Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.189
      1 /*	$NetBSD: subr_pool.c,v 1.189 2011/03/22 15:16:23 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.189 2011/03/22 15:16:23 pooka Exp $");
     36 
     37 #include "opt_ddb.h"
     38 #include "opt_pool.h"
     39 #include "opt_poollog.h"
     40 #include "opt_lockdebug.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/bitops.h>
     45 #include <sys/proc.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/pool.h>
     50 #include <sys/syslog.h>
     51 #include <sys/debug.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/xcall.h>
     54 #include <sys/cpu.h>
     55 #include <sys/atomic.h>
     56 
     57 #include <uvm/uvm_extern.h>
     58 #ifdef DIAGNOSTIC
     59 #include <uvm/uvm_km.h>	/* uvm_km_va_drain */
     60 #endif
     61 
     62 /*
     63  * Pool resource management utility.
     64  *
     65  * Memory is allocated in pages which are split into pieces according to
     66  * the pool item size. Each page is kept on one of three lists in the
     67  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     68  * for empty, full and partially-full pages respectively. The individual
     69  * pool items are on a linked list headed by `ph_itemlist' in each page
     70  * header. The memory for building the page list is either taken from
     71  * the allocated pages themselves (for small pool items) or taken from
     72  * an internal pool of page headers (`phpool').
     73  */
     74 
     75 /* List of all pools */
     76 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     77 
     78 /* Private pool for page header structures */
     79 #define	PHPOOL_MAX	8
     80 static struct pool phpool[PHPOOL_MAX];
     81 #define	PHPOOL_FREELIST_NELEM(idx) \
     82 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     83 
     84 #ifdef POOL_SUBPAGE
     85 /* Pool of subpages for use by normal pools. */
     86 static struct pool psppool;
     87 #endif
     88 
     89 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     90     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     91 
     92 static void *pool_page_alloc_meta(struct pool *, int);
     93 static void pool_page_free_meta(struct pool *, void *);
     94 
     95 /* allocator for pool metadata */
     96 struct pool_allocator pool_allocator_meta = {
     97 	pool_page_alloc_meta, pool_page_free_meta,
     98 	.pa_backingmapptr = &kmem_map,
     99 };
    100 
    101 /* # of seconds to retain page after last use */
    102 int pool_inactive_time = 10;
    103 
    104 /* Next candidate for drainage (see pool_drain()) */
    105 static struct pool	*drainpp;
    106 
    107 /* This lock protects both pool_head and drainpp. */
    108 static kmutex_t pool_head_lock;
    109 static kcondvar_t pool_busy;
    110 
    111 /* This lock protects initialization of a potentially shared pool allocator */
    112 static kmutex_t pool_allocator_lock;
    113 
    114 typedef uint32_t pool_item_bitmap_t;
    115 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    116 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    117 
    118 struct pool_item_header {
    119 	/* Page headers */
    120 	LIST_ENTRY(pool_item_header)
    121 				ph_pagelist;	/* pool page list */
    122 	SPLAY_ENTRY(pool_item_header)
    123 				ph_node;	/* Off-page page headers */
    124 	void *			ph_page;	/* this page's address */
    125 	uint32_t		ph_time;	/* last referenced */
    126 	uint16_t		ph_nmissing;	/* # of chunks in use */
    127 	uint16_t		ph_off;		/* start offset in page */
    128 	union {
    129 		/* !PR_NOTOUCH */
    130 		struct {
    131 			LIST_HEAD(, pool_item)
    132 				phu_itemlist;	/* chunk list for this page */
    133 		} phu_normal;
    134 		/* PR_NOTOUCH */
    135 		struct {
    136 			pool_item_bitmap_t phu_bitmap[1];
    137 		} phu_notouch;
    138 	} ph_u;
    139 };
    140 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    141 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    142 
    143 struct pool_item {
    144 #ifdef DIAGNOSTIC
    145 	u_int pi_magic;
    146 #endif
    147 #define	PI_MAGIC 0xdeaddeadU
    148 	/* Other entries use only this list entry */
    149 	LIST_ENTRY(pool_item)	pi_list;
    150 };
    151 
    152 #define	POOL_NEEDS_CATCHUP(pp)						\
    153 	((pp)->pr_nitems < (pp)->pr_minitems)
    154 
    155 /*
    156  * Pool cache management.
    157  *
    158  * Pool caches provide a way for constructed objects to be cached by the
    159  * pool subsystem.  This can lead to performance improvements by avoiding
    160  * needless object construction/destruction; it is deferred until absolutely
    161  * necessary.
    162  *
    163  * Caches are grouped into cache groups.  Each cache group references up
    164  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    165  * object from the pool, it calls the object's constructor and places it
    166  * into a cache group.  When a cache group frees an object back to the
    167  * pool, it first calls the object's destructor.  This allows the object
    168  * to persist in constructed form while freed to the cache.
    169  *
    170  * The pool references each cache, so that when a pool is drained by the
    171  * pagedaemon, it can drain each individual cache as well.  Each time a
    172  * cache is drained, the most idle cache group is freed to the pool in
    173  * its entirety.
    174  *
    175  * Pool caches are layed on top of pools.  By layering them, we can avoid
    176  * the complexity of cache management for pools which would not benefit
    177  * from it.
    178  */
    179 
    180 static struct pool pcg_normal_pool;
    181 static struct pool pcg_large_pool;
    182 static struct pool cache_pool;
    183 static struct pool cache_cpu_pool;
    184 
    185 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    186 
    187 /* List of all caches. */
    188 TAILQ_HEAD(,pool_cache) pool_cache_head =
    189     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    190 
    191 int pool_cache_disable;		/* global disable for caching */
    192 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    193 
    194 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    195 				    void *);
    196 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    197 				    void **, paddr_t *, int);
    198 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    199 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    200 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    201 static void	pool_cache_xcall(pool_cache_t);
    202 
    203 static int	pool_catchup(struct pool *);
    204 static void	pool_prime_page(struct pool *, void *,
    205 		    struct pool_item_header *);
    206 static void	pool_update_curpage(struct pool *);
    207 
    208 static int	pool_grow(struct pool *, int);
    209 static void	*pool_allocator_alloc(struct pool *, int);
    210 static void	pool_allocator_free(struct pool *, void *);
    211 
    212 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    213 	void (*)(const char *, ...));
    214 static void pool_print1(struct pool *, const char *,
    215 	void (*)(const char *, ...));
    216 
    217 static int pool_chk_page(struct pool *, const char *,
    218 			 struct pool_item_header *);
    219 
    220 /*
    221  * Pool log entry. An array of these is allocated in pool_init().
    222  */
    223 struct pool_log {
    224 	const char	*pl_file;
    225 	long		pl_line;
    226 	int		pl_action;
    227 #define	PRLOG_GET	1
    228 #define	PRLOG_PUT	2
    229 	void		*pl_addr;
    230 };
    231 
    232 #ifdef POOL_DIAGNOSTIC
    233 /* Number of entries in pool log buffers */
    234 #ifndef POOL_LOGSIZE
    235 #define	POOL_LOGSIZE	10
    236 #endif
    237 
    238 int pool_logsize = POOL_LOGSIZE;
    239 
    240 static inline void
    241 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    242 {
    243 	int n;
    244 	struct pool_log *pl;
    245 
    246 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    247 		return;
    248 
    249 	if (pp->pr_log == NULL) {
    250 		if (kmem_map != NULL)
    251 			pp->pr_log = malloc(
    252 				pool_logsize * sizeof(struct pool_log),
    253 				M_TEMP, M_NOWAIT | M_ZERO);
    254 		if (pp->pr_log == NULL)
    255 			return;
    256 		pp->pr_curlogentry = 0;
    257 		pp->pr_logsize = pool_logsize;
    258 	}
    259 
    260 	/*
    261 	 * Fill in the current entry. Wrap around and overwrite
    262 	 * the oldest entry if necessary.
    263 	 */
    264 	n = pp->pr_curlogentry;
    265 	pl = &pp->pr_log[n];
    266 	pl->pl_file = file;
    267 	pl->pl_line = line;
    268 	pl->pl_action = action;
    269 	pl->pl_addr = v;
    270 	if (++n >= pp->pr_logsize)
    271 		n = 0;
    272 	pp->pr_curlogentry = n;
    273 }
    274 
    275 static void
    276 pr_printlog(struct pool *pp, struct pool_item *pi,
    277     void (*pr)(const char *, ...))
    278 {
    279 	int i = pp->pr_logsize;
    280 	int n = pp->pr_curlogentry;
    281 
    282 	if (pp->pr_log == NULL)
    283 		return;
    284 
    285 	/*
    286 	 * Print all entries in this pool's log.
    287 	 */
    288 	while (i-- > 0) {
    289 		struct pool_log *pl = &pp->pr_log[n];
    290 		if (pl->pl_action != 0) {
    291 			if (pi == NULL || pi == pl->pl_addr) {
    292 				(*pr)("\tlog entry %d:\n", i);
    293 				(*pr)("\t\taction = %s, addr = %p\n",
    294 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    295 				    pl->pl_addr);
    296 				(*pr)("\t\tfile: %s at line %lu\n",
    297 				    pl->pl_file, pl->pl_line);
    298 			}
    299 		}
    300 		if (++n >= pp->pr_logsize)
    301 			n = 0;
    302 	}
    303 }
    304 
    305 static inline void
    306 pr_enter(struct pool *pp, const char *file, long line)
    307 {
    308 
    309 	if (__predict_false(pp->pr_entered_file != NULL)) {
    310 		printf("pool %s: reentrancy at file %s line %ld\n",
    311 		    pp->pr_wchan, file, line);
    312 		printf("         previous entry at file %s line %ld\n",
    313 		    pp->pr_entered_file, pp->pr_entered_line);
    314 		panic("pr_enter");
    315 	}
    316 
    317 	pp->pr_entered_file = file;
    318 	pp->pr_entered_line = line;
    319 }
    320 
    321 static inline void
    322 pr_leave(struct pool *pp)
    323 {
    324 
    325 	if (__predict_false(pp->pr_entered_file == NULL)) {
    326 		printf("pool %s not entered?\n", pp->pr_wchan);
    327 		panic("pr_leave");
    328 	}
    329 
    330 	pp->pr_entered_file = NULL;
    331 	pp->pr_entered_line = 0;
    332 }
    333 
    334 static inline void
    335 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    336 {
    337 
    338 	if (pp->pr_entered_file != NULL)
    339 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    340 		    pp->pr_entered_file, pp->pr_entered_line);
    341 }
    342 #else
    343 #define	pr_log(pp, v, action, file, line)
    344 #define	pr_printlog(pp, pi, pr)
    345 #define	pr_enter(pp, file, line)
    346 #define	pr_leave(pp)
    347 #define	pr_enter_check(pp, pr)
    348 #endif /* POOL_DIAGNOSTIC */
    349 
    350 static inline unsigned int
    351 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    352     const void *v)
    353 {
    354 	const char *cp = v;
    355 	unsigned int idx;
    356 
    357 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    358 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    359 	KASSERT(idx < pp->pr_itemsperpage);
    360 	return idx;
    361 }
    362 
    363 static inline void
    364 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    365     void *obj)
    366 {
    367 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    368 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    369 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    370 
    371 	KASSERT((*bitmap & mask) == 0);
    372 	*bitmap |= mask;
    373 }
    374 
    375 static inline void *
    376 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    377 {
    378 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    379 	unsigned int idx;
    380 	int i;
    381 
    382 	for (i = 0; ; i++) {
    383 		int bit;
    384 
    385 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    386 		bit = ffs32(bitmap[i]);
    387 		if (bit) {
    388 			pool_item_bitmap_t mask;
    389 
    390 			bit--;
    391 			idx = (i * BITMAP_SIZE) + bit;
    392 			mask = 1 << bit;
    393 			KASSERT((bitmap[i] & mask) != 0);
    394 			bitmap[i] &= ~mask;
    395 			break;
    396 		}
    397 	}
    398 	KASSERT(idx < pp->pr_itemsperpage);
    399 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    400 }
    401 
    402 static inline void
    403 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    404 {
    405 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    406 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    407 	int i;
    408 
    409 	for (i = 0; i < n; i++) {
    410 		bitmap[i] = (pool_item_bitmap_t)-1;
    411 	}
    412 }
    413 
    414 static inline int
    415 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    416 {
    417 
    418 	/*
    419 	 * we consider pool_item_header with smaller ph_page bigger.
    420 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    421 	 */
    422 
    423 	if (a->ph_page < b->ph_page)
    424 		return (1);
    425 	else if (a->ph_page > b->ph_page)
    426 		return (-1);
    427 	else
    428 		return (0);
    429 }
    430 
    431 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    432 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    433 
    434 static inline struct pool_item_header *
    435 pr_find_pagehead_noalign(struct pool *pp, void *v)
    436 {
    437 	struct pool_item_header *ph, tmp;
    438 
    439 	tmp.ph_page = (void *)(uintptr_t)v;
    440 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    441 	if (ph == NULL) {
    442 		ph = SPLAY_ROOT(&pp->pr_phtree);
    443 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    444 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    445 		}
    446 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    447 	}
    448 
    449 	return ph;
    450 }
    451 
    452 /*
    453  * Return the pool page header based on item address.
    454  */
    455 static inline struct pool_item_header *
    456 pr_find_pagehead(struct pool *pp, void *v)
    457 {
    458 	struct pool_item_header *ph, tmp;
    459 
    460 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    461 		ph = pr_find_pagehead_noalign(pp, v);
    462 	} else {
    463 		void *page =
    464 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    465 
    466 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    467 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    468 		} else {
    469 			tmp.ph_page = page;
    470 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    471 		}
    472 	}
    473 
    474 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    475 	    ((char *)ph->ph_page <= (char *)v &&
    476 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    477 	return ph;
    478 }
    479 
    480 static void
    481 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    482 {
    483 	struct pool_item_header *ph;
    484 
    485 	while ((ph = LIST_FIRST(pq)) != NULL) {
    486 		LIST_REMOVE(ph, ph_pagelist);
    487 		pool_allocator_free(pp, ph->ph_page);
    488 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    489 			pool_put(pp->pr_phpool, ph);
    490 	}
    491 }
    492 
    493 /*
    494  * Remove a page from the pool.
    495  */
    496 static inline void
    497 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    498      struct pool_pagelist *pq)
    499 {
    500 
    501 	KASSERT(mutex_owned(&pp->pr_lock));
    502 
    503 	/*
    504 	 * If the page was idle, decrement the idle page count.
    505 	 */
    506 	if (ph->ph_nmissing == 0) {
    507 #ifdef DIAGNOSTIC
    508 		if (pp->pr_nidle == 0)
    509 			panic("pr_rmpage: nidle inconsistent");
    510 		if (pp->pr_nitems < pp->pr_itemsperpage)
    511 			panic("pr_rmpage: nitems inconsistent");
    512 #endif
    513 		pp->pr_nidle--;
    514 	}
    515 
    516 	pp->pr_nitems -= pp->pr_itemsperpage;
    517 
    518 	/*
    519 	 * Unlink the page from the pool and queue it for release.
    520 	 */
    521 	LIST_REMOVE(ph, ph_pagelist);
    522 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    523 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    524 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    525 
    526 	pp->pr_npages--;
    527 	pp->pr_npagefree++;
    528 
    529 	pool_update_curpage(pp);
    530 }
    531 
    532 static bool
    533 pa_starved_p(struct pool_allocator *pa)
    534 {
    535 
    536 	if (pa->pa_backingmap != NULL) {
    537 		return vm_map_starved_p(pa->pa_backingmap);
    538 	}
    539 	return false;
    540 }
    541 
    542 static int
    543 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    544 {
    545 	struct pool *pp = obj;
    546 	struct pool_allocator *pa = pp->pr_alloc;
    547 
    548 	KASSERT(&pp->pr_reclaimerentry == ce);
    549 	pool_reclaim(pp);
    550 	if (!pa_starved_p(pa)) {
    551 		return CALLBACK_CHAIN_ABORT;
    552 	}
    553 	return CALLBACK_CHAIN_CONTINUE;
    554 }
    555 
    556 static void
    557 pool_reclaim_register(struct pool *pp)
    558 {
    559 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    560 	int s;
    561 
    562 	if (map == NULL) {
    563 		return;
    564 	}
    565 
    566 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    567 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    568 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    569 	splx(s);
    570 
    571 #ifdef DIAGNOSTIC
    572 	/* Diagnostic drain attempt. */
    573 	uvm_km_va_drain(map, 0);
    574 #endif
    575 }
    576 
    577 static void
    578 pool_reclaim_unregister(struct pool *pp)
    579 {
    580 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    581 	int s;
    582 
    583 	if (map == NULL) {
    584 		return;
    585 	}
    586 
    587 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    588 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    589 	    &pp->pr_reclaimerentry);
    590 	splx(s);
    591 }
    592 
    593 static void
    594 pa_reclaim_register(struct pool_allocator *pa)
    595 {
    596 	struct vm_map *map = *pa->pa_backingmapptr;
    597 	struct pool *pp;
    598 
    599 	KASSERT(pa->pa_backingmap == NULL);
    600 	if (map == NULL) {
    601 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    602 		return;
    603 	}
    604 	pa->pa_backingmap = map;
    605 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    606 		pool_reclaim_register(pp);
    607 	}
    608 }
    609 
    610 /*
    611  * Initialize all the pools listed in the "pools" link set.
    612  */
    613 void
    614 pool_subsystem_init(void)
    615 {
    616 	struct pool_allocator *pa;
    617 
    618 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    619 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    620 	cv_init(&pool_busy, "poolbusy");
    621 
    622 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    623 		KASSERT(pa->pa_backingmapptr != NULL);
    624 		KASSERT(*pa->pa_backingmapptr != NULL);
    625 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    626 		pa_reclaim_register(pa);
    627 	}
    628 
    629 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    630 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    631 
    632 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    633 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    634 }
    635 
    636 /*
    637  * Initialize the given pool resource structure.
    638  *
    639  * We export this routine to allow other kernel parts to declare
    640  * static pools that must be initialized before malloc() is available.
    641  */
    642 void
    643 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    644     const char *wchan, struct pool_allocator *palloc, int ipl)
    645 {
    646 	struct pool *pp1;
    647 	size_t trysize, phsize;
    648 	int off, slack;
    649 
    650 #ifdef DEBUG
    651 	/*
    652 	 * Check that the pool hasn't already been initialised and
    653 	 * added to the list of all pools.
    654 	 */
    655 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    656 		if (pp == pp1)
    657 			panic("pool_init: pool %s already initialised",
    658 			    wchan);
    659 	}
    660 #endif
    661 
    662 #ifdef POOL_DIAGNOSTIC
    663 	/*
    664 	 * Always log if POOL_DIAGNOSTIC is defined.
    665 	 */
    666 	if (pool_logsize != 0)
    667 		flags |= PR_LOGGING;
    668 #endif
    669 
    670 	if (palloc == NULL)
    671 		palloc = &pool_allocator_kmem;
    672 #ifdef POOL_SUBPAGE
    673 	if (size > palloc->pa_pagesz) {
    674 		if (palloc == &pool_allocator_kmem)
    675 			palloc = &pool_allocator_kmem_fullpage;
    676 		else if (palloc == &pool_allocator_nointr)
    677 			palloc = &pool_allocator_nointr_fullpage;
    678 	}
    679 #endif /* POOL_SUBPAGE */
    680 	if (!cold)
    681 		mutex_enter(&pool_allocator_lock);
    682 	if (palloc->pa_refcnt++ == 0) {
    683 		if (palloc->pa_pagesz == 0)
    684 			palloc->pa_pagesz = PAGE_SIZE;
    685 
    686 		TAILQ_INIT(&palloc->pa_list);
    687 
    688 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    689 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    690 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    691 
    692 		if (palloc->pa_backingmapptr != NULL) {
    693 			pa_reclaim_register(palloc);
    694 		}
    695 	}
    696 	if (!cold)
    697 		mutex_exit(&pool_allocator_lock);
    698 
    699 	if (align == 0)
    700 		align = ALIGN(1);
    701 
    702 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    703 		size = sizeof(struct pool_item);
    704 
    705 	size = roundup(size, align);
    706 #ifdef DIAGNOSTIC
    707 	if (size > palloc->pa_pagesz)
    708 		panic("pool_init: pool item size (%zu) too large", size);
    709 #endif
    710 
    711 	/*
    712 	 * Initialize the pool structure.
    713 	 */
    714 	LIST_INIT(&pp->pr_emptypages);
    715 	LIST_INIT(&pp->pr_fullpages);
    716 	LIST_INIT(&pp->pr_partpages);
    717 	pp->pr_cache = NULL;
    718 	pp->pr_curpage = NULL;
    719 	pp->pr_npages = 0;
    720 	pp->pr_minitems = 0;
    721 	pp->pr_minpages = 0;
    722 	pp->pr_maxpages = UINT_MAX;
    723 	pp->pr_roflags = flags;
    724 	pp->pr_flags = 0;
    725 	pp->pr_size = size;
    726 	pp->pr_align = align;
    727 	pp->pr_wchan = wchan;
    728 	pp->pr_alloc = palloc;
    729 	pp->pr_nitems = 0;
    730 	pp->pr_nout = 0;
    731 	pp->pr_hardlimit = UINT_MAX;
    732 	pp->pr_hardlimit_warning = NULL;
    733 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    734 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    735 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    736 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    737 	pp->pr_drain_hook = NULL;
    738 	pp->pr_drain_hook_arg = NULL;
    739 	pp->pr_freecheck = NULL;
    740 
    741 	/*
    742 	 * Decide whether to put the page header off page to avoid
    743 	 * wasting too large a part of the page or too big item.
    744 	 * Off-page page headers go on a hash table, so we can match
    745 	 * a returned item with its header based on the page address.
    746 	 * We use 1/16 of the page size and about 8 times of the item
    747 	 * size as the threshold (XXX: tune)
    748 	 *
    749 	 * However, we'll put the header into the page if we can put
    750 	 * it without wasting any items.
    751 	 *
    752 	 * Silently enforce `0 <= ioff < align'.
    753 	 */
    754 	pp->pr_itemoffset = ioff %= align;
    755 	/* See the comment below about reserved bytes. */
    756 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    757 	phsize = ALIGN(sizeof(struct pool_item_header));
    758 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    759 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    760 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    761 		/* Use the end of the page for the page header */
    762 		pp->pr_roflags |= PR_PHINPAGE;
    763 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    764 	} else {
    765 		/* The page header will be taken from our page header pool */
    766 		pp->pr_phoffset = 0;
    767 		off = palloc->pa_pagesz;
    768 		SPLAY_INIT(&pp->pr_phtree);
    769 	}
    770 
    771 	/*
    772 	 * Alignment is to take place at `ioff' within the item. This means
    773 	 * we must reserve up to `align - 1' bytes on the page to allow
    774 	 * appropriate positioning of each item.
    775 	 */
    776 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    777 	KASSERT(pp->pr_itemsperpage != 0);
    778 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    779 		int idx;
    780 
    781 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    782 		    idx++) {
    783 			/* nothing */
    784 		}
    785 		if (idx >= PHPOOL_MAX) {
    786 			/*
    787 			 * if you see this panic, consider to tweak
    788 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    789 			 */
    790 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    791 			    pp->pr_wchan, pp->pr_itemsperpage);
    792 		}
    793 		pp->pr_phpool = &phpool[idx];
    794 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    795 		pp->pr_phpool = &phpool[0];
    796 	}
    797 #if defined(DIAGNOSTIC)
    798 	else {
    799 		pp->pr_phpool = NULL;
    800 	}
    801 #endif
    802 
    803 	/*
    804 	 * Use the slack between the chunks and the page header
    805 	 * for "cache coloring".
    806 	 */
    807 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    808 	pp->pr_maxcolor = (slack / align) * align;
    809 	pp->pr_curcolor = 0;
    810 
    811 	pp->pr_nget = 0;
    812 	pp->pr_nfail = 0;
    813 	pp->pr_nput = 0;
    814 	pp->pr_npagealloc = 0;
    815 	pp->pr_npagefree = 0;
    816 	pp->pr_hiwat = 0;
    817 	pp->pr_nidle = 0;
    818 	pp->pr_refcnt = 0;
    819 
    820 	pp->pr_log = NULL;
    821 
    822 	pp->pr_entered_file = NULL;
    823 	pp->pr_entered_line = 0;
    824 
    825 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    826 	cv_init(&pp->pr_cv, wchan);
    827 	pp->pr_ipl = ipl;
    828 
    829 	/*
    830 	 * Initialize private page header pool and cache magazine pool if we
    831 	 * haven't done so yet.
    832 	 * XXX LOCKING.
    833 	 */
    834 	if (phpool[0].pr_size == 0) {
    835 		int idx;
    836 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    837 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    838 			int nelem;
    839 			size_t sz;
    840 
    841 			nelem = PHPOOL_FREELIST_NELEM(idx);
    842 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    843 			    "phpool-%d", nelem);
    844 			sz = sizeof(struct pool_item_header);
    845 			if (nelem) {
    846 				sz = offsetof(struct pool_item_header,
    847 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    848 			}
    849 			pool_init(&phpool[idx], sz, 0, 0, 0,
    850 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    851 		}
    852 #ifdef POOL_SUBPAGE
    853 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    854 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    855 #endif
    856 
    857 		size = sizeof(pcg_t) +
    858 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    859 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    860 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    861 
    862 		size = sizeof(pcg_t) +
    863 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    864 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    865 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    866 	}
    867 
    868 	/* Insert into the list of all pools. */
    869 	if (!cold)
    870 		mutex_enter(&pool_head_lock);
    871 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    872 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    873 			break;
    874 	}
    875 	if (pp1 == NULL)
    876 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    877 	else
    878 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    879 	if (!cold)
    880 		mutex_exit(&pool_head_lock);
    881 
    882 	/* Insert this into the list of pools using this allocator. */
    883 	if (!cold)
    884 		mutex_enter(&palloc->pa_lock);
    885 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    886 	if (!cold)
    887 		mutex_exit(&palloc->pa_lock);
    888 
    889 	pool_reclaim_register(pp);
    890 }
    891 
    892 /*
    893  * De-commision a pool resource.
    894  */
    895 void
    896 pool_destroy(struct pool *pp)
    897 {
    898 	struct pool_pagelist pq;
    899 	struct pool_item_header *ph;
    900 
    901 	/* Remove from global pool list */
    902 	mutex_enter(&pool_head_lock);
    903 	while (pp->pr_refcnt != 0)
    904 		cv_wait(&pool_busy, &pool_head_lock);
    905 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    906 	if (drainpp == pp)
    907 		drainpp = NULL;
    908 	mutex_exit(&pool_head_lock);
    909 
    910 	/* Remove this pool from its allocator's list of pools. */
    911 	pool_reclaim_unregister(pp);
    912 	mutex_enter(&pp->pr_alloc->pa_lock);
    913 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    914 	mutex_exit(&pp->pr_alloc->pa_lock);
    915 
    916 	mutex_enter(&pool_allocator_lock);
    917 	if (--pp->pr_alloc->pa_refcnt == 0)
    918 		mutex_destroy(&pp->pr_alloc->pa_lock);
    919 	mutex_exit(&pool_allocator_lock);
    920 
    921 	mutex_enter(&pp->pr_lock);
    922 
    923 	KASSERT(pp->pr_cache == NULL);
    924 
    925 #ifdef DIAGNOSTIC
    926 	if (pp->pr_nout != 0) {
    927 		pr_printlog(pp, NULL, printf);
    928 		panic("pool_destroy: pool busy: still out: %u",
    929 		    pp->pr_nout);
    930 	}
    931 #endif
    932 
    933 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    934 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    935 
    936 	/* Remove all pages */
    937 	LIST_INIT(&pq);
    938 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    939 		pr_rmpage(pp, ph, &pq);
    940 
    941 	mutex_exit(&pp->pr_lock);
    942 
    943 	pr_pagelist_free(pp, &pq);
    944 
    945 #ifdef POOL_DIAGNOSTIC
    946 	if (pp->pr_log != NULL) {
    947 		free(pp->pr_log, M_TEMP);
    948 		pp->pr_log = NULL;
    949 	}
    950 #endif
    951 
    952 	cv_destroy(&pp->pr_cv);
    953 	mutex_destroy(&pp->pr_lock);
    954 }
    955 
    956 void
    957 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    958 {
    959 
    960 	/* XXX no locking -- must be used just after pool_init() */
    961 #ifdef DIAGNOSTIC
    962 	if (pp->pr_drain_hook != NULL)
    963 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    964 #endif
    965 	pp->pr_drain_hook = fn;
    966 	pp->pr_drain_hook_arg = arg;
    967 }
    968 
    969 static struct pool_item_header *
    970 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    971 {
    972 	struct pool_item_header *ph;
    973 
    974 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    975 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    976 	else
    977 		ph = pool_get(pp->pr_phpool, flags);
    978 
    979 	return (ph);
    980 }
    981 
    982 /*
    983  * Grab an item from the pool.
    984  */
    985 void *
    986 #ifdef POOL_DIAGNOSTIC
    987 _pool_get(struct pool *pp, int flags, const char *file, long line)
    988 #else
    989 pool_get(struct pool *pp, int flags)
    990 #endif
    991 {
    992 	struct pool_item *pi;
    993 	struct pool_item_header *ph;
    994 	void *v;
    995 
    996 #ifdef DIAGNOSTIC
    997 	if (pp->pr_itemsperpage == 0)
    998 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    999 		    "pool not initialized?", pp->pr_wchan);
   1000 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
   1001 	    !cold && panicstr == NULL)
   1002 		panic("pool '%s' is IPL_NONE, but called from "
   1003 		    "interrupt context\n", pp->pr_wchan);
   1004 #endif
   1005 	if (flags & PR_WAITOK) {
   1006 		ASSERT_SLEEPABLE();
   1007 	}
   1008 
   1009 	mutex_enter(&pp->pr_lock);
   1010 	pr_enter(pp, file, line);
   1011 
   1012  startover:
   1013 	/*
   1014 	 * Check to see if we've reached the hard limit.  If we have,
   1015 	 * and we can wait, then wait until an item has been returned to
   1016 	 * the pool.
   1017 	 */
   1018 #ifdef DIAGNOSTIC
   1019 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1020 		pr_leave(pp);
   1021 		mutex_exit(&pp->pr_lock);
   1022 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1023 	}
   1024 #endif
   1025 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1026 		if (pp->pr_drain_hook != NULL) {
   1027 			/*
   1028 			 * Since the drain hook is going to free things
   1029 			 * back to the pool, unlock, call the hook, re-lock,
   1030 			 * and check the hardlimit condition again.
   1031 			 */
   1032 			pr_leave(pp);
   1033 			mutex_exit(&pp->pr_lock);
   1034 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1035 			mutex_enter(&pp->pr_lock);
   1036 			pr_enter(pp, file, line);
   1037 			if (pp->pr_nout < pp->pr_hardlimit)
   1038 				goto startover;
   1039 		}
   1040 
   1041 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1042 			/*
   1043 			 * XXX: A warning isn't logged in this case.  Should
   1044 			 * it be?
   1045 			 */
   1046 			pp->pr_flags |= PR_WANTED;
   1047 			pr_leave(pp);
   1048 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1049 			pr_enter(pp, file, line);
   1050 			goto startover;
   1051 		}
   1052 
   1053 		/*
   1054 		 * Log a message that the hard limit has been hit.
   1055 		 */
   1056 		if (pp->pr_hardlimit_warning != NULL &&
   1057 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1058 			      &pp->pr_hardlimit_ratecap))
   1059 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1060 
   1061 		pp->pr_nfail++;
   1062 
   1063 		pr_leave(pp);
   1064 		mutex_exit(&pp->pr_lock);
   1065 		return (NULL);
   1066 	}
   1067 
   1068 	/*
   1069 	 * The convention we use is that if `curpage' is not NULL, then
   1070 	 * it points at a non-empty bucket. In particular, `curpage'
   1071 	 * never points at a page header which has PR_PHINPAGE set and
   1072 	 * has no items in its bucket.
   1073 	 */
   1074 	if ((ph = pp->pr_curpage) == NULL) {
   1075 		int error;
   1076 
   1077 #ifdef DIAGNOSTIC
   1078 		if (pp->pr_nitems != 0) {
   1079 			mutex_exit(&pp->pr_lock);
   1080 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1081 			    pp->pr_wchan, pp->pr_nitems);
   1082 			panic("pool_get: nitems inconsistent");
   1083 		}
   1084 #endif
   1085 
   1086 		/*
   1087 		 * Call the back-end page allocator for more memory.
   1088 		 * Release the pool lock, as the back-end page allocator
   1089 		 * may block.
   1090 		 */
   1091 		pr_leave(pp);
   1092 		error = pool_grow(pp, flags);
   1093 		pr_enter(pp, file, line);
   1094 		if (error != 0) {
   1095 			/*
   1096 			 * We were unable to allocate a page or item
   1097 			 * header, but we released the lock during
   1098 			 * allocation, so perhaps items were freed
   1099 			 * back to the pool.  Check for this case.
   1100 			 */
   1101 			if (pp->pr_curpage != NULL)
   1102 				goto startover;
   1103 
   1104 			pp->pr_nfail++;
   1105 			pr_leave(pp);
   1106 			mutex_exit(&pp->pr_lock);
   1107 			return (NULL);
   1108 		}
   1109 
   1110 		/* Start the allocation process over. */
   1111 		goto startover;
   1112 	}
   1113 	if (pp->pr_roflags & PR_NOTOUCH) {
   1114 #ifdef DIAGNOSTIC
   1115 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1116 			pr_leave(pp);
   1117 			mutex_exit(&pp->pr_lock);
   1118 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1119 		}
   1120 #endif
   1121 		v = pr_item_notouch_get(pp, ph);
   1122 #ifdef POOL_DIAGNOSTIC
   1123 		pr_log(pp, v, PRLOG_GET, file, line);
   1124 #endif
   1125 	} else {
   1126 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1127 		if (__predict_false(v == NULL)) {
   1128 			pr_leave(pp);
   1129 			mutex_exit(&pp->pr_lock);
   1130 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1131 		}
   1132 #ifdef DIAGNOSTIC
   1133 		if (__predict_false(pp->pr_nitems == 0)) {
   1134 			pr_leave(pp);
   1135 			mutex_exit(&pp->pr_lock);
   1136 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1137 			    pp->pr_wchan, pp->pr_nitems);
   1138 			panic("pool_get: nitems inconsistent");
   1139 		}
   1140 #endif
   1141 
   1142 #ifdef POOL_DIAGNOSTIC
   1143 		pr_log(pp, v, PRLOG_GET, file, line);
   1144 #endif
   1145 
   1146 #ifdef DIAGNOSTIC
   1147 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1148 			pr_printlog(pp, pi, printf);
   1149 			panic("pool_get(%s): free list modified: "
   1150 			    "magic=%x; page %p; item addr %p\n",
   1151 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1152 		}
   1153 #endif
   1154 
   1155 		/*
   1156 		 * Remove from item list.
   1157 		 */
   1158 		LIST_REMOVE(pi, pi_list);
   1159 	}
   1160 	pp->pr_nitems--;
   1161 	pp->pr_nout++;
   1162 	if (ph->ph_nmissing == 0) {
   1163 #ifdef DIAGNOSTIC
   1164 		if (__predict_false(pp->pr_nidle == 0))
   1165 			panic("pool_get: nidle inconsistent");
   1166 #endif
   1167 		pp->pr_nidle--;
   1168 
   1169 		/*
   1170 		 * This page was previously empty.  Move it to the list of
   1171 		 * partially-full pages.  This page is already curpage.
   1172 		 */
   1173 		LIST_REMOVE(ph, ph_pagelist);
   1174 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1175 	}
   1176 	ph->ph_nmissing++;
   1177 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1178 #ifdef DIAGNOSTIC
   1179 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1180 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1181 			pr_leave(pp);
   1182 			mutex_exit(&pp->pr_lock);
   1183 			panic("pool_get: %s: nmissing inconsistent",
   1184 			    pp->pr_wchan);
   1185 		}
   1186 #endif
   1187 		/*
   1188 		 * This page is now full.  Move it to the full list
   1189 		 * and select a new current page.
   1190 		 */
   1191 		LIST_REMOVE(ph, ph_pagelist);
   1192 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1193 		pool_update_curpage(pp);
   1194 	}
   1195 
   1196 	pp->pr_nget++;
   1197 	pr_leave(pp);
   1198 
   1199 	/*
   1200 	 * If we have a low water mark and we are now below that low
   1201 	 * water mark, add more items to the pool.
   1202 	 */
   1203 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1204 		/*
   1205 		 * XXX: Should we log a warning?  Should we set up a timeout
   1206 		 * to try again in a second or so?  The latter could break
   1207 		 * a caller's assumptions about interrupt protection, etc.
   1208 		 */
   1209 	}
   1210 
   1211 	mutex_exit(&pp->pr_lock);
   1212 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1213 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1214 	return (v);
   1215 }
   1216 
   1217 /*
   1218  * Internal version of pool_put().  Pool is already locked/entered.
   1219  */
   1220 static void
   1221 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1222 {
   1223 	struct pool_item *pi = v;
   1224 	struct pool_item_header *ph;
   1225 
   1226 	KASSERT(mutex_owned(&pp->pr_lock));
   1227 	FREECHECK_IN(&pp->pr_freecheck, v);
   1228 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1229 
   1230 #ifdef DIAGNOSTIC
   1231 	if (__predict_false(pp->pr_nout == 0)) {
   1232 		printf("pool %s: putting with none out\n",
   1233 		    pp->pr_wchan);
   1234 		panic("pool_put");
   1235 	}
   1236 #endif
   1237 
   1238 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1239 		pr_printlog(pp, NULL, printf);
   1240 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1241 	}
   1242 
   1243 	/*
   1244 	 * Return to item list.
   1245 	 */
   1246 	if (pp->pr_roflags & PR_NOTOUCH) {
   1247 		pr_item_notouch_put(pp, ph, v);
   1248 	} else {
   1249 #ifdef DIAGNOSTIC
   1250 		pi->pi_magic = PI_MAGIC;
   1251 #endif
   1252 #ifdef DEBUG
   1253 		{
   1254 			int i, *ip = v;
   1255 
   1256 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1257 				*ip++ = PI_MAGIC;
   1258 			}
   1259 		}
   1260 #endif
   1261 
   1262 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1263 	}
   1264 	KDASSERT(ph->ph_nmissing != 0);
   1265 	ph->ph_nmissing--;
   1266 	pp->pr_nput++;
   1267 	pp->pr_nitems++;
   1268 	pp->pr_nout--;
   1269 
   1270 	/* Cancel "pool empty" condition if it exists */
   1271 	if (pp->pr_curpage == NULL)
   1272 		pp->pr_curpage = ph;
   1273 
   1274 	if (pp->pr_flags & PR_WANTED) {
   1275 		pp->pr_flags &= ~PR_WANTED;
   1276 		cv_broadcast(&pp->pr_cv);
   1277 	}
   1278 
   1279 	/*
   1280 	 * If this page is now empty, do one of two things:
   1281 	 *
   1282 	 *	(1) If we have more pages than the page high water mark,
   1283 	 *	    free the page back to the system.  ONLY CONSIDER
   1284 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1285 	 *	    CLAIM.
   1286 	 *
   1287 	 *	(2) Otherwise, move the page to the empty page list.
   1288 	 *
   1289 	 * Either way, select a new current page (so we use a partially-full
   1290 	 * page if one is available).
   1291 	 */
   1292 	if (ph->ph_nmissing == 0) {
   1293 		pp->pr_nidle++;
   1294 		if (pp->pr_npages > pp->pr_minpages &&
   1295 		    pp->pr_npages > pp->pr_maxpages) {
   1296 			pr_rmpage(pp, ph, pq);
   1297 		} else {
   1298 			LIST_REMOVE(ph, ph_pagelist);
   1299 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1300 
   1301 			/*
   1302 			 * Update the timestamp on the page.  A page must
   1303 			 * be idle for some period of time before it can
   1304 			 * be reclaimed by the pagedaemon.  This minimizes
   1305 			 * ping-pong'ing for memory.
   1306 			 *
   1307 			 * note for 64-bit time_t: truncating to 32-bit is not
   1308 			 * a problem for our usage.
   1309 			 */
   1310 			ph->ph_time = time_uptime;
   1311 		}
   1312 		pool_update_curpage(pp);
   1313 	}
   1314 
   1315 	/*
   1316 	 * If the page was previously completely full, move it to the
   1317 	 * partially-full list and make it the current page.  The next
   1318 	 * allocation will get the item from this page, instead of
   1319 	 * further fragmenting the pool.
   1320 	 */
   1321 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1322 		LIST_REMOVE(ph, ph_pagelist);
   1323 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1324 		pp->pr_curpage = ph;
   1325 	}
   1326 }
   1327 
   1328 /*
   1329  * Return resource to the pool.
   1330  */
   1331 #ifdef POOL_DIAGNOSTIC
   1332 void
   1333 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1334 {
   1335 	struct pool_pagelist pq;
   1336 
   1337 	LIST_INIT(&pq);
   1338 
   1339 	mutex_enter(&pp->pr_lock);
   1340 	pr_enter(pp, file, line);
   1341 
   1342 	pr_log(pp, v, PRLOG_PUT, file, line);
   1343 
   1344 	pool_do_put(pp, v, &pq);
   1345 
   1346 	pr_leave(pp);
   1347 	mutex_exit(&pp->pr_lock);
   1348 
   1349 	pr_pagelist_free(pp, &pq);
   1350 }
   1351 #undef pool_put
   1352 #endif /* POOL_DIAGNOSTIC */
   1353 
   1354 void
   1355 pool_put(struct pool *pp, void *v)
   1356 {
   1357 	struct pool_pagelist pq;
   1358 
   1359 	LIST_INIT(&pq);
   1360 
   1361 	mutex_enter(&pp->pr_lock);
   1362 	pool_do_put(pp, v, &pq);
   1363 	mutex_exit(&pp->pr_lock);
   1364 
   1365 	pr_pagelist_free(pp, &pq);
   1366 }
   1367 
   1368 #ifdef POOL_DIAGNOSTIC
   1369 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1370 #endif
   1371 
   1372 /*
   1373  * pool_grow: grow a pool by a page.
   1374  *
   1375  * => called with pool locked.
   1376  * => unlock and relock the pool.
   1377  * => return with pool locked.
   1378  */
   1379 
   1380 static int
   1381 pool_grow(struct pool *pp, int flags)
   1382 {
   1383 	struct pool_item_header *ph = NULL;
   1384 	char *cp;
   1385 
   1386 	mutex_exit(&pp->pr_lock);
   1387 	cp = pool_allocator_alloc(pp, flags);
   1388 	if (__predict_true(cp != NULL)) {
   1389 		ph = pool_alloc_item_header(pp, cp, flags);
   1390 	}
   1391 	if (__predict_false(cp == NULL || ph == NULL)) {
   1392 		if (cp != NULL) {
   1393 			pool_allocator_free(pp, cp);
   1394 		}
   1395 		mutex_enter(&pp->pr_lock);
   1396 		return ENOMEM;
   1397 	}
   1398 
   1399 	mutex_enter(&pp->pr_lock);
   1400 	pool_prime_page(pp, cp, ph);
   1401 	pp->pr_npagealloc++;
   1402 	return 0;
   1403 }
   1404 
   1405 /*
   1406  * Add N items to the pool.
   1407  */
   1408 int
   1409 pool_prime(struct pool *pp, int n)
   1410 {
   1411 	int newpages;
   1412 	int error = 0;
   1413 
   1414 	mutex_enter(&pp->pr_lock);
   1415 
   1416 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1417 
   1418 	while (newpages-- > 0) {
   1419 		error = pool_grow(pp, PR_NOWAIT);
   1420 		if (error) {
   1421 			break;
   1422 		}
   1423 		pp->pr_minpages++;
   1424 	}
   1425 
   1426 	if (pp->pr_minpages >= pp->pr_maxpages)
   1427 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1428 
   1429 	mutex_exit(&pp->pr_lock);
   1430 	return error;
   1431 }
   1432 
   1433 /*
   1434  * Add a page worth of items to the pool.
   1435  *
   1436  * Note, we must be called with the pool descriptor LOCKED.
   1437  */
   1438 static void
   1439 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1440 {
   1441 	struct pool_item *pi;
   1442 	void *cp = storage;
   1443 	const unsigned int align = pp->pr_align;
   1444 	const unsigned int ioff = pp->pr_itemoffset;
   1445 	int n;
   1446 
   1447 	KASSERT(mutex_owned(&pp->pr_lock));
   1448 
   1449 #ifdef DIAGNOSTIC
   1450 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1451 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1452 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1453 #endif
   1454 
   1455 	/*
   1456 	 * Insert page header.
   1457 	 */
   1458 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1459 	LIST_INIT(&ph->ph_itemlist);
   1460 	ph->ph_page = storage;
   1461 	ph->ph_nmissing = 0;
   1462 	ph->ph_time = time_uptime;
   1463 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1464 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1465 
   1466 	pp->pr_nidle++;
   1467 
   1468 	/*
   1469 	 * Color this page.
   1470 	 */
   1471 	ph->ph_off = pp->pr_curcolor;
   1472 	cp = (char *)cp + ph->ph_off;
   1473 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1474 		pp->pr_curcolor = 0;
   1475 
   1476 	/*
   1477 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1478 	 */
   1479 	if (ioff != 0)
   1480 		cp = (char *)cp + align - ioff;
   1481 
   1482 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1483 
   1484 	/*
   1485 	 * Insert remaining chunks on the bucket list.
   1486 	 */
   1487 	n = pp->pr_itemsperpage;
   1488 	pp->pr_nitems += n;
   1489 
   1490 	if (pp->pr_roflags & PR_NOTOUCH) {
   1491 		pr_item_notouch_init(pp, ph);
   1492 	} else {
   1493 		while (n--) {
   1494 			pi = (struct pool_item *)cp;
   1495 
   1496 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1497 
   1498 			/* Insert on page list */
   1499 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1500 #ifdef DIAGNOSTIC
   1501 			pi->pi_magic = PI_MAGIC;
   1502 #endif
   1503 			cp = (char *)cp + pp->pr_size;
   1504 
   1505 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1506 		}
   1507 	}
   1508 
   1509 	/*
   1510 	 * If the pool was depleted, point at the new page.
   1511 	 */
   1512 	if (pp->pr_curpage == NULL)
   1513 		pp->pr_curpage = ph;
   1514 
   1515 	if (++pp->pr_npages > pp->pr_hiwat)
   1516 		pp->pr_hiwat = pp->pr_npages;
   1517 }
   1518 
   1519 /*
   1520  * Used by pool_get() when nitems drops below the low water mark.  This
   1521  * is used to catch up pr_nitems with the low water mark.
   1522  *
   1523  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1524  *
   1525  * Note 2, we must be called with the pool already locked, and we return
   1526  * with it locked.
   1527  */
   1528 static int
   1529 pool_catchup(struct pool *pp)
   1530 {
   1531 	int error = 0;
   1532 
   1533 	while (POOL_NEEDS_CATCHUP(pp)) {
   1534 		error = pool_grow(pp, PR_NOWAIT);
   1535 		if (error) {
   1536 			break;
   1537 		}
   1538 	}
   1539 	return error;
   1540 }
   1541 
   1542 static void
   1543 pool_update_curpage(struct pool *pp)
   1544 {
   1545 
   1546 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1547 	if (pp->pr_curpage == NULL) {
   1548 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1549 	}
   1550 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1551 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1552 }
   1553 
   1554 void
   1555 pool_setlowat(struct pool *pp, int n)
   1556 {
   1557 
   1558 	mutex_enter(&pp->pr_lock);
   1559 
   1560 	pp->pr_minitems = n;
   1561 	pp->pr_minpages = (n == 0)
   1562 		? 0
   1563 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1564 
   1565 	/* Make sure we're caught up with the newly-set low water mark. */
   1566 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1567 		/*
   1568 		 * XXX: Should we log a warning?  Should we set up a timeout
   1569 		 * to try again in a second or so?  The latter could break
   1570 		 * a caller's assumptions about interrupt protection, etc.
   1571 		 */
   1572 	}
   1573 
   1574 	mutex_exit(&pp->pr_lock);
   1575 }
   1576 
   1577 void
   1578 pool_sethiwat(struct pool *pp, int n)
   1579 {
   1580 
   1581 	mutex_enter(&pp->pr_lock);
   1582 
   1583 	pp->pr_maxpages = (n == 0)
   1584 		? 0
   1585 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1586 
   1587 	mutex_exit(&pp->pr_lock);
   1588 }
   1589 
   1590 void
   1591 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1592 {
   1593 
   1594 	mutex_enter(&pp->pr_lock);
   1595 
   1596 	pp->pr_hardlimit = n;
   1597 	pp->pr_hardlimit_warning = warnmess;
   1598 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1599 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1600 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1601 
   1602 	/*
   1603 	 * In-line version of pool_sethiwat(), because we don't want to
   1604 	 * release the lock.
   1605 	 */
   1606 	pp->pr_maxpages = (n == 0)
   1607 		? 0
   1608 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1609 
   1610 	mutex_exit(&pp->pr_lock);
   1611 }
   1612 
   1613 /*
   1614  * Release all complete pages that have not been used recently.
   1615  *
   1616  * Might be called from interrupt context.
   1617  */
   1618 int
   1619 #ifdef POOL_DIAGNOSTIC
   1620 _pool_reclaim(struct pool *pp, const char *file, long line)
   1621 #else
   1622 pool_reclaim(struct pool *pp)
   1623 #endif
   1624 {
   1625 	struct pool_item_header *ph, *phnext;
   1626 	struct pool_pagelist pq;
   1627 	uint32_t curtime;
   1628 	bool klock;
   1629 	int rv;
   1630 
   1631 	if (cpu_intr_p() || cpu_softintr_p()) {
   1632 		KASSERT(pp->pr_ipl != IPL_NONE);
   1633 	}
   1634 
   1635 	if (pp->pr_drain_hook != NULL) {
   1636 		/*
   1637 		 * The drain hook must be called with the pool unlocked.
   1638 		 */
   1639 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1640 	}
   1641 
   1642 	/*
   1643 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1644 	 * to block.
   1645 	 */
   1646 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1647 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1648 		KERNEL_LOCK(1, NULL);
   1649 		klock = true;
   1650 	} else
   1651 		klock = false;
   1652 
   1653 	/* Reclaim items from the pool's cache (if any). */
   1654 	if (pp->pr_cache != NULL)
   1655 		pool_cache_invalidate(pp->pr_cache);
   1656 
   1657 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1658 		if (klock) {
   1659 			KERNEL_UNLOCK_ONE(NULL);
   1660 		}
   1661 		return (0);
   1662 	}
   1663 	pr_enter(pp, file, line);
   1664 
   1665 	LIST_INIT(&pq);
   1666 
   1667 	curtime = time_uptime;
   1668 
   1669 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1670 		phnext = LIST_NEXT(ph, ph_pagelist);
   1671 
   1672 		/* Check our minimum page claim */
   1673 		if (pp->pr_npages <= pp->pr_minpages)
   1674 			break;
   1675 
   1676 		KASSERT(ph->ph_nmissing == 0);
   1677 		if (curtime - ph->ph_time < pool_inactive_time
   1678 		    && !pa_starved_p(pp->pr_alloc))
   1679 			continue;
   1680 
   1681 		/*
   1682 		 * If freeing this page would put us below
   1683 		 * the low water mark, stop now.
   1684 		 */
   1685 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1686 		    pp->pr_minitems)
   1687 			break;
   1688 
   1689 		pr_rmpage(pp, ph, &pq);
   1690 	}
   1691 
   1692 	pr_leave(pp);
   1693 	mutex_exit(&pp->pr_lock);
   1694 
   1695 	if (LIST_EMPTY(&pq))
   1696 		rv = 0;
   1697 	else {
   1698 		pr_pagelist_free(pp, &pq);
   1699 		rv = 1;
   1700 	}
   1701 
   1702 	if (klock) {
   1703 		KERNEL_UNLOCK_ONE(NULL);
   1704 	}
   1705 
   1706 	return (rv);
   1707 }
   1708 
   1709 /*
   1710  * Drain pools, one at a time.  This is a two stage process;
   1711  * drain_start kicks off a cross call to drain CPU-level caches
   1712  * if the pool has an associated pool_cache.  drain_end waits
   1713  * for those cross calls to finish, and then drains the cache
   1714  * (if any) and pool.
   1715  *
   1716  * Note, must never be called from interrupt context.
   1717  */
   1718 void
   1719 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1720 {
   1721 	struct pool *pp;
   1722 
   1723 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1724 
   1725 	pp = NULL;
   1726 
   1727 	/* Find next pool to drain, and add a reference. */
   1728 	mutex_enter(&pool_head_lock);
   1729 	do {
   1730 		if (drainpp == NULL) {
   1731 			drainpp = TAILQ_FIRST(&pool_head);
   1732 		}
   1733 		if (drainpp != NULL) {
   1734 			pp = drainpp;
   1735 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1736 		}
   1737 		/*
   1738 		 * Skip completely idle pools.  We depend on at least
   1739 		 * one pool in the system being active.
   1740 		 */
   1741 	} while (pp == NULL || pp->pr_npages == 0);
   1742 	pp->pr_refcnt++;
   1743 	mutex_exit(&pool_head_lock);
   1744 
   1745 	/* If there is a pool_cache, drain CPU level caches. */
   1746 	*ppp = pp;
   1747 	if (pp->pr_cache != NULL) {
   1748 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1749 		    pp->pr_cache, NULL);
   1750 	}
   1751 }
   1752 
   1753 bool
   1754 pool_drain_end(struct pool *pp, uint64_t where)
   1755 {
   1756 	bool reclaimed;
   1757 
   1758 	if (pp == NULL)
   1759 		return false;
   1760 
   1761 	KASSERT(pp->pr_refcnt > 0);
   1762 
   1763 	/* Wait for remote draining to complete. */
   1764 	if (pp->pr_cache != NULL)
   1765 		xc_wait(where);
   1766 
   1767 	/* Drain the cache (if any) and pool.. */
   1768 	reclaimed = pool_reclaim(pp);
   1769 
   1770 	/* Finally, unlock the pool. */
   1771 	mutex_enter(&pool_head_lock);
   1772 	pp->pr_refcnt--;
   1773 	cv_broadcast(&pool_busy);
   1774 	mutex_exit(&pool_head_lock);
   1775 
   1776 	return reclaimed;
   1777 }
   1778 
   1779 /*
   1780  * Diagnostic helpers.
   1781  */
   1782 void
   1783 pool_print(struct pool *pp, const char *modif)
   1784 {
   1785 
   1786 	pool_print1(pp, modif, printf);
   1787 }
   1788 
   1789 void
   1790 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1791 {
   1792 	struct pool *pp;
   1793 
   1794 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1795 		pool_printit(pp, modif, pr);
   1796 	}
   1797 }
   1798 
   1799 void
   1800 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1801 {
   1802 
   1803 	if (pp == NULL) {
   1804 		(*pr)("Must specify a pool to print.\n");
   1805 		return;
   1806 	}
   1807 
   1808 	pool_print1(pp, modif, pr);
   1809 }
   1810 
   1811 static void
   1812 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1813     void (*pr)(const char *, ...))
   1814 {
   1815 	struct pool_item_header *ph;
   1816 #ifdef DIAGNOSTIC
   1817 	struct pool_item *pi;
   1818 #endif
   1819 
   1820 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1821 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1822 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1823 #ifdef DIAGNOSTIC
   1824 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1825 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1826 				if (pi->pi_magic != PI_MAGIC) {
   1827 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1828 					    pi, pi->pi_magic);
   1829 				}
   1830 			}
   1831 		}
   1832 #endif
   1833 	}
   1834 }
   1835 
   1836 static void
   1837 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1838 {
   1839 	struct pool_item_header *ph;
   1840 	pool_cache_t pc;
   1841 	pcg_t *pcg;
   1842 	pool_cache_cpu_t *cc;
   1843 	uint64_t cpuhit, cpumiss;
   1844 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1845 	char c;
   1846 
   1847 	while ((c = *modif++) != '\0') {
   1848 		if (c == 'l')
   1849 			print_log = 1;
   1850 		if (c == 'p')
   1851 			print_pagelist = 1;
   1852 		if (c == 'c')
   1853 			print_cache = 1;
   1854 	}
   1855 
   1856 	if ((pc = pp->pr_cache) != NULL) {
   1857 		(*pr)("POOL CACHE");
   1858 	} else {
   1859 		(*pr)("POOL");
   1860 	}
   1861 
   1862 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1863 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1864 	    pp->pr_roflags);
   1865 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1866 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1867 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1868 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1869 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1870 
   1871 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1872 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1873 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1874 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1875 
   1876 	if (print_pagelist == 0)
   1877 		goto skip_pagelist;
   1878 
   1879 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1880 		(*pr)("\n\tempty page list:\n");
   1881 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1882 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1883 		(*pr)("\n\tfull page list:\n");
   1884 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1885 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1886 		(*pr)("\n\tpartial-page list:\n");
   1887 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1888 
   1889 	if (pp->pr_curpage == NULL)
   1890 		(*pr)("\tno current page\n");
   1891 	else
   1892 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1893 
   1894  skip_pagelist:
   1895 	if (print_log == 0)
   1896 		goto skip_log;
   1897 
   1898 	(*pr)("\n");
   1899 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1900 		(*pr)("\tno log\n");
   1901 	else {
   1902 		pr_printlog(pp, NULL, pr);
   1903 	}
   1904 
   1905  skip_log:
   1906 
   1907 #define PR_GROUPLIST(pcg)						\
   1908 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1909 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1910 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1911 		    POOL_PADDR_INVALID) {				\
   1912 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1913 			    pcg->pcg_objects[i].pcgo_va,		\
   1914 			    (unsigned long long)			\
   1915 			    pcg->pcg_objects[i].pcgo_pa);		\
   1916 		} else {						\
   1917 			(*pr)("\t\t\t%p\n",				\
   1918 			    pcg->pcg_objects[i].pcgo_va);		\
   1919 		}							\
   1920 	}
   1921 
   1922 	if (pc != NULL) {
   1923 		cpuhit = 0;
   1924 		cpumiss = 0;
   1925 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1926 			if ((cc = pc->pc_cpus[i]) == NULL)
   1927 				continue;
   1928 			cpuhit += cc->cc_hits;
   1929 			cpumiss += cc->cc_misses;
   1930 		}
   1931 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1932 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1933 		    pc->pc_hits, pc->pc_misses);
   1934 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1935 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1936 		    pc->pc_contended);
   1937 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1938 		    pc->pc_nempty, pc->pc_nfull);
   1939 		if (print_cache) {
   1940 			(*pr)("\tfull cache groups:\n");
   1941 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1942 			    pcg = pcg->pcg_next) {
   1943 				PR_GROUPLIST(pcg);
   1944 			}
   1945 			(*pr)("\tempty cache groups:\n");
   1946 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1947 			    pcg = pcg->pcg_next) {
   1948 				PR_GROUPLIST(pcg);
   1949 			}
   1950 		}
   1951 	}
   1952 #undef PR_GROUPLIST
   1953 
   1954 	pr_enter_check(pp, pr);
   1955 }
   1956 
   1957 static int
   1958 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1959 {
   1960 	struct pool_item *pi;
   1961 	void *page;
   1962 	int n;
   1963 
   1964 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1965 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1966 		if (page != ph->ph_page &&
   1967 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1968 			if (label != NULL)
   1969 				printf("%s: ", label);
   1970 			printf("pool(%p:%s): page inconsistency: page %p;"
   1971 			       " at page head addr %p (p %p)\n", pp,
   1972 				pp->pr_wchan, ph->ph_page,
   1973 				ph, page);
   1974 			return 1;
   1975 		}
   1976 	}
   1977 
   1978 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1979 		return 0;
   1980 
   1981 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1982 	     pi != NULL;
   1983 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1984 
   1985 #ifdef DIAGNOSTIC
   1986 		if (pi->pi_magic != PI_MAGIC) {
   1987 			if (label != NULL)
   1988 				printf("%s: ", label);
   1989 			printf("pool(%s): free list modified: magic=%x;"
   1990 			       " page %p; item ordinal %d; addr %p\n",
   1991 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1992 				n, pi);
   1993 			panic("pool");
   1994 		}
   1995 #endif
   1996 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1997 			continue;
   1998 		}
   1999 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   2000 		if (page == ph->ph_page)
   2001 			continue;
   2002 
   2003 		if (label != NULL)
   2004 			printf("%s: ", label);
   2005 		printf("pool(%p:%s): page inconsistency: page %p;"
   2006 		       " item ordinal %d; addr %p (p %p)\n", pp,
   2007 			pp->pr_wchan, ph->ph_page,
   2008 			n, pi, page);
   2009 		return 1;
   2010 	}
   2011 	return 0;
   2012 }
   2013 
   2014 
   2015 int
   2016 pool_chk(struct pool *pp, const char *label)
   2017 {
   2018 	struct pool_item_header *ph;
   2019 	int r = 0;
   2020 
   2021 	mutex_enter(&pp->pr_lock);
   2022 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2023 		r = pool_chk_page(pp, label, ph);
   2024 		if (r) {
   2025 			goto out;
   2026 		}
   2027 	}
   2028 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2029 		r = pool_chk_page(pp, label, ph);
   2030 		if (r) {
   2031 			goto out;
   2032 		}
   2033 	}
   2034 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2035 		r = pool_chk_page(pp, label, ph);
   2036 		if (r) {
   2037 			goto out;
   2038 		}
   2039 	}
   2040 
   2041 out:
   2042 	mutex_exit(&pp->pr_lock);
   2043 	return (r);
   2044 }
   2045 
   2046 /*
   2047  * pool_cache_init:
   2048  *
   2049  *	Initialize a pool cache.
   2050  */
   2051 pool_cache_t
   2052 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2053     const char *wchan, struct pool_allocator *palloc, int ipl,
   2054     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2055 {
   2056 	pool_cache_t pc;
   2057 
   2058 	pc = pool_get(&cache_pool, PR_WAITOK);
   2059 	if (pc == NULL)
   2060 		return NULL;
   2061 
   2062 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2063 	   palloc, ipl, ctor, dtor, arg);
   2064 
   2065 	return pc;
   2066 }
   2067 
   2068 /*
   2069  * pool_cache_bootstrap:
   2070  *
   2071  *	Kernel-private version of pool_cache_init().  The caller
   2072  *	provides initial storage.
   2073  */
   2074 void
   2075 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2076     u_int align_offset, u_int flags, const char *wchan,
   2077     struct pool_allocator *palloc, int ipl,
   2078     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2079     void *arg)
   2080 {
   2081 	CPU_INFO_ITERATOR cii;
   2082 	pool_cache_t pc1;
   2083 	struct cpu_info *ci;
   2084 	struct pool *pp;
   2085 
   2086 	pp = &pc->pc_pool;
   2087 	if (palloc == NULL && ipl == IPL_NONE)
   2088 		palloc = &pool_allocator_nointr;
   2089 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2090 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2091 
   2092 	if (ctor == NULL) {
   2093 		ctor = (int (*)(void *, void *, int))nullop;
   2094 	}
   2095 	if (dtor == NULL) {
   2096 		dtor = (void (*)(void *, void *))nullop;
   2097 	}
   2098 
   2099 	pc->pc_emptygroups = NULL;
   2100 	pc->pc_fullgroups = NULL;
   2101 	pc->pc_partgroups = NULL;
   2102 	pc->pc_ctor = ctor;
   2103 	pc->pc_dtor = dtor;
   2104 	pc->pc_arg  = arg;
   2105 	pc->pc_hits  = 0;
   2106 	pc->pc_misses = 0;
   2107 	pc->pc_nempty = 0;
   2108 	pc->pc_npart = 0;
   2109 	pc->pc_nfull = 0;
   2110 	pc->pc_contended = 0;
   2111 	pc->pc_refcnt = 0;
   2112 	pc->pc_freecheck = NULL;
   2113 
   2114 	if ((flags & PR_LARGECACHE) != 0) {
   2115 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2116 		pc->pc_pcgpool = &pcg_large_pool;
   2117 	} else {
   2118 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2119 		pc->pc_pcgpool = &pcg_normal_pool;
   2120 	}
   2121 
   2122 	/* Allocate per-CPU caches. */
   2123 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2124 	pc->pc_ncpu = 0;
   2125 	if (ncpu < 2) {
   2126 		/* XXX For sparc: boot CPU is not attached yet. */
   2127 		pool_cache_cpu_init1(curcpu(), pc);
   2128 	} else {
   2129 		for (CPU_INFO_FOREACH(cii, ci)) {
   2130 			pool_cache_cpu_init1(ci, pc);
   2131 		}
   2132 	}
   2133 
   2134 	/* Add to list of all pools. */
   2135 	if (__predict_true(!cold))
   2136 		mutex_enter(&pool_head_lock);
   2137 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2138 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2139 			break;
   2140 	}
   2141 	if (pc1 == NULL)
   2142 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2143 	else
   2144 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2145 	if (__predict_true(!cold))
   2146 		mutex_exit(&pool_head_lock);
   2147 
   2148 	membar_sync();
   2149 	pp->pr_cache = pc;
   2150 }
   2151 
   2152 /*
   2153  * pool_cache_destroy:
   2154  *
   2155  *	Destroy a pool cache.
   2156  */
   2157 void
   2158 pool_cache_destroy(pool_cache_t pc)
   2159 {
   2160 	struct pool *pp = &pc->pc_pool;
   2161 	u_int i;
   2162 
   2163 	/* Remove it from the global list. */
   2164 	mutex_enter(&pool_head_lock);
   2165 	while (pc->pc_refcnt != 0)
   2166 		cv_wait(&pool_busy, &pool_head_lock);
   2167 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2168 	mutex_exit(&pool_head_lock);
   2169 
   2170 	/* First, invalidate the entire cache. */
   2171 	pool_cache_invalidate(pc);
   2172 
   2173 	/* Disassociate it from the pool. */
   2174 	mutex_enter(&pp->pr_lock);
   2175 	pp->pr_cache = NULL;
   2176 	mutex_exit(&pp->pr_lock);
   2177 
   2178 	/* Destroy per-CPU data */
   2179 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2180 		pool_cache_invalidate_cpu(pc, i);
   2181 
   2182 	/* Finally, destroy it. */
   2183 	mutex_destroy(&pc->pc_lock);
   2184 	pool_destroy(pp);
   2185 	pool_put(&cache_pool, pc);
   2186 }
   2187 
   2188 /*
   2189  * pool_cache_cpu_init1:
   2190  *
   2191  *	Called for each pool_cache whenever a new CPU is attached.
   2192  */
   2193 static void
   2194 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2195 {
   2196 	pool_cache_cpu_t *cc;
   2197 	int index;
   2198 
   2199 	index = ci->ci_index;
   2200 
   2201 	KASSERT(index < __arraycount(pc->pc_cpus));
   2202 
   2203 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2204 		KASSERT(cc->cc_cpuindex == index);
   2205 		return;
   2206 	}
   2207 
   2208 	/*
   2209 	 * The first CPU is 'free'.  This needs to be the case for
   2210 	 * bootstrap - we may not be able to allocate yet.
   2211 	 */
   2212 	if (pc->pc_ncpu == 0) {
   2213 		cc = &pc->pc_cpu0;
   2214 		pc->pc_ncpu = 1;
   2215 	} else {
   2216 		mutex_enter(&pc->pc_lock);
   2217 		pc->pc_ncpu++;
   2218 		mutex_exit(&pc->pc_lock);
   2219 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2220 	}
   2221 
   2222 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2223 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2224 	cc->cc_cache = pc;
   2225 	cc->cc_cpuindex = index;
   2226 	cc->cc_hits = 0;
   2227 	cc->cc_misses = 0;
   2228 	cc->cc_current = __UNCONST(&pcg_dummy);
   2229 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2230 
   2231 	pc->pc_cpus[index] = cc;
   2232 }
   2233 
   2234 /*
   2235  * pool_cache_cpu_init:
   2236  *
   2237  *	Called whenever a new CPU is attached.
   2238  */
   2239 void
   2240 pool_cache_cpu_init(struct cpu_info *ci)
   2241 {
   2242 	pool_cache_t pc;
   2243 
   2244 	mutex_enter(&pool_head_lock);
   2245 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2246 		pc->pc_refcnt++;
   2247 		mutex_exit(&pool_head_lock);
   2248 
   2249 		pool_cache_cpu_init1(ci, pc);
   2250 
   2251 		mutex_enter(&pool_head_lock);
   2252 		pc->pc_refcnt--;
   2253 		cv_broadcast(&pool_busy);
   2254 	}
   2255 	mutex_exit(&pool_head_lock);
   2256 }
   2257 
   2258 /*
   2259  * pool_cache_reclaim:
   2260  *
   2261  *	Reclaim memory from a pool cache.
   2262  */
   2263 bool
   2264 pool_cache_reclaim(pool_cache_t pc)
   2265 {
   2266 
   2267 	return pool_reclaim(&pc->pc_pool);
   2268 }
   2269 
   2270 static void
   2271 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2272 {
   2273 
   2274 	(*pc->pc_dtor)(pc->pc_arg, object);
   2275 	pool_put(&pc->pc_pool, object);
   2276 }
   2277 
   2278 /*
   2279  * pool_cache_destruct_object:
   2280  *
   2281  *	Force destruction of an object and its release back into
   2282  *	the pool.
   2283  */
   2284 void
   2285 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2286 {
   2287 
   2288 	FREECHECK_IN(&pc->pc_freecheck, object);
   2289 
   2290 	pool_cache_destruct_object1(pc, object);
   2291 }
   2292 
   2293 /*
   2294  * pool_cache_invalidate_groups:
   2295  *
   2296  *	Invalidate a chain of groups and destruct all objects.
   2297  */
   2298 static void
   2299 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2300 {
   2301 	void *object;
   2302 	pcg_t *next;
   2303 	int i;
   2304 
   2305 	for (; pcg != NULL; pcg = next) {
   2306 		next = pcg->pcg_next;
   2307 
   2308 		for (i = 0; i < pcg->pcg_avail; i++) {
   2309 			object = pcg->pcg_objects[i].pcgo_va;
   2310 			pool_cache_destruct_object1(pc, object);
   2311 		}
   2312 
   2313 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2314 			pool_put(&pcg_large_pool, pcg);
   2315 		} else {
   2316 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2317 			pool_put(&pcg_normal_pool, pcg);
   2318 		}
   2319 	}
   2320 }
   2321 
   2322 /*
   2323  * pool_cache_invalidate:
   2324  *
   2325  *	Invalidate a pool cache (destruct and release all of the
   2326  *	cached objects).  Does not reclaim objects from the pool.
   2327  *
   2328  *	Note: For pool caches that provide constructed objects, there
   2329  *	is an assumption that another level of synchronization is occurring
   2330  *	between the input to the constructor and the cache invalidation.
   2331  */
   2332 void
   2333 pool_cache_invalidate(pool_cache_t pc)
   2334 {
   2335 	pcg_t *full, *empty, *part;
   2336 #if 0
   2337 	uint64_t where;
   2338 
   2339 	if (ncpu < 2 || !mp_online) {
   2340 		/*
   2341 		 * We might be called early enough in the boot process
   2342 		 * for the CPU data structures to not be fully initialized.
   2343 		 * In this case, simply gather the local CPU's cache now
   2344 		 * since it will be the only one running.
   2345 		 */
   2346 		pool_cache_xcall(pc);
   2347 	} else {
   2348 		/*
   2349 		 * Gather all of the CPU-specific caches into the
   2350 		 * global cache.
   2351 		 */
   2352 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2353 		xc_wait(where);
   2354 	}
   2355 #endif
   2356 	mutex_enter(&pc->pc_lock);
   2357 	full = pc->pc_fullgroups;
   2358 	empty = pc->pc_emptygroups;
   2359 	part = pc->pc_partgroups;
   2360 	pc->pc_fullgroups = NULL;
   2361 	pc->pc_emptygroups = NULL;
   2362 	pc->pc_partgroups = NULL;
   2363 	pc->pc_nfull = 0;
   2364 	pc->pc_nempty = 0;
   2365 	pc->pc_npart = 0;
   2366 	mutex_exit(&pc->pc_lock);
   2367 
   2368 	pool_cache_invalidate_groups(pc, full);
   2369 	pool_cache_invalidate_groups(pc, empty);
   2370 	pool_cache_invalidate_groups(pc, part);
   2371 }
   2372 
   2373 /*
   2374  * pool_cache_invalidate_cpu:
   2375  *
   2376  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2377  *	identified by its associated index.
   2378  *	It is caller's responsibility to ensure that no operation is
   2379  *	taking place on this pool cache while doing this invalidation.
   2380  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2381  *	pool cached objects from a CPU different from the one currently running
   2382  *	may result in an undefined behaviour.
   2383  */
   2384 static void
   2385 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2386 {
   2387 
   2388 	pool_cache_cpu_t *cc;
   2389 	pcg_t *pcg;
   2390 
   2391 	if ((cc = pc->pc_cpus[index]) == NULL)
   2392 		return;
   2393 
   2394 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2395 		pcg->pcg_next = NULL;
   2396 		pool_cache_invalidate_groups(pc, pcg);
   2397 	}
   2398 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2399 		pcg->pcg_next = NULL;
   2400 		pool_cache_invalidate_groups(pc, pcg);
   2401 	}
   2402 	if (cc != &pc->pc_cpu0)
   2403 		pool_put(&cache_cpu_pool, cc);
   2404 
   2405 }
   2406 
   2407 void
   2408 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2409 {
   2410 
   2411 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2412 }
   2413 
   2414 void
   2415 pool_cache_setlowat(pool_cache_t pc, int n)
   2416 {
   2417 
   2418 	pool_setlowat(&pc->pc_pool, n);
   2419 }
   2420 
   2421 void
   2422 pool_cache_sethiwat(pool_cache_t pc, int n)
   2423 {
   2424 
   2425 	pool_sethiwat(&pc->pc_pool, n);
   2426 }
   2427 
   2428 void
   2429 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2430 {
   2431 
   2432 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2433 }
   2434 
   2435 static bool __noinline
   2436 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2437 		    paddr_t *pap, int flags)
   2438 {
   2439 	pcg_t *pcg, *cur;
   2440 	uint64_t ncsw;
   2441 	pool_cache_t pc;
   2442 	void *object;
   2443 
   2444 	KASSERT(cc->cc_current->pcg_avail == 0);
   2445 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2446 
   2447 	pc = cc->cc_cache;
   2448 	cc->cc_misses++;
   2449 
   2450 	/*
   2451 	 * Nothing was available locally.  Try and grab a group
   2452 	 * from the cache.
   2453 	 */
   2454 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2455 		ncsw = curlwp->l_ncsw;
   2456 		mutex_enter(&pc->pc_lock);
   2457 		pc->pc_contended++;
   2458 
   2459 		/*
   2460 		 * If we context switched while locking, then
   2461 		 * our view of the per-CPU data is invalid:
   2462 		 * retry.
   2463 		 */
   2464 		if (curlwp->l_ncsw != ncsw) {
   2465 			mutex_exit(&pc->pc_lock);
   2466 			return true;
   2467 		}
   2468 	}
   2469 
   2470 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2471 		/*
   2472 		 * If there's a full group, release our empty
   2473 		 * group back to the cache.  Install the full
   2474 		 * group as cc_current and return.
   2475 		 */
   2476 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2477 			KASSERT(cur->pcg_avail == 0);
   2478 			cur->pcg_next = pc->pc_emptygroups;
   2479 			pc->pc_emptygroups = cur;
   2480 			pc->pc_nempty++;
   2481 		}
   2482 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2483 		cc->cc_current = pcg;
   2484 		pc->pc_fullgroups = pcg->pcg_next;
   2485 		pc->pc_hits++;
   2486 		pc->pc_nfull--;
   2487 		mutex_exit(&pc->pc_lock);
   2488 		return true;
   2489 	}
   2490 
   2491 	/*
   2492 	 * Nothing available locally or in cache.  Take the slow
   2493 	 * path: fetch a new object from the pool and construct
   2494 	 * it.
   2495 	 */
   2496 	pc->pc_misses++;
   2497 	mutex_exit(&pc->pc_lock);
   2498 	splx(s);
   2499 
   2500 	object = pool_get(&pc->pc_pool, flags);
   2501 	*objectp = object;
   2502 	if (__predict_false(object == NULL))
   2503 		return false;
   2504 
   2505 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2506 		pool_put(&pc->pc_pool, object);
   2507 		*objectp = NULL;
   2508 		return false;
   2509 	}
   2510 
   2511 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2512 	    (pc->pc_pool.pr_align - 1)) == 0);
   2513 
   2514 	if (pap != NULL) {
   2515 #ifdef POOL_VTOPHYS
   2516 		*pap = POOL_VTOPHYS(object);
   2517 #else
   2518 		*pap = POOL_PADDR_INVALID;
   2519 #endif
   2520 	}
   2521 
   2522 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2523 	return false;
   2524 }
   2525 
   2526 /*
   2527  * pool_cache_get{,_paddr}:
   2528  *
   2529  *	Get an object from a pool cache (optionally returning
   2530  *	the physical address of the object).
   2531  */
   2532 void *
   2533 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2534 {
   2535 	pool_cache_cpu_t *cc;
   2536 	pcg_t *pcg;
   2537 	void *object;
   2538 	int s;
   2539 
   2540 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2541 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2542 	    ("pool '%s' is IPL_NONE, but called from interrupt context\n",
   2543 	    pc->pc_pool.pr_wchan));
   2544 
   2545 	if (flags & PR_WAITOK) {
   2546 		ASSERT_SLEEPABLE();
   2547 	}
   2548 
   2549 	/* Lock out interrupts and disable preemption. */
   2550 	s = splvm();
   2551 	while (/* CONSTCOND */ true) {
   2552 		/* Try and allocate an object from the current group. */
   2553 		cc = pc->pc_cpus[curcpu()->ci_index];
   2554 		KASSERT(cc->cc_cache == pc);
   2555 	 	pcg = cc->cc_current;
   2556 		if (__predict_true(pcg->pcg_avail > 0)) {
   2557 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2558 			if (__predict_false(pap != NULL))
   2559 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2560 #if defined(DIAGNOSTIC)
   2561 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2562 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2563 			KASSERT(object != NULL);
   2564 #endif
   2565 			cc->cc_hits++;
   2566 			splx(s);
   2567 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2568 			return object;
   2569 		}
   2570 
   2571 		/*
   2572 		 * That failed.  If the previous group isn't empty, swap
   2573 		 * it with the current group and allocate from there.
   2574 		 */
   2575 		pcg = cc->cc_previous;
   2576 		if (__predict_true(pcg->pcg_avail > 0)) {
   2577 			cc->cc_previous = cc->cc_current;
   2578 			cc->cc_current = pcg;
   2579 			continue;
   2580 		}
   2581 
   2582 		/*
   2583 		 * Can't allocate from either group: try the slow path.
   2584 		 * If get_slow() allocated an object for us, or if
   2585 		 * no more objects are available, it will return false.
   2586 		 * Otherwise, we need to retry.
   2587 		 */
   2588 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2589 			break;
   2590 	}
   2591 
   2592 	return object;
   2593 }
   2594 
   2595 static bool __noinline
   2596 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2597 {
   2598 	pcg_t *pcg, *cur;
   2599 	uint64_t ncsw;
   2600 	pool_cache_t pc;
   2601 
   2602 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2603 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2604 
   2605 	pc = cc->cc_cache;
   2606 	pcg = NULL;
   2607 	cc->cc_misses++;
   2608 
   2609 	/*
   2610 	 * If there are no empty groups in the cache then allocate one
   2611 	 * while still unlocked.
   2612 	 */
   2613 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2614 		if (__predict_true(!pool_cache_disable)) {
   2615 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2616 		}
   2617 		if (__predict_true(pcg != NULL)) {
   2618 			pcg->pcg_avail = 0;
   2619 			pcg->pcg_size = pc->pc_pcgsize;
   2620 		}
   2621 	}
   2622 
   2623 	/* Lock the cache. */
   2624 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2625 		ncsw = curlwp->l_ncsw;
   2626 		mutex_enter(&pc->pc_lock);
   2627 		pc->pc_contended++;
   2628 
   2629 		/*
   2630 		 * If we context switched while locking, then our view of
   2631 		 * the per-CPU data is invalid: retry.
   2632 		 */
   2633 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2634 			mutex_exit(&pc->pc_lock);
   2635 			if (pcg != NULL) {
   2636 				pool_put(pc->pc_pcgpool, pcg);
   2637 			}
   2638 			return true;
   2639 		}
   2640 	}
   2641 
   2642 	/* If there are no empty groups in the cache then allocate one. */
   2643 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2644 		pcg = pc->pc_emptygroups;
   2645 		pc->pc_emptygroups = pcg->pcg_next;
   2646 		pc->pc_nempty--;
   2647 	}
   2648 
   2649 	/*
   2650 	 * If there's a empty group, release our full group back
   2651 	 * to the cache.  Install the empty group to the local CPU
   2652 	 * and return.
   2653 	 */
   2654 	if (pcg != NULL) {
   2655 		KASSERT(pcg->pcg_avail == 0);
   2656 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2657 			cc->cc_previous = pcg;
   2658 		} else {
   2659 			cur = cc->cc_current;
   2660 			if (__predict_true(cur != &pcg_dummy)) {
   2661 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2662 				cur->pcg_next = pc->pc_fullgroups;
   2663 				pc->pc_fullgroups = cur;
   2664 				pc->pc_nfull++;
   2665 			}
   2666 			cc->cc_current = pcg;
   2667 		}
   2668 		pc->pc_hits++;
   2669 		mutex_exit(&pc->pc_lock);
   2670 		return true;
   2671 	}
   2672 
   2673 	/*
   2674 	 * Nothing available locally or in cache, and we didn't
   2675 	 * allocate an empty group.  Take the slow path and destroy
   2676 	 * the object here and now.
   2677 	 */
   2678 	pc->pc_misses++;
   2679 	mutex_exit(&pc->pc_lock);
   2680 	splx(s);
   2681 	pool_cache_destruct_object(pc, object);
   2682 
   2683 	return false;
   2684 }
   2685 
   2686 /*
   2687  * pool_cache_put{,_paddr}:
   2688  *
   2689  *	Put an object back to the pool cache (optionally caching the
   2690  *	physical address of the object).
   2691  */
   2692 void
   2693 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2694 {
   2695 	pool_cache_cpu_t *cc;
   2696 	pcg_t *pcg;
   2697 	int s;
   2698 
   2699 	KASSERT(object != NULL);
   2700 	FREECHECK_IN(&pc->pc_freecheck, object);
   2701 
   2702 	/* Lock out interrupts and disable preemption. */
   2703 	s = splvm();
   2704 	while (/* CONSTCOND */ true) {
   2705 		/* If the current group isn't full, release it there. */
   2706 		cc = pc->pc_cpus[curcpu()->ci_index];
   2707 		KASSERT(cc->cc_cache == pc);
   2708 	 	pcg = cc->cc_current;
   2709 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2710 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2711 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2712 			pcg->pcg_avail++;
   2713 			cc->cc_hits++;
   2714 			splx(s);
   2715 			return;
   2716 		}
   2717 
   2718 		/*
   2719 		 * That failed.  If the previous group isn't full, swap
   2720 		 * it with the current group and try again.
   2721 		 */
   2722 		pcg = cc->cc_previous;
   2723 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2724 			cc->cc_previous = cc->cc_current;
   2725 			cc->cc_current = pcg;
   2726 			continue;
   2727 		}
   2728 
   2729 		/*
   2730 		 * Can't free to either group: try the slow path.
   2731 		 * If put_slow() releases the object for us, it
   2732 		 * will return false.  Otherwise we need to retry.
   2733 		 */
   2734 		if (!pool_cache_put_slow(cc, s, object))
   2735 			break;
   2736 	}
   2737 }
   2738 
   2739 /*
   2740  * pool_cache_xcall:
   2741  *
   2742  *	Transfer objects from the per-CPU cache to the global cache.
   2743  *	Run within a cross-call thread.
   2744  */
   2745 static void
   2746 pool_cache_xcall(pool_cache_t pc)
   2747 {
   2748 	pool_cache_cpu_t *cc;
   2749 	pcg_t *prev, *cur, **list;
   2750 	int s;
   2751 
   2752 	s = splvm();
   2753 	mutex_enter(&pc->pc_lock);
   2754 	cc = pc->pc_cpus[curcpu()->ci_index];
   2755 	cur = cc->cc_current;
   2756 	cc->cc_current = __UNCONST(&pcg_dummy);
   2757 	prev = cc->cc_previous;
   2758 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2759 	if (cur != &pcg_dummy) {
   2760 		if (cur->pcg_avail == cur->pcg_size) {
   2761 			list = &pc->pc_fullgroups;
   2762 			pc->pc_nfull++;
   2763 		} else if (cur->pcg_avail == 0) {
   2764 			list = &pc->pc_emptygroups;
   2765 			pc->pc_nempty++;
   2766 		} else {
   2767 			list = &pc->pc_partgroups;
   2768 			pc->pc_npart++;
   2769 		}
   2770 		cur->pcg_next = *list;
   2771 		*list = cur;
   2772 	}
   2773 	if (prev != &pcg_dummy) {
   2774 		if (prev->pcg_avail == prev->pcg_size) {
   2775 			list = &pc->pc_fullgroups;
   2776 			pc->pc_nfull++;
   2777 		} else if (prev->pcg_avail == 0) {
   2778 			list = &pc->pc_emptygroups;
   2779 			pc->pc_nempty++;
   2780 		} else {
   2781 			list = &pc->pc_partgroups;
   2782 			pc->pc_npart++;
   2783 		}
   2784 		prev->pcg_next = *list;
   2785 		*list = prev;
   2786 	}
   2787 	mutex_exit(&pc->pc_lock);
   2788 	splx(s);
   2789 }
   2790 
   2791 /*
   2792  * Pool backend allocators.
   2793  *
   2794  * Each pool has a backend allocator that handles allocation, deallocation,
   2795  * and any additional draining that might be needed.
   2796  *
   2797  * We provide two standard allocators:
   2798  *
   2799  *	pool_allocator_kmem - the default when no allocator is specified
   2800  *
   2801  *	pool_allocator_nointr - used for pools that will not be accessed
   2802  *	in interrupt context.
   2803  */
   2804 void	*pool_page_alloc(struct pool *, int);
   2805 void	pool_page_free(struct pool *, void *);
   2806 
   2807 #ifdef POOL_SUBPAGE
   2808 struct pool_allocator pool_allocator_kmem_fullpage = {
   2809 	pool_page_alloc, pool_page_free, 0,
   2810 	.pa_backingmapptr = &kmem_map,
   2811 };
   2812 #else
   2813 struct pool_allocator pool_allocator_kmem = {
   2814 	pool_page_alloc, pool_page_free, 0,
   2815 	.pa_backingmapptr = &kmem_map,
   2816 };
   2817 #endif
   2818 
   2819 void	*pool_page_alloc_nointr(struct pool *, int);
   2820 void	pool_page_free_nointr(struct pool *, void *);
   2821 
   2822 #ifdef POOL_SUBPAGE
   2823 struct pool_allocator pool_allocator_nointr_fullpage = {
   2824 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2825 	.pa_backingmapptr = &kernel_map,
   2826 };
   2827 #else
   2828 struct pool_allocator pool_allocator_nointr = {
   2829 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2830 	.pa_backingmapptr = &kernel_map,
   2831 };
   2832 #endif
   2833 
   2834 #ifdef POOL_SUBPAGE
   2835 void	*pool_subpage_alloc(struct pool *, int);
   2836 void	pool_subpage_free(struct pool *, void *);
   2837 
   2838 struct pool_allocator pool_allocator_kmem = {
   2839 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2840 	.pa_backingmapptr = &kmem_map,
   2841 };
   2842 
   2843 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2844 void	pool_subpage_free_nointr(struct pool *, void *);
   2845 
   2846 struct pool_allocator pool_allocator_nointr = {
   2847 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2848 	.pa_backingmapptr = &kmem_map,
   2849 };
   2850 #endif /* POOL_SUBPAGE */
   2851 
   2852 static void *
   2853 pool_allocator_alloc(struct pool *pp, int flags)
   2854 {
   2855 	struct pool_allocator *pa = pp->pr_alloc;
   2856 	void *res;
   2857 
   2858 	res = (*pa->pa_alloc)(pp, flags);
   2859 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2860 		/*
   2861 		 * We only run the drain hook here if PR_NOWAIT.
   2862 		 * In other cases, the hook will be run in
   2863 		 * pool_reclaim().
   2864 		 */
   2865 		if (pp->pr_drain_hook != NULL) {
   2866 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2867 			res = (*pa->pa_alloc)(pp, flags);
   2868 		}
   2869 	}
   2870 	return res;
   2871 }
   2872 
   2873 static void
   2874 pool_allocator_free(struct pool *pp, void *v)
   2875 {
   2876 	struct pool_allocator *pa = pp->pr_alloc;
   2877 
   2878 	(*pa->pa_free)(pp, v);
   2879 }
   2880 
   2881 void *
   2882 pool_page_alloc(struct pool *pp, int flags)
   2883 {
   2884 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2885 
   2886 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2887 }
   2888 
   2889 void
   2890 pool_page_free(struct pool *pp, void *v)
   2891 {
   2892 
   2893 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2894 }
   2895 
   2896 static void *
   2897 pool_page_alloc_meta(struct pool *pp, int flags)
   2898 {
   2899 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2900 
   2901 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2902 }
   2903 
   2904 static void
   2905 pool_page_free_meta(struct pool *pp, void *v)
   2906 {
   2907 
   2908 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2909 }
   2910 
   2911 #ifdef POOL_SUBPAGE
   2912 /* Sub-page allocator, for machines with large hardware pages. */
   2913 void *
   2914 pool_subpage_alloc(struct pool *pp, int flags)
   2915 {
   2916 	return pool_get(&psppool, flags);
   2917 }
   2918 
   2919 void
   2920 pool_subpage_free(struct pool *pp, void *v)
   2921 {
   2922 	pool_put(&psppool, v);
   2923 }
   2924 
   2925 /* We don't provide a real nointr allocator.  Maybe later. */
   2926 void *
   2927 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2928 {
   2929 
   2930 	return (pool_subpage_alloc(pp, flags));
   2931 }
   2932 
   2933 void
   2934 pool_subpage_free_nointr(struct pool *pp, void *v)
   2935 {
   2936 
   2937 	pool_subpage_free(pp, v);
   2938 }
   2939 #endif /* POOL_SUBPAGE */
   2940 void *
   2941 pool_page_alloc_nointr(struct pool *pp, int flags)
   2942 {
   2943 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2944 
   2945 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2946 }
   2947 
   2948 void
   2949 pool_page_free_nointr(struct pool *pp, void *v)
   2950 {
   2951 
   2952 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2953 }
   2954 
   2955 #if defined(DDB)
   2956 static bool
   2957 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2958 {
   2959 
   2960 	return (uintptr_t)ph->ph_page <= addr &&
   2961 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2962 }
   2963 
   2964 static bool
   2965 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2966 {
   2967 
   2968 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2969 }
   2970 
   2971 static bool
   2972 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2973 {
   2974 	int i;
   2975 
   2976 	if (pcg == NULL) {
   2977 		return false;
   2978 	}
   2979 	for (i = 0; i < pcg->pcg_avail; i++) {
   2980 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2981 			return true;
   2982 		}
   2983 	}
   2984 	return false;
   2985 }
   2986 
   2987 static bool
   2988 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2989 {
   2990 
   2991 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2992 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2993 		pool_item_bitmap_t *bitmap =
   2994 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2995 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2996 
   2997 		return (*bitmap & mask) == 0;
   2998 	} else {
   2999 		struct pool_item *pi;
   3000 
   3001 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3002 			if (pool_in_item(pp, pi, addr)) {
   3003 				return false;
   3004 			}
   3005 		}
   3006 		return true;
   3007 	}
   3008 }
   3009 
   3010 void
   3011 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3012 {
   3013 	struct pool *pp;
   3014 
   3015 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3016 		struct pool_item_header *ph;
   3017 		uintptr_t item;
   3018 		bool allocated = true;
   3019 		bool incache = false;
   3020 		bool incpucache = false;
   3021 		char cpucachestr[32];
   3022 
   3023 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3024 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3025 				if (pool_in_page(pp, ph, addr)) {
   3026 					goto found;
   3027 				}
   3028 			}
   3029 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3030 				if (pool_in_page(pp, ph, addr)) {
   3031 					allocated =
   3032 					    pool_allocated(pp, ph, addr);
   3033 					goto found;
   3034 				}
   3035 			}
   3036 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3037 				if (pool_in_page(pp, ph, addr)) {
   3038 					allocated = false;
   3039 					goto found;
   3040 				}
   3041 			}
   3042 			continue;
   3043 		} else {
   3044 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3045 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3046 				continue;
   3047 			}
   3048 			allocated = pool_allocated(pp, ph, addr);
   3049 		}
   3050 found:
   3051 		if (allocated && pp->pr_cache) {
   3052 			pool_cache_t pc = pp->pr_cache;
   3053 			struct pool_cache_group *pcg;
   3054 			int i;
   3055 
   3056 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3057 			    pcg = pcg->pcg_next) {
   3058 				if (pool_in_cg(pp, pcg, addr)) {
   3059 					incache = true;
   3060 					goto print;
   3061 				}
   3062 			}
   3063 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3064 				pool_cache_cpu_t *cc;
   3065 
   3066 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3067 					continue;
   3068 				}
   3069 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3070 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3071 					struct cpu_info *ci =
   3072 					    cpu_lookup(i);
   3073 
   3074 					incpucache = true;
   3075 					snprintf(cpucachestr,
   3076 					    sizeof(cpucachestr),
   3077 					    "cached by CPU %u",
   3078 					    ci->ci_index);
   3079 					goto print;
   3080 				}
   3081 			}
   3082 		}
   3083 print:
   3084 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3085 		item = item + rounddown(addr - item, pp->pr_size);
   3086 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3087 		    (void *)addr, item, (size_t)(addr - item),
   3088 		    pp->pr_wchan,
   3089 		    incpucache ? cpucachestr :
   3090 		    incache ? "cached" : allocated ? "allocated" : "free");
   3091 	}
   3092 }
   3093 #endif /* defined(DDB) */
   3094