Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.182.2.1
      1 /*	$NetBSD: subr_pool.c,v 1.182.2.1 2010/04/30 14:44:12 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.182.2.1 2010/04/30 14:44:12 uebayasi Exp $");
     36 
     37 #include "opt_ddb.h"
     38 #include "opt_pool.h"
     39 #include "opt_poollog.h"
     40 #include "opt_lockdebug.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/bitops.h>
     45 #include <sys/proc.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/pool.h>
     50 #include <sys/syslog.h>
     51 #include <sys/debug.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/xcall.h>
     54 #include <sys/cpu.h>
     55 #include <sys/atomic.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx) \
     79 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     80 
     81 #ifdef POOL_SUBPAGE
     82 /* Pool of subpages for use by normal pools. */
     83 static struct pool psppool;
     84 #endif
     85 
     86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     87     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     88 
     89 static void *pool_page_alloc_meta(struct pool *, int);
     90 static void pool_page_free_meta(struct pool *, void *);
     91 
     92 /* allocator for pool metadata */
     93 struct pool_allocator pool_allocator_meta = {
     94 	pool_page_alloc_meta, pool_page_free_meta,
     95 	.pa_backingmapptr = &kmem_map,
     96 };
     97 
     98 /* # of seconds to retain page after last use */
     99 int pool_inactive_time = 10;
    100 
    101 /* Next candidate for drainage (see pool_drain()) */
    102 static struct pool	*drainpp;
    103 
    104 /* This lock protects both pool_head and drainpp. */
    105 static kmutex_t pool_head_lock;
    106 static kcondvar_t pool_busy;
    107 
    108 /* This lock protects initialization of a potentially shared pool allocator */
    109 static kmutex_t pool_allocator_lock;
    110 
    111 typedef uint32_t pool_item_bitmap_t;
    112 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    113 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    114 
    115 struct pool_item_header {
    116 	/* Page headers */
    117 	LIST_ENTRY(pool_item_header)
    118 				ph_pagelist;	/* pool page list */
    119 	SPLAY_ENTRY(pool_item_header)
    120 				ph_node;	/* Off-page page headers */
    121 	void *			ph_page;	/* this page's address */
    122 	uint32_t		ph_time;	/* last referenced */
    123 	uint16_t		ph_nmissing;	/* # of chunks in use */
    124 	uint16_t		ph_off;		/* start offset in page */
    125 	union {
    126 		/* !PR_NOTOUCH */
    127 		struct {
    128 			LIST_HEAD(, pool_item)
    129 				phu_itemlist;	/* chunk list for this page */
    130 		} phu_normal;
    131 		/* PR_NOTOUCH */
    132 		struct {
    133 			pool_item_bitmap_t phu_bitmap[1];
    134 		} phu_notouch;
    135 	} ph_u;
    136 };
    137 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    138 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    139 
    140 struct pool_item {
    141 #ifdef DIAGNOSTIC
    142 	u_int pi_magic;
    143 #endif
    144 #define	PI_MAGIC 0xdeaddeadU
    145 	/* Other entries use only this list entry */
    146 	LIST_ENTRY(pool_item)	pi_list;
    147 };
    148 
    149 #define	POOL_NEEDS_CATCHUP(pp)						\
    150 	((pp)->pr_nitems < (pp)->pr_minitems)
    151 
    152 /*
    153  * Pool cache management.
    154  *
    155  * Pool caches provide a way for constructed objects to be cached by the
    156  * pool subsystem.  This can lead to performance improvements by avoiding
    157  * needless object construction/destruction; it is deferred until absolutely
    158  * necessary.
    159  *
    160  * Caches are grouped into cache groups.  Each cache group references up
    161  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    162  * object from the pool, it calls the object's constructor and places it
    163  * into a cache group.  When a cache group frees an object back to the
    164  * pool, it first calls the object's destructor.  This allows the object
    165  * to persist in constructed form while freed to the cache.
    166  *
    167  * The pool references each cache, so that when a pool is drained by the
    168  * pagedaemon, it can drain each individual cache as well.  Each time a
    169  * cache is drained, the most idle cache group is freed to the pool in
    170  * its entirety.
    171  *
    172  * Pool caches are layed on top of pools.  By layering them, we can avoid
    173  * the complexity of cache management for pools which would not benefit
    174  * from it.
    175  */
    176 
    177 static struct pool pcg_normal_pool;
    178 static struct pool pcg_large_pool;
    179 static struct pool cache_pool;
    180 static struct pool cache_cpu_pool;
    181 
    182 /* List of all caches. */
    183 TAILQ_HEAD(,pool_cache) pool_cache_head =
    184     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    185 
    186 int pool_cache_disable;		/* global disable for caching */
    187 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    188 
    189 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    190 				    void *);
    191 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    192 				    void **, paddr_t *, int);
    193 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    194 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    195 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    196 static void	pool_cache_xcall(pool_cache_t);
    197 
    198 static int	pool_catchup(struct pool *);
    199 static void	pool_prime_page(struct pool *, void *,
    200 		    struct pool_item_header *);
    201 static void	pool_update_curpage(struct pool *);
    202 
    203 static int	pool_grow(struct pool *, int);
    204 static void	*pool_allocator_alloc(struct pool *, int);
    205 static void	pool_allocator_free(struct pool *, void *);
    206 
    207 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    208 	void (*)(const char *, ...));
    209 static void pool_print1(struct pool *, const char *,
    210 	void (*)(const char *, ...));
    211 
    212 static int pool_chk_page(struct pool *, const char *,
    213 			 struct pool_item_header *);
    214 
    215 /*
    216  * Pool log entry. An array of these is allocated in pool_init().
    217  */
    218 struct pool_log {
    219 	const char	*pl_file;
    220 	long		pl_line;
    221 	int		pl_action;
    222 #define	PRLOG_GET	1
    223 #define	PRLOG_PUT	2
    224 	void		*pl_addr;
    225 };
    226 
    227 #ifdef POOL_DIAGNOSTIC
    228 /* Number of entries in pool log buffers */
    229 #ifndef POOL_LOGSIZE
    230 #define	POOL_LOGSIZE	10
    231 #endif
    232 
    233 int pool_logsize = POOL_LOGSIZE;
    234 
    235 static inline void
    236 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    237 {
    238 	int n;
    239 	struct pool_log *pl;
    240 
    241 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    242 		return;
    243 
    244 	if (pp->pr_log == NULL) {
    245 		if (kmem_map != NULL)
    246 			pp->pr_log = malloc(
    247 				pool_logsize * sizeof(struct pool_log),
    248 				M_TEMP, M_NOWAIT | M_ZERO);
    249 		if (pp->pr_log == NULL)
    250 			return;
    251 		pp->pr_curlogentry = 0;
    252 		pp->pr_logsize = pool_logsize;
    253 	}
    254 
    255 	/*
    256 	 * Fill in the current entry. Wrap around and overwrite
    257 	 * the oldest entry if necessary.
    258 	 */
    259 	n = pp->pr_curlogentry;
    260 	pl = &pp->pr_log[n];
    261 	pl->pl_file = file;
    262 	pl->pl_line = line;
    263 	pl->pl_action = action;
    264 	pl->pl_addr = v;
    265 	if (++n >= pp->pr_logsize)
    266 		n = 0;
    267 	pp->pr_curlogentry = n;
    268 }
    269 
    270 static void
    271 pr_printlog(struct pool *pp, struct pool_item *pi,
    272     void (*pr)(const char *, ...))
    273 {
    274 	int i = pp->pr_logsize;
    275 	int n = pp->pr_curlogentry;
    276 
    277 	if (pp->pr_log == NULL)
    278 		return;
    279 
    280 	/*
    281 	 * Print all entries in this pool's log.
    282 	 */
    283 	while (i-- > 0) {
    284 		struct pool_log *pl = &pp->pr_log[n];
    285 		if (pl->pl_action != 0) {
    286 			if (pi == NULL || pi == pl->pl_addr) {
    287 				(*pr)("\tlog entry %d:\n", i);
    288 				(*pr)("\t\taction = %s, addr = %p\n",
    289 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    290 				    pl->pl_addr);
    291 				(*pr)("\t\tfile: %s at line %lu\n",
    292 				    pl->pl_file, pl->pl_line);
    293 			}
    294 		}
    295 		if (++n >= pp->pr_logsize)
    296 			n = 0;
    297 	}
    298 }
    299 
    300 static inline void
    301 pr_enter(struct pool *pp, const char *file, long line)
    302 {
    303 
    304 	if (__predict_false(pp->pr_entered_file != NULL)) {
    305 		printf("pool %s: reentrancy at file %s line %ld\n",
    306 		    pp->pr_wchan, file, line);
    307 		printf("         previous entry at file %s line %ld\n",
    308 		    pp->pr_entered_file, pp->pr_entered_line);
    309 		panic("pr_enter");
    310 	}
    311 
    312 	pp->pr_entered_file = file;
    313 	pp->pr_entered_line = line;
    314 }
    315 
    316 static inline void
    317 pr_leave(struct pool *pp)
    318 {
    319 
    320 	if (__predict_false(pp->pr_entered_file == NULL)) {
    321 		printf("pool %s not entered?\n", pp->pr_wchan);
    322 		panic("pr_leave");
    323 	}
    324 
    325 	pp->pr_entered_file = NULL;
    326 	pp->pr_entered_line = 0;
    327 }
    328 
    329 static inline void
    330 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    331 {
    332 
    333 	if (pp->pr_entered_file != NULL)
    334 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    335 		    pp->pr_entered_file, pp->pr_entered_line);
    336 }
    337 #else
    338 #define	pr_log(pp, v, action, file, line)
    339 #define	pr_printlog(pp, pi, pr)
    340 #define	pr_enter(pp, file, line)
    341 #define	pr_leave(pp)
    342 #define	pr_enter_check(pp, pr)
    343 #endif /* POOL_DIAGNOSTIC */
    344 
    345 static inline unsigned int
    346 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    347     const void *v)
    348 {
    349 	const char *cp = v;
    350 	unsigned int idx;
    351 
    352 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    353 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    354 	KASSERT(idx < pp->pr_itemsperpage);
    355 	return idx;
    356 }
    357 
    358 static inline void
    359 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    360     void *obj)
    361 {
    362 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    364 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    365 
    366 	KASSERT((*bitmap & mask) == 0);
    367 	*bitmap |= mask;
    368 }
    369 
    370 static inline void *
    371 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    372 {
    373 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    374 	unsigned int idx;
    375 	int i;
    376 
    377 	for (i = 0; ; i++) {
    378 		int bit;
    379 
    380 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    381 		bit = ffs32(bitmap[i]);
    382 		if (bit) {
    383 			pool_item_bitmap_t mask;
    384 
    385 			bit--;
    386 			idx = (i * BITMAP_SIZE) + bit;
    387 			mask = 1 << bit;
    388 			KASSERT((bitmap[i] & mask) != 0);
    389 			bitmap[i] &= ~mask;
    390 			break;
    391 		}
    392 	}
    393 	KASSERT(idx < pp->pr_itemsperpage);
    394 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    395 }
    396 
    397 static inline void
    398 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    399 {
    400 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    401 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    402 	int i;
    403 
    404 	for (i = 0; i < n; i++) {
    405 		bitmap[i] = (pool_item_bitmap_t)-1;
    406 	}
    407 }
    408 
    409 static inline int
    410 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    411 {
    412 
    413 	/*
    414 	 * we consider pool_item_header with smaller ph_page bigger.
    415 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    416 	 */
    417 
    418 	if (a->ph_page < b->ph_page)
    419 		return (1);
    420 	else if (a->ph_page > b->ph_page)
    421 		return (-1);
    422 	else
    423 		return (0);
    424 }
    425 
    426 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    427 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    428 
    429 static inline struct pool_item_header *
    430 pr_find_pagehead_noalign(struct pool *pp, void *v)
    431 {
    432 	struct pool_item_header *ph, tmp;
    433 
    434 	tmp.ph_page = (void *)(uintptr_t)v;
    435 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    436 	if (ph == NULL) {
    437 		ph = SPLAY_ROOT(&pp->pr_phtree);
    438 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    439 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    440 		}
    441 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    442 	}
    443 
    444 	return ph;
    445 }
    446 
    447 /*
    448  * Return the pool page header based on item address.
    449  */
    450 static inline struct pool_item_header *
    451 pr_find_pagehead(struct pool *pp, void *v)
    452 {
    453 	struct pool_item_header *ph, tmp;
    454 
    455 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    456 		ph = pr_find_pagehead_noalign(pp, v);
    457 	} else {
    458 		void *page =
    459 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    460 
    461 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    462 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    463 		} else {
    464 			tmp.ph_page = page;
    465 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    466 		}
    467 	}
    468 
    469 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    470 	    ((char *)ph->ph_page <= (char *)v &&
    471 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    472 	return ph;
    473 }
    474 
    475 static void
    476 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    477 {
    478 	struct pool_item_header *ph;
    479 
    480 	while ((ph = LIST_FIRST(pq)) != NULL) {
    481 		LIST_REMOVE(ph, ph_pagelist);
    482 		pool_allocator_free(pp, ph->ph_page);
    483 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    484 			pool_put(pp->pr_phpool, ph);
    485 	}
    486 }
    487 
    488 /*
    489  * Remove a page from the pool.
    490  */
    491 static inline void
    492 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    493      struct pool_pagelist *pq)
    494 {
    495 
    496 	KASSERT(mutex_owned(&pp->pr_lock));
    497 
    498 	/*
    499 	 * If the page was idle, decrement the idle page count.
    500 	 */
    501 	if (ph->ph_nmissing == 0) {
    502 #ifdef DIAGNOSTIC
    503 		if (pp->pr_nidle == 0)
    504 			panic("pr_rmpage: nidle inconsistent");
    505 		if (pp->pr_nitems < pp->pr_itemsperpage)
    506 			panic("pr_rmpage: nitems inconsistent");
    507 #endif
    508 		pp->pr_nidle--;
    509 	}
    510 
    511 	pp->pr_nitems -= pp->pr_itemsperpage;
    512 
    513 	/*
    514 	 * Unlink the page from the pool and queue it for release.
    515 	 */
    516 	LIST_REMOVE(ph, ph_pagelist);
    517 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    518 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    519 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    520 
    521 	pp->pr_npages--;
    522 	pp->pr_npagefree++;
    523 
    524 	pool_update_curpage(pp);
    525 }
    526 
    527 static bool
    528 pa_starved_p(struct pool_allocator *pa)
    529 {
    530 
    531 	if (pa->pa_backingmap != NULL) {
    532 		return vm_map_starved_p(pa->pa_backingmap);
    533 	}
    534 	return false;
    535 }
    536 
    537 static int
    538 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    539 {
    540 	struct pool *pp = obj;
    541 	struct pool_allocator *pa = pp->pr_alloc;
    542 
    543 	KASSERT(&pp->pr_reclaimerentry == ce);
    544 	pool_reclaim(pp);
    545 	if (!pa_starved_p(pa)) {
    546 		return CALLBACK_CHAIN_ABORT;
    547 	}
    548 	return CALLBACK_CHAIN_CONTINUE;
    549 }
    550 
    551 static void
    552 pool_reclaim_register(struct pool *pp)
    553 {
    554 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    555 	int s;
    556 
    557 	if (map == NULL) {
    558 		return;
    559 	}
    560 
    561 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    562 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    563 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    564 	splx(s);
    565 }
    566 
    567 static void
    568 pool_reclaim_unregister(struct pool *pp)
    569 {
    570 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    571 	int s;
    572 
    573 	if (map == NULL) {
    574 		return;
    575 	}
    576 
    577 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    578 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    579 	    &pp->pr_reclaimerentry);
    580 	splx(s);
    581 }
    582 
    583 static void
    584 pa_reclaim_register(struct pool_allocator *pa)
    585 {
    586 	struct vm_map *map = *pa->pa_backingmapptr;
    587 	struct pool *pp;
    588 
    589 	KASSERT(pa->pa_backingmap == NULL);
    590 	if (map == NULL) {
    591 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    592 		return;
    593 	}
    594 	pa->pa_backingmap = map;
    595 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    596 		pool_reclaim_register(pp);
    597 	}
    598 }
    599 
    600 /*
    601  * Initialize all the pools listed in the "pools" link set.
    602  */
    603 void
    604 pool_subsystem_init(void)
    605 {
    606 	struct pool_allocator *pa;
    607 
    608 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    609 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    610 	cv_init(&pool_busy, "poolbusy");
    611 
    612 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    613 		KASSERT(pa->pa_backingmapptr != NULL);
    614 		KASSERT(*pa->pa_backingmapptr != NULL);
    615 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    616 		pa_reclaim_register(pa);
    617 	}
    618 
    619 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    620 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    621 
    622 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    623 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    624 }
    625 
    626 /*
    627  * Initialize the given pool resource structure.
    628  *
    629  * We export this routine to allow other kernel parts to declare
    630  * static pools that must be initialized before malloc() is available.
    631  */
    632 void
    633 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    634     const char *wchan, struct pool_allocator *palloc, int ipl)
    635 {
    636 	struct pool *pp1;
    637 	size_t trysize, phsize;
    638 	int off, slack;
    639 
    640 #ifdef DEBUG
    641 	/*
    642 	 * Check that the pool hasn't already been initialised and
    643 	 * added to the list of all pools.
    644 	 */
    645 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    646 		if (pp == pp1)
    647 			panic("pool_init: pool %s already initialised",
    648 			    wchan);
    649 	}
    650 #endif
    651 
    652 #ifdef POOL_DIAGNOSTIC
    653 	/*
    654 	 * Always log if POOL_DIAGNOSTIC is defined.
    655 	 */
    656 	if (pool_logsize != 0)
    657 		flags |= PR_LOGGING;
    658 #endif
    659 
    660 	if (palloc == NULL)
    661 		palloc = &pool_allocator_kmem;
    662 #ifdef POOL_SUBPAGE
    663 	if (size > palloc->pa_pagesz) {
    664 		if (palloc == &pool_allocator_kmem)
    665 			palloc = &pool_allocator_kmem_fullpage;
    666 		else if (palloc == &pool_allocator_nointr)
    667 			palloc = &pool_allocator_nointr_fullpage;
    668 	}
    669 #endif /* POOL_SUBPAGE */
    670 	if (!cold)
    671 		mutex_enter(&pool_allocator_lock);
    672 	if (palloc->pa_refcnt++ == 0) {
    673 		if (palloc->pa_pagesz == 0)
    674 			palloc->pa_pagesz = PAGE_SIZE;
    675 
    676 		TAILQ_INIT(&palloc->pa_list);
    677 
    678 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    679 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    680 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    681 
    682 		if (palloc->pa_backingmapptr != NULL) {
    683 			pa_reclaim_register(palloc);
    684 		}
    685 	}
    686 	if (!cold)
    687 		mutex_exit(&pool_allocator_lock);
    688 
    689 	if (align == 0)
    690 		align = ALIGN(1);
    691 
    692 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    693 		size = sizeof(struct pool_item);
    694 
    695 	size = roundup(size, align);
    696 #ifdef DIAGNOSTIC
    697 	if (size > palloc->pa_pagesz)
    698 		panic("pool_init: pool item size (%zu) too large", size);
    699 #endif
    700 
    701 	/*
    702 	 * Initialize the pool structure.
    703 	 */
    704 	LIST_INIT(&pp->pr_emptypages);
    705 	LIST_INIT(&pp->pr_fullpages);
    706 	LIST_INIT(&pp->pr_partpages);
    707 	pp->pr_cache = NULL;
    708 	pp->pr_curpage = NULL;
    709 	pp->pr_npages = 0;
    710 	pp->pr_minitems = 0;
    711 	pp->pr_minpages = 0;
    712 	pp->pr_maxpages = UINT_MAX;
    713 	pp->pr_roflags = flags;
    714 	pp->pr_flags = 0;
    715 	pp->pr_size = size;
    716 	pp->pr_align = align;
    717 	pp->pr_wchan = wchan;
    718 	pp->pr_alloc = palloc;
    719 	pp->pr_nitems = 0;
    720 	pp->pr_nout = 0;
    721 	pp->pr_hardlimit = UINT_MAX;
    722 	pp->pr_hardlimit_warning = NULL;
    723 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    724 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    725 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    726 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    727 	pp->pr_drain_hook = NULL;
    728 	pp->pr_drain_hook_arg = NULL;
    729 	pp->pr_freecheck = NULL;
    730 
    731 	/*
    732 	 * Decide whether to put the page header off page to avoid
    733 	 * wasting too large a part of the page or too big item.
    734 	 * Off-page page headers go on a hash table, so we can match
    735 	 * a returned item with its header based on the page address.
    736 	 * We use 1/16 of the page size and about 8 times of the item
    737 	 * size as the threshold (XXX: tune)
    738 	 *
    739 	 * However, we'll put the header into the page if we can put
    740 	 * it without wasting any items.
    741 	 *
    742 	 * Silently enforce `0 <= ioff < align'.
    743 	 */
    744 	pp->pr_itemoffset = ioff %= align;
    745 	/* See the comment below about reserved bytes. */
    746 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    747 	phsize = ALIGN(sizeof(struct pool_item_header));
    748 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    749 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    750 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    751 		/* Use the end of the page for the page header */
    752 		pp->pr_roflags |= PR_PHINPAGE;
    753 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    754 	} else {
    755 		/* The page header will be taken from our page header pool */
    756 		pp->pr_phoffset = 0;
    757 		off = palloc->pa_pagesz;
    758 		SPLAY_INIT(&pp->pr_phtree);
    759 	}
    760 
    761 	/*
    762 	 * Alignment is to take place at `ioff' within the item. This means
    763 	 * we must reserve up to `align - 1' bytes on the page to allow
    764 	 * appropriate positioning of each item.
    765 	 */
    766 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    767 	KASSERT(pp->pr_itemsperpage != 0);
    768 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    769 		int idx;
    770 
    771 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    772 		    idx++) {
    773 			/* nothing */
    774 		}
    775 		if (idx >= PHPOOL_MAX) {
    776 			/*
    777 			 * if you see this panic, consider to tweak
    778 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    779 			 */
    780 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    781 			    pp->pr_wchan, pp->pr_itemsperpage);
    782 		}
    783 		pp->pr_phpool = &phpool[idx];
    784 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    785 		pp->pr_phpool = &phpool[0];
    786 	}
    787 #if defined(DIAGNOSTIC)
    788 	else {
    789 		pp->pr_phpool = NULL;
    790 	}
    791 #endif
    792 
    793 	/*
    794 	 * Use the slack between the chunks and the page header
    795 	 * for "cache coloring".
    796 	 */
    797 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    798 	pp->pr_maxcolor = (slack / align) * align;
    799 	pp->pr_curcolor = 0;
    800 
    801 	pp->pr_nget = 0;
    802 	pp->pr_nfail = 0;
    803 	pp->pr_nput = 0;
    804 	pp->pr_npagealloc = 0;
    805 	pp->pr_npagefree = 0;
    806 	pp->pr_hiwat = 0;
    807 	pp->pr_nidle = 0;
    808 	pp->pr_refcnt = 0;
    809 
    810 	pp->pr_log = NULL;
    811 
    812 	pp->pr_entered_file = NULL;
    813 	pp->pr_entered_line = 0;
    814 
    815 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    816 	cv_init(&pp->pr_cv, wchan);
    817 	pp->pr_ipl = ipl;
    818 
    819 	/*
    820 	 * Initialize private page header pool and cache magazine pool if we
    821 	 * haven't done so yet.
    822 	 * XXX LOCKING.
    823 	 */
    824 	if (phpool[0].pr_size == 0) {
    825 		int idx;
    826 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    827 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    828 			int nelem;
    829 			size_t sz;
    830 
    831 			nelem = PHPOOL_FREELIST_NELEM(idx);
    832 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    833 			    "phpool-%d", nelem);
    834 			sz = sizeof(struct pool_item_header);
    835 			if (nelem) {
    836 				sz = offsetof(struct pool_item_header,
    837 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    838 			}
    839 			pool_init(&phpool[idx], sz, 0, 0, 0,
    840 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    841 		}
    842 #ifdef POOL_SUBPAGE
    843 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    844 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    845 #endif
    846 
    847 		size = sizeof(pcg_t) +
    848 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    849 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    850 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    851 
    852 		size = sizeof(pcg_t) +
    853 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    854 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    855 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    856 	}
    857 
    858 	/* Insert into the list of all pools. */
    859 	if (!cold)
    860 		mutex_enter(&pool_head_lock);
    861 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    862 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    863 			break;
    864 	}
    865 	if (pp1 == NULL)
    866 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    867 	else
    868 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    869 	if (!cold)
    870 		mutex_exit(&pool_head_lock);
    871 
    872 	/* Insert this into the list of pools using this allocator. */
    873 	if (!cold)
    874 		mutex_enter(&palloc->pa_lock);
    875 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    876 	if (!cold)
    877 		mutex_exit(&palloc->pa_lock);
    878 
    879 	pool_reclaim_register(pp);
    880 }
    881 
    882 /*
    883  * De-commision a pool resource.
    884  */
    885 void
    886 pool_destroy(struct pool *pp)
    887 {
    888 	struct pool_pagelist pq;
    889 	struct pool_item_header *ph;
    890 
    891 	/* Remove from global pool list */
    892 	mutex_enter(&pool_head_lock);
    893 	while (pp->pr_refcnt != 0)
    894 		cv_wait(&pool_busy, &pool_head_lock);
    895 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    896 	if (drainpp == pp)
    897 		drainpp = NULL;
    898 	mutex_exit(&pool_head_lock);
    899 
    900 	/* Remove this pool from its allocator's list of pools. */
    901 	pool_reclaim_unregister(pp);
    902 	mutex_enter(&pp->pr_alloc->pa_lock);
    903 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    904 	mutex_exit(&pp->pr_alloc->pa_lock);
    905 
    906 	mutex_enter(&pool_allocator_lock);
    907 	if (--pp->pr_alloc->pa_refcnt == 0)
    908 		mutex_destroy(&pp->pr_alloc->pa_lock);
    909 	mutex_exit(&pool_allocator_lock);
    910 
    911 	mutex_enter(&pp->pr_lock);
    912 
    913 	KASSERT(pp->pr_cache == NULL);
    914 
    915 #ifdef DIAGNOSTIC
    916 	if (pp->pr_nout != 0) {
    917 		pr_printlog(pp, NULL, printf);
    918 		panic("pool_destroy: pool busy: still out: %u",
    919 		    pp->pr_nout);
    920 	}
    921 #endif
    922 
    923 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    924 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    925 
    926 	/* Remove all pages */
    927 	LIST_INIT(&pq);
    928 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    929 		pr_rmpage(pp, ph, &pq);
    930 
    931 	mutex_exit(&pp->pr_lock);
    932 
    933 	pr_pagelist_free(pp, &pq);
    934 
    935 #ifdef POOL_DIAGNOSTIC
    936 	if (pp->pr_log != NULL) {
    937 		free(pp->pr_log, M_TEMP);
    938 		pp->pr_log = NULL;
    939 	}
    940 #endif
    941 
    942 	cv_destroy(&pp->pr_cv);
    943 	mutex_destroy(&pp->pr_lock);
    944 }
    945 
    946 void
    947 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    948 {
    949 
    950 	/* XXX no locking -- must be used just after pool_init() */
    951 #ifdef DIAGNOSTIC
    952 	if (pp->pr_drain_hook != NULL)
    953 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    954 #endif
    955 	pp->pr_drain_hook = fn;
    956 	pp->pr_drain_hook_arg = arg;
    957 }
    958 
    959 static struct pool_item_header *
    960 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    961 {
    962 	struct pool_item_header *ph;
    963 
    964 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    965 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    966 	else
    967 		ph = pool_get(pp->pr_phpool, flags);
    968 
    969 	return (ph);
    970 }
    971 
    972 /*
    973  * Grab an item from the pool.
    974  */
    975 void *
    976 #ifdef POOL_DIAGNOSTIC
    977 _pool_get(struct pool *pp, int flags, const char *file, long line)
    978 #else
    979 pool_get(struct pool *pp, int flags)
    980 #endif
    981 {
    982 	struct pool_item *pi;
    983 	struct pool_item_header *ph;
    984 	void *v;
    985 
    986 #ifdef DIAGNOSTIC
    987 	if (__predict_false(pp->pr_itemsperpage == 0))
    988 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    989 		    "pool not initialized?", pp);
    990 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    991 			    (flags & PR_WAITOK) != 0))
    992 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    993 
    994 #endif /* DIAGNOSTIC */
    995 #ifdef LOCKDEBUG
    996 	if (flags & PR_WAITOK) {
    997 		ASSERT_SLEEPABLE();
    998 	}
    999 #endif
   1000 
   1001 	mutex_enter(&pp->pr_lock);
   1002 	pr_enter(pp, file, line);
   1003 
   1004  startover:
   1005 	/*
   1006 	 * Check to see if we've reached the hard limit.  If we have,
   1007 	 * and we can wait, then wait until an item has been returned to
   1008 	 * the pool.
   1009 	 */
   1010 #ifdef DIAGNOSTIC
   1011 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1012 		pr_leave(pp);
   1013 		mutex_exit(&pp->pr_lock);
   1014 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1015 	}
   1016 #endif
   1017 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1018 		if (pp->pr_drain_hook != NULL) {
   1019 			/*
   1020 			 * Since the drain hook is going to free things
   1021 			 * back to the pool, unlock, call the hook, re-lock,
   1022 			 * and check the hardlimit condition again.
   1023 			 */
   1024 			pr_leave(pp);
   1025 			mutex_exit(&pp->pr_lock);
   1026 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1027 			mutex_enter(&pp->pr_lock);
   1028 			pr_enter(pp, file, line);
   1029 			if (pp->pr_nout < pp->pr_hardlimit)
   1030 				goto startover;
   1031 		}
   1032 
   1033 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1034 			/*
   1035 			 * XXX: A warning isn't logged in this case.  Should
   1036 			 * it be?
   1037 			 */
   1038 			pp->pr_flags |= PR_WANTED;
   1039 			pr_leave(pp);
   1040 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1041 			pr_enter(pp, file, line);
   1042 			goto startover;
   1043 		}
   1044 
   1045 		/*
   1046 		 * Log a message that the hard limit has been hit.
   1047 		 */
   1048 		if (pp->pr_hardlimit_warning != NULL &&
   1049 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1050 			      &pp->pr_hardlimit_ratecap))
   1051 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1052 
   1053 		pp->pr_nfail++;
   1054 
   1055 		pr_leave(pp);
   1056 		mutex_exit(&pp->pr_lock);
   1057 		return (NULL);
   1058 	}
   1059 
   1060 	/*
   1061 	 * The convention we use is that if `curpage' is not NULL, then
   1062 	 * it points at a non-empty bucket. In particular, `curpage'
   1063 	 * never points at a page header which has PR_PHINPAGE set and
   1064 	 * has no items in its bucket.
   1065 	 */
   1066 	if ((ph = pp->pr_curpage) == NULL) {
   1067 		int error;
   1068 
   1069 #ifdef DIAGNOSTIC
   1070 		if (pp->pr_nitems != 0) {
   1071 			mutex_exit(&pp->pr_lock);
   1072 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1073 			    pp->pr_wchan, pp->pr_nitems);
   1074 			panic("pool_get: nitems inconsistent");
   1075 		}
   1076 #endif
   1077 
   1078 		/*
   1079 		 * Call the back-end page allocator for more memory.
   1080 		 * Release the pool lock, as the back-end page allocator
   1081 		 * may block.
   1082 		 */
   1083 		pr_leave(pp);
   1084 		error = pool_grow(pp, flags);
   1085 		pr_enter(pp, file, line);
   1086 		if (error != 0) {
   1087 			/*
   1088 			 * We were unable to allocate a page or item
   1089 			 * header, but we released the lock during
   1090 			 * allocation, so perhaps items were freed
   1091 			 * back to the pool.  Check for this case.
   1092 			 */
   1093 			if (pp->pr_curpage != NULL)
   1094 				goto startover;
   1095 
   1096 			pp->pr_nfail++;
   1097 			pr_leave(pp);
   1098 			mutex_exit(&pp->pr_lock);
   1099 			return (NULL);
   1100 		}
   1101 
   1102 		/* Start the allocation process over. */
   1103 		goto startover;
   1104 	}
   1105 	if (pp->pr_roflags & PR_NOTOUCH) {
   1106 #ifdef DIAGNOSTIC
   1107 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1108 			pr_leave(pp);
   1109 			mutex_exit(&pp->pr_lock);
   1110 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1111 		}
   1112 #endif
   1113 		v = pr_item_notouch_get(pp, ph);
   1114 #ifdef POOL_DIAGNOSTIC
   1115 		pr_log(pp, v, PRLOG_GET, file, line);
   1116 #endif
   1117 	} else {
   1118 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1119 		if (__predict_false(v == NULL)) {
   1120 			pr_leave(pp);
   1121 			mutex_exit(&pp->pr_lock);
   1122 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1123 		}
   1124 #ifdef DIAGNOSTIC
   1125 		if (__predict_false(pp->pr_nitems == 0)) {
   1126 			pr_leave(pp);
   1127 			mutex_exit(&pp->pr_lock);
   1128 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1129 			    pp->pr_wchan, pp->pr_nitems);
   1130 			panic("pool_get: nitems inconsistent");
   1131 		}
   1132 #endif
   1133 
   1134 #ifdef POOL_DIAGNOSTIC
   1135 		pr_log(pp, v, PRLOG_GET, file, line);
   1136 #endif
   1137 
   1138 #ifdef DIAGNOSTIC
   1139 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1140 			pr_printlog(pp, pi, printf);
   1141 			panic("pool_get(%s): free list modified: "
   1142 			    "magic=%x; page %p; item addr %p\n",
   1143 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1144 		}
   1145 #endif
   1146 
   1147 		/*
   1148 		 * Remove from item list.
   1149 		 */
   1150 		LIST_REMOVE(pi, pi_list);
   1151 	}
   1152 	pp->pr_nitems--;
   1153 	pp->pr_nout++;
   1154 	if (ph->ph_nmissing == 0) {
   1155 #ifdef DIAGNOSTIC
   1156 		if (__predict_false(pp->pr_nidle == 0))
   1157 			panic("pool_get: nidle inconsistent");
   1158 #endif
   1159 		pp->pr_nidle--;
   1160 
   1161 		/*
   1162 		 * This page was previously empty.  Move it to the list of
   1163 		 * partially-full pages.  This page is already curpage.
   1164 		 */
   1165 		LIST_REMOVE(ph, ph_pagelist);
   1166 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1167 	}
   1168 	ph->ph_nmissing++;
   1169 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1170 #ifdef DIAGNOSTIC
   1171 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1172 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1173 			pr_leave(pp);
   1174 			mutex_exit(&pp->pr_lock);
   1175 			panic("pool_get: %s: nmissing inconsistent",
   1176 			    pp->pr_wchan);
   1177 		}
   1178 #endif
   1179 		/*
   1180 		 * This page is now full.  Move it to the full list
   1181 		 * and select a new current page.
   1182 		 */
   1183 		LIST_REMOVE(ph, ph_pagelist);
   1184 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1185 		pool_update_curpage(pp);
   1186 	}
   1187 
   1188 	pp->pr_nget++;
   1189 	pr_leave(pp);
   1190 
   1191 	/*
   1192 	 * If we have a low water mark and we are now below that low
   1193 	 * water mark, add more items to the pool.
   1194 	 */
   1195 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1196 		/*
   1197 		 * XXX: Should we log a warning?  Should we set up a timeout
   1198 		 * to try again in a second or so?  The latter could break
   1199 		 * a caller's assumptions about interrupt protection, etc.
   1200 		 */
   1201 	}
   1202 
   1203 	mutex_exit(&pp->pr_lock);
   1204 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1205 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1206 	return (v);
   1207 }
   1208 
   1209 /*
   1210  * Internal version of pool_put().  Pool is already locked/entered.
   1211  */
   1212 static void
   1213 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1214 {
   1215 	struct pool_item *pi = v;
   1216 	struct pool_item_header *ph;
   1217 
   1218 	KASSERT(mutex_owned(&pp->pr_lock));
   1219 	FREECHECK_IN(&pp->pr_freecheck, v);
   1220 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1221 
   1222 #ifdef DIAGNOSTIC
   1223 	if (__predict_false(pp->pr_nout == 0)) {
   1224 		printf("pool %s: putting with none out\n",
   1225 		    pp->pr_wchan);
   1226 		panic("pool_put");
   1227 	}
   1228 #endif
   1229 
   1230 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1231 		pr_printlog(pp, NULL, printf);
   1232 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1233 	}
   1234 
   1235 	/*
   1236 	 * Return to item list.
   1237 	 */
   1238 	if (pp->pr_roflags & PR_NOTOUCH) {
   1239 		pr_item_notouch_put(pp, ph, v);
   1240 	} else {
   1241 #ifdef DIAGNOSTIC
   1242 		pi->pi_magic = PI_MAGIC;
   1243 #endif
   1244 #ifdef DEBUG
   1245 		{
   1246 			int i, *ip = v;
   1247 
   1248 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1249 				*ip++ = PI_MAGIC;
   1250 			}
   1251 		}
   1252 #endif
   1253 
   1254 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1255 	}
   1256 	KDASSERT(ph->ph_nmissing != 0);
   1257 	ph->ph_nmissing--;
   1258 	pp->pr_nput++;
   1259 	pp->pr_nitems++;
   1260 	pp->pr_nout--;
   1261 
   1262 	/* Cancel "pool empty" condition if it exists */
   1263 	if (pp->pr_curpage == NULL)
   1264 		pp->pr_curpage = ph;
   1265 
   1266 	if (pp->pr_flags & PR_WANTED) {
   1267 		pp->pr_flags &= ~PR_WANTED;
   1268 		cv_broadcast(&pp->pr_cv);
   1269 	}
   1270 
   1271 	/*
   1272 	 * If this page is now empty, do one of two things:
   1273 	 *
   1274 	 *	(1) If we have more pages than the page high water mark,
   1275 	 *	    free the page back to the system.  ONLY CONSIDER
   1276 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1277 	 *	    CLAIM.
   1278 	 *
   1279 	 *	(2) Otherwise, move the page to the empty page list.
   1280 	 *
   1281 	 * Either way, select a new current page (so we use a partially-full
   1282 	 * page if one is available).
   1283 	 */
   1284 	if (ph->ph_nmissing == 0) {
   1285 		pp->pr_nidle++;
   1286 		if (pp->pr_npages > pp->pr_minpages &&
   1287 		    pp->pr_npages > pp->pr_maxpages) {
   1288 			pr_rmpage(pp, ph, pq);
   1289 		} else {
   1290 			LIST_REMOVE(ph, ph_pagelist);
   1291 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1292 
   1293 			/*
   1294 			 * Update the timestamp on the page.  A page must
   1295 			 * be idle for some period of time before it can
   1296 			 * be reclaimed by the pagedaemon.  This minimizes
   1297 			 * ping-pong'ing for memory.
   1298 			 *
   1299 			 * note for 64-bit time_t: truncating to 32-bit is not
   1300 			 * a problem for our usage.
   1301 			 */
   1302 			ph->ph_time = time_uptime;
   1303 		}
   1304 		pool_update_curpage(pp);
   1305 	}
   1306 
   1307 	/*
   1308 	 * If the page was previously completely full, move it to the
   1309 	 * partially-full list and make it the current page.  The next
   1310 	 * allocation will get the item from this page, instead of
   1311 	 * further fragmenting the pool.
   1312 	 */
   1313 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1314 		LIST_REMOVE(ph, ph_pagelist);
   1315 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1316 		pp->pr_curpage = ph;
   1317 	}
   1318 }
   1319 
   1320 /*
   1321  * Return resource to the pool.
   1322  */
   1323 #ifdef POOL_DIAGNOSTIC
   1324 void
   1325 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1326 {
   1327 	struct pool_pagelist pq;
   1328 
   1329 	LIST_INIT(&pq);
   1330 
   1331 	mutex_enter(&pp->pr_lock);
   1332 	pr_enter(pp, file, line);
   1333 
   1334 	pr_log(pp, v, PRLOG_PUT, file, line);
   1335 
   1336 	pool_do_put(pp, v, &pq);
   1337 
   1338 	pr_leave(pp);
   1339 	mutex_exit(&pp->pr_lock);
   1340 
   1341 	pr_pagelist_free(pp, &pq);
   1342 }
   1343 #undef pool_put
   1344 #endif /* POOL_DIAGNOSTIC */
   1345 
   1346 void
   1347 pool_put(struct pool *pp, void *v)
   1348 {
   1349 	struct pool_pagelist pq;
   1350 
   1351 	LIST_INIT(&pq);
   1352 
   1353 	mutex_enter(&pp->pr_lock);
   1354 	pool_do_put(pp, v, &pq);
   1355 	mutex_exit(&pp->pr_lock);
   1356 
   1357 	pr_pagelist_free(pp, &pq);
   1358 }
   1359 
   1360 #ifdef POOL_DIAGNOSTIC
   1361 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1362 #endif
   1363 
   1364 /*
   1365  * pool_grow: grow a pool by a page.
   1366  *
   1367  * => called with pool locked.
   1368  * => unlock and relock the pool.
   1369  * => return with pool locked.
   1370  */
   1371 
   1372 static int
   1373 pool_grow(struct pool *pp, int flags)
   1374 {
   1375 	struct pool_item_header *ph = NULL;
   1376 	char *cp;
   1377 
   1378 	mutex_exit(&pp->pr_lock);
   1379 	cp = pool_allocator_alloc(pp, flags);
   1380 	if (__predict_true(cp != NULL)) {
   1381 		ph = pool_alloc_item_header(pp, cp, flags);
   1382 	}
   1383 	if (__predict_false(cp == NULL || ph == NULL)) {
   1384 		if (cp != NULL) {
   1385 			pool_allocator_free(pp, cp);
   1386 		}
   1387 		mutex_enter(&pp->pr_lock);
   1388 		return ENOMEM;
   1389 	}
   1390 
   1391 	mutex_enter(&pp->pr_lock);
   1392 	pool_prime_page(pp, cp, ph);
   1393 	pp->pr_npagealloc++;
   1394 	return 0;
   1395 }
   1396 
   1397 /*
   1398  * Add N items to the pool.
   1399  */
   1400 int
   1401 pool_prime(struct pool *pp, int n)
   1402 {
   1403 	int newpages;
   1404 	int error = 0;
   1405 
   1406 	mutex_enter(&pp->pr_lock);
   1407 
   1408 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1409 
   1410 	while (newpages-- > 0) {
   1411 		error = pool_grow(pp, PR_NOWAIT);
   1412 		if (error) {
   1413 			break;
   1414 		}
   1415 		pp->pr_minpages++;
   1416 	}
   1417 
   1418 	if (pp->pr_minpages >= pp->pr_maxpages)
   1419 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1420 
   1421 	mutex_exit(&pp->pr_lock);
   1422 	return error;
   1423 }
   1424 
   1425 /*
   1426  * Add a page worth of items to the pool.
   1427  *
   1428  * Note, we must be called with the pool descriptor LOCKED.
   1429  */
   1430 static void
   1431 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1432 {
   1433 	struct pool_item *pi;
   1434 	void *cp = storage;
   1435 	const unsigned int align = pp->pr_align;
   1436 	const unsigned int ioff = pp->pr_itemoffset;
   1437 	int n;
   1438 
   1439 	KASSERT(mutex_owned(&pp->pr_lock));
   1440 
   1441 #ifdef DIAGNOSTIC
   1442 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1443 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1444 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1445 #endif
   1446 
   1447 	/*
   1448 	 * Insert page header.
   1449 	 */
   1450 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1451 	LIST_INIT(&ph->ph_itemlist);
   1452 	ph->ph_page = storage;
   1453 	ph->ph_nmissing = 0;
   1454 	ph->ph_time = time_uptime;
   1455 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1456 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1457 
   1458 	pp->pr_nidle++;
   1459 
   1460 	/*
   1461 	 * Color this page.
   1462 	 */
   1463 	ph->ph_off = pp->pr_curcolor;
   1464 	cp = (char *)cp + ph->ph_off;
   1465 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1466 		pp->pr_curcolor = 0;
   1467 
   1468 	/*
   1469 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1470 	 */
   1471 	if (ioff != 0)
   1472 		cp = (char *)cp + align - ioff;
   1473 
   1474 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1475 
   1476 	/*
   1477 	 * Insert remaining chunks on the bucket list.
   1478 	 */
   1479 	n = pp->pr_itemsperpage;
   1480 	pp->pr_nitems += n;
   1481 
   1482 	if (pp->pr_roflags & PR_NOTOUCH) {
   1483 		pr_item_notouch_init(pp, ph);
   1484 	} else {
   1485 		while (n--) {
   1486 			pi = (struct pool_item *)cp;
   1487 
   1488 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1489 
   1490 			/* Insert on page list */
   1491 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1492 #ifdef DIAGNOSTIC
   1493 			pi->pi_magic = PI_MAGIC;
   1494 #endif
   1495 			cp = (char *)cp + pp->pr_size;
   1496 
   1497 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1498 		}
   1499 	}
   1500 
   1501 	/*
   1502 	 * If the pool was depleted, point at the new page.
   1503 	 */
   1504 	if (pp->pr_curpage == NULL)
   1505 		pp->pr_curpage = ph;
   1506 
   1507 	if (++pp->pr_npages > pp->pr_hiwat)
   1508 		pp->pr_hiwat = pp->pr_npages;
   1509 }
   1510 
   1511 /*
   1512  * Used by pool_get() when nitems drops below the low water mark.  This
   1513  * is used to catch up pr_nitems with the low water mark.
   1514  *
   1515  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1516  *
   1517  * Note 2, we must be called with the pool already locked, and we return
   1518  * with it locked.
   1519  */
   1520 static int
   1521 pool_catchup(struct pool *pp)
   1522 {
   1523 	int error = 0;
   1524 
   1525 	while (POOL_NEEDS_CATCHUP(pp)) {
   1526 		error = pool_grow(pp, PR_NOWAIT);
   1527 		if (error) {
   1528 			break;
   1529 		}
   1530 	}
   1531 	return error;
   1532 }
   1533 
   1534 static void
   1535 pool_update_curpage(struct pool *pp)
   1536 {
   1537 
   1538 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1539 	if (pp->pr_curpage == NULL) {
   1540 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1541 	}
   1542 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1543 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1544 }
   1545 
   1546 void
   1547 pool_setlowat(struct pool *pp, int n)
   1548 {
   1549 
   1550 	mutex_enter(&pp->pr_lock);
   1551 
   1552 	pp->pr_minitems = n;
   1553 	pp->pr_minpages = (n == 0)
   1554 		? 0
   1555 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1556 
   1557 	/* Make sure we're caught up with the newly-set low water mark. */
   1558 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1559 		/*
   1560 		 * XXX: Should we log a warning?  Should we set up a timeout
   1561 		 * to try again in a second or so?  The latter could break
   1562 		 * a caller's assumptions about interrupt protection, etc.
   1563 		 */
   1564 	}
   1565 
   1566 	mutex_exit(&pp->pr_lock);
   1567 }
   1568 
   1569 void
   1570 pool_sethiwat(struct pool *pp, int n)
   1571 {
   1572 
   1573 	mutex_enter(&pp->pr_lock);
   1574 
   1575 	pp->pr_maxpages = (n == 0)
   1576 		? 0
   1577 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1578 
   1579 	mutex_exit(&pp->pr_lock);
   1580 }
   1581 
   1582 void
   1583 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1584 {
   1585 
   1586 	mutex_enter(&pp->pr_lock);
   1587 
   1588 	pp->pr_hardlimit = n;
   1589 	pp->pr_hardlimit_warning = warnmess;
   1590 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1591 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1592 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1593 
   1594 	/*
   1595 	 * In-line version of pool_sethiwat(), because we don't want to
   1596 	 * release the lock.
   1597 	 */
   1598 	pp->pr_maxpages = (n == 0)
   1599 		? 0
   1600 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1601 
   1602 	mutex_exit(&pp->pr_lock);
   1603 }
   1604 
   1605 /*
   1606  * Release all complete pages that have not been used recently.
   1607  */
   1608 int
   1609 #ifdef POOL_DIAGNOSTIC
   1610 _pool_reclaim(struct pool *pp, const char *file, long line)
   1611 #else
   1612 pool_reclaim(struct pool *pp)
   1613 #endif
   1614 {
   1615 	struct pool_item_header *ph, *phnext;
   1616 	struct pool_pagelist pq;
   1617 	uint32_t curtime;
   1618 	bool klock;
   1619 	int rv;
   1620 
   1621 	if (pp->pr_drain_hook != NULL) {
   1622 		/*
   1623 		 * The drain hook must be called with the pool unlocked.
   1624 		 */
   1625 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1626 	}
   1627 
   1628 	/*
   1629 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1630 	 * to block.
   1631 	 */
   1632 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1633 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1634 		KERNEL_LOCK(1, NULL);
   1635 		klock = true;
   1636 	} else
   1637 		klock = false;
   1638 
   1639 	/* Reclaim items from the pool's cache (if any). */
   1640 	if (pp->pr_cache != NULL)
   1641 		pool_cache_invalidate(pp->pr_cache);
   1642 
   1643 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1644 		if (klock) {
   1645 			KERNEL_UNLOCK_ONE(NULL);
   1646 		}
   1647 		return (0);
   1648 	}
   1649 	pr_enter(pp, file, line);
   1650 
   1651 	LIST_INIT(&pq);
   1652 
   1653 	curtime = time_uptime;
   1654 
   1655 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1656 		phnext = LIST_NEXT(ph, ph_pagelist);
   1657 
   1658 		/* Check our minimum page claim */
   1659 		if (pp->pr_npages <= pp->pr_minpages)
   1660 			break;
   1661 
   1662 		KASSERT(ph->ph_nmissing == 0);
   1663 		if (curtime - ph->ph_time < pool_inactive_time
   1664 		    && !pa_starved_p(pp->pr_alloc))
   1665 			continue;
   1666 
   1667 		/*
   1668 		 * If freeing this page would put us below
   1669 		 * the low water mark, stop now.
   1670 		 */
   1671 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1672 		    pp->pr_minitems)
   1673 			break;
   1674 
   1675 		pr_rmpage(pp, ph, &pq);
   1676 	}
   1677 
   1678 	pr_leave(pp);
   1679 	mutex_exit(&pp->pr_lock);
   1680 
   1681 	if (LIST_EMPTY(&pq))
   1682 		rv = 0;
   1683 	else {
   1684 		pr_pagelist_free(pp, &pq);
   1685 		rv = 1;
   1686 	}
   1687 
   1688 	if (klock) {
   1689 		KERNEL_UNLOCK_ONE(NULL);
   1690 	}
   1691 
   1692 	return (rv);
   1693 }
   1694 
   1695 /*
   1696  * Drain pools, one at a time.  This is a two stage process;
   1697  * drain_start kicks off a cross call to drain CPU-level caches
   1698  * if the pool has an associated pool_cache.  drain_end waits
   1699  * for those cross calls to finish, and then drains the cache
   1700  * (if any) and pool.
   1701  *
   1702  * Note, must never be called from interrupt context.
   1703  */
   1704 void
   1705 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1706 {
   1707 	struct pool *pp;
   1708 
   1709 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1710 
   1711 	pp = NULL;
   1712 
   1713 	/* Find next pool to drain, and add a reference. */
   1714 	mutex_enter(&pool_head_lock);
   1715 	do {
   1716 		if (drainpp == NULL) {
   1717 			drainpp = TAILQ_FIRST(&pool_head);
   1718 		}
   1719 		if (drainpp != NULL) {
   1720 			pp = drainpp;
   1721 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1722 		}
   1723 		/*
   1724 		 * Skip completely idle pools.  We depend on at least
   1725 		 * one pool in the system being active.
   1726 		 */
   1727 	} while (pp == NULL || pp->pr_npages == 0);
   1728 	pp->pr_refcnt++;
   1729 	mutex_exit(&pool_head_lock);
   1730 
   1731 	/* If there is a pool_cache, drain CPU level caches. */
   1732 	*ppp = pp;
   1733 	if (pp->pr_cache != NULL) {
   1734 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1735 		    pp->pr_cache, NULL);
   1736 	}
   1737 }
   1738 
   1739 void
   1740 pool_drain_end(struct pool *pp, uint64_t where)
   1741 {
   1742 
   1743 	if (pp == NULL)
   1744 		return;
   1745 
   1746 	KASSERT(pp->pr_refcnt > 0);
   1747 
   1748 	/* Wait for remote draining to complete. */
   1749 	if (pp->pr_cache != NULL)
   1750 		xc_wait(where);
   1751 
   1752 	/* Drain the cache (if any) and pool.. */
   1753 	pool_reclaim(pp);
   1754 
   1755 	/* Finally, unlock the pool. */
   1756 	mutex_enter(&pool_head_lock);
   1757 	pp->pr_refcnt--;
   1758 	cv_broadcast(&pool_busy);
   1759 	mutex_exit(&pool_head_lock);
   1760 }
   1761 
   1762 /*
   1763  * Diagnostic helpers.
   1764  */
   1765 void
   1766 pool_print(struct pool *pp, const char *modif)
   1767 {
   1768 
   1769 	pool_print1(pp, modif, printf);
   1770 }
   1771 
   1772 void
   1773 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1774 {
   1775 	struct pool *pp;
   1776 
   1777 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1778 		pool_printit(pp, modif, pr);
   1779 	}
   1780 }
   1781 
   1782 void
   1783 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1784 {
   1785 
   1786 	if (pp == NULL) {
   1787 		(*pr)("Must specify a pool to print.\n");
   1788 		return;
   1789 	}
   1790 
   1791 	pool_print1(pp, modif, pr);
   1792 }
   1793 
   1794 static void
   1795 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1796     void (*pr)(const char *, ...))
   1797 {
   1798 	struct pool_item_header *ph;
   1799 #ifdef DIAGNOSTIC
   1800 	struct pool_item *pi;
   1801 #endif
   1802 
   1803 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1804 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1805 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1806 #ifdef DIAGNOSTIC
   1807 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1808 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1809 				if (pi->pi_magic != PI_MAGIC) {
   1810 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1811 					    pi, pi->pi_magic);
   1812 				}
   1813 			}
   1814 		}
   1815 #endif
   1816 	}
   1817 }
   1818 
   1819 static void
   1820 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1821 {
   1822 	struct pool_item_header *ph;
   1823 	pool_cache_t pc;
   1824 	pcg_t *pcg;
   1825 	pool_cache_cpu_t *cc;
   1826 	uint64_t cpuhit, cpumiss;
   1827 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1828 	char c;
   1829 
   1830 	while ((c = *modif++) != '\0') {
   1831 		if (c == 'l')
   1832 			print_log = 1;
   1833 		if (c == 'p')
   1834 			print_pagelist = 1;
   1835 		if (c == 'c')
   1836 			print_cache = 1;
   1837 	}
   1838 
   1839 	if ((pc = pp->pr_cache) != NULL) {
   1840 		(*pr)("POOL CACHE");
   1841 	} else {
   1842 		(*pr)("POOL");
   1843 	}
   1844 
   1845 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1846 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1847 	    pp->pr_roflags);
   1848 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1849 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1850 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1851 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1852 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1853 
   1854 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1855 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1856 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1857 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1858 
   1859 	if (print_pagelist == 0)
   1860 		goto skip_pagelist;
   1861 
   1862 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1863 		(*pr)("\n\tempty page list:\n");
   1864 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1865 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1866 		(*pr)("\n\tfull page list:\n");
   1867 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1868 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1869 		(*pr)("\n\tpartial-page list:\n");
   1870 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1871 
   1872 	if (pp->pr_curpage == NULL)
   1873 		(*pr)("\tno current page\n");
   1874 	else
   1875 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1876 
   1877  skip_pagelist:
   1878 	if (print_log == 0)
   1879 		goto skip_log;
   1880 
   1881 	(*pr)("\n");
   1882 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1883 		(*pr)("\tno log\n");
   1884 	else {
   1885 		pr_printlog(pp, NULL, pr);
   1886 	}
   1887 
   1888  skip_log:
   1889 
   1890 #define PR_GROUPLIST(pcg)						\
   1891 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1892 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1893 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1894 		    POOL_PADDR_INVALID) {				\
   1895 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1896 			    pcg->pcg_objects[i].pcgo_va,		\
   1897 			    (unsigned long long)			\
   1898 			    pcg->pcg_objects[i].pcgo_pa);		\
   1899 		} else {						\
   1900 			(*pr)("\t\t\t%p\n",				\
   1901 			    pcg->pcg_objects[i].pcgo_va);		\
   1902 		}							\
   1903 	}
   1904 
   1905 	if (pc != NULL) {
   1906 		cpuhit = 0;
   1907 		cpumiss = 0;
   1908 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1909 			if ((cc = pc->pc_cpus[i]) == NULL)
   1910 				continue;
   1911 			cpuhit += cc->cc_hits;
   1912 			cpumiss += cc->cc_misses;
   1913 		}
   1914 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1915 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1916 		    pc->pc_hits, pc->pc_misses);
   1917 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1918 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1919 		    pc->pc_contended);
   1920 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1921 		    pc->pc_nempty, pc->pc_nfull);
   1922 		if (print_cache) {
   1923 			(*pr)("\tfull cache groups:\n");
   1924 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1925 			    pcg = pcg->pcg_next) {
   1926 				PR_GROUPLIST(pcg);
   1927 			}
   1928 			(*pr)("\tempty cache groups:\n");
   1929 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1930 			    pcg = pcg->pcg_next) {
   1931 				PR_GROUPLIST(pcg);
   1932 			}
   1933 		}
   1934 	}
   1935 #undef PR_GROUPLIST
   1936 
   1937 	pr_enter_check(pp, pr);
   1938 }
   1939 
   1940 static int
   1941 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1942 {
   1943 	struct pool_item *pi;
   1944 	void *page;
   1945 	int n;
   1946 
   1947 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1948 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1949 		if (page != ph->ph_page &&
   1950 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1951 			if (label != NULL)
   1952 				printf("%s: ", label);
   1953 			printf("pool(%p:%s): page inconsistency: page %p;"
   1954 			       " at page head addr %p (p %p)\n", pp,
   1955 				pp->pr_wchan, ph->ph_page,
   1956 				ph, page);
   1957 			return 1;
   1958 		}
   1959 	}
   1960 
   1961 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1962 		return 0;
   1963 
   1964 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1965 	     pi != NULL;
   1966 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1967 
   1968 #ifdef DIAGNOSTIC
   1969 		if (pi->pi_magic != PI_MAGIC) {
   1970 			if (label != NULL)
   1971 				printf("%s: ", label);
   1972 			printf("pool(%s): free list modified: magic=%x;"
   1973 			       " page %p; item ordinal %d; addr %p\n",
   1974 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1975 				n, pi);
   1976 			panic("pool");
   1977 		}
   1978 #endif
   1979 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1980 			continue;
   1981 		}
   1982 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1983 		if (page == ph->ph_page)
   1984 			continue;
   1985 
   1986 		if (label != NULL)
   1987 			printf("%s: ", label);
   1988 		printf("pool(%p:%s): page inconsistency: page %p;"
   1989 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1990 			pp->pr_wchan, ph->ph_page,
   1991 			n, pi, page);
   1992 		return 1;
   1993 	}
   1994 	return 0;
   1995 }
   1996 
   1997 
   1998 int
   1999 pool_chk(struct pool *pp, const char *label)
   2000 {
   2001 	struct pool_item_header *ph;
   2002 	int r = 0;
   2003 
   2004 	mutex_enter(&pp->pr_lock);
   2005 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2006 		r = pool_chk_page(pp, label, ph);
   2007 		if (r) {
   2008 			goto out;
   2009 		}
   2010 	}
   2011 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2012 		r = pool_chk_page(pp, label, ph);
   2013 		if (r) {
   2014 			goto out;
   2015 		}
   2016 	}
   2017 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2018 		r = pool_chk_page(pp, label, ph);
   2019 		if (r) {
   2020 			goto out;
   2021 		}
   2022 	}
   2023 
   2024 out:
   2025 	mutex_exit(&pp->pr_lock);
   2026 	return (r);
   2027 }
   2028 
   2029 /*
   2030  * pool_cache_init:
   2031  *
   2032  *	Initialize a pool cache.
   2033  */
   2034 pool_cache_t
   2035 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2036     const char *wchan, struct pool_allocator *palloc, int ipl,
   2037     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2038 {
   2039 	pool_cache_t pc;
   2040 
   2041 	pc = pool_get(&cache_pool, PR_WAITOK);
   2042 	if (pc == NULL)
   2043 		return NULL;
   2044 
   2045 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2046 	   palloc, ipl, ctor, dtor, arg);
   2047 
   2048 	return pc;
   2049 }
   2050 
   2051 /*
   2052  * pool_cache_bootstrap:
   2053  *
   2054  *	Kernel-private version of pool_cache_init().  The caller
   2055  *	provides initial storage.
   2056  */
   2057 void
   2058 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2059     u_int align_offset, u_int flags, const char *wchan,
   2060     struct pool_allocator *palloc, int ipl,
   2061     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2062     void *arg)
   2063 {
   2064 	CPU_INFO_ITERATOR cii;
   2065 	pool_cache_t pc1;
   2066 	struct cpu_info *ci;
   2067 	struct pool *pp;
   2068 
   2069 	pp = &pc->pc_pool;
   2070 	if (palloc == NULL && ipl == IPL_NONE)
   2071 		palloc = &pool_allocator_nointr;
   2072 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2073 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2074 
   2075 	if (ctor == NULL) {
   2076 		ctor = (int (*)(void *, void *, int))nullop;
   2077 	}
   2078 	if (dtor == NULL) {
   2079 		dtor = (void (*)(void *, void *))nullop;
   2080 	}
   2081 
   2082 	pc->pc_emptygroups = NULL;
   2083 	pc->pc_fullgroups = NULL;
   2084 	pc->pc_partgroups = NULL;
   2085 	pc->pc_ctor = ctor;
   2086 	pc->pc_dtor = dtor;
   2087 	pc->pc_arg  = arg;
   2088 	pc->pc_hits  = 0;
   2089 	pc->pc_misses = 0;
   2090 	pc->pc_nempty = 0;
   2091 	pc->pc_npart = 0;
   2092 	pc->pc_nfull = 0;
   2093 	pc->pc_contended = 0;
   2094 	pc->pc_refcnt = 0;
   2095 	pc->pc_freecheck = NULL;
   2096 
   2097 	if ((flags & PR_LARGECACHE) != 0) {
   2098 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2099 		pc->pc_pcgpool = &pcg_large_pool;
   2100 	} else {
   2101 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2102 		pc->pc_pcgpool = &pcg_normal_pool;
   2103 	}
   2104 
   2105 	/* Allocate per-CPU caches. */
   2106 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2107 	pc->pc_ncpu = 0;
   2108 	if (ncpu < 2) {
   2109 		/* XXX For sparc: boot CPU is not attached yet. */
   2110 		pool_cache_cpu_init1(curcpu(), pc);
   2111 	} else {
   2112 		for (CPU_INFO_FOREACH(cii, ci)) {
   2113 			pool_cache_cpu_init1(ci, pc);
   2114 		}
   2115 	}
   2116 
   2117 	/* Add to list of all pools. */
   2118 	if (__predict_true(!cold))
   2119 		mutex_enter(&pool_head_lock);
   2120 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2121 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2122 			break;
   2123 	}
   2124 	if (pc1 == NULL)
   2125 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2126 	else
   2127 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2128 	if (__predict_true(!cold))
   2129 		mutex_exit(&pool_head_lock);
   2130 
   2131 	membar_sync();
   2132 	pp->pr_cache = pc;
   2133 }
   2134 
   2135 /*
   2136  * pool_cache_destroy:
   2137  *
   2138  *	Destroy a pool cache.
   2139  */
   2140 void
   2141 pool_cache_destroy(pool_cache_t pc)
   2142 {
   2143 	struct pool *pp = &pc->pc_pool;
   2144 	u_int i;
   2145 
   2146 	/* Remove it from the global list. */
   2147 	mutex_enter(&pool_head_lock);
   2148 	while (pc->pc_refcnt != 0)
   2149 		cv_wait(&pool_busy, &pool_head_lock);
   2150 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2151 	mutex_exit(&pool_head_lock);
   2152 
   2153 	/* First, invalidate the entire cache. */
   2154 	pool_cache_invalidate(pc);
   2155 
   2156 	/* Disassociate it from the pool. */
   2157 	mutex_enter(&pp->pr_lock);
   2158 	pp->pr_cache = NULL;
   2159 	mutex_exit(&pp->pr_lock);
   2160 
   2161 	/* Destroy per-CPU data */
   2162 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2163 		pool_cache_invalidate_cpu(pc, i);
   2164 
   2165 	/* Finally, destroy it. */
   2166 	mutex_destroy(&pc->pc_lock);
   2167 	pool_destroy(pp);
   2168 	pool_put(&cache_pool, pc);
   2169 }
   2170 
   2171 /*
   2172  * pool_cache_cpu_init1:
   2173  *
   2174  *	Called for each pool_cache whenever a new CPU is attached.
   2175  */
   2176 static void
   2177 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2178 {
   2179 	pool_cache_cpu_t *cc;
   2180 	int index;
   2181 
   2182 	index = ci->ci_index;
   2183 
   2184 	KASSERT(index < __arraycount(pc->pc_cpus));
   2185 
   2186 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2187 		KASSERT(cc->cc_cpuindex == index);
   2188 		return;
   2189 	}
   2190 
   2191 	/*
   2192 	 * The first CPU is 'free'.  This needs to be the case for
   2193 	 * bootstrap - we may not be able to allocate yet.
   2194 	 */
   2195 	if (pc->pc_ncpu == 0) {
   2196 		cc = &pc->pc_cpu0;
   2197 		pc->pc_ncpu = 1;
   2198 	} else {
   2199 		mutex_enter(&pc->pc_lock);
   2200 		pc->pc_ncpu++;
   2201 		mutex_exit(&pc->pc_lock);
   2202 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2203 	}
   2204 
   2205 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2206 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2207 	cc->cc_cache = pc;
   2208 	cc->cc_cpuindex = index;
   2209 	cc->cc_hits = 0;
   2210 	cc->cc_misses = 0;
   2211 	cc->cc_current = __UNCONST(&pcg_dummy);
   2212 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2213 
   2214 	pc->pc_cpus[index] = cc;
   2215 }
   2216 
   2217 /*
   2218  * pool_cache_cpu_init:
   2219  *
   2220  *	Called whenever a new CPU is attached.
   2221  */
   2222 void
   2223 pool_cache_cpu_init(struct cpu_info *ci)
   2224 {
   2225 	pool_cache_t pc;
   2226 
   2227 	mutex_enter(&pool_head_lock);
   2228 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2229 		pc->pc_refcnt++;
   2230 		mutex_exit(&pool_head_lock);
   2231 
   2232 		pool_cache_cpu_init1(ci, pc);
   2233 
   2234 		mutex_enter(&pool_head_lock);
   2235 		pc->pc_refcnt--;
   2236 		cv_broadcast(&pool_busy);
   2237 	}
   2238 	mutex_exit(&pool_head_lock);
   2239 }
   2240 
   2241 /*
   2242  * pool_cache_reclaim:
   2243  *
   2244  *	Reclaim memory from a pool cache.
   2245  */
   2246 bool
   2247 pool_cache_reclaim(pool_cache_t pc)
   2248 {
   2249 
   2250 	return pool_reclaim(&pc->pc_pool);
   2251 }
   2252 
   2253 static void
   2254 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2255 {
   2256 
   2257 	(*pc->pc_dtor)(pc->pc_arg, object);
   2258 	pool_put(&pc->pc_pool, object);
   2259 }
   2260 
   2261 /*
   2262  * pool_cache_destruct_object:
   2263  *
   2264  *	Force destruction of an object and its release back into
   2265  *	the pool.
   2266  */
   2267 void
   2268 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2269 {
   2270 
   2271 	FREECHECK_IN(&pc->pc_freecheck, object);
   2272 
   2273 	pool_cache_destruct_object1(pc, object);
   2274 }
   2275 
   2276 /*
   2277  * pool_cache_invalidate_groups:
   2278  *
   2279  *	Invalidate a chain of groups and destruct all objects.
   2280  */
   2281 static void
   2282 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2283 {
   2284 	void *object;
   2285 	pcg_t *next;
   2286 	int i;
   2287 
   2288 	for (; pcg != NULL; pcg = next) {
   2289 		next = pcg->pcg_next;
   2290 
   2291 		for (i = 0; i < pcg->pcg_avail; i++) {
   2292 			object = pcg->pcg_objects[i].pcgo_va;
   2293 			pool_cache_destruct_object1(pc, object);
   2294 		}
   2295 
   2296 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2297 			pool_put(&pcg_large_pool, pcg);
   2298 		} else {
   2299 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2300 			pool_put(&pcg_normal_pool, pcg);
   2301 		}
   2302 	}
   2303 }
   2304 
   2305 /*
   2306  * pool_cache_invalidate:
   2307  *
   2308  *	Invalidate a pool cache (destruct and release all of the
   2309  *	cached objects).  Does not reclaim objects from the pool.
   2310  *
   2311  *	Note: For pool caches that provide constructed objects, there
   2312  *	is an assumption that another level of synchronization is occurring
   2313  *	between the input to the constructor and the cache invalidation.
   2314  */
   2315 void
   2316 pool_cache_invalidate(pool_cache_t pc)
   2317 {
   2318 	pcg_t *full, *empty, *part;
   2319 #if 0
   2320 	uint64_t where;
   2321 
   2322 	if (ncpu < 2 || !mp_online) {
   2323 		/*
   2324 		 * We might be called early enough in the boot process
   2325 		 * for the CPU data structures to not be fully initialized.
   2326 		 * In this case, simply gather the local CPU's cache now
   2327 		 * since it will be the only one running.
   2328 		 */
   2329 		pool_cache_xcall(pc);
   2330 	} else {
   2331 		/*
   2332 		 * Gather all of the CPU-specific caches into the
   2333 		 * global cache.
   2334 		 */
   2335 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2336 		xc_wait(where);
   2337 	}
   2338 #endif
   2339 	mutex_enter(&pc->pc_lock);
   2340 	full = pc->pc_fullgroups;
   2341 	empty = pc->pc_emptygroups;
   2342 	part = pc->pc_partgroups;
   2343 	pc->pc_fullgroups = NULL;
   2344 	pc->pc_emptygroups = NULL;
   2345 	pc->pc_partgroups = NULL;
   2346 	pc->pc_nfull = 0;
   2347 	pc->pc_nempty = 0;
   2348 	pc->pc_npart = 0;
   2349 	mutex_exit(&pc->pc_lock);
   2350 
   2351 	pool_cache_invalidate_groups(pc, full);
   2352 	pool_cache_invalidate_groups(pc, empty);
   2353 	pool_cache_invalidate_groups(pc, part);
   2354 }
   2355 
   2356 /*
   2357  * pool_cache_invalidate_cpu:
   2358  *
   2359  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2360  *	identified by its associated index.
   2361  *	It is caller's responsibility to ensure that no operation is
   2362  *	taking place on this pool cache while doing this invalidation.
   2363  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2364  *	pool cached objects from a CPU different from the one currently running
   2365  *	may result in an undefined behaviour.
   2366  */
   2367 static void
   2368 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2369 {
   2370 
   2371 	pool_cache_cpu_t *cc;
   2372 	pcg_t *pcg;
   2373 
   2374 	if ((cc = pc->pc_cpus[index]) == NULL)
   2375 		return;
   2376 
   2377 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2378 		pcg->pcg_next = NULL;
   2379 		pool_cache_invalidate_groups(pc, pcg);
   2380 	}
   2381 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2382 		pcg->pcg_next = NULL;
   2383 		pool_cache_invalidate_groups(pc, pcg);
   2384 	}
   2385 	if (cc != &pc->pc_cpu0)
   2386 		pool_put(&cache_cpu_pool, cc);
   2387 
   2388 }
   2389 
   2390 void
   2391 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2392 {
   2393 
   2394 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2395 }
   2396 
   2397 void
   2398 pool_cache_setlowat(pool_cache_t pc, int n)
   2399 {
   2400 
   2401 	pool_setlowat(&pc->pc_pool, n);
   2402 }
   2403 
   2404 void
   2405 pool_cache_sethiwat(pool_cache_t pc, int n)
   2406 {
   2407 
   2408 	pool_sethiwat(&pc->pc_pool, n);
   2409 }
   2410 
   2411 void
   2412 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2413 {
   2414 
   2415 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2416 }
   2417 
   2418 static bool __noinline
   2419 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2420 		    paddr_t *pap, int flags)
   2421 {
   2422 	pcg_t *pcg, *cur;
   2423 	uint64_t ncsw;
   2424 	pool_cache_t pc;
   2425 	void *object;
   2426 
   2427 	KASSERT(cc->cc_current->pcg_avail == 0);
   2428 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2429 
   2430 	pc = cc->cc_cache;
   2431 	cc->cc_misses++;
   2432 
   2433 	/*
   2434 	 * Nothing was available locally.  Try and grab a group
   2435 	 * from the cache.
   2436 	 */
   2437 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2438 		ncsw = curlwp->l_ncsw;
   2439 		mutex_enter(&pc->pc_lock);
   2440 		pc->pc_contended++;
   2441 
   2442 		/*
   2443 		 * If we context switched while locking, then
   2444 		 * our view of the per-CPU data is invalid:
   2445 		 * retry.
   2446 		 */
   2447 		if (curlwp->l_ncsw != ncsw) {
   2448 			mutex_exit(&pc->pc_lock);
   2449 			return true;
   2450 		}
   2451 	}
   2452 
   2453 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2454 		/*
   2455 		 * If there's a full group, release our empty
   2456 		 * group back to the cache.  Install the full
   2457 		 * group as cc_current and return.
   2458 		 */
   2459 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2460 			KASSERT(cur->pcg_avail == 0);
   2461 			cur->pcg_next = pc->pc_emptygroups;
   2462 			pc->pc_emptygroups = cur;
   2463 			pc->pc_nempty++;
   2464 		}
   2465 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2466 		cc->cc_current = pcg;
   2467 		pc->pc_fullgroups = pcg->pcg_next;
   2468 		pc->pc_hits++;
   2469 		pc->pc_nfull--;
   2470 		mutex_exit(&pc->pc_lock);
   2471 		return true;
   2472 	}
   2473 
   2474 	/*
   2475 	 * Nothing available locally or in cache.  Take the slow
   2476 	 * path: fetch a new object from the pool and construct
   2477 	 * it.
   2478 	 */
   2479 	pc->pc_misses++;
   2480 	mutex_exit(&pc->pc_lock);
   2481 	splx(s);
   2482 
   2483 	object = pool_get(&pc->pc_pool, flags);
   2484 	*objectp = object;
   2485 	if (__predict_false(object == NULL))
   2486 		return false;
   2487 
   2488 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2489 		pool_put(&pc->pc_pool, object);
   2490 		*objectp = NULL;
   2491 		return false;
   2492 	}
   2493 
   2494 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2495 	    (pc->pc_pool.pr_align - 1)) == 0);
   2496 
   2497 	if (pap != NULL) {
   2498 #ifdef POOL_VTOPHYS
   2499 		*pap = POOL_VTOPHYS(object);
   2500 #else
   2501 		*pap = POOL_PADDR_INVALID;
   2502 #endif
   2503 	}
   2504 
   2505 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2506 	return false;
   2507 }
   2508 
   2509 /*
   2510  * pool_cache_get{,_paddr}:
   2511  *
   2512  *	Get an object from a pool cache (optionally returning
   2513  *	the physical address of the object).
   2514  */
   2515 void *
   2516 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2517 {
   2518 	pool_cache_cpu_t *cc;
   2519 	pcg_t *pcg;
   2520 	void *object;
   2521 	int s;
   2522 
   2523 #ifdef LOCKDEBUG
   2524 	if (flags & PR_WAITOK) {
   2525 		ASSERT_SLEEPABLE();
   2526 	}
   2527 #endif
   2528 
   2529 	/* Lock out interrupts and disable preemption. */
   2530 	s = splvm();
   2531 	while (/* CONSTCOND */ true) {
   2532 		/* Try and allocate an object from the current group. */
   2533 		cc = pc->pc_cpus[curcpu()->ci_index];
   2534 		KASSERT(cc->cc_cache == pc);
   2535 	 	pcg = cc->cc_current;
   2536 		if (__predict_true(pcg->pcg_avail > 0)) {
   2537 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2538 			if (__predict_false(pap != NULL))
   2539 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2540 #if defined(DIAGNOSTIC)
   2541 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2542 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2543 			KASSERT(object != NULL);
   2544 #endif
   2545 			cc->cc_hits++;
   2546 			splx(s);
   2547 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2548 			return object;
   2549 		}
   2550 
   2551 		/*
   2552 		 * That failed.  If the previous group isn't empty, swap
   2553 		 * it with the current group and allocate from there.
   2554 		 */
   2555 		pcg = cc->cc_previous;
   2556 		if (__predict_true(pcg->pcg_avail > 0)) {
   2557 			cc->cc_previous = cc->cc_current;
   2558 			cc->cc_current = pcg;
   2559 			continue;
   2560 		}
   2561 
   2562 		/*
   2563 		 * Can't allocate from either group: try the slow path.
   2564 		 * If get_slow() allocated an object for us, or if
   2565 		 * no more objects are available, it will return false.
   2566 		 * Otherwise, we need to retry.
   2567 		 */
   2568 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2569 			break;
   2570 	}
   2571 
   2572 	return object;
   2573 }
   2574 
   2575 static bool __noinline
   2576 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2577 {
   2578 	pcg_t *pcg, *cur;
   2579 	uint64_t ncsw;
   2580 	pool_cache_t pc;
   2581 
   2582 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2583 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2584 
   2585 	pc = cc->cc_cache;
   2586 	pcg = NULL;
   2587 	cc->cc_misses++;
   2588 
   2589 	/*
   2590 	 * If there are no empty groups in the cache then allocate one
   2591 	 * while still unlocked.
   2592 	 */
   2593 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2594 		if (__predict_true(!pool_cache_disable)) {
   2595 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2596 		}
   2597 		if (__predict_true(pcg != NULL)) {
   2598 			pcg->pcg_avail = 0;
   2599 			pcg->pcg_size = pc->pc_pcgsize;
   2600 		}
   2601 	}
   2602 
   2603 	/* Lock the cache. */
   2604 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2605 		ncsw = curlwp->l_ncsw;
   2606 		mutex_enter(&pc->pc_lock);
   2607 		pc->pc_contended++;
   2608 
   2609 		/*
   2610 		 * If we context switched while locking, then our view of
   2611 		 * the per-CPU data is invalid: retry.
   2612 		 */
   2613 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2614 			mutex_exit(&pc->pc_lock);
   2615 			if (pcg != NULL) {
   2616 				pool_put(pc->pc_pcgpool, pcg);
   2617 			}
   2618 			return true;
   2619 		}
   2620 	}
   2621 
   2622 	/* If there are no empty groups in the cache then allocate one. */
   2623 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2624 		pcg = pc->pc_emptygroups;
   2625 		pc->pc_emptygroups = pcg->pcg_next;
   2626 		pc->pc_nempty--;
   2627 	}
   2628 
   2629 	/*
   2630 	 * If there's a empty group, release our full group back
   2631 	 * to the cache.  Install the empty group to the local CPU
   2632 	 * and return.
   2633 	 */
   2634 	if (pcg != NULL) {
   2635 		KASSERT(pcg->pcg_avail == 0);
   2636 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2637 			cc->cc_previous = pcg;
   2638 		} else {
   2639 			cur = cc->cc_current;
   2640 			if (__predict_true(cur != &pcg_dummy)) {
   2641 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2642 				cur->pcg_next = pc->pc_fullgroups;
   2643 				pc->pc_fullgroups = cur;
   2644 				pc->pc_nfull++;
   2645 			}
   2646 			cc->cc_current = pcg;
   2647 		}
   2648 		pc->pc_hits++;
   2649 		mutex_exit(&pc->pc_lock);
   2650 		return true;
   2651 	}
   2652 
   2653 	/*
   2654 	 * Nothing available locally or in cache, and we didn't
   2655 	 * allocate an empty group.  Take the slow path and destroy
   2656 	 * the object here and now.
   2657 	 */
   2658 	pc->pc_misses++;
   2659 	mutex_exit(&pc->pc_lock);
   2660 	splx(s);
   2661 	pool_cache_destruct_object(pc, object);
   2662 
   2663 	return false;
   2664 }
   2665 
   2666 /*
   2667  * pool_cache_put{,_paddr}:
   2668  *
   2669  *	Put an object back to the pool cache (optionally caching the
   2670  *	physical address of the object).
   2671  */
   2672 void
   2673 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2674 {
   2675 	pool_cache_cpu_t *cc;
   2676 	pcg_t *pcg;
   2677 	int s;
   2678 
   2679 	KASSERT(object != NULL);
   2680 	FREECHECK_IN(&pc->pc_freecheck, object);
   2681 
   2682 	/* Lock out interrupts and disable preemption. */
   2683 	s = splvm();
   2684 	while (/* CONSTCOND */ true) {
   2685 		/* If the current group isn't full, release it there. */
   2686 		cc = pc->pc_cpus[curcpu()->ci_index];
   2687 		KASSERT(cc->cc_cache == pc);
   2688 	 	pcg = cc->cc_current;
   2689 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2690 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2691 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2692 			pcg->pcg_avail++;
   2693 			cc->cc_hits++;
   2694 			splx(s);
   2695 			return;
   2696 		}
   2697 
   2698 		/*
   2699 		 * That failed.  If the previous group isn't full, swap
   2700 		 * it with the current group and try again.
   2701 		 */
   2702 		pcg = cc->cc_previous;
   2703 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2704 			cc->cc_previous = cc->cc_current;
   2705 			cc->cc_current = pcg;
   2706 			continue;
   2707 		}
   2708 
   2709 		/*
   2710 		 * Can't free to either group: try the slow path.
   2711 		 * If put_slow() releases the object for us, it
   2712 		 * will return false.  Otherwise we need to retry.
   2713 		 */
   2714 		if (!pool_cache_put_slow(cc, s, object))
   2715 			break;
   2716 	}
   2717 }
   2718 
   2719 /*
   2720  * pool_cache_xcall:
   2721  *
   2722  *	Transfer objects from the per-CPU cache to the global cache.
   2723  *	Run within a cross-call thread.
   2724  */
   2725 static void
   2726 pool_cache_xcall(pool_cache_t pc)
   2727 {
   2728 	pool_cache_cpu_t *cc;
   2729 	pcg_t *prev, *cur, **list;
   2730 	int s;
   2731 
   2732 	s = splvm();
   2733 	mutex_enter(&pc->pc_lock);
   2734 	cc = pc->pc_cpus[curcpu()->ci_index];
   2735 	cur = cc->cc_current;
   2736 	cc->cc_current = __UNCONST(&pcg_dummy);
   2737 	prev = cc->cc_previous;
   2738 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2739 	if (cur != &pcg_dummy) {
   2740 		if (cur->pcg_avail == cur->pcg_size) {
   2741 			list = &pc->pc_fullgroups;
   2742 			pc->pc_nfull++;
   2743 		} else if (cur->pcg_avail == 0) {
   2744 			list = &pc->pc_emptygroups;
   2745 			pc->pc_nempty++;
   2746 		} else {
   2747 			list = &pc->pc_partgroups;
   2748 			pc->pc_npart++;
   2749 		}
   2750 		cur->pcg_next = *list;
   2751 		*list = cur;
   2752 	}
   2753 	if (prev != &pcg_dummy) {
   2754 		if (prev->pcg_avail == prev->pcg_size) {
   2755 			list = &pc->pc_fullgroups;
   2756 			pc->pc_nfull++;
   2757 		} else if (prev->pcg_avail == 0) {
   2758 			list = &pc->pc_emptygroups;
   2759 			pc->pc_nempty++;
   2760 		} else {
   2761 			list = &pc->pc_partgroups;
   2762 			pc->pc_npart++;
   2763 		}
   2764 		prev->pcg_next = *list;
   2765 		*list = prev;
   2766 	}
   2767 	mutex_exit(&pc->pc_lock);
   2768 	splx(s);
   2769 }
   2770 
   2771 /*
   2772  * Pool backend allocators.
   2773  *
   2774  * Each pool has a backend allocator that handles allocation, deallocation,
   2775  * and any additional draining that might be needed.
   2776  *
   2777  * We provide two standard allocators:
   2778  *
   2779  *	pool_allocator_kmem - the default when no allocator is specified
   2780  *
   2781  *	pool_allocator_nointr - used for pools that will not be accessed
   2782  *	in interrupt context.
   2783  */
   2784 void	*pool_page_alloc(struct pool *, int);
   2785 void	pool_page_free(struct pool *, void *);
   2786 
   2787 #ifdef POOL_SUBPAGE
   2788 struct pool_allocator pool_allocator_kmem_fullpage = {
   2789 	pool_page_alloc, pool_page_free, 0,
   2790 	.pa_backingmapptr = &kmem_map,
   2791 };
   2792 #else
   2793 struct pool_allocator pool_allocator_kmem = {
   2794 	pool_page_alloc, pool_page_free, 0,
   2795 	.pa_backingmapptr = &kmem_map,
   2796 };
   2797 #endif
   2798 
   2799 void	*pool_page_alloc_nointr(struct pool *, int);
   2800 void	pool_page_free_nointr(struct pool *, void *);
   2801 
   2802 #ifdef POOL_SUBPAGE
   2803 struct pool_allocator pool_allocator_nointr_fullpage = {
   2804 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2805 	.pa_backingmapptr = &kernel_map,
   2806 };
   2807 #else
   2808 struct pool_allocator pool_allocator_nointr = {
   2809 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2810 	.pa_backingmapptr = &kernel_map,
   2811 };
   2812 #endif
   2813 
   2814 #ifdef POOL_SUBPAGE
   2815 void	*pool_subpage_alloc(struct pool *, int);
   2816 void	pool_subpage_free(struct pool *, void *);
   2817 
   2818 struct pool_allocator pool_allocator_kmem = {
   2819 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2820 	.pa_backingmapptr = &kmem_map,
   2821 };
   2822 
   2823 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2824 void	pool_subpage_free_nointr(struct pool *, void *);
   2825 
   2826 struct pool_allocator pool_allocator_nointr = {
   2827 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2828 	.pa_backingmapptr = &kmem_map,
   2829 };
   2830 #endif /* POOL_SUBPAGE */
   2831 
   2832 static void *
   2833 pool_allocator_alloc(struct pool *pp, int flags)
   2834 {
   2835 	struct pool_allocator *pa = pp->pr_alloc;
   2836 	void *res;
   2837 
   2838 	res = (*pa->pa_alloc)(pp, flags);
   2839 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2840 		/*
   2841 		 * We only run the drain hook here if PR_NOWAIT.
   2842 		 * In other cases, the hook will be run in
   2843 		 * pool_reclaim().
   2844 		 */
   2845 		if (pp->pr_drain_hook != NULL) {
   2846 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2847 			res = (*pa->pa_alloc)(pp, flags);
   2848 		}
   2849 	}
   2850 	return res;
   2851 }
   2852 
   2853 static void
   2854 pool_allocator_free(struct pool *pp, void *v)
   2855 {
   2856 	struct pool_allocator *pa = pp->pr_alloc;
   2857 
   2858 	(*pa->pa_free)(pp, v);
   2859 }
   2860 
   2861 void *
   2862 pool_page_alloc(struct pool *pp, int flags)
   2863 {
   2864 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2865 
   2866 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2867 }
   2868 
   2869 void
   2870 pool_page_free(struct pool *pp, void *v)
   2871 {
   2872 
   2873 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2874 }
   2875 
   2876 static void *
   2877 pool_page_alloc_meta(struct pool *pp, int flags)
   2878 {
   2879 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2880 
   2881 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2882 }
   2883 
   2884 static void
   2885 pool_page_free_meta(struct pool *pp, void *v)
   2886 {
   2887 
   2888 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2889 }
   2890 
   2891 #ifdef POOL_SUBPAGE
   2892 /* Sub-page allocator, for machines with large hardware pages. */
   2893 void *
   2894 pool_subpage_alloc(struct pool *pp, int flags)
   2895 {
   2896 	return pool_get(&psppool, flags);
   2897 }
   2898 
   2899 void
   2900 pool_subpage_free(struct pool *pp, void *v)
   2901 {
   2902 	pool_put(&psppool, v);
   2903 }
   2904 
   2905 /* We don't provide a real nointr allocator.  Maybe later. */
   2906 void *
   2907 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2908 {
   2909 
   2910 	return (pool_subpage_alloc(pp, flags));
   2911 }
   2912 
   2913 void
   2914 pool_subpage_free_nointr(struct pool *pp, void *v)
   2915 {
   2916 
   2917 	pool_subpage_free(pp, v);
   2918 }
   2919 #endif /* POOL_SUBPAGE */
   2920 void *
   2921 pool_page_alloc_nointr(struct pool *pp, int flags)
   2922 {
   2923 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2924 
   2925 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2926 }
   2927 
   2928 void
   2929 pool_page_free_nointr(struct pool *pp, void *v)
   2930 {
   2931 
   2932 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2933 }
   2934 
   2935 #if defined(DDB)
   2936 static bool
   2937 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2938 {
   2939 
   2940 	return (uintptr_t)ph->ph_page <= addr &&
   2941 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2942 }
   2943 
   2944 static bool
   2945 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2946 {
   2947 
   2948 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2949 }
   2950 
   2951 static bool
   2952 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2953 {
   2954 	int i;
   2955 
   2956 	if (pcg == NULL) {
   2957 		return false;
   2958 	}
   2959 	for (i = 0; i < pcg->pcg_avail; i++) {
   2960 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2961 			return true;
   2962 		}
   2963 	}
   2964 	return false;
   2965 }
   2966 
   2967 static bool
   2968 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2969 {
   2970 
   2971 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2972 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2973 		pool_item_bitmap_t *bitmap =
   2974 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2975 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2976 
   2977 		return (*bitmap & mask) == 0;
   2978 	} else {
   2979 		struct pool_item *pi;
   2980 
   2981 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2982 			if (pool_in_item(pp, pi, addr)) {
   2983 				return false;
   2984 			}
   2985 		}
   2986 		return true;
   2987 	}
   2988 }
   2989 
   2990 void
   2991 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2992 {
   2993 	struct pool *pp;
   2994 
   2995 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2996 		struct pool_item_header *ph;
   2997 		uintptr_t item;
   2998 		bool allocated = true;
   2999 		bool incache = false;
   3000 		bool incpucache = false;
   3001 		char cpucachestr[32];
   3002 
   3003 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3004 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3005 				if (pool_in_page(pp, ph, addr)) {
   3006 					goto found;
   3007 				}
   3008 			}
   3009 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3010 				if (pool_in_page(pp, ph, addr)) {
   3011 					allocated =
   3012 					    pool_allocated(pp, ph, addr);
   3013 					goto found;
   3014 				}
   3015 			}
   3016 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3017 				if (pool_in_page(pp, ph, addr)) {
   3018 					allocated = false;
   3019 					goto found;
   3020 				}
   3021 			}
   3022 			continue;
   3023 		} else {
   3024 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3025 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3026 				continue;
   3027 			}
   3028 			allocated = pool_allocated(pp, ph, addr);
   3029 		}
   3030 found:
   3031 		if (allocated && pp->pr_cache) {
   3032 			pool_cache_t pc = pp->pr_cache;
   3033 			struct pool_cache_group *pcg;
   3034 			int i;
   3035 
   3036 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3037 			    pcg = pcg->pcg_next) {
   3038 				if (pool_in_cg(pp, pcg, addr)) {
   3039 					incache = true;
   3040 					goto print;
   3041 				}
   3042 			}
   3043 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3044 				pool_cache_cpu_t *cc;
   3045 
   3046 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3047 					continue;
   3048 				}
   3049 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3050 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3051 					struct cpu_info *ci =
   3052 					    cpu_lookup(i);
   3053 
   3054 					incpucache = true;
   3055 					snprintf(cpucachestr,
   3056 					    sizeof(cpucachestr),
   3057 					    "cached by CPU %u",
   3058 					    ci->ci_index);
   3059 					goto print;
   3060 				}
   3061 			}
   3062 		}
   3063 print:
   3064 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3065 		item = item + rounddown(addr - item, pp->pr_size);
   3066 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3067 		    (void *)addr, item, (size_t)(addr - item),
   3068 		    pp->pr_wchan,
   3069 		    incpucache ? cpucachestr :
   3070 		    incache ? "cached" : allocated ? "allocated" : "free");
   3071 	}
   3072 }
   3073 #endif /* defined(DDB) */
   3074