subr_pool.c revision 1.184 1 /* $NetBSD: subr_pool.c,v 1.184 2010/05/12 03:43:46 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.184 2010/05/12 03:43:46 rmind Exp $");
36
37 #include "opt_ddb.h"
38 #include "opt_pool.h"
39 #include "opt_poollog.h"
40 #include "opt_lockdebug.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitops.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/pool.h>
50 #include <sys/syslog.h>
51 #include <sys/debug.h>
52 #include <sys/lockdebug.h>
53 #include <sys/xcall.h>
54 #include <sys/cpu.h>
55 #include <sys/atomic.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) \
79 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
80
81 #ifdef POOL_SUBPAGE
82 /* Pool of subpages for use by normal pools. */
83 static struct pool psppool;
84 #endif
85
86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
87 SLIST_HEAD_INITIALIZER(pa_deferinitq);
88
89 static void *pool_page_alloc_meta(struct pool *, int);
90 static void pool_page_free_meta(struct pool *, void *);
91
92 /* allocator for pool metadata */
93 struct pool_allocator pool_allocator_meta = {
94 pool_page_alloc_meta, pool_page_free_meta,
95 .pa_backingmapptr = &kmem_map,
96 };
97
98 /* # of seconds to retain page after last use */
99 int pool_inactive_time = 10;
100
101 /* Next candidate for drainage (see pool_drain()) */
102 static struct pool *drainpp;
103
104 /* This lock protects both pool_head and drainpp. */
105 static kmutex_t pool_head_lock;
106 static kcondvar_t pool_busy;
107
108 /* This lock protects initialization of a potentially shared pool allocator */
109 static kmutex_t pool_allocator_lock;
110
111 typedef uint32_t pool_item_bitmap_t;
112 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
113 #define BITMAP_MASK (BITMAP_SIZE - 1)
114
115 struct pool_item_header {
116 /* Page headers */
117 LIST_ENTRY(pool_item_header)
118 ph_pagelist; /* pool page list */
119 SPLAY_ENTRY(pool_item_header)
120 ph_node; /* Off-page page headers */
121 void * ph_page; /* this page's address */
122 uint32_t ph_time; /* last referenced */
123 uint16_t ph_nmissing; /* # of chunks in use */
124 uint16_t ph_off; /* start offset in page */
125 union {
126 /* !PR_NOTOUCH */
127 struct {
128 LIST_HEAD(, pool_item)
129 phu_itemlist; /* chunk list for this page */
130 } phu_normal;
131 /* PR_NOTOUCH */
132 struct {
133 pool_item_bitmap_t phu_bitmap[1];
134 } phu_notouch;
135 } ph_u;
136 };
137 #define ph_itemlist ph_u.phu_normal.phu_itemlist
138 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
139
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 u_int pi_magic;
143 #endif
144 #define PI_MAGIC 0xdeaddeadU
145 /* Other entries use only this list entry */
146 LIST_ENTRY(pool_item) pi_list;
147 };
148
149 #define POOL_NEEDS_CATCHUP(pp) \
150 ((pp)->pr_nitems < (pp)->pr_minitems)
151
152 /*
153 * Pool cache management.
154 *
155 * Pool caches provide a way for constructed objects to be cached by the
156 * pool subsystem. This can lead to performance improvements by avoiding
157 * needless object construction/destruction; it is deferred until absolutely
158 * necessary.
159 *
160 * Caches are grouped into cache groups. Each cache group references up
161 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
162 * object from the pool, it calls the object's constructor and places it
163 * into a cache group. When a cache group frees an object back to the
164 * pool, it first calls the object's destructor. This allows the object
165 * to persist in constructed form while freed to the cache.
166 *
167 * The pool references each cache, so that when a pool is drained by the
168 * pagedaemon, it can drain each individual cache as well. Each time a
169 * cache is drained, the most idle cache group is freed to the pool in
170 * its entirety.
171 *
172 * Pool caches are layed on top of pools. By layering them, we can avoid
173 * the complexity of cache management for pools which would not benefit
174 * from it.
175 */
176
177 static struct pool pcg_normal_pool;
178 static struct pool pcg_large_pool;
179 static struct pool cache_pool;
180 static struct pool cache_cpu_pool;
181
182 /* List of all caches. */
183 TAILQ_HEAD(,pool_cache) pool_cache_head =
184 TAILQ_HEAD_INITIALIZER(pool_cache_head);
185
186 int pool_cache_disable; /* global disable for caching */
187 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
188
189 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
190 void *);
191 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
192 void **, paddr_t *, int);
193 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
194 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
195 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
196 static void pool_cache_xcall(pool_cache_t);
197
198 static int pool_catchup(struct pool *);
199 static void pool_prime_page(struct pool *, void *,
200 struct pool_item_header *);
201 static void pool_update_curpage(struct pool *);
202
203 static int pool_grow(struct pool *, int);
204 static void *pool_allocator_alloc(struct pool *, int);
205 static void pool_allocator_free(struct pool *, void *);
206
207 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
208 void (*)(const char *, ...));
209 static void pool_print1(struct pool *, const char *,
210 void (*)(const char *, ...));
211
212 static int pool_chk_page(struct pool *, const char *,
213 struct pool_item_header *);
214
215 /*
216 * Pool log entry. An array of these is allocated in pool_init().
217 */
218 struct pool_log {
219 const char *pl_file;
220 long pl_line;
221 int pl_action;
222 #define PRLOG_GET 1
223 #define PRLOG_PUT 2
224 void *pl_addr;
225 };
226
227 #ifdef POOL_DIAGNOSTIC
228 /* Number of entries in pool log buffers */
229 #ifndef POOL_LOGSIZE
230 #define POOL_LOGSIZE 10
231 #endif
232
233 int pool_logsize = POOL_LOGSIZE;
234
235 static inline void
236 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
237 {
238 int n;
239 struct pool_log *pl;
240
241 if ((pp->pr_roflags & PR_LOGGING) == 0)
242 return;
243
244 if (pp->pr_log == NULL) {
245 if (kmem_map != NULL)
246 pp->pr_log = malloc(
247 pool_logsize * sizeof(struct pool_log),
248 M_TEMP, M_NOWAIT | M_ZERO);
249 if (pp->pr_log == NULL)
250 return;
251 pp->pr_curlogentry = 0;
252 pp->pr_logsize = pool_logsize;
253 }
254
255 /*
256 * Fill in the current entry. Wrap around and overwrite
257 * the oldest entry if necessary.
258 */
259 n = pp->pr_curlogentry;
260 pl = &pp->pr_log[n];
261 pl->pl_file = file;
262 pl->pl_line = line;
263 pl->pl_action = action;
264 pl->pl_addr = v;
265 if (++n >= pp->pr_logsize)
266 n = 0;
267 pp->pr_curlogentry = n;
268 }
269
270 static void
271 pr_printlog(struct pool *pp, struct pool_item *pi,
272 void (*pr)(const char *, ...))
273 {
274 int i = pp->pr_logsize;
275 int n = pp->pr_curlogentry;
276
277 if (pp->pr_log == NULL)
278 return;
279
280 /*
281 * Print all entries in this pool's log.
282 */
283 while (i-- > 0) {
284 struct pool_log *pl = &pp->pr_log[n];
285 if (pl->pl_action != 0) {
286 if (pi == NULL || pi == pl->pl_addr) {
287 (*pr)("\tlog entry %d:\n", i);
288 (*pr)("\t\taction = %s, addr = %p\n",
289 pl->pl_action == PRLOG_GET ? "get" : "put",
290 pl->pl_addr);
291 (*pr)("\t\tfile: %s at line %lu\n",
292 pl->pl_file, pl->pl_line);
293 }
294 }
295 if (++n >= pp->pr_logsize)
296 n = 0;
297 }
298 }
299
300 static inline void
301 pr_enter(struct pool *pp, const char *file, long line)
302 {
303
304 if (__predict_false(pp->pr_entered_file != NULL)) {
305 printf("pool %s: reentrancy at file %s line %ld\n",
306 pp->pr_wchan, file, line);
307 printf(" previous entry at file %s line %ld\n",
308 pp->pr_entered_file, pp->pr_entered_line);
309 panic("pr_enter");
310 }
311
312 pp->pr_entered_file = file;
313 pp->pr_entered_line = line;
314 }
315
316 static inline void
317 pr_leave(struct pool *pp)
318 {
319
320 if (__predict_false(pp->pr_entered_file == NULL)) {
321 printf("pool %s not entered?\n", pp->pr_wchan);
322 panic("pr_leave");
323 }
324
325 pp->pr_entered_file = NULL;
326 pp->pr_entered_line = 0;
327 }
328
329 static inline void
330 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
331 {
332
333 if (pp->pr_entered_file != NULL)
334 (*pr)("\n\tcurrently entered from file %s line %ld\n",
335 pp->pr_entered_file, pp->pr_entered_line);
336 }
337 #else
338 #define pr_log(pp, v, action, file, line)
339 #define pr_printlog(pp, pi, pr)
340 #define pr_enter(pp, file, line)
341 #define pr_leave(pp)
342 #define pr_enter_check(pp, pr)
343 #endif /* POOL_DIAGNOSTIC */
344
345 static inline unsigned int
346 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
347 const void *v)
348 {
349 const char *cp = v;
350 unsigned int idx;
351
352 KASSERT(pp->pr_roflags & PR_NOTOUCH);
353 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
354 KASSERT(idx < pp->pr_itemsperpage);
355 return idx;
356 }
357
358 static inline void
359 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
360 void *obj)
361 {
362 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
363 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
364 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
365
366 KASSERT((*bitmap & mask) == 0);
367 *bitmap |= mask;
368 }
369
370 static inline void *
371 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
372 {
373 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
374 unsigned int idx;
375 int i;
376
377 for (i = 0; ; i++) {
378 int bit;
379
380 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
381 bit = ffs32(bitmap[i]);
382 if (bit) {
383 pool_item_bitmap_t mask;
384
385 bit--;
386 idx = (i * BITMAP_SIZE) + bit;
387 mask = 1 << bit;
388 KASSERT((bitmap[i] & mask) != 0);
389 bitmap[i] &= ~mask;
390 break;
391 }
392 }
393 KASSERT(idx < pp->pr_itemsperpage);
394 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
395 }
396
397 static inline void
398 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
399 {
400 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
401 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
402 int i;
403
404 for (i = 0; i < n; i++) {
405 bitmap[i] = (pool_item_bitmap_t)-1;
406 }
407 }
408
409 static inline int
410 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
411 {
412
413 /*
414 * we consider pool_item_header with smaller ph_page bigger.
415 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
416 */
417
418 if (a->ph_page < b->ph_page)
419 return (1);
420 else if (a->ph_page > b->ph_page)
421 return (-1);
422 else
423 return (0);
424 }
425
426 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
427 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
428
429 static inline struct pool_item_header *
430 pr_find_pagehead_noalign(struct pool *pp, void *v)
431 {
432 struct pool_item_header *ph, tmp;
433
434 tmp.ph_page = (void *)(uintptr_t)v;
435 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
436 if (ph == NULL) {
437 ph = SPLAY_ROOT(&pp->pr_phtree);
438 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
439 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
440 }
441 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
442 }
443
444 return ph;
445 }
446
447 /*
448 * Return the pool page header based on item address.
449 */
450 static inline struct pool_item_header *
451 pr_find_pagehead(struct pool *pp, void *v)
452 {
453 struct pool_item_header *ph, tmp;
454
455 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
456 ph = pr_find_pagehead_noalign(pp, v);
457 } else {
458 void *page =
459 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
460
461 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
462 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
463 } else {
464 tmp.ph_page = page;
465 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
466 }
467 }
468
469 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
470 ((char *)ph->ph_page <= (char *)v &&
471 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
472 return ph;
473 }
474
475 static void
476 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
477 {
478 struct pool_item_header *ph;
479
480 while ((ph = LIST_FIRST(pq)) != NULL) {
481 LIST_REMOVE(ph, ph_pagelist);
482 pool_allocator_free(pp, ph->ph_page);
483 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
484 pool_put(pp->pr_phpool, ph);
485 }
486 }
487
488 /*
489 * Remove a page from the pool.
490 */
491 static inline void
492 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
493 struct pool_pagelist *pq)
494 {
495
496 KASSERT(mutex_owned(&pp->pr_lock));
497
498 /*
499 * If the page was idle, decrement the idle page count.
500 */
501 if (ph->ph_nmissing == 0) {
502 #ifdef DIAGNOSTIC
503 if (pp->pr_nidle == 0)
504 panic("pr_rmpage: nidle inconsistent");
505 if (pp->pr_nitems < pp->pr_itemsperpage)
506 panic("pr_rmpage: nitems inconsistent");
507 #endif
508 pp->pr_nidle--;
509 }
510
511 pp->pr_nitems -= pp->pr_itemsperpage;
512
513 /*
514 * Unlink the page from the pool and queue it for release.
515 */
516 LIST_REMOVE(ph, ph_pagelist);
517 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
518 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
519 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
520
521 pp->pr_npages--;
522 pp->pr_npagefree++;
523
524 pool_update_curpage(pp);
525 }
526
527 static bool
528 pa_starved_p(struct pool_allocator *pa)
529 {
530
531 if (pa->pa_backingmap != NULL) {
532 return vm_map_starved_p(pa->pa_backingmap);
533 }
534 return false;
535 }
536
537 static int
538 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
539 {
540 struct pool *pp = obj;
541 struct pool_allocator *pa = pp->pr_alloc;
542
543 KASSERT(&pp->pr_reclaimerentry == ce);
544 pool_reclaim(pp);
545 if (!pa_starved_p(pa)) {
546 return CALLBACK_CHAIN_ABORT;
547 }
548 return CALLBACK_CHAIN_CONTINUE;
549 }
550
551 static void
552 pool_reclaim_register(struct pool *pp)
553 {
554 struct vm_map *map = pp->pr_alloc->pa_backingmap;
555 int s;
556
557 if (map == NULL) {
558 return;
559 }
560
561 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
562 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
563 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
564 splx(s);
565
566 #ifdef DIAGNOSTIC
567 /* Diagnostic drain attempt. */
568 uvm_km_va_drain(map, 0);
569 #endif
570 }
571
572 static void
573 pool_reclaim_unregister(struct pool *pp)
574 {
575 struct vm_map *map = pp->pr_alloc->pa_backingmap;
576 int s;
577
578 if (map == NULL) {
579 return;
580 }
581
582 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
583 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
584 &pp->pr_reclaimerentry);
585 splx(s);
586 }
587
588 static void
589 pa_reclaim_register(struct pool_allocator *pa)
590 {
591 struct vm_map *map = *pa->pa_backingmapptr;
592 struct pool *pp;
593
594 KASSERT(pa->pa_backingmap == NULL);
595 if (map == NULL) {
596 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
597 return;
598 }
599 pa->pa_backingmap = map;
600 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
601 pool_reclaim_register(pp);
602 }
603 }
604
605 /*
606 * Initialize all the pools listed in the "pools" link set.
607 */
608 void
609 pool_subsystem_init(void)
610 {
611 struct pool_allocator *pa;
612
613 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
614 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
615 cv_init(&pool_busy, "poolbusy");
616
617 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
618 KASSERT(pa->pa_backingmapptr != NULL);
619 KASSERT(*pa->pa_backingmapptr != NULL);
620 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
621 pa_reclaim_register(pa);
622 }
623
624 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
625 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
626
627 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
628 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
629 }
630
631 /*
632 * Initialize the given pool resource structure.
633 *
634 * We export this routine to allow other kernel parts to declare
635 * static pools that must be initialized before malloc() is available.
636 */
637 void
638 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
639 const char *wchan, struct pool_allocator *palloc, int ipl)
640 {
641 struct pool *pp1;
642 size_t trysize, phsize;
643 int off, slack;
644
645 #ifdef DEBUG
646 /*
647 * Check that the pool hasn't already been initialised and
648 * added to the list of all pools.
649 */
650 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
651 if (pp == pp1)
652 panic("pool_init: pool %s already initialised",
653 wchan);
654 }
655 #endif
656
657 #ifdef POOL_DIAGNOSTIC
658 /*
659 * Always log if POOL_DIAGNOSTIC is defined.
660 */
661 if (pool_logsize != 0)
662 flags |= PR_LOGGING;
663 #endif
664
665 if (palloc == NULL)
666 palloc = &pool_allocator_kmem;
667 #ifdef POOL_SUBPAGE
668 if (size > palloc->pa_pagesz) {
669 if (palloc == &pool_allocator_kmem)
670 palloc = &pool_allocator_kmem_fullpage;
671 else if (palloc == &pool_allocator_nointr)
672 palloc = &pool_allocator_nointr_fullpage;
673 }
674 #endif /* POOL_SUBPAGE */
675 if (!cold)
676 mutex_enter(&pool_allocator_lock);
677 if (palloc->pa_refcnt++ == 0) {
678 if (palloc->pa_pagesz == 0)
679 palloc->pa_pagesz = PAGE_SIZE;
680
681 TAILQ_INIT(&palloc->pa_list);
682
683 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
684 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
685 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
686
687 if (palloc->pa_backingmapptr != NULL) {
688 pa_reclaim_register(palloc);
689 }
690 }
691 if (!cold)
692 mutex_exit(&pool_allocator_lock);
693
694 if (align == 0)
695 align = ALIGN(1);
696
697 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
698 size = sizeof(struct pool_item);
699
700 size = roundup(size, align);
701 #ifdef DIAGNOSTIC
702 if (size > palloc->pa_pagesz)
703 panic("pool_init: pool item size (%zu) too large", size);
704 #endif
705
706 /*
707 * Initialize the pool structure.
708 */
709 LIST_INIT(&pp->pr_emptypages);
710 LIST_INIT(&pp->pr_fullpages);
711 LIST_INIT(&pp->pr_partpages);
712 pp->pr_cache = NULL;
713 pp->pr_curpage = NULL;
714 pp->pr_npages = 0;
715 pp->pr_minitems = 0;
716 pp->pr_minpages = 0;
717 pp->pr_maxpages = UINT_MAX;
718 pp->pr_roflags = flags;
719 pp->pr_flags = 0;
720 pp->pr_size = size;
721 pp->pr_align = align;
722 pp->pr_wchan = wchan;
723 pp->pr_alloc = palloc;
724 pp->pr_nitems = 0;
725 pp->pr_nout = 0;
726 pp->pr_hardlimit = UINT_MAX;
727 pp->pr_hardlimit_warning = NULL;
728 pp->pr_hardlimit_ratecap.tv_sec = 0;
729 pp->pr_hardlimit_ratecap.tv_usec = 0;
730 pp->pr_hardlimit_warning_last.tv_sec = 0;
731 pp->pr_hardlimit_warning_last.tv_usec = 0;
732 pp->pr_drain_hook = NULL;
733 pp->pr_drain_hook_arg = NULL;
734 pp->pr_freecheck = NULL;
735
736 /*
737 * Decide whether to put the page header off page to avoid
738 * wasting too large a part of the page or too big item.
739 * Off-page page headers go on a hash table, so we can match
740 * a returned item with its header based on the page address.
741 * We use 1/16 of the page size and about 8 times of the item
742 * size as the threshold (XXX: tune)
743 *
744 * However, we'll put the header into the page if we can put
745 * it without wasting any items.
746 *
747 * Silently enforce `0 <= ioff < align'.
748 */
749 pp->pr_itemoffset = ioff %= align;
750 /* See the comment below about reserved bytes. */
751 trysize = palloc->pa_pagesz - ((align - ioff) % align);
752 phsize = ALIGN(sizeof(struct pool_item_header));
753 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
754 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
755 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
756 /* Use the end of the page for the page header */
757 pp->pr_roflags |= PR_PHINPAGE;
758 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
759 } else {
760 /* The page header will be taken from our page header pool */
761 pp->pr_phoffset = 0;
762 off = palloc->pa_pagesz;
763 SPLAY_INIT(&pp->pr_phtree);
764 }
765
766 /*
767 * Alignment is to take place at `ioff' within the item. This means
768 * we must reserve up to `align - 1' bytes on the page to allow
769 * appropriate positioning of each item.
770 */
771 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
772 KASSERT(pp->pr_itemsperpage != 0);
773 if ((pp->pr_roflags & PR_NOTOUCH)) {
774 int idx;
775
776 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
777 idx++) {
778 /* nothing */
779 }
780 if (idx >= PHPOOL_MAX) {
781 /*
782 * if you see this panic, consider to tweak
783 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
784 */
785 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
786 pp->pr_wchan, pp->pr_itemsperpage);
787 }
788 pp->pr_phpool = &phpool[idx];
789 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
790 pp->pr_phpool = &phpool[0];
791 }
792 #if defined(DIAGNOSTIC)
793 else {
794 pp->pr_phpool = NULL;
795 }
796 #endif
797
798 /*
799 * Use the slack between the chunks and the page header
800 * for "cache coloring".
801 */
802 slack = off - pp->pr_itemsperpage * pp->pr_size;
803 pp->pr_maxcolor = (slack / align) * align;
804 pp->pr_curcolor = 0;
805
806 pp->pr_nget = 0;
807 pp->pr_nfail = 0;
808 pp->pr_nput = 0;
809 pp->pr_npagealloc = 0;
810 pp->pr_npagefree = 0;
811 pp->pr_hiwat = 0;
812 pp->pr_nidle = 0;
813 pp->pr_refcnt = 0;
814
815 pp->pr_log = NULL;
816
817 pp->pr_entered_file = NULL;
818 pp->pr_entered_line = 0;
819
820 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
821 cv_init(&pp->pr_cv, wchan);
822 pp->pr_ipl = ipl;
823
824 /*
825 * Initialize private page header pool and cache magazine pool if we
826 * haven't done so yet.
827 * XXX LOCKING.
828 */
829 if (phpool[0].pr_size == 0) {
830 int idx;
831 for (idx = 0; idx < PHPOOL_MAX; idx++) {
832 static char phpool_names[PHPOOL_MAX][6+1+6+1];
833 int nelem;
834 size_t sz;
835
836 nelem = PHPOOL_FREELIST_NELEM(idx);
837 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
838 "phpool-%d", nelem);
839 sz = sizeof(struct pool_item_header);
840 if (nelem) {
841 sz = offsetof(struct pool_item_header,
842 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
843 }
844 pool_init(&phpool[idx], sz, 0, 0, 0,
845 phpool_names[idx], &pool_allocator_meta, IPL_VM);
846 }
847 #ifdef POOL_SUBPAGE
848 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
849 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
850 #endif
851
852 size = sizeof(pcg_t) +
853 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
854 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
855 "pcgnormal", &pool_allocator_meta, IPL_VM);
856
857 size = sizeof(pcg_t) +
858 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
859 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
860 "pcglarge", &pool_allocator_meta, IPL_VM);
861 }
862
863 /* Insert into the list of all pools. */
864 if (!cold)
865 mutex_enter(&pool_head_lock);
866 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
867 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
868 break;
869 }
870 if (pp1 == NULL)
871 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
872 else
873 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
874 if (!cold)
875 mutex_exit(&pool_head_lock);
876
877 /* Insert this into the list of pools using this allocator. */
878 if (!cold)
879 mutex_enter(&palloc->pa_lock);
880 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
881 if (!cold)
882 mutex_exit(&palloc->pa_lock);
883
884 pool_reclaim_register(pp);
885 }
886
887 /*
888 * De-commision a pool resource.
889 */
890 void
891 pool_destroy(struct pool *pp)
892 {
893 struct pool_pagelist pq;
894 struct pool_item_header *ph;
895
896 /* Remove from global pool list */
897 mutex_enter(&pool_head_lock);
898 while (pp->pr_refcnt != 0)
899 cv_wait(&pool_busy, &pool_head_lock);
900 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
901 if (drainpp == pp)
902 drainpp = NULL;
903 mutex_exit(&pool_head_lock);
904
905 /* Remove this pool from its allocator's list of pools. */
906 pool_reclaim_unregister(pp);
907 mutex_enter(&pp->pr_alloc->pa_lock);
908 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
909 mutex_exit(&pp->pr_alloc->pa_lock);
910
911 mutex_enter(&pool_allocator_lock);
912 if (--pp->pr_alloc->pa_refcnt == 0)
913 mutex_destroy(&pp->pr_alloc->pa_lock);
914 mutex_exit(&pool_allocator_lock);
915
916 mutex_enter(&pp->pr_lock);
917
918 KASSERT(pp->pr_cache == NULL);
919
920 #ifdef DIAGNOSTIC
921 if (pp->pr_nout != 0) {
922 pr_printlog(pp, NULL, printf);
923 panic("pool_destroy: pool busy: still out: %u",
924 pp->pr_nout);
925 }
926 #endif
927
928 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
929 KASSERT(LIST_EMPTY(&pp->pr_partpages));
930
931 /* Remove all pages */
932 LIST_INIT(&pq);
933 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
934 pr_rmpage(pp, ph, &pq);
935
936 mutex_exit(&pp->pr_lock);
937
938 pr_pagelist_free(pp, &pq);
939
940 #ifdef POOL_DIAGNOSTIC
941 if (pp->pr_log != NULL) {
942 free(pp->pr_log, M_TEMP);
943 pp->pr_log = NULL;
944 }
945 #endif
946
947 cv_destroy(&pp->pr_cv);
948 mutex_destroy(&pp->pr_lock);
949 }
950
951 void
952 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
953 {
954
955 /* XXX no locking -- must be used just after pool_init() */
956 #ifdef DIAGNOSTIC
957 if (pp->pr_drain_hook != NULL)
958 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
959 #endif
960 pp->pr_drain_hook = fn;
961 pp->pr_drain_hook_arg = arg;
962 }
963
964 static struct pool_item_header *
965 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
966 {
967 struct pool_item_header *ph;
968
969 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
970 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
971 else
972 ph = pool_get(pp->pr_phpool, flags);
973
974 return (ph);
975 }
976
977 /*
978 * Grab an item from the pool.
979 */
980 void *
981 #ifdef POOL_DIAGNOSTIC
982 _pool_get(struct pool *pp, int flags, const char *file, long line)
983 #else
984 pool_get(struct pool *pp, int flags)
985 #endif
986 {
987 struct pool_item *pi;
988 struct pool_item_header *ph;
989 void *v;
990
991 #ifdef DIAGNOSTIC
992 if (pp->pr_itemsperpage == 0)
993 panic("pool_get: pool '%s': pr_itemsperpage is zero, "
994 "pool not initialized?", pp->pr_wchan);
995 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE)
996 panic("pool '%s' is IPL_NONE, but called from "
997 "interrupt context\n", pp->pr_wchan);
998 #endif
999 if (flags & PR_WAITOK) {
1000 ASSERT_SLEEPABLE();
1001 }
1002
1003 mutex_enter(&pp->pr_lock);
1004 pr_enter(pp, file, line);
1005
1006 startover:
1007 /*
1008 * Check to see if we've reached the hard limit. If we have,
1009 * and we can wait, then wait until an item has been returned to
1010 * the pool.
1011 */
1012 #ifdef DIAGNOSTIC
1013 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1014 pr_leave(pp);
1015 mutex_exit(&pp->pr_lock);
1016 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1017 }
1018 #endif
1019 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1020 if (pp->pr_drain_hook != NULL) {
1021 /*
1022 * Since the drain hook is going to free things
1023 * back to the pool, unlock, call the hook, re-lock,
1024 * and check the hardlimit condition again.
1025 */
1026 pr_leave(pp);
1027 mutex_exit(&pp->pr_lock);
1028 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1029 mutex_enter(&pp->pr_lock);
1030 pr_enter(pp, file, line);
1031 if (pp->pr_nout < pp->pr_hardlimit)
1032 goto startover;
1033 }
1034
1035 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1036 /*
1037 * XXX: A warning isn't logged in this case. Should
1038 * it be?
1039 */
1040 pp->pr_flags |= PR_WANTED;
1041 pr_leave(pp);
1042 cv_wait(&pp->pr_cv, &pp->pr_lock);
1043 pr_enter(pp, file, line);
1044 goto startover;
1045 }
1046
1047 /*
1048 * Log a message that the hard limit has been hit.
1049 */
1050 if (pp->pr_hardlimit_warning != NULL &&
1051 ratecheck(&pp->pr_hardlimit_warning_last,
1052 &pp->pr_hardlimit_ratecap))
1053 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1054
1055 pp->pr_nfail++;
1056
1057 pr_leave(pp);
1058 mutex_exit(&pp->pr_lock);
1059 return (NULL);
1060 }
1061
1062 /*
1063 * The convention we use is that if `curpage' is not NULL, then
1064 * it points at a non-empty bucket. In particular, `curpage'
1065 * never points at a page header which has PR_PHINPAGE set and
1066 * has no items in its bucket.
1067 */
1068 if ((ph = pp->pr_curpage) == NULL) {
1069 int error;
1070
1071 #ifdef DIAGNOSTIC
1072 if (pp->pr_nitems != 0) {
1073 mutex_exit(&pp->pr_lock);
1074 printf("pool_get: %s: curpage NULL, nitems %u\n",
1075 pp->pr_wchan, pp->pr_nitems);
1076 panic("pool_get: nitems inconsistent");
1077 }
1078 #endif
1079
1080 /*
1081 * Call the back-end page allocator for more memory.
1082 * Release the pool lock, as the back-end page allocator
1083 * may block.
1084 */
1085 pr_leave(pp);
1086 error = pool_grow(pp, flags);
1087 pr_enter(pp, file, line);
1088 if (error != 0) {
1089 /*
1090 * We were unable to allocate a page or item
1091 * header, but we released the lock during
1092 * allocation, so perhaps items were freed
1093 * back to the pool. Check for this case.
1094 */
1095 if (pp->pr_curpage != NULL)
1096 goto startover;
1097
1098 pp->pr_nfail++;
1099 pr_leave(pp);
1100 mutex_exit(&pp->pr_lock);
1101 return (NULL);
1102 }
1103
1104 /* Start the allocation process over. */
1105 goto startover;
1106 }
1107 if (pp->pr_roflags & PR_NOTOUCH) {
1108 #ifdef DIAGNOSTIC
1109 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1110 pr_leave(pp);
1111 mutex_exit(&pp->pr_lock);
1112 panic("pool_get: %s: page empty", pp->pr_wchan);
1113 }
1114 #endif
1115 v = pr_item_notouch_get(pp, ph);
1116 #ifdef POOL_DIAGNOSTIC
1117 pr_log(pp, v, PRLOG_GET, file, line);
1118 #endif
1119 } else {
1120 v = pi = LIST_FIRST(&ph->ph_itemlist);
1121 if (__predict_false(v == NULL)) {
1122 pr_leave(pp);
1123 mutex_exit(&pp->pr_lock);
1124 panic("pool_get: %s: page empty", pp->pr_wchan);
1125 }
1126 #ifdef DIAGNOSTIC
1127 if (__predict_false(pp->pr_nitems == 0)) {
1128 pr_leave(pp);
1129 mutex_exit(&pp->pr_lock);
1130 printf("pool_get: %s: items on itemlist, nitems %u\n",
1131 pp->pr_wchan, pp->pr_nitems);
1132 panic("pool_get: nitems inconsistent");
1133 }
1134 #endif
1135
1136 #ifdef POOL_DIAGNOSTIC
1137 pr_log(pp, v, PRLOG_GET, file, line);
1138 #endif
1139
1140 #ifdef DIAGNOSTIC
1141 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1142 pr_printlog(pp, pi, printf);
1143 panic("pool_get(%s): free list modified: "
1144 "magic=%x; page %p; item addr %p\n",
1145 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1146 }
1147 #endif
1148
1149 /*
1150 * Remove from item list.
1151 */
1152 LIST_REMOVE(pi, pi_list);
1153 }
1154 pp->pr_nitems--;
1155 pp->pr_nout++;
1156 if (ph->ph_nmissing == 0) {
1157 #ifdef DIAGNOSTIC
1158 if (__predict_false(pp->pr_nidle == 0))
1159 panic("pool_get: nidle inconsistent");
1160 #endif
1161 pp->pr_nidle--;
1162
1163 /*
1164 * This page was previously empty. Move it to the list of
1165 * partially-full pages. This page is already curpage.
1166 */
1167 LIST_REMOVE(ph, ph_pagelist);
1168 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1169 }
1170 ph->ph_nmissing++;
1171 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1172 #ifdef DIAGNOSTIC
1173 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1174 !LIST_EMPTY(&ph->ph_itemlist))) {
1175 pr_leave(pp);
1176 mutex_exit(&pp->pr_lock);
1177 panic("pool_get: %s: nmissing inconsistent",
1178 pp->pr_wchan);
1179 }
1180 #endif
1181 /*
1182 * This page is now full. Move it to the full list
1183 * and select a new current page.
1184 */
1185 LIST_REMOVE(ph, ph_pagelist);
1186 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1187 pool_update_curpage(pp);
1188 }
1189
1190 pp->pr_nget++;
1191 pr_leave(pp);
1192
1193 /*
1194 * If we have a low water mark and we are now below that low
1195 * water mark, add more items to the pool.
1196 */
1197 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1198 /*
1199 * XXX: Should we log a warning? Should we set up a timeout
1200 * to try again in a second or so? The latter could break
1201 * a caller's assumptions about interrupt protection, etc.
1202 */
1203 }
1204
1205 mutex_exit(&pp->pr_lock);
1206 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1207 FREECHECK_OUT(&pp->pr_freecheck, v);
1208 return (v);
1209 }
1210
1211 /*
1212 * Internal version of pool_put(). Pool is already locked/entered.
1213 */
1214 static void
1215 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1216 {
1217 struct pool_item *pi = v;
1218 struct pool_item_header *ph;
1219
1220 KASSERT(mutex_owned(&pp->pr_lock));
1221 FREECHECK_IN(&pp->pr_freecheck, v);
1222 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1223
1224 #ifdef DIAGNOSTIC
1225 if (__predict_false(pp->pr_nout == 0)) {
1226 printf("pool %s: putting with none out\n",
1227 pp->pr_wchan);
1228 panic("pool_put");
1229 }
1230 #endif
1231
1232 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1233 pr_printlog(pp, NULL, printf);
1234 panic("pool_put: %s: page header missing", pp->pr_wchan);
1235 }
1236
1237 /*
1238 * Return to item list.
1239 */
1240 if (pp->pr_roflags & PR_NOTOUCH) {
1241 pr_item_notouch_put(pp, ph, v);
1242 } else {
1243 #ifdef DIAGNOSTIC
1244 pi->pi_magic = PI_MAGIC;
1245 #endif
1246 #ifdef DEBUG
1247 {
1248 int i, *ip = v;
1249
1250 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1251 *ip++ = PI_MAGIC;
1252 }
1253 }
1254 #endif
1255
1256 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1257 }
1258 KDASSERT(ph->ph_nmissing != 0);
1259 ph->ph_nmissing--;
1260 pp->pr_nput++;
1261 pp->pr_nitems++;
1262 pp->pr_nout--;
1263
1264 /* Cancel "pool empty" condition if it exists */
1265 if (pp->pr_curpage == NULL)
1266 pp->pr_curpage = ph;
1267
1268 if (pp->pr_flags & PR_WANTED) {
1269 pp->pr_flags &= ~PR_WANTED;
1270 cv_broadcast(&pp->pr_cv);
1271 }
1272
1273 /*
1274 * If this page is now empty, do one of two things:
1275 *
1276 * (1) If we have more pages than the page high water mark,
1277 * free the page back to the system. ONLY CONSIDER
1278 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1279 * CLAIM.
1280 *
1281 * (2) Otherwise, move the page to the empty page list.
1282 *
1283 * Either way, select a new current page (so we use a partially-full
1284 * page if one is available).
1285 */
1286 if (ph->ph_nmissing == 0) {
1287 pp->pr_nidle++;
1288 if (pp->pr_npages > pp->pr_minpages &&
1289 pp->pr_npages > pp->pr_maxpages) {
1290 pr_rmpage(pp, ph, pq);
1291 } else {
1292 LIST_REMOVE(ph, ph_pagelist);
1293 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1294
1295 /*
1296 * Update the timestamp on the page. A page must
1297 * be idle for some period of time before it can
1298 * be reclaimed by the pagedaemon. This minimizes
1299 * ping-pong'ing for memory.
1300 *
1301 * note for 64-bit time_t: truncating to 32-bit is not
1302 * a problem for our usage.
1303 */
1304 ph->ph_time = time_uptime;
1305 }
1306 pool_update_curpage(pp);
1307 }
1308
1309 /*
1310 * If the page was previously completely full, move it to the
1311 * partially-full list and make it the current page. The next
1312 * allocation will get the item from this page, instead of
1313 * further fragmenting the pool.
1314 */
1315 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1316 LIST_REMOVE(ph, ph_pagelist);
1317 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1318 pp->pr_curpage = ph;
1319 }
1320 }
1321
1322 /*
1323 * Return resource to the pool.
1324 */
1325 #ifdef POOL_DIAGNOSTIC
1326 void
1327 _pool_put(struct pool *pp, void *v, const char *file, long line)
1328 {
1329 struct pool_pagelist pq;
1330
1331 LIST_INIT(&pq);
1332
1333 mutex_enter(&pp->pr_lock);
1334 pr_enter(pp, file, line);
1335
1336 pr_log(pp, v, PRLOG_PUT, file, line);
1337
1338 pool_do_put(pp, v, &pq);
1339
1340 pr_leave(pp);
1341 mutex_exit(&pp->pr_lock);
1342
1343 pr_pagelist_free(pp, &pq);
1344 }
1345 #undef pool_put
1346 #endif /* POOL_DIAGNOSTIC */
1347
1348 void
1349 pool_put(struct pool *pp, void *v)
1350 {
1351 struct pool_pagelist pq;
1352
1353 LIST_INIT(&pq);
1354
1355 mutex_enter(&pp->pr_lock);
1356 pool_do_put(pp, v, &pq);
1357 mutex_exit(&pp->pr_lock);
1358
1359 pr_pagelist_free(pp, &pq);
1360 }
1361
1362 #ifdef POOL_DIAGNOSTIC
1363 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1364 #endif
1365
1366 /*
1367 * pool_grow: grow a pool by a page.
1368 *
1369 * => called with pool locked.
1370 * => unlock and relock the pool.
1371 * => return with pool locked.
1372 */
1373
1374 static int
1375 pool_grow(struct pool *pp, int flags)
1376 {
1377 struct pool_item_header *ph = NULL;
1378 char *cp;
1379
1380 mutex_exit(&pp->pr_lock);
1381 cp = pool_allocator_alloc(pp, flags);
1382 if (__predict_true(cp != NULL)) {
1383 ph = pool_alloc_item_header(pp, cp, flags);
1384 }
1385 if (__predict_false(cp == NULL || ph == NULL)) {
1386 if (cp != NULL) {
1387 pool_allocator_free(pp, cp);
1388 }
1389 mutex_enter(&pp->pr_lock);
1390 return ENOMEM;
1391 }
1392
1393 mutex_enter(&pp->pr_lock);
1394 pool_prime_page(pp, cp, ph);
1395 pp->pr_npagealloc++;
1396 return 0;
1397 }
1398
1399 /*
1400 * Add N items to the pool.
1401 */
1402 int
1403 pool_prime(struct pool *pp, int n)
1404 {
1405 int newpages;
1406 int error = 0;
1407
1408 mutex_enter(&pp->pr_lock);
1409
1410 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1411
1412 while (newpages-- > 0) {
1413 error = pool_grow(pp, PR_NOWAIT);
1414 if (error) {
1415 break;
1416 }
1417 pp->pr_minpages++;
1418 }
1419
1420 if (pp->pr_minpages >= pp->pr_maxpages)
1421 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1422
1423 mutex_exit(&pp->pr_lock);
1424 return error;
1425 }
1426
1427 /*
1428 * Add a page worth of items to the pool.
1429 *
1430 * Note, we must be called with the pool descriptor LOCKED.
1431 */
1432 static void
1433 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1434 {
1435 struct pool_item *pi;
1436 void *cp = storage;
1437 const unsigned int align = pp->pr_align;
1438 const unsigned int ioff = pp->pr_itemoffset;
1439 int n;
1440
1441 KASSERT(mutex_owned(&pp->pr_lock));
1442
1443 #ifdef DIAGNOSTIC
1444 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1445 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1446 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1447 #endif
1448
1449 /*
1450 * Insert page header.
1451 */
1452 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1453 LIST_INIT(&ph->ph_itemlist);
1454 ph->ph_page = storage;
1455 ph->ph_nmissing = 0;
1456 ph->ph_time = time_uptime;
1457 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1458 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1459
1460 pp->pr_nidle++;
1461
1462 /*
1463 * Color this page.
1464 */
1465 ph->ph_off = pp->pr_curcolor;
1466 cp = (char *)cp + ph->ph_off;
1467 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1468 pp->pr_curcolor = 0;
1469
1470 /*
1471 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1472 */
1473 if (ioff != 0)
1474 cp = (char *)cp + align - ioff;
1475
1476 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1477
1478 /*
1479 * Insert remaining chunks on the bucket list.
1480 */
1481 n = pp->pr_itemsperpage;
1482 pp->pr_nitems += n;
1483
1484 if (pp->pr_roflags & PR_NOTOUCH) {
1485 pr_item_notouch_init(pp, ph);
1486 } else {
1487 while (n--) {
1488 pi = (struct pool_item *)cp;
1489
1490 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1491
1492 /* Insert on page list */
1493 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1494 #ifdef DIAGNOSTIC
1495 pi->pi_magic = PI_MAGIC;
1496 #endif
1497 cp = (char *)cp + pp->pr_size;
1498
1499 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1500 }
1501 }
1502
1503 /*
1504 * If the pool was depleted, point at the new page.
1505 */
1506 if (pp->pr_curpage == NULL)
1507 pp->pr_curpage = ph;
1508
1509 if (++pp->pr_npages > pp->pr_hiwat)
1510 pp->pr_hiwat = pp->pr_npages;
1511 }
1512
1513 /*
1514 * Used by pool_get() when nitems drops below the low water mark. This
1515 * is used to catch up pr_nitems with the low water mark.
1516 *
1517 * Note 1, we never wait for memory here, we let the caller decide what to do.
1518 *
1519 * Note 2, we must be called with the pool already locked, and we return
1520 * with it locked.
1521 */
1522 static int
1523 pool_catchup(struct pool *pp)
1524 {
1525 int error = 0;
1526
1527 while (POOL_NEEDS_CATCHUP(pp)) {
1528 error = pool_grow(pp, PR_NOWAIT);
1529 if (error) {
1530 break;
1531 }
1532 }
1533 return error;
1534 }
1535
1536 static void
1537 pool_update_curpage(struct pool *pp)
1538 {
1539
1540 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1541 if (pp->pr_curpage == NULL) {
1542 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1543 }
1544 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1545 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1546 }
1547
1548 void
1549 pool_setlowat(struct pool *pp, int n)
1550 {
1551
1552 mutex_enter(&pp->pr_lock);
1553
1554 pp->pr_minitems = n;
1555 pp->pr_minpages = (n == 0)
1556 ? 0
1557 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1558
1559 /* Make sure we're caught up with the newly-set low water mark. */
1560 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1561 /*
1562 * XXX: Should we log a warning? Should we set up a timeout
1563 * to try again in a second or so? The latter could break
1564 * a caller's assumptions about interrupt protection, etc.
1565 */
1566 }
1567
1568 mutex_exit(&pp->pr_lock);
1569 }
1570
1571 void
1572 pool_sethiwat(struct pool *pp, int n)
1573 {
1574
1575 mutex_enter(&pp->pr_lock);
1576
1577 pp->pr_maxpages = (n == 0)
1578 ? 0
1579 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1580
1581 mutex_exit(&pp->pr_lock);
1582 }
1583
1584 void
1585 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1586 {
1587
1588 mutex_enter(&pp->pr_lock);
1589
1590 pp->pr_hardlimit = n;
1591 pp->pr_hardlimit_warning = warnmess;
1592 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1593 pp->pr_hardlimit_warning_last.tv_sec = 0;
1594 pp->pr_hardlimit_warning_last.tv_usec = 0;
1595
1596 /*
1597 * In-line version of pool_sethiwat(), because we don't want to
1598 * release the lock.
1599 */
1600 pp->pr_maxpages = (n == 0)
1601 ? 0
1602 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1603
1604 mutex_exit(&pp->pr_lock);
1605 }
1606
1607 /*
1608 * Release all complete pages that have not been used recently.
1609 *
1610 * Might be called from interrupt context.
1611 */
1612 int
1613 #ifdef POOL_DIAGNOSTIC
1614 _pool_reclaim(struct pool *pp, const char *file, long line)
1615 #else
1616 pool_reclaim(struct pool *pp)
1617 #endif
1618 {
1619 struct pool_item_header *ph, *phnext;
1620 struct pool_pagelist pq;
1621 uint32_t curtime;
1622 bool klock;
1623 int rv;
1624
1625 if (cpu_intr_p() || cpu_softintr_p()) {
1626 KASSERT(pp->pr_ipl != IPL_NONE);
1627 }
1628
1629 if (pp->pr_drain_hook != NULL) {
1630 /*
1631 * The drain hook must be called with the pool unlocked.
1632 */
1633 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1634 }
1635
1636 /*
1637 * XXXSMP Because we do not want to cause non-MPSAFE code
1638 * to block.
1639 */
1640 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1641 pp->pr_ipl == IPL_SOFTSERIAL) {
1642 KERNEL_LOCK(1, NULL);
1643 klock = true;
1644 } else
1645 klock = false;
1646
1647 /* Reclaim items from the pool's cache (if any). */
1648 if (pp->pr_cache != NULL)
1649 pool_cache_invalidate(pp->pr_cache);
1650
1651 if (mutex_tryenter(&pp->pr_lock) == 0) {
1652 if (klock) {
1653 KERNEL_UNLOCK_ONE(NULL);
1654 }
1655 return (0);
1656 }
1657 pr_enter(pp, file, line);
1658
1659 LIST_INIT(&pq);
1660
1661 curtime = time_uptime;
1662
1663 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1664 phnext = LIST_NEXT(ph, ph_pagelist);
1665
1666 /* Check our minimum page claim */
1667 if (pp->pr_npages <= pp->pr_minpages)
1668 break;
1669
1670 KASSERT(ph->ph_nmissing == 0);
1671 if (curtime - ph->ph_time < pool_inactive_time
1672 && !pa_starved_p(pp->pr_alloc))
1673 continue;
1674
1675 /*
1676 * If freeing this page would put us below
1677 * the low water mark, stop now.
1678 */
1679 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1680 pp->pr_minitems)
1681 break;
1682
1683 pr_rmpage(pp, ph, &pq);
1684 }
1685
1686 pr_leave(pp);
1687 mutex_exit(&pp->pr_lock);
1688
1689 if (LIST_EMPTY(&pq))
1690 rv = 0;
1691 else {
1692 pr_pagelist_free(pp, &pq);
1693 rv = 1;
1694 }
1695
1696 if (klock) {
1697 KERNEL_UNLOCK_ONE(NULL);
1698 }
1699
1700 return (rv);
1701 }
1702
1703 /*
1704 * Drain pools, one at a time. This is a two stage process;
1705 * drain_start kicks off a cross call to drain CPU-level caches
1706 * if the pool has an associated pool_cache. drain_end waits
1707 * for those cross calls to finish, and then drains the cache
1708 * (if any) and pool.
1709 *
1710 * Note, must never be called from interrupt context.
1711 */
1712 void
1713 pool_drain_start(struct pool **ppp, uint64_t *wp)
1714 {
1715 struct pool *pp;
1716
1717 KASSERT(!TAILQ_EMPTY(&pool_head));
1718
1719 pp = NULL;
1720
1721 /* Find next pool to drain, and add a reference. */
1722 mutex_enter(&pool_head_lock);
1723 do {
1724 if (drainpp == NULL) {
1725 drainpp = TAILQ_FIRST(&pool_head);
1726 }
1727 if (drainpp != NULL) {
1728 pp = drainpp;
1729 drainpp = TAILQ_NEXT(pp, pr_poollist);
1730 }
1731 /*
1732 * Skip completely idle pools. We depend on at least
1733 * one pool in the system being active.
1734 */
1735 } while (pp == NULL || pp->pr_npages == 0);
1736 pp->pr_refcnt++;
1737 mutex_exit(&pool_head_lock);
1738
1739 /* If there is a pool_cache, drain CPU level caches. */
1740 *ppp = pp;
1741 if (pp->pr_cache != NULL) {
1742 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1743 pp->pr_cache, NULL);
1744 }
1745 }
1746
1747 void
1748 pool_drain_end(struct pool *pp, uint64_t where)
1749 {
1750
1751 if (pp == NULL)
1752 return;
1753
1754 KASSERT(pp->pr_refcnt > 0);
1755
1756 /* Wait for remote draining to complete. */
1757 if (pp->pr_cache != NULL)
1758 xc_wait(where);
1759
1760 /* Drain the cache (if any) and pool.. */
1761 pool_reclaim(pp);
1762
1763 /* Finally, unlock the pool. */
1764 mutex_enter(&pool_head_lock);
1765 pp->pr_refcnt--;
1766 cv_broadcast(&pool_busy);
1767 mutex_exit(&pool_head_lock);
1768 }
1769
1770 /*
1771 * Diagnostic helpers.
1772 */
1773 void
1774 pool_print(struct pool *pp, const char *modif)
1775 {
1776
1777 pool_print1(pp, modif, printf);
1778 }
1779
1780 void
1781 pool_printall(const char *modif, void (*pr)(const char *, ...))
1782 {
1783 struct pool *pp;
1784
1785 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1786 pool_printit(pp, modif, pr);
1787 }
1788 }
1789
1790 void
1791 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1792 {
1793
1794 if (pp == NULL) {
1795 (*pr)("Must specify a pool to print.\n");
1796 return;
1797 }
1798
1799 pool_print1(pp, modif, pr);
1800 }
1801
1802 static void
1803 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1804 void (*pr)(const char *, ...))
1805 {
1806 struct pool_item_header *ph;
1807 #ifdef DIAGNOSTIC
1808 struct pool_item *pi;
1809 #endif
1810
1811 LIST_FOREACH(ph, pl, ph_pagelist) {
1812 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1813 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1814 #ifdef DIAGNOSTIC
1815 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1816 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1817 if (pi->pi_magic != PI_MAGIC) {
1818 (*pr)("\t\t\titem %p, magic 0x%x\n",
1819 pi, pi->pi_magic);
1820 }
1821 }
1822 }
1823 #endif
1824 }
1825 }
1826
1827 static void
1828 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1829 {
1830 struct pool_item_header *ph;
1831 pool_cache_t pc;
1832 pcg_t *pcg;
1833 pool_cache_cpu_t *cc;
1834 uint64_t cpuhit, cpumiss;
1835 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1836 char c;
1837
1838 while ((c = *modif++) != '\0') {
1839 if (c == 'l')
1840 print_log = 1;
1841 if (c == 'p')
1842 print_pagelist = 1;
1843 if (c == 'c')
1844 print_cache = 1;
1845 }
1846
1847 if ((pc = pp->pr_cache) != NULL) {
1848 (*pr)("POOL CACHE");
1849 } else {
1850 (*pr)("POOL");
1851 }
1852
1853 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1854 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1855 pp->pr_roflags);
1856 (*pr)("\talloc %p\n", pp->pr_alloc);
1857 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1858 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1859 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1860 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1861
1862 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1863 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1864 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1865 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1866
1867 if (print_pagelist == 0)
1868 goto skip_pagelist;
1869
1870 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1871 (*pr)("\n\tempty page list:\n");
1872 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1873 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1874 (*pr)("\n\tfull page list:\n");
1875 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1876 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1877 (*pr)("\n\tpartial-page list:\n");
1878 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1879
1880 if (pp->pr_curpage == NULL)
1881 (*pr)("\tno current page\n");
1882 else
1883 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1884
1885 skip_pagelist:
1886 if (print_log == 0)
1887 goto skip_log;
1888
1889 (*pr)("\n");
1890 if ((pp->pr_roflags & PR_LOGGING) == 0)
1891 (*pr)("\tno log\n");
1892 else {
1893 pr_printlog(pp, NULL, pr);
1894 }
1895
1896 skip_log:
1897
1898 #define PR_GROUPLIST(pcg) \
1899 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1900 for (i = 0; i < pcg->pcg_size; i++) { \
1901 if (pcg->pcg_objects[i].pcgo_pa != \
1902 POOL_PADDR_INVALID) { \
1903 (*pr)("\t\t\t%p, 0x%llx\n", \
1904 pcg->pcg_objects[i].pcgo_va, \
1905 (unsigned long long) \
1906 pcg->pcg_objects[i].pcgo_pa); \
1907 } else { \
1908 (*pr)("\t\t\t%p\n", \
1909 pcg->pcg_objects[i].pcgo_va); \
1910 } \
1911 }
1912
1913 if (pc != NULL) {
1914 cpuhit = 0;
1915 cpumiss = 0;
1916 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1917 if ((cc = pc->pc_cpus[i]) == NULL)
1918 continue;
1919 cpuhit += cc->cc_hits;
1920 cpumiss += cc->cc_misses;
1921 }
1922 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1923 (*pr)("\tcache layer hits %llu misses %llu\n",
1924 pc->pc_hits, pc->pc_misses);
1925 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1926 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1927 pc->pc_contended);
1928 (*pr)("\tcache layer empty groups %u full groups %u\n",
1929 pc->pc_nempty, pc->pc_nfull);
1930 if (print_cache) {
1931 (*pr)("\tfull cache groups:\n");
1932 for (pcg = pc->pc_fullgroups; pcg != NULL;
1933 pcg = pcg->pcg_next) {
1934 PR_GROUPLIST(pcg);
1935 }
1936 (*pr)("\tempty cache groups:\n");
1937 for (pcg = pc->pc_emptygroups; pcg != NULL;
1938 pcg = pcg->pcg_next) {
1939 PR_GROUPLIST(pcg);
1940 }
1941 }
1942 }
1943 #undef PR_GROUPLIST
1944
1945 pr_enter_check(pp, pr);
1946 }
1947
1948 static int
1949 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1950 {
1951 struct pool_item *pi;
1952 void *page;
1953 int n;
1954
1955 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1956 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1957 if (page != ph->ph_page &&
1958 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1959 if (label != NULL)
1960 printf("%s: ", label);
1961 printf("pool(%p:%s): page inconsistency: page %p;"
1962 " at page head addr %p (p %p)\n", pp,
1963 pp->pr_wchan, ph->ph_page,
1964 ph, page);
1965 return 1;
1966 }
1967 }
1968
1969 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1970 return 0;
1971
1972 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1973 pi != NULL;
1974 pi = LIST_NEXT(pi,pi_list), n++) {
1975
1976 #ifdef DIAGNOSTIC
1977 if (pi->pi_magic != PI_MAGIC) {
1978 if (label != NULL)
1979 printf("%s: ", label);
1980 printf("pool(%s): free list modified: magic=%x;"
1981 " page %p; item ordinal %d; addr %p\n",
1982 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1983 n, pi);
1984 panic("pool");
1985 }
1986 #endif
1987 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1988 continue;
1989 }
1990 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1991 if (page == ph->ph_page)
1992 continue;
1993
1994 if (label != NULL)
1995 printf("%s: ", label);
1996 printf("pool(%p:%s): page inconsistency: page %p;"
1997 " item ordinal %d; addr %p (p %p)\n", pp,
1998 pp->pr_wchan, ph->ph_page,
1999 n, pi, page);
2000 return 1;
2001 }
2002 return 0;
2003 }
2004
2005
2006 int
2007 pool_chk(struct pool *pp, const char *label)
2008 {
2009 struct pool_item_header *ph;
2010 int r = 0;
2011
2012 mutex_enter(&pp->pr_lock);
2013 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2014 r = pool_chk_page(pp, label, ph);
2015 if (r) {
2016 goto out;
2017 }
2018 }
2019 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2020 r = pool_chk_page(pp, label, ph);
2021 if (r) {
2022 goto out;
2023 }
2024 }
2025 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2026 r = pool_chk_page(pp, label, ph);
2027 if (r) {
2028 goto out;
2029 }
2030 }
2031
2032 out:
2033 mutex_exit(&pp->pr_lock);
2034 return (r);
2035 }
2036
2037 /*
2038 * pool_cache_init:
2039 *
2040 * Initialize a pool cache.
2041 */
2042 pool_cache_t
2043 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2044 const char *wchan, struct pool_allocator *palloc, int ipl,
2045 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2046 {
2047 pool_cache_t pc;
2048
2049 pc = pool_get(&cache_pool, PR_WAITOK);
2050 if (pc == NULL)
2051 return NULL;
2052
2053 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2054 palloc, ipl, ctor, dtor, arg);
2055
2056 return pc;
2057 }
2058
2059 /*
2060 * pool_cache_bootstrap:
2061 *
2062 * Kernel-private version of pool_cache_init(). The caller
2063 * provides initial storage.
2064 */
2065 void
2066 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2067 u_int align_offset, u_int flags, const char *wchan,
2068 struct pool_allocator *palloc, int ipl,
2069 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2070 void *arg)
2071 {
2072 CPU_INFO_ITERATOR cii;
2073 pool_cache_t pc1;
2074 struct cpu_info *ci;
2075 struct pool *pp;
2076
2077 pp = &pc->pc_pool;
2078 if (palloc == NULL && ipl == IPL_NONE)
2079 palloc = &pool_allocator_nointr;
2080 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2081 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2082
2083 if (ctor == NULL) {
2084 ctor = (int (*)(void *, void *, int))nullop;
2085 }
2086 if (dtor == NULL) {
2087 dtor = (void (*)(void *, void *))nullop;
2088 }
2089
2090 pc->pc_emptygroups = NULL;
2091 pc->pc_fullgroups = NULL;
2092 pc->pc_partgroups = NULL;
2093 pc->pc_ctor = ctor;
2094 pc->pc_dtor = dtor;
2095 pc->pc_arg = arg;
2096 pc->pc_hits = 0;
2097 pc->pc_misses = 0;
2098 pc->pc_nempty = 0;
2099 pc->pc_npart = 0;
2100 pc->pc_nfull = 0;
2101 pc->pc_contended = 0;
2102 pc->pc_refcnt = 0;
2103 pc->pc_freecheck = NULL;
2104
2105 if ((flags & PR_LARGECACHE) != 0) {
2106 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2107 pc->pc_pcgpool = &pcg_large_pool;
2108 } else {
2109 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2110 pc->pc_pcgpool = &pcg_normal_pool;
2111 }
2112
2113 /* Allocate per-CPU caches. */
2114 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2115 pc->pc_ncpu = 0;
2116 if (ncpu < 2) {
2117 /* XXX For sparc: boot CPU is not attached yet. */
2118 pool_cache_cpu_init1(curcpu(), pc);
2119 } else {
2120 for (CPU_INFO_FOREACH(cii, ci)) {
2121 pool_cache_cpu_init1(ci, pc);
2122 }
2123 }
2124
2125 /* Add to list of all pools. */
2126 if (__predict_true(!cold))
2127 mutex_enter(&pool_head_lock);
2128 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2129 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2130 break;
2131 }
2132 if (pc1 == NULL)
2133 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2134 else
2135 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2136 if (__predict_true(!cold))
2137 mutex_exit(&pool_head_lock);
2138
2139 membar_sync();
2140 pp->pr_cache = pc;
2141 }
2142
2143 /*
2144 * pool_cache_destroy:
2145 *
2146 * Destroy a pool cache.
2147 */
2148 void
2149 pool_cache_destroy(pool_cache_t pc)
2150 {
2151 struct pool *pp = &pc->pc_pool;
2152 u_int i;
2153
2154 /* Remove it from the global list. */
2155 mutex_enter(&pool_head_lock);
2156 while (pc->pc_refcnt != 0)
2157 cv_wait(&pool_busy, &pool_head_lock);
2158 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2159 mutex_exit(&pool_head_lock);
2160
2161 /* First, invalidate the entire cache. */
2162 pool_cache_invalidate(pc);
2163
2164 /* Disassociate it from the pool. */
2165 mutex_enter(&pp->pr_lock);
2166 pp->pr_cache = NULL;
2167 mutex_exit(&pp->pr_lock);
2168
2169 /* Destroy per-CPU data */
2170 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2171 pool_cache_invalidate_cpu(pc, i);
2172
2173 /* Finally, destroy it. */
2174 mutex_destroy(&pc->pc_lock);
2175 pool_destroy(pp);
2176 pool_put(&cache_pool, pc);
2177 }
2178
2179 /*
2180 * pool_cache_cpu_init1:
2181 *
2182 * Called for each pool_cache whenever a new CPU is attached.
2183 */
2184 static void
2185 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2186 {
2187 pool_cache_cpu_t *cc;
2188 int index;
2189
2190 index = ci->ci_index;
2191
2192 KASSERT(index < __arraycount(pc->pc_cpus));
2193
2194 if ((cc = pc->pc_cpus[index]) != NULL) {
2195 KASSERT(cc->cc_cpuindex == index);
2196 return;
2197 }
2198
2199 /*
2200 * The first CPU is 'free'. This needs to be the case for
2201 * bootstrap - we may not be able to allocate yet.
2202 */
2203 if (pc->pc_ncpu == 0) {
2204 cc = &pc->pc_cpu0;
2205 pc->pc_ncpu = 1;
2206 } else {
2207 mutex_enter(&pc->pc_lock);
2208 pc->pc_ncpu++;
2209 mutex_exit(&pc->pc_lock);
2210 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2211 }
2212
2213 cc->cc_ipl = pc->pc_pool.pr_ipl;
2214 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2215 cc->cc_cache = pc;
2216 cc->cc_cpuindex = index;
2217 cc->cc_hits = 0;
2218 cc->cc_misses = 0;
2219 cc->cc_current = __UNCONST(&pcg_dummy);
2220 cc->cc_previous = __UNCONST(&pcg_dummy);
2221
2222 pc->pc_cpus[index] = cc;
2223 }
2224
2225 /*
2226 * pool_cache_cpu_init:
2227 *
2228 * Called whenever a new CPU is attached.
2229 */
2230 void
2231 pool_cache_cpu_init(struct cpu_info *ci)
2232 {
2233 pool_cache_t pc;
2234
2235 mutex_enter(&pool_head_lock);
2236 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2237 pc->pc_refcnt++;
2238 mutex_exit(&pool_head_lock);
2239
2240 pool_cache_cpu_init1(ci, pc);
2241
2242 mutex_enter(&pool_head_lock);
2243 pc->pc_refcnt--;
2244 cv_broadcast(&pool_busy);
2245 }
2246 mutex_exit(&pool_head_lock);
2247 }
2248
2249 /*
2250 * pool_cache_reclaim:
2251 *
2252 * Reclaim memory from a pool cache.
2253 */
2254 bool
2255 pool_cache_reclaim(pool_cache_t pc)
2256 {
2257
2258 return pool_reclaim(&pc->pc_pool);
2259 }
2260
2261 static void
2262 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2263 {
2264
2265 (*pc->pc_dtor)(pc->pc_arg, object);
2266 pool_put(&pc->pc_pool, object);
2267 }
2268
2269 /*
2270 * pool_cache_destruct_object:
2271 *
2272 * Force destruction of an object and its release back into
2273 * the pool.
2274 */
2275 void
2276 pool_cache_destruct_object(pool_cache_t pc, void *object)
2277 {
2278
2279 FREECHECK_IN(&pc->pc_freecheck, object);
2280
2281 pool_cache_destruct_object1(pc, object);
2282 }
2283
2284 /*
2285 * pool_cache_invalidate_groups:
2286 *
2287 * Invalidate a chain of groups and destruct all objects.
2288 */
2289 static void
2290 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2291 {
2292 void *object;
2293 pcg_t *next;
2294 int i;
2295
2296 for (; pcg != NULL; pcg = next) {
2297 next = pcg->pcg_next;
2298
2299 for (i = 0; i < pcg->pcg_avail; i++) {
2300 object = pcg->pcg_objects[i].pcgo_va;
2301 pool_cache_destruct_object1(pc, object);
2302 }
2303
2304 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2305 pool_put(&pcg_large_pool, pcg);
2306 } else {
2307 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2308 pool_put(&pcg_normal_pool, pcg);
2309 }
2310 }
2311 }
2312
2313 /*
2314 * pool_cache_invalidate:
2315 *
2316 * Invalidate a pool cache (destruct and release all of the
2317 * cached objects). Does not reclaim objects from the pool.
2318 *
2319 * Note: For pool caches that provide constructed objects, there
2320 * is an assumption that another level of synchronization is occurring
2321 * between the input to the constructor and the cache invalidation.
2322 */
2323 void
2324 pool_cache_invalidate(pool_cache_t pc)
2325 {
2326 pcg_t *full, *empty, *part;
2327 #if 0
2328 uint64_t where;
2329
2330 if (ncpu < 2 || !mp_online) {
2331 /*
2332 * We might be called early enough in the boot process
2333 * for the CPU data structures to not be fully initialized.
2334 * In this case, simply gather the local CPU's cache now
2335 * since it will be the only one running.
2336 */
2337 pool_cache_xcall(pc);
2338 } else {
2339 /*
2340 * Gather all of the CPU-specific caches into the
2341 * global cache.
2342 */
2343 where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2344 xc_wait(where);
2345 }
2346 #endif
2347 mutex_enter(&pc->pc_lock);
2348 full = pc->pc_fullgroups;
2349 empty = pc->pc_emptygroups;
2350 part = pc->pc_partgroups;
2351 pc->pc_fullgroups = NULL;
2352 pc->pc_emptygroups = NULL;
2353 pc->pc_partgroups = NULL;
2354 pc->pc_nfull = 0;
2355 pc->pc_nempty = 0;
2356 pc->pc_npart = 0;
2357 mutex_exit(&pc->pc_lock);
2358
2359 pool_cache_invalidate_groups(pc, full);
2360 pool_cache_invalidate_groups(pc, empty);
2361 pool_cache_invalidate_groups(pc, part);
2362 }
2363
2364 /*
2365 * pool_cache_invalidate_cpu:
2366 *
2367 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2368 * identified by its associated index.
2369 * It is caller's responsibility to ensure that no operation is
2370 * taking place on this pool cache while doing this invalidation.
2371 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2372 * pool cached objects from a CPU different from the one currently running
2373 * may result in an undefined behaviour.
2374 */
2375 static void
2376 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2377 {
2378
2379 pool_cache_cpu_t *cc;
2380 pcg_t *pcg;
2381
2382 if ((cc = pc->pc_cpus[index]) == NULL)
2383 return;
2384
2385 if ((pcg = cc->cc_current) != &pcg_dummy) {
2386 pcg->pcg_next = NULL;
2387 pool_cache_invalidate_groups(pc, pcg);
2388 }
2389 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2390 pcg->pcg_next = NULL;
2391 pool_cache_invalidate_groups(pc, pcg);
2392 }
2393 if (cc != &pc->pc_cpu0)
2394 pool_put(&cache_cpu_pool, cc);
2395
2396 }
2397
2398 void
2399 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2400 {
2401
2402 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2403 }
2404
2405 void
2406 pool_cache_setlowat(pool_cache_t pc, int n)
2407 {
2408
2409 pool_setlowat(&pc->pc_pool, n);
2410 }
2411
2412 void
2413 pool_cache_sethiwat(pool_cache_t pc, int n)
2414 {
2415
2416 pool_sethiwat(&pc->pc_pool, n);
2417 }
2418
2419 void
2420 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2421 {
2422
2423 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2424 }
2425
2426 static bool __noinline
2427 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2428 paddr_t *pap, int flags)
2429 {
2430 pcg_t *pcg, *cur;
2431 uint64_t ncsw;
2432 pool_cache_t pc;
2433 void *object;
2434
2435 KASSERT(cc->cc_current->pcg_avail == 0);
2436 KASSERT(cc->cc_previous->pcg_avail == 0);
2437
2438 pc = cc->cc_cache;
2439 cc->cc_misses++;
2440
2441 /*
2442 * Nothing was available locally. Try and grab a group
2443 * from the cache.
2444 */
2445 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2446 ncsw = curlwp->l_ncsw;
2447 mutex_enter(&pc->pc_lock);
2448 pc->pc_contended++;
2449
2450 /*
2451 * If we context switched while locking, then
2452 * our view of the per-CPU data is invalid:
2453 * retry.
2454 */
2455 if (curlwp->l_ncsw != ncsw) {
2456 mutex_exit(&pc->pc_lock);
2457 return true;
2458 }
2459 }
2460
2461 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2462 /*
2463 * If there's a full group, release our empty
2464 * group back to the cache. Install the full
2465 * group as cc_current and return.
2466 */
2467 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2468 KASSERT(cur->pcg_avail == 0);
2469 cur->pcg_next = pc->pc_emptygroups;
2470 pc->pc_emptygroups = cur;
2471 pc->pc_nempty++;
2472 }
2473 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2474 cc->cc_current = pcg;
2475 pc->pc_fullgroups = pcg->pcg_next;
2476 pc->pc_hits++;
2477 pc->pc_nfull--;
2478 mutex_exit(&pc->pc_lock);
2479 return true;
2480 }
2481
2482 /*
2483 * Nothing available locally or in cache. Take the slow
2484 * path: fetch a new object from the pool and construct
2485 * it.
2486 */
2487 pc->pc_misses++;
2488 mutex_exit(&pc->pc_lock);
2489 splx(s);
2490
2491 object = pool_get(&pc->pc_pool, flags);
2492 *objectp = object;
2493 if (__predict_false(object == NULL))
2494 return false;
2495
2496 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2497 pool_put(&pc->pc_pool, object);
2498 *objectp = NULL;
2499 return false;
2500 }
2501
2502 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2503 (pc->pc_pool.pr_align - 1)) == 0);
2504
2505 if (pap != NULL) {
2506 #ifdef POOL_VTOPHYS
2507 *pap = POOL_VTOPHYS(object);
2508 #else
2509 *pap = POOL_PADDR_INVALID;
2510 #endif
2511 }
2512
2513 FREECHECK_OUT(&pc->pc_freecheck, object);
2514 return false;
2515 }
2516
2517 /*
2518 * pool_cache_get{,_paddr}:
2519 *
2520 * Get an object from a pool cache (optionally returning
2521 * the physical address of the object).
2522 */
2523 void *
2524 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2525 {
2526 pool_cache_cpu_t *cc;
2527 pcg_t *pcg;
2528 void *object;
2529 int s;
2530
2531 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2532 (pc->pc_pool.pr_ipl != IPL_NONE || cold),
2533 ("pool '%s' is IPL_NONE, but called from interrupt context\n",
2534 pc->pc_pool.pr_wchan));
2535
2536 if (flags & PR_WAITOK) {
2537 ASSERT_SLEEPABLE();
2538 }
2539
2540 /* Lock out interrupts and disable preemption. */
2541 s = splvm();
2542 while (/* CONSTCOND */ true) {
2543 /* Try and allocate an object from the current group. */
2544 cc = pc->pc_cpus[curcpu()->ci_index];
2545 KASSERT(cc->cc_cache == pc);
2546 pcg = cc->cc_current;
2547 if (__predict_true(pcg->pcg_avail > 0)) {
2548 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2549 if (__predict_false(pap != NULL))
2550 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2551 #if defined(DIAGNOSTIC)
2552 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2553 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2554 KASSERT(object != NULL);
2555 #endif
2556 cc->cc_hits++;
2557 splx(s);
2558 FREECHECK_OUT(&pc->pc_freecheck, object);
2559 return object;
2560 }
2561
2562 /*
2563 * That failed. If the previous group isn't empty, swap
2564 * it with the current group and allocate from there.
2565 */
2566 pcg = cc->cc_previous;
2567 if (__predict_true(pcg->pcg_avail > 0)) {
2568 cc->cc_previous = cc->cc_current;
2569 cc->cc_current = pcg;
2570 continue;
2571 }
2572
2573 /*
2574 * Can't allocate from either group: try the slow path.
2575 * If get_slow() allocated an object for us, or if
2576 * no more objects are available, it will return false.
2577 * Otherwise, we need to retry.
2578 */
2579 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2580 break;
2581 }
2582
2583 return object;
2584 }
2585
2586 static bool __noinline
2587 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2588 {
2589 pcg_t *pcg, *cur;
2590 uint64_t ncsw;
2591 pool_cache_t pc;
2592
2593 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2594 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2595
2596 pc = cc->cc_cache;
2597 pcg = NULL;
2598 cc->cc_misses++;
2599
2600 /*
2601 * If there are no empty groups in the cache then allocate one
2602 * while still unlocked.
2603 */
2604 if (__predict_false(pc->pc_emptygroups == NULL)) {
2605 if (__predict_true(!pool_cache_disable)) {
2606 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2607 }
2608 if (__predict_true(pcg != NULL)) {
2609 pcg->pcg_avail = 0;
2610 pcg->pcg_size = pc->pc_pcgsize;
2611 }
2612 }
2613
2614 /* Lock the cache. */
2615 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2616 ncsw = curlwp->l_ncsw;
2617 mutex_enter(&pc->pc_lock);
2618 pc->pc_contended++;
2619
2620 /*
2621 * If we context switched while locking, then our view of
2622 * the per-CPU data is invalid: retry.
2623 */
2624 if (__predict_false(curlwp->l_ncsw != ncsw)) {
2625 mutex_exit(&pc->pc_lock);
2626 if (pcg != NULL) {
2627 pool_put(pc->pc_pcgpool, pcg);
2628 }
2629 return true;
2630 }
2631 }
2632
2633 /* If there are no empty groups in the cache then allocate one. */
2634 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2635 pcg = pc->pc_emptygroups;
2636 pc->pc_emptygroups = pcg->pcg_next;
2637 pc->pc_nempty--;
2638 }
2639
2640 /*
2641 * If there's a empty group, release our full group back
2642 * to the cache. Install the empty group to the local CPU
2643 * and return.
2644 */
2645 if (pcg != NULL) {
2646 KASSERT(pcg->pcg_avail == 0);
2647 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2648 cc->cc_previous = pcg;
2649 } else {
2650 cur = cc->cc_current;
2651 if (__predict_true(cur != &pcg_dummy)) {
2652 KASSERT(cur->pcg_avail == cur->pcg_size);
2653 cur->pcg_next = pc->pc_fullgroups;
2654 pc->pc_fullgroups = cur;
2655 pc->pc_nfull++;
2656 }
2657 cc->cc_current = pcg;
2658 }
2659 pc->pc_hits++;
2660 mutex_exit(&pc->pc_lock);
2661 return true;
2662 }
2663
2664 /*
2665 * Nothing available locally or in cache, and we didn't
2666 * allocate an empty group. Take the slow path and destroy
2667 * the object here and now.
2668 */
2669 pc->pc_misses++;
2670 mutex_exit(&pc->pc_lock);
2671 splx(s);
2672 pool_cache_destruct_object(pc, object);
2673
2674 return false;
2675 }
2676
2677 /*
2678 * pool_cache_put{,_paddr}:
2679 *
2680 * Put an object back to the pool cache (optionally caching the
2681 * physical address of the object).
2682 */
2683 void
2684 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2685 {
2686 pool_cache_cpu_t *cc;
2687 pcg_t *pcg;
2688 int s;
2689
2690 KASSERT(object != NULL);
2691 FREECHECK_IN(&pc->pc_freecheck, object);
2692
2693 /* Lock out interrupts and disable preemption. */
2694 s = splvm();
2695 while (/* CONSTCOND */ true) {
2696 /* If the current group isn't full, release it there. */
2697 cc = pc->pc_cpus[curcpu()->ci_index];
2698 KASSERT(cc->cc_cache == pc);
2699 pcg = cc->cc_current;
2700 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2701 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2702 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2703 pcg->pcg_avail++;
2704 cc->cc_hits++;
2705 splx(s);
2706 return;
2707 }
2708
2709 /*
2710 * That failed. If the previous group isn't full, swap
2711 * it with the current group and try again.
2712 */
2713 pcg = cc->cc_previous;
2714 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2715 cc->cc_previous = cc->cc_current;
2716 cc->cc_current = pcg;
2717 continue;
2718 }
2719
2720 /*
2721 * Can't free to either group: try the slow path.
2722 * If put_slow() releases the object for us, it
2723 * will return false. Otherwise we need to retry.
2724 */
2725 if (!pool_cache_put_slow(cc, s, object))
2726 break;
2727 }
2728 }
2729
2730 /*
2731 * pool_cache_xcall:
2732 *
2733 * Transfer objects from the per-CPU cache to the global cache.
2734 * Run within a cross-call thread.
2735 */
2736 static void
2737 pool_cache_xcall(pool_cache_t pc)
2738 {
2739 pool_cache_cpu_t *cc;
2740 pcg_t *prev, *cur, **list;
2741 int s;
2742
2743 s = splvm();
2744 mutex_enter(&pc->pc_lock);
2745 cc = pc->pc_cpus[curcpu()->ci_index];
2746 cur = cc->cc_current;
2747 cc->cc_current = __UNCONST(&pcg_dummy);
2748 prev = cc->cc_previous;
2749 cc->cc_previous = __UNCONST(&pcg_dummy);
2750 if (cur != &pcg_dummy) {
2751 if (cur->pcg_avail == cur->pcg_size) {
2752 list = &pc->pc_fullgroups;
2753 pc->pc_nfull++;
2754 } else if (cur->pcg_avail == 0) {
2755 list = &pc->pc_emptygroups;
2756 pc->pc_nempty++;
2757 } else {
2758 list = &pc->pc_partgroups;
2759 pc->pc_npart++;
2760 }
2761 cur->pcg_next = *list;
2762 *list = cur;
2763 }
2764 if (prev != &pcg_dummy) {
2765 if (prev->pcg_avail == prev->pcg_size) {
2766 list = &pc->pc_fullgroups;
2767 pc->pc_nfull++;
2768 } else if (prev->pcg_avail == 0) {
2769 list = &pc->pc_emptygroups;
2770 pc->pc_nempty++;
2771 } else {
2772 list = &pc->pc_partgroups;
2773 pc->pc_npart++;
2774 }
2775 prev->pcg_next = *list;
2776 *list = prev;
2777 }
2778 mutex_exit(&pc->pc_lock);
2779 splx(s);
2780 }
2781
2782 /*
2783 * Pool backend allocators.
2784 *
2785 * Each pool has a backend allocator that handles allocation, deallocation,
2786 * and any additional draining that might be needed.
2787 *
2788 * We provide two standard allocators:
2789 *
2790 * pool_allocator_kmem - the default when no allocator is specified
2791 *
2792 * pool_allocator_nointr - used for pools that will not be accessed
2793 * in interrupt context.
2794 */
2795 void *pool_page_alloc(struct pool *, int);
2796 void pool_page_free(struct pool *, void *);
2797
2798 #ifdef POOL_SUBPAGE
2799 struct pool_allocator pool_allocator_kmem_fullpage = {
2800 pool_page_alloc, pool_page_free, 0,
2801 .pa_backingmapptr = &kmem_map,
2802 };
2803 #else
2804 struct pool_allocator pool_allocator_kmem = {
2805 pool_page_alloc, pool_page_free, 0,
2806 .pa_backingmapptr = &kmem_map,
2807 };
2808 #endif
2809
2810 void *pool_page_alloc_nointr(struct pool *, int);
2811 void pool_page_free_nointr(struct pool *, void *);
2812
2813 #ifdef POOL_SUBPAGE
2814 struct pool_allocator pool_allocator_nointr_fullpage = {
2815 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2816 .pa_backingmapptr = &kernel_map,
2817 };
2818 #else
2819 struct pool_allocator pool_allocator_nointr = {
2820 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2821 .pa_backingmapptr = &kernel_map,
2822 };
2823 #endif
2824
2825 #ifdef POOL_SUBPAGE
2826 void *pool_subpage_alloc(struct pool *, int);
2827 void pool_subpage_free(struct pool *, void *);
2828
2829 struct pool_allocator pool_allocator_kmem = {
2830 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2831 .pa_backingmapptr = &kmem_map,
2832 };
2833
2834 void *pool_subpage_alloc_nointr(struct pool *, int);
2835 void pool_subpage_free_nointr(struct pool *, void *);
2836
2837 struct pool_allocator pool_allocator_nointr = {
2838 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2839 .pa_backingmapptr = &kmem_map,
2840 };
2841 #endif /* POOL_SUBPAGE */
2842
2843 static void *
2844 pool_allocator_alloc(struct pool *pp, int flags)
2845 {
2846 struct pool_allocator *pa = pp->pr_alloc;
2847 void *res;
2848
2849 res = (*pa->pa_alloc)(pp, flags);
2850 if (res == NULL && (flags & PR_WAITOK) == 0) {
2851 /*
2852 * We only run the drain hook here if PR_NOWAIT.
2853 * In other cases, the hook will be run in
2854 * pool_reclaim().
2855 */
2856 if (pp->pr_drain_hook != NULL) {
2857 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2858 res = (*pa->pa_alloc)(pp, flags);
2859 }
2860 }
2861 return res;
2862 }
2863
2864 static void
2865 pool_allocator_free(struct pool *pp, void *v)
2866 {
2867 struct pool_allocator *pa = pp->pr_alloc;
2868
2869 (*pa->pa_free)(pp, v);
2870 }
2871
2872 void *
2873 pool_page_alloc(struct pool *pp, int flags)
2874 {
2875 bool waitok = (flags & PR_WAITOK) ? true : false;
2876
2877 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2878 }
2879
2880 void
2881 pool_page_free(struct pool *pp, void *v)
2882 {
2883
2884 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2885 }
2886
2887 static void *
2888 pool_page_alloc_meta(struct pool *pp, int flags)
2889 {
2890 bool waitok = (flags & PR_WAITOK) ? true : false;
2891
2892 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2893 }
2894
2895 static void
2896 pool_page_free_meta(struct pool *pp, void *v)
2897 {
2898
2899 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2900 }
2901
2902 #ifdef POOL_SUBPAGE
2903 /* Sub-page allocator, for machines with large hardware pages. */
2904 void *
2905 pool_subpage_alloc(struct pool *pp, int flags)
2906 {
2907 return pool_get(&psppool, flags);
2908 }
2909
2910 void
2911 pool_subpage_free(struct pool *pp, void *v)
2912 {
2913 pool_put(&psppool, v);
2914 }
2915
2916 /* We don't provide a real nointr allocator. Maybe later. */
2917 void *
2918 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2919 {
2920
2921 return (pool_subpage_alloc(pp, flags));
2922 }
2923
2924 void
2925 pool_subpage_free_nointr(struct pool *pp, void *v)
2926 {
2927
2928 pool_subpage_free(pp, v);
2929 }
2930 #endif /* POOL_SUBPAGE */
2931 void *
2932 pool_page_alloc_nointr(struct pool *pp, int flags)
2933 {
2934 bool waitok = (flags & PR_WAITOK) ? true : false;
2935
2936 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2937 }
2938
2939 void
2940 pool_page_free_nointr(struct pool *pp, void *v)
2941 {
2942
2943 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2944 }
2945
2946 #if defined(DDB)
2947 static bool
2948 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2949 {
2950
2951 return (uintptr_t)ph->ph_page <= addr &&
2952 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2953 }
2954
2955 static bool
2956 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2957 {
2958
2959 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2960 }
2961
2962 static bool
2963 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2964 {
2965 int i;
2966
2967 if (pcg == NULL) {
2968 return false;
2969 }
2970 for (i = 0; i < pcg->pcg_avail; i++) {
2971 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2972 return true;
2973 }
2974 }
2975 return false;
2976 }
2977
2978 static bool
2979 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2980 {
2981
2982 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2983 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2984 pool_item_bitmap_t *bitmap =
2985 ph->ph_bitmap + (idx / BITMAP_SIZE);
2986 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2987
2988 return (*bitmap & mask) == 0;
2989 } else {
2990 struct pool_item *pi;
2991
2992 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2993 if (pool_in_item(pp, pi, addr)) {
2994 return false;
2995 }
2996 }
2997 return true;
2998 }
2999 }
3000
3001 void
3002 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3003 {
3004 struct pool *pp;
3005
3006 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3007 struct pool_item_header *ph;
3008 uintptr_t item;
3009 bool allocated = true;
3010 bool incache = false;
3011 bool incpucache = false;
3012 char cpucachestr[32];
3013
3014 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3015 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3016 if (pool_in_page(pp, ph, addr)) {
3017 goto found;
3018 }
3019 }
3020 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3021 if (pool_in_page(pp, ph, addr)) {
3022 allocated =
3023 pool_allocated(pp, ph, addr);
3024 goto found;
3025 }
3026 }
3027 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3028 if (pool_in_page(pp, ph, addr)) {
3029 allocated = false;
3030 goto found;
3031 }
3032 }
3033 continue;
3034 } else {
3035 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3036 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3037 continue;
3038 }
3039 allocated = pool_allocated(pp, ph, addr);
3040 }
3041 found:
3042 if (allocated && pp->pr_cache) {
3043 pool_cache_t pc = pp->pr_cache;
3044 struct pool_cache_group *pcg;
3045 int i;
3046
3047 for (pcg = pc->pc_fullgroups; pcg != NULL;
3048 pcg = pcg->pcg_next) {
3049 if (pool_in_cg(pp, pcg, addr)) {
3050 incache = true;
3051 goto print;
3052 }
3053 }
3054 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3055 pool_cache_cpu_t *cc;
3056
3057 if ((cc = pc->pc_cpus[i]) == NULL) {
3058 continue;
3059 }
3060 if (pool_in_cg(pp, cc->cc_current, addr) ||
3061 pool_in_cg(pp, cc->cc_previous, addr)) {
3062 struct cpu_info *ci =
3063 cpu_lookup(i);
3064
3065 incpucache = true;
3066 snprintf(cpucachestr,
3067 sizeof(cpucachestr),
3068 "cached by CPU %u",
3069 ci->ci_index);
3070 goto print;
3071 }
3072 }
3073 }
3074 print:
3075 item = (uintptr_t)ph->ph_page + ph->ph_off;
3076 item = item + rounddown(addr - item, pp->pr_size);
3077 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3078 (void *)addr, item, (size_t)(addr - item),
3079 pp->pr_wchan,
3080 incpucache ? cpucachestr :
3081 incache ? "cached" : allocated ? "allocated" : "free");
3082 }
3083 }
3084 #endif /* defined(DDB) */
3085