subr_pool.c revision 1.182.4.3 1 /* $NetBSD: subr_pool.c,v 1.182.4.3 2011/03/05 20:55:19 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.182.4.3 2011/03/05 20:55:19 rmind Exp $");
36
37 #include "opt_ddb.h"
38 #include "opt_pool.h"
39 #include "opt_poollog.h"
40 #include "opt_lockdebug.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitops.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/pool.h>
50 #include <sys/syslog.h>
51 #include <sys/debug.h>
52 #include <sys/lockdebug.h>
53 #include <sys/xcall.h>
54 #include <sys/cpu.h>
55 #include <sys/atomic.h>
56
57 #include <uvm/uvm_extern.h>
58 #ifdef DIAGNOSTIC
59 #include <uvm/uvm_km.h> /* uvm_km_va_drain */
60 #endif
61
62 /*
63 * Pool resource management utility.
64 *
65 * Memory is allocated in pages which are split into pieces according to
66 * the pool item size. Each page is kept on one of three lists in the
67 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
68 * for empty, full and partially-full pages respectively. The individual
69 * pool items are on a linked list headed by `ph_itemlist' in each page
70 * header. The memory for building the page list is either taken from
71 * the allocated pages themselves (for small pool items) or taken from
72 * an internal pool of page headers (`phpool').
73 */
74
75 /* List of all pools */
76 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
77
78 /* Private pool for page header structures */
79 #define PHPOOL_MAX 8
80 static struct pool phpool[PHPOOL_MAX];
81 #define PHPOOL_FREELIST_NELEM(idx) \
82 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
83
84 #ifdef POOL_SUBPAGE
85 /* Pool of subpages for use by normal pools. */
86 static struct pool psppool;
87 #endif
88
89 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
90 SLIST_HEAD_INITIALIZER(pa_deferinitq);
91
92 static void *pool_page_alloc_meta(struct pool *, int);
93 static void pool_page_free_meta(struct pool *, void *);
94
95 /* allocator for pool metadata */
96 struct pool_allocator pool_allocator_meta = {
97 pool_page_alloc_meta, pool_page_free_meta,
98 .pa_backingmapptr = &kmem_map,
99 };
100
101 /* # of seconds to retain page after last use */
102 int pool_inactive_time = 10;
103
104 /* Next candidate for drainage (see pool_drain()) */
105 static struct pool *drainpp;
106
107 /* This lock protects both pool_head and drainpp. */
108 static kmutex_t pool_head_lock;
109 static kcondvar_t pool_busy;
110
111 /* This lock protects initialization of a potentially shared pool allocator */
112 static kmutex_t pool_allocator_lock;
113
114 typedef uint32_t pool_item_bitmap_t;
115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
116 #define BITMAP_MASK (BITMAP_SIZE - 1)
117
118 struct pool_item_header {
119 /* Page headers */
120 LIST_ENTRY(pool_item_header)
121 ph_pagelist; /* pool page list */
122 SPLAY_ENTRY(pool_item_header)
123 ph_node; /* Off-page page headers */
124 void * ph_page; /* this page's address */
125 uint32_t ph_time; /* last referenced */
126 uint16_t ph_nmissing; /* # of chunks in use */
127 uint16_t ph_off; /* start offset in page */
128 union {
129 /* !PR_NOTOUCH */
130 struct {
131 LIST_HEAD(, pool_item)
132 phu_itemlist; /* chunk list for this page */
133 } phu_normal;
134 /* PR_NOTOUCH */
135 struct {
136 pool_item_bitmap_t phu_bitmap[1];
137 } phu_notouch;
138 } ph_u;
139 };
140 #define ph_itemlist ph_u.phu_normal.phu_itemlist
141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
142
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 u_int pi_magic;
146 #endif
147 #define PI_MAGIC 0xdeaddeadU
148 /* Other entries use only this list entry */
149 LIST_ENTRY(pool_item) pi_list;
150 };
151
152 #define POOL_NEEDS_CATCHUP(pp) \
153 ((pp)->pr_nitems < (pp)->pr_minitems)
154
155 /*
156 * Pool cache management.
157 *
158 * Pool caches provide a way for constructed objects to be cached by the
159 * pool subsystem. This can lead to performance improvements by avoiding
160 * needless object construction/destruction; it is deferred until absolutely
161 * necessary.
162 *
163 * Caches are grouped into cache groups. Each cache group references up
164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
165 * object from the pool, it calls the object's constructor and places it
166 * into a cache group. When a cache group frees an object back to the
167 * pool, it first calls the object's destructor. This allows the object
168 * to persist in constructed form while freed to the cache.
169 *
170 * The pool references each cache, so that when a pool is drained by the
171 * pagedaemon, it can drain each individual cache as well. Each time a
172 * cache is drained, the most idle cache group is freed to the pool in
173 * its entirety.
174 *
175 * Pool caches are layed on top of pools. By layering them, we can avoid
176 * the complexity of cache management for pools which would not benefit
177 * from it.
178 */
179
180 static struct pool pcg_normal_pool;
181 static struct pool pcg_large_pool;
182 static struct pool cache_pool;
183 static struct pool cache_cpu_pool;
184
185 /* List of all caches. */
186 TAILQ_HEAD(,pool_cache) pool_cache_head =
187 TAILQ_HEAD_INITIALIZER(pool_cache_head);
188
189 int pool_cache_disable; /* global disable for caching */
190 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
191
192 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
193 void *);
194 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
195 void **, paddr_t *, int);
196 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
197 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
198 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
199 static void pool_cache_xcall(pool_cache_t);
200
201 static int pool_catchup(struct pool *);
202 static void pool_prime_page(struct pool *, void *,
203 struct pool_item_header *);
204 static void pool_update_curpage(struct pool *);
205
206 static int pool_grow(struct pool *, int);
207 static void *pool_allocator_alloc(struct pool *, int);
208 static void pool_allocator_free(struct pool *, void *);
209
210 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
211 void (*)(const char *, ...));
212 static void pool_print1(struct pool *, const char *,
213 void (*)(const char *, ...));
214
215 static int pool_chk_page(struct pool *, const char *,
216 struct pool_item_header *);
217
218 /*
219 * Pool log entry. An array of these is allocated in pool_init().
220 */
221 struct pool_log {
222 const char *pl_file;
223 long pl_line;
224 int pl_action;
225 #define PRLOG_GET 1
226 #define PRLOG_PUT 2
227 void *pl_addr;
228 };
229
230 #ifdef POOL_DIAGNOSTIC
231 /* Number of entries in pool log buffers */
232 #ifndef POOL_LOGSIZE
233 #define POOL_LOGSIZE 10
234 #endif
235
236 int pool_logsize = POOL_LOGSIZE;
237
238 static inline void
239 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
240 {
241 int n;
242 struct pool_log *pl;
243
244 if ((pp->pr_roflags & PR_LOGGING) == 0)
245 return;
246
247 if (pp->pr_log == NULL) {
248 if (kmem_map != NULL)
249 pp->pr_log = malloc(
250 pool_logsize * sizeof(struct pool_log),
251 M_TEMP, M_NOWAIT | M_ZERO);
252 if (pp->pr_log == NULL)
253 return;
254 pp->pr_curlogentry = 0;
255 pp->pr_logsize = pool_logsize;
256 }
257
258 /*
259 * Fill in the current entry. Wrap around and overwrite
260 * the oldest entry if necessary.
261 */
262 n = pp->pr_curlogentry;
263 pl = &pp->pr_log[n];
264 pl->pl_file = file;
265 pl->pl_line = line;
266 pl->pl_action = action;
267 pl->pl_addr = v;
268 if (++n >= pp->pr_logsize)
269 n = 0;
270 pp->pr_curlogentry = n;
271 }
272
273 static void
274 pr_printlog(struct pool *pp, struct pool_item *pi,
275 void (*pr)(const char *, ...))
276 {
277 int i = pp->pr_logsize;
278 int n = pp->pr_curlogentry;
279
280 if (pp->pr_log == NULL)
281 return;
282
283 /*
284 * Print all entries in this pool's log.
285 */
286 while (i-- > 0) {
287 struct pool_log *pl = &pp->pr_log[n];
288 if (pl->pl_action != 0) {
289 if (pi == NULL || pi == pl->pl_addr) {
290 (*pr)("\tlog entry %d:\n", i);
291 (*pr)("\t\taction = %s, addr = %p\n",
292 pl->pl_action == PRLOG_GET ? "get" : "put",
293 pl->pl_addr);
294 (*pr)("\t\tfile: %s at line %lu\n",
295 pl->pl_file, pl->pl_line);
296 }
297 }
298 if (++n >= pp->pr_logsize)
299 n = 0;
300 }
301 }
302
303 static inline void
304 pr_enter(struct pool *pp, const char *file, long line)
305 {
306
307 if (__predict_false(pp->pr_entered_file != NULL)) {
308 printf("pool %s: reentrancy at file %s line %ld\n",
309 pp->pr_wchan, file, line);
310 printf(" previous entry at file %s line %ld\n",
311 pp->pr_entered_file, pp->pr_entered_line);
312 panic("pr_enter");
313 }
314
315 pp->pr_entered_file = file;
316 pp->pr_entered_line = line;
317 }
318
319 static inline void
320 pr_leave(struct pool *pp)
321 {
322
323 if (__predict_false(pp->pr_entered_file == NULL)) {
324 printf("pool %s not entered?\n", pp->pr_wchan);
325 panic("pr_leave");
326 }
327
328 pp->pr_entered_file = NULL;
329 pp->pr_entered_line = 0;
330 }
331
332 static inline void
333 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
334 {
335
336 if (pp->pr_entered_file != NULL)
337 (*pr)("\n\tcurrently entered from file %s line %ld\n",
338 pp->pr_entered_file, pp->pr_entered_line);
339 }
340 #else
341 #define pr_log(pp, v, action, file, line)
342 #define pr_printlog(pp, pi, pr)
343 #define pr_enter(pp, file, line)
344 #define pr_leave(pp)
345 #define pr_enter_check(pp, pr)
346 #endif /* POOL_DIAGNOSTIC */
347
348 static inline unsigned int
349 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
350 const void *v)
351 {
352 const char *cp = v;
353 unsigned int idx;
354
355 KASSERT(pp->pr_roflags & PR_NOTOUCH);
356 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
357 KASSERT(idx < pp->pr_itemsperpage);
358 return idx;
359 }
360
361 static inline void
362 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
363 void *obj)
364 {
365 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
366 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
367 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
368
369 KASSERT((*bitmap & mask) == 0);
370 *bitmap |= mask;
371 }
372
373 static inline void *
374 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
375 {
376 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
377 unsigned int idx;
378 int i;
379
380 for (i = 0; ; i++) {
381 int bit;
382
383 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
384 bit = ffs32(bitmap[i]);
385 if (bit) {
386 pool_item_bitmap_t mask;
387
388 bit--;
389 idx = (i * BITMAP_SIZE) + bit;
390 mask = 1 << bit;
391 KASSERT((bitmap[i] & mask) != 0);
392 bitmap[i] &= ~mask;
393 break;
394 }
395 }
396 KASSERT(idx < pp->pr_itemsperpage);
397 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
398 }
399
400 static inline void
401 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
402 {
403 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
404 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
405 int i;
406
407 for (i = 0; i < n; i++) {
408 bitmap[i] = (pool_item_bitmap_t)-1;
409 }
410 }
411
412 static inline int
413 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
414 {
415
416 /*
417 * we consider pool_item_header with smaller ph_page bigger.
418 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
419 */
420
421 if (a->ph_page < b->ph_page)
422 return (1);
423 else if (a->ph_page > b->ph_page)
424 return (-1);
425 else
426 return (0);
427 }
428
429 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
430 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
431
432 static inline struct pool_item_header *
433 pr_find_pagehead_noalign(struct pool *pp, void *v)
434 {
435 struct pool_item_header *ph, tmp;
436
437 tmp.ph_page = (void *)(uintptr_t)v;
438 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
439 if (ph == NULL) {
440 ph = SPLAY_ROOT(&pp->pr_phtree);
441 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
442 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
443 }
444 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
445 }
446
447 return ph;
448 }
449
450 /*
451 * Return the pool page header based on item address.
452 */
453 static inline struct pool_item_header *
454 pr_find_pagehead(struct pool *pp, void *v)
455 {
456 struct pool_item_header *ph, tmp;
457
458 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
459 ph = pr_find_pagehead_noalign(pp, v);
460 } else {
461 void *page =
462 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
463
464 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
465 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
466 } else {
467 tmp.ph_page = page;
468 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
469 }
470 }
471
472 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
473 ((char *)ph->ph_page <= (char *)v &&
474 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
475 return ph;
476 }
477
478 static void
479 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
480 {
481 struct pool_item_header *ph;
482
483 while ((ph = LIST_FIRST(pq)) != NULL) {
484 LIST_REMOVE(ph, ph_pagelist);
485 pool_allocator_free(pp, ph->ph_page);
486 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
487 pool_put(pp->pr_phpool, ph);
488 }
489 }
490
491 /*
492 * Remove a page from the pool.
493 */
494 static inline void
495 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
496 struct pool_pagelist *pq)
497 {
498
499 KASSERT(mutex_owned(&pp->pr_lock));
500
501 /*
502 * If the page was idle, decrement the idle page count.
503 */
504 if (ph->ph_nmissing == 0) {
505 #ifdef DIAGNOSTIC
506 if (pp->pr_nidle == 0)
507 panic("pr_rmpage: nidle inconsistent");
508 if (pp->pr_nitems < pp->pr_itemsperpage)
509 panic("pr_rmpage: nitems inconsistent");
510 #endif
511 pp->pr_nidle--;
512 }
513
514 pp->pr_nitems -= pp->pr_itemsperpage;
515
516 /*
517 * Unlink the page from the pool and queue it for release.
518 */
519 LIST_REMOVE(ph, ph_pagelist);
520 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
521 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
522 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
523
524 pp->pr_npages--;
525 pp->pr_npagefree++;
526
527 pool_update_curpage(pp);
528 }
529
530 static bool
531 pa_starved_p(struct pool_allocator *pa)
532 {
533
534 if (pa->pa_backingmap != NULL) {
535 return vm_map_starved_p(pa->pa_backingmap);
536 }
537 return false;
538 }
539
540 static int
541 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
542 {
543 struct pool *pp = obj;
544 struct pool_allocator *pa = pp->pr_alloc;
545
546 KASSERT(&pp->pr_reclaimerentry == ce);
547 pool_reclaim(pp);
548 if (!pa_starved_p(pa)) {
549 return CALLBACK_CHAIN_ABORT;
550 }
551 return CALLBACK_CHAIN_CONTINUE;
552 }
553
554 static void
555 pool_reclaim_register(struct pool *pp)
556 {
557 struct vm_map *map = pp->pr_alloc->pa_backingmap;
558 int s;
559
560 if (map == NULL) {
561 return;
562 }
563
564 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
565 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
566 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
567 splx(s);
568
569 #ifdef DIAGNOSTIC
570 /* Diagnostic drain attempt. */
571 uvm_km_va_drain(map, 0);
572 #endif
573 }
574
575 static void
576 pool_reclaim_unregister(struct pool *pp)
577 {
578 struct vm_map *map = pp->pr_alloc->pa_backingmap;
579 int s;
580
581 if (map == NULL) {
582 return;
583 }
584
585 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
586 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
587 &pp->pr_reclaimerentry);
588 splx(s);
589 }
590
591 static void
592 pa_reclaim_register(struct pool_allocator *pa)
593 {
594 struct vm_map *map = *pa->pa_backingmapptr;
595 struct pool *pp;
596
597 KASSERT(pa->pa_backingmap == NULL);
598 if (map == NULL) {
599 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
600 return;
601 }
602 pa->pa_backingmap = map;
603 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
604 pool_reclaim_register(pp);
605 }
606 }
607
608 /*
609 * Initialize all the pools listed in the "pools" link set.
610 */
611 void
612 pool_subsystem_init(void)
613 {
614 struct pool_allocator *pa;
615
616 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
617 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
618 cv_init(&pool_busy, "poolbusy");
619
620 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
621 KASSERT(pa->pa_backingmapptr != NULL);
622 KASSERT(*pa->pa_backingmapptr != NULL);
623 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
624 pa_reclaim_register(pa);
625 }
626
627 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
628 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
629
630 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
631 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
632 }
633
634 /*
635 * Initialize the given pool resource structure.
636 *
637 * We export this routine to allow other kernel parts to declare
638 * static pools that must be initialized before malloc() is available.
639 */
640 void
641 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
642 const char *wchan, struct pool_allocator *palloc, int ipl)
643 {
644 struct pool *pp1;
645 size_t trysize, phsize;
646 int off, slack;
647
648 #ifdef DEBUG
649 /*
650 * Check that the pool hasn't already been initialised and
651 * added to the list of all pools.
652 */
653 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
654 if (pp == pp1)
655 panic("pool_init: pool %s already initialised",
656 wchan);
657 }
658 #endif
659
660 #ifdef POOL_DIAGNOSTIC
661 /*
662 * Always log if POOL_DIAGNOSTIC is defined.
663 */
664 if (pool_logsize != 0)
665 flags |= PR_LOGGING;
666 #endif
667
668 if (palloc == NULL)
669 palloc = &pool_allocator_kmem;
670 #ifdef POOL_SUBPAGE
671 if (size > palloc->pa_pagesz) {
672 if (palloc == &pool_allocator_kmem)
673 palloc = &pool_allocator_kmem_fullpage;
674 else if (palloc == &pool_allocator_nointr)
675 palloc = &pool_allocator_nointr_fullpage;
676 }
677 #endif /* POOL_SUBPAGE */
678 if (!cold)
679 mutex_enter(&pool_allocator_lock);
680 if (palloc->pa_refcnt++ == 0) {
681 if (palloc->pa_pagesz == 0)
682 palloc->pa_pagesz = PAGE_SIZE;
683
684 TAILQ_INIT(&palloc->pa_list);
685
686 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
687 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
688 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
689
690 if (palloc->pa_backingmapptr != NULL) {
691 pa_reclaim_register(palloc);
692 }
693 }
694 if (!cold)
695 mutex_exit(&pool_allocator_lock);
696
697 if (align == 0)
698 align = ALIGN(1);
699
700 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
701 size = sizeof(struct pool_item);
702
703 size = roundup(size, align);
704 #ifdef DIAGNOSTIC
705 if (size > palloc->pa_pagesz)
706 panic("pool_init: pool item size (%zu) too large", size);
707 #endif
708
709 /*
710 * Initialize the pool structure.
711 */
712 LIST_INIT(&pp->pr_emptypages);
713 LIST_INIT(&pp->pr_fullpages);
714 LIST_INIT(&pp->pr_partpages);
715 pp->pr_cache = NULL;
716 pp->pr_curpage = NULL;
717 pp->pr_npages = 0;
718 pp->pr_minitems = 0;
719 pp->pr_minpages = 0;
720 pp->pr_maxpages = UINT_MAX;
721 pp->pr_roflags = flags;
722 pp->pr_flags = 0;
723 pp->pr_size = size;
724 pp->pr_align = align;
725 pp->pr_wchan = wchan;
726 pp->pr_alloc = palloc;
727 pp->pr_nitems = 0;
728 pp->pr_nout = 0;
729 pp->pr_hardlimit = UINT_MAX;
730 pp->pr_hardlimit_warning = NULL;
731 pp->pr_hardlimit_ratecap.tv_sec = 0;
732 pp->pr_hardlimit_ratecap.tv_usec = 0;
733 pp->pr_hardlimit_warning_last.tv_sec = 0;
734 pp->pr_hardlimit_warning_last.tv_usec = 0;
735 pp->pr_drain_hook = NULL;
736 pp->pr_drain_hook_arg = NULL;
737 pp->pr_freecheck = NULL;
738
739 /*
740 * Decide whether to put the page header off page to avoid
741 * wasting too large a part of the page or too big item.
742 * Off-page page headers go on a hash table, so we can match
743 * a returned item with its header based on the page address.
744 * We use 1/16 of the page size and about 8 times of the item
745 * size as the threshold (XXX: tune)
746 *
747 * However, we'll put the header into the page if we can put
748 * it without wasting any items.
749 *
750 * Silently enforce `0 <= ioff < align'.
751 */
752 pp->pr_itemoffset = ioff %= align;
753 /* See the comment below about reserved bytes. */
754 trysize = palloc->pa_pagesz - ((align - ioff) % align);
755 phsize = ALIGN(sizeof(struct pool_item_header));
756 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
757 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
758 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
759 /* Use the end of the page for the page header */
760 pp->pr_roflags |= PR_PHINPAGE;
761 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
762 } else {
763 /* The page header will be taken from our page header pool */
764 pp->pr_phoffset = 0;
765 off = palloc->pa_pagesz;
766 SPLAY_INIT(&pp->pr_phtree);
767 }
768
769 /*
770 * Alignment is to take place at `ioff' within the item. This means
771 * we must reserve up to `align - 1' bytes on the page to allow
772 * appropriate positioning of each item.
773 */
774 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
775 KASSERT(pp->pr_itemsperpage != 0);
776 if ((pp->pr_roflags & PR_NOTOUCH)) {
777 int idx;
778
779 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
780 idx++) {
781 /* nothing */
782 }
783 if (idx >= PHPOOL_MAX) {
784 /*
785 * if you see this panic, consider to tweak
786 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
787 */
788 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
789 pp->pr_wchan, pp->pr_itemsperpage);
790 }
791 pp->pr_phpool = &phpool[idx];
792 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
793 pp->pr_phpool = &phpool[0];
794 }
795 #if defined(DIAGNOSTIC)
796 else {
797 pp->pr_phpool = NULL;
798 }
799 #endif
800
801 /*
802 * Use the slack between the chunks and the page header
803 * for "cache coloring".
804 */
805 slack = off - pp->pr_itemsperpage * pp->pr_size;
806 pp->pr_maxcolor = (slack / align) * align;
807 pp->pr_curcolor = 0;
808
809 pp->pr_nget = 0;
810 pp->pr_nfail = 0;
811 pp->pr_nput = 0;
812 pp->pr_npagealloc = 0;
813 pp->pr_npagefree = 0;
814 pp->pr_hiwat = 0;
815 pp->pr_nidle = 0;
816 pp->pr_refcnt = 0;
817
818 pp->pr_log = NULL;
819
820 pp->pr_entered_file = NULL;
821 pp->pr_entered_line = 0;
822
823 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
824 cv_init(&pp->pr_cv, wchan);
825 pp->pr_ipl = ipl;
826
827 /*
828 * Initialize private page header pool and cache magazine pool if we
829 * haven't done so yet.
830 * XXX LOCKING.
831 */
832 if (phpool[0].pr_size == 0) {
833 int idx;
834 for (idx = 0; idx < PHPOOL_MAX; idx++) {
835 static char phpool_names[PHPOOL_MAX][6+1+6+1];
836 int nelem;
837 size_t sz;
838
839 nelem = PHPOOL_FREELIST_NELEM(idx);
840 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
841 "phpool-%d", nelem);
842 sz = sizeof(struct pool_item_header);
843 if (nelem) {
844 sz = offsetof(struct pool_item_header,
845 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
846 }
847 pool_init(&phpool[idx], sz, 0, 0, 0,
848 phpool_names[idx], &pool_allocator_meta, IPL_VM);
849 }
850 #ifdef POOL_SUBPAGE
851 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
852 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
853 #endif
854
855 size = sizeof(pcg_t) +
856 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
857 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
858 "pcgnormal", &pool_allocator_meta, IPL_VM);
859
860 size = sizeof(pcg_t) +
861 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
862 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
863 "pcglarge", &pool_allocator_meta, IPL_VM);
864 }
865
866 /* Insert into the list of all pools. */
867 if (!cold)
868 mutex_enter(&pool_head_lock);
869 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
870 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
871 break;
872 }
873 if (pp1 == NULL)
874 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
875 else
876 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
877 if (!cold)
878 mutex_exit(&pool_head_lock);
879
880 /* Insert this into the list of pools using this allocator. */
881 if (!cold)
882 mutex_enter(&palloc->pa_lock);
883 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
884 if (!cold)
885 mutex_exit(&palloc->pa_lock);
886
887 pool_reclaim_register(pp);
888 }
889
890 /*
891 * De-commision a pool resource.
892 */
893 void
894 pool_destroy(struct pool *pp)
895 {
896 struct pool_pagelist pq;
897 struct pool_item_header *ph;
898
899 /* Remove from global pool list */
900 mutex_enter(&pool_head_lock);
901 while (pp->pr_refcnt != 0)
902 cv_wait(&pool_busy, &pool_head_lock);
903 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
904 if (drainpp == pp)
905 drainpp = NULL;
906 mutex_exit(&pool_head_lock);
907
908 /* Remove this pool from its allocator's list of pools. */
909 pool_reclaim_unregister(pp);
910 mutex_enter(&pp->pr_alloc->pa_lock);
911 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
912 mutex_exit(&pp->pr_alloc->pa_lock);
913
914 mutex_enter(&pool_allocator_lock);
915 if (--pp->pr_alloc->pa_refcnt == 0)
916 mutex_destroy(&pp->pr_alloc->pa_lock);
917 mutex_exit(&pool_allocator_lock);
918
919 mutex_enter(&pp->pr_lock);
920
921 KASSERT(pp->pr_cache == NULL);
922
923 #ifdef DIAGNOSTIC
924 if (pp->pr_nout != 0) {
925 pr_printlog(pp, NULL, printf);
926 panic("pool_destroy: pool busy: still out: %u",
927 pp->pr_nout);
928 }
929 #endif
930
931 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
932 KASSERT(LIST_EMPTY(&pp->pr_partpages));
933
934 /* Remove all pages */
935 LIST_INIT(&pq);
936 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
937 pr_rmpage(pp, ph, &pq);
938
939 mutex_exit(&pp->pr_lock);
940
941 pr_pagelist_free(pp, &pq);
942
943 #ifdef POOL_DIAGNOSTIC
944 if (pp->pr_log != NULL) {
945 free(pp->pr_log, M_TEMP);
946 pp->pr_log = NULL;
947 }
948 #endif
949
950 cv_destroy(&pp->pr_cv);
951 mutex_destroy(&pp->pr_lock);
952 }
953
954 void
955 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
956 {
957
958 /* XXX no locking -- must be used just after pool_init() */
959 #ifdef DIAGNOSTIC
960 if (pp->pr_drain_hook != NULL)
961 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
962 #endif
963 pp->pr_drain_hook = fn;
964 pp->pr_drain_hook_arg = arg;
965 }
966
967 static struct pool_item_header *
968 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
969 {
970 struct pool_item_header *ph;
971
972 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
973 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
974 else
975 ph = pool_get(pp->pr_phpool, flags);
976
977 return (ph);
978 }
979
980 /*
981 * Grab an item from the pool.
982 */
983 void *
984 #ifdef POOL_DIAGNOSTIC
985 _pool_get(struct pool *pp, int flags, const char *file, long line)
986 #else
987 pool_get(struct pool *pp, int flags)
988 #endif
989 {
990 struct pool_item *pi;
991 struct pool_item_header *ph;
992 void *v;
993
994 #ifdef DIAGNOSTIC
995 if (pp->pr_itemsperpage == 0)
996 panic("pool_get: pool '%s': pr_itemsperpage is zero, "
997 "pool not initialized?", pp->pr_wchan);
998 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
999 !cold && panicstr == NULL)
1000 panic("pool '%s' is IPL_NONE, but called from "
1001 "interrupt context\n", pp->pr_wchan);
1002 #endif
1003 if (flags & PR_WAITOK) {
1004 ASSERT_SLEEPABLE();
1005 }
1006
1007 mutex_enter(&pp->pr_lock);
1008 pr_enter(pp, file, line);
1009
1010 startover:
1011 /*
1012 * Check to see if we've reached the hard limit. If we have,
1013 * and we can wait, then wait until an item has been returned to
1014 * the pool.
1015 */
1016 #ifdef DIAGNOSTIC
1017 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1018 pr_leave(pp);
1019 mutex_exit(&pp->pr_lock);
1020 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1021 }
1022 #endif
1023 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1024 if (pp->pr_drain_hook != NULL) {
1025 /*
1026 * Since the drain hook is going to free things
1027 * back to the pool, unlock, call the hook, re-lock,
1028 * and check the hardlimit condition again.
1029 */
1030 pr_leave(pp);
1031 mutex_exit(&pp->pr_lock);
1032 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1033 mutex_enter(&pp->pr_lock);
1034 pr_enter(pp, file, line);
1035 if (pp->pr_nout < pp->pr_hardlimit)
1036 goto startover;
1037 }
1038
1039 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1040 /*
1041 * XXX: A warning isn't logged in this case. Should
1042 * it be?
1043 */
1044 pp->pr_flags |= PR_WANTED;
1045 pr_leave(pp);
1046 cv_wait(&pp->pr_cv, &pp->pr_lock);
1047 pr_enter(pp, file, line);
1048 goto startover;
1049 }
1050
1051 /*
1052 * Log a message that the hard limit has been hit.
1053 */
1054 if (pp->pr_hardlimit_warning != NULL &&
1055 ratecheck(&pp->pr_hardlimit_warning_last,
1056 &pp->pr_hardlimit_ratecap))
1057 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1058
1059 pp->pr_nfail++;
1060
1061 pr_leave(pp);
1062 mutex_exit(&pp->pr_lock);
1063 return (NULL);
1064 }
1065
1066 /*
1067 * The convention we use is that if `curpage' is not NULL, then
1068 * it points at a non-empty bucket. In particular, `curpage'
1069 * never points at a page header which has PR_PHINPAGE set and
1070 * has no items in its bucket.
1071 */
1072 if ((ph = pp->pr_curpage) == NULL) {
1073 int error;
1074
1075 #ifdef DIAGNOSTIC
1076 if (pp->pr_nitems != 0) {
1077 mutex_exit(&pp->pr_lock);
1078 printf("pool_get: %s: curpage NULL, nitems %u\n",
1079 pp->pr_wchan, pp->pr_nitems);
1080 panic("pool_get: nitems inconsistent");
1081 }
1082 #endif
1083
1084 /*
1085 * Call the back-end page allocator for more memory.
1086 * Release the pool lock, as the back-end page allocator
1087 * may block.
1088 */
1089 pr_leave(pp);
1090 error = pool_grow(pp, flags);
1091 pr_enter(pp, file, line);
1092 if (error != 0) {
1093 /*
1094 * We were unable to allocate a page or item
1095 * header, but we released the lock during
1096 * allocation, so perhaps items were freed
1097 * back to the pool. Check for this case.
1098 */
1099 if (pp->pr_curpage != NULL)
1100 goto startover;
1101
1102 pp->pr_nfail++;
1103 pr_leave(pp);
1104 mutex_exit(&pp->pr_lock);
1105 return (NULL);
1106 }
1107
1108 /* Start the allocation process over. */
1109 goto startover;
1110 }
1111 if (pp->pr_roflags & PR_NOTOUCH) {
1112 #ifdef DIAGNOSTIC
1113 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1114 pr_leave(pp);
1115 mutex_exit(&pp->pr_lock);
1116 panic("pool_get: %s: page empty", pp->pr_wchan);
1117 }
1118 #endif
1119 v = pr_item_notouch_get(pp, ph);
1120 #ifdef POOL_DIAGNOSTIC
1121 pr_log(pp, v, PRLOG_GET, file, line);
1122 #endif
1123 } else {
1124 v = pi = LIST_FIRST(&ph->ph_itemlist);
1125 if (__predict_false(v == NULL)) {
1126 pr_leave(pp);
1127 mutex_exit(&pp->pr_lock);
1128 panic("pool_get: %s: page empty", pp->pr_wchan);
1129 }
1130 #ifdef DIAGNOSTIC
1131 if (__predict_false(pp->pr_nitems == 0)) {
1132 pr_leave(pp);
1133 mutex_exit(&pp->pr_lock);
1134 printf("pool_get: %s: items on itemlist, nitems %u\n",
1135 pp->pr_wchan, pp->pr_nitems);
1136 panic("pool_get: nitems inconsistent");
1137 }
1138 #endif
1139
1140 #ifdef POOL_DIAGNOSTIC
1141 pr_log(pp, v, PRLOG_GET, file, line);
1142 #endif
1143
1144 #ifdef DIAGNOSTIC
1145 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1146 pr_printlog(pp, pi, printf);
1147 panic("pool_get(%s): free list modified: "
1148 "magic=%x; page %p; item addr %p\n",
1149 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1150 }
1151 #endif
1152
1153 /*
1154 * Remove from item list.
1155 */
1156 LIST_REMOVE(pi, pi_list);
1157 }
1158 pp->pr_nitems--;
1159 pp->pr_nout++;
1160 if (ph->ph_nmissing == 0) {
1161 #ifdef DIAGNOSTIC
1162 if (__predict_false(pp->pr_nidle == 0))
1163 panic("pool_get: nidle inconsistent");
1164 #endif
1165 pp->pr_nidle--;
1166
1167 /*
1168 * This page was previously empty. Move it to the list of
1169 * partially-full pages. This page is already curpage.
1170 */
1171 LIST_REMOVE(ph, ph_pagelist);
1172 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1173 }
1174 ph->ph_nmissing++;
1175 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1176 #ifdef DIAGNOSTIC
1177 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1178 !LIST_EMPTY(&ph->ph_itemlist))) {
1179 pr_leave(pp);
1180 mutex_exit(&pp->pr_lock);
1181 panic("pool_get: %s: nmissing inconsistent",
1182 pp->pr_wchan);
1183 }
1184 #endif
1185 /*
1186 * This page is now full. Move it to the full list
1187 * and select a new current page.
1188 */
1189 LIST_REMOVE(ph, ph_pagelist);
1190 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1191 pool_update_curpage(pp);
1192 }
1193
1194 pp->pr_nget++;
1195 pr_leave(pp);
1196
1197 /*
1198 * If we have a low water mark and we are now below that low
1199 * water mark, add more items to the pool.
1200 */
1201 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1202 /*
1203 * XXX: Should we log a warning? Should we set up a timeout
1204 * to try again in a second or so? The latter could break
1205 * a caller's assumptions about interrupt protection, etc.
1206 */
1207 }
1208
1209 mutex_exit(&pp->pr_lock);
1210 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1211 FREECHECK_OUT(&pp->pr_freecheck, v);
1212 return (v);
1213 }
1214
1215 /*
1216 * Internal version of pool_put(). Pool is already locked/entered.
1217 */
1218 static void
1219 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1220 {
1221 struct pool_item *pi = v;
1222 struct pool_item_header *ph;
1223
1224 KASSERT(mutex_owned(&pp->pr_lock));
1225 FREECHECK_IN(&pp->pr_freecheck, v);
1226 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1227
1228 #ifdef DIAGNOSTIC
1229 if (__predict_false(pp->pr_nout == 0)) {
1230 printf("pool %s: putting with none out\n",
1231 pp->pr_wchan);
1232 panic("pool_put");
1233 }
1234 #endif
1235
1236 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1237 pr_printlog(pp, NULL, printf);
1238 panic("pool_put: %s: page header missing", pp->pr_wchan);
1239 }
1240
1241 /*
1242 * Return to item list.
1243 */
1244 if (pp->pr_roflags & PR_NOTOUCH) {
1245 pr_item_notouch_put(pp, ph, v);
1246 } else {
1247 #ifdef DIAGNOSTIC
1248 pi->pi_magic = PI_MAGIC;
1249 #endif
1250 #ifdef DEBUG
1251 {
1252 int i, *ip = v;
1253
1254 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1255 *ip++ = PI_MAGIC;
1256 }
1257 }
1258 #endif
1259
1260 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1261 }
1262 KDASSERT(ph->ph_nmissing != 0);
1263 ph->ph_nmissing--;
1264 pp->pr_nput++;
1265 pp->pr_nitems++;
1266 pp->pr_nout--;
1267
1268 /* Cancel "pool empty" condition if it exists */
1269 if (pp->pr_curpage == NULL)
1270 pp->pr_curpage = ph;
1271
1272 if (pp->pr_flags & PR_WANTED) {
1273 pp->pr_flags &= ~PR_WANTED;
1274 cv_broadcast(&pp->pr_cv);
1275 }
1276
1277 /*
1278 * If this page is now empty, do one of two things:
1279 *
1280 * (1) If we have more pages than the page high water mark,
1281 * free the page back to the system. ONLY CONSIDER
1282 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1283 * CLAIM.
1284 *
1285 * (2) Otherwise, move the page to the empty page list.
1286 *
1287 * Either way, select a new current page (so we use a partially-full
1288 * page if one is available).
1289 */
1290 if (ph->ph_nmissing == 0) {
1291 pp->pr_nidle++;
1292 if (pp->pr_npages > pp->pr_minpages &&
1293 pp->pr_npages > pp->pr_maxpages) {
1294 pr_rmpage(pp, ph, pq);
1295 } else {
1296 LIST_REMOVE(ph, ph_pagelist);
1297 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1298
1299 /*
1300 * Update the timestamp on the page. A page must
1301 * be idle for some period of time before it can
1302 * be reclaimed by the pagedaemon. This minimizes
1303 * ping-pong'ing for memory.
1304 *
1305 * note for 64-bit time_t: truncating to 32-bit is not
1306 * a problem for our usage.
1307 */
1308 ph->ph_time = time_uptime;
1309 }
1310 pool_update_curpage(pp);
1311 }
1312
1313 /*
1314 * If the page was previously completely full, move it to the
1315 * partially-full list and make it the current page. The next
1316 * allocation will get the item from this page, instead of
1317 * further fragmenting the pool.
1318 */
1319 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1320 LIST_REMOVE(ph, ph_pagelist);
1321 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1322 pp->pr_curpage = ph;
1323 }
1324 }
1325
1326 /*
1327 * Return resource to the pool.
1328 */
1329 #ifdef POOL_DIAGNOSTIC
1330 void
1331 _pool_put(struct pool *pp, void *v, const char *file, long line)
1332 {
1333 struct pool_pagelist pq;
1334
1335 LIST_INIT(&pq);
1336
1337 mutex_enter(&pp->pr_lock);
1338 pr_enter(pp, file, line);
1339
1340 pr_log(pp, v, PRLOG_PUT, file, line);
1341
1342 pool_do_put(pp, v, &pq);
1343
1344 pr_leave(pp);
1345 mutex_exit(&pp->pr_lock);
1346
1347 pr_pagelist_free(pp, &pq);
1348 }
1349 #undef pool_put
1350 #endif /* POOL_DIAGNOSTIC */
1351
1352 void
1353 pool_put(struct pool *pp, void *v)
1354 {
1355 struct pool_pagelist pq;
1356
1357 LIST_INIT(&pq);
1358
1359 mutex_enter(&pp->pr_lock);
1360 pool_do_put(pp, v, &pq);
1361 mutex_exit(&pp->pr_lock);
1362
1363 pr_pagelist_free(pp, &pq);
1364 }
1365
1366 #ifdef POOL_DIAGNOSTIC
1367 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1368 #endif
1369
1370 /*
1371 * pool_grow: grow a pool by a page.
1372 *
1373 * => called with pool locked.
1374 * => unlock and relock the pool.
1375 * => return with pool locked.
1376 */
1377
1378 static int
1379 pool_grow(struct pool *pp, int flags)
1380 {
1381 struct pool_item_header *ph = NULL;
1382 char *cp;
1383
1384 mutex_exit(&pp->pr_lock);
1385 cp = pool_allocator_alloc(pp, flags);
1386 if (__predict_true(cp != NULL)) {
1387 ph = pool_alloc_item_header(pp, cp, flags);
1388 }
1389 if (__predict_false(cp == NULL || ph == NULL)) {
1390 if (cp != NULL) {
1391 pool_allocator_free(pp, cp);
1392 }
1393 mutex_enter(&pp->pr_lock);
1394 return ENOMEM;
1395 }
1396
1397 mutex_enter(&pp->pr_lock);
1398 pool_prime_page(pp, cp, ph);
1399 pp->pr_npagealloc++;
1400 return 0;
1401 }
1402
1403 /*
1404 * Add N items to the pool.
1405 */
1406 int
1407 pool_prime(struct pool *pp, int n)
1408 {
1409 int newpages;
1410 int error = 0;
1411
1412 mutex_enter(&pp->pr_lock);
1413
1414 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1415
1416 while (newpages-- > 0) {
1417 error = pool_grow(pp, PR_NOWAIT);
1418 if (error) {
1419 break;
1420 }
1421 pp->pr_minpages++;
1422 }
1423
1424 if (pp->pr_minpages >= pp->pr_maxpages)
1425 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1426
1427 mutex_exit(&pp->pr_lock);
1428 return error;
1429 }
1430
1431 /*
1432 * Add a page worth of items to the pool.
1433 *
1434 * Note, we must be called with the pool descriptor LOCKED.
1435 */
1436 static void
1437 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1438 {
1439 struct pool_item *pi;
1440 void *cp = storage;
1441 const unsigned int align = pp->pr_align;
1442 const unsigned int ioff = pp->pr_itemoffset;
1443 int n;
1444
1445 KASSERT(mutex_owned(&pp->pr_lock));
1446
1447 #ifdef DIAGNOSTIC
1448 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1449 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1450 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1451 #endif
1452
1453 /*
1454 * Insert page header.
1455 */
1456 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1457 LIST_INIT(&ph->ph_itemlist);
1458 ph->ph_page = storage;
1459 ph->ph_nmissing = 0;
1460 ph->ph_time = time_uptime;
1461 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1462 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1463
1464 pp->pr_nidle++;
1465
1466 /*
1467 * Color this page.
1468 */
1469 ph->ph_off = pp->pr_curcolor;
1470 cp = (char *)cp + ph->ph_off;
1471 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1472 pp->pr_curcolor = 0;
1473
1474 /*
1475 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1476 */
1477 if (ioff != 0)
1478 cp = (char *)cp + align - ioff;
1479
1480 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1481
1482 /*
1483 * Insert remaining chunks on the bucket list.
1484 */
1485 n = pp->pr_itemsperpage;
1486 pp->pr_nitems += n;
1487
1488 if (pp->pr_roflags & PR_NOTOUCH) {
1489 pr_item_notouch_init(pp, ph);
1490 } else {
1491 while (n--) {
1492 pi = (struct pool_item *)cp;
1493
1494 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1495
1496 /* Insert on page list */
1497 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1498 #ifdef DIAGNOSTIC
1499 pi->pi_magic = PI_MAGIC;
1500 #endif
1501 cp = (char *)cp + pp->pr_size;
1502
1503 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1504 }
1505 }
1506
1507 /*
1508 * If the pool was depleted, point at the new page.
1509 */
1510 if (pp->pr_curpage == NULL)
1511 pp->pr_curpage = ph;
1512
1513 if (++pp->pr_npages > pp->pr_hiwat)
1514 pp->pr_hiwat = pp->pr_npages;
1515 }
1516
1517 /*
1518 * Used by pool_get() when nitems drops below the low water mark. This
1519 * is used to catch up pr_nitems with the low water mark.
1520 *
1521 * Note 1, we never wait for memory here, we let the caller decide what to do.
1522 *
1523 * Note 2, we must be called with the pool already locked, and we return
1524 * with it locked.
1525 */
1526 static int
1527 pool_catchup(struct pool *pp)
1528 {
1529 int error = 0;
1530
1531 while (POOL_NEEDS_CATCHUP(pp)) {
1532 error = pool_grow(pp, PR_NOWAIT);
1533 if (error) {
1534 break;
1535 }
1536 }
1537 return error;
1538 }
1539
1540 static void
1541 pool_update_curpage(struct pool *pp)
1542 {
1543
1544 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1545 if (pp->pr_curpage == NULL) {
1546 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1547 }
1548 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1549 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1550 }
1551
1552 void
1553 pool_setlowat(struct pool *pp, int n)
1554 {
1555
1556 mutex_enter(&pp->pr_lock);
1557
1558 pp->pr_minitems = n;
1559 pp->pr_minpages = (n == 0)
1560 ? 0
1561 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1562
1563 /* Make sure we're caught up with the newly-set low water mark. */
1564 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1565 /*
1566 * XXX: Should we log a warning? Should we set up a timeout
1567 * to try again in a second or so? The latter could break
1568 * a caller's assumptions about interrupt protection, etc.
1569 */
1570 }
1571
1572 mutex_exit(&pp->pr_lock);
1573 }
1574
1575 void
1576 pool_sethiwat(struct pool *pp, int n)
1577 {
1578
1579 mutex_enter(&pp->pr_lock);
1580
1581 pp->pr_maxpages = (n == 0)
1582 ? 0
1583 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1584
1585 mutex_exit(&pp->pr_lock);
1586 }
1587
1588 void
1589 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1590 {
1591
1592 mutex_enter(&pp->pr_lock);
1593
1594 pp->pr_hardlimit = n;
1595 pp->pr_hardlimit_warning = warnmess;
1596 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1597 pp->pr_hardlimit_warning_last.tv_sec = 0;
1598 pp->pr_hardlimit_warning_last.tv_usec = 0;
1599
1600 /*
1601 * In-line version of pool_sethiwat(), because we don't want to
1602 * release the lock.
1603 */
1604 pp->pr_maxpages = (n == 0)
1605 ? 0
1606 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1607
1608 mutex_exit(&pp->pr_lock);
1609 }
1610
1611 /*
1612 * Release all complete pages that have not been used recently.
1613 *
1614 * Might be called from interrupt context.
1615 */
1616 int
1617 #ifdef POOL_DIAGNOSTIC
1618 _pool_reclaim(struct pool *pp, const char *file, long line)
1619 #else
1620 pool_reclaim(struct pool *pp)
1621 #endif
1622 {
1623 struct pool_item_header *ph, *phnext;
1624 struct pool_pagelist pq;
1625 uint32_t curtime;
1626 bool klock;
1627 int rv;
1628
1629 if (cpu_intr_p() || cpu_softintr_p()) {
1630 KASSERT(pp->pr_ipl != IPL_NONE);
1631 }
1632
1633 if (pp->pr_drain_hook != NULL) {
1634 /*
1635 * The drain hook must be called with the pool unlocked.
1636 */
1637 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1638 }
1639
1640 /*
1641 * XXXSMP Because we do not want to cause non-MPSAFE code
1642 * to block.
1643 */
1644 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1645 pp->pr_ipl == IPL_SOFTSERIAL) {
1646 KERNEL_LOCK(1, NULL);
1647 klock = true;
1648 } else
1649 klock = false;
1650
1651 /* Reclaim items from the pool's cache (if any). */
1652 if (pp->pr_cache != NULL)
1653 pool_cache_invalidate(pp->pr_cache);
1654
1655 if (mutex_tryenter(&pp->pr_lock) == 0) {
1656 if (klock) {
1657 KERNEL_UNLOCK_ONE(NULL);
1658 }
1659 return (0);
1660 }
1661 pr_enter(pp, file, line);
1662
1663 LIST_INIT(&pq);
1664
1665 curtime = time_uptime;
1666
1667 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1668 phnext = LIST_NEXT(ph, ph_pagelist);
1669
1670 /* Check our minimum page claim */
1671 if (pp->pr_npages <= pp->pr_minpages)
1672 break;
1673
1674 KASSERT(ph->ph_nmissing == 0);
1675 if (curtime - ph->ph_time < pool_inactive_time
1676 && !pa_starved_p(pp->pr_alloc))
1677 continue;
1678
1679 /*
1680 * If freeing this page would put us below
1681 * the low water mark, stop now.
1682 */
1683 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1684 pp->pr_minitems)
1685 break;
1686
1687 pr_rmpage(pp, ph, &pq);
1688 }
1689
1690 pr_leave(pp);
1691 mutex_exit(&pp->pr_lock);
1692
1693 if (LIST_EMPTY(&pq))
1694 rv = 0;
1695 else {
1696 pr_pagelist_free(pp, &pq);
1697 rv = 1;
1698 }
1699
1700 if (klock) {
1701 KERNEL_UNLOCK_ONE(NULL);
1702 }
1703
1704 return (rv);
1705 }
1706
1707 /*
1708 * Drain pools, one at a time. This is a two stage process;
1709 * drain_start kicks off a cross call to drain CPU-level caches
1710 * if the pool has an associated pool_cache. drain_end waits
1711 * for those cross calls to finish, and then drains the cache
1712 * (if any) and pool.
1713 *
1714 * Note, must never be called from interrupt context.
1715 */
1716 void
1717 pool_drain_start(struct pool **ppp, uint64_t *wp)
1718 {
1719 struct pool *pp;
1720
1721 KASSERT(!TAILQ_EMPTY(&pool_head));
1722
1723 pp = NULL;
1724
1725 /* Find next pool to drain, and add a reference. */
1726 mutex_enter(&pool_head_lock);
1727 do {
1728 if (drainpp == NULL) {
1729 drainpp = TAILQ_FIRST(&pool_head);
1730 }
1731 if (drainpp != NULL) {
1732 pp = drainpp;
1733 drainpp = TAILQ_NEXT(pp, pr_poollist);
1734 }
1735 /*
1736 * Skip completely idle pools. We depend on at least
1737 * one pool in the system being active.
1738 */
1739 } while (pp == NULL || pp->pr_npages == 0);
1740 pp->pr_refcnt++;
1741 mutex_exit(&pool_head_lock);
1742
1743 /* If there is a pool_cache, drain CPU level caches. */
1744 *ppp = pp;
1745 if (pp->pr_cache != NULL) {
1746 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1747 pp->pr_cache, NULL);
1748 }
1749 }
1750
1751 bool
1752 pool_drain_end(struct pool *pp, uint64_t where)
1753 {
1754 bool reclaimed;
1755
1756 if (pp == NULL)
1757 return false;
1758
1759 KASSERT(pp->pr_refcnt > 0);
1760
1761 /* Wait for remote draining to complete. */
1762 if (pp->pr_cache != NULL)
1763 xc_wait(where);
1764
1765 /* Drain the cache (if any) and pool.. */
1766 reclaimed = pool_reclaim(pp);
1767
1768 /* Finally, unlock the pool. */
1769 mutex_enter(&pool_head_lock);
1770 pp->pr_refcnt--;
1771 cv_broadcast(&pool_busy);
1772 mutex_exit(&pool_head_lock);
1773
1774 return reclaimed;
1775 }
1776
1777 /*
1778 * Diagnostic helpers.
1779 */
1780 void
1781 pool_print(struct pool *pp, const char *modif)
1782 {
1783
1784 pool_print1(pp, modif, printf);
1785 }
1786
1787 void
1788 pool_printall(const char *modif, void (*pr)(const char *, ...))
1789 {
1790 struct pool *pp;
1791
1792 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1793 pool_printit(pp, modif, pr);
1794 }
1795 }
1796
1797 void
1798 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1799 {
1800
1801 if (pp == NULL) {
1802 (*pr)("Must specify a pool to print.\n");
1803 return;
1804 }
1805
1806 pool_print1(pp, modif, pr);
1807 }
1808
1809 static void
1810 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1811 void (*pr)(const char *, ...))
1812 {
1813 struct pool_item_header *ph;
1814 #ifdef DIAGNOSTIC
1815 struct pool_item *pi;
1816 #endif
1817
1818 LIST_FOREACH(ph, pl, ph_pagelist) {
1819 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1820 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1821 #ifdef DIAGNOSTIC
1822 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1823 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1824 if (pi->pi_magic != PI_MAGIC) {
1825 (*pr)("\t\t\titem %p, magic 0x%x\n",
1826 pi, pi->pi_magic);
1827 }
1828 }
1829 }
1830 #endif
1831 }
1832 }
1833
1834 static void
1835 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1836 {
1837 struct pool_item_header *ph;
1838 pool_cache_t pc;
1839 pcg_t *pcg;
1840 pool_cache_cpu_t *cc;
1841 uint64_t cpuhit, cpumiss;
1842 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1843 char c;
1844
1845 while ((c = *modif++) != '\0') {
1846 if (c == 'l')
1847 print_log = 1;
1848 if (c == 'p')
1849 print_pagelist = 1;
1850 if (c == 'c')
1851 print_cache = 1;
1852 }
1853
1854 if ((pc = pp->pr_cache) != NULL) {
1855 (*pr)("POOL CACHE");
1856 } else {
1857 (*pr)("POOL");
1858 }
1859
1860 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1861 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1862 pp->pr_roflags);
1863 (*pr)("\talloc %p\n", pp->pr_alloc);
1864 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1865 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1866 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1867 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1868
1869 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1870 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1871 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1872 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1873
1874 if (print_pagelist == 0)
1875 goto skip_pagelist;
1876
1877 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1878 (*pr)("\n\tempty page list:\n");
1879 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1880 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1881 (*pr)("\n\tfull page list:\n");
1882 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1883 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1884 (*pr)("\n\tpartial-page list:\n");
1885 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1886
1887 if (pp->pr_curpage == NULL)
1888 (*pr)("\tno current page\n");
1889 else
1890 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1891
1892 skip_pagelist:
1893 if (print_log == 0)
1894 goto skip_log;
1895
1896 (*pr)("\n");
1897 if ((pp->pr_roflags & PR_LOGGING) == 0)
1898 (*pr)("\tno log\n");
1899 else {
1900 pr_printlog(pp, NULL, pr);
1901 }
1902
1903 skip_log:
1904
1905 #define PR_GROUPLIST(pcg) \
1906 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1907 for (i = 0; i < pcg->pcg_size; i++) { \
1908 if (pcg->pcg_objects[i].pcgo_pa != \
1909 POOL_PADDR_INVALID) { \
1910 (*pr)("\t\t\t%p, 0x%llx\n", \
1911 pcg->pcg_objects[i].pcgo_va, \
1912 (unsigned long long) \
1913 pcg->pcg_objects[i].pcgo_pa); \
1914 } else { \
1915 (*pr)("\t\t\t%p\n", \
1916 pcg->pcg_objects[i].pcgo_va); \
1917 } \
1918 }
1919
1920 if (pc != NULL) {
1921 cpuhit = 0;
1922 cpumiss = 0;
1923 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1924 if ((cc = pc->pc_cpus[i]) == NULL)
1925 continue;
1926 cpuhit += cc->cc_hits;
1927 cpumiss += cc->cc_misses;
1928 }
1929 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1930 (*pr)("\tcache layer hits %llu misses %llu\n",
1931 pc->pc_hits, pc->pc_misses);
1932 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1933 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1934 pc->pc_contended);
1935 (*pr)("\tcache layer empty groups %u full groups %u\n",
1936 pc->pc_nempty, pc->pc_nfull);
1937 if (print_cache) {
1938 (*pr)("\tfull cache groups:\n");
1939 for (pcg = pc->pc_fullgroups; pcg != NULL;
1940 pcg = pcg->pcg_next) {
1941 PR_GROUPLIST(pcg);
1942 }
1943 (*pr)("\tempty cache groups:\n");
1944 for (pcg = pc->pc_emptygroups; pcg != NULL;
1945 pcg = pcg->pcg_next) {
1946 PR_GROUPLIST(pcg);
1947 }
1948 }
1949 }
1950 #undef PR_GROUPLIST
1951
1952 pr_enter_check(pp, pr);
1953 }
1954
1955 static int
1956 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1957 {
1958 struct pool_item *pi;
1959 void *page;
1960 int n;
1961
1962 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1963 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1964 if (page != ph->ph_page &&
1965 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1966 if (label != NULL)
1967 printf("%s: ", label);
1968 printf("pool(%p:%s): page inconsistency: page %p;"
1969 " at page head addr %p (p %p)\n", pp,
1970 pp->pr_wchan, ph->ph_page,
1971 ph, page);
1972 return 1;
1973 }
1974 }
1975
1976 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1977 return 0;
1978
1979 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1980 pi != NULL;
1981 pi = LIST_NEXT(pi,pi_list), n++) {
1982
1983 #ifdef DIAGNOSTIC
1984 if (pi->pi_magic != PI_MAGIC) {
1985 if (label != NULL)
1986 printf("%s: ", label);
1987 printf("pool(%s): free list modified: magic=%x;"
1988 " page %p; item ordinal %d; addr %p\n",
1989 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1990 n, pi);
1991 panic("pool");
1992 }
1993 #endif
1994 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1995 continue;
1996 }
1997 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1998 if (page == ph->ph_page)
1999 continue;
2000
2001 if (label != NULL)
2002 printf("%s: ", label);
2003 printf("pool(%p:%s): page inconsistency: page %p;"
2004 " item ordinal %d; addr %p (p %p)\n", pp,
2005 pp->pr_wchan, ph->ph_page,
2006 n, pi, page);
2007 return 1;
2008 }
2009 return 0;
2010 }
2011
2012
2013 int
2014 pool_chk(struct pool *pp, const char *label)
2015 {
2016 struct pool_item_header *ph;
2017 int r = 0;
2018
2019 mutex_enter(&pp->pr_lock);
2020 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2021 r = pool_chk_page(pp, label, ph);
2022 if (r) {
2023 goto out;
2024 }
2025 }
2026 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2027 r = pool_chk_page(pp, label, ph);
2028 if (r) {
2029 goto out;
2030 }
2031 }
2032 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2033 r = pool_chk_page(pp, label, ph);
2034 if (r) {
2035 goto out;
2036 }
2037 }
2038
2039 out:
2040 mutex_exit(&pp->pr_lock);
2041 return (r);
2042 }
2043
2044 /*
2045 * pool_cache_init:
2046 *
2047 * Initialize a pool cache.
2048 */
2049 pool_cache_t
2050 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2051 const char *wchan, struct pool_allocator *palloc, int ipl,
2052 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2053 {
2054 pool_cache_t pc;
2055
2056 pc = pool_get(&cache_pool, PR_WAITOK);
2057 if (pc == NULL)
2058 return NULL;
2059
2060 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2061 palloc, ipl, ctor, dtor, arg);
2062
2063 return pc;
2064 }
2065
2066 /*
2067 * pool_cache_bootstrap:
2068 *
2069 * Kernel-private version of pool_cache_init(). The caller
2070 * provides initial storage.
2071 */
2072 void
2073 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2074 u_int align_offset, u_int flags, const char *wchan,
2075 struct pool_allocator *palloc, int ipl,
2076 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2077 void *arg)
2078 {
2079 CPU_INFO_ITERATOR cii;
2080 pool_cache_t pc1;
2081 struct cpu_info *ci;
2082 struct pool *pp;
2083
2084 pp = &pc->pc_pool;
2085 if (palloc == NULL && ipl == IPL_NONE)
2086 palloc = &pool_allocator_nointr;
2087 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2088 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2089
2090 if (ctor == NULL) {
2091 ctor = (int (*)(void *, void *, int))nullop;
2092 }
2093 if (dtor == NULL) {
2094 dtor = (void (*)(void *, void *))nullop;
2095 }
2096
2097 pc->pc_emptygroups = NULL;
2098 pc->pc_fullgroups = NULL;
2099 pc->pc_partgroups = NULL;
2100 pc->pc_ctor = ctor;
2101 pc->pc_dtor = dtor;
2102 pc->pc_arg = arg;
2103 pc->pc_hits = 0;
2104 pc->pc_misses = 0;
2105 pc->pc_nempty = 0;
2106 pc->pc_npart = 0;
2107 pc->pc_nfull = 0;
2108 pc->pc_contended = 0;
2109 pc->pc_refcnt = 0;
2110 pc->pc_freecheck = NULL;
2111
2112 if ((flags & PR_LARGECACHE) != 0) {
2113 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2114 pc->pc_pcgpool = &pcg_large_pool;
2115 } else {
2116 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2117 pc->pc_pcgpool = &pcg_normal_pool;
2118 }
2119
2120 /* Allocate per-CPU caches. */
2121 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2122 pc->pc_ncpu = 0;
2123 if (ncpu < 2) {
2124 /* XXX For sparc: boot CPU is not attached yet. */
2125 pool_cache_cpu_init1(curcpu(), pc);
2126 } else {
2127 for (CPU_INFO_FOREACH(cii, ci)) {
2128 pool_cache_cpu_init1(ci, pc);
2129 }
2130 }
2131
2132 /* Add to list of all pools. */
2133 if (__predict_true(!cold))
2134 mutex_enter(&pool_head_lock);
2135 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2136 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2137 break;
2138 }
2139 if (pc1 == NULL)
2140 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2141 else
2142 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2143 if (__predict_true(!cold))
2144 mutex_exit(&pool_head_lock);
2145
2146 membar_sync();
2147 pp->pr_cache = pc;
2148 }
2149
2150 /*
2151 * pool_cache_destroy:
2152 *
2153 * Destroy a pool cache.
2154 */
2155 void
2156 pool_cache_destroy(pool_cache_t pc)
2157 {
2158 struct pool *pp = &pc->pc_pool;
2159 u_int i;
2160
2161 /* Remove it from the global list. */
2162 mutex_enter(&pool_head_lock);
2163 while (pc->pc_refcnt != 0)
2164 cv_wait(&pool_busy, &pool_head_lock);
2165 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2166 mutex_exit(&pool_head_lock);
2167
2168 /* First, invalidate the entire cache. */
2169 pool_cache_invalidate(pc);
2170
2171 /* Disassociate it from the pool. */
2172 mutex_enter(&pp->pr_lock);
2173 pp->pr_cache = NULL;
2174 mutex_exit(&pp->pr_lock);
2175
2176 /* Destroy per-CPU data */
2177 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2178 pool_cache_invalidate_cpu(pc, i);
2179
2180 /* Finally, destroy it. */
2181 mutex_destroy(&pc->pc_lock);
2182 pool_destroy(pp);
2183 pool_put(&cache_pool, pc);
2184 }
2185
2186 /*
2187 * pool_cache_cpu_init1:
2188 *
2189 * Called for each pool_cache whenever a new CPU is attached.
2190 */
2191 static void
2192 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2193 {
2194 pool_cache_cpu_t *cc;
2195 int index;
2196
2197 index = ci->ci_index;
2198
2199 KASSERT(index < __arraycount(pc->pc_cpus));
2200
2201 if ((cc = pc->pc_cpus[index]) != NULL) {
2202 KASSERT(cc->cc_cpuindex == index);
2203 return;
2204 }
2205
2206 /*
2207 * The first CPU is 'free'. This needs to be the case for
2208 * bootstrap - we may not be able to allocate yet.
2209 */
2210 if (pc->pc_ncpu == 0) {
2211 cc = &pc->pc_cpu0;
2212 pc->pc_ncpu = 1;
2213 } else {
2214 mutex_enter(&pc->pc_lock);
2215 pc->pc_ncpu++;
2216 mutex_exit(&pc->pc_lock);
2217 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2218 }
2219
2220 cc->cc_ipl = pc->pc_pool.pr_ipl;
2221 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2222 cc->cc_cache = pc;
2223 cc->cc_cpuindex = index;
2224 cc->cc_hits = 0;
2225 cc->cc_misses = 0;
2226 cc->cc_current = __UNCONST(&pcg_dummy);
2227 cc->cc_previous = __UNCONST(&pcg_dummy);
2228
2229 pc->pc_cpus[index] = cc;
2230 }
2231
2232 /*
2233 * pool_cache_cpu_init:
2234 *
2235 * Called whenever a new CPU is attached.
2236 */
2237 void
2238 pool_cache_cpu_init(struct cpu_info *ci)
2239 {
2240 pool_cache_t pc;
2241
2242 mutex_enter(&pool_head_lock);
2243 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2244 pc->pc_refcnt++;
2245 mutex_exit(&pool_head_lock);
2246
2247 pool_cache_cpu_init1(ci, pc);
2248
2249 mutex_enter(&pool_head_lock);
2250 pc->pc_refcnt--;
2251 cv_broadcast(&pool_busy);
2252 }
2253 mutex_exit(&pool_head_lock);
2254 }
2255
2256 /*
2257 * pool_cache_reclaim:
2258 *
2259 * Reclaim memory from a pool cache.
2260 */
2261 bool
2262 pool_cache_reclaim(pool_cache_t pc)
2263 {
2264
2265 return pool_reclaim(&pc->pc_pool);
2266 }
2267
2268 static void
2269 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2270 {
2271
2272 (*pc->pc_dtor)(pc->pc_arg, object);
2273 pool_put(&pc->pc_pool, object);
2274 }
2275
2276 /*
2277 * pool_cache_destruct_object:
2278 *
2279 * Force destruction of an object and its release back into
2280 * the pool.
2281 */
2282 void
2283 pool_cache_destruct_object(pool_cache_t pc, void *object)
2284 {
2285
2286 FREECHECK_IN(&pc->pc_freecheck, object);
2287
2288 pool_cache_destruct_object1(pc, object);
2289 }
2290
2291 /*
2292 * pool_cache_invalidate_groups:
2293 *
2294 * Invalidate a chain of groups and destruct all objects.
2295 */
2296 static void
2297 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2298 {
2299 void *object;
2300 pcg_t *next;
2301 int i;
2302
2303 for (; pcg != NULL; pcg = next) {
2304 next = pcg->pcg_next;
2305
2306 for (i = 0; i < pcg->pcg_avail; i++) {
2307 object = pcg->pcg_objects[i].pcgo_va;
2308 pool_cache_destruct_object1(pc, object);
2309 }
2310
2311 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2312 pool_put(&pcg_large_pool, pcg);
2313 } else {
2314 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2315 pool_put(&pcg_normal_pool, pcg);
2316 }
2317 }
2318 }
2319
2320 /*
2321 * pool_cache_invalidate:
2322 *
2323 * Invalidate a pool cache (destruct and release all of the
2324 * cached objects). Does not reclaim objects from the pool.
2325 *
2326 * Note: For pool caches that provide constructed objects, there
2327 * is an assumption that another level of synchronization is occurring
2328 * between the input to the constructor and the cache invalidation.
2329 */
2330 void
2331 pool_cache_invalidate(pool_cache_t pc)
2332 {
2333 pcg_t *full, *empty, *part;
2334 #if 0
2335 uint64_t where;
2336
2337 if (ncpu < 2 || !mp_online) {
2338 /*
2339 * We might be called early enough in the boot process
2340 * for the CPU data structures to not be fully initialized.
2341 * In this case, simply gather the local CPU's cache now
2342 * since it will be the only one running.
2343 */
2344 pool_cache_xcall(pc);
2345 } else {
2346 /*
2347 * Gather all of the CPU-specific caches into the
2348 * global cache.
2349 */
2350 where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2351 xc_wait(where);
2352 }
2353 #endif
2354 mutex_enter(&pc->pc_lock);
2355 full = pc->pc_fullgroups;
2356 empty = pc->pc_emptygroups;
2357 part = pc->pc_partgroups;
2358 pc->pc_fullgroups = NULL;
2359 pc->pc_emptygroups = NULL;
2360 pc->pc_partgroups = NULL;
2361 pc->pc_nfull = 0;
2362 pc->pc_nempty = 0;
2363 pc->pc_npart = 0;
2364 mutex_exit(&pc->pc_lock);
2365
2366 pool_cache_invalidate_groups(pc, full);
2367 pool_cache_invalidate_groups(pc, empty);
2368 pool_cache_invalidate_groups(pc, part);
2369 }
2370
2371 /*
2372 * pool_cache_invalidate_cpu:
2373 *
2374 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2375 * identified by its associated index.
2376 * It is caller's responsibility to ensure that no operation is
2377 * taking place on this pool cache while doing this invalidation.
2378 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2379 * pool cached objects from a CPU different from the one currently running
2380 * may result in an undefined behaviour.
2381 */
2382 static void
2383 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2384 {
2385
2386 pool_cache_cpu_t *cc;
2387 pcg_t *pcg;
2388
2389 if ((cc = pc->pc_cpus[index]) == NULL)
2390 return;
2391
2392 if ((pcg = cc->cc_current) != &pcg_dummy) {
2393 pcg->pcg_next = NULL;
2394 pool_cache_invalidate_groups(pc, pcg);
2395 }
2396 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2397 pcg->pcg_next = NULL;
2398 pool_cache_invalidate_groups(pc, pcg);
2399 }
2400 if (cc != &pc->pc_cpu0)
2401 pool_put(&cache_cpu_pool, cc);
2402
2403 }
2404
2405 void
2406 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2407 {
2408
2409 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2410 }
2411
2412 void
2413 pool_cache_setlowat(pool_cache_t pc, int n)
2414 {
2415
2416 pool_setlowat(&pc->pc_pool, n);
2417 }
2418
2419 void
2420 pool_cache_sethiwat(pool_cache_t pc, int n)
2421 {
2422
2423 pool_sethiwat(&pc->pc_pool, n);
2424 }
2425
2426 void
2427 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2428 {
2429
2430 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2431 }
2432
2433 static bool __noinline
2434 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2435 paddr_t *pap, int flags)
2436 {
2437 pcg_t *pcg, *cur;
2438 uint64_t ncsw;
2439 pool_cache_t pc;
2440 void *object;
2441
2442 KASSERT(cc->cc_current->pcg_avail == 0);
2443 KASSERT(cc->cc_previous->pcg_avail == 0);
2444
2445 pc = cc->cc_cache;
2446 cc->cc_misses++;
2447
2448 /*
2449 * Nothing was available locally. Try and grab a group
2450 * from the cache.
2451 */
2452 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2453 ncsw = curlwp->l_ncsw;
2454 mutex_enter(&pc->pc_lock);
2455 pc->pc_contended++;
2456
2457 /*
2458 * If we context switched while locking, then
2459 * our view of the per-CPU data is invalid:
2460 * retry.
2461 */
2462 if (curlwp->l_ncsw != ncsw) {
2463 mutex_exit(&pc->pc_lock);
2464 return true;
2465 }
2466 }
2467
2468 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2469 /*
2470 * If there's a full group, release our empty
2471 * group back to the cache. Install the full
2472 * group as cc_current and return.
2473 */
2474 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2475 KASSERT(cur->pcg_avail == 0);
2476 cur->pcg_next = pc->pc_emptygroups;
2477 pc->pc_emptygroups = cur;
2478 pc->pc_nempty++;
2479 }
2480 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2481 cc->cc_current = pcg;
2482 pc->pc_fullgroups = pcg->pcg_next;
2483 pc->pc_hits++;
2484 pc->pc_nfull--;
2485 mutex_exit(&pc->pc_lock);
2486 return true;
2487 }
2488
2489 /*
2490 * Nothing available locally or in cache. Take the slow
2491 * path: fetch a new object from the pool and construct
2492 * it.
2493 */
2494 pc->pc_misses++;
2495 mutex_exit(&pc->pc_lock);
2496 splx(s);
2497
2498 object = pool_get(&pc->pc_pool, flags);
2499 *objectp = object;
2500 if (__predict_false(object == NULL))
2501 return false;
2502
2503 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2504 pool_put(&pc->pc_pool, object);
2505 *objectp = NULL;
2506 return false;
2507 }
2508
2509 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2510 (pc->pc_pool.pr_align - 1)) == 0);
2511
2512 if (pap != NULL) {
2513 #ifdef POOL_VTOPHYS
2514 *pap = POOL_VTOPHYS(object);
2515 #else
2516 *pap = POOL_PADDR_INVALID;
2517 #endif
2518 }
2519
2520 FREECHECK_OUT(&pc->pc_freecheck, object);
2521 return false;
2522 }
2523
2524 /*
2525 * pool_cache_get{,_paddr}:
2526 *
2527 * Get an object from a pool cache (optionally returning
2528 * the physical address of the object).
2529 */
2530 void *
2531 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2532 {
2533 pool_cache_cpu_t *cc;
2534 pcg_t *pcg;
2535 void *object;
2536 int s;
2537
2538 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2539 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2540 ("pool '%s' is IPL_NONE, but called from interrupt context\n",
2541 pc->pc_pool.pr_wchan));
2542
2543 if (flags & PR_WAITOK) {
2544 ASSERT_SLEEPABLE();
2545 }
2546
2547 /* Lock out interrupts and disable preemption. */
2548 s = splvm();
2549 while (/* CONSTCOND */ true) {
2550 /* Try and allocate an object from the current group. */
2551 cc = pc->pc_cpus[curcpu()->ci_index];
2552 KASSERT(cc->cc_cache == pc);
2553 pcg = cc->cc_current;
2554 if (__predict_true(pcg->pcg_avail > 0)) {
2555 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2556 if (__predict_false(pap != NULL))
2557 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2558 #if defined(DIAGNOSTIC)
2559 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2560 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2561 KASSERT(object != NULL);
2562 #endif
2563 cc->cc_hits++;
2564 splx(s);
2565 FREECHECK_OUT(&pc->pc_freecheck, object);
2566 return object;
2567 }
2568
2569 /*
2570 * That failed. If the previous group isn't empty, swap
2571 * it with the current group and allocate from there.
2572 */
2573 pcg = cc->cc_previous;
2574 if (__predict_true(pcg->pcg_avail > 0)) {
2575 cc->cc_previous = cc->cc_current;
2576 cc->cc_current = pcg;
2577 continue;
2578 }
2579
2580 /*
2581 * Can't allocate from either group: try the slow path.
2582 * If get_slow() allocated an object for us, or if
2583 * no more objects are available, it will return false.
2584 * Otherwise, we need to retry.
2585 */
2586 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2587 break;
2588 }
2589
2590 return object;
2591 }
2592
2593 static bool __noinline
2594 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2595 {
2596 pcg_t *pcg, *cur;
2597 uint64_t ncsw;
2598 pool_cache_t pc;
2599
2600 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2601 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2602
2603 pc = cc->cc_cache;
2604 pcg = NULL;
2605 cc->cc_misses++;
2606
2607 /*
2608 * If there are no empty groups in the cache then allocate one
2609 * while still unlocked.
2610 */
2611 if (__predict_false(pc->pc_emptygroups == NULL)) {
2612 if (__predict_true(!pool_cache_disable)) {
2613 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2614 }
2615 if (__predict_true(pcg != NULL)) {
2616 pcg->pcg_avail = 0;
2617 pcg->pcg_size = pc->pc_pcgsize;
2618 }
2619 }
2620
2621 /* Lock the cache. */
2622 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2623 ncsw = curlwp->l_ncsw;
2624 mutex_enter(&pc->pc_lock);
2625 pc->pc_contended++;
2626
2627 /*
2628 * If we context switched while locking, then our view of
2629 * the per-CPU data is invalid: retry.
2630 */
2631 if (__predict_false(curlwp->l_ncsw != ncsw)) {
2632 mutex_exit(&pc->pc_lock);
2633 if (pcg != NULL) {
2634 pool_put(pc->pc_pcgpool, pcg);
2635 }
2636 return true;
2637 }
2638 }
2639
2640 /* If there are no empty groups in the cache then allocate one. */
2641 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2642 pcg = pc->pc_emptygroups;
2643 pc->pc_emptygroups = pcg->pcg_next;
2644 pc->pc_nempty--;
2645 }
2646
2647 /*
2648 * If there's a empty group, release our full group back
2649 * to the cache. Install the empty group to the local CPU
2650 * and return.
2651 */
2652 if (pcg != NULL) {
2653 KASSERT(pcg->pcg_avail == 0);
2654 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2655 cc->cc_previous = pcg;
2656 } else {
2657 cur = cc->cc_current;
2658 if (__predict_true(cur != &pcg_dummy)) {
2659 KASSERT(cur->pcg_avail == cur->pcg_size);
2660 cur->pcg_next = pc->pc_fullgroups;
2661 pc->pc_fullgroups = cur;
2662 pc->pc_nfull++;
2663 }
2664 cc->cc_current = pcg;
2665 }
2666 pc->pc_hits++;
2667 mutex_exit(&pc->pc_lock);
2668 return true;
2669 }
2670
2671 /*
2672 * Nothing available locally or in cache, and we didn't
2673 * allocate an empty group. Take the slow path and destroy
2674 * the object here and now.
2675 */
2676 pc->pc_misses++;
2677 mutex_exit(&pc->pc_lock);
2678 splx(s);
2679 pool_cache_destruct_object(pc, object);
2680
2681 return false;
2682 }
2683
2684 /*
2685 * pool_cache_put{,_paddr}:
2686 *
2687 * Put an object back to the pool cache (optionally caching the
2688 * physical address of the object).
2689 */
2690 void
2691 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2692 {
2693 pool_cache_cpu_t *cc;
2694 pcg_t *pcg;
2695 int s;
2696
2697 KASSERT(object != NULL);
2698 FREECHECK_IN(&pc->pc_freecheck, object);
2699
2700 /* Lock out interrupts and disable preemption. */
2701 s = splvm();
2702 while (/* CONSTCOND */ true) {
2703 /* If the current group isn't full, release it there. */
2704 cc = pc->pc_cpus[curcpu()->ci_index];
2705 KASSERT(cc->cc_cache == pc);
2706 pcg = cc->cc_current;
2707 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2708 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2709 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2710 pcg->pcg_avail++;
2711 cc->cc_hits++;
2712 splx(s);
2713 return;
2714 }
2715
2716 /*
2717 * That failed. If the previous group isn't full, swap
2718 * it with the current group and try again.
2719 */
2720 pcg = cc->cc_previous;
2721 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2722 cc->cc_previous = cc->cc_current;
2723 cc->cc_current = pcg;
2724 continue;
2725 }
2726
2727 /*
2728 * Can't free to either group: try the slow path.
2729 * If put_slow() releases the object for us, it
2730 * will return false. Otherwise we need to retry.
2731 */
2732 if (!pool_cache_put_slow(cc, s, object))
2733 break;
2734 }
2735 }
2736
2737 /*
2738 * pool_cache_xcall:
2739 *
2740 * Transfer objects from the per-CPU cache to the global cache.
2741 * Run within a cross-call thread.
2742 */
2743 static void
2744 pool_cache_xcall(pool_cache_t pc)
2745 {
2746 pool_cache_cpu_t *cc;
2747 pcg_t *prev, *cur, **list;
2748 int s;
2749
2750 s = splvm();
2751 mutex_enter(&pc->pc_lock);
2752 cc = pc->pc_cpus[curcpu()->ci_index];
2753 cur = cc->cc_current;
2754 cc->cc_current = __UNCONST(&pcg_dummy);
2755 prev = cc->cc_previous;
2756 cc->cc_previous = __UNCONST(&pcg_dummy);
2757 if (cur != &pcg_dummy) {
2758 if (cur->pcg_avail == cur->pcg_size) {
2759 list = &pc->pc_fullgroups;
2760 pc->pc_nfull++;
2761 } else if (cur->pcg_avail == 0) {
2762 list = &pc->pc_emptygroups;
2763 pc->pc_nempty++;
2764 } else {
2765 list = &pc->pc_partgroups;
2766 pc->pc_npart++;
2767 }
2768 cur->pcg_next = *list;
2769 *list = cur;
2770 }
2771 if (prev != &pcg_dummy) {
2772 if (prev->pcg_avail == prev->pcg_size) {
2773 list = &pc->pc_fullgroups;
2774 pc->pc_nfull++;
2775 } else if (prev->pcg_avail == 0) {
2776 list = &pc->pc_emptygroups;
2777 pc->pc_nempty++;
2778 } else {
2779 list = &pc->pc_partgroups;
2780 pc->pc_npart++;
2781 }
2782 prev->pcg_next = *list;
2783 *list = prev;
2784 }
2785 mutex_exit(&pc->pc_lock);
2786 splx(s);
2787 }
2788
2789 /*
2790 * Pool backend allocators.
2791 *
2792 * Each pool has a backend allocator that handles allocation, deallocation,
2793 * and any additional draining that might be needed.
2794 *
2795 * We provide two standard allocators:
2796 *
2797 * pool_allocator_kmem - the default when no allocator is specified
2798 *
2799 * pool_allocator_nointr - used for pools that will not be accessed
2800 * in interrupt context.
2801 */
2802 void *pool_page_alloc(struct pool *, int);
2803 void pool_page_free(struct pool *, void *);
2804
2805 #ifdef POOL_SUBPAGE
2806 struct pool_allocator pool_allocator_kmem_fullpage = {
2807 pool_page_alloc, pool_page_free, 0,
2808 .pa_backingmapptr = &kmem_map,
2809 };
2810 #else
2811 struct pool_allocator pool_allocator_kmem = {
2812 pool_page_alloc, pool_page_free, 0,
2813 .pa_backingmapptr = &kmem_map,
2814 };
2815 #endif
2816
2817 void *pool_page_alloc_nointr(struct pool *, int);
2818 void pool_page_free_nointr(struct pool *, void *);
2819
2820 #ifdef POOL_SUBPAGE
2821 struct pool_allocator pool_allocator_nointr_fullpage = {
2822 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2823 .pa_backingmapptr = &kernel_map,
2824 };
2825 #else
2826 struct pool_allocator pool_allocator_nointr = {
2827 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2828 .pa_backingmapptr = &kernel_map,
2829 };
2830 #endif
2831
2832 #ifdef POOL_SUBPAGE
2833 void *pool_subpage_alloc(struct pool *, int);
2834 void pool_subpage_free(struct pool *, void *);
2835
2836 struct pool_allocator pool_allocator_kmem = {
2837 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2838 .pa_backingmapptr = &kmem_map,
2839 };
2840
2841 void *pool_subpage_alloc_nointr(struct pool *, int);
2842 void pool_subpage_free_nointr(struct pool *, void *);
2843
2844 struct pool_allocator pool_allocator_nointr = {
2845 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2846 .pa_backingmapptr = &kmem_map,
2847 };
2848 #endif /* POOL_SUBPAGE */
2849
2850 static void *
2851 pool_allocator_alloc(struct pool *pp, int flags)
2852 {
2853 struct pool_allocator *pa = pp->pr_alloc;
2854 void *res;
2855
2856 res = (*pa->pa_alloc)(pp, flags);
2857 if (res == NULL && (flags & PR_WAITOK) == 0) {
2858 /*
2859 * We only run the drain hook here if PR_NOWAIT.
2860 * In other cases, the hook will be run in
2861 * pool_reclaim().
2862 */
2863 if (pp->pr_drain_hook != NULL) {
2864 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2865 res = (*pa->pa_alloc)(pp, flags);
2866 }
2867 }
2868 return res;
2869 }
2870
2871 static void
2872 pool_allocator_free(struct pool *pp, void *v)
2873 {
2874 struct pool_allocator *pa = pp->pr_alloc;
2875
2876 (*pa->pa_free)(pp, v);
2877 }
2878
2879 void *
2880 pool_page_alloc(struct pool *pp, int flags)
2881 {
2882 bool waitok = (flags & PR_WAITOK) ? true : false;
2883
2884 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2885 }
2886
2887 void
2888 pool_page_free(struct pool *pp, void *v)
2889 {
2890
2891 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2892 }
2893
2894 static void *
2895 pool_page_alloc_meta(struct pool *pp, int flags)
2896 {
2897 bool waitok = (flags & PR_WAITOK) ? true : false;
2898
2899 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2900 }
2901
2902 static void
2903 pool_page_free_meta(struct pool *pp, void *v)
2904 {
2905
2906 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2907 }
2908
2909 #ifdef POOL_SUBPAGE
2910 /* Sub-page allocator, for machines with large hardware pages. */
2911 void *
2912 pool_subpage_alloc(struct pool *pp, int flags)
2913 {
2914 return pool_get(&psppool, flags);
2915 }
2916
2917 void
2918 pool_subpage_free(struct pool *pp, void *v)
2919 {
2920 pool_put(&psppool, v);
2921 }
2922
2923 /* We don't provide a real nointr allocator. Maybe later. */
2924 void *
2925 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2926 {
2927
2928 return (pool_subpage_alloc(pp, flags));
2929 }
2930
2931 void
2932 pool_subpage_free_nointr(struct pool *pp, void *v)
2933 {
2934
2935 pool_subpage_free(pp, v);
2936 }
2937 #endif /* POOL_SUBPAGE */
2938 void *
2939 pool_page_alloc_nointr(struct pool *pp, int flags)
2940 {
2941 bool waitok = (flags & PR_WAITOK) ? true : false;
2942
2943 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2944 }
2945
2946 void
2947 pool_page_free_nointr(struct pool *pp, void *v)
2948 {
2949
2950 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2951 }
2952
2953 #if defined(DDB)
2954 static bool
2955 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2956 {
2957
2958 return (uintptr_t)ph->ph_page <= addr &&
2959 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2960 }
2961
2962 static bool
2963 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2964 {
2965
2966 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2967 }
2968
2969 static bool
2970 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2971 {
2972 int i;
2973
2974 if (pcg == NULL) {
2975 return false;
2976 }
2977 for (i = 0; i < pcg->pcg_avail; i++) {
2978 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2979 return true;
2980 }
2981 }
2982 return false;
2983 }
2984
2985 static bool
2986 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2987 {
2988
2989 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2990 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2991 pool_item_bitmap_t *bitmap =
2992 ph->ph_bitmap + (idx / BITMAP_SIZE);
2993 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2994
2995 return (*bitmap & mask) == 0;
2996 } else {
2997 struct pool_item *pi;
2998
2999 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3000 if (pool_in_item(pp, pi, addr)) {
3001 return false;
3002 }
3003 }
3004 return true;
3005 }
3006 }
3007
3008 void
3009 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3010 {
3011 struct pool *pp;
3012
3013 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3014 struct pool_item_header *ph;
3015 uintptr_t item;
3016 bool allocated = true;
3017 bool incache = false;
3018 bool incpucache = false;
3019 char cpucachestr[32];
3020
3021 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3022 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3023 if (pool_in_page(pp, ph, addr)) {
3024 goto found;
3025 }
3026 }
3027 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3028 if (pool_in_page(pp, ph, addr)) {
3029 allocated =
3030 pool_allocated(pp, ph, addr);
3031 goto found;
3032 }
3033 }
3034 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3035 if (pool_in_page(pp, ph, addr)) {
3036 allocated = false;
3037 goto found;
3038 }
3039 }
3040 continue;
3041 } else {
3042 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3043 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3044 continue;
3045 }
3046 allocated = pool_allocated(pp, ph, addr);
3047 }
3048 found:
3049 if (allocated && pp->pr_cache) {
3050 pool_cache_t pc = pp->pr_cache;
3051 struct pool_cache_group *pcg;
3052 int i;
3053
3054 for (pcg = pc->pc_fullgroups; pcg != NULL;
3055 pcg = pcg->pcg_next) {
3056 if (pool_in_cg(pp, pcg, addr)) {
3057 incache = true;
3058 goto print;
3059 }
3060 }
3061 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3062 pool_cache_cpu_t *cc;
3063
3064 if ((cc = pc->pc_cpus[i]) == NULL) {
3065 continue;
3066 }
3067 if (pool_in_cg(pp, cc->cc_current, addr) ||
3068 pool_in_cg(pp, cc->cc_previous, addr)) {
3069 struct cpu_info *ci =
3070 cpu_lookup(i);
3071
3072 incpucache = true;
3073 snprintf(cpucachestr,
3074 sizeof(cpucachestr),
3075 "cached by CPU %u",
3076 ci->ci_index);
3077 goto print;
3078 }
3079 }
3080 }
3081 print:
3082 item = (uintptr_t)ph->ph_page + ph->ph_off;
3083 item = item + rounddown(addr - item, pp->pr_size);
3084 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3085 (void *)addr, item, (size_t)(addr - item),
3086 pp->pr_wchan,
3087 incpucache ? cpucachestr :
3088 incache ? "cached" : allocated ? "allocated" : "free");
3089 }
3090 }
3091 #endif /* defined(DDB) */
3092