    513 
    514 static bool
    515 pa_starved_p(struct pool_allocator *pa)
    516 {
    517 
    518 	if (pa->pa_backingmap != NULL) {
    519 		return vm_map_starved_p(pa->pa_backingmap);
    520 	}
    521 	return false;
    522 }
    523 
    524 static int
    525 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    526 {
    527 	struct pool *pp = obj;
    528 	struct pool_allocator *pa = pp->pr_alloc;
    529 
    530 	KASSERT(&pp->pr_reclaimerentry == ce);
    531 	pool_reclaim(pp);
    532 	if (!pa_starved_p(pa)) {
    533 		return CALLBACK_CHAIN_ABORT;
    534 	}
    535 	return CALLBACK_CHAIN_CONTINUE;
    536 }
    537 
    538 static void
    539 pool_reclaim_register(struct pool *pp)
    540 {
    541 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    542 	int s;
    543 
    544 	if (map == NULL) {
    545 		return;
    546 	}
    547 
    548 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    549 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    550 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    551 	splx(s);
    552 }
    553 
    554 static void
    555 pool_reclaim_unregister(struct pool *pp)
    556 {
    557 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    558 	int s;
    559 
    560 	if (map == NULL) {
    561 		return;
    562 	}
    563 
    564 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    565 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    566 	    &pp->pr_reclaimerentry);
    567 	splx(s);
    568 }
    569 
    570 static void
    571 pa_reclaim_register(struct pool_allocator *pa)
    572 {
    573 	struct vm_map *map = *pa->pa_backingmapptr;
    574 	struct pool *pp;
    575 
    576 	KASSERT(pa->pa_backingmap == NULL);
    577 	if (map == NULL) {
    578 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    579 		return;
    580 	}
    581 	pa->pa_backingmap = map;
    582 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    583 		pool_reclaim_register(pp);
    584 	}
    585 }
    586 
    587 /*
    588  * Initialize all the pools listed in the "pools" link set.
    589  */
    590 void
    591 pool_subsystem_init(void)
    592 {
    593 	struct pool_allocator *pa;
    594 
    595 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    596 	cv_init(&pool_busy, "poolbusy");
    597 
    598 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    599 		KASSERT(pa->pa_backingmapptr != NULL);
    600 		KASSERT(*pa->pa_backingmapptr != NULL);
    601 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    602 		pa_reclaim_register(pa);
    603 	}
    604 
    605 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    606 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    607 
    608 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    609 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    610 
    611 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    612 }
    613 
    614 /*
    615  * Initialize the given pool resource structure.
    616  *
    617  * We export this routine to allow other kernel parts to declare
    618  * static pools that must be initialized before malloc() is available.
    619  */
    620 void
    621 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    622     const char *wchan, struct pool_allocator *palloc, int ipl)
    623 {
    624 	struct pool *pp1;
    625 	size_t trysize, phsize;
    626 	int off, slack;
    627 
    628 #ifdef DEBUG
    629 	/*
    630 	 * Check that the pool hasn't already been initialised and
    631 	 * added to the list of all pools.
    632 	 */
    633 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    634 		if (pp == pp1)
    635 			panic("pool_init: pool %s already initialised",
    636 			    wchan);
    637 	}
    638 #endif
    639 
    640 #ifdef POOL_DIAGNOSTIC
    641 	/*
    642 	 * Always log if POOL_DIAGNOSTIC is defined.
    643 	 */
    644 	if (pool_logsize != 0)
    645 		flags |= PR_LOGGING;
    646 #endif
    647 
    648 	if (palloc == NULL)
    649 		palloc = &pool_allocator_kmem;
    650 #ifdef POOL_SUBPAGE
    651 	if (size > palloc->pa_pagesz) {
    652 		if (palloc == &pool_allocator_kmem)
    653 			palloc = &pool_allocator_kmem_fullpage;
    654 		else if (palloc == &pool_allocator_nointr)
    655 			palloc = &pool_allocator_nointr_fullpage;
    656 	}
    657 #endif /* POOL_SUBPAGE */
    658 	mutex_enter(&pool_allocator_lock);
    659 	if (palloc->pa_refcnt++ == 0) {
    660 		if (palloc->pa_pagesz == 0)
    661 			palloc->pa_pagesz = PAGE_SIZE;
    662 
    663 		TAILQ_INIT(&palloc->pa_list);
    664 
    665 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    666 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    667 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    668 
    669 		if (palloc->pa_backingmapptr != NULL) {
    670 			pa_reclaim_register(palloc);
    671 		}
    672 	}
    673 	mutex_exit(&pool_allocator_lock);
    674 
    675 	if (align == 0)
    676 		align = ALIGN(1);
    677 
    678 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    679 		size = sizeof(struct pool_item);
    680 
    681 	size = roundup(size, align);
    682 #ifdef DIAGNOSTIC
    683 	if (size > palloc->pa_pagesz)
    684 		panic("pool_init: pool item size (%zu) too large", size);
    685 #endif
    686 
    687 	/*
    688 	 * Initialize the pool structure.
    689 	 */
    690 	LIST_INIT(&pp->pr_emptypages);
    691 	LIST_INIT(&pp->pr_fullpages);
    692 	LIST_INIT(&pp->pr_partpages);
    693 	pp->pr_cache = NULL;
    694 	pp->pr_curpage = NULL;
    695 	pp->pr_npages = 0;
    696 	pp->pr_minitems = 0;
    697 	pp->pr_minpages = 0;
    698 	pp->pr_maxpages = UINT_MAX;
    699 	pp->pr_roflags = flags;
    700 	pp->pr_flags = 0;
    701 	pp->pr_size = size;
    702 	pp->pr_align = align;
    703 	pp->pr_wchan = wchan;
    704 	pp->pr_alloc = palloc;
    705 	pp->pr_nitems = 0;
    706 	pp->pr_nout = 0;
    707 	pp->pr_hardlimit = UINT_MAX;
    708 	pp->pr_hardlimit_warning = NULL;
    709 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    710 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    711 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    712 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    713 	pp->pr_drain_hook = NULL;
    714 	pp->pr_drain_hook_arg = NULL;
    715 	pp->pr_freecheck = NULL;
    716 
    717 	/*
    718 	 * Decide whether to put the page header off page to avoid
    719 	 * wasting too large a part of the page or too big item.
    720 	 * Off-page page headers go on a hash table, so we can match
    721 	 * a returned item with its header based on the page address.
    722 	 * We use 1/16 of the page size and about 8 times of the item
    723 	 * size as the threshold (XXX: tune)
    724 	 *
    725 	 * However, we'll put the header into the page if we can put
    726 	 * it without wasting any items.
    727 	 *
    728 	 * Silently enforce `0 <= ioff < align'.
    729 	 */
    730 	pp->pr_itemoffset = ioff %= align;
    731 	/* See the comment below about reserved bytes. */
    732 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    733 	phsize = ALIGN(sizeof(struct pool_item_header));
    734 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    735 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    736 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    737 		/* Use the end of the page for the page header */
    738 		pp->pr_roflags |= PR_PHINPAGE;
    739 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    740 	} else {
    741 		/* The page header will be taken from our page header pool */
    742 		pp->pr_phoffset = 0;
    743 		off = palloc->pa_pagesz;
    744 		SPLAY_INIT(&pp->pr_phtree);
    745 	}
    746 
    747 	/*
    748 	 * Alignment is to take place at `ioff' within the item. This means
    749 	 * we must reserve up to `align - 1' bytes on the page to allow
    750 	 * appropriate positioning of each item.
    751 	 */
    752 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    753 	KASSERT(pp->pr_itemsperpage != 0);
    754 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    755 		int idx;
    756 
    757 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    758 		    idx++) {
    759 			/* nothing */
    760 		}
    761 		if (idx >= PHPOOL_MAX) {
    762 			/*
    763 			 * if you see this panic, consider to tweak
    764 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    765 			 */
    766 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    767 			    pp->pr_wchan, pp->pr_itemsperpage);
    768 		}
    769 		pp->pr_phpool = &phpool[idx];
    770 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    771 		pp->pr_phpool = &phpool[0];
    772 	}
    773 #if defined(DIAGNOSTIC)
    774 	else {
    775 		pp->pr_phpool = NULL;
    776 	}
    777 #endif
    778 
    779 	/*
    780 	 * Use the slack between the chunks and the page header
    781 	 * for "cache coloring".
    782 	 */
    783 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    784 	pp->pr_maxcolor = (slack / align) * align;
    785 	pp->pr_curcolor = 0;
    786 
    787 	pp->pr_nget = 0;
    788 	pp->pr_nfail = 0;
    789 	pp->pr_nput = 0;
    790 	pp->pr_npagealloc = 0;
    791 	pp->pr_npagefree = 0;
    792 	pp->pr_hiwat = 0;
    793 	pp->pr_nidle = 0;
    794 	pp->pr_refcnt = 0;
    795 
    796 #ifdef POOL_DIAGNOSTIC
    797 	if (flags & PR_LOGGING) {
    798 		if (kmem_map == NULL ||
    799 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    800 		     M_TEMP, M_NOWAIT)) == NULL)
    801 			pp->pr_roflags &= ~PR_LOGGING;
    802 		pp->pr_curlogentry = 0;
    803 		pp->pr_logsize = pool_logsize;
    804 	}
    805 #endif
    806 
    807 	pp->pr_entered_file = NULL;
    808 	pp->pr_entered_line = 0;
    809 
    810 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    811 	cv_init(&pp->pr_cv, wchan);
    812 	pp->pr_ipl = ipl;
    813 
    814 	/*
    815 	 * Initialize private page header pool and cache magazine pool if we
    816 	 * haven't done so yet.
    817 	 * XXX LOCKING.
    818 	 */
    819 	if (phpool[0].pr_size == 0) {
    820 		int idx;
    821 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    822 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    823 			int nelem;
    824 			size_t sz;
    825 
    826 			nelem = PHPOOL_FREELIST_NELEM(idx);
    827 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    828 			    "phpool-%d", nelem);
    829 			sz = sizeof(struct pool_item_header);
    830 			if (nelem) {
    831 				sz = offsetof(struct pool_item_header,
    832 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    833 			}
    834 			pool_init(&phpool[idx], sz, 0, 0, 0,
    835 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    836 		}
    837 #ifdef POOL_SUBPAGE
    838 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    839 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    840 #endif
    841 
    842 		size = sizeof(pcg_t) +
    843 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    844 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    845 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    846 
    847 		size = sizeof(pcg_t) +
    848 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    849 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    850 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    851 	}
    852 
    853 	/* Insert into the list of all pools. */
    854 	if (__predict_true(!cold))
    855 		mutex_enter(&pool_head_lock);
    856 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    857 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    858 			break;
    859 	}
    860 	if (pp1 == NULL)
    861 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    862 	else
    863 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    864 	if (__predict_true(!cold))
    865 		mutex_exit(&pool_head_lock);
    866 
    867 	/* Insert this into the list of pools using this allocator. */
    868 	if (__predict_true(!cold))
    869 		mutex_enter(&palloc->pa_lock);
    870 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    871 	if (__predict_true(!cold))
    872 		mutex_exit(&palloc->pa_lock);
    873 
    874 	pool_reclaim_register(pp);
    875 }
    876 
    877 /*
    878  * De-commision a pool resource.
    879  */
    880 void
    881 pool_destroy(struct pool *pp)
    882 {
    883 	struct pool_pagelist pq;
    884 	struct pool_item_header *ph;
    885 
    886 	/* Remove from global pool list */
    887 	mutex_enter(&pool_head_lock);
    888 	while (pp->pr_refcnt != 0)
    889 		cv_wait(&pool_busy, &pool_head_lock);
    890 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    891 	if (drainpp == pp)
    892 		drainpp = NULL;
    893 	mutex_exit(&pool_head_lock);
    894 
    895 	/* Remove this pool from its allocator's list of pools. */
    896 	pool_reclaim_unregister(pp);
    897 	mutex_enter(&pp->pr_alloc->pa_lock);
    898 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    899 	mutex_exit(&pp->pr_alloc->pa_lock);
    900 
    901 	mutex_enter(&pool_allocator_lock);
    902 	if (--pp->pr_alloc->pa_refcnt == 0)
    903 		mutex_destroy(&pp->pr_alloc->pa_lock);
    904 	mutex_exit(&pool_allocator_lock);
    905 
    906 	mutex_enter(&pp->pr_lock);
    907 
    908 	KASSERT(pp->pr_cache == NULL);
    909 
    910 #ifdef DIAGNOSTIC
    911 	if (pp->pr_nout != 0) {
    912 		pr_printlog(pp, NULL, printf);
    913 		panic("pool_destroy: pool busy: still out: %u",
    914 		    pp->pr_nout);
    915 	}
    916 #endif
    917 
    918 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    919 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    920 
    921 	/* Remove all pages */
    922 	LIST_INIT(&pq);
    923 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    924 		pr_rmpage(pp, ph, &pq);
    925 
    926 	mutex_exit(&pp->pr_lock);
    927 
    928 	pr_pagelist_free(pp, &pq);
    929 
    930 #ifdef POOL_DIAGNOSTIC
    931 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    932 		free(pp->pr_log, M_TEMP);
    933 #endif
    934 
    935 	cv_destroy(&pp->pr_cv);
    936 	mutex_destroy(&pp->pr_lock);
    937 }
    938 
    939 void
    940 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    941 {
    942 
    943 	/* XXX no locking -- must be used just after pool_init() */
    944 #ifdef DIAGNOSTIC
    945 	if (pp->pr_drain_hook != NULL)
    946 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    947 #endif
    948 	pp->pr_drain_hook = fn;
    949 	pp->pr_drain_hook_arg = arg;
    950 }
    951 
    952 static struct pool_item_header *
    953 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    954 {
    955 	struct pool_item_header *ph;
    956 
    957 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    958 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    959 	else
    960 		ph = pool_get(pp->pr_phpool, flags);
    961 
    962 	return (ph);
    963 }
    964 
    965 /*
    966  * Grab an item from the pool.
    967  */
    968 void *
    969 #ifdef POOL_DIAGNOSTIC
    970 _pool_get(struct pool *pp, int flags, const char *file, long line)
    971 #else
    972 pool_get(struct pool *pp, int flags)
    973 #endif
    974 {
    975 	struct pool_item *pi;
    976 	struct pool_item_header *ph;
    977 	void *v;
    978 
    979 #ifdef DIAGNOSTIC
    980 	if (__predict_false(pp->pr_itemsperpage == 0))
    981 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    982 		    "pool not initialized?", pp);
    983 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    984 			    (flags & PR_WAITOK) != 0))
    985 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    986 
    987 #endif /* DIAGNOSTIC */
    988 #ifdef LOCKDEBUG
    989 	if (flags & PR_WAITOK) {
    990 		ASSERT_SLEEPABLE();
    991 	}
    992 #endif
    993 
    994 	mutex_enter(&pp->pr_lock);
    995 	pr_enter(pp, file, line);
    996 
    997  startover:
    998 	/*
    999 	 * Check to see if we've reached the hard limit.  If we have,
   1000 	 * and we can wait, then wait until an item has been returned to
   1001 	 * the pool.
   1002 	 */
   1003 #ifdef DIAGNOSTIC
   1004 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1005 		pr_leave(pp);
   1006 		mutex_exit(&pp->pr_lock);
   1007 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1008 	}
   1009 #endif
   1010 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1011 		if (pp->pr_drain_hook != NULL) {
   1012 			/*
   1013 			 * Since the drain hook is going to free things
   1014 			 * back to the pool, unlock, call the hook, re-lock,
   1015 			 * and check the hardlimit condition again.
   1016 			 */
   1017 			pr_leave(pp);
   1018 			mutex_exit(&pp->pr_lock);
   1019 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1020 			mutex_enter(&pp->pr_lock);
   1021 			pr_enter(pp, file, line);
   1022 			if (pp->pr_nout < pp->pr_hardlimit)
   1023 				goto startover;
   1024 		}
   1025 
   1026 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1027 			/*
   1028 			 * XXX: A warning isn't logged in this case.  Should
   1029 			 * it be?
   1030 			 */
   1031 			pp->pr_flags |= PR_WANTED;
   1032 			pr_leave(pp);
   1033 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1034 			pr_enter(pp, file, line);
   1035 			goto startover;
   1036 		}
   1037 
   1038 		/*
   1039 		 * Log a message that the hard limit has been hit.
   1040 		 */
   1041 		if (pp->pr_hardlimit_warning != NULL &&
   1042 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1043 			      &pp->pr_hardlimit_ratecap))
   1044 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1045 
   1046 		pp->pr_nfail++;
   1047 
   1048 		pr_leave(pp);
   1049 		mutex_exit(&pp->pr_lock);
   1050 		return (NULL);
   1051 	}
   1052 
   1053 	/*
   1054 	 * The convention we use is that if `curpage' is not NULL, then
   1055 	 * it points at a non-empty bucket. In particular, `curpage'
   1056 	 * never points at a page header which has PR_PHINPAGE set and
   1057 	 * has no items in its bucket.
   1058 	 */
   1059 	if ((ph = pp->pr_curpage) == NULL) {
   1060 		int error;
   1061 
   1062 #ifdef DIAGNOSTIC
   1063 		if (pp->pr_nitems != 0) {
   1064 			mutex_exit(&pp->pr_lock);
   1065 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1066 			    pp->pr_wchan, pp->pr_nitems);
   1067 			panic("pool_get: nitems inconsistent");
   1068 		}
   1069 #endif
   1070 
   1071 		/*
   1072 		 * Call the back-end page allocator for more memory.
   1073 		 * Release the pool lock, as the back-end page allocator
   1074 		 * may block.
   1075 		 */
   1076 		pr_leave(pp);
   1077 		error = pool_grow(pp, flags);
   1078 		pr_enter(pp, file, line);
   1079 		if (error != 0) {
   1080 			/*
   1081 			 * We were unable to allocate a page or item
   1082 			 * header, but we released the lock during
   1083 			 * allocation, so perhaps items were freed
   1084 			 * back to the pool.  Check for this case.
   1085 			 */
   1086 			if (pp->pr_curpage != NULL)
   1087 				goto startover;
   1088 
   1089 			pp->pr_nfail++;
   1090 			pr_leave(pp);
   1091 			mutex_exit(&pp->pr_lock);
   1092 			return (NULL);
   1093 		}
   1094 
   1095 		/* Start the allocation process over. */
   1096 		goto startover;
   1097 	}
   1098 	if (pp->pr_roflags & PR_NOTOUCH) {
   1099 #ifdef DIAGNOSTIC
   1100 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1101 			pr_leave(pp);
   1102 			mutex_exit(&pp->pr_lock);
   1103 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1104 		}
   1105 #endif
   1106 		v = pr_item_notouch_get(pp, ph);
   1107 #ifdef POOL_DIAGNOSTIC
   1108 		pr_log(pp, v, PRLOG_GET, file, line);
   1109 #endif
   1110 	} else {
   1111 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1112 		if (__predict_false(v == NULL)) {
   1113 			pr_leave(pp);
   1114 			mutex_exit(&pp->pr_lock);
   1115 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1116 		}
   1117 #ifdef DIAGNOSTIC
   1118 		if (__predict_false(pp->pr_nitems == 0)) {
   1119 			pr_leave(pp);
   1120 			mutex_exit(&pp->pr_lock);
   1121 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1122 			    pp->pr_wchan, pp->pr_nitems);
   1123 			panic("pool_get: nitems inconsistent");
   1124 		}
   1125 #endif
   1126 
   1127 #ifdef POOL_DIAGNOSTIC
   1128 		pr_log(pp, v, PRLOG_GET, file, line);
   1129 #endif
   1130 
   1131 #ifdef DIAGNOSTIC
   1132 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1133 			pr_printlog(pp, pi, printf);
   1134 			panic("pool_get(%s): free list modified: "
   1135 			    "magic=%x; page %p; item addr %p\n",
   1136 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1137 		}
   1138 #endif
   1139 
   1140 		/*
   1141 		 * Remove from item list.
   1142 		 */
   1143 		LIST_REMOVE(pi, pi_list);
   1144 	}
   1145 	pp->pr_nitems--;
   1146 	pp->pr_nout++;
   1147 	if (ph->ph_nmissing == 0) {
   1148 #ifdef DIAGNOSTIC
   1149 		if (__predict_false(pp->pr_nidle == 0))
   1150 			panic("pool_get: nidle inconsistent");
   1151 #endif
   1152 		pp->pr_nidle--;
   1153 
   1154 		/*
   1155 		 * This page was previously empty.  Move it to the list of
   1156 		 * partially-full pages.  This page is already curpage.
   1157 		 */
   1158 		LIST_REMOVE(ph, ph_pagelist);
   1159 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1160 	}
   1161 	ph->ph_nmissing++;
   1162 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1163 #ifdef DIAGNOSTIC
   1164 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1165 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1166 			pr_leave(pp);
   1167 			mutex_exit(&pp->pr_lock);
   1168 			panic("pool_get: %s: nmissing inconsistent",
   1169 			    pp->pr_wchan);
   1170 		}
   1171 #endif
   1172 		/*
   1173 		 * This page is now full.  Move it to the full list
   1174 		 * and select a new current page.
   1175 		 */
   1176 		LIST_REMOVE(ph, ph_pagelist);
   1177 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1178 		pool_update_curpage(pp);
   1179 	}
   1180 
   1181 	pp->pr_nget++;
   1182 	pr_leave(pp);
   1183 
   1184 	/*
   1185 	 * If we have a low water mark and we are now below that low
   1186 	 * water mark, add more items to the pool.
   1187 	 */
   1188 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1189 		/*
   1190 		 * XXX: Should we log a warning?  Should we set up a timeout
   1191 		 * to try again in a second or so?  The latter could break
   1192 		 * a caller's assumptions about interrupt protection, etc.
   1193 		 */
   1194 	}
   1195 
   1196 	mutex_exit(&pp->pr_lock);
   1197 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1198 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1199 	return (v);
   1200 }
   1201 
   1202 /*
   1203  * Internal version of pool_put().  Pool is already locked/entered.
   1204  */
   1205 static void
   1206 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1207 {
   1208 	struct pool_item *pi = v;
   1209 	struct pool_item_header *ph;
   1210 
   1211 	KASSERT(mutex_owned(&pp->pr_lock));
   1212 	FREECHECK_IN(&pp->pr_freecheck, v);
   1213 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1214 
   1215 #ifdef DIAGNOSTIC
   1216 	if (__predict_false(pp->pr_nout == 0)) {
   1217 		printf("pool %s: putting with none out\n",
   1218 		    pp->pr_wchan);
   1219 		panic("pool_put");
   1220 	}
   1221 #endif
   1222 
   1223 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1224 		pr_printlog(pp, NULL, printf);
   1225 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1226 	}
   1227 
   1228 	/*
   1229 	 * Return to item list.
   1230 	 */
   1231 	if (pp->pr_roflags & PR_NOTOUCH) {
   1232 		pr_item_notouch_put(pp, ph, v);
   1233 	} else {
   1234 #ifdef DIAGNOSTIC
   1235 		pi->pi_magic = PI_MAGIC;
   1236 #endif
   1237 #ifdef DEBUG
   1238 		{
   1239 			int i, *ip = v;
   1240 
   1241 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1242 				*ip++ = PI_MAGIC;
   1243 			}
   1244 		}
   1245 #endif
   1246 
   1247 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1248 	}
   1249 	KDASSERT(ph->ph_nmissing != 0);
   1250 	ph->ph_nmissing--;
   1251 	pp->pr_nput++;
   1252 	pp->pr_nitems++;
   1253 	pp->pr_nout--;
   1254 
   1255 	/* Cancel "pool empty" condition if it exists */
   1256 	if (pp->pr_curpage == NULL)
   1257 		pp->pr_curpage = ph;
   1258 
   1259 	if (pp->pr_flags & PR_WANTED) {
   1260 		pp->pr_flags &= ~PR_WANTED;
   1261 		cv_broadcast(&pp->pr_cv);
   1262 	}
   1263 
   1264 	/*
   1265 	 * If this page is now empty, do one of two things:
   1266 	 *
   1267 	 *	(1) If we have more pages than the page high water mark,
   1268 	 *	    free the page back to the system.  ONLY CONSIDER
   1269 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1270 	 *	    CLAIM.
   1271 	 *
   1272 	 *	(2) Otherwise, move the page to the empty page list.
   1273 	 *
   1274 	 * Either way, select a new current page (so we use a partially-full
   1275 	 * page if one is available).
   1276 	 */
   1277 	if (ph->ph_nmissing == 0) {
   1278 		pp->pr_nidle++;
   1279 		if (pp->pr_npages > pp->pr_minpages &&
   1280 		    pp->pr_npages > pp->pr_maxpages) {
   1281 			pr_rmpage(pp, ph, pq);
   1282 		} else {
   1283 			LIST_REMOVE(ph, ph_pagelist);
   1284 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1285 
   1286 			/*
   1287 			 * Update the timestamp on the page.  A page must
   1288 			 * be idle for some period of time before it can
   1289 			 * be reclaimed by the pagedaemon.  This minimizes
   1290 			 * ping-pong'ing for memory.
   1291 			 *
   1292 			 * note for 64-bit time_t: truncating to 32-bit is not
   1293 			 * a problem for our usage.
   1294 			 */
   1295 			ph->ph_time = time_uptime;
   1296 		}
   1297 		pool_update_curpage(pp);
   1298 	}
   1299 
   1300 	/*
   1301 	 * If the page was previously completely full, move it to the
   1302 	 * partially-full list and make it the current page.  The next
   1303 	 * allocation will get the item from this page, instead of
   1304 	 * further fragmenting the pool.
   1305 	 */
   1306 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1307 		LIST_REMOVE(ph, ph_pagelist);
   1308 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1309 		pp->pr_curpage = ph;
   1310 	}
   1311 }
   1312 
   1313 /*
   1314  * Return resource to the pool.
   1315  */
   1316 #ifdef POOL_DIAGNOSTIC
   1317 void
   1318 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1319 {
   1320 	struct pool_pagelist pq;
   1321 
   1322 	LIST_INIT(&pq);
   1323 
   1324 	mutex_enter(&pp->pr_lock);
   1325 	pr_enter(pp, file, line);
   1326 
   1327 	pr_log(pp, v, PRLOG_PUT, file, line);
   1328 
   1329 	pool_do_put(pp, v, &pq);
   1330 
   1331 	pr_leave(pp);
   1332 	mutex_exit(&pp->pr_lock);
   1333 
   1334 	pr_pagelist_free(pp, &pq);
   1335 }
   1336 #undef pool_put
   1337 #endif /* POOL_DIAGNOSTIC */
   1338 
   1339 void
   1340 pool_put(struct pool *pp, void *v)
   1341 {
   1342 	struct pool_pagelist pq;
   1343 
   1344 	LIST_INIT(&pq);
   1345 
   1346 	mutex_enter(&pp->pr_lock);
   1347 	pool_do_put(pp, v, &pq);
   1348 	mutex_exit(&pp->pr_lock);
   1349 
   1350 	pr_pagelist_free(pp, &pq);
   1351 }
   1352 
   1353 #ifdef POOL_DIAGNOSTIC
   1354 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1355 #endif
   1356 
   1357 /*
   1358  * pool_grow: grow a pool by a page.
   1359  *
   1360  * => called with pool locked.
   1361  * => unlock and relock the pool.
   1362  * => return with pool locked.
   1363  */
   1364 
   1365 static int
   1366 pool_grow(struct pool *pp, int flags)
   1367 {
   1368 	struct pool_item_header *ph = NULL;
   1369 	char *cp;
   1370 
   1371 	mutex_exit(&pp->pr_lock);
   1372 	cp = pool_allocator_alloc(pp, flags);
   1373 	if (__predict_true(cp != NULL)) {
   1374 		ph = pool_alloc_item_header(pp, cp, flags);
   1375 	}
   1376 	if (__predict_false(cp == NULL || ph == NULL)) {
   1377 		if (cp != NULL) {
   1378 			pool_allocator_free(pp, cp);
   1379 		}
   1380 		mutex_enter(&pp->pr_lock);
   1381 		return ENOMEM;
   1382 	}
   1383 
   1384 	mutex_enter(&pp->pr_lock);
   1385 	pool_prime_page(pp, cp, ph);
   1386 	pp->pr_npagealloc++;
   1387 	return 0;
   1388 }
   1389 
   1390 /*
   1391  * Add N items to the pool.
   1392  */
   1393 int
   1394 pool_prime(struct pool *pp, int n)
   1395 {
   1396 	int newpages;
   1397 	int error = 0;
   1398 
   1399 	mutex_enter(&pp->pr_lock);
   1400 
   1401 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1402 
   1403 	while (newpages-- > 0) {
   1404 		error = pool_grow(pp, PR_NOWAIT);
   1405 		if (error) {
   1406 			break;
   1407 		}
   1408 		pp->pr_minpages++;
   1409 	}
   1410 
   1411 	if (pp->pr_minpages >= pp->pr_maxpages)
   1412 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1413 
   1414 	mutex_exit(&pp->pr_lock);
   1415 	return error;
   1416 }
   1417 
   1418 /*
   1419  * Add a page worth of items to the pool.
   1420  *
   1421  * Note, we must be called with the pool descriptor LOCKED.
   1422  */
   1423 static void
   1424 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1425 {
   1426 	struct pool_item *pi;
   1427 	void *cp = storage;
   1428 	const unsigned int align = pp->pr_align;
   1429 	const unsigned int ioff = pp->pr_itemoffset;
   1430 	int n;
   1431 
   1432 	KASSERT(mutex_owned(&pp->pr_lock));
   1433 
   1434 #ifdef DIAGNOSTIC
   1435 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1436 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1437 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1438 #endif
   1439 
   1440 	/*
   1441 	 * Insert page header.
   1442 	 */
   1443 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1444 	LIST_INIT(&ph->ph_itemlist);
   1445 	ph->ph_page = storage;
   1446 	ph->ph_nmissing = 0;
   1447 	ph->ph_time = time_uptime;
   1448 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1449 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1450 
   1451 	pp->pr_nidle++;
   1452 
   1453 	/*
   1454 	 * Color this page.
   1455 	 */
   1456 	ph->ph_off = pp->pr_curcolor;
   1457 	cp = (char *)cp + ph->ph_off;
   1458 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1459 		pp->pr_curcolor = 0;
   1460 
   1461 	/*
   1462 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1463 	 */
   1464 	if (ioff != 0)
   1465 		cp = (char *)cp + align - ioff;
   1466 
   1467 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1468 
   1469 	/*
   1470 	 * Insert remaining chunks on the bucket list.
   1471 	 */
   1472 	n = pp->pr_itemsperpage;
   1473 	pp->pr_nitems += n;
   1474 
   1475 	if (pp->pr_roflags & PR_NOTOUCH) {
   1476 		pr_item_notouch_init(pp, ph);
   1477 	} else {
   1478 		while (n--) {
   1479 			pi = (struct pool_item *)cp;
   1480 
   1481 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1482 
   1483 			/* Insert on page list */
   1484 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1485 #ifdef DIAGNOSTIC
   1486 			pi->pi_magic = PI_MAGIC;
   1487 #endif
   1488 			cp = (char *)cp + pp->pr_size;
   1489 
   1490 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1491 		}
   1492 	}
   1493 
   1494 	/*
   1495 	 * If the pool was depleted, point at the new page.
   1496 	 */
   1497 	if (pp->pr_curpage == NULL)
   1498 		pp->pr_curpage = ph;
   1499 
   1500 	if (++pp->pr_npages > pp->pr_hiwat)
   1501 		pp->pr_hiwat = pp->pr_npages;
   1502 }
   1503 
   1504 /*
   1505  * Used by pool_get() when nitems drops below the low water mark.  This
   1506  * is used to catch up pr_nitems with the low water mark.
   1507  *
   1508  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1509  *
   1510  * Note 2, we must be called with the pool already locked, and we return
   1511  * with it locked.
   1512  */
   1513 static int
   1514 pool_catchup(struct pool *pp)
   1515 {
   1516 	int error = 0;
   1517 
   1518 	while (POOL_NEEDS_CATCHUP(pp)) {
   1519 		error = pool_grow(pp, PR_NOWAIT);
   1520 		if (error) {
   1521 			break;
   1522 		}
   1523 	}
   1524 	return error;
   1525 }
   1526 
   1527 static void
   1528 pool_update_curpage(struct pool *pp)
   1529 {
   1530 
   1531 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1532 	if (pp->pr_curpage == NULL) {
   1533 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1534 	}
   1535 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1536 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1537 }
   1538 
   1539 void
   1540 pool_setlowat(struct pool *pp, int n)
   1541 {
   1542 
   1543 	mutex_enter(&pp->pr_lock);
   1544 
   1545 	pp->pr_minitems = n;
   1546 	pp->pr_minpages = (n == 0)
   1547 		? 0
   1548 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1549 
   1550 	/* Make sure we're caught up with the newly-set low water mark. */
   1551 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1552 		/*
   1553 		 * XXX: Should we log a warning?  Should we set up a timeout
   1554 		 * to try again in a second or so?  The latter could break
   1555 		 * a caller's assumptions about interrupt protection, etc.
   1556 		 */
   1557 	}
   1558 
   1559 	mutex_exit(&pp->pr_lock);
   1560 }
   1561 
   1562 void
   1563 pool_sethiwat(struct pool *pp, int n)
   1564 {
   1565 
   1566 	mutex_enter(&pp->pr_lock);
   1567 
   1568 	pp->pr_maxpages = (n == 0)
   1569 		? 0
   1570 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1571 
   1572 	mutex_exit(&pp->pr_lock);
   1573 }
   1574 
   1575 void
   1576 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1577 {
   1578 
   1579 	mutex_enter(&pp->pr_lock);
   1580 
   1581 	pp->pr_hardlimit = n;
   1582 	pp->pr_hardlimit_warning = warnmess;
   1583 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1584 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1585 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1586 
   1587 	/*
   1588 	 * In-line version of pool_sethiwat(), because we don't want to
   1589 	 * release the lock.
   1590 	 */
   1591 	pp->pr_maxpages = (n == 0)
   1592 		? 0
   1593 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1594 
   1595 	mutex_exit(&pp->pr_lock);
   1596 }
   1597 
   1598 /*
   1599  * Release all complete pages that have not been used recently.
   1600  */
   1601 int
   1602 #ifdef POOL_DIAGNOSTIC
   1603 _pool_reclaim(struct pool *pp, const char *file, long line)
   1604 #else
   1605 pool_reclaim(struct pool *pp)
   1606 #endif
   1607 {
   1608 	struct pool_item_header *ph, *phnext;
   1609 	struct pool_pagelist pq;
   1610 	uint32_t curtime;
   1611 	bool klock;
   1612 	int rv;
   1613 
   1614 	if (pp->pr_drain_hook != NULL) {
   1615 		/*
   1616 		 * The drain hook must be called with the pool unlocked.
   1617 		 */
   1618 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1619 	}
   1620 
   1621 	/*
   1622 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1623 	 * to block.
   1624 	 */
   1625 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1626 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1627 		KERNEL_LOCK(1, NULL);
   1628 		klock = true;
   1629 	} else
   1630 		klock = false;
   1631 
   1632 	/* Reclaim items from the pool's cache (if any). */
   1633 	if (pp->pr_cache != NULL)
   1634 		pool_cache_invalidate(pp->pr_cache);
   1635 
   1636 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1637 		if (klock) {
   1638 			KERNEL_UNLOCK_ONE(NULL);
   1639 		}
   1640 		return (0);
   1641 	}
   1642 	pr_enter(pp, file, line);
   1643 
   1644 	LIST_INIT(&pq);
   1645 
   1646 	curtime = time_uptime;
   1647 
   1648 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1649 		phnext = LIST_NEXT(ph, ph_pagelist);
   1650 
   1651 		/* Check our minimum page claim */
   1652 		if (pp->pr_npages <= pp->pr_minpages)
   1653 			break;
   1654 
   1655 		KASSERT(ph->ph_nmissing == 0);
   1656 		if (curtime - ph->ph_time < pool_inactive_time
   1657 		    && !pa_starved_p(pp->pr_alloc))
   1658 			continue;
   1659 
   1660 		/*
   1661 		 * If freeing this page would put us below
   1662 		 * the low water mark, stop now.
   1663 		 */
   1664 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1665 		    pp->pr_minitems)
   1666 			break;
   1667 
   1668 		pr_rmpage(pp, ph, &pq);
   1669 	}
   1670 
   1671 	pr_leave(pp);
   1672 	mutex_exit(&pp->pr_lock);
   1673 
   1674 	if (LIST_EMPTY(&pq))
   1675 		rv = 0;
   1676 	else {
   1677 		pr_pagelist_free(pp, &pq);
   1678 		rv = 1;
   1679 	}
   1680 
   1681 	if (klock) {
   1682 		KERNEL_UNLOCK_ONE(NULL);
   1683 	}
   1684 
   1685 	return (rv);
   1686 }
   1687 
   1688 /*
   1689  * Drain pools, one at a time.  This is a two stage process;
   1690  * drain_start kicks off a cross call to drain CPU-level caches
   1691  * if the pool has an associated pool_cache.  drain_end waits
   1692  * for those cross calls to finish, and then drains the cache
   1693  * (if any) and pool.
   1694  *
   1695  * Note, must never be called from interrupt context.
   1696  */
   1697 void
   1698 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1699 {
   1700 	struct pool *pp;
   1701 
   1702 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1703 
   1704 	pp = NULL;
   1705 
   1706 	/* Find next pool to drain, and add a reference. */
   1707 	mutex_enter(&pool_head_lock);
   1708 	do {
   1709 		if (drainpp == NULL) {
   1710 			drainpp = TAILQ_FIRST(&pool_head);
   1711 		}
   1712 		if (drainpp != NULL) {
   1713 			pp = drainpp;
   1714 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1715 		}
   1716 		/*
   1717 		 * Skip completely idle pools.  We depend on at least
   1718 		 * one pool in the system being active.
   1719 		 */
   1720 	} while (pp == NULL || pp->pr_npages == 0);
   1721 	pp->pr_refcnt++;
   1722 	mutex_exit(&pool_head_lock);
   1723 
   1724 	/* If there is a pool_cache, drain CPU level caches. */
   1725 	*ppp = pp;
   1726 	if (pp->pr_cache != NULL) {
   1727 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1728 		    pp->pr_cache, NULL);
   1729 	}
   1730 }
   1731 
   1732 void
   1733 pool_drain_end(struct pool *pp, uint64_t where)
   1734 {
   1735 
   1736 	if (pp == NULL)
   1737 		return;
   1738 
   1739 	KASSERT(pp->pr_refcnt > 0);
   1740 
   1741 	/* Wait for remote draining to complete. */
   1742 	if (pp->pr_cache != NULL)
   1743 		xc_wait(where);
   1744 
   1745 	/* Drain the cache (if any) and pool.. */
   1746 	pool_reclaim(pp);
   1747 
   1748 	/* Finally, unlock the pool. */
   1749 	mutex_enter(&pool_head_lock);
   1750 	pp->pr_refcnt--;
   1751 	cv_broadcast(&pool_busy);
   1752 	mutex_exit(&pool_head_lock);
   1753 }
   1754 
   1755 /*
   1756  * Diagnostic helpers.
   1757  */
   1758 void
   1759 pool_print(struct pool *pp, const char *modif)
   1760 {
   1761 
   1762 	pool_print1(pp, modif, printf);
   1763 }
   1764 
   1765 void
   1766 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1767 {
   1768 	struct pool *pp;
   1769 
   1770 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1771 		pool_printit(pp, modif, pr);
   1772 	}
   1773 }
   1774 
   1775 void
   1776 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1777 {
   1778 
   1779 	if (pp == NULL) {
   1780 		(*pr)("Must specify a pool to print.\n");
   1781 		return;
   1782 	}
   1783 
   1784 	pool_print1(pp, modif, pr);
   1785 }
   1786 
   1787 static void
   1788 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1789     void (*pr)(const char *, ...))
   1790 {
   1791 	struct pool_item_header *ph;
   1792 #ifdef DIAGNOSTIC
   1793 	struct pool_item *pi;
   1794 #endif
   1795 
   1796 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1797 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1798 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1799 #ifdef DIAGNOSTIC
   1800 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1801 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1802 				if (pi->pi_magic != PI_MAGIC) {
   1803 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1804 					    pi, pi->pi_magic);
   1805 				}
   1806 			}
   1807 		}
   1808 #endif
   1809 	}
   1810 }
   1811 
   1812 static void
   1813 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1814 {
   1815 	struct pool_item_header *ph;
   1816 	pool_cache_t pc;
   1817 	pcg_t *pcg;
   1818 	pool_cache_cpu_t *cc;
   1819 	uint64_t cpuhit, cpumiss;
   1820 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1821 	char c;
   1822 
   1823 	while ((c = *modif++) != '\0') {
   1824 		if (c == 'l')
   1825 			print_log = 1;
   1826 		if (c == 'p')
   1827 			print_pagelist = 1;
   1828 		if (c == 'c')
   1829 			print_cache = 1;
   1830 	}
   1831 
   1832 	if ((pc = pp->pr_cache) != NULL) {
   1833 		(*pr)("POOL CACHE");
   1834 	} else {
   1835 		(*pr)("POOL");
   1836 	}
   1837 
   1838 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1839 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1840 	    pp->pr_roflags);
   1841 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1842 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1843 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1844 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1845 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1846 
   1847 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1848 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1849 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1850 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1851 
   1852 	if (print_pagelist == 0)
   1853 		goto skip_pagelist;
   1854 
   1855 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1856 		(*pr)("\n\tempty page list:\n");
   1857 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1858 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1859 		(*pr)("\n\tfull page list:\n");
   1860 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1861 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1862 		(*pr)("\n\tpartial-page list:\n");
   1863 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1864 
   1865 	if (pp->pr_curpage == NULL)
   1866 		(*pr)("\tno current page\n");
   1867 	else
   1868 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1869 
   1870  skip_pagelist:
   1871 	if (print_log == 0)
   1872 		goto skip_log;
   1873 
   1874 	(*pr)("\n");
   1875 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1876 		(*pr)("\tno log\n");
   1877 	else {
   1878 		pr_printlog(pp, NULL, pr);
   1879 	}
   1880 
   1881  skip_log:
   1882 
   1883 #define PR_GROUPLIST(pcg)						\
   1884 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1885 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1886 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1887 		    POOL_PADDR_INVALID) {				\
   1888 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1889 			    pcg->pcg_objects[i].pcgo_va,		\
   1890 			    (unsigned long long)			\
   1891 			    pcg->pcg_objects[i].pcgo_pa);		\
   1892 		} else {						\
   1893 			(*pr)("\t\t\t%p\n",				\
   1894 			    pcg->pcg_objects[i].pcgo_va);		\
   1895 		}							\
   1896 	}
   1897 
   1898 	if (pc != NULL) {
   1899 		cpuhit = 0;
   1900 		cpumiss = 0;
   1901 		for (i = 0; i < MAXCPUS; i++) {
   1902 			if ((cc = pc->pc_cpus[i]) == NULL)
   1903 				continue;
   1904 			cpuhit += cc->cc_hits;
   1905 			cpumiss += cc->cc_misses;
   1906 		}
   1907 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1908 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1909 		    pc->pc_hits, pc->pc_misses);
   1910 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1911 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1912 		    pc->pc_contended);
   1913 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1914 		    pc->pc_nempty, pc->pc_nfull);
   1915 		if (print_cache) {
   1916 			(*pr)("\tfull cache groups:\n");
   1917 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1918 			    pcg = pcg->pcg_next) {
   1919 				PR_GROUPLIST(pcg);
   1920 			}
   1921 			(*pr)("\tempty cache groups:\n");
   1922 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1923 			    pcg = pcg->pcg_next) {
   1924 				PR_GROUPLIST(pcg);
   1925 			}
   1926 		}
   1927 	}
   1928 #undef PR_GROUPLIST
   1929 
   1930 	pr_enter_check(pp, pr);
   1931 }
   1932 
   1933 static int
   1934 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1935 {
   1936 	struct pool_item *pi;
   1937 	void *page;
   1938 	int n;
   1939 
   1940 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1941 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1942 		if (page != ph->ph_page &&
   1943 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1944 			if (label != NULL)
   1945 				printf("%s: ", label);
   1946 			printf("pool(%p:%s): page inconsistency: page %p;"
   1947 			       " at page head addr %p (p %p)\n", pp,
   1948 				pp->pr_wchan, ph->ph_page,
   1949 				ph, page);
   1950 			return 1;
   1951 		}
   1952 	}
   1953 
   1954 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1955 		return 0;
   1956 
   1957 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1958 	     pi != NULL;
   1959 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1960 
   1961 #ifdef DIAGNOSTIC
   1962 		if (pi->pi_magic != PI_MAGIC) {
   1963 			if (label != NULL)
   1964 				printf("%s: ", label);
   1965 			printf("pool(%s): free list modified: magic=%x;"
   1966 			       " page %p; item ordinal %d; addr %p\n",
   1967 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1968 				n, pi);
   1969 			panic("pool");
   1970 		}
   1971 #endif
   1972 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1973 			continue;
   1974 		}
   1975 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1976 		if (page == ph->ph_page)
   1977 			continue;
   1978 
   1979 		if (label != NULL)
   1980 			printf("%s: ", label);
   1981 		printf("pool(%p:%s): page inconsistency: page %p;"
   1982 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1983 			pp->pr_wchan, ph->ph_page,
   1984 			n, pi, page);
   1985 		return 1;
   1986 	}
   1987 	return 0;
   1988 }
   1989 
   1990 
   1991 int
   1992 pool_chk(struct pool *pp, const char *label)
   1993 {
   1994 	struct pool_item_header *ph;
   1995 	int r = 0;
   1996 
   1997 	mutex_enter(&pp->pr_lock);
   1998 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1999 		r = pool_chk_page(pp, label, ph);
   2000 		if (r) {
   2001 			goto out;
   2002 		}
   2003 	}
   2004 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2005 		r = pool_chk_page(pp, label, ph);
   2006 		if (r) {
   2007 			goto out;
   2008 		}
   2009 	}
   2010 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2011 		r = pool_chk_page(pp, label, ph);
   2012 		if (r) {
   2013 			goto out;
   2014 		}
   2015 	}
   2016 
   2017 out:
   2018 	mutex_exit(&pp->pr_lock);
   2019 	return (r);
   2020 }
   2021 
   2022 /*
   2023  * pool_cache_init:
   2024  *
   2025  *	Initialize a pool cache.
   2026  */
   2027 pool_cache_t
   2028 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2029     const char *wchan, struct pool_allocator *palloc, int ipl,
   2030     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2031 {
   2032 	pool_cache_t pc;
   2033 
   2034 	pc = pool_get(&cache_pool, PR_WAITOK);
   2035 	if (pc == NULL)
   2036 		return NULL;
   2037 
   2038 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2039 	   palloc, ipl, ctor, dtor, arg);
   2040 
   2041 	return pc;
   2042 }
   2043 
   2044 /*
   2045  * pool_cache_bootstrap:
   2046  *
   2047  *	Kernel-private version of pool_cache_init().  The caller
   2048  *	provides initial storage.
   2049  */
   2050 void
   2051 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2052     u_int align_offset, u_int flags, const char *wchan,
   2053     struct pool_allocator *palloc, int ipl,
   2054     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2055     void *arg)
   2056 {
   2057 	CPU_INFO_ITERATOR cii;
   2058 	pool_cache_t pc1;
   2059 	struct cpu_info *ci;
   2060 	struct pool *pp;
   2061 
   2062 	pp = &pc->pc_pool;
   2063 	if (palloc == NULL && ipl == IPL_NONE)
   2064 		palloc = &pool_allocator_nointr;
   2065 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2066 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2067 
   2068 	if (ctor == NULL) {
   2069 		ctor = (int (*)(void *, void *, int))nullop;
   2070 	}
   2071 	if (dtor == NULL) {
   2072 		dtor = (void (*)(void *, void *))nullop;
   2073 	}
   2074 
   2075 	pc->pc_emptygroups = NULL;
   2076 	pc->pc_fullgroups = NULL;
   2077 	pc->pc_partgroups = NULL;
   2078 	pc->pc_ctor = ctor;
   2079 	pc->pc_dtor = dtor;
   2080 	pc->pc_arg  = arg;
   2081 	pc->pc_hits  = 0;
   2082 	pc->pc_misses = 0;
   2083 	pc->pc_nempty = 0;
   2084 	pc->pc_npart = 0;
   2085 	pc->pc_nfull = 0;
   2086 	pc->pc_contended = 0;
   2087 	pc->pc_refcnt = 0;
   2088 	pc->pc_freecheck = NULL;
   2089 
   2090 	if ((flags & PR_LARGECACHE) != 0) {
   2091 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2092 		pc->pc_pcgpool = &pcg_large_pool;
   2093 	} else {
   2094 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2095 		pc->pc_pcgpool = &pcg_normal_pool;
   2096 	}
   2097 
   2098 	/* Allocate per-CPU caches. */
   2099 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2100 	pc->pc_ncpu = 0;
   2101 	if (ncpu < 2) {
   2102 		/* XXX For sparc: boot CPU is not attached yet. */
   2103 		pool_cache_cpu_init1(curcpu(), pc);
   2104 	} else {
   2105 		for (CPU_INFO_FOREACH(cii, ci)) {
   2106 			pool_cache_cpu_init1(ci, pc);
   2107 		}
   2108 	}
   2109 
   2110 	/* Add to list of all pools. */
   2111 	if (__predict_true(!cold))
   2112 		mutex_enter(&pool_head_lock);
   2113 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2114 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2115 			break;
   2116 	}
   2117 	if (pc1 == NULL)
   2118 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2119 	else
   2120 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2121 	if (__predict_true(!cold))
   2122 		mutex_exit(&pool_head_lock);
   2123 
   2124 	membar_sync();
   2125 	pp->pr_cache = pc;
   2126 }
   2127 
   2128 /*
   2129  * pool_cache_destroy:
   2130  *
   2131  *	Destroy a pool cache.
   2132  */
   2133 void
   2134 pool_cache_destroy(pool_cache_t pc)
   2135 {
   2136 	struct pool *pp = &pc->pc_pool;
   2137 	u_int i;
   2138 
   2139 	/* Remove it from the global list. */
   2140 	mutex_enter(&pool_head_lock);
   2141 	while (pc->pc_refcnt != 0)
   2142 		cv_wait(&pool_busy, &pool_head_lock);
   2143 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2144 	mutex_exit(&pool_head_lock);
   2145 
   2146 	/* First, invalidate the entire cache. */
   2147 	pool_cache_invalidate(pc);
   2148 
   2149 	/* Disassociate it from the pool. */
   2150 	mutex_enter(&pp->pr_lock);
   2151 	pp->pr_cache = NULL;
   2152 	mutex_exit(&pp->pr_lock);
   2153 
   2154 	/* Destroy per-CPU data */
   2155 	for (i = 0; i < MAXCPUS; i++)
   2156 		pool_cache_invalidate_cpu(pc, i);
   2157 
   2158 	/* Finally, destroy it. */
   2159 	mutex_destroy(&pc->pc_lock);
   2160 	pool_destroy(pp);
   2161 	pool_put(&cache_pool, pc);
   2162 }
   2163 
   2164 /*
   2165  * pool_cache_cpu_init1:
   2166  *
   2167  *	Called for each pool_cache whenever a new CPU is attached.
   2168  */
   2169 static void
   2170 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2171 {
   2172 	pool_cache_cpu_t *cc;
   2173 	int index;
   2174 
   2175 	index = ci->ci_index;
   2176 
   2177 	KASSERT(index < MAXCPUS);
   2178 
   2179 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2180 		KASSERT(cc->cc_cpuindex == index);
   2181 		return;
   2182 	}
   2183 
   2184 	/*
   2185 	 * The first CPU is 'free'.  This needs to be the case for
   2186 	 * bootstrap - we may not be able to allocate yet.
   2187 	 */
   2188 	if (pc->pc_ncpu == 0) {
   2189 		cc = &pc->pc_cpu0;
   2190 		pc->pc_ncpu = 1;
   2191 	} else {
   2192 		mutex_enter(&pc->pc_lock);
   2193 		pc->pc_ncpu++;
   2194 		mutex_exit(&pc->pc_lock);
   2195 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2196 	}
   2197 
   2198 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2199 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2200 	cc->cc_cache = pc;
   2201 	cc->cc_cpuindex = index;
   2202 	cc->cc_hits = 0;
   2203 	cc->cc_misses = 0;
   2204 	cc->cc_current = __UNCONST(&pcg_dummy);
   2205 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2206 
   2207 	pc->pc_cpus[index] = cc;
   2208 }
   2209 
   2210 /*
   2211  * pool_cache_cpu_init:
   2212  *
   2213  *	Called whenever a new CPU is attached.
   2214  */
   2215 void
   2216 pool_cache_cpu_init(struct cpu_info *ci)
   2217 {
   2218 	pool_cache_t pc;
   2219 
   2220 	mutex_enter(&pool_head_lock);
   2221 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2222 		pc->pc_refcnt++;
   2223 		mutex_exit(&pool_head_lock);
   2224 
   2225 		pool_cache_cpu_init1(ci, pc);
   2226 
   2227 		mutex_enter(&pool_head_lock);
   2228 		pc->pc_refcnt--;
   2229 		cv_broadcast(&pool_busy);
   2230 	}
   2231 	mutex_exit(&pool_head_lock);
   2232 }
   2233 
   2234 /*
   2235  * pool_cache_reclaim:
   2236  *
   2237  *	Reclaim memory from a pool cache.
   2238  */
   2239 bool
   2240 pool_cache_reclaim(pool_cache_t pc)
   2241 {
   2242 
   2243 	return pool_reclaim(&pc->pc_pool);
   2244 }
   2245 
   2246 static void
   2247 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2248 {
   2249 
   2250 	(*pc->pc_dtor)(pc->pc_arg, object);
   2251 	pool_put(&pc->pc_pool, object);
   2252 }
   2253 
   2254 /*
   2255  * pool_cache_destruct_object:
   2256  *
   2257  *	Force destruction of an object and its release back into
   2258  *	the pool.
   2259  */
   2260 void
   2261 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2262 {
   2263 
   2264 	FREECHECK_IN(&pc->pc_freecheck, object);
   2265 
   2266 	pool_cache_destruct_object1(pc, object);
   2267 }
   2268 
   2269 /*
   2270  * pool_cache_invalidate_groups:
   2271  *
   2272  *	Invalidate a chain of groups and destruct all objects.
   2273  */
   2274 static void
   2275 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2276 {
   2277 	void *object;
   2278 	pcg_t *next;
   2279 	int i;
   2280 
   2281 	for (; pcg != NULL; pcg = next) {
   2282 		next = pcg->pcg_next;
   2283 
   2284 		for (i = 0; i < pcg->pcg_avail; i++) {
   2285 			object = pcg->pcg_objects[i].pcgo_va;
   2286 			pool_cache_destruct_object1(pc, object);
   2287 		}
   2288 
   2289 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2290 			pool_put(&pcg_large_pool, pcg);
   2291 		} else {
   2292 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2293 			pool_put(&pcg_normal_pool, pcg);
   2294 		}
   2295 	}
   2296 }
   2297 
   2298 /*
   2299  * pool_cache_invalidate:
   2300  *
   2301  *	Invalidate a pool cache (destruct and release all of the
   2302  *	cached objects).  Does not reclaim objects from the pool.
   2303  *
   2304  *	Note: For pool caches that provide constructed objects, there
   2305  *	is an assumption that another level of synchronization is occurring
   2306  *	between the input to the constructor and the cache invalidation.
   2307  */
   2308 void
   2309 pool_cache_invalidate(pool_cache_t pc)
   2310 {
   2311 	pcg_t *full, *empty, *part;
   2312 	uint64_t where;
   2313 
   2314 	if (ncpu < 2 || !mp_online) {
   2315 		/*
   2316 		 * We might be called early enough in the boot process
   2317 		 * for the CPU data structures to not be fully initialized.
   2318 		 * In this case, simply gather the local CPU's cache now
   2319 		 * since it will be the only one running.
   2320 		 */
   2321 		pool_cache_xcall(pc);
   2322 	} else {
   2323 		/*
   2324 		 * Gather all of the CPU-specific caches into the
   2325 		 * global cache.
   2326 		 */
   2327 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2328 		xc_wait(where);
   2329 	}
   2330 
   2331 	mutex_enter(&pc->pc_lock);
   2332 	full = pc->pc_fullgroups;
   2333 	empty = pc->pc_emptygroups;
   2334 	part = pc->pc_partgroups;
   2335 	pc->pc_fullgroups = NULL;
   2336 	pc->pc_emptygroups = NULL;
   2337 	pc->pc_partgroups = NULL;
   2338 	pc->pc_nfull = 0;
   2339 	pc->pc_nempty = 0;
   2340 	pc->pc_npart = 0;
   2341 	mutex_exit(&pc->pc_lock);
   2342 
   2343 	pool_cache_invalidate_groups(pc, full);
   2344 	pool_cache_invalidate_groups(pc, empty);
   2345 	pool_cache_invalidate_groups(pc, part);
   2346 }
   2347 
   2348 /*
   2349  * pool_cache_invalidate_cpu:
   2350  *
   2351  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2352  *	identified by its associated index.
   2353  *	It is caller's responsibility to ensure that no operation is
   2354  *	taking place on this pool cache while doing this invalidation.
   2355  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2356  *	pool cached objects from a CPU different from the one currently running
   2357  *	may result in an undefined behaviour.
   2358  */
   2359 static void
   2360 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2361 {
   2362 
   2363 	pool_cache_cpu_t *cc;
   2364 	pcg_t *pcg;
   2365 
   2366 	if ((cc = pc->pc_cpus[index]) == NULL)
   2367 		return;
   2368 
   2369 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2370 		pcg->pcg_next = NULL;
   2371 		pool_cache_invalidate_groups(pc, pcg);
   2372 	}
   2373 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2374 		pcg->pcg_next = NULL;
   2375 		pool_cache_invalidate_groups(pc, pcg);
   2376 	}
   2377 	if (cc != &pc->pc_cpu0)
   2378 		pool_put(&cache_cpu_pool, cc);
   2379 
   2380 }
   2381 
   2382 void
   2383 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2384 {
   2385 
   2386 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2387 }
   2388 
   2389 void
   2390 pool_cache_setlowat(pool_cache_t pc, int n)
   2391 {
   2392 
   2393 	pool_setlowat(&pc->pc_pool, n);
   2394 }
   2395 
   2396 void
   2397 pool_cache_sethiwat(pool_cache_t pc, int n)
   2398 {
   2399 
   2400 	pool_sethiwat(&pc->pc_pool, n);
   2401 }
   2402 
   2403 void
   2404 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2405 {
   2406 
   2407 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2408 }
   2409 
   2410 static bool __noinline
   2411 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2412 		    paddr_t *pap, int flags)
   2413 {
   2414 	pcg_t *pcg, *cur;
   2415 	uint64_t ncsw;
   2416 	pool_cache_t pc;
   2417 	void *object;
   2418 
   2419 	KASSERT(cc->cc_current->pcg_avail == 0);
   2420 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2421 
   2422 	pc = cc->cc_cache;
   2423 	cc->cc_misses++;
   2424 
   2425 	/*
   2426 	 * Nothing was available locally.  Try and grab a group
   2427 	 * from the cache.
   2428 	 */
   2429 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2430 		ncsw = curlwp->l_ncsw;
   2431 		mutex_enter(&pc->pc_lock);
   2432 		pc->pc_contended++;
   2433 
   2434 		/*
   2435 		 * If we context switched while locking, then
   2436 		 * our view of the per-CPU data is invalid:
   2437 		 * retry.
   2438 		 */
   2439 		if (curlwp->l_ncsw != ncsw) {
   2440 			mutex_exit(&pc->pc_lock);
   2441 			return true;
   2442 		}
   2443 	}
   2444 
   2445 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2446 		/*
   2447 		 * If there's a full group, release our empty
   2448 		 * group back to the cache.  Install the full
   2449 		 * group as cc_current and return.
   2450 		 */
   2451 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2452 			KASSERT(cur->pcg_avail == 0);
   2453 			cur->pcg_next = pc->pc_emptygroups;
   2454 			pc->pc_emptygroups = cur;
   2455 			pc->pc_nempty++;
   2456 		}
   2457 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2458 		cc->cc_current = pcg;
   2459 		pc->pc_fullgroups = pcg->pcg_next;
   2460 		pc->pc_hits++;
   2461 		pc->pc_nfull--;
   2462 		mutex_exit(&pc->pc_lock);
   2463 		return true;
   2464 	}
   2465 
   2466 	/*
   2467 	 * Nothing available locally or in cache.  Take the slow
   2468 	 * path: fetch a new object from the pool and construct
   2469 	 * it.
   2470 	 */
   2471 	pc->pc_misses++;
   2472 	mutex_exit(&pc->pc_lock);
   2473 	splx(s);
   2474 
   2475 	object = pool_get(&pc->pc_pool, flags);
   2476 	*objectp = object;
   2477 	if (__predict_false(object == NULL))
   2478 		return false;
   2479 
   2480 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2481 		pool_put(&pc->pc_pool, object);
   2482 		*objectp = NULL;
   2483 		return false;
   2484 	}
   2485 
   2486 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2487 	    (pc->pc_pool.pr_align - 1)) == 0);
   2488 
   2489 	if (pap != NULL) {
   2490 #ifdef POOL_VTOPHYS
   2491 		*pap = POOL_VTOPHYS(object);
   2492 #else
   2493 		*pap = POOL_PADDR_INVALID;
   2494 #endif
   2495 	}
   2496 
   2497 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2498 	return false;
   2499 }
   2500 
   2501 /*
   2502  * pool_cache_get{,_paddr}:
   2503  *
   2504  *	Get an object from a pool cache (optionally returning
   2505  *	the physical address of the object).
   2506  */
   2507 void *
   2508 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2509 {
   2510 	pool_cache_cpu_t *cc;
   2511 	pcg_t *pcg;
   2512 	void *object;
   2513 	int s;
   2514 
   2515 #ifdef LOCKDEBUG
   2516 	if (flags & PR_WAITOK) {
   2517 		ASSERT_SLEEPABLE();
   2518 	}
   2519 #endif
   2520 
   2521 	/* Lock out interrupts and disable preemption. */
   2522 	s = splvm();
   2523 	while (/* CONSTCOND */ true) {
   2524 		/* Try and allocate an object from the current group. */
   2525 		cc = pc->pc_cpus[curcpu()->ci_index];
   2526 		KASSERT(cc->cc_cache == pc);
   2527 	 	pcg = cc->cc_current;
   2528 		if (__predict_true(pcg->pcg_avail > 0)) {
   2529 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2530 			if (__predict_false(pap != NULL))
   2531 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2532 #if defined(DIAGNOSTIC)
   2533 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2534 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2535 			KASSERT(object != NULL);
   2536 #endif
   2537 			cc->cc_hits++;
   2538 			splx(s);
   2539 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2540 			return object;
   2541 		}
   2542 
   2543 		/*
   2544 		 * That failed.  If the previous group isn't empty, swap
   2545 		 * it with the current group and allocate from there.
   2546 		 */
   2547 		pcg = cc->cc_previous;
   2548 		if (__predict_true(pcg->pcg_avail > 0)) {
   2549 			cc->cc_previous = cc->cc_current;
   2550 			cc->cc_current = pcg;
   2551 			continue;
   2552 		}
   2553 
   2554 		/*
   2555 		 * Can't allocate from either group: try the slow path.
   2556 		 * If get_slow() allocated an object for us, or if
   2557 		 * no more objects are available, it will return false.
   2558 		 * Otherwise, we need to retry.
   2559 		 */
   2560 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2561 			break;
   2562 	}
   2563 
   2564 	return object;
   2565 }
   2566 
   2567 static bool __noinline
   2568 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2569 {
   2570 	pcg_t *pcg, *cur;
   2571 	uint64_t ncsw;
   2572 	pool_cache_t pc;
   2573 
   2574 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2575 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2576 
   2577 	pc = cc->cc_cache;
   2578 	pcg = NULL;
   2579 	cc->cc_misses++;
   2580 
   2581 	/*
   2582 	 * If there are no empty groups in the cache then allocate one
   2583 	 * while still unlocked.
   2584 	 */
   2585 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2586 		if (__predict_true(!pool_cache_disable)) {
   2587 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2588 		}
   2589 		if (__predict_true(pcg != NULL)) {
   2590 			pcg->pcg_avail = 0;
   2591 			pcg->pcg_size = pc->pc_pcgsize;
   2592 		}
   2593 	}
   2594 
   2595 	/* Lock the cache. */
   2596 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2597 		ncsw = curlwp->l_ncsw;
   2598 		mutex_enter(&pc->pc_lock);
   2599 		pc->pc_contended++;
   2600 
   2601 		/*
   2602 		 * If we context switched while locking, then our view of
   2603 		 * the per-CPU data is invalid: retry.
   2604 		 */
   2605 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2606 			mutex_exit(&pc->pc_lock);
   2607 			if (pcg != NULL) {
   2608 				pool_put(pc->pc_pcgpool, pcg);
   2609 			}
   2610 			return true;
   2611 		}
   2612 	}
   2613 
   2614 	/* If there are no empty groups in the cache then allocate one. */
   2615 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2616 		pcg = pc->pc_emptygroups;
   2617 		pc->pc_emptygroups = pcg->pcg_next;
   2618 		pc->pc_nempty--;
   2619 	}
   2620 
   2621 	/*
   2622 	 * If there's a empty group, release our full group back
   2623 	 * to the cache.  Install the empty group to the local CPU
   2624 	 * and return.
   2625 	 */
   2626 	if (pcg != NULL) {
   2627 		KASSERT(pcg->pcg_avail == 0);
   2628 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2629 			cc->cc_previous = pcg;
   2630 		} else {
   2631 			cur = cc->cc_current;
   2632 			if (__predict_true(cur != &pcg_dummy)) {
   2633 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2634 				cur->pcg_next = pc->pc_fullgroups;
   2635 				pc->pc_fullgroups = cur;
   2636 				pc->pc_nfull++;
   2637 			}
   2638 			cc->cc_current = pcg;
   2639 		}
   2640 		pc->pc_hits++;
   2641 		mutex_exit(&pc->pc_lock);
   2642 		return true;
   2643 	}
   2644 
   2645 	/*
   2646 	 * Nothing available locally or in cache, and we didn't
   2647 	 * allocate an empty group.  Take the slow path and destroy
   2648 	 * the object here and now.
   2649 	 */
   2650 	pc->pc_misses++;
   2651 	mutex_exit(&pc->pc_lock);
   2652 	splx(s);
   2653 	pool_cache_destruct_object(pc, object);
   2654 
   2655 	return false;
   2656 }
   2657 
   2658 /*
   2659  * pool_cache_put{,_paddr}:
   2660  *
   2661  *	Put an object back to the pool cache (optionally caching the
   2662  *	physical address of the object).
   2663  */
   2664 void
   2665 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2666 {
   2667 	pool_cache_cpu_t *cc;
   2668 	pcg_t *pcg;
   2669 	int s;
   2670 
   2671 	KASSERT(object != NULL);
   2672 	FREECHECK_IN(&pc->pc_freecheck, object);
   2673 
   2674 	/* Lock out interrupts and disable preemption. */
   2675 	s = splvm();
   2676 	while (/* CONSTCOND */ true) {
   2677 		/* If the current group isn't full, release it there. */
   2678 		cc = pc->pc_cpus[curcpu()->ci_index];
   2679 		KASSERT(cc->cc_cache == pc);
   2680 	 	pcg = cc->cc_current;
   2681 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2682 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2683 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2684 			pcg->pcg_avail++;
   2685 			cc->cc_hits++;
   2686 			splx(s);
   2687 			return;
   2688 		}
   2689 
   2690 		/*
   2691 		 * That failed.  If the previous group isn't full, swap
   2692 		 * it with the current group and try again.
   2693 		 */
   2694 		pcg = cc->cc_previous;
   2695 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2696 			cc->cc_previous = cc->cc_current;
   2697 			cc->cc_current = pcg;
   2698 			continue;
   2699 		}
   2700 
   2701 		/*
   2702 		 * Can't free to either group: try the slow path.
   2703 		 * If put_slow() releases the object for us, it
   2704 		 * will return false.  Otherwise we need to retry.
   2705 		 */
   2706 		if (!pool_cache_put_slow(cc, s, object))
   2707 			break;
   2708 	}
   2709 }
   2710 
   2711 /*
   2712  * pool_cache_xcall:
   2713  *
   2714  *	Transfer objects from the per-CPU cache to the global cache.
   2715  *	Run within a cross-call thread.
   2716  */
   2717 static void
   2718 pool_cache_xcall(pool_cache_t pc)
   2719 {
   2720 	pool_cache_cpu_t *cc;
   2721 	pcg_t *prev, *cur, **list;
   2722 	int s;
   2723 
   2724 	s = splvm();
   2725 	mutex_enter(&pc->pc_lock);
   2726 	cc = pc->pc_cpus[curcpu()->ci_index];
   2727 	cur = cc->cc_current;
   2728 	cc->cc_current = __UNCONST(&pcg_dummy);
   2729 	prev = cc->cc_previous;
   2730 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2731 	if (cur != &pcg_dummy) {
   2732 		if (cur->pcg_avail == cur->pcg_size) {
   2733 			list = &pc->pc_fullgroups;
   2734 			pc->pc_nfull++;
   2735 		} else if (cur->pcg_avail == 0) {
   2736 			list = &pc->pc_emptygroups;
   2737 			pc->pc_nempty++;
   2738 		} else {
   2739 			list = &pc->pc_partgroups;
   2740 			pc->pc_npart++;
   2741 		}
   2742 		cur->pcg_next = *list;
   2743 		*list = cur;
   2744 	}
   2745 	if (prev != &pcg_dummy) {
   2746 		if (prev->pcg_avail == prev->pcg_size) {
   2747 			list = &pc->pc_fullgroups;
   2748 			pc->pc_nfull++;
   2749 		} else if (prev->pcg_avail == 0) {
   2750 			list = &pc->pc_emptygroups;
   2751 			pc->pc_nempty++;
   2752 		} else {
   2753 			list = &pc->pc_partgroups;
   2754 			pc->pc_npart++;
   2755 		}
   2756 		prev->pcg_next = *list;
   2757 		*list = prev;
   2758 	}
   2759 	mutex_exit(&pc->pc_lock);
   2760 	splx(s);
   2761 }
   2762 
   2763 /*
   2764  * Pool backend allocators.
   2765  *
   2766  * Each pool has a backend allocator that handles allocation, deallocation,
   2767  * and any additional draining that might be needed.
   2768  *
   2769  * We provide two standard allocators:
   2770  *
   2771  *	pool_allocator_kmem - the default when no allocator is specified
   2772  *
   2773  *	pool_allocator_nointr - used for pools that will not be accessed
   2774  *	in interrupt context.
   2775  */
   2776 void	*pool_page_alloc(struct pool *, int);
   2777 void	pool_page_free(struct pool *, void *);
   2778 
   2779 #ifdef POOL_SUBPAGE
   2780 struct pool_allocator pool_allocator_kmem_fullpage = {
   2781 	pool_page_alloc, pool_page_free, 0,
   2782 	.pa_backingmapptr = &kmem_map,
   2783 };
   2784 #else
   2785 struct pool_allocator pool_allocator_kmem = {
   2786 	pool_page_alloc, pool_page_free, 0,
   2787 	.pa_backingmapptr = &kmem_map,
   2788 };
   2789 #endif
   2790 
   2791 void	*pool_page_alloc_nointr(struct pool *, int);
   2792 void	pool_page_free_nointr(struct pool *, void *);
   2793 
   2794 #ifdef POOL_SUBPAGE
   2795 struct pool_allocator pool_allocator_nointr_fullpage = {
   2796 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2797 	.pa_backingmapptr = &kernel_map,
   2798 };
   2799 #else
   2800 struct pool_allocator pool_allocator_nointr = {
   2801 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2802 	.pa_backingmapptr = &kernel_map,
   2803 };
   2804 #endif
   2805 
   2806 #ifdef POOL_SUBPAGE
   2807 void	*pool_subpage_alloc(struct pool *, int);
   2808 void	pool_subpage_free(struct pool *, void *);
   2809 
   2810 struct pool_allocator pool_allocator_kmem = {
   2811 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2812 	.pa_backingmapptr = &kmem_map,
   2813 };
   2814 
   2815 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2816 void	pool_subpage_free_nointr(struct pool *, void *);
   2817 
   2818 struct pool_allocator pool_allocator_nointr = {
   2819 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2820 	.pa_backingmapptr = &kmem_map,
   2821 };
   2822 #endif /* POOL_SUBPAGE */
   2823 
   2824 static void *
   2825 pool_allocator_alloc(struct pool *pp, int flags)
   2826 {
   2827 	struct pool_allocator *pa = pp->pr_alloc;
   2828 	void *res;
   2829 
   2830 	res = (*pa->pa_alloc)(pp, flags);
   2831 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2832 		/*
   2833 		 * We only run the drain hook here if PR_NOWAIT.
   2834 		 * In other cases, the hook will be run in
   2835 		 * pool_reclaim().
   2836 		 */
   2837 		if (pp->pr_drain_hook != NULL) {
   2838 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2839 			res = (*pa->pa_alloc)(pp, flags);
   2840 		}
   2841 	}
   2842 	return res;
   2843 }
   2844 
   2845 static void
   2846 pool_allocator_free(struct pool *pp, void *v)
   2847 {
   2848 	struct pool_allocator *pa = pp->pr_alloc;
   2849 
   2850 	(*pa->pa_free)(pp, v);
   2851 }
   2852 
   2853 void *
   2854 pool_page_alloc(struct pool *pp, int flags)
   2855 {
   2856 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2857 
   2858 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2859 }
   2860 
   2861 void
   2862 pool_page_free(struct pool *pp, void *v)
   2863 {
   2864 
   2865 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2866 }
   2867 
   2868 static void *
   2869 pool_page_alloc_meta(struct pool *pp, int flags)
   2870 {
   2871 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2872 
   2873 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2874 }
   2875 
   2876 static void
   2877 pool_page_free_meta(struct pool *pp, void *v)
   2878 {
   2879 
   2880 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2881 }
   2882 
   2883 #ifdef POOL_SUBPAGE
   2884 /* Sub-page allocator, for machines with large hardware pages. */
   2885 void *
   2886 pool_subpage_alloc(struct pool *pp, int flags)
   2887 {
   2888 	return pool_get(&psppool, flags);
   2889 }
   2890 
   2891 void
   2892 pool_subpage_free(struct pool *pp, void *v)
   2893 {
   2894 	pool_put(&psppool, v);
   2895 }
   2896 
   2897 /* We don't provide a real nointr allocator.  Maybe later. */
   2898 void *
   2899 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2900 {
   2901 
   2902 	return (pool_subpage_alloc(pp, flags));
   2903 }
   2904 
   2905 void
   2906 pool_subpage_free_nointr(struct pool *pp, void *v)
   2907 {
   2908 
   2909 	pool_subpage_free(pp, v);
   2910 }
   2911 #endif /* POOL_SUBPAGE */
   2912 void *
   2913 pool_page_alloc_nointr(struct pool *pp, int flags)
   2914 {
   2915 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2916 
   2917 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2918 }
   2919 
   2920 void
   2921 pool_page_free_nointr(struct pool *pp, void *v)
   2922 {
   2923 
   2924 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2925 }
   2926 
   2927 #if defined(DDB)
   2928 static bool
   2929 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2930 {
   2931 
   2932 	return (uintptr_t)ph->ph_page <= addr &&
   2933 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2934 }
   2935 
   2936 static bool
   2937 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2938 {
   2939 
   2940 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2941 }
   2942 
   2943 static bool
   2944 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2945 {
   2946 	int i;
   2947 
   2948 	if (pcg == NULL) {
   2949 		return false;
   2950 	}
   2951 	for (i = 0; i < pcg->pcg_avail; i++) {
   2952 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2953 			return true;
   2954 		}
   2955 	}
   2956 	return false;
   2957 }
   2958 
   2959 static bool
   2960 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2961 {
   2962 
   2963 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2964 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2965 		pool_item_bitmap_t *bitmap =
   2966 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2967 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2968 
   2969 		return (*bitmap & mask) == 0;
   2970 	} else {
   2971 		struct pool_item *pi;
   2972 
   2973 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2974 			if (pool_in_item(pp, pi, addr)) {
   2975 				return false;
   2976 			}
   2977 		}
   2978 		return true;
   2979 	}
   2980 }
   2981 
   2982 void
   2983 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2984 {
   2985 	struct pool *pp;
   2986 
   2987 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2988 		struct pool_item_header *ph;
   2989 		uintptr_t item;
   2990 		bool allocated = true;
   2991 		bool incache = false;
   2992 		bool incpucache = false;
   2993 		char cpucachestr[32];
   2994 
   2995 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2996 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2997 				if (pool_in_page(pp, ph, addr)) {
   2998 					goto found;
   2999 				}
   3000 			}
   3001 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3002 				if (pool_in_page(pp, ph, addr)) {
   3003 					allocated =
   3004 					    pool_allocated(pp, ph, addr);
   3005 					goto found;
   3006 				}
   3007 			}
   3008 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3009 				if (pool_in_page(pp, ph, addr)) {
   3010 					allocated = false;
   3011 					goto found;
   3012 				}
   3013 			}
   3014 			continue;
   3015 		} else {
   3016 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3017 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3018 				continue;
   3019 			}
   3020 			allocated = pool_allocated(pp, ph, addr);
   3021 		}
   3022 found:
   3023 		if (allocated && pp->pr_cache) {
   3024 			pool_cache_t pc = pp->pr_cache;
   3025 			struct pool_cache_group *pcg;
   3026 			int i;
   3027 
   3028 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3029 			    pcg = pcg->pcg_next) {
   3030 				if (pool_in_cg(pp, pcg, addr)) {
   3031 					incache = true;
   3032 					goto print;
   3033 				}
   3034 			}
   3035 			for (i = 0; i < MAXCPUS; i++) {
   3036 				pool_cache_cpu_t *cc;
   3037 
   3038 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3039 					continue;
   3040 				}
   3041 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3042 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3043 					struct cpu_info *ci =
   3044 					    cpu_lookup(i);
   3045 
   3046 					incpucache = true;
   3047 					snprintf(cpucachestr,
   3048 					    sizeof(cpucachestr),
   3049 					    "cached by CPU %u",
   3050 					    ci->ci_index);
   3051 					goto print;
   3052 				}
   3053 			}
   3054 		}
   3055 print:
   3056 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3057 		item = item + rounddown(addr - item, pp->pr_size);
   3058 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3059 		    (void *)addr, item, (size_t)(addr - item),
   3060 		    pp->pr_wchan,
   3061 		    incpucache ? cpucachestr :
   3062 		    incache ? "cached" : allocated ? "allocated" : "free");
   3063 	}
   3064 }
   3065 #endif /* defined(DDB) */
   3066