Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.184
      1 /*	$NetBSD: subr_pool.c,v 1.184 2010/05/12 03:43:46 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.184 2010/05/12 03:43:46 rmind Exp $");
     36 
     37 #include "opt_ddb.h"
     38 #include "opt_pool.h"
     39 #include "opt_poollog.h"
     40 #include "opt_lockdebug.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/bitops.h>
     45 #include <sys/proc.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/pool.h>
     50 #include <sys/syslog.h>
     51 #include <sys/debug.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/xcall.h>
     54 #include <sys/cpu.h>
     55 #include <sys/atomic.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx) \
     79 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     80 
     81 #ifdef POOL_SUBPAGE
     82 /* Pool of subpages for use by normal pools. */
     83 static struct pool psppool;
     84 #endif
     85 
     86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     87     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     88 
     89 static void *pool_page_alloc_meta(struct pool *, int);
     90 static void pool_page_free_meta(struct pool *, void *);
     91 
     92 /* allocator for pool metadata */
     93 struct pool_allocator pool_allocator_meta = {
     94 	pool_page_alloc_meta, pool_page_free_meta,
     95 	.pa_backingmapptr = &kmem_map,
     96 };
     97 
     98 /* # of seconds to retain page after last use */
     99 int pool_inactive_time = 10;
    100 
    101 /* Next candidate for drainage (see pool_drain()) */
    102 static struct pool	*drainpp;
    103 
    104 /* This lock protects both pool_head and drainpp. */
    105 static kmutex_t pool_head_lock;
    106 static kcondvar_t pool_busy;
    107 
    108 /* This lock protects initialization of a potentially shared pool allocator */
    109 static kmutex_t pool_allocator_lock;
    110 
    111 typedef uint32_t pool_item_bitmap_t;
    112 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    113 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    114 
    115 struct pool_item_header {
    116 	/* Page headers */
    117 	LIST_ENTRY(pool_item_header)
    118 				ph_pagelist;	/* pool page list */
    119 	SPLAY_ENTRY(pool_item_header)
    120 				ph_node;	/* Off-page page headers */
    121 	void *			ph_page;	/* this page's address */
    122 	uint32_t		ph_time;	/* last referenced */
    123 	uint16_t		ph_nmissing;	/* # of chunks in use */
    124 	uint16_t		ph_off;		/* start offset in page */
    125 	union {
    126 		/* !PR_NOTOUCH */
    127 		struct {
    128 			LIST_HEAD(, pool_item)
    129 				phu_itemlist;	/* chunk list for this page */
    130 		} phu_normal;
    131 		/* PR_NOTOUCH */
    132 		struct {
    133 			pool_item_bitmap_t phu_bitmap[1];
    134 		} phu_notouch;
    135 	} ph_u;
    136 };
    137 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    138 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    139 
    140 struct pool_item {
    141 #ifdef DIAGNOSTIC
    142 	u_int pi_magic;
    143 #endif
    144 #define	PI_MAGIC 0xdeaddeadU
    145 	/* Other entries use only this list entry */
    146 	LIST_ENTRY(pool_item)	pi_list;
    147 };
    148 
    149 #define	POOL_NEEDS_CATCHUP(pp)						\
    150 	((pp)->pr_nitems < (pp)->pr_minitems)
    151 
    152 /*
    153  * Pool cache management.
    154  *
    155  * Pool caches provide a way for constructed objects to be cached by the
    156  * pool subsystem.  This can lead to performance improvements by avoiding
    157  * needless object construction/destruction; it is deferred until absolutely
    158  * necessary.
    159  *
    160  * Caches are grouped into cache groups.  Each cache group references up
    161  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    162  * object from the pool, it calls the object's constructor and places it
    163  * into a cache group.  When a cache group frees an object back to the
    164  * pool, it first calls the object's destructor.  This allows the object
    165  * to persist in constructed form while freed to the cache.
    166  *
    167  * The pool references each cache, so that when a pool is drained by the
    168  * pagedaemon, it can drain each individual cache as well.  Each time a
    169  * cache is drained, the most idle cache group is freed to the pool in
    170  * its entirety.
    171  *
    172  * Pool caches are layed on top of pools.  By layering them, we can avoid
    173  * the complexity of cache management for pools which would not benefit
    174  * from it.
    175  */
    176 
    177 static struct pool pcg_normal_pool;
    178 static struct pool pcg_large_pool;
    179 static struct pool cache_pool;
    180 static struct pool cache_cpu_pool;
    181 
    182 /* List of all caches. */
    183 TAILQ_HEAD(,pool_cache) pool_cache_head =
    184     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    185 
    186 int pool_cache_disable;		/* global disable for caching */
    187 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    188 
    189 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    190 				    void *);
    191 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    192 				    void **, paddr_t *, int);
    193 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    194 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    195 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    196 static void	pool_cache_xcall(pool_cache_t);
    197 
    198 static int	pool_catchup(struct pool *);
    199 static void	pool_prime_page(struct pool *, void *,
    200 		    struct pool_item_header *);
    201 static void	pool_update_curpage(struct pool *);
    202 
    203 static int	pool_grow(struct pool *, int);
    204 static void	*pool_allocator_alloc(struct pool *, int);
    205 static void	pool_allocator_free(struct pool *, void *);
    206 
    207 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    208 	void (*)(const char *, ...));
    209 static void pool_print1(struct pool *, const char *,
    210 	void (*)(const char *, ...));
    211 
    212 static int pool_chk_page(struct pool *, const char *,
    213 			 struct pool_item_header *);
    214 
    215 /*
    216  * Pool log entry. An array of these is allocated in pool_init().
    217  */
    218 struct pool_log {
    219 	const char	*pl_file;
    220 	long		pl_line;
    221 	int		pl_action;
    222 #define	PRLOG_GET	1
    223 #define	PRLOG_PUT	2
    224 	void		*pl_addr;
    225 };
    226 
    227 #ifdef POOL_DIAGNOSTIC
    228 /* Number of entries in pool log buffers */
    229 #ifndef POOL_LOGSIZE
    230 #define	POOL_LOGSIZE	10
    231 #endif
    232 
    233 int pool_logsize = POOL_LOGSIZE;
    234 
    235 static inline void
    236 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    237 {
    238 	int n;
    239 	struct pool_log *pl;
    240 
    241 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    242 		return;
    243 
    244 	if (pp->pr_log == NULL) {
    245 		if (kmem_map != NULL)
    246 			pp->pr_log = malloc(
    247 				pool_logsize * sizeof(struct pool_log),
    248 				M_TEMP, M_NOWAIT | M_ZERO);
    249 		if (pp->pr_log == NULL)
    250 			return;
    251 		pp->pr_curlogentry = 0;
    252 		pp->pr_logsize = pool_logsize;
    253 	}
    254 
    255 	/*
    256 	 * Fill in the current entry. Wrap around and overwrite
    257 	 * the oldest entry if necessary.
    258 	 */
    259 	n = pp->pr_curlogentry;
    260 	pl = &pp->pr_log[n];
    261 	pl->pl_file = file;
    262 	pl->pl_line = line;
    263 	pl->pl_action = action;
    264 	pl->pl_addr = v;
    265 	if (++n >= pp->pr_logsize)
    266 		n = 0;
    267 	pp->pr_curlogentry = n;
    268 }
    269 
    270 static void
    271 pr_printlog(struct pool *pp, struct pool_item *pi,
    272     void (*pr)(const char *, ...))
    273 {
    274 	int i = pp->pr_logsize;
    275 	int n = pp->pr_curlogentry;
    276 
    277 	if (pp->pr_log == NULL)
    278 		return;
    279 
    280 	/*
    281 	 * Print all entries in this pool's log.
    282 	 */
    283 	while (i-- > 0) {
    284 		struct pool_log *pl = &pp->pr_log[n];
    285 		if (pl->pl_action != 0) {
    286 			if (pi == NULL || pi == pl->pl_addr) {
    287 				(*pr)("\tlog entry %d:\n", i);
    288 				(*pr)("\t\taction = %s, addr = %p\n",
    289 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    290 				    pl->pl_addr);
    291 				(*pr)("\t\tfile: %s at line %lu\n",
    292 				    pl->pl_file, pl->pl_line);
    293 			}
    294 		}
    295 		if (++n >= pp->pr_logsize)
    296 			n = 0;
    297 	}
    298 }
    299 
    300 static inline void
    301 pr_enter(struct pool *pp, const char *file, long line)
    302 {
    303 
    304 	if (__predict_false(pp->pr_entered_file != NULL)) {
    305 		printf("pool %s: reentrancy at file %s line %ld\n",
    306 		    pp->pr_wchan, file, line);
    307 		printf("         previous entry at file %s line %ld\n",
    308 		    pp->pr_entered_file, pp->pr_entered_line);
    309 		panic("pr_enter");
    310 	}
    311 
    312 	pp->pr_entered_file = file;
    313 	pp->pr_entered_line = line;
    314 }
    315 
    316 static inline void
    317 pr_leave(struct pool *pp)
    318 {
    319 
    320 	if (__predict_false(pp->pr_entered_file == NULL)) {
    321 		printf("pool %s not entered?\n", pp->pr_wchan);
    322 		panic("pr_leave");
    323 	}
    324 
    325 	pp->pr_entered_file = NULL;
    326 	pp->pr_entered_line = 0;
    327 }
    328 
    329 static inline void
    330 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    331 {
    332 
    333 	if (pp->pr_entered_file != NULL)
    334 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    335 		    pp->pr_entered_file, pp->pr_entered_line);
    336 }
    337 #else
    338 #define	pr_log(pp, v, action, file, line)
    339 #define	pr_printlog(pp, pi, pr)
    340 #define	pr_enter(pp, file, line)
    341 #define	pr_leave(pp)
    342 #define	pr_enter_check(pp, pr)
    343 #endif /* POOL_DIAGNOSTIC */
    344 
    345 static inline unsigned int
    346 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    347     const void *v)
    348 {
    349 	const char *cp = v;
    350 	unsigned int idx;
    351 
    352 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    353 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    354 	KASSERT(idx < pp->pr_itemsperpage);
    355 	return idx;
    356 }
    357 
    358 static inline void
    359 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    360     void *obj)
    361 {
    362 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    364 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    365 
    366 	KASSERT((*bitmap & mask) == 0);
    367 	*bitmap |= mask;
    368 }
    369 
    370 static inline void *
    371 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    372 {
    373 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    374 	unsigned int idx;
    375 	int i;
    376 
    377 	for (i = 0; ; i++) {
    378 		int bit;
    379 
    380 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    381 		bit = ffs32(bitmap[i]);
    382 		if (bit) {
    383 			pool_item_bitmap_t mask;
    384 
    385 			bit--;
    386 			idx = (i * BITMAP_SIZE) + bit;
    387 			mask = 1 << bit;
    388 			KASSERT((bitmap[i] & mask) != 0);
    389 			bitmap[i] &= ~mask;
    390 			break;
    391 		}
    392 	}
    393 	KASSERT(idx < pp->pr_itemsperpage);
    394 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    395 }
    396 
    397 static inline void
    398 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    399 {
    400 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    401 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    402 	int i;
    403 
    404 	for (i = 0; i < n; i++) {
    405 		bitmap[i] = (pool_item_bitmap_t)-1;
    406 	}
    407 }
    408 
    409 static inline int
    410 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    411 {
    412 
    413 	/*
    414 	 * we consider pool_item_header with smaller ph_page bigger.
    415 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    416 	 */
    417 
    418 	if (a->ph_page < b->ph_page)
    419 		return (1);
    420 	else if (a->ph_page > b->ph_page)
    421 		return (-1);
    422 	else
    423 		return (0);
    424 }
    425 
    426 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    427 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    428 
    429 static inline struct pool_item_header *
    430 pr_find_pagehead_noalign(struct pool *pp, void *v)
    431 {
    432 	struct pool_item_header *ph, tmp;
    433 
    434 	tmp.ph_page = (void *)(uintptr_t)v;
    435 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    436 	if (ph == NULL) {
    437 		ph = SPLAY_ROOT(&pp->pr_phtree);
    438 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    439 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    440 		}
    441 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    442 	}
    443 
    444 	return ph;
    445 }
    446 
    447 /*
    448  * Return the pool page header based on item address.
    449  */
    450 static inline struct pool_item_header *
    451 pr_find_pagehead(struct pool *pp, void *v)
    452 {
    453 	struct pool_item_header *ph, tmp;
    454 
    455 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    456 		ph = pr_find_pagehead_noalign(pp, v);
    457 	} else {
    458 		void *page =
    459 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    460 
    461 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    462 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    463 		} else {
    464 			tmp.ph_page = page;
    465 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    466 		}
    467 	}
    468 
    469 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    470 	    ((char *)ph->ph_page <= (char *)v &&
    471 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    472 	return ph;
    473 }
    474 
    475 static void
    476 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    477 {
    478 	struct pool_item_header *ph;
    479 
    480 	while ((ph = LIST_FIRST(pq)) != NULL) {
    481 		LIST_REMOVE(ph, ph_pagelist);
    482 		pool_allocator_free(pp, ph->ph_page);
    483 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    484 			pool_put(pp->pr_phpool, ph);
    485 	}
    486 }
    487 
    488 /*
    489  * Remove a page from the pool.
    490  */
    491 static inline void
    492 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    493      struct pool_pagelist *pq)
    494 {
    495 
    496 	KASSERT(mutex_owned(&pp->pr_lock));
    497 
    498 	/*
    499 	 * If the page was idle, decrement the idle page count.
    500 	 */
    501 	if (ph->ph_nmissing == 0) {
    502 #ifdef DIAGNOSTIC
    503 		if (pp->pr_nidle == 0)
    504 			panic("pr_rmpage: nidle inconsistent");
    505 		if (pp->pr_nitems < pp->pr_itemsperpage)
    506 			panic("pr_rmpage: nitems inconsistent");
    507 #endif
    508 		pp->pr_nidle--;
    509 	}
    510 
    511 	pp->pr_nitems -= pp->pr_itemsperpage;
    512 
    513 	/*
    514 	 * Unlink the page from the pool and queue it for release.
    515 	 */
    516 	LIST_REMOVE(ph, ph_pagelist);
    517 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    518 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    519 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    520 
    521 	pp->pr_npages--;
    522 	pp->pr_npagefree++;
    523 
    524 	pool_update_curpage(pp);
    525 }
    526 
    527 static bool
    528 pa_starved_p(struct pool_allocator *pa)
    529 {
    530 
    531 	if (pa->pa_backingmap != NULL) {
    532 		return vm_map_starved_p(pa->pa_backingmap);
    533 	}
    534 	return false;
    535 }
    536 
    537 static int
    538 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    539 {
    540 	struct pool *pp = obj;
    541 	struct pool_allocator *pa = pp->pr_alloc;
    542 
    543 	KASSERT(&pp->pr_reclaimerentry == ce);
    544 	pool_reclaim(pp);
    545 	if (!pa_starved_p(pa)) {
    546 		return CALLBACK_CHAIN_ABORT;
    547 	}
    548 	return CALLBACK_CHAIN_CONTINUE;
    549 }
    550 
    551 static void
    552 pool_reclaim_register(struct pool *pp)
    553 {
    554 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    555 	int s;
    556 
    557 	if (map == NULL) {
    558 		return;
    559 	}
    560 
    561 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    562 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    563 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    564 	splx(s);
    565 
    566 #ifdef DIAGNOSTIC
    567 	/* Diagnostic drain attempt. */
    568 	uvm_km_va_drain(map, 0);
    569 #endif
    570 }
    571 
    572 static void
    573 pool_reclaim_unregister(struct pool *pp)
    574 {
    575 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    576 	int s;
    577 
    578 	if (map == NULL) {
    579 		return;
    580 	}
    581 
    582 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    583 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    584 	    &pp->pr_reclaimerentry);
    585 	splx(s);
    586 }
    587 
    588 static void
    589 pa_reclaim_register(struct pool_allocator *pa)
    590 {
    591 	struct vm_map *map = *pa->pa_backingmapptr;
    592 	struct pool *pp;
    593 
    594 	KASSERT(pa->pa_backingmap == NULL);
    595 	if (map == NULL) {
    596 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    597 		return;
    598 	}
    599 	pa->pa_backingmap = map;
    600 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    601 		pool_reclaim_register(pp);
    602 	}
    603 }
    604 
    605 /*
    606  * Initialize all the pools listed in the "pools" link set.
    607  */
    608 void
    609 pool_subsystem_init(void)
    610 {
    611 	struct pool_allocator *pa;
    612 
    613 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    614 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    615 	cv_init(&pool_busy, "poolbusy");
    616 
    617 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    618 		KASSERT(pa->pa_backingmapptr != NULL);
    619 		KASSERT(*pa->pa_backingmapptr != NULL);
    620 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    621 		pa_reclaim_register(pa);
    622 	}
    623 
    624 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    625 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    626 
    627 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    628 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    629 }
    630 
    631 /*
    632  * Initialize the given pool resource structure.
    633  *
    634  * We export this routine to allow other kernel parts to declare
    635  * static pools that must be initialized before malloc() is available.
    636  */
    637 void
    638 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    639     const char *wchan, struct pool_allocator *palloc, int ipl)
    640 {
    641 	struct pool *pp1;
    642 	size_t trysize, phsize;
    643 	int off, slack;
    644 
    645 #ifdef DEBUG
    646 	/*
    647 	 * Check that the pool hasn't already been initialised and
    648 	 * added to the list of all pools.
    649 	 */
    650 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    651 		if (pp == pp1)
    652 			panic("pool_init: pool %s already initialised",
    653 			    wchan);
    654 	}
    655 #endif
    656 
    657 #ifdef POOL_DIAGNOSTIC
    658 	/*
    659 	 * Always log if POOL_DIAGNOSTIC is defined.
    660 	 */
    661 	if (pool_logsize != 0)
    662 		flags |= PR_LOGGING;
    663 #endif
    664 
    665 	if (palloc == NULL)
    666 		palloc = &pool_allocator_kmem;
    667 #ifdef POOL_SUBPAGE
    668 	if (size > palloc->pa_pagesz) {
    669 		if (palloc == &pool_allocator_kmem)
    670 			palloc = &pool_allocator_kmem_fullpage;
    671 		else if (palloc == &pool_allocator_nointr)
    672 			palloc = &pool_allocator_nointr_fullpage;
    673 	}
    674 #endif /* POOL_SUBPAGE */
    675 	if (!cold)
    676 		mutex_enter(&pool_allocator_lock);
    677 	if (palloc->pa_refcnt++ == 0) {
    678 		if (palloc->pa_pagesz == 0)
    679 			palloc->pa_pagesz = PAGE_SIZE;
    680 
    681 		TAILQ_INIT(&palloc->pa_list);
    682 
    683 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    684 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    685 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    686 
    687 		if (palloc->pa_backingmapptr != NULL) {
    688 			pa_reclaim_register(palloc);
    689 		}
    690 	}
    691 	if (!cold)
    692 		mutex_exit(&pool_allocator_lock);
    693 
    694 	if (align == 0)
    695 		align = ALIGN(1);
    696 
    697 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    698 		size = sizeof(struct pool_item);
    699 
    700 	size = roundup(size, align);
    701 #ifdef DIAGNOSTIC
    702 	if (size > palloc->pa_pagesz)
    703 		panic("pool_init: pool item size (%zu) too large", size);
    704 #endif
    705 
    706 	/*
    707 	 * Initialize the pool structure.
    708 	 */
    709 	LIST_INIT(&pp->pr_emptypages);
    710 	LIST_INIT(&pp->pr_fullpages);
    711 	LIST_INIT(&pp->pr_partpages);
    712 	pp->pr_cache = NULL;
    713 	pp->pr_curpage = NULL;
    714 	pp->pr_npages = 0;
    715 	pp->pr_minitems = 0;
    716 	pp->pr_minpages = 0;
    717 	pp->pr_maxpages = UINT_MAX;
    718 	pp->pr_roflags = flags;
    719 	pp->pr_flags = 0;
    720 	pp->pr_size = size;
    721 	pp->pr_align = align;
    722 	pp->pr_wchan = wchan;
    723 	pp->pr_alloc = palloc;
    724 	pp->pr_nitems = 0;
    725 	pp->pr_nout = 0;
    726 	pp->pr_hardlimit = UINT_MAX;
    727 	pp->pr_hardlimit_warning = NULL;
    728 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    729 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    730 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    731 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    732 	pp->pr_drain_hook = NULL;
    733 	pp->pr_drain_hook_arg = NULL;
    734 	pp->pr_freecheck = NULL;
    735 
    736 	/*
    737 	 * Decide whether to put the page header off page to avoid
    738 	 * wasting too large a part of the page or too big item.
    739 	 * Off-page page headers go on a hash table, so we can match
    740 	 * a returned item with its header based on the page address.
    741 	 * We use 1/16 of the page size and about 8 times of the item
    742 	 * size as the threshold (XXX: tune)
    743 	 *
    744 	 * However, we'll put the header into the page if we can put
    745 	 * it without wasting any items.
    746 	 *
    747 	 * Silently enforce `0 <= ioff < align'.
    748 	 */
    749 	pp->pr_itemoffset = ioff %= align;
    750 	/* See the comment below about reserved bytes. */
    751 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    752 	phsize = ALIGN(sizeof(struct pool_item_header));
    753 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    754 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    755 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    756 		/* Use the end of the page for the page header */
    757 		pp->pr_roflags |= PR_PHINPAGE;
    758 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    759 	} else {
    760 		/* The page header will be taken from our page header pool */
    761 		pp->pr_phoffset = 0;
    762 		off = palloc->pa_pagesz;
    763 		SPLAY_INIT(&pp->pr_phtree);
    764 	}
    765 
    766 	/*
    767 	 * Alignment is to take place at `ioff' within the item. This means
    768 	 * we must reserve up to `align - 1' bytes on the page to allow
    769 	 * appropriate positioning of each item.
    770 	 */
    771 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    772 	KASSERT(pp->pr_itemsperpage != 0);
    773 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    774 		int idx;
    775 
    776 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    777 		    idx++) {
    778 			/* nothing */
    779 		}
    780 		if (idx >= PHPOOL_MAX) {
    781 			/*
    782 			 * if you see this panic, consider to tweak
    783 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    784 			 */
    785 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    786 			    pp->pr_wchan, pp->pr_itemsperpage);
    787 		}
    788 		pp->pr_phpool = &phpool[idx];
    789 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    790 		pp->pr_phpool = &phpool[0];
    791 	}
    792 #if defined(DIAGNOSTIC)
    793 	else {
    794 		pp->pr_phpool = NULL;
    795 	}
    796 #endif
    797 
    798 	/*
    799 	 * Use the slack between the chunks and the page header
    800 	 * for "cache coloring".
    801 	 */
    802 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    803 	pp->pr_maxcolor = (slack / align) * align;
    804 	pp->pr_curcolor = 0;
    805 
    806 	pp->pr_nget = 0;
    807 	pp->pr_nfail = 0;
    808 	pp->pr_nput = 0;
    809 	pp->pr_npagealloc = 0;
    810 	pp->pr_npagefree = 0;
    811 	pp->pr_hiwat = 0;
    812 	pp->pr_nidle = 0;
    813 	pp->pr_refcnt = 0;
    814 
    815 	pp->pr_log = NULL;
    816 
    817 	pp->pr_entered_file = NULL;
    818 	pp->pr_entered_line = 0;
    819 
    820 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    821 	cv_init(&pp->pr_cv, wchan);
    822 	pp->pr_ipl = ipl;
    823 
    824 	/*
    825 	 * Initialize private page header pool and cache magazine pool if we
    826 	 * haven't done so yet.
    827 	 * XXX LOCKING.
    828 	 */
    829 	if (phpool[0].pr_size == 0) {
    830 		int idx;
    831 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    832 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    833 			int nelem;
    834 			size_t sz;
    835 
    836 			nelem = PHPOOL_FREELIST_NELEM(idx);
    837 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    838 			    "phpool-%d", nelem);
    839 			sz = sizeof(struct pool_item_header);
    840 			if (nelem) {
    841 				sz = offsetof(struct pool_item_header,
    842 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    843 			}
    844 			pool_init(&phpool[idx], sz, 0, 0, 0,
    845 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    846 		}
    847 #ifdef POOL_SUBPAGE
    848 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    849 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    850 #endif
    851 
    852 		size = sizeof(pcg_t) +
    853 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    854 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    855 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    856 
    857 		size = sizeof(pcg_t) +
    858 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    859 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    860 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    861 	}
    862 
    863 	/* Insert into the list of all pools. */
    864 	if (!cold)
    865 		mutex_enter(&pool_head_lock);
    866 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    867 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    868 			break;
    869 	}
    870 	if (pp1 == NULL)
    871 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    872 	else
    873 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    874 	if (!cold)
    875 		mutex_exit(&pool_head_lock);
    876 
    877 	/* Insert this into the list of pools using this allocator. */
    878 	if (!cold)
    879 		mutex_enter(&palloc->pa_lock);
    880 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    881 	if (!cold)
    882 		mutex_exit(&palloc->pa_lock);
    883 
    884 	pool_reclaim_register(pp);
    885 }
    886 
    887 /*
    888  * De-commision a pool resource.
    889  */
    890 void
    891 pool_destroy(struct pool *pp)
    892 {
    893 	struct pool_pagelist pq;
    894 	struct pool_item_header *ph;
    895 
    896 	/* Remove from global pool list */
    897 	mutex_enter(&pool_head_lock);
    898 	while (pp->pr_refcnt != 0)
    899 		cv_wait(&pool_busy, &pool_head_lock);
    900 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    901 	if (drainpp == pp)
    902 		drainpp = NULL;
    903 	mutex_exit(&pool_head_lock);
    904 
    905 	/* Remove this pool from its allocator's list of pools. */
    906 	pool_reclaim_unregister(pp);
    907 	mutex_enter(&pp->pr_alloc->pa_lock);
    908 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    909 	mutex_exit(&pp->pr_alloc->pa_lock);
    910 
    911 	mutex_enter(&pool_allocator_lock);
    912 	if (--pp->pr_alloc->pa_refcnt == 0)
    913 		mutex_destroy(&pp->pr_alloc->pa_lock);
    914 	mutex_exit(&pool_allocator_lock);
    915 
    916 	mutex_enter(&pp->pr_lock);
    917 
    918 	KASSERT(pp->pr_cache == NULL);
    919 
    920 #ifdef DIAGNOSTIC
    921 	if (pp->pr_nout != 0) {
    922 		pr_printlog(pp, NULL, printf);
    923 		panic("pool_destroy: pool busy: still out: %u",
    924 		    pp->pr_nout);
    925 	}
    926 #endif
    927 
    928 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    929 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    930 
    931 	/* Remove all pages */
    932 	LIST_INIT(&pq);
    933 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    934 		pr_rmpage(pp, ph, &pq);
    935 
    936 	mutex_exit(&pp->pr_lock);
    937 
    938 	pr_pagelist_free(pp, &pq);
    939 
    940 #ifdef POOL_DIAGNOSTIC
    941 	if (pp->pr_log != NULL) {
    942 		free(pp->pr_log, M_TEMP);
    943 		pp->pr_log = NULL;
    944 	}
    945 #endif
    946 
    947 	cv_destroy(&pp->pr_cv);
    948 	mutex_destroy(&pp->pr_lock);
    949 }
    950 
    951 void
    952 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    953 {
    954 
    955 	/* XXX no locking -- must be used just after pool_init() */
    956 #ifdef DIAGNOSTIC
    957 	if (pp->pr_drain_hook != NULL)
    958 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    959 #endif
    960 	pp->pr_drain_hook = fn;
    961 	pp->pr_drain_hook_arg = arg;
    962 }
    963 
    964 static struct pool_item_header *
    965 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    966 {
    967 	struct pool_item_header *ph;
    968 
    969 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    970 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    971 	else
    972 		ph = pool_get(pp->pr_phpool, flags);
    973 
    974 	return (ph);
    975 }
    976 
    977 /*
    978  * Grab an item from the pool.
    979  */
    980 void *
    981 #ifdef POOL_DIAGNOSTIC
    982 _pool_get(struct pool *pp, int flags, const char *file, long line)
    983 #else
    984 pool_get(struct pool *pp, int flags)
    985 #endif
    986 {
    987 	struct pool_item *pi;
    988 	struct pool_item_header *ph;
    989 	void *v;
    990 
    991 #ifdef DIAGNOSTIC
    992 	if (pp->pr_itemsperpage == 0)
    993 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    994 		    "pool not initialized?", pp->pr_wchan);
    995 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE)
    996 		panic("pool '%s' is IPL_NONE, but called from "
    997 		    "interrupt context\n", pp->pr_wchan);
    998 #endif
    999 	if (flags & PR_WAITOK) {
   1000 		ASSERT_SLEEPABLE();
   1001 	}
   1002 
   1003 	mutex_enter(&pp->pr_lock);
   1004 	pr_enter(pp, file, line);
   1005 
   1006  startover:
   1007 	/*
   1008 	 * Check to see if we've reached the hard limit.  If we have,
   1009 	 * and we can wait, then wait until an item has been returned to
   1010 	 * the pool.
   1011 	 */
   1012 #ifdef DIAGNOSTIC
   1013 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1014 		pr_leave(pp);
   1015 		mutex_exit(&pp->pr_lock);
   1016 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1017 	}
   1018 #endif
   1019 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1020 		if (pp->pr_drain_hook != NULL) {
   1021 			/*
   1022 			 * Since the drain hook is going to free things
   1023 			 * back to the pool, unlock, call the hook, re-lock,
   1024 			 * and check the hardlimit condition again.
   1025 			 */
   1026 			pr_leave(pp);
   1027 			mutex_exit(&pp->pr_lock);
   1028 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1029 			mutex_enter(&pp->pr_lock);
   1030 			pr_enter(pp, file, line);
   1031 			if (pp->pr_nout < pp->pr_hardlimit)
   1032 				goto startover;
   1033 		}
   1034 
   1035 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1036 			/*
   1037 			 * XXX: A warning isn't logged in this case.  Should
   1038 			 * it be?
   1039 			 */
   1040 			pp->pr_flags |= PR_WANTED;
   1041 			pr_leave(pp);
   1042 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1043 			pr_enter(pp, file, line);
   1044 			goto startover;
   1045 		}
   1046 
   1047 		/*
   1048 		 * Log a message that the hard limit has been hit.
   1049 		 */
   1050 		if (pp->pr_hardlimit_warning != NULL &&
   1051 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1052 			      &pp->pr_hardlimit_ratecap))
   1053 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1054 
   1055 		pp->pr_nfail++;
   1056 
   1057 		pr_leave(pp);
   1058 		mutex_exit(&pp->pr_lock);
   1059 		return (NULL);
   1060 	}
   1061 
   1062 	/*
   1063 	 * The convention we use is that if `curpage' is not NULL, then
   1064 	 * it points at a non-empty bucket. In particular, `curpage'
   1065 	 * never points at a page header which has PR_PHINPAGE set and
   1066 	 * has no items in its bucket.
   1067 	 */
   1068 	if ((ph = pp->pr_curpage) == NULL) {
   1069 		int error;
   1070 
   1071 #ifdef DIAGNOSTIC
   1072 		if (pp->pr_nitems != 0) {
   1073 			mutex_exit(&pp->pr_lock);
   1074 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1075 			    pp->pr_wchan, pp->pr_nitems);
   1076 			panic("pool_get: nitems inconsistent");
   1077 		}
   1078 #endif
   1079 
   1080 		/*
   1081 		 * Call the back-end page allocator for more memory.
   1082 		 * Release the pool lock, as the back-end page allocator
   1083 		 * may block.
   1084 		 */
   1085 		pr_leave(pp);
   1086 		error = pool_grow(pp, flags);
   1087 		pr_enter(pp, file, line);
   1088 		if (error != 0) {
   1089 			/*
   1090 			 * We were unable to allocate a page or item
   1091 			 * header, but we released the lock during
   1092 			 * allocation, so perhaps items were freed
   1093 			 * back to the pool.  Check for this case.
   1094 			 */
   1095 			if (pp->pr_curpage != NULL)
   1096 				goto startover;
   1097 
   1098 			pp->pr_nfail++;
   1099 			pr_leave(pp);
   1100 			mutex_exit(&pp->pr_lock);
   1101 			return (NULL);
   1102 		}
   1103 
   1104 		/* Start the allocation process over. */
   1105 		goto startover;
   1106 	}
   1107 	if (pp->pr_roflags & PR_NOTOUCH) {
   1108 #ifdef DIAGNOSTIC
   1109 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1110 			pr_leave(pp);
   1111 			mutex_exit(&pp->pr_lock);
   1112 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1113 		}
   1114 #endif
   1115 		v = pr_item_notouch_get(pp, ph);
   1116 #ifdef POOL_DIAGNOSTIC
   1117 		pr_log(pp, v, PRLOG_GET, file, line);
   1118 #endif
   1119 	} else {
   1120 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1121 		if (__predict_false(v == NULL)) {
   1122 			pr_leave(pp);
   1123 			mutex_exit(&pp->pr_lock);
   1124 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1125 		}
   1126 #ifdef DIAGNOSTIC
   1127 		if (__predict_false(pp->pr_nitems == 0)) {
   1128 			pr_leave(pp);
   1129 			mutex_exit(&pp->pr_lock);
   1130 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1131 			    pp->pr_wchan, pp->pr_nitems);
   1132 			panic("pool_get: nitems inconsistent");
   1133 		}
   1134 #endif
   1135 
   1136 #ifdef POOL_DIAGNOSTIC
   1137 		pr_log(pp, v, PRLOG_GET, file, line);
   1138 #endif
   1139 
   1140 #ifdef DIAGNOSTIC
   1141 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1142 			pr_printlog(pp, pi, printf);
   1143 			panic("pool_get(%s): free list modified: "
   1144 			    "magic=%x; page %p; item addr %p\n",
   1145 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1146 		}
   1147 #endif
   1148 
   1149 		/*
   1150 		 * Remove from item list.
   1151 		 */
   1152 		LIST_REMOVE(pi, pi_list);
   1153 	}
   1154 	pp->pr_nitems--;
   1155 	pp->pr_nout++;
   1156 	if (ph->ph_nmissing == 0) {
   1157 #ifdef DIAGNOSTIC
   1158 		if (__predict_false(pp->pr_nidle == 0))
   1159 			panic("pool_get: nidle inconsistent");
   1160 #endif
   1161 		pp->pr_nidle--;
   1162 
   1163 		/*
   1164 		 * This page was previously empty.  Move it to the list of
   1165 		 * partially-full pages.  This page is already curpage.
   1166 		 */
   1167 		LIST_REMOVE(ph, ph_pagelist);
   1168 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1169 	}
   1170 	ph->ph_nmissing++;
   1171 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1172 #ifdef DIAGNOSTIC
   1173 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1174 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1175 			pr_leave(pp);
   1176 			mutex_exit(&pp->pr_lock);
   1177 			panic("pool_get: %s: nmissing inconsistent",
   1178 			    pp->pr_wchan);
   1179 		}
   1180 #endif
   1181 		/*
   1182 		 * This page is now full.  Move it to the full list
   1183 		 * and select a new current page.
   1184 		 */
   1185 		LIST_REMOVE(ph, ph_pagelist);
   1186 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1187 		pool_update_curpage(pp);
   1188 	}
   1189 
   1190 	pp->pr_nget++;
   1191 	pr_leave(pp);
   1192 
   1193 	/*
   1194 	 * If we have a low water mark and we are now below that low
   1195 	 * water mark, add more items to the pool.
   1196 	 */
   1197 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1198 		/*
   1199 		 * XXX: Should we log a warning?  Should we set up a timeout
   1200 		 * to try again in a second or so?  The latter could break
   1201 		 * a caller's assumptions about interrupt protection, etc.
   1202 		 */
   1203 	}
   1204 
   1205 	mutex_exit(&pp->pr_lock);
   1206 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1207 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1208 	return (v);
   1209 }
   1210 
   1211 /*
   1212  * Internal version of pool_put().  Pool is already locked/entered.
   1213  */
   1214 static void
   1215 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1216 {
   1217 	struct pool_item *pi = v;
   1218 	struct pool_item_header *ph;
   1219 
   1220 	KASSERT(mutex_owned(&pp->pr_lock));
   1221 	FREECHECK_IN(&pp->pr_freecheck, v);
   1222 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1223 
   1224 #ifdef DIAGNOSTIC
   1225 	if (__predict_false(pp->pr_nout == 0)) {
   1226 		printf("pool %s: putting with none out\n",
   1227 		    pp->pr_wchan);
   1228 		panic("pool_put");
   1229 	}
   1230 #endif
   1231 
   1232 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1233 		pr_printlog(pp, NULL, printf);
   1234 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1235 	}
   1236 
   1237 	/*
   1238 	 * Return to item list.
   1239 	 */
   1240 	if (pp->pr_roflags & PR_NOTOUCH) {
   1241 		pr_item_notouch_put(pp, ph, v);
   1242 	} else {
   1243 #ifdef DIAGNOSTIC
   1244 		pi->pi_magic = PI_MAGIC;
   1245 #endif
   1246 #ifdef DEBUG
   1247 		{
   1248 			int i, *ip = v;
   1249 
   1250 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1251 				*ip++ = PI_MAGIC;
   1252 			}
   1253 		}
   1254 #endif
   1255 
   1256 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1257 	}
   1258 	KDASSERT(ph->ph_nmissing != 0);
   1259 	ph->ph_nmissing--;
   1260 	pp->pr_nput++;
   1261 	pp->pr_nitems++;
   1262 	pp->pr_nout--;
   1263 
   1264 	/* Cancel "pool empty" condition if it exists */
   1265 	if (pp->pr_curpage == NULL)
   1266 		pp->pr_curpage = ph;
   1267 
   1268 	if (pp->pr_flags & PR_WANTED) {
   1269 		pp->pr_flags &= ~PR_WANTED;
   1270 		cv_broadcast(&pp->pr_cv);
   1271 	}
   1272 
   1273 	/*
   1274 	 * If this page is now empty, do one of two things:
   1275 	 *
   1276 	 *	(1) If we have more pages than the page high water mark,
   1277 	 *	    free the page back to the system.  ONLY CONSIDER
   1278 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1279 	 *	    CLAIM.
   1280 	 *
   1281 	 *	(2) Otherwise, move the page to the empty page list.
   1282 	 *
   1283 	 * Either way, select a new current page (so we use a partially-full
   1284 	 * page if one is available).
   1285 	 */
   1286 	if (ph->ph_nmissing == 0) {
   1287 		pp->pr_nidle++;
   1288 		if (pp->pr_npages > pp->pr_minpages &&
   1289 		    pp->pr_npages > pp->pr_maxpages) {
   1290 			pr_rmpage(pp, ph, pq);
   1291 		} else {
   1292 			LIST_REMOVE(ph, ph_pagelist);
   1293 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1294 
   1295 			/*
   1296 			 * Update the timestamp on the page.  A page must
   1297 			 * be idle for some period of time before it can
   1298 			 * be reclaimed by the pagedaemon.  This minimizes
   1299 			 * ping-pong'ing for memory.
   1300 			 *
   1301 			 * note for 64-bit time_t: truncating to 32-bit is not
   1302 			 * a problem for our usage.
   1303 			 */
   1304 			ph->ph_time = time_uptime;
   1305 		}
   1306 		pool_update_curpage(pp);
   1307 	}
   1308 
   1309 	/*
   1310 	 * If the page was previously completely full, move it to the
   1311 	 * partially-full list and make it the current page.  The next
   1312 	 * allocation will get the item from this page, instead of
   1313 	 * further fragmenting the pool.
   1314 	 */
   1315 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1316 		LIST_REMOVE(ph, ph_pagelist);
   1317 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1318 		pp->pr_curpage = ph;
   1319 	}
   1320 }
   1321 
   1322 /*
   1323  * Return resource to the pool.
   1324  */
   1325 #ifdef POOL_DIAGNOSTIC
   1326 void
   1327 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1328 {
   1329 	struct pool_pagelist pq;
   1330 
   1331 	LIST_INIT(&pq);
   1332 
   1333 	mutex_enter(&pp->pr_lock);
   1334 	pr_enter(pp, file, line);
   1335 
   1336 	pr_log(pp, v, PRLOG_PUT, file, line);
   1337 
   1338 	pool_do_put(pp, v, &pq);
   1339 
   1340 	pr_leave(pp);
   1341 	mutex_exit(&pp->pr_lock);
   1342 
   1343 	pr_pagelist_free(pp, &pq);
   1344 }
   1345 #undef pool_put
   1346 #endif /* POOL_DIAGNOSTIC */
   1347 
   1348 void
   1349 pool_put(struct pool *pp, void *v)
   1350 {
   1351 	struct pool_pagelist pq;
   1352 
   1353 	LIST_INIT(&pq);
   1354 
   1355 	mutex_enter(&pp->pr_lock);
   1356 	pool_do_put(pp, v, &pq);
   1357 	mutex_exit(&pp->pr_lock);
   1358 
   1359 	pr_pagelist_free(pp, &pq);
   1360 }
   1361 
   1362 #ifdef POOL_DIAGNOSTIC
   1363 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1364 #endif
   1365 
   1366 /*
   1367  * pool_grow: grow a pool by a page.
   1368  *
   1369  * => called with pool locked.
   1370  * => unlock and relock the pool.
   1371  * => return with pool locked.
   1372  */
   1373 
   1374 static int
   1375 pool_grow(struct pool *pp, int flags)
   1376 {
   1377 	struct pool_item_header *ph = NULL;
   1378 	char *cp;
   1379 
   1380 	mutex_exit(&pp->pr_lock);
   1381 	cp = pool_allocator_alloc(pp, flags);
   1382 	if (__predict_true(cp != NULL)) {
   1383 		ph = pool_alloc_item_header(pp, cp, flags);
   1384 	}
   1385 	if (__predict_false(cp == NULL || ph == NULL)) {
   1386 		if (cp != NULL) {
   1387 			pool_allocator_free(pp, cp);
   1388 		}
   1389 		mutex_enter(&pp->pr_lock);
   1390 		return ENOMEM;
   1391 	}
   1392 
   1393 	mutex_enter(&pp->pr_lock);
   1394 	pool_prime_page(pp, cp, ph);
   1395 	pp->pr_npagealloc++;
   1396 	return 0;
   1397 }
   1398 
   1399 /*
   1400  * Add N items to the pool.
   1401  */
   1402 int
   1403 pool_prime(struct pool *pp, int n)
   1404 {
   1405 	int newpages;
   1406 	int error = 0;
   1407 
   1408 	mutex_enter(&pp->pr_lock);
   1409 
   1410 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1411 
   1412 	while (newpages-- > 0) {
   1413 		error = pool_grow(pp, PR_NOWAIT);
   1414 		if (error) {
   1415 			break;
   1416 		}
   1417 		pp->pr_minpages++;
   1418 	}
   1419 
   1420 	if (pp->pr_minpages >= pp->pr_maxpages)
   1421 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1422 
   1423 	mutex_exit(&pp->pr_lock);
   1424 	return error;
   1425 }
   1426 
   1427 /*
   1428  * Add a page worth of items to the pool.
   1429  *
   1430  * Note, we must be called with the pool descriptor LOCKED.
   1431  */
   1432 static void
   1433 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1434 {
   1435 	struct pool_item *pi;
   1436 	void *cp = storage;
   1437 	const unsigned int align = pp->pr_align;
   1438 	const unsigned int ioff = pp->pr_itemoffset;
   1439 	int n;
   1440 
   1441 	KASSERT(mutex_owned(&pp->pr_lock));
   1442 
   1443 #ifdef DIAGNOSTIC
   1444 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1445 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1446 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1447 #endif
   1448 
   1449 	/*
   1450 	 * Insert page header.
   1451 	 */
   1452 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1453 	LIST_INIT(&ph->ph_itemlist);
   1454 	ph->ph_page = storage;
   1455 	ph->ph_nmissing = 0;
   1456 	ph->ph_time = time_uptime;
   1457 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1458 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1459 
   1460 	pp->pr_nidle++;
   1461 
   1462 	/*
   1463 	 * Color this page.
   1464 	 */
   1465 	ph->ph_off = pp->pr_curcolor;
   1466 	cp = (char *)cp + ph->ph_off;
   1467 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1468 		pp->pr_curcolor = 0;
   1469 
   1470 	/*
   1471 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1472 	 */
   1473 	if (ioff != 0)
   1474 		cp = (char *)cp + align - ioff;
   1475 
   1476 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1477 
   1478 	/*
   1479 	 * Insert remaining chunks on the bucket list.
   1480 	 */
   1481 	n = pp->pr_itemsperpage;
   1482 	pp->pr_nitems += n;
   1483 
   1484 	if (pp->pr_roflags & PR_NOTOUCH) {
   1485 		pr_item_notouch_init(pp, ph);
   1486 	} else {
   1487 		while (n--) {
   1488 			pi = (struct pool_item *)cp;
   1489 
   1490 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1491 
   1492 			/* Insert on page list */
   1493 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1494 #ifdef DIAGNOSTIC
   1495 			pi->pi_magic = PI_MAGIC;
   1496 #endif
   1497 			cp = (char *)cp + pp->pr_size;
   1498 
   1499 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1500 		}
   1501 	}
   1502 
   1503 	/*
   1504 	 * If the pool was depleted, point at the new page.
   1505 	 */
   1506 	if (pp->pr_curpage == NULL)
   1507 		pp->pr_curpage = ph;
   1508 
   1509 	if (++pp->pr_npages > pp->pr_hiwat)
   1510 		pp->pr_hiwat = pp->pr_npages;
   1511 }
   1512 
   1513 /*
   1514  * Used by pool_get() when nitems drops below the low water mark.  This
   1515  * is used to catch up pr_nitems with the low water mark.
   1516  *
   1517  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1518  *
   1519  * Note 2, we must be called with the pool already locked, and we return
   1520  * with it locked.
   1521  */
   1522 static int
   1523 pool_catchup(struct pool *pp)
   1524 {
   1525 	int error = 0;
   1526 
   1527 	while (POOL_NEEDS_CATCHUP(pp)) {
   1528 		error = pool_grow(pp, PR_NOWAIT);
   1529 		if (error) {
   1530 			break;
   1531 		}
   1532 	}
   1533 	return error;
   1534 }
   1535 
   1536 static void
   1537 pool_update_curpage(struct pool *pp)
   1538 {
   1539 
   1540 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1541 	if (pp->pr_curpage == NULL) {
   1542 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1543 	}
   1544 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1545 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1546 }
   1547 
   1548 void
   1549 pool_setlowat(struct pool *pp, int n)
   1550 {
   1551 
   1552 	mutex_enter(&pp->pr_lock);
   1553 
   1554 	pp->pr_minitems = n;
   1555 	pp->pr_minpages = (n == 0)
   1556 		? 0
   1557 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1558 
   1559 	/* Make sure we're caught up with the newly-set low water mark. */
   1560 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1561 		/*
   1562 		 * XXX: Should we log a warning?  Should we set up a timeout
   1563 		 * to try again in a second or so?  The latter could break
   1564 		 * a caller's assumptions about interrupt protection, etc.
   1565 		 */
   1566 	}
   1567 
   1568 	mutex_exit(&pp->pr_lock);
   1569 }
   1570 
   1571 void
   1572 pool_sethiwat(struct pool *pp, int n)
   1573 {
   1574 
   1575 	mutex_enter(&pp->pr_lock);
   1576 
   1577 	pp->pr_maxpages = (n == 0)
   1578 		? 0
   1579 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1580 
   1581 	mutex_exit(&pp->pr_lock);
   1582 }
   1583 
   1584 void
   1585 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1586 {
   1587 
   1588 	mutex_enter(&pp->pr_lock);
   1589 
   1590 	pp->pr_hardlimit = n;
   1591 	pp->pr_hardlimit_warning = warnmess;
   1592 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1593 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1594 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1595 
   1596 	/*
   1597 	 * In-line version of pool_sethiwat(), because we don't want to
   1598 	 * release the lock.
   1599 	 */
   1600 	pp->pr_maxpages = (n == 0)
   1601 		? 0
   1602 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1603 
   1604 	mutex_exit(&pp->pr_lock);
   1605 }
   1606 
   1607 /*
   1608  * Release all complete pages that have not been used recently.
   1609  *
   1610  * Might be called from interrupt context.
   1611  */
   1612 int
   1613 #ifdef POOL_DIAGNOSTIC
   1614 _pool_reclaim(struct pool *pp, const char *file, long line)
   1615 #else
   1616 pool_reclaim(struct pool *pp)
   1617 #endif
   1618 {
   1619 	struct pool_item_header *ph, *phnext;
   1620 	struct pool_pagelist pq;
   1621 	uint32_t curtime;
   1622 	bool klock;
   1623 	int rv;
   1624 
   1625 	if (cpu_intr_p() || cpu_softintr_p()) {
   1626 		KASSERT(pp->pr_ipl != IPL_NONE);
   1627 	}
   1628 
   1629 	if (pp->pr_drain_hook != NULL) {
   1630 		/*
   1631 		 * The drain hook must be called with the pool unlocked.
   1632 		 */
   1633 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1634 	}
   1635 
   1636 	/*
   1637 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1638 	 * to block.
   1639 	 */
   1640 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1641 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1642 		KERNEL_LOCK(1, NULL);
   1643 		klock = true;
   1644 	} else
   1645 		klock = false;
   1646 
   1647 	/* Reclaim items from the pool's cache (if any). */
   1648 	if (pp->pr_cache != NULL)
   1649 		pool_cache_invalidate(pp->pr_cache);
   1650 
   1651 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1652 		if (klock) {
   1653 			KERNEL_UNLOCK_ONE(NULL);
   1654 		}
   1655 		return (0);
   1656 	}
   1657 	pr_enter(pp, file, line);
   1658 
   1659 	LIST_INIT(&pq);
   1660 
   1661 	curtime = time_uptime;
   1662 
   1663 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1664 		phnext = LIST_NEXT(ph, ph_pagelist);
   1665 
   1666 		/* Check our minimum page claim */
   1667 		if (pp->pr_npages <= pp->pr_minpages)
   1668 			break;
   1669 
   1670 		KASSERT(ph->ph_nmissing == 0);
   1671 		if (curtime - ph->ph_time < pool_inactive_time
   1672 		    && !pa_starved_p(pp->pr_alloc))
   1673 			continue;
   1674 
   1675 		/*
   1676 		 * If freeing this page would put us below
   1677 		 * the low water mark, stop now.
   1678 		 */
   1679 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1680 		    pp->pr_minitems)
   1681 			break;
   1682 
   1683 		pr_rmpage(pp, ph, &pq);
   1684 	}
   1685 
   1686 	pr_leave(pp);
   1687 	mutex_exit(&pp->pr_lock);
   1688 
   1689 	if (LIST_EMPTY(&pq))
   1690 		rv = 0;
   1691 	else {
   1692 		pr_pagelist_free(pp, &pq);
   1693 		rv = 1;
   1694 	}
   1695 
   1696 	if (klock) {
   1697 		KERNEL_UNLOCK_ONE(NULL);
   1698 	}
   1699 
   1700 	return (rv);
   1701 }
   1702 
   1703 /*
   1704  * Drain pools, one at a time.  This is a two stage process;
   1705  * drain_start kicks off a cross call to drain CPU-level caches
   1706  * if the pool has an associated pool_cache.  drain_end waits
   1707  * for those cross calls to finish, and then drains the cache
   1708  * (if any) and pool.
   1709  *
   1710  * Note, must never be called from interrupt context.
   1711  */
   1712 void
   1713 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1714 {
   1715 	struct pool *pp;
   1716 
   1717 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1718 
   1719 	pp = NULL;
   1720 
   1721 	/* Find next pool to drain, and add a reference. */
   1722 	mutex_enter(&pool_head_lock);
   1723 	do {
   1724 		if (drainpp == NULL) {
   1725 			drainpp = TAILQ_FIRST(&pool_head);
   1726 		}
   1727 		if (drainpp != NULL) {
   1728 			pp = drainpp;
   1729 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1730 		}
   1731 		/*
   1732 		 * Skip completely idle pools.  We depend on at least
   1733 		 * one pool in the system being active.
   1734 		 */
   1735 	} while (pp == NULL || pp->pr_npages == 0);
   1736 	pp->pr_refcnt++;
   1737 	mutex_exit(&pool_head_lock);
   1738 
   1739 	/* If there is a pool_cache, drain CPU level caches. */
   1740 	*ppp = pp;
   1741 	if (pp->pr_cache != NULL) {
   1742 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1743 		    pp->pr_cache, NULL);
   1744 	}
   1745 }
   1746 
   1747 void
   1748 pool_drain_end(struct pool *pp, uint64_t where)
   1749 {
   1750 
   1751 	if (pp == NULL)
   1752 		return;
   1753 
   1754 	KASSERT(pp->pr_refcnt > 0);
   1755 
   1756 	/* Wait for remote draining to complete. */
   1757 	if (pp->pr_cache != NULL)
   1758 		xc_wait(where);
   1759 
   1760 	/* Drain the cache (if any) and pool.. */
   1761 	pool_reclaim(pp);
   1762 
   1763 	/* Finally, unlock the pool. */
   1764 	mutex_enter(&pool_head_lock);
   1765 	pp->pr_refcnt--;
   1766 	cv_broadcast(&pool_busy);
   1767 	mutex_exit(&pool_head_lock);
   1768 }
   1769 
   1770 /*
   1771  * Diagnostic helpers.
   1772  */
   1773 void
   1774 pool_print(struct pool *pp, const char *modif)
   1775 {
   1776 
   1777 	pool_print1(pp, modif, printf);
   1778 }
   1779 
   1780 void
   1781 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1782 {
   1783 	struct pool *pp;
   1784 
   1785 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1786 		pool_printit(pp, modif, pr);
   1787 	}
   1788 }
   1789 
   1790 void
   1791 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1792 {
   1793 
   1794 	if (pp == NULL) {
   1795 		(*pr)("Must specify a pool to print.\n");
   1796 		return;
   1797 	}
   1798 
   1799 	pool_print1(pp, modif, pr);
   1800 }
   1801 
   1802 static void
   1803 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1804     void (*pr)(const char *, ...))
   1805 {
   1806 	struct pool_item_header *ph;
   1807 #ifdef DIAGNOSTIC
   1808 	struct pool_item *pi;
   1809 #endif
   1810 
   1811 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1812 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1813 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1814 #ifdef DIAGNOSTIC
   1815 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1816 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1817 				if (pi->pi_magic != PI_MAGIC) {
   1818 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1819 					    pi, pi->pi_magic);
   1820 				}
   1821 			}
   1822 		}
   1823 #endif
   1824 	}
   1825 }
   1826 
   1827 static void
   1828 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1829 {
   1830 	struct pool_item_header *ph;
   1831 	pool_cache_t pc;
   1832 	pcg_t *pcg;
   1833 	pool_cache_cpu_t *cc;
   1834 	uint64_t cpuhit, cpumiss;
   1835 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1836 	char c;
   1837 
   1838 	while ((c = *modif++) != '\0') {
   1839 		if (c == 'l')
   1840 			print_log = 1;
   1841 		if (c == 'p')
   1842 			print_pagelist = 1;
   1843 		if (c == 'c')
   1844 			print_cache = 1;
   1845 	}
   1846 
   1847 	if ((pc = pp->pr_cache) != NULL) {
   1848 		(*pr)("POOL CACHE");
   1849 	} else {
   1850 		(*pr)("POOL");
   1851 	}
   1852 
   1853 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1854 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1855 	    pp->pr_roflags);
   1856 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1857 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1858 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1859 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1860 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1861 
   1862 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1863 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1864 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1865 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1866 
   1867 	if (print_pagelist == 0)
   1868 		goto skip_pagelist;
   1869 
   1870 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1871 		(*pr)("\n\tempty page list:\n");
   1872 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1873 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1874 		(*pr)("\n\tfull page list:\n");
   1875 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1876 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1877 		(*pr)("\n\tpartial-page list:\n");
   1878 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1879 
   1880 	if (pp->pr_curpage == NULL)
   1881 		(*pr)("\tno current page\n");
   1882 	else
   1883 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1884 
   1885  skip_pagelist:
   1886 	if (print_log == 0)
   1887 		goto skip_log;
   1888 
   1889 	(*pr)("\n");
   1890 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1891 		(*pr)("\tno log\n");
   1892 	else {
   1893 		pr_printlog(pp, NULL, pr);
   1894 	}
   1895 
   1896  skip_log:
   1897 
   1898 #define PR_GROUPLIST(pcg)						\
   1899 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1900 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1901 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1902 		    POOL_PADDR_INVALID) {				\
   1903 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1904 			    pcg->pcg_objects[i].pcgo_va,		\
   1905 			    (unsigned long long)			\
   1906 			    pcg->pcg_objects[i].pcgo_pa);		\
   1907 		} else {						\
   1908 			(*pr)("\t\t\t%p\n",				\
   1909 			    pcg->pcg_objects[i].pcgo_va);		\
   1910 		}							\
   1911 	}
   1912 
   1913 	if (pc != NULL) {
   1914 		cpuhit = 0;
   1915 		cpumiss = 0;
   1916 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1917 			if ((cc = pc->pc_cpus[i]) == NULL)
   1918 				continue;
   1919 			cpuhit += cc->cc_hits;
   1920 			cpumiss += cc->cc_misses;
   1921 		}
   1922 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1923 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1924 		    pc->pc_hits, pc->pc_misses);
   1925 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1926 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1927 		    pc->pc_contended);
   1928 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1929 		    pc->pc_nempty, pc->pc_nfull);
   1930 		if (print_cache) {
   1931 			(*pr)("\tfull cache groups:\n");
   1932 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1933 			    pcg = pcg->pcg_next) {
   1934 				PR_GROUPLIST(pcg);
   1935 			}
   1936 			(*pr)("\tempty cache groups:\n");
   1937 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1938 			    pcg = pcg->pcg_next) {
   1939 				PR_GROUPLIST(pcg);
   1940 			}
   1941 		}
   1942 	}
   1943 #undef PR_GROUPLIST
   1944 
   1945 	pr_enter_check(pp, pr);
   1946 }
   1947 
   1948 static int
   1949 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1950 {
   1951 	struct pool_item *pi;
   1952 	void *page;
   1953 	int n;
   1954 
   1955 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1956 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1957 		if (page != ph->ph_page &&
   1958 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1959 			if (label != NULL)
   1960 				printf("%s: ", label);
   1961 			printf("pool(%p:%s): page inconsistency: page %p;"
   1962 			       " at page head addr %p (p %p)\n", pp,
   1963 				pp->pr_wchan, ph->ph_page,
   1964 				ph, page);
   1965 			return 1;
   1966 		}
   1967 	}
   1968 
   1969 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1970 		return 0;
   1971 
   1972 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1973 	     pi != NULL;
   1974 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1975 
   1976 #ifdef DIAGNOSTIC
   1977 		if (pi->pi_magic != PI_MAGIC) {
   1978 			if (label != NULL)
   1979 				printf("%s: ", label);
   1980 			printf("pool(%s): free list modified: magic=%x;"
   1981 			       " page %p; item ordinal %d; addr %p\n",
   1982 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1983 				n, pi);
   1984 			panic("pool");
   1985 		}
   1986 #endif
   1987 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1988 			continue;
   1989 		}
   1990 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1991 		if (page == ph->ph_page)
   1992 			continue;
   1993 
   1994 		if (label != NULL)
   1995 			printf("%s: ", label);
   1996 		printf("pool(%p:%s): page inconsistency: page %p;"
   1997 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1998 			pp->pr_wchan, ph->ph_page,
   1999 			n, pi, page);
   2000 		return 1;
   2001 	}
   2002 	return 0;
   2003 }
   2004 
   2005 
   2006 int
   2007 pool_chk(struct pool *pp, const char *label)
   2008 {
   2009 	struct pool_item_header *ph;
   2010 	int r = 0;
   2011 
   2012 	mutex_enter(&pp->pr_lock);
   2013 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2014 		r = pool_chk_page(pp, label, ph);
   2015 		if (r) {
   2016 			goto out;
   2017 		}
   2018 	}
   2019 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2020 		r = pool_chk_page(pp, label, ph);
   2021 		if (r) {
   2022 			goto out;
   2023 		}
   2024 	}
   2025 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2026 		r = pool_chk_page(pp, label, ph);
   2027 		if (r) {
   2028 			goto out;
   2029 		}
   2030 	}
   2031 
   2032 out:
   2033 	mutex_exit(&pp->pr_lock);
   2034 	return (r);
   2035 }
   2036 
   2037 /*
   2038  * pool_cache_init:
   2039  *
   2040  *	Initialize a pool cache.
   2041  */
   2042 pool_cache_t
   2043 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2044     const char *wchan, struct pool_allocator *palloc, int ipl,
   2045     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2046 {
   2047 	pool_cache_t pc;
   2048 
   2049 	pc = pool_get(&cache_pool, PR_WAITOK);
   2050 	if (pc == NULL)
   2051 		return NULL;
   2052 
   2053 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2054 	   palloc, ipl, ctor, dtor, arg);
   2055 
   2056 	return pc;
   2057 }
   2058 
   2059 /*
   2060  * pool_cache_bootstrap:
   2061  *
   2062  *	Kernel-private version of pool_cache_init().  The caller
   2063  *	provides initial storage.
   2064  */
   2065 void
   2066 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2067     u_int align_offset, u_int flags, const char *wchan,
   2068     struct pool_allocator *palloc, int ipl,
   2069     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2070     void *arg)
   2071 {
   2072 	CPU_INFO_ITERATOR cii;
   2073 	pool_cache_t pc1;
   2074 	struct cpu_info *ci;
   2075 	struct pool *pp;
   2076 
   2077 	pp = &pc->pc_pool;
   2078 	if (palloc == NULL && ipl == IPL_NONE)
   2079 		palloc = &pool_allocator_nointr;
   2080 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2081 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2082 
   2083 	if (ctor == NULL) {
   2084 		ctor = (int (*)(void *, void *, int))nullop;
   2085 	}
   2086 	if (dtor == NULL) {
   2087 		dtor = (void (*)(void *, void *))nullop;
   2088 	}
   2089 
   2090 	pc->pc_emptygroups = NULL;
   2091 	pc->pc_fullgroups = NULL;
   2092 	pc->pc_partgroups = NULL;
   2093 	pc->pc_ctor = ctor;
   2094 	pc->pc_dtor = dtor;
   2095 	pc->pc_arg  = arg;
   2096 	pc->pc_hits  = 0;
   2097 	pc->pc_misses = 0;
   2098 	pc->pc_nempty = 0;
   2099 	pc->pc_npart = 0;
   2100 	pc->pc_nfull = 0;
   2101 	pc->pc_contended = 0;
   2102 	pc->pc_refcnt = 0;
   2103 	pc->pc_freecheck = NULL;
   2104 
   2105 	if ((flags & PR_LARGECACHE) != 0) {
   2106 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2107 		pc->pc_pcgpool = &pcg_large_pool;
   2108 	} else {
   2109 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2110 		pc->pc_pcgpool = &pcg_normal_pool;
   2111 	}
   2112 
   2113 	/* Allocate per-CPU caches. */
   2114 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2115 	pc->pc_ncpu = 0;
   2116 	if (ncpu < 2) {
   2117 		/* XXX For sparc: boot CPU is not attached yet. */
   2118 		pool_cache_cpu_init1(curcpu(), pc);
   2119 	} else {
   2120 		for (CPU_INFO_FOREACH(cii, ci)) {
   2121 			pool_cache_cpu_init1(ci, pc);
   2122 		}
   2123 	}
   2124 
   2125 	/* Add to list of all pools. */
   2126 	if (__predict_true(!cold))
   2127 		mutex_enter(&pool_head_lock);
   2128 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2129 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2130 			break;
   2131 	}
   2132 	if (pc1 == NULL)
   2133 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2134 	else
   2135 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2136 	if (__predict_true(!cold))
   2137 		mutex_exit(&pool_head_lock);
   2138 
   2139 	membar_sync();
   2140 	pp->pr_cache = pc;
   2141 }
   2142 
   2143 /*
   2144  * pool_cache_destroy:
   2145  *
   2146  *	Destroy a pool cache.
   2147  */
   2148 void
   2149 pool_cache_destroy(pool_cache_t pc)
   2150 {
   2151 	struct pool *pp = &pc->pc_pool;
   2152 	u_int i;
   2153 
   2154 	/* Remove it from the global list. */
   2155 	mutex_enter(&pool_head_lock);
   2156 	while (pc->pc_refcnt != 0)
   2157 		cv_wait(&pool_busy, &pool_head_lock);
   2158 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2159 	mutex_exit(&pool_head_lock);
   2160 
   2161 	/* First, invalidate the entire cache. */
   2162 	pool_cache_invalidate(pc);
   2163 
   2164 	/* Disassociate it from the pool. */
   2165 	mutex_enter(&pp->pr_lock);
   2166 	pp->pr_cache = NULL;
   2167 	mutex_exit(&pp->pr_lock);
   2168 
   2169 	/* Destroy per-CPU data */
   2170 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2171 		pool_cache_invalidate_cpu(pc, i);
   2172 
   2173 	/* Finally, destroy it. */
   2174 	mutex_destroy(&pc->pc_lock);
   2175 	pool_destroy(pp);
   2176 	pool_put(&cache_pool, pc);
   2177 }
   2178 
   2179 /*
   2180  * pool_cache_cpu_init1:
   2181  *
   2182  *	Called for each pool_cache whenever a new CPU is attached.
   2183  */
   2184 static void
   2185 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2186 {
   2187 	pool_cache_cpu_t *cc;
   2188 	int index;
   2189 
   2190 	index = ci->ci_index;
   2191 
   2192 	KASSERT(index < __arraycount(pc->pc_cpus));
   2193 
   2194 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2195 		KASSERT(cc->cc_cpuindex == index);
   2196 		return;
   2197 	}
   2198 
   2199 	/*
   2200 	 * The first CPU is 'free'.  This needs to be the case for
   2201 	 * bootstrap - we may not be able to allocate yet.
   2202 	 */
   2203 	if (pc->pc_ncpu == 0) {
   2204 		cc = &pc->pc_cpu0;
   2205 		pc->pc_ncpu = 1;
   2206 	} else {
   2207 		mutex_enter(&pc->pc_lock);
   2208 		pc->pc_ncpu++;
   2209 		mutex_exit(&pc->pc_lock);
   2210 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2211 	}
   2212 
   2213 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2214 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2215 	cc->cc_cache = pc;
   2216 	cc->cc_cpuindex = index;
   2217 	cc->cc_hits = 0;
   2218 	cc->cc_misses = 0;
   2219 	cc->cc_current = __UNCONST(&pcg_dummy);
   2220 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2221 
   2222 	pc->pc_cpus[index] = cc;
   2223 }
   2224 
   2225 /*
   2226  * pool_cache_cpu_init:
   2227  *
   2228  *	Called whenever a new CPU is attached.
   2229  */
   2230 void
   2231 pool_cache_cpu_init(struct cpu_info *ci)
   2232 {
   2233 	pool_cache_t pc;
   2234 
   2235 	mutex_enter(&pool_head_lock);
   2236 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2237 		pc->pc_refcnt++;
   2238 		mutex_exit(&pool_head_lock);
   2239 
   2240 		pool_cache_cpu_init1(ci, pc);
   2241 
   2242 		mutex_enter(&pool_head_lock);
   2243 		pc->pc_refcnt--;
   2244 		cv_broadcast(&pool_busy);
   2245 	}
   2246 	mutex_exit(&pool_head_lock);
   2247 }
   2248 
   2249 /*
   2250  * pool_cache_reclaim:
   2251  *
   2252  *	Reclaim memory from a pool cache.
   2253  */
   2254 bool
   2255 pool_cache_reclaim(pool_cache_t pc)
   2256 {
   2257 
   2258 	return pool_reclaim(&pc->pc_pool);
   2259 }
   2260 
   2261 static void
   2262 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2263 {
   2264 
   2265 	(*pc->pc_dtor)(pc->pc_arg, object);
   2266 	pool_put(&pc->pc_pool, object);
   2267 }
   2268 
   2269 /*
   2270  * pool_cache_destruct_object:
   2271  *
   2272  *	Force destruction of an object and its release back into
   2273  *	the pool.
   2274  */
   2275 void
   2276 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2277 {
   2278 
   2279 	FREECHECK_IN(&pc->pc_freecheck, object);
   2280 
   2281 	pool_cache_destruct_object1(pc, object);
   2282 }
   2283 
   2284 /*
   2285  * pool_cache_invalidate_groups:
   2286  *
   2287  *	Invalidate a chain of groups and destruct all objects.
   2288  */
   2289 static void
   2290 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2291 {
   2292 	void *object;
   2293 	pcg_t *next;
   2294 	int i;
   2295 
   2296 	for (; pcg != NULL; pcg = next) {
   2297 		next = pcg->pcg_next;
   2298 
   2299 		for (i = 0; i < pcg->pcg_avail; i++) {
   2300 			object = pcg->pcg_objects[i].pcgo_va;
   2301 			pool_cache_destruct_object1(pc, object);
   2302 		}
   2303 
   2304 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2305 			pool_put(&pcg_large_pool, pcg);
   2306 		} else {
   2307 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2308 			pool_put(&pcg_normal_pool, pcg);
   2309 		}
   2310 	}
   2311 }
   2312 
   2313 /*
   2314  * pool_cache_invalidate:
   2315  *
   2316  *	Invalidate a pool cache (destruct and release all of the
   2317  *	cached objects).  Does not reclaim objects from the pool.
   2318  *
   2319  *	Note: For pool caches that provide constructed objects, there
   2320  *	is an assumption that another level of synchronization is occurring
   2321  *	between the input to the constructor and the cache invalidation.
   2322  */
   2323 void
   2324 pool_cache_invalidate(pool_cache_t pc)
   2325 {
   2326 	pcg_t *full, *empty, *part;
   2327 #if 0
   2328 	uint64_t where;
   2329 
   2330 	if (ncpu < 2 || !mp_online) {
   2331 		/*
   2332 		 * We might be called early enough in the boot process
   2333 		 * for the CPU data structures to not be fully initialized.
   2334 		 * In this case, simply gather the local CPU's cache now
   2335 		 * since it will be the only one running.
   2336 		 */
   2337 		pool_cache_xcall(pc);
   2338 	} else {
   2339 		/*
   2340 		 * Gather all of the CPU-specific caches into the
   2341 		 * global cache.
   2342 		 */
   2343 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2344 		xc_wait(where);
   2345 	}
   2346 #endif
   2347 	mutex_enter(&pc->pc_lock);
   2348 	full = pc->pc_fullgroups;
   2349 	empty = pc->pc_emptygroups;
   2350 	part = pc->pc_partgroups;
   2351 	pc->pc_fullgroups = NULL;
   2352 	pc->pc_emptygroups = NULL;
   2353 	pc->pc_partgroups = NULL;
   2354 	pc->pc_nfull = 0;
   2355 	pc->pc_nempty = 0;
   2356 	pc->pc_npart = 0;
   2357 	mutex_exit(&pc->pc_lock);
   2358 
   2359 	pool_cache_invalidate_groups(pc, full);
   2360 	pool_cache_invalidate_groups(pc, empty);
   2361 	pool_cache_invalidate_groups(pc, part);
   2362 }
   2363 
   2364 /*
   2365  * pool_cache_invalidate_cpu:
   2366  *
   2367  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2368  *	identified by its associated index.
   2369  *	It is caller's responsibility to ensure that no operation is
   2370  *	taking place on this pool cache while doing this invalidation.
   2371  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2372  *	pool cached objects from a CPU different from the one currently running
   2373  *	may result in an undefined behaviour.
   2374  */
   2375 static void
   2376 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2377 {
   2378 
   2379 	pool_cache_cpu_t *cc;
   2380 	pcg_t *pcg;
   2381 
   2382 	if ((cc = pc->pc_cpus[index]) == NULL)
   2383 		return;
   2384 
   2385 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2386 		pcg->pcg_next = NULL;
   2387 		pool_cache_invalidate_groups(pc, pcg);
   2388 	}
   2389 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2390 		pcg->pcg_next = NULL;
   2391 		pool_cache_invalidate_groups(pc, pcg);
   2392 	}
   2393 	if (cc != &pc->pc_cpu0)
   2394 		pool_put(&cache_cpu_pool, cc);
   2395 
   2396 }
   2397 
   2398 void
   2399 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2400 {
   2401 
   2402 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2403 }
   2404 
   2405 void
   2406 pool_cache_setlowat(pool_cache_t pc, int n)
   2407 {
   2408 
   2409 	pool_setlowat(&pc->pc_pool, n);
   2410 }
   2411 
   2412 void
   2413 pool_cache_sethiwat(pool_cache_t pc, int n)
   2414 {
   2415 
   2416 	pool_sethiwat(&pc->pc_pool, n);
   2417 }
   2418 
   2419 void
   2420 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2421 {
   2422 
   2423 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2424 }
   2425 
   2426 static bool __noinline
   2427 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2428 		    paddr_t *pap, int flags)
   2429 {
   2430 	pcg_t *pcg, *cur;
   2431 	uint64_t ncsw;
   2432 	pool_cache_t pc;
   2433 	void *object;
   2434 
   2435 	KASSERT(cc->cc_current->pcg_avail == 0);
   2436 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2437 
   2438 	pc = cc->cc_cache;
   2439 	cc->cc_misses++;
   2440 
   2441 	/*
   2442 	 * Nothing was available locally.  Try and grab a group
   2443 	 * from the cache.
   2444 	 */
   2445 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2446 		ncsw = curlwp->l_ncsw;
   2447 		mutex_enter(&pc->pc_lock);
   2448 		pc->pc_contended++;
   2449 
   2450 		/*
   2451 		 * If we context switched while locking, then
   2452 		 * our view of the per-CPU data is invalid:
   2453 		 * retry.
   2454 		 */
   2455 		if (curlwp->l_ncsw != ncsw) {
   2456 			mutex_exit(&pc->pc_lock);
   2457 			return true;
   2458 		}
   2459 	}
   2460 
   2461 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2462 		/*
   2463 		 * If there's a full group, release our empty
   2464 		 * group back to the cache.  Install the full
   2465 		 * group as cc_current and return.
   2466 		 */
   2467 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2468 			KASSERT(cur->pcg_avail == 0);
   2469 			cur->pcg_next = pc->pc_emptygroups;
   2470 			pc->pc_emptygroups = cur;
   2471 			pc->pc_nempty++;
   2472 		}
   2473 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2474 		cc->cc_current = pcg;
   2475 		pc->pc_fullgroups = pcg->pcg_next;
   2476 		pc->pc_hits++;
   2477 		pc->pc_nfull--;
   2478 		mutex_exit(&pc->pc_lock);
   2479 		return true;
   2480 	}
   2481 
   2482 	/*
   2483 	 * Nothing available locally or in cache.  Take the slow
   2484 	 * path: fetch a new object from the pool and construct
   2485 	 * it.
   2486 	 */
   2487 	pc->pc_misses++;
   2488 	mutex_exit(&pc->pc_lock);
   2489 	splx(s);
   2490 
   2491 	object = pool_get(&pc->pc_pool, flags);
   2492 	*objectp = object;
   2493 	if (__predict_false(object == NULL))
   2494 		return false;
   2495 
   2496 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2497 		pool_put(&pc->pc_pool, object);
   2498 		*objectp = NULL;
   2499 		return false;
   2500 	}
   2501 
   2502 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2503 	    (pc->pc_pool.pr_align - 1)) == 0);
   2504 
   2505 	if (pap != NULL) {
   2506 #ifdef POOL_VTOPHYS
   2507 		*pap = POOL_VTOPHYS(object);
   2508 #else
   2509 		*pap = POOL_PADDR_INVALID;
   2510 #endif
   2511 	}
   2512 
   2513 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2514 	return false;
   2515 }
   2516 
   2517 /*
   2518  * pool_cache_get{,_paddr}:
   2519  *
   2520  *	Get an object from a pool cache (optionally returning
   2521  *	the physical address of the object).
   2522  */
   2523 void *
   2524 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2525 {
   2526 	pool_cache_cpu_t *cc;
   2527 	pcg_t *pcg;
   2528 	void *object;
   2529 	int s;
   2530 
   2531 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2532 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold),
   2533 	    ("pool '%s' is IPL_NONE, but called from interrupt context\n",
   2534 	    pc->pc_pool.pr_wchan));
   2535 
   2536 	if (flags & PR_WAITOK) {
   2537 		ASSERT_SLEEPABLE();
   2538 	}
   2539 
   2540 	/* Lock out interrupts and disable preemption. */
   2541 	s = splvm();
   2542 	while (/* CONSTCOND */ true) {
   2543 		/* Try and allocate an object from the current group. */
   2544 		cc = pc->pc_cpus[curcpu()->ci_index];
   2545 		KASSERT(cc->cc_cache == pc);
   2546 	 	pcg = cc->cc_current;
   2547 		if (__predict_true(pcg->pcg_avail > 0)) {
   2548 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2549 			if (__predict_false(pap != NULL))
   2550 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2551 #if defined(DIAGNOSTIC)
   2552 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2553 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2554 			KASSERT(object != NULL);
   2555 #endif
   2556 			cc->cc_hits++;
   2557 			splx(s);
   2558 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2559 			return object;
   2560 		}
   2561 
   2562 		/*
   2563 		 * That failed.  If the previous group isn't empty, swap
   2564 		 * it with the current group and allocate from there.
   2565 		 */
   2566 		pcg = cc->cc_previous;
   2567 		if (__predict_true(pcg->pcg_avail > 0)) {
   2568 			cc->cc_previous = cc->cc_current;
   2569 			cc->cc_current = pcg;
   2570 			continue;
   2571 		}
   2572 
   2573 		/*
   2574 		 * Can't allocate from either group: try the slow path.
   2575 		 * If get_slow() allocated an object for us, or if
   2576 		 * no more objects are available, it will return false.
   2577 		 * Otherwise, we need to retry.
   2578 		 */
   2579 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2580 			break;
   2581 	}
   2582 
   2583 	return object;
   2584 }
   2585 
   2586 static bool __noinline
   2587 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2588 {
   2589 	pcg_t *pcg, *cur;
   2590 	uint64_t ncsw;
   2591 	pool_cache_t pc;
   2592 
   2593 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2594 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2595 
   2596 	pc = cc->cc_cache;
   2597 	pcg = NULL;
   2598 	cc->cc_misses++;
   2599 
   2600 	/*
   2601 	 * If there are no empty groups in the cache then allocate one
   2602 	 * while still unlocked.
   2603 	 */
   2604 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2605 		if (__predict_true(!pool_cache_disable)) {
   2606 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2607 		}
   2608 		if (__predict_true(pcg != NULL)) {
   2609 			pcg->pcg_avail = 0;
   2610 			pcg->pcg_size = pc->pc_pcgsize;
   2611 		}
   2612 	}
   2613 
   2614 	/* Lock the cache. */
   2615 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2616 		ncsw = curlwp->l_ncsw;
   2617 		mutex_enter(&pc->pc_lock);
   2618 		pc->pc_contended++;
   2619 
   2620 		/*
   2621 		 * If we context switched while locking, then our view of
   2622 		 * the per-CPU data is invalid: retry.
   2623 		 */
   2624 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2625 			mutex_exit(&pc->pc_lock);
   2626 			if (pcg != NULL) {
   2627 				pool_put(pc->pc_pcgpool, pcg);
   2628 			}
   2629 			return true;
   2630 		}
   2631 	}
   2632 
   2633 	/* If there are no empty groups in the cache then allocate one. */
   2634 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2635 		pcg = pc->pc_emptygroups;
   2636 		pc->pc_emptygroups = pcg->pcg_next;
   2637 		pc->pc_nempty--;
   2638 	}
   2639 
   2640 	/*
   2641 	 * If there's a empty group, release our full group back
   2642 	 * to the cache.  Install the empty group to the local CPU
   2643 	 * and return.
   2644 	 */
   2645 	if (pcg != NULL) {
   2646 		KASSERT(pcg->pcg_avail == 0);
   2647 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2648 			cc->cc_previous = pcg;
   2649 		} else {
   2650 			cur = cc->cc_current;
   2651 			if (__predict_true(cur != &pcg_dummy)) {
   2652 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2653 				cur->pcg_next = pc->pc_fullgroups;
   2654 				pc->pc_fullgroups = cur;
   2655 				pc->pc_nfull++;
   2656 			}
   2657 			cc->cc_current = pcg;
   2658 		}
   2659 		pc->pc_hits++;
   2660 		mutex_exit(&pc->pc_lock);
   2661 		return true;
   2662 	}
   2663 
   2664 	/*
   2665 	 * Nothing available locally or in cache, and we didn't
   2666 	 * allocate an empty group.  Take the slow path and destroy
   2667 	 * the object here and now.
   2668 	 */
   2669 	pc->pc_misses++;
   2670 	mutex_exit(&pc->pc_lock);
   2671 	splx(s);
   2672 	pool_cache_destruct_object(pc, object);
   2673 
   2674 	return false;
   2675 }
   2676 
   2677 /*
   2678  * pool_cache_put{,_paddr}:
   2679  *
   2680  *	Put an object back to the pool cache (optionally caching the
   2681  *	physical address of the object).
   2682  */
   2683 void
   2684 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2685 {
   2686 	pool_cache_cpu_t *cc;
   2687 	pcg_t *pcg;
   2688 	int s;
   2689 
   2690 	KASSERT(object != NULL);
   2691 	FREECHECK_IN(&pc->pc_freecheck, object);
   2692 
   2693 	/* Lock out interrupts and disable preemption. */
   2694 	s = splvm();
   2695 	while (/* CONSTCOND */ true) {
   2696 		/* If the current group isn't full, release it there. */
   2697 		cc = pc->pc_cpus[curcpu()->ci_index];
   2698 		KASSERT(cc->cc_cache == pc);
   2699 	 	pcg = cc->cc_current;
   2700 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2701 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2702 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2703 			pcg->pcg_avail++;
   2704 			cc->cc_hits++;
   2705 			splx(s);
   2706 			return;
   2707 		}
   2708 
   2709 		/*
   2710 		 * That failed.  If the previous group isn't full, swap
   2711 		 * it with the current group and try again.
   2712 		 */
   2713 		pcg = cc->cc_previous;
   2714 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2715 			cc->cc_previous = cc->cc_current;
   2716 			cc->cc_current = pcg;
   2717 			continue;
   2718 		}
   2719 
   2720 		/*
   2721 		 * Can't free to either group: try the slow path.
   2722 		 * If put_slow() releases the object for us, it
   2723 		 * will return false.  Otherwise we need to retry.
   2724 		 */
   2725 		if (!pool_cache_put_slow(cc, s, object))
   2726 			break;
   2727 	}
   2728 }
   2729 
   2730 /*
   2731  * pool_cache_xcall:
   2732  *
   2733  *	Transfer objects from the per-CPU cache to the global cache.
   2734  *	Run within a cross-call thread.
   2735  */
   2736 static void
   2737 pool_cache_xcall(pool_cache_t pc)
   2738 {
   2739 	pool_cache_cpu_t *cc;
   2740 	pcg_t *prev, *cur, **list;
   2741 	int s;
   2742 
   2743 	s = splvm();
   2744 	mutex_enter(&pc->pc_lock);
   2745 	cc = pc->pc_cpus[curcpu()->ci_index];
   2746 	cur = cc->cc_current;
   2747 	cc->cc_current = __UNCONST(&pcg_dummy);
   2748 	prev = cc->cc_previous;
   2749 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2750 	if (cur != &pcg_dummy) {
   2751 		if (cur->pcg_avail == cur->pcg_size) {
   2752 			list = &pc->pc_fullgroups;
   2753 			pc->pc_nfull++;
   2754 		} else if (cur->pcg_avail == 0) {
   2755 			list = &pc->pc_emptygroups;
   2756 			pc->pc_nempty++;
   2757 		} else {
   2758 			list = &pc->pc_partgroups;
   2759 			pc->pc_npart++;
   2760 		}
   2761 		cur->pcg_next = *list;
   2762 		*list = cur;
   2763 	}
   2764 	if (prev != &pcg_dummy) {
   2765 		if (prev->pcg_avail == prev->pcg_size) {
   2766 			list = &pc->pc_fullgroups;
   2767 			pc->pc_nfull++;
   2768 		} else if (prev->pcg_avail == 0) {
   2769 			list = &pc->pc_emptygroups;
   2770 			pc->pc_nempty++;
   2771 		} else {
   2772 			list = &pc->pc_partgroups;
   2773 			pc->pc_npart++;
   2774 		}
   2775 		prev->pcg_next = *list;
   2776 		*list = prev;
   2777 	}
   2778 	mutex_exit(&pc->pc_lock);
   2779 	splx(s);
   2780 }
   2781 
   2782 /*
   2783  * Pool backend allocators.
   2784  *
   2785  * Each pool has a backend allocator that handles allocation, deallocation,
   2786  * and any additional draining that might be needed.
   2787  *
   2788  * We provide two standard allocators:
   2789  *
   2790  *	pool_allocator_kmem - the default when no allocator is specified
   2791  *
   2792  *	pool_allocator_nointr - used for pools that will not be accessed
   2793  *	in interrupt context.
   2794  */
   2795 void	*pool_page_alloc(struct pool *, int);
   2796 void	pool_page_free(struct pool *, void *);
   2797 
   2798 #ifdef POOL_SUBPAGE
   2799 struct pool_allocator pool_allocator_kmem_fullpage = {
   2800 	pool_page_alloc, pool_page_free, 0,
   2801 	.pa_backingmapptr = &kmem_map,
   2802 };
   2803 #else
   2804 struct pool_allocator pool_allocator_kmem = {
   2805 	pool_page_alloc, pool_page_free, 0,
   2806 	.pa_backingmapptr = &kmem_map,
   2807 };
   2808 #endif
   2809 
   2810 void	*pool_page_alloc_nointr(struct pool *, int);
   2811 void	pool_page_free_nointr(struct pool *, void *);
   2812 
   2813 #ifdef POOL_SUBPAGE
   2814 struct pool_allocator pool_allocator_nointr_fullpage = {
   2815 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2816 	.pa_backingmapptr = &kernel_map,
   2817 };
   2818 #else
   2819 struct pool_allocator pool_allocator_nointr = {
   2820 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2821 	.pa_backingmapptr = &kernel_map,
   2822 };
   2823 #endif
   2824 
   2825 #ifdef POOL_SUBPAGE
   2826 void	*pool_subpage_alloc(struct pool *, int);
   2827 void	pool_subpage_free(struct pool *, void *);
   2828 
   2829 struct pool_allocator pool_allocator_kmem = {
   2830 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2831 	.pa_backingmapptr = &kmem_map,
   2832 };
   2833 
   2834 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2835 void	pool_subpage_free_nointr(struct pool *, void *);
   2836 
   2837 struct pool_allocator pool_allocator_nointr = {
   2838 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2839 	.pa_backingmapptr = &kmem_map,
   2840 };
   2841 #endif /* POOL_SUBPAGE */
   2842 
   2843 static void *
   2844 pool_allocator_alloc(struct pool *pp, int flags)
   2845 {
   2846 	struct pool_allocator *pa = pp->pr_alloc;
   2847 	void *res;
   2848 
   2849 	res = (*pa->pa_alloc)(pp, flags);
   2850 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2851 		/*
   2852 		 * We only run the drain hook here if PR_NOWAIT.
   2853 		 * In other cases, the hook will be run in
   2854 		 * pool_reclaim().
   2855 		 */
   2856 		if (pp->pr_drain_hook != NULL) {
   2857 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2858 			res = (*pa->pa_alloc)(pp, flags);
   2859 		}
   2860 	}
   2861 	return res;
   2862 }
   2863 
   2864 static void
   2865 pool_allocator_free(struct pool *pp, void *v)
   2866 {
   2867 	struct pool_allocator *pa = pp->pr_alloc;
   2868 
   2869 	(*pa->pa_free)(pp, v);
   2870 }
   2871 
   2872 void *
   2873 pool_page_alloc(struct pool *pp, int flags)
   2874 {
   2875 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2876 
   2877 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2878 }
   2879 
   2880 void
   2881 pool_page_free(struct pool *pp, void *v)
   2882 {
   2883 
   2884 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2885 }
   2886 
   2887 static void *
   2888 pool_page_alloc_meta(struct pool *pp, int flags)
   2889 {
   2890 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2891 
   2892 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2893 }
   2894 
   2895 static void
   2896 pool_page_free_meta(struct pool *pp, void *v)
   2897 {
   2898 
   2899 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2900 }
   2901 
   2902 #ifdef POOL_SUBPAGE
   2903 /* Sub-page allocator, for machines with large hardware pages. */
   2904 void *
   2905 pool_subpage_alloc(struct pool *pp, int flags)
   2906 {
   2907 	return pool_get(&psppool, flags);
   2908 }
   2909 
   2910 void
   2911 pool_subpage_free(struct pool *pp, void *v)
   2912 {
   2913 	pool_put(&psppool, v);
   2914 }
   2915 
   2916 /* We don't provide a real nointr allocator.  Maybe later. */
   2917 void *
   2918 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2919 {
   2920 
   2921 	return (pool_subpage_alloc(pp, flags));
   2922 }
   2923 
   2924 void
   2925 pool_subpage_free_nointr(struct pool *pp, void *v)
   2926 {
   2927 
   2928 	pool_subpage_free(pp, v);
   2929 }
   2930 #endif /* POOL_SUBPAGE */
   2931 void *
   2932 pool_page_alloc_nointr(struct pool *pp, int flags)
   2933 {
   2934 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2935 
   2936 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2937 }
   2938 
   2939 void
   2940 pool_page_free_nointr(struct pool *pp, void *v)
   2941 {
   2942 
   2943 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2944 }
   2945 
   2946 #if defined(DDB)
   2947 static bool
   2948 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2949 {
   2950 
   2951 	return (uintptr_t)ph->ph_page <= addr &&
   2952 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2953 }
   2954 
   2955 static bool
   2956 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2957 {
   2958 
   2959 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2960 }
   2961 
   2962 static bool
   2963 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2964 {
   2965 	int i;
   2966 
   2967 	if (pcg == NULL) {
   2968 		return false;
   2969 	}
   2970 	for (i = 0; i < pcg->pcg_avail; i++) {
   2971 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2972 			return true;
   2973 		}
   2974 	}
   2975 	return false;
   2976 }
   2977 
   2978 static bool
   2979 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2980 {
   2981 
   2982 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2983 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2984 		pool_item_bitmap_t *bitmap =
   2985 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2986 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2987 
   2988 		return (*bitmap & mask) == 0;
   2989 	} else {
   2990 		struct pool_item *pi;
   2991 
   2992 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2993 			if (pool_in_item(pp, pi, addr)) {
   2994 				return false;
   2995 			}
   2996 		}
   2997 		return true;
   2998 	}
   2999 }
   3000 
   3001 void
   3002 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3003 {
   3004 	struct pool *pp;
   3005 
   3006 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3007 		struct pool_item_header *ph;
   3008 		uintptr_t item;
   3009 		bool allocated = true;
   3010 		bool incache = false;
   3011 		bool incpucache = false;
   3012 		char cpucachestr[32];
   3013 
   3014 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3015 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3016 				if (pool_in_page(pp, ph, addr)) {
   3017 					goto found;
   3018 				}
   3019 			}
   3020 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3021 				if (pool_in_page(pp, ph, addr)) {
   3022 					allocated =
   3023 					    pool_allocated(pp, ph, addr);
   3024 					goto found;
   3025 				}
   3026 			}
   3027 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3028 				if (pool_in_page(pp, ph, addr)) {
   3029 					allocated = false;
   3030 					goto found;
   3031 				}
   3032 			}
   3033 			continue;
   3034 		} else {
   3035 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3036 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3037 				continue;
   3038 			}
   3039 			allocated = pool_allocated(pp, ph, addr);
   3040 		}
   3041 found:
   3042 		if (allocated && pp->pr_cache) {
   3043 			pool_cache_t pc = pp->pr_cache;
   3044 			struct pool_cache_group *pcg;
   3045 			int i;
   3046 
   3047 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3048 			    pcg = pcg->pcg_next) {
   3049 				if (pool_in_cg(pp, pcg, addr)) {
   3050 					incache = true;
   3051 					goto print;
   3052 				}
   3053 			}
   3054 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3055 				pool_cache_cpu_t *cc;
   3056 
   3057 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3058 					continue;
   3059 				}
   3060 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3061 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3062 					struct cpu_info *ci =
   3063 					    cpu_lookup(i);
   3064 
   3065 					incpucache = true;
   3066 					snprintf(cpucachestr,
   3067 					    sizeof(cpucachestr),
   3068 					    "cached by CPU %u",
   3069 					    ci->ci_index);
   3070 					goto print;
   3071 				}
   3072 			}
   3073 		}
   3074 print:
   3075 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3076 		item = item + rounddown(addr - item, pp->pr_size);
   3077 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3078 		    (void *)addr, item, (size_t)(addr - item),
   3079 		    pp->pr_wchan,
   3080 		    incpucache ? cpucachestr :
   3081 		    incache ? "cached" : allocated ? "allocated" : "free");
   3082 	}
   3083 }
   3084 #endif /* defined(DDB) */
   3085