subr_pool.c revision 1.190 1 /* $NetBSD: subr_pool.c,v 1.190 2011/09/27 01:02:39 jym Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.190 2011/09/27 01:02:39 jym Exp $");
36
37 #include "opt_ddb.h"
38 #include "opt_pool.h"
39 #include "opt_poollog.h"
40 #include "opt_lockdebug.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitops.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/pool.h>
50 #include <sys/syslog.h>
51 #include <sys/debug.h>
52 #include <sys/lockdebug.h>
53 #include <sys/xcall.h>
54 #include <sys/cpu.h>
55 #include <sys/atomic.h>
56
57 #include <uvm/uvm_extern.h>
58 #ifdef DIAGNOSTIC
59 #include <uvm/uvm_km.h> /* uvm_km_va_drain */
60 #endif
61
62 /*
63 * Pool resource management utility.
64 *
65 * Memory is allocated in pages which are split into pieces according to
66 * the pool item size. Each page is kept on one of three lists in the
67 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
68 * for empty, full and partially-full pages respectively. The individual
69 * pool items are on a linked list headed by `ph_itemlist' in each page
70 * header. The memory for building the page list is either taken from
71 * the allocated pages themselves (for small pool items) or taken from
72 * an internal pool of page headers (`phpool').
73 */
74
75 /* List of all pools */
76 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
77
78 /* Private pool for page header structures */
79 #define PHPOOL_MAX 8
80 static struct pool phpool[PHPOOL_MAX];
81 #define PHPOOL_FREELIST_NELEM(idx) \
82 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
83
84 #ifdef POOL_SUBPAGE
85 /* Pool of subpages for use by normal pools. */
86 static struct pool psppool;
87 #endif
88
89 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
90 SLIST_HEAD_INITIALIZER(pa_deferinitq);
91
92 static void *pool_page_alloc_meta(struct pool *, int);
93 static void pool_page_free_meta(struct pool *, void *);
94
95 /* allocator for pool metadata */
96 struct pool_allocator pool_allocator_meta = {
97 pool_page_alloc_meta, pool_page_free_meta,
98 .pa_backingmapptr = &kmem_map,
99 };
100
101 /* # of seconds to retain page after last use */
102 int pool_inactive_time = 10;
103
104 /* Next candidate for drainage (see pool_drain()) */
105 static struct pool *drainpp;
106
107 /* This lock protects both pool_head and drainpp. */
108 static kmutex_t pool_head_lock;
109 static kcondvar_t pool_busy;
110
111 /* This lock protects initialization of a potentially shared pool allocator */
112 static kmutex_t pool_allocator_lock;
113
114 typedef uint32_t pool_item_bitmap_t;
115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
116 #define BITMAP_MASK (BITMAP_SIZE - 1)
117
118 struct pool_item_header {
119 /* Page headers */
120 LIST_ENTRY(pool_item_header)
121 ph_pagelist; /* pool page list */
122 SPLAY_ENTRY(pool_item_header)
123 ph_node; /* Off-page page headers */
124 void * ph_page; /* this page's address */
125 uint32_t ph_time; /* last referenced */
126 uint16_t ph_nmissing; /* # of chunks in use */
127 uint16_t ph_off; /* start offset in page */
128 union {
129 /* !PR_NOTOUCH */
130 struct {
131 LIST_HEAD(, pool_item)
132 phu_itemlist; /* chunk list for this page */
133 } phu_normal;
134 /* PR_NOTOUCH */
135 struct {
136 pool_item_bitmap_t phu_bitmap[1];
137 } phu_notouch;
138 } ph_u;
139 };
140 #define ph_itemlist ph_u.phu_normal.phu_itemlist
141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
142
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 u_int pi_magic;
146 #endif
147 #define PI_MAGIC 0xdeaddeadU
148 /* Other entries use only this list entry */
149 LIST_ENTRY(pool_item) pi_list;
150 };
151
152 #define POOL_NEEDS_CATCHUP(pp) \
153 ((pp)->pr_nitems < (pp)->pr_minitems)
154
155 /*
156 * Pool cache management.
157 *
158 * Pool caches provide a way for constructed objects to be cached by the
159 * pool subsystem. This can lead to performance improvements by avoiding
160 * needless object construction/destruction; it is deferred until absolutely
161 * necessary.
162 *
163 * Caches are grouped into cache groups. Each cache group references up
164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
165 * object from the pool, it calls the object's constructor and places it
166 * into a cache group. When a cache group frees an object back to the
167 * pool, it first calls the object's destructor. This allows the object
168 * to persist in constructed form while freed to the cache.
169 *
170 * The pool references each cache, so that when a pool is drained by the
171 * pagedaemon, it can drain each individual cache as well. Each time a
172 * cache is drained, the most idle cache group is freed to the pool in
173 * its entirety.
174 *
175 * Pool caches are layed on top of pools. By layering them, we can avoid
176 * the complexity of cache management for pools which would not benefit
177 * from it.
178 */
179
180 static struct pool pcg_normal_pool;
181 static struct pool pcg_large_pool;
182 static struct pool cache_pool;
183 static struct pool cache_cpu_pool;
184
185 pool_cache_t pnbuf_cache; /* pathname buffer cache */
186
187 /* List of all caches. */
188 TAILQ_HEAD(,pool_cache) pool_cache_head =
189 TAILQ_HEAD_INITIALIZER(pool_cache_head);
190
191 int pool_cache_disable; /* global disable for caching */
192 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
193
194 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
195 void *);
196 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
197 void **, paddr_t *, int);
198 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
199 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
200 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
201 static void pool_cache_xcall(pool_cache_t);
202
203 static int pool_catchup(struct pool *);
204 static void pool_prime_page(struct pool *, void *,
205 struct pool_item_header *);
206 static void pool_update_curpage(struct pool *);
207
208 static int pool_grow(struct pool *, int);
209 static void *pool_allocator_alloc(struct pool *, int);
210 static void pool_allocator_free(struct pool *, void *);
211
212 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
213 void (*)(const char *, ...));
214 static void pool_print1(struct pool *, const char *,
215 void (*)(const char *, ...));
216
217 static int pool_chk_page(struct pool *, const char *,
218 struct pool_item_header *);
219
220 /*
221 * Pool log entry. An array of these is allocated in pool_init().
222 */
223 struct pool_log {
224 const char *pl_file;
225 long pl_line;
226 int pl_action;
227 #define PRLOG_GET 1
228 #define PRLOG_PUT 2
229 void *pl_addr;
230 };
231
232 #ifdef POOL_DIAGNOSTIC
233 /* Number of entries in pool log buffers */
234 #ifndef POOL_LOGSIZE
235 #define POOL_LOGSIZE 10
236 #endif
237
238 int pool_logsize = POOL_LOGSIZE;
239
240 static inline void
241 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
242 {
243 int n;
244 struct pool_log *pl;
245
246 if ((pp->pr_roflags & PR_LOGGING) == 0)
247 return;
248
249 if (pp->pr_log == NULL) {
250 if (kmem_map != NULL)
251 pp->pr_log = malloc(
252 pool_logsize * sizeof(struct pool_log),
253 M_TEMP, M_NOWAIT | M_ZERO);
254 if (pp->pr_log == NULL)
255 return;
256 pp->pr_curlogentry = 0;
257 pp->pr_logsize = pool_logsize;
258 }
259
260 /*
261 * Fill in the current entry. Wrap around and overwrite
262 * the oldest entry if necessary.
263 */
264 n = pp->pr_curlogentry;
265 pl = &pp->pr_log[n];
266 pl->pl_file = file;
267 pl->pl_line = line;
268 pl->pl_action = action;
269 pl->pl_addr = v;
270 if (++n >= pp->pr_logsize)
271 n = 0;
272 pp->pr_curlogentry = n;
273 }
274
275 static void
276 pr_printlog(struct pool *pp, struct pool_item *pi,
277 void (*pr)(const char *, ...))
278 {
279 int i = pp->pr_logsize;
280 int n = pp->pr_curlogentry;
281
282 if (pp->pr_log == NULL)
283 return;
284
285 /*
286 * Print all entries in this pool's log.
287 */
288 while (i-- > 0) {
289 struct pool_log *pl = &pp->pr_log[n];
290 if (pl->pl_action != 0) {
291 if (pi == NULL || pi == pl->pl_addr) {
292 (*pr)("\tlog entry %d:\n", i);
293 (*pr)("\t\taction = %s, addr = %p\n",
294 pl->pl_action == PRLOG_GET ? "get" : "put",
295 pl->pl_addr);
296 (*pr)("\t\tfile: %s at line %lu\n",
297 pl->pl_file, pl->pl_line);
298 }
299 }
300 if (++n >= pp->pr_logsize)
301 n = 0;
302 }
303 }
304
305 static inline void
306 pr_enter(struct pool *pp, const char *file, long line)
307 {
308
309 if (__predict_false(pp->pr_entered_file != NULL)) {
310 printf("pool %s: reentrancy at file %s line %ld\n",
311 pp->pr_wchan, file, line);
312 printf(" previous entry at file %s line %ld\n",
313 pp->pr_entered_file, pp->pr_entered_line);
314 panic("pr_enter");
315 }
316
317 pp->pr_entered_file = file;
318 pp->pr_entered_line = line;
319 }
320
321 static inline void
322 pr_leave(struct pool *pp)
323 {
324
325 if (__predict_false(pp->pr_entered_file == NULL)) {
326 printf("pool %s not entered?\n", pp->pr_wchan);
327 panic("pr_leave");
328 }
329
330 pp->pr_entered_file = NULL;
331 pp->pr_entered_line = 0;
332 }
333
334 static inline void
335 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
336 {
337
338 if (pp->pr_entered_file != NULL)
339 (*pr)("\n\tcurrently entered from file %s line %ld\n",
340 pp->pr_entered_file, pp->pr_entered_line);
341 }
342 #else
343 #define pr_log(pp, v, action, file, line)
344 #define pr_printlog(pp, pi, pr)
345 #define pr_enter(pp, file, line)
346 #define pr_leave(pp)
347 #define pr_enter_check(pp, pr)
348 #endif /* POOL_DIAGNOSTIC */
349
350 static inline unsigned int
351 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
352 const void *v)
353 {
354 const char *cp = v;
355 unsigned int idx;
356
357 KASSERT(pp->pr_roflags & PR_NOTOUCH);
358 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
359 KASSERT(idx < pp->pr_itemsperpage);
360 return idx;
361 }
362
363 static inline void
364 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
365 void *obj)
366 {
367 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
368 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
369 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
370
371 KASSERT((*bitmap & mask) == 0);
372 *bitmap |= mask;
373 }
374
375 static inline void *
376 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
377 {
378 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
379 unsigned int idx;
380 int i;
381
382 for (i = 0; ; i++) {
383 int bit;
384
385 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
386 bit = ffs32(bitmap[i]);
387 if (bit) {
388 pool_item_bitmap_t mask;
389
390 bit--;
391 idx = (i * BITMAP_SIZE) + bit;
392 mask = 1 << bit;
393 KASSERT((bitmap[i] & mask) != 0);
394 bitmap[i] &= ~mask;
395 break;
396 }
397 }
398 KASSERT(idx < pp->pr_itemsperpage);
399 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
400 }
401
402 static inline void
403 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
404 {
405 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
406 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
407 int i;
408
409 for (i = 0; i < n; i++) {
410 bitmap[i] = (pool_item_bitmap_t)-1;
411 }
412 }
413
414 static inline int
415 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
416 {
417
418 /*
419 * we consider pool_item_header with smaller ph_page bigger.
420 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
421 */
422
423 if (a->ph_page < b->ph_page)
424 return (1);
425 else if (a->ph_page > b->ph_page)
426 return (-1);
427 else
428 return (0);
429 }
430
431 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
432 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
433
434 static inline struct pool_item_header *
435 pr_find_pagehead_noalign(struct pool *pp, void *v)
436 {
437 struct pool_item_header *ph, tmp;
438
439 tmp.ph_page = (void *)(uintptr_t)v;
440 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
441 if (ph == NULL) {
442 ph = SPLAY_ROOT(&pp->pr_phtree);
443 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
444 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
445 }
446 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
447 }
448
449 return ph;
450 }
451
452 /*
453 * Return the pool page header based on item address.
454 */
455 static inline struct pool_item_header *
456 pr_find_pagehead(struct pool *pp, void *v)
457 {
458 struct pool_item_header *ph, tmp;
459
460 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
461 ph = pr_find_pagehead_noalign(pp, v);
462 } else {
463 void *page =
464 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
465
466 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
467 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
468 } else {
469 tmp.ph_page = page;
470 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
471 }
472 }
473
474 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
475 ((char *)ph->ph_page <= (char *)v &&
476 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
477 return ph;
478 }
479
480 static void
481 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
482 {
483 struct pool_item_header *ph;
484
485 while ((ph = LIST_FIRST(pq)) != NULL) {
486 LIST_REMOVE(ph, ph_pagelist);
487 pool_allocator_free(pp, ph->ph_page);
488 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
489 pool_put(pp->pr_phpool, ph);
490 }
491 }
492
493 /*
494 * Remove a page from the pool.
495 */
496 static inline void
497 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
498 struct pool_pagelist *pq)
499 {
500
501 KASSERT(mutex_owned(&pp->pr_lock));
502
503 /*
504 * If the page was idle, decrement the idle page count.
505 */
506 if (ph->ph_nmissing == 0) {
507 #ifdef DIAGNOSTIC
508 if (pp->pr_nidle == 0)
509 panic("pr_rmpage: nidle inconsistent");
510 if (pp->pr_nitems < pp->pr_itemsperpage)
511 panic("pr_rmpage: nitems inconsistent");
512 #endif
513 pp->pr_nidle--;
514 }
515
516 pp->pr_nitems -= pp->pr_itemsperpage;
517
518 /*
519 * Unlink the page from the pool and queue it for release.
520 */
521 LIST_REMOVE(ph, ph_pagelist);
522 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
523 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
524 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
525
526 pp->pr_npages--;
527 pp->pr_npagefree++;
528
529 pool_update_curpage(pp);
530 }
531
532 static bool
533 pa_starved_p(struct pool_allocator *pa)
534 {
535
536 if (pa->pa_backingmap != NULL) {
537 return vm_map_starved_p(pa->pa_backingmap);
538 }
539 return false;
540 }
541
542 static int
543 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
544 {
545 struct pool *pp = obj;
546 struct pool_allocator *pa = pp->pr_alloc;
547
548 KASSERT(&pp->pr_reclaimerentry == ce);
549 pool_reclaim(pp);
550 if (!pa_starved_p(pa)) {
551 return CALLBACK_CHAIN_ABORT;
552 }
553 return CALLBACK_CHAIN_CONTINUE;
554 }
555
556 static void
557 pool_reclaim_register(struct pool *pp)
558 {
559 struct vm_map *map = pp->pr_alloc->pa_backingmap;
560 int s;
561
562 if (map == NULL) {
563 return;
564 }
565
566 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
567 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
568 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
569 splx(s);
570
571 #ifdef DIAGNOSTIC
572 /* Diagnostic drain attempt. */
573 uvm_km_va_drain(map, 0);
574 #endif
575 }
576
577 static void
578 pool_reclaim_unregister(struct pool *pp)
579 {
580 struct vm_map *map = pp->pr_alloc->pa_backingmap;
581 int s;
582
583 if (map == NULL) {
584 return;
585 }
586
587 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
588 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
589 &pp->pr_reclaimerentry);
590 splx(s);
591 }
592
593 static void
594 pa_reclaim_register(struct pool_allocator *pa)
595 {
596 struct vm_map *map = *pa->pa_backingmapptr;
597 struct pool *pp;
598
599 KASSERT(pa->pa_backingmap == NULL);
600 if (map == NULL) {
601 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
602 return;
603 }
604 pa->pa_backingmap = map;
605 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
606 pool_reclaim_register(pp);
607 }
608 }
609
610 /*
611 * Initialize all the pools listed in the "pools" link set.
612 */
613 void
614 pool_subsystem_init(void)
615 {
616 struct pool_allocator *pa;
617
618 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
619 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
620 cv_init(&pool_busy, "poolbusy");
621
622 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
623 KASSERT(pa->pa_backingmapptr != NULL);
624 KASSERT(*pa->pa_backingmapptr != NULL);
625 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
626 pa_reclaim_register(pa);
627 }
628
629 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
630 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
631
632 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
633 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
634 }
635
636 /*
637 * Initialize the given pool resource structure.
638 *
639 * We export this routine to allow other kernel parts to declare
640 * static pools that must be initialized before malloc() is available.
641 */
642 void
643 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
644 const char *wchan, struct pool_allocator *palloc, int ipl)
645 {
646 struct pool *pp1;
647 size_t trysize, phsize;
648 int off, slack;
649
650 #ifdef DEBUG
651 /*
652 * Check that the pool hasn't already been initialised and
653 * added to the list of all pools.
654 */
655 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
656 if (pp == pp1)
657 panic("pool_init: pool %s already initialised",
658 wchan);
659 }
660 #endif
661
662 #ifdef POOL_DIAGNOSTIC
663 /*
664 * Always log if POOL_DIAGNOSTIC is defined.
665 */
666 if (pool_logsize != 0)
667 flags |= PR_LOGGING;
668 #endif
669
670 if (palloc == NULL)
671 palloc = &pool_allocator_kmem;
672 #ifdef POOL_SUBPAGE
673 if (size > palloc->pa_pagesz) {
674 if (palloc == &pool_allocator_kmem)
675 palloc = &pool_allocator_kmem_fullpage;
676 else if (palloc == &pool_allocator_nointr)
677 palloc = &pool_allocator_nointr_fullpage;
678 }
679 #endif /* POOL_SUBPAGE */
680 if (!cold)
681 mutex_enter(&pool_allocator_lock);
682 if (palloc->pa_refcnt++ == 0) {
683 if (palloc->pa_pagesz == 0)
684 palloc->pa_pagesz = PAGE_SIZE;
685
686 TAILQ_INIT(&palloc->pa_list);
687
688 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
689 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
690 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
691
692 if (palloc->pa_backingmapptr != NULL) {
693 pa_reclaim_register(palloc);
694 }
695 }
696 if (!cold)
697 mutex_exit(&pool_allocator_lock);
698
699 if (align == 0)
700 align = ALIGN(1);
701
702 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
703 size = sizeof(struct pool_item);
704
705 size = roundup(size, align);
706 #ifdef DIAGNOSTIC
707 if (size > palloc->pa_pagesz)
708 panic("pool_init: pool item size (%zu) too large", size);
709 #endif
710
711 /*
712 * Initialize the pool structure.
713 */
714 LIST_INIT(&pp->pr_emptypages);
715 LIST_INIT(&pp->pr_fullpages);
716 LIST_INIT(&pp->pr_partpages);
717 pp->pr_cache = NULL;
718 pp->pr_curpage = NULL;
719 pp->pr_npages = 0;
720 pp->pr_minitems = 0;
721 pp->pr_minpages = 0;
722 pp->pr_maxpages = UINT_MAX;
723 pp->pr_roflags = flags;
724 pp->pr_flags = 0;
725 pp->pr_size = size;
726 pp->pr_align = align;
727 pp->pr_wchan = wchan;
728 pp->pr_alloc = palloc;
729 pp->pr_nitems = 0;
730 pp->pr_nout = 0;
731 pp->pr_hardlimit = UINT_MAX;
732 pp->pr_hardlimit_warning = NULL;
733 pp->pr_hardlimit_ratecap.tv_sec = 0;
734 pp->pr_hardlimit_ratecap.tv_usec = 0;
735 pp->pr_hardlimit_warning_last.tv_sec = 0;
736 pp->pr_hardlimit_warning_last.tv_usec = 0;
737 pp->pr_drain_hook = NULL;
738 pp->pr_drain_hook_arg = NULL;
739 pp->pr_freecheck = NULL;
740
741 /*
742 * Decide whether to put the page header off page to avoid
743 * wasting too large a part of the page or too big item.
744 * Off-page page headers go on a hash table, so we can match
745 * a returned item with its header based on the page address.
746 * We use 1/16 of the page size and about 8 times of the item
747 * size as the threshold (XXX: tune)
748 *
749 * However, we'll put the header into the page if we can put
750 * it without wasting any items.
751 *
752 * Silently enforce `0 <= ioff < align'.
753 */
754 pp->pr_itemoffset = ioff %= align;
755 /* See the comment below about reserved bytes. */
756 trysize = palloc->pa_pagesz - ((align - ioff) % align);
757 phsize = ALIGN(sizeof(struct pool_item_header));
758 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
759 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
760 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
761 /* Use the end of the page for the page header */
762 pp->pr_roflags |= PR_PHINPAGE;
763 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
764 } else {
765 /* The page header will be taken from our page header pool */
766 pp->pr_phoffset = 0;
767 off = palloc->pa_pagesz;
768 SPLAY_INIT(&pp->pr_phtree);
769 }
770
771 /*
772 * Alignment is to take place at `ioff' within the item. This means
773 * we must reserve up to `align - 1' bytes on the page to allow
774 * appropriate positioning of each item.
775 */
776 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
777 KASSERT(pp->pr_itemsperpage != 0);
778 if ((pp->pr_roflags & PR_NOTOUCH)) {
779 int idx;
780
781 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
782 idx++) {
783 /* nothing */
784 }
785 if (idx >= PHPOOL_MAX) {
786 /*
787 * if you see this panic, consider to tweak
788 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
789 */
790 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
791 pp->pr_wchan, pp->pr_itemsperpage);
792 }
793 pp->pr_phpool = &phpool[idx];
794 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
795 pp->pr_phpool = &phpool[0];
796 }
797 #if defined(DIAGNOSTIC)
798 else {
799 pp->pr_phpool = NULL;
800 }
801 #endif
802
803 /*
804 * Use the slack between the chunks and the page header
805 * for "cache coloring".
806 */
807 slack = off - pp->pr_itemsperpage * pp->pr_size;
808 pp->pr_maxcolor = (slack / align) * align;
809 pp->pr_curcolor = 0;
810
811 pp->pr_nget = 0;
812 pp->pr_nfail = 0;
813 pp->pr_nput = 0;
814 pp->pr_npagealloc = 0;
815 pp->pr_npagefree = 0;
816 pp->pr_hiwat = 0;
817 pp->pr_nidle = 0;
818 pp->pr_refcnt = 0;
819
820 pp->pr_log = NULL;
821
822 pp->pr_entered_file = NULL;
823 pp->pr_entered_line = 0;
824
825 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
826 cv_init(&pp->pr_cv, wchan);
827 pp->pr_ipl = ipl;
828
829 /*
830 * Initialize private page header pool and cache magazine pool if we
831 * haven't done so yet.
832 * XXX LOCKING.
833 */
834 if (phpool[0].pr_size == 0) {
835 int idx;
836 for (idx = 0; idx < PHPOOL_MAX; idx++) {
837 static char phpool_names[PHPOOL_MAX][6+1+6+1];
838 int nelem;
839 size_t sz;
840
841 nelem = PHPOOL_FREELIST_NELEM(idx);
842 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
843 "phpool-%d", nelem);
844 sz = sizeof(struct pool_item_header);
845 if (nelem) {
846 sz = offsetof(struct pool_item_header,
847 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
848 }
849 pool_init(&phpool[idx], sz, 0, 0, 0,
850 phpool_names[idx], &pool_allocator_meta, IPL_VM);
851 }
852 #ifdef POOL_SUBPAGE
853 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
854 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
855 #endif
856
857 size = sizeof(pcg_t) +
858 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
859 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
860 "pcgnormal", &pool_allocator_meta, IPL_VM);
861
862 size = sizeof(pcg_t) +
863 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
864 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
865 "pcglarge", &pool_allocator_meta, IPL_VM);
866 }
867
868 /* Insert into the list of all pools. */
869 if (!cold)
870 mutex_enter(&pool_head_lock);
871 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
872 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
873 break;
874 }
875 if (pp1 == NULL)
876 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
877 else
878 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
879 if (!cold)
880 mutex_exit(&pool_head_lock);
881
882 /* Insert this into the list of pools using this allocator. */
883 if (!cold)
884 mutex_enter(&palloc->pa_lock);
885 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
886 if (!cold)
887 mutex_exit(&palloc->pa_lock);
888
889 pool_reclaim_register(pp);
890 }
891
892 /*
893 * De-commision a pool resource.
894 */
895 void
896 pool_destroy(struct pool *pp)
897 {
898 struct pool_pagelist pq;
899 struct pool_item_header *ph;
900
901 /* Remove from global pool list */
902 mutex_enter(&pool_head_lock);
903 while (pp->pr_refcnt != 0)
904 cv_wait(&pool_busy, &pool_head_lock);
905 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
906 if (drainpp == pp)
907 drainpp = NULL;
908 mutex_exit(&pool_head_lock);
909
910 /* Remove this pool from its allocator's list of pools. */
911 pool_reclaim_unregister(pp);
912 mutex_enter(&pp->pr_alloc->pa_lock);
913 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
914 mutex_exit(&pp->pr_alloc->pa_lock);
915
916 mutex_enter(&pool_allocator_lock);
917 if (--pp->pr_alloc->pa_refcnt == 0)
918 mutex_destroy(&pp->pr_alloc->pa_lock);
919 mutex_exit(&pool_allocator_lock);
920
921 mutex_enter(&pp->pr_lock);
922
923 KASSERT(pp->pr_cache == NULL);
924
925 #ifdef DIAGNOSTIC
926 if (pp->pr_nout != 0) {
927 pr_printlog(pp, NULL, printf);
928 panic("pool_destroy: pool busy: still out: %u",
929 pp->pr_nout);
930 }
931 #endif
932
933 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
934 KASSERT(LIST_EMPTY(&pp->pr_partpages));
935
936 /* Remove all pages */
937 LIST_INIT(&pq);
938 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
939 pr_rmpage(pp, ph, &pq);
940
941 mutex_exit(&pp->pr_lock);
942
943 pr_pagelist_free(pp, &pq);
944
945 #ifdef POOL_DIAGNOSTIC
946 if (pp->pr_log != NULL) {
947 free(pp->pr_log, M_TEMP);
948 pp->pr_log = NULL;
949 }
950 #endif
951
952 cv_destroy(&pp->pr_cv);
953 mutex_destroy(&pp->pr_lock);
954 }
955
956 void
957 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
958 {
959
960 /* XXX no locking -- must be used just after pool_init() */
961 #ifdef DIAGNOSTIC
962 if (pp->pr_drain_hook != NULL)
963 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
964 #endif
965 pp->pr_drain_hook = fn;
966 pp->pr_drain_hook_arg = arg;
967 }
968
969 static struct pool_item_header *
970 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
971 {
972 struct pool_item_header *ph;
973
974 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
975 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
976 else
977 ph = pool_get(pp->pr_phpool, flags);
978
979 return (ph);
980 }
981
982 /*
983 * Grab an item from the pool.
984 */
985 void *
986 #ifdef POOL_DIAGNOSTIC
987 _pool_get(struct pool *pp, int flags, const char *file, long line)
988 #else
989 pool_get(struct pool *pp, int flags)
990 #endif
991 {
992 struct pool_item *pi;
993 struct pool_item_header *ph;
994 void *v;
995
996 #ifdef DIAGNOSTIC
997 if (pp->pr_itemsperpage == 0)
998 panic("pool_get: pool '%s': pr_itemsperpage is zero, "
999 "pool not initialized?", pp->pr_wchan);
1000 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
1001 !cold && panicstr == NULL)
1002 panic("pool '%s' is IPL_NONE, but called from "
1003 "interrupt context\n", pp->pr_wchan);
1004 #endif
1005 if (flags & PR_WAITOK) {
1006 ASSERT_SLEEPABLE();
1007 }
1008
1009 mutex_enter(&pp->pr_lock);
1010 pr_enter(pp, file, line);
1011
1012 startover:
1013 /*
1014 * Check to see if we've reached the hard limit. If we have,
1015 * and we can wait, then wait until an item has been returned to
1016 * the pool.
1017 */
1018 #ifdef DIAGNOSTIC
1019 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1020 pr_leave(pp);
1021 mutex_exit(&pp->pr_lock);
1022 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1023 }
1024 #endif
1025 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1026 if (pp->pr_drain_hook != NULL) {
1027 /*
1028 * Since the drain hook is going to free things
1029 * back to the pool, unlock, call the hook, re-lock,
1030 * and check the hardlimit condition again.
1031 */
1032 pr_leave(pp);
1033 mutex_exit(&pp->pr_lock);
1034 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1035 mutex_enter(&pp->pr_lock);
1036 pr_enter(pp, file, line);
1037 if (pp->pr_nout < pp->pr_hardlimit)
1038 goto startover;
1039 }
1040
1041 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1042 /*
1043 * XXX: A warning isn't logged in this case. Should
1044 * it be?
1045 */
1046 pp->pr_flags |= PR_WANTED;
1047 pr_leave(pp);
1048 cv_wait(&pp->pr_cv, &pp->pr_lock);
1049 pr_enter(pp, file, line);
1050 goto startover;
1051 }
1052
1053 /*
1054 * Log a message that the hard limit has been hit.
1055 */
1056 if (pp->pr_hardlimit_warning != NULL &&
1057 ratecheck(&pp->pr_hardlimit_warning_last,
1058 &pp->pr_hardlimit_ratecap))
1059 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1060
1061 pp->pr_nfail++;
1062
1063 pr_leave(pp);
1064 mutex_exit(&pp->pr_lock);
1065 return (NULL);
1066 }
1067
1068 /*
1069 * The convention we use is that if `curpage' is not NULL, then
1070 * it points at a non-empty bucket. In particular, `curpage'
1071 * never points at a page header which has PR_PHINPAGE set and
1072 * has no items in its bucket.
1073 */
1074 if ((ph = pp->pr_curpage) == NULL) {
1075 int error;
1076
1077 #ifdef DIAGNOSTIC
1078 if (pp->pr_nitems != 0) {
1079 mutex_exit(&pp->pr_lock);
1080 printf("pool_get: %s: curpage NULL, nitems %u\n",
1081 pp->pr_wchan, pp->pr_nitems);
1082 panic("pool_get: nitems inconsistent");
1083 }
1084 #endif
1085
1086 /*
1087 * Call the back-end page allocator for more memory.
1088 * Release the pool lock, as the back-end page allocator
1089 * may block.
1090 */
1091 pr_leave(pp);
1092 error = pool_grow(pp, flags);
1093 pr_enter(pp, file, line);
1094 if (error != 0) {
1095 /*
1096 * We were unable to allocate a page or item
1097 * header, but we released the lock during
1098 * allocation, so perhaps items were freed
1099 * back to the pool. Check for this case.
1100 */
1101 if (pp->pr_curpage != NULL)
1102 goto startover;
1103
1104 pp->pr_nfail++;
1105 pr_leave(pp);
1106 mutex_exit(&pp->pr_lock);
1107 return (NULL);
1108 }
1109
1110 /* Start the allocation process over. */
1111 goto startover;
1112 }
1113 if (pp->pr_roflags & PR_NOTOUCH) {
1114 #ifdef DIAGNOSTIC
1115 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1116 pr_leave(pp);
1117 mutex_exit(&pp->pr_lock);
1118 panic("pool_get: %s: page empty", pp->pr_wchan);
1119 }
1120 #endif
1121 v = pr_item_notouch_get(pp, ph);
1122 #ifdef POOL_DIAGNOSTIC
1123 pr_log(pp, v, PRLOG_GET, file, line);
1124 #endif
1125 } else {
1126 v = pi = LIST_FIRST(&ph->ph_itemlist);
1127 if (__predict_false(v == NULL)) {
1128 pr_leave(pp);
1129 mutex_exit(&pp->pr_lock);
1130 panic("pool_get: %s: page empty", pp->pr_wchan);
1131 }
1132 #ifdef DIAGNOSTIC
1133 if (__predict_false(pp->pr_nitems == 0)) {
1134 pr_leave(pp);
1135 mutex_exit(&pp->pr_lock);
1136 printf("pool_get: %s: items on itemlist, nitems %u\n",
1137 pp->pr_wchan, pp->pr_nitems);
1138 panic("pool_get: nitems inconsistent");
1139 }
1140 #endif
1141
1142 #ifdef POOL_DIAGNOSTIC
1143 pr_log(pp, v, PRLOG_GET, file, line);
1144 #endif
1145
1146 #ifdef DIAGNOSTIC
1147 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1148 pr_printlog(pp, pi, printf);
1149 panic("pool_get(%s): free list modified: "
1150 "magic=%x; page %p; item addr %p\n",
1151 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1152 }
1153 #endif
1154
1155 /*
1156 * Remove from item list.
1157 */
1158 LIST_REMOVE(pi, pi_list);
1159 }
1160 pp->pr_nitems--;
1161 pp->pr_nout++;
1162 if (ph->ph_nmissing == 0) {
1163 #ifdef DIAGNOSTIC
1164 if (__predict_false(pp->pr_nidle == 0))
1165 panic("pool_get: nidle inconsistent");
1166 #endif
1167 pp->pr_nidle--;
1168
1169 /*
1170 * This page was previously empty. Move it to the list of
1171 * partially-full pages. This page is already curpage.
1172 */
1173 LIST_REMOVE(ph, ph_pagelist);
1174 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1175 }
1176 ph->ph_nmissing++;
1177 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1178 #ifdef DIAGNOSTIC
1179 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1180 !LIST_EMPTY(&ph->ph_itemlist))) {
1181 pr_leave(pp);
1182 mutex_exit(&pp->pr_lock);
1183 panic("pool_get: %s: nmissing inconsistent",
1184 pp->pr_wchan);
1185 }
1186 #endif
1187 /*
1188 * This page is now full. Move it to the full list
1189 * and select a new current page.
1190 */
1191 LIST_REMOVE(ph, ph_pagelist);
1192 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1193 pool_update_curpage(pp);
1194 }
1195
1196 pp->pr_nget++;
1197 pr_leave(pp);
1198
1199 /*
1200 * If we have a low water mark and we are now below that low
1201 * water mark, add more items to the pool.
1202 */
1203 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1204 /*
1205 * XXX: Should we log a warning? Should we set up a timeout
1206 * to try again in a second or so? The latter could break
1207 * a caller's assumptions about interrupt protection, etc.
1208 */
1209 }
1210
1211 mutex_exit(&pp->pr_lock);
1212 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1213 FREECHECK_OUT(&pp->pr_freecheck, v);
1214 return (v);
1215 }
1216
1217 /*
1218 * Internal version of pool_put(). Pool is already locked/entered.
1219 */
1220 static void
1221 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1222 {
1223 struct pool_item *pi = v;
1224 struct pool_item_header *ph;
1225
1226 KASSERT(mutex_owned(&pp->pr_lock));
1227 FREECHECK_IN(&pp->pr_freecheck, v);
1228 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1229
1230 #ifdef DIAGNOSTIC
1231 if (__predict_false(pp->pr_nout == 0)) {
1232 printf("pool %s: putting with none out\n",
1233 pp->pr_wchan);
1234 panic("pool_put");
1235 }
1236 #endif
1237
1238 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1239 pr_printlog(pp, NULL, printf);
1240 panic("pool_put: %s: page header missing", pp->pr_wchan);
1241 }
1242
1243 /*
1244 * Return to item list.
1245 */
1246 if (pp->pr_roflags & PR_NOTOUCH) {
1247 pr_item_notouch_put(pp, ph, v);
1248 } else {
1249 #ifdef DIAGNOSTIC
1250 pi->pi_magic = PI_MAGIC;
1251 #endif
1252 #ifdef DEBUG
1253 {
1254 int i, *ip = v;
1255
1256 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1257 *ip++ = PI_MAGIC;
1258 }
1259 }
1260 #endif
1261
1262 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1263 }
1264 KDASSERT(ph->ph_nmissing != 0);
1265 ph->ph_nmissing--;
1266 pp->pr_nput++;
1267 pp->pr_nitems++;
1268 pp->pr_nout--;
1269
1270 /* Cancel "pool empty" condition if it exists */
1271 if (pp->pr_curpage == NULL)
1272 pp->pr_curpage = ph;
1273
1274 if (pp->pr_flags & PR_WANTED) {
1275 pp->pr_flags &= ~PR_WANTED;
1276 cv_broadcast(&pp->pr_cv);
1277 }
1278
1279 /*
1280 * If this page is now empty, do one of two things:
1281 *
1282 * (1) If we have more pages than the page high water mark,
1283 * free the page back to the system. ONLY CONSIDER
1284 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1285 * CLAIM.
1286 *
1287 * (2) Otherwise, move the page to the empty page list.
1288 *
1289 * Either way, select a new current page (so we use a partially-full
1290 * page if one is available).
1291 */
1292 if (ph->ph_nmissing == 0) {
1293 pp->pr_nidle++;
1294 if (pp->pr_npages > pp->pr_minpages &&
1295 pp->pr_npages > pp->pr_maxpages) {
1296 pr_rmpage(pp, ph, pq);
1297 } else {
1298 LIST_REMOVE(ph, ph_pagelist);
1299 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1300
1301 /*
1302 * Update the timestamp on the page. A page must
1303 * be idle for some period of time before it can
1304 * be reclaimed by the pagedaemon. This minimizes
1305 * ping-pong'ing for memory.
1306 *
1307 * note for 64-bit time_t: truncating to 32-bit is not
1308 * a problem for our usage.
1309 */
1310 ph->ph_time = time_uptime;
1311 }
1312 pool_update_curpage(pp);
1313 }
1314
1315 /*
1316 * If the page was previously completely full, move it to the
1317 * partially-full list and make it the current page. The next
1318 * allocation will get the item from this page, instead of
1319 * further fragmenting the pool.
1320 */
1321 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1322 LIST_REMOVE(ph, ph_pagelist);
1323 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1324 pp->pr_curpage = ph;
1325 }
1326 }
1327
1328 /*
1329 * Return resource to the pool.
1330 */
1331 #ifdef POOL_DIAGNOSTIC
1332 void
1333 _pool_put(struct pool *pp, void *v, const char *file, long line)
1334 {
1335 struct pool_pagelist pq;
1336
1337 LIST_INIT(&pq);
1338
1339 mutex_enter(&pp->pr_lock);
1340 pr_enter(pp, file, line);
1341
1342 pr_log(pp, v, PRLOG_PUT, file, line);
1343
1344 pool_do_put(pp, v, &pq);
1345
1346 pr_leave(pp);
1347 mutex_exit(&pp->pr_lock);
1348
1349 pr_pagelist_free(pp, &pq);
1350 }
1351 #undef pool_put
1352 #endif /* POOL_DIAGNOSTIC */
1353
1354 void
1355 pool_put(struct pool *pp, void *v)
1356 {
1357 struct pool_pagelist pq;
1358
1359 LIST_INIT(&pq);
1360
1361 mutex_enter(&pp->pr_lock);
1362 pool_do_put(pp, v, &pq);
1363 mutex_exit(&pp->pr_lock);
1364
1365 pr_pagelist_free(pp, &pq);
1366 }
1367
1368 #ifdef POOL_DIAGNOSTIC
1369 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1370 #endif
1371
1372 /*
1373 * pool_grow: grow a pool by a page.
1374 *
1375 * => called with pool locked.
1376 * => unlock and relock the pool.
1377 * => return with pool locked.
1378 */
1379
1380 static int
1381 pool_grow(struct pool *pp, int flags)
1382 {
1383 struct pool_item_header *ph = NULL;
1384 char *cp;
1385
1386 mutex_exit(&pp->pr_lock);
1387 cp = pool_allocator_alloc(pp, flags);
1388 if (__predict_true(cp != NULL)) {
1389 ph = pool_alloc_item_header(pp, cp, flags);
1390 }
1391 if (__predict_false(cp == NULL || ph == NULL)) {
1392 if (cp != NULL) {
1393 pool_allocator_free(pp, cp);
1394 }
1395 mutex_enter(&pp->pr_lock);
1396 return ENOMEM;
1397 }
1398
1399 mutex_enter(&pp->pr_lock);
1400 pool_prime_page(pp, cp, ph);
1401 pp->pr_npagealloc++;
1402 return 0;
1403 }
1404
1405 /*
1406 * Add N items to the pool.
1407 */
1408 int
1409 pool_prime(struct pool *pp, int n)
1410 {
1411 int newpages;
1412 int error = 0;
1413
1414 mutex_enter(&pp->pr_lock);
1415
1416 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1417
1418 while (newpages-- > 0) {
1419 error = pool_grow(pp, PR_NOWAIT);
1420 if (error) {
1421 break;
1422 }
1423 pp->pr_minpages++;
1424 }
1425
1426 if (pp->pr_minpages >= pp->pr_maxpages)
1427 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1428
1429 mutex_exit(&pp->pr_lock);
1430 return error;
1431 }
1432
1433 /*
1434 * Add a page worth of items to the pool.
1435 *
1436 * Note, we must be called with the pool descriptor LOCKED.
1437 */
1438 static void
1439 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1440 {
1441 struct pool_item *pi;
1442 void *cp = storage;
1443 const unsigned int align = pp->pr_align;
1444 const unsigned int ioff = pp->pr_itemoffset;
1445 int n;
1446
1447 KASSERT(mutex_owned(&pp->pr_lock));
1448
1449 #ifdef DIAGNOSTIC
1450 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1451 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1452 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1453 #endif
1454
1455 /*
1456 * Insert page header.
1457 */
1458 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1459 LIST_INIT(&ph->ph_itemlist);
1460 ph->ph_page = storage;
1461 ph->ph_nmissing = 0;
1462 ph->ph_time = time_uptime;
1463 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1464 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1465
1466 pp->pr_nidle++;
1467
1468 /*
1469 * Color this page.
1470 */
1471 ph->ph_off = pp->pr_curcolor;
1472 cp = (char *)cp + ph->ph_off;
1473 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1474 pp->pr_curcolor = 0;
1475
1476 /*
1477 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1478 */
1479 if (ioff != 0)
1480 cp = (char *)cp + align - ioff;
1481
1482 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1483
1484 /*
1485 * Insert remaining chunks on the bucket list.
1486 */
1487 n = pp->pr_itemsperpage;
1488 pp->pr_nitems += n;
1489
1490 if (pp->pr_roflags & PR_NOTOUCH) {
1491 pr_item_notouch_init(pp, ph);
1492 } else {
1493 while (n--) {
1494 pi = (struct pool_item *)cp;
1495
1496 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1497
1498 /* Insert on page list */
1499 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1500 #ifdef DIAGNOSTIC
1501 pi->pi_magic = PI_MAGIC;
1502 #endif
1503 cp = (char *)cp + pp->pr_size;
1504
1505 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1506 }
1507 }
1508
1509 /*
1510 * If the pool was depleted, point at the new page.
1511 */
1512 if (pp->pr_curpage == NULL)
1513 pp->pr_curpage = ph;
1514
1515 if (++pp->pr_npages > pp->pr_hiwat)
1516 pp->pr_hiwat = pp->pr_npages;
1517 }
1518
1519 /*
1520 * Used by pool_get() when nitems drops below the low water mark. This
1521 * is used to catch up pr_nitems with the low water mark.
1522 *
1523 * Note 1, we never wait for memory here, we let the caller decide what to do.
1524 *
1525 * Note 2, we must be called with the pool already locked, and we return
1526 * with it locked.
1527 */
1528 static int
1529 pool_catchup(struct pool *pp)
1530 {
1531 int error = 0;
1532
1533 while (POOL_NEEDS_CATCHUP(pp)) {
1534 error = pool_grow(pp, PR_NOWAIT);
1535 if (error) {
1536 break;
1537 }
1538 }
1539 return error;
1540 }
1541
1542 static void
1543 pool_update_curpage(struct pool *pp)
1544 {
1545
1546 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1547 if (pp->pr_curpage == NULL) {
1548 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1549 }
1550 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1551 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1552 }
1553
1554 void
1555 pool_setlowat(struct pool *pp, int n)
1556 {
1557
1558 mutex_enter(&pp->pr_lock);
1559
1560 pp->pr_minitems = n;
1561 pp->pr_minpages = (n == 0)
1562 ? 0
1563 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1564
1565 /* Make sure we're caught up with the newly-set low water mark. */
1566 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1567 /*
1568 * XXX: Should we log a warning? Should we set up a timeout
1569 * to try again in a second or so? The latter could break
1570 * a caller's assumptions about interrupt protection, etc.
1571 */
1572 }
1573
1574 mutex_exit(&pp->pr_lock);
1575 }
1576
1577 void
1578 pool_sethiwat(struct pool *pp, int n)
1579 {
1580
1581 mutex_enter(&pp->pr_lock);
1582
1583 pp->pr_maxpages = (n == 0)
1584 ? 0
1585 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1586
1587 mutex_exit(&pp->pr_lock);
1588 }
1589
1590 void
1591 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1592 {
1593
1594 mutex_enter(&pp->pr_lock);
1595
1596 pp->pr_hardlimit = n;
1597 pp->pr_hardlimit_warning = warnmess;
1598 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1599 pp->pr_hardlimit_warning_last.tv_sec = 0;
1600 pp->pr_hardlimit_warning_last.tv_usec = 0;
1601
1602 /*
1603 * In-line version of pool_sethiwat(), because we don't want to
1604 * release the lock.
1605 */
1606 pp->pr_maxpages = (n == 0)
1607 ? 0
1608 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1609
1610 mutex_exit(&pp->pr_lock);
1611 }
1612
1613 /*
1614 * Release all complete pages that have not been used recently.
1615 *
1616 * Might be called from interrupt context.
1617 */
1618 int
1619 #ifdef POOL_DIAGNOSTIC
1620 _pool_reclaim(struct pool *pp, const char *file, long line)
1621 #else
1622 pool_reclaim(struct pool *pp)
1623 #endif
1624 {
1625 struct pool_item_header *ph, *phnext;
1626 struct pool_pagelist pq;
1627 uint32_t curtime;
1628 bool klock;
1629 int rv;
1630
1631 if (cpu_intr_p() || cpu_softintr_p()) {
1632 KASSERT(pp->pr_ipl != IPL_NONE);
1633 }
1634
1635 if (pp->pr_drain_hook != NULL) {
1636 /*
1637 * The drain hook must be called with the pool unlocked.
1638 */
1639 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1640 }
1641
1642 /*
1643 * XXXSMP Because we do not want to cause non-MPSAFE code
1644 * to block.
1645 */
1646 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1647 pp->pr_ipl == IPL_SOFTSERIAL) {
1648 KERNEL_LOCK(1, NULL);
1649 klock = true;
1650 } else
1651 klock = false;
1652
1653 /* Reclaim items from the pool's cache (if any). */
1654 if (pp->pr_cache != NULL)
1655 pool_cache_invalidate(pp->pr_cache);
1656
1657 if (mutex_tryenter(&pp->pr_lock) == 0) {
1658 if (klock) {
1659 KERNEL_UNLOCK_ONE(NULL);
1660 }
1661 return (0);
1662 }
1663 pr_enter(pp, file, line);
1664
1665 LIST_INIT(&pq);
1666
1667 curtime = time_uptime;
1668
1669 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1670 phnext = LIST_NEXT(ph, ph_pagelist);
1671
1672 /* Check our minimum page claim */
1673 if (pp->pr_npages <= pp->pr_minpages)
1674 break;
1675
1676 KASSERT(ph->ph_nmissing == 0);
1677 if (curtime - ph->ph_time < pool_inactive_time
1678 && !pa_starved_p(pp->pr_alloc))
1679 continue;
1680
1681 /*
1682 * If freeing this page would put us below
1683 * the low water mark, stop now.
1684 */
1685 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1686 pp->pr_minitems)
1687 break;
1688
1689 pr_rmpage(pp, ph, &pq);
1690 }
1691
1692 pr_leave(pp);
1693 mutex_exit(&pp->pr_lock);
1694
1695 if (LIST_EMPTY(&pq))
1696 rv = 0;
1697 else {
1698 pr_pagelist_free(pp, &pq);
1699 rv = 1;
1700 }
1701
1702 if (klock) {
1703 KERNEL_UNLOCK_ONE(NULL);
1704 }
1705
1706 return (rv);
1707 }
1708
1709 /*
1710 * Drain pools, one at a time. This is a two stage process;
1711 * drain_start kicks off a cross call to drain CPU-level caches
1712 * if the pool has an associated pool_cache. drain_end waits
1713 * for those cross calls to finish, and then drains the cache
1714 * (if any) and pool.
1715 *
1716 * Note, must never be called from interrupt context.
1717 */
1718 void
1719 pool_drain_start(struct pool **ppp, uint64_t *wp)
1720 {
1721 struct pool *pp;
1722
1723 KASSERT(!TAILQ_EMPTY(&pool_head));
1724
1725 pp = NULL;
1726
1727 /* Find next pool to drain, and add a reference. */
1728 mutex_enter(&pool_head_lock);
1729 do {
1730 if (drainpp == NULL) {
1731 drainpp = TAILQ_FIRST(&pool_head);
1732 }
1733 if (drainpp != NULL) {
1734 pp = drainpp;
1735 drainpp = TAILQ_NEXT(pp, pr_poollist);
1736 }
1737 /*
1738 * Skip completely idle pools. We depend on at least
1739 * one pool in the system being active.
1740 */
1741 } while (pp == NULL || pp->pr_npages == 0);
1742 pp->pr_refcnt++;
1743 mutex_exit(&pool_head_lock);
1744
1745 /* If there is a pool_cache, drain CPU level caches. */
1746 *ppp = pp;
1747 if (pp->pr_cache != NULL) {
1748 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1749 pp->pr_cache, NULL);
1750 }
1751 }
1752
1753 bool
1754 pool_drain_end(struct pool *pp, uint64_t where)
1755 {
1756 bool reclaimed;
1757
1758 if (pp == NULL)
1759 return false;
1760
1761 KASSERT(pp->pr_refcnt > 0);
1762
1763 /* Wait for remote draining to complete. */
1764 if (pp->pr_cache != NULL)
1765 xc_wait(where);
1766
1767 /* Drain the cache (if any) and pool.. */
1768 reclaimed = pool_reclaim(pp);
1769
1770 /* Finally, unlock the pool. */
1771 mutex_enter(&pool_head_lock);
1772 pp->pr_refcnt--;
1773 cv_broadcast(&pool_busy);
1774 mutex_exit(&pool_head_lock);
1775
1776 return reclaimed;
1777 }
1778
1779 /*
1780 * Diagnostic helpers.
1781 */
1782 void
1783 pool_print(struct pool *pp, const char *modif)
1784 {
1785
1786 pool_print1(pp, modif, printf);
1787 }
1788
1789 void
1790 pool_printall(const char *modif, void (*pr)(const char *, ...))
1791 {
1792 struct pool *pp;
1793
1794 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1795 pool_printit(pp, modif, pr);
1796 }
1797 }
1798
1799 void
1800 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1801 {
1802
1803 if (pp == NULL) {
1804 (*pr)("Must specify a pool to print.\n");
1805 return;
1806 }
1807
1808 pool_print1(pp, modif, pr);
1809 }
1810
1811 static void
1812 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1813 void (*pr)(const char *, ...))
1814 {
1815 struct pool_item_header *ph;
1816 #ifdef DIAGNOSTIC
1817 struct pool_item *pi;
1818 #endif
1819
1820 LIST_FOREACH(ph, pl, ph_pagelist) {
1821 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1822 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1823 #ifdef DIAGNOSTIC
1824 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1825 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1826 if (pi->pi_magic != PI_MAGIC) {
1827 (*pr)("\t\t\titem %p, magic 0x%x\n",
1828 pi, pi->pi_magic);
1829 }
1830 }
1831 }
1832 #endif
1833 }
1834 }
1835
1836 static void
1837 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1838 {
1839 struct pool_item_header *ph;
1840 pool_cache_t pc;
1841 pcg_t *pcg;
1842 pool_cache_cpu_t *cc;
1843 uint64_t cpuhit, cpumiss;
1844 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1845 char c;
1846
1847 while ((c = *modif++) != '\0') {
1848 if (c == 'l')
1849 print_log = 1;
1850 if (c == 'p')
1851 print_pagelist = 1;
1852 if (c == 'c')
1853 print_cache = 1;
1854 }
1855
1856 if ((pc = pp->pr_cache) != NULL) {
1857 (*pr)("POOL CACHE");
1858 } else {
1859 (*pr)("POOL");
1860 }
1861
1862 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1863 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1864 pp->pr_roflags);
1865 (*pr)("\talloc %p\n", pp->pr_alloc);
1866 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1867 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1868 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1869 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1870
1871 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1872 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1873 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1874 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1875
1876 if (print_pagelist == 0)
1877 goto skip_pagelist;
1878
1879 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1880 (*pr)("\n\tempty page list:\n");
1881 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1882 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1883 (*pr)("\n\tfull page list:\n");
1884 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1885 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1886 (*pr)("\n\tpartial-page list:\n");
1887 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1888
1889 if (pp->pr_curpage == NULL)
1890 (*pr)("\tno current page\n");
1891 else
1892 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1893
1894 skip_pagelist:
1895 if (print_log == 0)
1896 goto skip_log;
1897
1898 (*pr)("\n");
1899 if ((pp->pr_roflags & PR_LOGGING) == 0)
1900 (*pr)("\tno log\n");
1901 else {
1902 pr_printlog(pp, NULL, pr);
1903 }
1904
1905 skip_log:
1906
1907 #define PR_GROUPLIST(pcg) \
1908 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1909 for (i = 0; i < pcg->pcg_size; i++) { \
1910 if (pcg->pcg_objects[i].pcgo_pa != \
1911 POOL_PADDR_INVALID) { \
1912 (*pr)("\t\t\t%p, 0x%llx\n", \
1913 pcg->pcg_objects[i].pcgo_va, \
1914 (unsigned long long) \
1915 pcg->pcg_objects[i].pcgo_pa); \
1916 } else { \
1917 (*pr)("\t\t\t%p\n", \
1918 pcg->pcg_objects[i].pcgo_va); \
1919 } \
1920 }
1921
1922 if (pc != NULL) {
1923 cpuhit = 0;
1924 cpumiss = 0;
1925 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1926 if ((cc = pc->pc_cpus[i]) == NULL)
1927 continue;
1928 cpuhit += cc->cc_hits;
1929 cpumiss += cc->cc_misses;
1930 }
1931 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1932 (*pr)("\tcache layer hits %llu misses %llu\n",
1933 pc->pc_hits, pc->pc_misses);
1934 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1935 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1936 pc->pc_contended);
1937 (*pr)("\tcache layer empty groups %u full groups %u\n",
1938 pc->pc_nempty, pc->pc_nfull);
1939 if (print_cache) {
1940 (*pr)("\tfull cache groups:\n");
1941 for (pcg = pc->pc_fullgroups; pcg != NULL;
1942 pcg = pcg->pcg_next) {
1943 PR_GROUPLIST(pcg);
1944 }
1945 (*pr)("\tempty cache groups:\n");
1946 for (pcg = pc->pc_emptygroups; pcg != NULL;
1947 pcg = pcg->pcg_next) {
1948 PR_GROUPLIST(pcg);
1949 }
1950 }
1951 }
1952 #undef PR_GROUPLIST
1953
1954 pr_enter_check(pp, pr);
1955 }
1956
1957 static int
1958 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1959 {
1960 struct pool_item *pi;
1961 void *page;
1962 int n;
1963
1964 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1965 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1966 if (page != ph->ph_page &&
1967 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1968 if (label != NULL)
1969 printf("%s: ", label);
1970 printf("pool(%p:%s): page inconsistency: page %p;"
1971 " at page head addr %p (p %p)\n", pp,
1972 pp->pr_wchan, ph->ph_page,
1973 ph, page);
1974 return 1;
1975 }
1976 }
1977
1978 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1979 return 0;
1980
1981 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1982 pi != NULL;
1983 pi = LIST_NEXT(pi,pi_list), n++) {
1984
1985 #ifdef DIAGNOSTIC
1986 if (pi->pi_magic != PI_MAGIC) {
1987 if (label != NULL)
1988 printf("%s: ", label);
1989 printf("pool(%s): free list modified: magic=%x;"
1990 " page %p; item ordinal %d; addr %p\n",
1991 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1992 n, pi);
1993 panic("pool");
1994 }
1995 #endif
1996 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1997 continue;
1998 }
1999 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
2000 if (page == ph->ph_page)
2001 continue;
2002
2003 if (label != NULL)
2004 printf("%s: ", label);
2005 printf("pool(%p:%s): page inconsistency: page %p;"
2006 " item ordinal %d; addr %p (p %p)\n", pp,
2007 pp->pr_wchan, ph->ph_page,
2008 n, pi, page);
2009 return 1;
2010 }
2011 return 0;
2012 }
2013
2014
2015 int
2016 pool_chk(struct pool *pp, const char *label)
2017 {
2018 struct pool_item_header *ph;
2019 int r = 0;
2020
2021 mutex_enter(&pp->pr_lock);
2022 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2023 r = pool_chk_page(pp, label, ph);
2024 if (r) {
2025 goto out;
2026 }
2027 }
2028 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2029 r = pool_chk_page(pp, label, ph);
2030 if (r) {
2031 goto out;
2032 }
2033 }
2034 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2035 r = pool_chk_page(pp, label, ph);
2036 if (r) {
2037 goto out;
2038 }
2039 }
2040
2041 out:
2042 mutex_exit(&pp->pr_lock);
2043 return (r);
2044 }
2045
2046 /*
2047 * pool_cache_init:
2048 *
2049 * Initialize a pool cache.
2050 */
2051 pool_cache_t
2052 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2053 const char *wchan, struct pool_allocator *palloc, int ipl,
2054 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2055 {
2056 pool_cache_t pc;
2057
2058 pc = pool_get(&cache_pool, PR_WAITOK);
2059 if (pc == NULL)
2060 return NULL;
2061
2062 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2063 palloc, ipl, ctor, dtor, arg);
2064
2065 return pc;
2066 }
2067
2068 /*
2069 * pool_cache_bootstrap:
2070 *
2071 * Kernel-private version of pool_cache_init(). The caller
2072 * provides initial storage.
2073 */
2074 void
2075 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2076 u_int align_offset, u_int flags, const char *wchan,
2077 struct pool_allocator *palloc, int ipl,
2078 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2079 void *arg)
2080 {
2081 CPU_INFO_ITERATOR cii;
2082 pool_cache_t pc1;
2083 struct cpu_info *ci;
2084 struct pool *pp;
2085
2086 pp = &pc->pc_pool;
2087 if (palloc == NULL && ipl == IPL_NONE)
2088 palloc = &pool_allocator_nointr;
2089 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2090 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2091
2092 if (ctor == NULL) {
2093 ctor = (int (*)(void *, void *, int))nullop;
2094 }
2095 if (dtor == NULL) {
2096 dtor = (void (*)(void *, void *))nullop;
2097 }
2098
2099 pc->pc_emptygroups = NULL;
2100 pc->pc_fullgroups = NULL;
2101 pc->pc_partgroups = NULL;
2102 pc->pc_ctor = ctor;
2103 pc->pc_dtor = dtor;
2104 pc->pc_arg = arg;
2105 pc->pc_hits = 0;
2106 pc->pc_misses = 0;
2107 pc->pc_nempty = 0;
2108 pc->pc_npart = 0;
2109 pc->pc_nfull = 0;
2110 pc->pc_contended = 0;
2111 pc->pc_refcnt = 0;
2112 pc->pc_freecheck = NULL;
2113
2114 if ((flags & PR_LARGECACHE) != 0) {
2115 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2116 pc->pc_pcgpool = &pcg_large_pool;
2117 } else {
2118 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2119 pc->pc_pcgpool = &pcg_normal_pool;
2120 }
2121
2122 /* Allocate per-CPU caches. */
2123 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2124 pc->pc_ncpu = 0;
2125 if (ncpu < 2) {
2126 /* XXX For sparc: boot CPU is not attached yet. */
2127 pool_cache_cpu_init1(curcpu(), pc);
2128 } else {
2129 for (CPU_INFO_FOREACH(cii, ci)) {
2130 pool_cache_cpu_init1(ci, pc);
2131 }
2132 }
2133
2134 /* Add to list of all pools. */
2135 if (__predict_true(!cold))
2136 mutex_enter(&pool_head_lock);
2137 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2138 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2139 break;
2140 }
2141 if (pc1 == NULL)
2142 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2143 else
2144 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2145 if (__predict_true(!cold))
2146 mutex_exit(&pool_head_lock);
2147
2148 membar_sync();
2149 pp->pr_cache = pc;
2150 }
2151
2152 /*
2153 * pool_cache_destroy:
2154 *
2155 * Destroy a pool cache.
2156 */
2157 void
2158 pool_cache_destroy(pool_cache_t pc)
2159 {
2160 struct pool *pp = &pc->pc_pool;
2161 u_int i;
2162
2163 /* Remove it from the global list. */
2164 mutex_enter(&pool_head_lock);
2165 while (pc->pc_refcnt != 0)
2166 cv_wait(&pool_busy, &pool_head_lock);
2167 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2168 mutex_exit(&pool_head_lock);
2169
2170 /* First, invalidate the entire cache. */
2171 pool_cache_invalidate(pc);
2172
2173 /* Disassociate it from the pool. */
2174 mutex_enter(&pp->pr_lock);
2175 pp->pr_cache = NULL;
2176 mutex_exit(&pp->pr_lock);
2177
2178 /* Destroy per-CPU data */
2179 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2180 pool_cache_invalidate_cpu(pc, i);
2181
2182 /* Finally, destroy it. */
2183 mutex_destroy(&pc->pc_lock);
2184 pool_destroy(pp);
2185 pool_put(&cache_pool, pc);
2186 }
2187
2188 /*
2189 * pool_cache_cpu_init1:
2190 *
2191 * Called for each pool_cache whenever a new CPU is attached.
2192 */
2193 static void
2194 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2195 {
2196 pool_cache_cpu_t *cc;
2197 int index;
2198
2199 index = ci->ci_index;
2200
2201 KASSERT(index < __arraycount(pc->pc_cpus));
2202
2203 if ((cc = pc->pc_cpus[index]) != NULL) {
2204 KASSERT(cc->cc_cpuindex == index);
2205 return;
2206 }
2207
2208 /*
2209 * The first CPU is 'free'. This needs to be the case for
2210 * bootstrap - we may not be able to allocate yet.
2211 */
2212 if (pc->pc_ncpu == 0) {
2213 cc = &pc->pc_cpu0;
2214 pc->pc_ncpu = 1;
2215 } else {
2216 mutex_enter(&pc->pc_lock);
2217 pc->pc_ncpu++;
2218 mutex_exit(&pc->pc_lock);
2219 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2220 }
2221
2222 cc->cc_ipl = pc->pc_pool.pr_ipl;
2223 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2224 cc->cc_cache = pc;
2225 cc->cc_cpuindex = index;
2226 cc->cc_hits = 0;
2227 cc->cc_misses = 0;
2228 cc->cc_current = __UNCONST(&pcg_dummy);
2229 cc->cc_previous = __UNCONST(&pcg_dummy);
2230
2231 pc->pc_cpus[index] = cc;
2232 }
2233
2234 /*
2235 * pool_cache_cpu_init:
2236 *
2237 * Called whenever a new CPU is attached.
2238 */
2239 void
2240 pool_cache_cpu_init(struct cpu_info *ci)
2241 {
2242 pool_cache_t pc;
2243
2244 mutex_enter(&pool_head_lock);
2245 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2246 pc->pc_refcnt++;
2247 mutex_exit(&pool_head_lock);
2248
2249 pool_cache_cpu_init1(ci, pc);
2250
2251 mutex_enter(&pool_head_lock);
2252 pc->pc_refcnt--;
2253 cv_broadcast(&pool_busy);
2254 }
2255 mutex_exit(&pool_head_lock);
2256 }
2257
2258 /*
2259 * pool_cache_reclaim:
2260 *
2261 * Reclaim memory from a pool cache.
2262 */
2263 bool
2264 pool_cache_reclaim(pool_cache_t pc)
2265 {
2266
2267 return pool_reclaim(&pc->pc_pool);
2268 }
2269
2270 static void
2271 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2272 {
2273
2274 (*pc->pc_dtor)(pc->pc_arg, object);
2275 pool_put(&pc->pc_pool, object);
2276 }
2277
2278 /*
2279 * pool_cache_destruct_object:
2280 *
2281 * Force destruction of an object and its release back into
2282 * the pool.
2283 */
2284 void
2285 pool_cache_destruct_object(pool_cache_t pc, void *object)
2286 {
2287
2288 FREECHECK_IN(&pc->pc_freecheck, object);
2289
2290 pool_cache_destruct_object1(pc, object);
2291 }
2292
2293 /*
2294 * pool_cache_invalidate_groups:
2295 *
2296 * Invalidate a chain of groups and destruct all objects.
2297 */
2298 static void
2299 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2300 {
2301 void *object;
2302 pcg_t *next;
2303 int i;
2304
2305 for (; pcg != NULL; pcg = next) {
2306 next = pcg->pcg_next;
2307
2308 for (i = 0; i < pcg->pcg_avail; i++) {
2309 object = pcg->pcg_objects[i].pcgo_va;
2310 pool_cache_destruct_object1(pc, object);
2311 }
2312
2313 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2314 pool_put(&pcg_large_pool, pcg);
2315 } else {
2316 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2317 pool_put(&pcg_normal_pool, pcg);
2318 }
2319 }
2320 }
2321
2322 /*
2323 * pool_cache_invalidate:
2324 *
2325 * Invalidate a pool cache (destruct and release all of the
2326 * cached objects). Does not reclaim objects from the pool.
2327 *
2328 * Note: For pool caches that provide constructed objects, there
2329 * is an assumption that another level of synchronization is occurring
2330 * between the input to the constructor and the cache invalidation.
2331 */
2332 void
2333 pool_cache_invalidate(pool_cache_t pc)
2334 {
2335 pcg_t *full, *empty, *part;
2336 #if 0
2337 uint64_t where;
2338
2339 if (ncpu < 2 || !mp_online) {
2340 /*
2341 * We might be called early enough in the boot process
2342 * for the CPU data structures to not be fully initialized.
2343 * In this case, simply gather the local CPU's cache now
2344 * since it will be the only one running.
2345 */
2346 pool_cache_xcall(pc);
2347 } else {
2348 /*
2349 * Gather all of the CPU-specific caches into the
2350 * global cache.
2351 */
2352 where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
2353 xc_wait(where);
2354 }
2355 #endif
2356 mutex_enter(&pc->pc_lock);
2357 full = pc->pc_fullgroups;
2358 empty = pc->pc_emptygroups;
2359 part = pc->pc_partgroups;
2360 pc->pc_fullgroups = NULL;
2361 pc->pc_emptygroups = NULL;
2362 pc->pc_partgroups = NULL;
2363 pc->pc_nfull = 0;
2364 pc->pc_nempty = 0;
2365 pc->pc_npart = 0;
2366 mutex_exit(&pc->pc_lock);
2367
2368 pool_cache_invalidate_groups(pc, full);
2369 pool_cache_invalidate_groups(pc, empty);
2370 pool_cache_invalidate_groups(pc, part);
2371 }
2372
2373 /*
2374 * pool_cache_invalidate_cpu:
2375 *
2376 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2377 * identified by its associated index.
2378 * It is caller's responsibility to ensure that no operation is
2379 * taking place on this pool cache while doing this invalidation.
2380 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2381 * pool cached objects from a CPU different from the one currently running
2382 * may result in an undefined behaviour.
2383 */
2384 static void
2385 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2386 {
2387
2388 pool_cache_cpu_t *cc;
2389 pcg_t *pcg;
2390
2391 if ((cc = pc->pc_cpus[index]) == NULL)
2392 return;
2393
2394 if ((pcg = cc->cc_current) != &pcg_dummy) {
2395 pcg->pcg_next = NULL;
2396 pool_cache_invalidate_groups(pc, pcg);
2397 }
2398 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2399 pcg->pcg_next = NULL;
2400 pool_cache_invalidate_groups(pc, pcg);
2401 }
2402 if (cc != &pc->pc_cpu0)
2403 pool_put(&cache_cpu_pool, cc);
2404
2405 }
2406
2407 void
2408 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2409 {
2410
2411 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2412 }
2413
2414 void
2415 pool_cache_setlowat(pool_cache_t pc, int n)
2416 {
2417
2418 pool_setlowat(&pc->pc_pool, n);
2419 }
2420
2421 void
2422 pool_cache_sethiwat(pool_cache_t pc, int n)
2423 {
2424
2425 pool_sethiwat(&pc->pc_pool, n);
2426 }
2427
2428 void
2429 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2430 {
2431
2432 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2433 }
2434
2435 static bool __noinline
2436 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2437 paddr_t *pap, int flags)
2438 {
2439 pcg_t *pcg, *cur;
2440 uint64_t ncsw;
2441 pool_cache_t pc;
2442 void *object;
2443
2444 KASSERT(cc->cc_current->pcg_avail == 0);
2445 KASSERT(cc->cc_previous->pcg_avail == 0);
2446
2447 pc = cc->cc_cache;
2448 cc->cc_misses++;
2449
2450 /*
2451 * Nothing was available locally. Try and grab a group
2452 * from the cache.
2453 */
2454 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2455 ncsw = curlwp->l_ncsw;
2456 mutex_enter(&pc->pc_lock);
2457 pc->pc_contended++;
2458
2459 /*
2460 * If we context switched while locking, then
2461 * our view of the per-CPU data is invalid:
2462 * retry.
2463 */
2464 if (curlwp->l_ncsw != ncsw) {
2465 mutex_exit(&pc->pc_lock);
2466 return true;
2467 }
2468 }
2469
2470 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2471 /*
2472 * If there's a full group, release our empty
2473 * group back to the cache. Install the full
2474 * group as cc_current and return.
2475 */
2476 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2477 KASSERT(cur->pcg_avail == 0);
2478 cur->pcg_next = pc->pc_emptygroups;
2479 pc->pc_emptygroups = cur;
2480 pc->pc_nempty++;
2481 }
2482 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2483 cc->cc_current = pcg;
2484 pc->pc_fullgroups = pcg->pcg_next;
2485 pc->pc_hits++;
2486 pc->pc_nfull--;
2487 mutex_exit(&pc->pc_lock);
2488 return true;
2489 }
2490
2491 /*
2492 * Nothing available locally or in cache. Take the slow
2493 * path: fetch a new object from the pool and construct
2494 * it.
2495 */
2496 pc->pc_misses++;
2497 mutex_exit(&pc->pc_lock);
2498 splx(s);
2499
2500 object = pool_get(&pc->pc_pool, flags);
2501 *objectp = object;
2502 if (__predict_false(object == NULL))
2503 return false;
2504
2505 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2506 pool_put(&pc->pc_pool, object);
2507 *objectp = NULL;
2508 return false;
2509 }
2510
2511 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2512 (pc->pc_pool.pr_align - 1)) == 0);
2513
2514 if (pap != NULL) {
2515 #ifdef POOL_VTOPHYS
2516 *pap = POOL_VTOPHYS(object);
2517 #else
2518 *pap = POOL_PADDR_INVALID;
2519 #endif
2520 }
2521
2522 FREECHECK_OUT(&pc->pc_freecheck, object);
2523 return false;
2524 }
2525
2526 /*
2527 * pool_cache_get{,_paddr}:
2528 *
2529 * Get an object from a pool cache (optionally returning
2530 * the physical address of the object).
2531 */
2532 void *
2533 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2534 {
2535 pool_cache_cpu_t *cc;
2536 pcg_t *pcg;
2537 void *object;
2538 int s;
2539
2540 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2541 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2542 "pool '%s' is IPL_NONE, but called from interrupt context\n",
2543 pc->pc_pool.pr_wchan);
2544
2545 if (flags & PR_WAITOK) {
2546 ASSERT_SLEEPABLE();
2547 }
2548
2549 /* Lock out interrupts and disable preemption. */
2550 s = splvm();
2551 while (/* CONSTCOND */ true) {
2552 /* Try and allocate an object from the current group. */
2553 cc = pc->pc_cpus[curcpu()->ci_index];
2554 KASSERT(cc->cc_cache == pc);
2555 pcg = cc->cc_current;
2556 if (__predict_true(pcg->pcg_avail > 0)) {
2557 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2558 if (__predict_false(pap != NULL))
2559 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2560 #if defined(DIAGNOSTIC)
2561 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2562 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2563 KASSERT(object != NULL);
2564 #endif
2565 cc->cc_hits++;
2566 splx(s);
2567 FREECHECK_OUT(&pc->pc_freecheck, object);
2568 return object;
2569 }
2570
2571 /*
2572 * That failed. If the previous group isn't empty, swap
2573 * it with the current group and allocate from there.
2574 */
2575 pcg = cc->cc_previous;
2576 if (__predict_true(pcg->pcg_avail > 0)) {
2577 cc->cc_previous = cc->cc_current;
2578 cc->cc_current = pcg;
2579 continue;
2580 }
2581
2582 /*
2583 * Can't allocate from either group: try the slow path.
2584 * If get_slow() allocated an object for us, or if
2585 * no more objects are available, it will return false.
2586 * Otherwise, we need to retry.
2587 */
2588 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2589 break;
2590 }
2591
2592 return object;
2593 }
2594
2595 static bool __noinline
2596 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2597 {
2598 pcg_t *pcg, *cur;
2599 uint64_t ncsw;
2600 pool_cache_t pc;
2601
2602 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2603 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2604
2605 pc = cc->cc_cache;
2606 pcg = NULL;
2607 cc->cc_misses++;
2608
2609 /*
2610 * If there are no empty groups in the cache then allocate one
2611 * while still unlocked.
2612 */
2613 if (__predict_false(pc->pc_emptygroups == NULL)) {
2614 if (__predict_true(!pool_cache_disable)) {
2615 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2616 }
2617 if (__predict_true(pcg != NULL)) {
2618 pcg->pcg_avail = 0;
2619 pcg->pcg_size = pc->pc_pcgsize;
2620 }
2621 }
2622
2623 /* Lock the cache. */
2624 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2625 ncsw = curlwp->l_ncsw;
2626 mutex_enter(&pc->pc_lock);
2627 pc->pc_contended++;
2628
2629 /*
2630 * If we context switched while locking, then our view of
2631 * the per-CPU data is invalid: retry.
2632 */
2633 if (__predict_false(curlwp->l_ncsw != ncsw)) {
2634 mutex_exit(&pc->pc_lock);
2635 if (pcg != NULL) {
2636 pool_put(pc->pc_pcgpool, pcg);
2637 }
2638 return true;
2639 }
2640 }
2641
2642 /* If there are no empty groups in the cache then allocate one. */
2643 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2644 pcg = pc->pc_emptygroups;
2645 pc->pc_emptygroups = pcg->pcg_next;
2646 pc->pc_nempty--;
2647 }
2648
2649 /*
2650 * If there's a empty group, release our full group back
2651 * to the cache. Install the empty group to the local CPU
2652 * and return.
2653 */
2654 if (pcg != NULL) {
2655 KASSERT(pcg->pcg_avail == 0);
2656 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2657 cc->cc_previous = pcg;
2658 } else {
2659 cur = cc->cc_current;
2660 if (__predict_true(cur != &pcg_dummy)) {
2661 KASSERT(cur->pcg_avail == cur->pcg_size);
2662 cur->pcg_next = pc->pc_fullgroups;
2663 pc->pc_fullgroups = cur;
2664 pc->pc_nfull++;
2665 }
2666 cc->cc_current = pcg;
2667 }
2668 pc->pc_hits++;
2669 mutex_exit(&pc->pc_lock);
2670 return true;
2671 }
2672
2673 /*
2674 * Nothing available locally or in cache, and we didn't
2675 * allocate an empty group. Take the slow path and destroy
2676 * the object here and now.
2677 */
2678 pc->pc_misses++;
2679 mutex_exit(&pc->pc_lock);
2680 splx(s);
2681 pool_cache_destruct_object(pc, object);
2682
2683 return false;
2684 }
2685
2686 /*
2687 * pool_cache_put{,_paddr}:
2688 *
2689 * Put an object back to the pool cache (optionally caching the
2690 * physical address of the object).
2691 */
2692 void
2693 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2694 {
2695 pool_cache_cpu_t *cc;
2696 pcg_t *pcg;
2697 int s;
2698
2699 KASSERT(object != NULL);
2700 FREECHECK_IN(&pc->pc_freecheck, object);
2701
2702 /* Lock out interrupts and disable preemption. */
2703 s = splvm();
2704 while (/* CONSTCOND */ true) {
2705 /* If the current group isn't full, release it there. */
2706 cc = pc->pc_cpus[curcpu()->ci_index];
2707 KASSERT(cc->cc_cache == pc);
2708 pcg = cc->cc_current;
2709 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2710 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2711 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2712 pcg->pcg_avail++;
2713 cc->cc_hits++;
2714 splx(s);
2715 return;
2716 }
2717
2718 /*
2719 * That failed. If the previous group isn't full, swap
2720 * it with the current group and try again.
2721 */
2722 pcg = cc->cc_previous;
2723 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2724 cc->cc_previous = cc->cc_current;
2725 cc->cc_current = pcg;
2726 continue;
2727 }
2728
2729 /*
2730 * Can't free to either group: try the slow path.
2731 * If put_slow() releases the object for us, it
2732 * will return false. Otherwise we need to retry.
2733 */
2734 if (!pool_cache_put_slow(cc, s, object))
2735 break;
2736 }
2737 }
2738
2739 /*
2740 * pool_cache_xcall:
2741 *
2742 * Transfer objects from the per-CPU cache to the global cache.
2743 * Run within a cross-call thread.
2744 */
2745 static void
2746 pool_cache_xcall(pool_cache_t pc)
2747 {
2748 pool_cache_cpu_t *cc;
2749 pcg_t *prev, *cur, **list;
2750 int s;
2751
2752 s = splvm();
2753 mutex_enter(&pc->pc_lock);
2754 cc = pc->pc_cpus[curcpu()->ci_index];
2755 cur = cc->cc_current;
2756 cc->cc_current = __UNCONST(&pcg_dummy);
2757 prev = cc->cc_previous;
2758 cc->cc_previous = __UNCONST(&pcg_dummy);
2759 if (cur != &pcg_dummy) {
2760 if (cur->pcg_avail == cur->pcg_size) {
2761 list = &pc->pc_fullgroups;
2762 pc->pc_nfull++;
2763 } else if (cur->pcg_avail == 0) {
2764 list = &pc->pc_emptygroups;
2765 pc->pc_nempty++;
2766 } else {
2767 list = &pc->pc_partgroups;
2768 pc->pc_npart++;
2769 }
2770 cur->pcg_next = *list;
2771 *list = cur;
2772 }
2773 if (prev != &pcg_dummy) {
2774 if (prev->pcg_avail == prev->pcg_size) {
2775 list = &pc->pc_fullgroups;
2776 pc->pc_nfull++;
2777 } else if (prev->pcg_avail == 0) {
2778 list = &pc->pc_emptygroups;
2779 pc->pc_nempty++;
2780 } else {
2781 list = &pc->pc_partgroups;
2782 pc->pc_npart++;
2783 }
2784 prev->pcg_next = *list;
2785 *list = prev;
2786 }
2787 mutex_exit(&pc->pc_lock);
2788 splx(s);
2789 }
2790
2791 /*
2792 * Pool backend allocators.
2793 *
2794 * Each pool has a backend allocator that handles allocation, deallocation,
2795 * and any additional draining that might be needed.
2796 *
2797 * We provide two standard allocators:
2798 *
2799 * pool_allocator_kmem - the default when no allocator is specified
2800 *
2801 * pool_allocator_nointr - used for pools that will not be accessed
2802 * in interrupt context.
2803 */
2804 void *pool_page_alloc(struct pool *, int);
2805 void pool_page_free(struct pool *, void *);
2806
2807 #ifdef POOL_SUBPAGE
2808 struct pool_allocator pool_allocator_kmem_fullpage = {
2809 pool_page_alloc, pool_page_free, 0,
2810 .pa_backingmapptr = &kmem_map,
2811 };
2812 #else
2813 struct pool_allocator pool_allocator_kmem = {
2814 pool_page_alloc, pool_page_free, 0,
2815 .pa_backingmapptr = &kmem_map,
2816 };
2817 #endif
2818
2819 void *pool_page_alloc_nointr(struct pool *, int);
2820 void pool_page_free_nointr(struct pool *, void *);
2821
2822 #ifdef POOL_SUBPAGE
2823 struct pool_allocator pool_allocator_nointr_fullpage = {
2824 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2825 .pa_backingmapptr = &kernel_map,
2826 };
2827 #else
2828 struct pool_allocator pool_allocator_nointr = {
2829 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2830 .pa_backingmapptr = &kernel_map,
2831 };
2832 #endif
2833
2834 #ifdef POOL_SUBPAGE
2835 void *pool_subpage_alloc(struct pool *, int);
2836 void pool_subpage_free(struct pool *, void *);
2837
2838 struct pool_allocator pool_allocator_kmem = {
2839 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2840 .pa_backingmapptr = &kmem_map,
2841 };
2842
2843 void *pool_subpage_alloc_nointr(struct pool *, int);
2844 void pool_subpage_free_nointr(struct pool *, void *);
2845
2846 struct pool_allocator pool_allocator_nointr = {
2847 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2848 .pa_backingmapptr = &kmem_map,
2849 };
2850 #endif /* POOL_SUBPAGE */
2851
2852 static void *
2853 pool_allocator_alloc(struct pool *pp, int flags)
2854 {
2855 struct pool_allocator *pa = pp->pr_alloc;
2856 void *res;
2857
2858 res = (*pa->pa_alloc)(pp, flags);
2859 if (res == NULL && (flags & PR_WAITOK) == 0) {
2860 /*
2861 * We only run the drain hook here if PR_NOWAIT.
2862 * In other cases, the hook will be run in
2863 * pool_reclaim().
2864 */
2865 if (pp->pr_drain_hook != NULL) {
2866 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2867 res = (*pa->pa_alloc)(pp, flags);
2868 }
2869 }
2870 return res;
2871 }
2872
2873 static void
2874 pool_allocator_free(struct pool *pp, void *v)
2875 {
2876 struct pool_allocator *pa = pp->pr_alloc;
2877
2878 (*pa->pa_free)(pp, v);
2879 }
2880
2881 void *
2882 pool_page_alloc(struct pool *pp, int flags)
2883 {
2884 bool waitok = (flags & PR_WAITOK) ? true : false;
2885
2886 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2887 }
2888
2889 void
2890 pool_page_free(struct pool *pp, void *v)
2891 {
2892
2893 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2894 }
2895
2896 static void *
2897 pool_page_alloc_meta(struct pool *pp, int flags)
2898 {
2899 bool waitok = (flags & PR_WAITOK) ? true : false;
2900
2901 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2902 }
2903
2904 static void
2905 pool_page_free_meta(struct pool *pp, void *v)
2906 {
2907
2908 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2909 }
2910
2911 #ifdef POOL_SUBPAGE
2912 /* Sub-page allocator, for machines with large hardware pages. */
2913 void *
2914 pool_subpage_alloc(struct pool *pp, int flags)
2915 {
2916 return pool_get(&psppool, flags);
2917 }
2918
2919 void
2920 pool_subpage_free(struct pool *pp, void *v)
2921 {
2922 pool_put(&psppool, v);
2923 }
2924
2925 /* We don't provide a real nointr allocator. Maybe later. */
2926 void *
2927 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2928 {
2929
2930 return (pool_subpage_alloc(pp, flags));
2931 }
2932
2933 void
2934 pool_subpage_free_nointr(struct pool *pp, void *v)
2935 {
2936
2937 pool_subpage_free(pp, v);
2938 }
2939 #endif /* POOL_SUBPAGE */
2940 void *
2941 pool_page_alloc_nointr(struct pool *pp, int flags)
2942 {
2943 bool waitok = (flags & PR_WAITOK) ? true : false;
2944
2945 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2946 }
2947
2948 void
2949 pool_page_free_nointr(struct pool *pp, void *v)
2950 {
2951
2952 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2953 }
2954
2955 #if defined(DDB)
2956 static bool
2957 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2958 {
2959
2960 return (uintptr_t)ph->ph_page <= addr &&
2961 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2962 }
2963
2964 static bool
2965 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2966 {
2967
2968 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2969 }
2970
2971 static bool
2972 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2973 {
2974 int i;
2975
2976 if (pcg == NULL) {
2977 return false;
2978 }
2979 for (i = 0; i < pcg->pcg_avail; i++) {
2980 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2981 return true;
2982 }
2983 }
2984 return false;
2985 }
2986
2987 static bool
2988 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2989 {
2990
2991 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2992 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2993 pool_item_bitmap_t *bitmap =
2994 ph->ph_bitmap + (idx / BITMAP_SIZE);
2995 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2996
2997 return (*bitmap & mask) == 0;
2998 } else {
2999 struct pool_item *pi;
3000
3001 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3002 if (pool_in_item(pp, pi, addr)) {
3003 return false;
3004 }
3005 }
3006 return true;
3007 }
3008 }
3009
3010 void
3011 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3012 {
3013 struct pool *pp;
3014
3015 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3016 struct pool_item_header *ph;
3017 uintptr_t item;
3018 bool allocated = true;
3019 bool incache = false;
3020 bool incpucache = false;
3021 char cpucachestr[32];
3022
3023 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3024 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3025 if (pool_in_page(pp, ph, addr)) {
3026 goto found;
3027 }
3028 }
3029 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3030 if (pool_in_page(pp, ph, addr)) {
3031 allocated =
3032 pool_allocated(pp, ph, addr);
3033 goto found;
3034 }
3035 }
3036 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3037 if (pool_in_page(pp, ph, addr)) {
3038 allocated = false;
3039 goto found;
3040 }
3041 }
3042 continue;
3043 } else {
3044 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3045 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3046 continue;
3047 }
3048 allocated = pool_allocated(pp, ph, addr);
3049 }
3050 found:
3051 if (allocated && pp->pr_cache) {
3052 pool_cache_t pc = pp->pr_cache;
3053 struct pool_cache_group *pcg;
3054 int i;
3055
3056 for (pcg = pc->pc_fullgroups; pcg != NULL;
3057 pcg = pcg->pcg_next) {
3058 if (pool_in_cg(pp, pcg, addr)) {
3059 incache = true;
3060 goto print;
3061 }
3062 }
3063 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3064 pool_cache_cpu_t *cc;
3065
3066 if ((cc = pc->pc_cpus[i]) == NULL) {
3067 continue;
3068 }
3069 if (pool_in_cg(pp, cc->cc_current, addr) ||
3070 pool_in_cg(pp, cc->cc_previous, addr)) {
3071 struct cpu_info *ci =
3072 cpu_lookup(i);
3073
3074 incpucache = true;
3075 snprintf(cpucachestr,
3076 sizeof(cpucachestr),
3077 "cached by CPU %u",
3078 ci->ci_index);
3079 goto print;
3080 }
3081 }
3082 }
3083 print:
3084 item = (uintptr_t)ph->ph_page + ph->ph_off;
3085 item = item + rounddown(addr - item, pp->pr_size);
3086 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3087 (void *)addr, item, (size_t)(addr - item),
3088 pp->pr_wchan,
3089 incpucache ? cpucachestr :
3090 incache ? "cached" : allocated ? "allocated" : "free");
3091 }
3092 }
3093 #endif /* defined(DDB) */
3094