Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.190.2.2
      1 /*	$NetBSD: subr_pool.c,v 1.190.2.2 2012/05/23 10:08:11 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.190.2.2 2012/05/23 10:08:11 yamt Exp $");
     36 
     37 #include "opt_ddb.h"
     38 #include "opt_lockdebug.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/bitops.h>
     43 #include <sys/proc.h>
     44 #include <sys/errno.h>
     45 #include <sys/kernel.h>
     46 #include <sys/vmem.h>
     47 #include <sys/pool.h>
     48 #include <sys/syslog.h>
     49 #include <sys/debug.h>
     50 #include <sys/lockdebug.h>
     51 #include <sys/xcall.h>
     52 #include <sys/cpu.h>
     53 #include <sys/atomic.h>
     54 
     55 #include <uvm/uvm_extern.h>
     56 
     57 /*
     58  * Pool resource management utility.
     59  *
     60  * Memory is allocated in pages which are split into pieces according to
     61  * the pool item size. Each page is kept on one of three lists in the
     62  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     63  * for empty, full and partially-full pages respectively. The individual
     64  * pool items are on a linked list headed by `ph_itemlist' in each page
     65  * header. The memory for building the page list is either taken from
     66  * the allocated pages themselves (for small pool items) or taken from
     67  * an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools */
     71 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 #define	PHPOOL_MAX	8
     75 static struct pool phpool[PHPOOL_MAX];
     76 #define	PHPOOL_FREELIST_NELEM(idx) \
     77 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     78 
     79 #ifdef POOL_SUBPAGE
     80 /* Pool of subpages for use by normal pools. */
     81 static struct pool psppool;
     82 #endif
     83 
     84 static void *pool_page_alloc_meta(struct pool *, int);
     85 static void pool_page_free_meta(struct pool *, void *);
     86 
     87 /* allocator for pool metadata */
     88 struct pool_allocator pool_allocator_meta = {
     89 	.pa_alloc = pool_page_alloc_meta,
     90 	.pa_free = pool_page_free_meta,
     91 	.pa_pagesz = 0
     92 };
     93 
     94 /* # of seconds to retain page after last use */
     95 int pool_inactive_time = 10;
     96 
     97 /* Next candidate for drainage (see pool_drain()) */
     98 static struct pool	*drainpp;
     99 
    100 /* This lock protects both pool_head and drainpp. */
    101 static kmutex_t pool_head_lock;
    102 static kcondvar_t pool_busy;
    103 
    104 /* This lock protects initialization of a potentially shared pool allocator */
    105 static kmutex_t pool_allocator_lock;
    106 
    107 typedef uint32_t pool_item_bitmap_t;
    108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    110 
    111 struct pool_item_header {
    112 	/* Page headers */
    113 	LIST_ENTRY(pool_item_header)
    114 				ph_pagelist;	/* pool page list */
    115 	SPLAY_ENTRY(pool_item_header)
    116 				ph_node;	/* Off-page page headers */
    117 	void *			ph_page;	/* this page's address */
    118 	uint32_t		ph_time;	/* last referenced */
    119 	uint16_t		ph_nmissing;	/* # of chunks in use */
    120 	uint16_t		ph_off;		/* start offset in page */
    121 	union {
    122 		/* !PR_NOTOUCH */
    123 		struct {
    124 			LIST_HEAD(, pool_item)
    125 				phu_itemlist;	/* chunk list for this page */
    126 		} phu_normal;
    127 		/* PR_NOTOUCH */
    128 		struct {
    129 			pool_item_bitmap_t phu_bitmap[1];
    130 		} phu_notouch;
    131 	} ph_u;
    132 };
    133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeaddeadU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references up
    157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    158  * object from the pool, it calls the object's constructor and places it
    159  * into a cache group.  When a cache group frees an object back to the
    160  * pool, it first calls the object's destructor.  This allows the object
    161  * to persist in constructed form while freed to the cache.
    162  *
    163  * The pool references each cache, so that when a pool is drained by the
    164  * pagedaemon, it can drain each individual cache as well.  Each time a
    165  * cache is drained, the most idle cache group is freed to the pool in
    166  * its entirety.
    167  *
    168  * Pool caches are layed on top of pools.  By layering them, we can avoid
    169  * the complexity of cache management for pools which would not benefit
    170  * from it.
    171  */
    172 
    173 static struct pool pcg_normal_pool;
    174 static struct pool pcg_large_pool;
    175 static struct pool cache_pool;
    176 static struct pool cache_cpu_pool;
    177 
    178 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    179 
    180 /* List of all caches. */
    181 TAILQ_HEAD(,pool_cache) pool_cache_head =
    182     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    183 
    184 int pool_cache_disable;		/* global disable for caching */
    185 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    186 
    187 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    188 				    void *);
    189 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    190 				    void **, paddr_t *, int);
    191 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    192 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    193 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    194 static void	pool_cache_xcall(pool_cache_t);
    195 
    196 static int	pool_catchup(struct pool *);
    197 static void	pool_prime_page(struct pool *, void *,
    198 		    struct pool_item_header *);
    199 static void	pool_update_curpage(struct pool *);
    200 
    201 static int	pool_grow(struct pool *, int);
    202 static void	*pool_allocator_alloc(struct pool *, int);
    203 static void	pool_allocator_free(struct pool *, void *);
    204 
    205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206 	void (*)(const char *, ...));
    207 static void pool_print1(struct pool *, const char *,
    208 	void (*)(const char *, ...));
    209 
    210 static int pool_chk_page(struct pool *, const char *,
    211 			 struct pool_item_header *);
    212 
    213 static inline unsigned int
    214 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    215     const void *v)
    216 {
    217 	const char *cp = v;
    218 	unsigned int idx;
    219 
    220 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    221 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    222 	KASSERT(idx < pp->pr_itemsperpage);
    223 	return idx;
    224 }
    225 
    226 static inline void
    227 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    228     void *obj)
    229 {
    230 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    231 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    232 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    233 
    234 	KASSERT((*bitmap & mask) == 0);
    235 	*bitmap |= mask;
    236 }
    237 
    238 static inline void *
    239 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    240 {
    241 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    242 	unsigned int idx;
    243 	int i;
    244 
    245 	for (i = 0; ; i++) {
    246 		int bit;
    247 
    248 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    249 		bit = ffs32(bitmap[i]);
    250 		if (bit) {
    251 			pool_item_bitmap_t mask;
    252 
    253 			bit--;
    254 			idx = (i * BITMAP_SIZE) + bit;
    255 			mask = 1 << bit;
    256 			KASSERT((bitmap[i] & mask) != 0);
    257 			bitmap[i] &= ~mask;
    258 			break;
    259 		}
    260 	}
    261 	KASSERT(idx < pp->pr_itemsperpage);
    262 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    263 }
    264 
    265 static inline void
    266 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    267 {
    268 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    269 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    270 	int i;
    271 
    272 	for (i = 0; i < n; i++) {
    273 		bitmap[i] = (pool_item_bitmap_t)-1;
    274 	}
    275 }
    276 
    277 static inline int
    278 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    279 {
    280 
    281 	/*
    282 	 * we consider pool_item_header with smaller ph_page bigger.
    283 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    284 	 */
    285 
    286 	if (a->ph_page < b->ph_page)
    287 		return (1);
    288 	else if (a->ph_page > b->ph_page)
    289 		return (-1);
    290 	else
    291 		return (0);
    292 }
    293 
    294 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    295 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    296 
    297 static inline struct pool_item_header *
    298 pr_find_pagehead_noalign(struct pool *pp, void *v)
    299 {
    300 	struct pool_item_header *ph, tmp;
    301 
    302 	tmp.ph_page = (void *)(uintptr_t)v;
    303 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    304 	if (ph == NULL) {
    305 		ph = SPLAY_ROOT(&pp->pr_phtree);
    306 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    307 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    308 		}
    309 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    310 	}
    311 
    312 	return ph;
    313 }
    314 
    315 /*
    316  * Return the pool page header based on item address.
    317  */
    318 static inline struct pool_item_header *
    319 pr_find_pagehead(struct pool *pp, void *v)
    320 {
    321 	struct pool_item_header *ph, tmp;
    322 
    323 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    324 		ph = pr_find_pagehead_noalign(pp, v);
    325 	} else {
    326 		void *page =
    327 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    328 
    329 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    330 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    331 		} else {
    332 			tmp.ph_page = page;
    333 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    334 		}
    335 	}
    336 
    337 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    338 	    ((char *)ph->ph_page <= (char *)v &&
    339 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    340 	return ph;
    341 }
    342 
    343 static void
    344 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    345 {
    346 	struct pool_item_header *ph;
    347 
    348 	while ((ph = LIST_FIRST(pq)) != NULL) {
    349 		LIST_REMOVE(ph, ph_pagelist);
    350 		pool_allocator_free(pp, ph->ph_page);
    351 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    352 			pool_put(pp->pr_phpool, ph);
    353 	}
    354 }
    355 
    356 /*
    357  * Remove a page from the pool.
    358  */
    359 static inline void
    360 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    361      struct pool_pagelist *pq)
    362 {
    363 
    364 	KASSERT(mutex_owned(&pp->pr_lock));
    365 
    366 	/*
    367 	 * If the page was idle, decrement the idle page count.
    368 	 */
    369 	if (ph->ph_nmissing == 0) {
    370 #ifdef DIAGNOSTIC
    371 		if (pp->pr_nidle == 0)
    372 			panic("pr_rmpage: nidle inconsistent");
    373 		if (pp->pr_nitems < pp->pr_itemsperpage)
    374 			panic("pr_rmpage: nitems inconsistent");
    375 #endif
    376 		pp->pr_nidle--;
    377 	}
    378 
    379 	pp->pr_nitems -= pp->pr_itemsperpage;
    380 
    381 	/*
    382 	 * Unlink the page from the pool and queue it for release.
    383 	 */
    384 	LIST_REMOVE(ph, ph_pagelist);
    385 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    386 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    387 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    388 
    389 	pp->pr_npages--;
    390 	pp->pr_npagefree++;
    391 
    392 	pool_update_curpage(pp);
    393 }
    394 
    395 /*
    396  * Initialize all the pools listed in the "pools" link set.
    397  */
    398 void
    399 pool_subsystem_init(void)
    400 {
    401 	size_t size;
    402 	int idx;
    403 
    404 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    405 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    406 	cv_init(&pool_busy, "poolbusy");
    407 
    408 	/*
    409 	 * Initialize private page header pool and cache magazine pool if we
    410 	 * haven't done so yet.
    411 	 */
    412 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    413 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    414 		int nelem;
    415 		size_t sz;
    416 
    417 		nelem = PHPOOL_FREELIST_NELEM(idx);
    418 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    419 		    "phpool-%d", nelem);
    420 		sz = sizeof(struct pool_item_header);
    421 		if (nelem) {
    422 			sz = offsetof(struct pool_item_header,
    423 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    424 		}
    425 		pool_init(&phpool[idx], sz, 0, 0, 0,
    426 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    427 	}
    428 #ifdef POOL_SUBPAGE
    429 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    430 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    431 #endif
    432 
    433 	size = sizeof(pcg_t) +
    434 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    435 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    436 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    437 
    438 	size = sizeof(pcg_t) +
    439 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    440 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    441 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    442 
    443 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    444 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    445 
    446 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    447 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    448 }
    449 
    450 /*
    451  * Initialize the given pool resource structure.
    452  *
    453  * We export this routine to allow other kernel parts to declare
    454  * static pools that must be initialized before kmem(9) is available.
    455  */
    456 void
    457 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    458     const char *wchan, struct pool_allocator *palloc, int ipl)
    459 {
    460 	struct pool *pp1;
    461 	size_t trysize, phsize;
    462 	int off, slack;
    463 
    464 #ifdef DEBUG
    465 	/*
    466 	 * Check that the pool hasn't already been initialised and
    467 	 * added to the list of all pools.
    468 	 */
    469 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    470 		if (pp == pp1)
    471 			panic("pool_init: pool %s already initialised",
    472 			    wchan);
    473 	}
    474 #endif
    475 
    476 	if (palloc == NULL)
    477 		palloc = &pool_allocator_kmem;
    478 #ifdef POOL_SUBPAGE
    479 	if (size > palloc->pa_pagesz) {
    480 		if (palloc == &pool_allocator_kmem)
    481 			palloc = &pool_allocator_kmem_fullpage;
    482 		else if (palloc == &pool_allocator_nointr)
    483 			palloc = &pool_allocator_nointr_fullpage;
    484 	}
    485 #endif /* POOL_SUBPAGE */
    486 	if (!cold)
    487 		mutex_enter(&pool_allocator_lock);
    488 	if (palloc->pa_refcnt++ == 0) {
    489 		if (palloc->pa_pagesz == 0)
    490 			palloc->pa_pagesz = PAGE_SIZE;
    491 
    492 		TAILQ_INIT(&palloc->pa_list);
    493 
    494 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    495 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    496 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    497 	}
    498 	if (!cold)
    499 		mutex_exit(&pool_allocator_lock);
    500 
    501 	if (align == 0)
    502 		align = ALIGN(1);
    503 
    504 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    505 		size = sizeof(struct pool_item);
    506 
    507 	size = roundup(size, align);
    508 #ifdef DIAGNOSTIC
    509 	if (size > palloc->pa_pagesz)
    510 		panic("pool_init: pool item size (%zu) too large", size);
    511 #endif
    512 
    513 	/*
    514 	 * Initialize the pool structure.
    515 	 */
    516 	LIST_INIT(&pp->pr_emptypages);
    517 	LIST_INIT(&pp->pr_fullpages);
    518 	LIST_INIT(&pp->pr_partpages);
    519 	pp->pr_cache = NULL;
    520 	pp->pr_curpage = NULL;
    521 	pp->pr_npages = 0;
    522 	pp->pr_minitems = 0;
    523 	pp->pr_minpages = 0;
    524 	pp->pr_maxpages = UINT_MAX;
    525 	pp->pr_roflags = flags;
    526 	pp->pr_flags = 0;
    527 	pp->pr_size = size;
    528 	pp->pr_align = align;
    529 	pp->pr_wchan = wchan;
    530 	pp->pr_alloc = palloc;
    531 	pp->pr_nitems = 0;
    532 	pp->pr_nout = 0;
    533 	pp->pr_hardlimit = UINT_MAX;
    534 	pp->pr_hardlimit_warning = NULL;
    535 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    536 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    537 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    538 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    539 	pp->pr_drain_hook = NULL;
    540 	pp->pr_drain_hook_arg = NULL;
    541 	pp->pr_freecheck = NULL;
    542 
    543 	/*
    544 	 * Decide whether to put the page header off page to avoid
    545 	 * wasting too large a part of the page or too big item.
    546 	 * Off-page page headers go on a hash table, so we can match
    547 	 * a returned item with its header based on the page address.
    548 	 * We use 1/16 of the page size and about 8 times of the item
    549 	 * size as the threshold (XXX: tune)
    550 	 *
    551 	 * However, we'll put the header into the page if we can put
    552 	 * it without wasting any items.
    553 	 *
    554 	 * Silently enforce `0 <= ioff < align'.
    555 	 */
    556 	pp->pr_itemoffset = ioff %= align;
    557 	/* See the comment below about reserved bytes. */
    558 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    559 	phsize = ALIGN(sizeof(struct pool_item_header));
    560 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    561 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    562 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    563 		/* Use the end of the page for the page header */
    564 		pp->pr_roflags |= PR_PHINPAGE;
    565 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    566 	} else {
    567 		/* The page header will be taken from our page header pool */
    568 		pp->pr_phoffset = 0;
    569 		off = palloc->pa_pagesz;
    570 		SPLAY_INIT(&pp->pr_phtree);
    571 	}
    572 
    573 	/*
    574 	 * Alignment is to take place at `ioff' within the item. This means
    575 	 * we must reserve up to `align - 1' bytes on the page to allow
    576 	 * appropriate positioning of each item.
    577 	 */
    578 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    579 	KASSERT(pp->pr_itemsperpage != 0);
    580 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    581 		int idx;
    582 
    583 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    584 		    idx++) {
    585 			/* nothing */
    586 		}
    587 		if (idx >= PHPOOL_MAX) {
    588 			/*
    589 			 * if you see this panic, consider to tweak
    590 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    591 			 */
    592 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    593 			    pp->pr_wchan, pp->pr_itemsperpage);
    594 		}
    595 		pp->pr_phpool = &phpool[idx];
    596 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    597 		pp->pr_phpool = &phpool[0];
    598 	}
    599 #if defined(DIAGNOSTIC)
    600 	else {
    601 		pp->pr_phpool = NULL;
    602 	}
    603 #endif
    604 
    605 	/*
    606 	 * Use the slack between the chunks and the page header
    607 	 * for "cache coloring".
    608 	 */
    609 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    610 	pp->pr_maxcolor = (slack / align) * align;
    611 	pp->pr_curcolor = 0;
    612 
    613 	pp->pr_nget = 0;
    614 	pp->pr_nfail = 0;
    615 	pp->pr_nput = 0;
    616 	pp->pr_npagealloc = 0;
    617 	pp->pr_npagefree = 0;
    618 	pp->pr_hiwat = 0;
    619 	pp->pr_nidle = 0;
    620 	pp->pr_refcnt = 0;
    621 
    622 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    623 	cv_init(&pp->pr_cv, wchan);
    624 	pp->pr_ipl = ipl;
    625 
    626 	/* Insert into the list of all pools. */
    627 	if (!cold)
    628 		mutex_enter(&pool_head_lock);
    629 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    630 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    631 			break;
    632 	}
    633 	if (pp1 == NULL)
    634 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    635 	else
    636 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    637 	if (!cold)
    638 		mutex_exit(&pool_head_lock);
    639 
    640 	/* Insert this into the list of pools using this allocator. */
    641 	if (!cold)
    642 		mutex_enter(&palloc->pa_lock);
    643 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    644 	if (!cold)
    645 		mutex_exit(&palloc->pa_lock);
    646 }
    647 
    648 /*
    649  * De-commision a pool resource.
    650  */
    651 void
    652 pool_destroy(struct pool *pp)
    653 {
    654 	struct pool_pagelist pq;
    655 	struct pool_item_header *ph;
    656 
    657 	/* Remove from global pool list */
    658 	mutex_enter(&pool_head_lock);
    659 	while (pp->pr_refcnt != 0)
    660 		cv_wait(&pool_busy, &pool_head_lock);
    661 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    662 	if (drainpp == pp)
    663 		drainpp = NULL;
    664 	mutex_exit(&pool_head_lock);
    665 
    666 	/* Remove this pool from its allocator's list of pools. */
    667 	mutex_enter(&pp->pr_alloc->pa_lock);
    668 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    669 	mutex_exit(&pp->pr_alloc->pa_lock);
    670 
    671 	mutex_enter(&pool_allocator_lock);
    672 	if (--pp->pr_alloc->pa_refcnt == 0)
    673 		mutex_destroy(&pp->pr_alloc->pa_lock);
    674 	mutex_exit(&pool_allocator_lock);
    675 
    676 	mutex_enter(&pp->pr_lock);
    677 
    678 	KASSERT(pp->pr_cache == NULL);
    679 
    680 #ifdef DIAGNOSTIC
    681 	if (pp->pr_nout != 0) {
    682 		panic("pool_destroy: pool busy: still out: %u",
    683 		    pp->pr_nout);
    684 	}
    685 #endif
    686 
    687 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    688 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    689 
    690 	/* Remove all pages */
    691 	LIST_INIT(&pq);
    692 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    693 		pr_rmpage(pp, ph, &pq);
    694 
    695 	mutex_exit(&pp->pr_lock);
    696 
    697 	pr_pagelist_free(pp, &pq);
    698 	cv_destroy(&pp->pr_cv);
    699 	mutex_destroy(&pp->pr_lock);
    700 }
    701 
    702 void
    703 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    704 {
    705 
    706 	/* XXX no locking -- must be used just after pool_init() */
    707 #ifdef DIAGNOSTIC
    708 	if (pp->pr_drain_hook != NULL)
    709 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    710 #endif
    711 	pp->pr_drain_hook = fn;
    712 	pp->pr_drain_hook_arg = arg;
    713 }
    714 
    715 static struct pool_item_header *
    716 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    717 {
    718 	struct pool_item_header *ph;
    719 
    720 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    721 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    722 	else
    723 		ph = pool_get(pp->pr_phpool, flags);
    724 
    725 	return (ph);
    726 }
    727 
    728 /*
    729  * Grab an item from the pool.
    730  */
    731 void *
    732 pool_get(struct pool *pp, int flags)
    733 {
    734 	struct pool_item *pi;
    735 	struct pool_item_header *ph;
    736 	void *v;
    737 
    738 #ifdef DIAGNOSTIC
    739 	if (pp->pr_itemsperpage == 0)
    740 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    741 		    "pool not initialized?", pp->pr_wchan);
    742 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    743 	    !cold && panicstr == NULL)
    744 		panic("pool '%s' is IPL_NONE, but called from "
    745 		    "interrupt context\n", pp->pr_wchan);
    746 #endif
    747 	if (flags & PR_WAITOK) {
    748 		ASSERT_SLEEPABLE();
    749 	}
    750 
    751 	mutex_enter(&pp->pr_lock);
    752  startover:
    753 	/*
    754 	 * Check to see if we've reached the hard limit.  If we have,
    755 	 * and we can wait, then wait until an item has been returned to
    756 	 * the pool.
    757 	 */
    758 #ifdef DIAGNOSTIC
    759 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    760 		mutex_exit(&pp->pr_lock);
    761 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    762 	}
    763 #endif
    764 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    765 		if (pp->pr_drain_hook != NULL) {
    766 			/*
    767 			 * Since the drain hook is going to free things
    768 			 * back to the pool, unlock, call the hook, re-lock,
    769 			 * and check the hardlimit condition again.
    770 			 */
    771 			mutex_exit(&pp->pr_lock);
    772 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    773 			mutex_enter(&pp->pr_lock);
    774 			if (pp->pr_nout < pp->pr_hardlimit)
    775 				goto startover;
    776 		}
    777 
    778 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    779 			/*
    780 			 * XXX: A warning isn't logged in this case.  Should
    781 			 * it be?
    782 			 */
    783 			pp->pr_flags |= PR_WANTED;
    784 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    785 			goto startover;
    786 		}
    787 
    788 		/*
    789 		 * Log a message that the hard limit has been hit.
    790 		 */
    791 		if (pp->pr_hardlimit_warning != NULL &&
    792 		    ratecheck(&pp->pr_hardlimit_warning_last,
    793 			      &pp->pr_hardlimit_ratecap))
    794 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    795 
    796 		pp->pr_nfail++;
    797 
    798 		mutex_exit(&pp->pr_lock);
    799 		return (NULL);
    800 	}
    801 
    802 	/*
    803 	 * The convention we use is that if `curpage' is not NULL, then
    804 	 * it points at a non-empty bucket. In particular, `curpage'
    805 	 * never points at a page header which has PR_PHINPAGE set and
    806 	 * has no items in its bucket.
    807 	 */
    808 	if ((ph = pp->pr_curpage) == NULL) {
    809 		int error;
    810 
    811 #ifdef DIAGNOSTIC
    812 		if (pp->pr_nitems != 0) {
    813 			mutex_exit(&pp->pr_lock);
    814 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    815 			    pp->pr_wchan, pp->pr_nitems);
    816 			panic("pool_get: nitems inconsistent");
    817 		}
    818 #endif
    819 
    820 		/*
    821 		 * Call the back-end page allocator for more memory.
    822 		 * Release the pool lock, as the back-end page allocator
    823 		 * may block.
    824 		 */
    825 		error = pool_grow(pp, flags);
    826 		if (error != 0) {
    827 			/*
    828 			 * We were unable to allocate a page or item
    829 			 * header, but we released the lock during
    830 			 * allocation, so perhaps items were freed
    831 			 * back to the pool.  Check for this case.
    832 			 */
    833 			if (pp->pr_curpage != NULL)
    834 				goto startover;
    835 
    836 			pp->pr_nfail++;
    837 			mutex_exit(&pp->pr_lock);
    838 			return (NULL);
    839 		}
    840 
    841 		/* Start the allocation process over. */
    842 		goto startover;
    843 	}
    844 	if (pp->pr_roflags & PR_NOTOUCH) {
    845 #ifdef DIAGNOSTIC
    846 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    847 			mutex_exit(&pp->pr_lock);
    848 			panic("pool_get: %s: page empty", pp->pr_wchan);
    849 		}
    850 #endif
    851 		v = pr_item_notouch_get(pp, ph);
    852 	} else {
    853 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    854 		if (__predict_false(v == NULL)) {
    855 			mutex_exit(&pp->pr_lock);
    856 			panic("pool_get: %s: page empty", pp->pr_wchan);
    857 		}
    858 #ifdef DIAGNOSTIC
    859 		if (__predict_false(pp->pr_nitems == 0)) {
    860 			mutex_exit(&pp->pr_lock);
    861 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    862 			    pp->pr_wchan, pp->pr_nitems);
    863 			panic("pool_get: nitems inconsistent");
    864 		}
    865 #endif
    866 
    867 #ifdef DIAGNOSTIC
    868 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    869 			panic("pool_get(%s): free list modified: "
    870 			    "magic=%x; page %p; item addr %p\n",
    871 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    872 		}
    873 #endif
    874 
    875 		/*
    876 		 * Remove from item list.
    877 		 */
    878 		LIST_REMOVE(pi, pi_list);
    879 	}
    880 	pp->pr_nitems--;
    881 	pp->pr_nout++;
    882 	if (ph->ph_nmissing == 0) {
    883 #ifdef DIAGNOSTIC
    884 		if (__predict_false(pp->pr_nidle == 0))
    885 			panic("pool_get: nidle inconsistent");
    886 #endif
    887 		pp->pr_nidle--;
    888 
    889 		/*
    890 		 * This page was previously empty.  Move it to the list of
    891 		 * partially-full pages.  This page is already curpage.
    892 		 */
    893 		LIST_REMOVE(ph, ph_pagelist);
    894 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    895 	}
    896 	ph->ph_nmissing++;
    897 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    898 #ifdef DIAGNOSTIC
    899 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    900 		    !LIST_EMPTY(&ph->ph_itemlist))) {
    901 			mutex_exit(&pp->pr_lock);
    902 			panic("pool_get: %s: nmissing inconsistent",
    903 			    pp->pr_wchan);
    904 		}
    905 #endif
    906 		/*
    907 		 * This page is now full.  Move it to the full list
    908 		 * and select a new current page.
    909 		 */
    910 		LIST_REMOVE(ph, ph_pagelist);
    911 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    912 		pool_update_curpage(pp);
    913 	}
    914 
    915 	pp->pr_nget++;
    916 
    917 	/*
    918 	 * If we have a low water mark and we are now below that low
    919 	 * water mark, add more items to the pool.
    920 	 */
    921 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    922 		/*
    923 		 * XXX: Should we log a warning?  Should we set up a timeout
    924 		 * to try again in a second or so?  The latter could break
    925 		 * a caller's assumptions about interrupt protection, etc.
    926 		 */
    927 	}
    928 
    929 	mutex_exit(&pp->pr_lock);
    930 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    931 	FREECHECK_OUT(&pp->pr_freecheck, v);
    932 	return (v);
    933 }
    934 
    935 /*
    936  * Internal version of pool_put().  Pool is already locked/entered.
    937  */
    938 static void
    939 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    940 {
    941 	struct pool_item *pi = v;
    942 	struct pool_item_header *ph;
    943 
    944 	KASSERT(mutex_owned(&pp->pr_lock));
    945 	FREECHECK_IN(&pp->pr_freecheck, v);
    946 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    947 
    948 #ifdef DIAGNOSTIC
    949 	if (__predict_false(pp->pr_nout == 0)) {
    950 		printf("pool %s: putting with none out\n",
    951 		    pp->pr_wchan);
    952 		panic("pool_put");
    953 	}
    954 #endif
    955 
    956 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    957 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    958 	}
    959 
    960 	/*
    961 	 * Return to item list.
    962 	 */
    963 	if (pp->pr_roflags & PR_NOTOUCH) {
    964 		pr_item_notouch_put(pp, ph, v);
    965 	} else {
    966 #ifdef DIAGNOSTIC
    967 		pi->pi_magic = PI_MAGIC;
    968 #endif
    969 #ifdef DEBUG
    970 		{
    971 			int i, *ip = v;
    972 
    973 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    974 				*ip++ = PI_MAGIC;
    975 			}
    976 		}
    977 #endif
    978 
    979 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    980 	}
    981 	KDASSERT(ph->ph_nmissing != 0);
    982 	ph->ph_nmissing--;
    983 	pp->pr_nput++;
    984 	pp->pr_nitems++;
    985 	pp->pr_nout--;
    986 
    987 	/* Cancel "pool empty" condition if it exists */
    988 	if (pp->pr_curpage == NULL)
    989 		pp->pr_curpage = ph;
    990 
    991 	if (pp->pr_flags & PR_WANTED) {
    992 		pp->pr_flags &= ~PR_WANTED;
    993 		cv_broadcast(&pp->pr_cv);
    994 	}
    995 
    996 	/*
    997 	 * If this page is now empty, do one of two things:
    998 	 *
    999 	 *	(1) If we have more pages than the page high water mark,
   1000 	 *	    free the page back to the system.  ONLY CONSIDER
   1001 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1002 	 *	    CLAIM.
   1003 	 *
   1004 	 *	(2) Otherwise, move the page to the empty page list.
   1005 	 *
   1006 	 * Either way, select a new current page (so we use a partially-full
   1007 	 * page if one is available).
   1008 	 */
   1009 	if (ph->ph_nmissing == 0) {
   1010 		pp->pr_nidle++;
   1011 		if (pp->pr_npages > pp->pr_minpages &&
   1012 		    pp->pr_npages > pp->pr_maxpages) {
   1013 			pr_rmpage(pp, ph, pq);
   1014 		} else {
   1015 			LIST_REMOVE(ph, ph_pagelist);
   1016 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1017 
   1018 			/*
   1019 			 * Update the timestamp on the page.  A page must
   1020 			 * be idle for some period of time before it can
   1021 			 * be reclaimed by the pagedaemon.  This minimizes
   1022 			 * ping-pong'ing for memory.
   1023 			 *
   1024 			 * note for 64-bit time_t: truncating to 32-bit is not
   1025 			 * a problem for our usage.
   1026 			 */
   1027 			ph->ph_time = time_uptime;
   1028 		}
   1029 		pool_update_curpage(pp);
   1030 	}
   1031 
   1032 	/*
   1033 	 * If the page was previously completely full, move it to the
   1034 	 * partially-full list and make it the current page.  The next
   1035 	 * allocation will get the item from this page, instead of
   1036 	 * further fragmenting the pool.
   1037 	 */
   1038 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1039 		LIST_REMOVE(ph, ph_pagelist);
   1040 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1041 		pp->pr_curpage = ph;
   1042 	}
   1043 }
   1044 
   1045 void
   1046 pool_put(struct pool *pp, void *v)
   1047 {
   1048 	struct pool_pagelist pq;
   1049 
   1050 	LIST_INIT(&pq);
   1051 
   1052 	mutex_enter(&pp->pr_lock);
   1053 	pool_do_put(pp, v, &pq);
   1054 	mutex_exit(&pp->pr_lock);
   1055 
   1056 	pr_pagelist_free(pp, &pq);
   1057 }
   1058 
   1059 /*
   1060  * pool_grow: grow a pool by a page.
   1061  *
   1062  * => called with pool locked.
   1063  * => unlock and relock the pool.
   1064  * => return with pool locked.
   1065  */
   1066 
   1067 static int
   1068 pool_grow(struct pool *pp, int flags)
   1069 {
   1070 	struct pool_item_header *ph = NULL;
   1071 	char *cp;
   1072 
   1073 	mutex_exit(&pp->pr_lock);
   1074 	cp = pool_allocator_alloc(pp, flags);
   1075 	if (__predict_true(cp != NULL)) {
   1076 		ph = pool_alloc_item_header(pp, cp, flags);
   1077 	}
   1078 	if (__predict_false(cp == NULL || ph == NULL)) {
   1079 		if (cp != NULL) {
   1080 			pool_allocator_free(pp, cp);
   1081 		}
   1082 		mutex_enter(&pp->pr_lock);
   1083 		return ENOMEM;
   1084 	}
   1085 
   1086 	mutex_enter(&pp->pr_lock);
   1087 	pool_prime_page(pp, cp, ph);
   1088 	pp->pr_npagealloc++;
   1089 	return 0;
   1090 }
   1091 
   1092 /*
   1093  * Add N items to the pool.
   1094  */
   1095 int
   1096 pool_prime(struct pool *pp, int n)
   1097 {
   1098 	int newpages;
   1099 	int error = 0;
   1100 
   1101 	mutex_enter(&pp->pr_lock);
   1102 
   1103 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1104 
   1105 	while (newpages-- > 0) {
   1106 		error = pool_grow(pp, PR_NOWAIT);
   1107 		if (error) {
   1108 			break;
   1109 		}
   1110 		pp->pr_minpages++;
   1111 	}
   1112 
   1113 	if (pp->pr_minpages >= pp->pr_maxpages)
   1114 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1115 
   1116 	mutex_exit(&pp->pr_lock);
   1117 	return error;
   1118 }
   1119 
   1120 /*
   1121  * Add a page worth of items to the pool.
   1122  *
   1123  * Note, we must be called with the pool descriptor LOCKED.
   1124  */
   1125 static void
   1126 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1127 {
   1128 	struct pool_item *pi;
   1129 	void *cp = storage;
   1130 	const unsigned int align = pp->pr_align;
   1131 	const unsigned int ioff = pp->pr_itemoffset;
   1132 	int n;
   1133 
   1134 	KASSERT(mutex_owned(&pp->pr_lock));
   1135 
   1136 #ifdef DIAGNOSTIC
   1137 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1138 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1139 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1140 #endif
   1141 
   1142 	/*
   1143 	 * Insert page header.
   1144 	 */
   1145 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1146 	LIST_INIT(&ph->ph_itemlist);
   1147 	ph->ph_page = storage;
   1148 	ph->ph_nmissing = 0;
   1149 	ph->ph_time = time_uptime;
   1150 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1151 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1152 
   1153 	pp->pr_nidle++;
   1154 
   1155 	/*
   1156 	 * Color this page.
   1157 	 */
   1158 	ph->ph_off = pp->pr_curcolor;
   1159 	cp = (char *)cp + ph->ph_off;
   1160 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1161 		pp->pr_curcolor = 0;
   1162 
   1163 	/*
   1164 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1165 	 */
   1166 	if (ioff != 0)
   1167 		cp = (char *)cp + align - ioff;
   1168 
   1169 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1170 
   1171 	/*
   1172 	 * Insert remaining chunks on the bucket list.
   1173 	 */
   1174 	n = pp->pr_itemsperpage;
   1175 	pp->pr_nitems += n;
   1176 
   1177 	if (pp->pr_roflags & PR_NOTOUCH) {
   1178 		pr_item_notouch_init(pp, ph);
   1179 	} else {
   1180 		while (n--) {
   1181 			pi = (struct pool_item *)cp;
   1182 
   1183 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1184 
   1185 			/* Insert on page list */
   1186 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1187 #ifdef DIAGNOSTIC
   1188 			pi->pi_magic = PI_MAGIC;
   1189 #endif
   1190 			cp = (char *)cp + pp->pr_size;
   1191 
   1192 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1193 		}
   1194 	}
   1195 
   1196 	/*
   1197 	 * If the pool was depleted, point at the new page.
   1198 	 */
   1199 	if (pp->pr_curpage == NULL)
   1200 		pp->pr_curpage = ph;
   1201 
   1202 	if (++pp->pr_npages > pp->pr_hiwat)
   1203 		pp->pr_hiwat = pp->pr_npages;
   1204 }
   1205 
   1206 /*
   1207  * Used by pool_get() when nitems drops below the low water mark.  This
   1208  * is used to catch up pr_nitems with the low water mark.
   1209  *
   1210  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1211  *
   1212  * Note 2, we must be called with the pool already locked, and we return
   1213  * with it locked.
   1214  */
   1215 static int
   1216 pool_catchup(struct pool *pp)
   1217 {
   1218 	int error = 0;
   1219 
   1220 	while (POOL_NEEDS_CATCHUP(pp)) {
   1221 		error = pool_grow(pp, PR_NOWAIT);
   1222 		if (error) {
   1223 			break;
   1224 		}
   1225 	}
   1226 	return error;
   1227 }
   1228 
   1229 static void
   1230 pool_update_curpage(struct pool *pp)
   1231 {
   1232 
   1233 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1234 	if (pp->pr_curpage == NULL) {
   1235 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1236 	}
   1237 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1238 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1239 }
   1240 
   1241 void
   1242 pool_setlowat(struct pool *pp, int n)
   1243 {
   1244 
   1245 	mutex_enter(&pp->pr_lock);
   1246 
   1247 	pp->pr_minitems = n;
   1248 	pp->pr_minpages = (n == 0)
   1249 		? 0
   1250 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1251 
   1252 	/* Make sure we're caught up with the newly-set low water mark. */
   1253 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1254 		/*
   1255 		 * XXX: Should we log a warning?  Should we set up a timeout
   1256 		 * to try again in a second or so?  The latter could break
   1257 		 * a caller's assumptions about interrupt protection, etc.
   1258 		 */
   1259 	}
   1260 
   1261 	mutex_exit(&pp->pr_lock);
   1262 }
   1263 
   1264 void
   1265 pool_sethiwat(struct pool *pp, int n)
   1266 {
   1267 
   1268 	mutex_enter(&pp->pr_lock);
   1269 
   1270 	pp->pr_maxpages = (n == 0)
   1271 		? 0
   1272 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1273 
   1274 	mutex_exit(&pp->pr_lock);
   1275 }
   1276 
   1277 void
   1278 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1279 {
   1280 
   1281 	mutex_enter(&pp->pr_lock);
   1282 
   1283 	pp->pr_hardlimit = n;
   1284 	pp->pr_hardlimit_warning = warnmess;
   1285 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1286 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1287 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1288 
   1289 	/*
   1290 	 * In-line version of pool_sethiwat(), because we don't want to
   1291 	 * release the lock.
   1292 	 */
   1293 	pp->pr_maxpages = (n == 0)
   1294 		? 0
   1295 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1296 
   1297 	mutex_exit(&pp->pr_lock);
   1298 }
   1299 
   1300 /*
   1301  * Release all complete pages that have not been used recently.
   1302  *
   1303  * Might be called from interrupt context.
   1304  */
   1305 int
   1306 pool_reclaim(struct pool *pp)
   1307 {
   1308 	struct pool_item_header *ph, *phnext;
   1309 	struct pool_pagelist pq;
   1310 	uint32_t curtime;
   1311 	bool klock;
   1312 	int rv;
   1313 
   1314 	if (cpu_intr_p() || cpu_softintr_p()) {
   1315 		KASSERT(pp->pr_ipl != IPL_NONE);
   1316 	}
   1317 
   1318 	if (pp->pr_drain_hook != NULL) {
   1319 		/*
   1320 		 * The drain hook must be called with the pool unlocked.
   1321 		 */
   1322 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1323 	}
   1324 
   1325 	/*
   1326 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1327 	 * to block.
   1328 	 */
   1329 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1330 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1331 		KERNEL_LOCK(1, NULL);
   1332 		klock = true;
   1333 	} else
   1334 		klock = false;
   1335 
   1336 	/* Reclaim items from the pool's cache (if any). */
   1337 	if (pp->pr_cache != NULL)
   1338 		pool_cache_invalidate(pp->pr_cache);
   1339 
   1340 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1341 		if (klock) {
   1342 			KERNEL_UNLOCK_ONE(NULL);
   1343 		}
   1344 		return (0);
   1345 	}
   1346 
   1347 	LIST_INIT(&pq);
   1348 
   1349 	curtime = time_uptime;
   1350 
   1351 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1352 		phnext = LIST_NEXT(ph, ph_pagelist);
   1353 
   1354 		/* Check our minimum page claim */
   1355 		if (pp->pr_npages <= pp->pr_minpages)
   1356 			break;
   1357 
   1358 		KASSERT(ph->ph_nmissing == 0);
   1359 		if (curtime - ph->ph_time < pool_inactive_time)
   1360 			continue;
   1361 
   1362 		/*
   1363 		 * If freeing this page would put us below
   1364 		 * the low water mark, stop now.
   1365 		 */
   1366 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1367 		    pp->pr_minitems)
   1368 			break;
   1369 
   1370 		pr_rmpage(pp, ph, &pq);
   1371 	}
   1372 
   1373 	mutex_exit(&pp->pr_lock);
   1374 
   1375 	if (LIST_EMPTY(&pq))
   1376 		rv = 0;
   1377 	else {
   1378 		pr_pagelist_free(pp, &pq);
   1379 		rv = 1;
   1380 	}
   1381 
   1382 	if (klock) {
   1383 		KERNEL_UNLOCK_ONE(NULL);
   1384 	}
   1385 
   1386 	return (rv);
   1387 }
   1388 
   1389 /*
   1390  * Drain pools, one at a time.  This is a two stage process;
   1391  * drain_start kicks off a cross call to drain CPU-level caches
   1392  * if the pool has an associated pool_cache.  drain_end waits
   1393  * for those cross calls to finish, and then drains the cache
   1394  * (if any) and pool.
   1395  *
   1396  * Note, must never be called from interrupt context.
   1397  */
   1398 void
   1399 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1400 {
   1401 	struct pool *pp;
   1402 
   1403 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1404 
   1405 	pp = NULL;
   1406 
   1407 	/* Find next pool to drain, and add a reference. */
   1408 	mutex_enter(&pool_head_lock);
   1409 	do {
   1410 		if (drainpp == NULL) {
   1411 			drainpp = TAILQ_FIRST(&pool_head);
   1412 		}
   1413 		if (drainpp != NULL) {
   1414 			pp = drainpp;
   1415 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1416 		}
   1417 		/*
   1418 		 * Skip completely idle pools.  We depend on at least
   1419 		 * one pool in the system being active.
   1420 		 */
   1421 	} while (pp == NULL || pp->pr_npages == 0);
   1422 	pp->pr_refcnt++;
   1423 	mutex_exit(&pool_head_lock);
   1424 
   1425 	/* If there is a pool_cache, drain CPU level caches. */
   1426 	*ppp = pp;
   1427 	if (pp->pr_cache != NULL) {
   1428 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1429 		    pp->pr_cache, NULL);
   1430 	}
   1431 }
   1432 
   1433 bool
   1434 pool_drain_end(struct pool *pp, uint64_t where)
   1435 {
   1436 	bool reclaimed;
   1437 
   1438 	if (pp == NULL)
   1439 		return false;
   1440 
   1441 	KASSERT(pp->pr_refcnt > 0);
   1442 
   1443 	/* Wait for remote draining to complete. */
   1444 	if (pp->pr_cache != NULL)
   1445 		xc_wait(where);
   1446 
   1447 	/* Drain the cache (if any) and pool.. */
   1448 	reclaimed = pool_reclaim(pp);
   1449 
   1450 	/* Finally, unlock the pool. */
   1451 	mutex_enter(&pool_head_lock);
   1452 	pp->pr_refcnt--;
   1453 	cv_broadcast(&pool_busy);
   1454 	mutex_exit(&pool_head_lock);
   1455 
   1456 	return reclaimed;
   1457 }
   1458 
   1459 /*
   1460  * Diagnostic helpers.
   1461  */
   1462 
   1463 void
   1464 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1465 {
   1466 	struct pool *pp;
   1467 
   1468 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1469 		pool_printit(pp, modif, pr);
   1470 	}
   1471 }
   1472 
   1473 void
   1474 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1475 {
   1476 
   1477 	if (pp == NULL) {
   1478 		(*pr)("Must specify a pool to print.\n");
   1479 		return;
   1480 	}
   1481 
   1482 	pool_print1(pp, modif, pr);
   1483 }
   1484 
   1485 static void
   1486 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1487     void (*pr)(const char *, ...))
   1488 {
   1489 	struct pool_item_header *ph;
   1490 #ifdef DIAGNOSTIC
   1491 	struct pool_item *pi;
   1492 #endif
   1493 
   1494 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1495 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1496 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1497 #ifdef DIAGNOSTIC
   1498 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1499 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1500 				if (pi->pi_magic != PI_MAGIC) {
   1501 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1502 					    pi, pi->pi_magic);
   1503 				}
   1504 			}
   1505 		}
   1506 #endif
   1507 	}
   1508 }
   1509 
   1510 static void
   1511 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1512 {
   1513 	struct pool_item_header *ph;
   1514 	pool_cache_t pc;
   1515 	pcg_t *pcg;
   1516 	pool_cache_cpu_t *cc;
   1517 	uint64_t cpuhit, cpumiss;
   1518 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1519 	char c;
   1520 
   1521 	while ((c = *modif++) != '\0') {
   1522 		if (c == 'l')
   1523 			print_log = 1;
   1524 		if (c == 'p')
   1525 			print_pagelist = 1;
   1526 		if (c == 'c')
   1527 			print_cache = 1;
   1528 	}
   1529 
   1530 	if ((pc = pp->pr_cache) != NULL) {
   1531 		(*pr)("POOL CACHE");
   1532 	} else {
   1533 		(*pr)("POOL");
   1534 	}
   1535 
   1536 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1537 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1538 	    pp->pr_roflags);
   1539 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1540 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1541 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1542 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1543 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1544 
   1545 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1546 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1547 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1548 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1549 
   1550 	if (print_pagelist == 0)
   1551 		goto skip_pagelist;
   1552 
   1553 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1554 		(*pr)("\n\tempty page list:\n");
   1555 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1556 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1557 		(*pr)("\n\tfull page list:\n");
   1558 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1559 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1560 		(*pr)("\n\tpartial-page list:\n");
   1561 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1562 
   1563 	if (pp->pr_curpage == NULL)
   1564 		(*pr)("\tno current page\n");
   1565 	else
   1566 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1567 
   1568  skip_pagelist:
   1569 	if (print_log == 0)
   1570 		goto skip_log;
   1571 
   1572 	(*pr)("\n");
   1573 
   1574  skip_log:
   1575 
   1576 #define PR_GROUPLIST(pcg)						\
   1577 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1578 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1579 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1580 		    POOL_PADDR_INVALID) {				\
   1581 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1582 			    pcg->pcg_objects[i].pcgo_va,		\
   1583 			    (unsigned long long)			\
   1584 			    pcg->pcg_objects[i].pcgo_pa);		\
   1585 		} else {						\
   1586 			(*pr)("\t\t\t%p\n",				\
   1587 			    pcg->pcg_objects[i].pcgo_va);		\
   1588 		}							\
   1589 	}
   1590 
   1591 	if (pc != NULL) {
   1592 		cpuhit = 0;
   1593 		cpumiss = 0;
   1594 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1595 			if ((cc = pc->pc_cpus[i]) == NULL)
   1596 				continue;
   1597 			cpuhit += cc->cc_hits;
   1598 			cpumiss += cc->cc_misses;
   1599 		}
   1600 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1601 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1602 		    pc->pc_hits, pc->pc_misses);
   1603 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1604 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1605 		    pc->pc_contended);
   1606 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1607 		    pc->pc_nempty, pc->pc_nfull);
   1608 		if (print_cache) {
   1609 			(*pr)("\tfull cache groups:\n");
   1610 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1611 			    pcg = pcg->pcg_next) {
   1612 				PR_GROUPLIST(pcg);
   1613 			}
   1614 			(*pr)("\tempty cache groups:\n");
   1615 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1616 			    pcg = pcg->pcg_next) {
   1617 				PR_GROUPLIST(pcg);
   1618 			}
   1619 		}
   1620 	}
   1621 #undef PR_GROUPLIST
   1622 }
   1623 
   1624 static int
   1625 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1626 {
   1627 	struct pool_item *pi;
   1628 	void *page;
   1629 	int n;
   1630 
   1631 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1632 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1633 		if (page != ph->ph_page &&
   1634 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1635 			if (label != NULL)
   1636 				printf("%s: ", label);
   1637 			printf("pool(%p:%s): page inconsistency: page %p;"
   1638 			       " at page head addr %p (p %p)\n", pp,
   1639 				pp->pr_wchan, ph->ph_page,
   1640 				ph, page);
   1641 			return 1;
   1642 		}
   1643 	}
   1644 
   1645 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1646 		return 0;
   1647 
   1648 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1649 	     pi != NULL;
   1650 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1651 
   1652 #ifdef DIAGNOSTIC
   1653 		if (pi->pi_magic != PI_MAGIC) {
   1654 			if (label != NULL)
   1655 				printf("%s: ", label);
   1656 			printf("pool(%s): free list modified: magic=%x;"
   1657 			       " page %p; item ordinal %d; addr %p\n",
   1658 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1659 				n, pi);
   1660 			panic("pool");
   1661 		}
   1662 #endif
   1663 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1664 			continue;
   1665 		}
   1666 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1667 		if (page == ph->ph_page)
   1668 			continue;
   1669 
   1670 		if (label != NULL)
   1671 			printf("%s: ", label);
   1672 		printf("pool(%p:%s): page inconsistency: page %p;"
   1673 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1674 			pp->pr_wchan, ph->ph_page,
   1675 			n, pi, page);
   1676 		return 1;
   1677 	}
   1678 	return 0;
   1679 }
   1680 
   1681 
   1682 int
   1683 pool_chk(struct pool *pp, const char *label)
   1684 {
   1685 	struct pool_item_header *ph;
   1686 	int r = 0;
   1687 
   1688 	mutex_enter(&pp->pr_lock);
   1689 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1690 		r = pool_chk_page(pp, label, ph);
   1691 		if (r) {
   1692 			goto out;
   1693 		}
   1694 	}
   1695 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1696 		r = pool_chk_page(pp, label, ph);
   1697 		if (r) {
   1698 			goto out;
   1699 		}
   1700 	}
   1701 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1702 		r = pool_chk_page(pp, label, ph);
   1703 		if (r) {
   1704 			goto out;
   1705 		}
   1706 	}
   1707 
   1708 out:
   1709 	mutex_exit(&pp->pr_lock);
   1710 	return (r);
   1711 }
   1712 
   1713 /*
   1714  * pool_cache_init:
   1715  *
   1716  *	Initialize a pool cache.
   1717  */
   1718 pool_cache_t
   1719 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1720     const char *wchan, struct pool_allocator *palloc, int ipl,
   1721     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1722 {
   1723 	pool_cache_t pc;
   1724 
   1725 	pc = pool_get(&cache_pool, PR_WAITOK);
   1726 	if (pc == NULL)
   1727 		return NULL;
   1728 
   1729 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1730 	   palloc, ipl, ctor, dtor, arg);
   1731 
   1732 	return pc;
   1733 }
   1734 
   1735 /*
   1736  * pool_cache_bootstrap:
   1737  *
   1738  *	Kernel-private version of pool_cache_init().  The caller
   1739  *	provides initial storage.
   1740  */
   1741 void
   1742 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1743     u_int align_offset, u_int flags, const char *wchan,
   1744     struct pool_allocator *palloc, int ipl,
   1745     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1746     void *arg)
   1747 {
   1748 	CPU_INFO_ITERATOR cii;
   1749 	pool_cache_t pc1;
   1750 	struct cpu_info *ci;
   1751 	struct pool *pp;
   1752 
   1753 	pp = &pc->pc_pool;
   1754 	if (palloc == NULL && ipl == IPL_NONE)
   1755 		palloc = &pool_allocator_nointr;
   1756 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1757 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1758 
   1759 	if (ctor == NULL) {
   1760 		ctor = (int (*)(void *, void *, int))nullop;
   1761 	}
   1762 	if (dtor == NULL) {
   1763 		dtor = (void (*)(void *, void *))nullop;
   1764 	}
   1765 
   1766 	pc->pc_emptygroups = NULL;
   1767 	pc->pc_fullgroups = NULL;
   1768 	pc->pc_partgroups = NULL;
   1769 	pc->pc_ctor = ctor;
   1770 	pc->pc_dtor = dtor;
   1771 	pc->pc_arg  = arg;
   1772 	pc->pc_hits  = 0;
   1773 	pc->pc_misses = 0;
   1774 	pc->pc_nempty = 0;
   1775 	pc->pc_npart = 0;
   1776 	pc->pc_nfull = 0;
   1777 	pc->pc_contended = 0;
   1778 	pc->pc_refcnt = 0;
   1779 	pc->pc_freecheck = NULL;
   1780 
   1781 	if ((flags & PR_LARGECACHE) != 0) {
   1782 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1783 		pc->pc_pcgpool = &pcg_large_pool;
   1784 	} else {
   1785 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1786 		pc->pc_pcgpool = &pcg_normal_pool;
   1787 	}
   1788 
   1789 	/* Allocate per-CPU caches. */
   1790 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1791 	pc->pc_ncpu = 0;
   1792 	if (ncpu < 2) {
   1793 		/* XXX For sparc: boot CPU is not attached yet. */
   1794 		pool_cache_cpu_init1(curcpu(), pc);
   1795 	} else {
   1796 		for (CPU_INFO_FOREACH(cii, ci)) {
   1797 			pool_cache_cpu_init1(ci, pc);
   1798 		}
   1799 	}
   1800 
   1801 	/* Add to list of all pools. */
   1802 	if (__predict_true(!cold))
   1803 		mutex_enter(&pool_head_lock);
   1804 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1805 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1806 			break;
   1807 	}
   1808 	if (pc1 == NULL)
   1809 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1810 	else
   1811 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1812 	if (__predict_true(!cold))
   1813 		mutex_exit(&pool_head_lock);
   1814 
   1815 	membar_sync();
   1816 	pp->pr_cache = pc;
   1817 }
   1818 
   1819 /*
   1820  * pool_cache_destroy:
   1821  *
   1822  *	Destroy a pool cache.
   1823  */
   1824 void
   1825 pool_cache_destroy(pool_cache_t pc)
   1826 {
   1827 
   1828 	pool_cache_bootstrap_destroy(pc);
   1829 	pool_put(&cache_pool, pc);
   1830 }
   1831 
   1832 /*
   1833  * pool_cache_bootstrap_destroy:
   1834  *
   1835  *	Destroy a pool cache.
   1836  */
   1837 void
   1838 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1839 {
   1840 	struct pool *pp = &pc->pc_pool;
   1841 	u_int i;
   1842 
   1843 	/* Remove it from the global list. */
   1844 	mutex_enter(&pool_head_lock);
   1845 	while (pc->pc_refcnt != 0)
   1846 		cv_wait(&pool_busy, &pool_head_lock);
   1847 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1848 	mutex_exit(&pool_head_lock);
   1849 
   1850 	/* First, invalidate the entire cache. */
   1851 	pool_cache_invalidate(pc);
   1852 
   1853 	/* Disassociate it from the pool. */
   1854 	mutex_enter(&pp->pr_lock);
   1855 	pp->pr_cache = NULL;
   1856 	mutex_exit(&pp->pr_lock);
   1857 
   1858 	/* Destroy per-CPU data */
   1859 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1860 		pool_cache_invalidate_cpu(pc, i);
   1861 
   1862 	/* Finally, destroy it. */
   1863 	mutex_destroy(&pc->pc_lock);
   1864 	pool_destroy(pp);
   1865 }
   1866 
   1867 /*
   1868  * pool_cache_cpu_init1:
   1869  *
   1870  *	Called for each pool_cache whenever a new CPU is attached.
   1871  */
   1872 static void
   1873 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1874 {
   1875 	pool_cache_cpu_t *cc;
   1876 	int index;
   1877 
   1878 	index = ci->ci_index;
   1879 
   1880 	KASSERT(index < __arraycount(pc->pc_cpus));
   1881 
   1882 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1883 		KASSERT(cc->cc_cpuindex == index);
   1884 		return;
   1885 	}
   1886 
   1887 	/*
   1888 	 * The first CPU is 'free'.  This needs to be the case for
   1889 	 * bootstrap - we may not be able to allocate yet.
   1890 	 */
   1891 	if (pc->pc_ncpu == 0) {
   1892 		cc = &pc->pc_cpu0;
   1893 		pc->pc_ncpu = 1;
   1894 	} else {
   1895 		mutex_enter(&pc->pc_lock);
   1896 		pc->pc_ncpu++;
   1897 		mutex_exit(&pc->pc_lock);
   1898 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1899 	}
   1900 
   1901 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1902 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1903 	cc->cc_cache = pc;
   1904 	cc->cc_cpuindex = index;
   1905 	cc->cc_hits = 0;
   1906 	cc->cc_misses = 0;
   1907 	cc->cc_current = __UNCONST(&pcg_dummy);
   1908 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1909 
   1910 	pc->pc_cpus[index] = cc;
   1911 }
   1912 
   1913 /*
   1914  * pool_cache_cpu_init:
   1915  *
   1916  *	Called whenever a new CPU is attached.
   1917  */
   1918 void
   1919 pool_cache_cpu_init(struct cpu_info *ci)
   1920 {
   1921 	pool_cache_t pc;
   1922 
   1923 	mutex_enter(&pool_head_lock);
   1924 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1925 		pc->pc_refcnt++;
   1926 		mutex_exit(&pool_head_lock);
   1927 
   1928 		pool_cache_cpu_init1(ci, pc);
   1929 
   1930 		mutex_enter(&pool_head_lock);
   1931 		pc->pc_refcnt--;
   1932 		cv_broadcast(&pool_busy);
   1933 	}
   1934 	mutex_exit(&pool_head_lock);
   1935 }
   1936 
   1937 /*
   1938  * pool_cache_reclaim:
   1939  *
   1940  *	Reclaim memory from a pool cache.
   1941  */
   1942 bool
   1943 pool_cache_reclaim(pool_cache_t pc)
   1944 {
   1945 
   1946 	return pool_reclaim(&pc->pc_pool);
   1947 }
   1948 
   1949 static void
   1950 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1951 {
   1952 
   1953 	(*pc->pc_dtor)(pc->pc_arg, object);
   1954 	pool_put(&pc->pc_pool, object);
   1955 }
   1956 
   1957 /*
   1958  * pool_cache_destruct_object:
   1959  *
   1960  *	Force destruction of an object and its release back into
   1961  *	the pool.
   1962  */
   1963 void
   1964 pool_cache_destruct_object(pool_cache_t pc, void *object)
   1965 {
   1966 
   1967 	FREECHECK_IN(&pc->pc_freecheck, object);
   1968 
   1969 	pool_cache_destruct_object1(pc, object);
   1970 }
   1971 
   1972 /*
   1973  * pool_cache_invalidate_groups:
   1974  *
   1975  *	Invalidate a chain of groups and destruct all objects.
   1976  */
   1977 static void
   1978 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1979 {
   1980 	void *object;
   1981 	pcg_t *next;
   1982 	int i;
   1983 
   1984 	for (; pcg != NULL; pcg = next) {
   1985 		next = pcg->pcg_next;
   1986 
   1987 		for (i = 0; i < pcg->pcg_avail; i++) {
   1988 			object = pcg->pcg_objects[i].pcgo_va;
   1989 			pool_cache_destruct_object1(pc, object);
   1990 		}
   1991 
   1992 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1993 			pool_put(&pcg_large_pool, pcg);
   1994 		} else {
   1995 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1996 			pool_put(&pcg_normal_pool, pcg);
   1997 		}
   1998 	}
   1999 }
   2000 
   2001 /*
   2002  * pool_cache_invalidate:
   2003  *
   2004  *	Invalidate a pool cache (destruct and release all of the
   2005  *	cached objects).  Does not reclaim objects from the pool.
   2006  *
   2007  *	Note: For pool caches that provide constructed objects, there
   2008  *	is an assumption that another level of synchronization is occurring
   2009  *	between the input to the constructor and the cache invalidation.
   2010  */
   2011 void
   2012 pool_cache_invalidate(pool_cache_t pc)
   2013 {
   2014 	pcg_t *full, *empty, *part;
   2015 #if 0
   2016 	uint64_t where;
   2017 
   2018 	if (ncpu < 2 || !mp_online) {
   2019 		/*
   2020 		 * We might be called early enough in the boot process
   2021 		 * for the CPU data structures to not be fully initialized.
   2022 		 * In this case, simply gather the local CPU's cache now
   2023 		 * since it will be the only one running.
   2024 		 */
   2025 		pool_cache_xcall(pc);
   2026 	} else {
   2027 		/*
   2028 		 * Gather all of the CPU-specific caches into the
   2029 		 * global cache.
   2030 		 */
   2031 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2032 		xc_wait(where);
   2033 	}
   2034 #endif
   2035 	mutex_enter(&pc->pc_lock);
   2036 	full = pc->pc_fullgroups;
   2037 	empty = pc->pc_emptygroups;
   2038 	part = pc->pc_partgroups;
   2039 	pc->pc_fullgroups = NULL;
   2040 	pc->pc_emptygroups = NULL;
   2041 	pc->pc_partgroups = NULL;
   2042 	pc->pc_nfull = 0;
   2043 	pc->pc_nempty = 0;
   2044 	pc->pc_npart = 0;
   2045 	mutex_exit(&pc->pc_lock);
   2046 
   2047 	pool_cache_invalidate_groups(pc, full);
   2048 	pool_cache_invalidate_groups(pc, empty);
   2049 	pool_cache_invalidate_groups(pc, part);
   2050 }
   2051 
   2052 /*
   2053  * pool_cache_invalidate_cpu:
   2054  *
   2055  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2056  *	identified by its associated index.
   2057  *	It is caller's responsibility to ensure that no operation is
   2058  *	taking place on this pool cache while doing this invalidation.
   2059  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2060  *	pool cached objects from a CPU different from the one currently running
   2061  *	may result in an undefined behaviour.
   2062  */
   2063 static void
   2064 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2065 {
   2066 	pool_cache_cpu_t *cc;
   2067 	pcg_t *pcg;
   2068 
   2069 	if ((cc = pc->pc_cpus[index]) == NULL)
   2070 		return;
   2071 
   2072 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2073 		pcg->pcg_next = NULL;
   2074 		pool_cache_invalidate_groups(pc, pcg);
   2075 	}
   2076 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2077 		pcg->pcg_next = NULL;
   2078 		pool_cache_invalidate_groups(pc, pcg);
   2079 	}
   2080 	if (cc != &pc->pc_cpu0)
   2081 		pool_put(&cache_cpu_pool, cc);
   2082 
   2083 }
   2084 
   2085 void
   2086 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2087 {
   2088 
   2089 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2090 }
   2091 
   2092 void
   2093 pool_cache_setlowat(pool_cache_t pc, int n)
   2094 {
   2095 
   2096 	pool_setlowat(&pc->pc_pool, n);
   2097 }
   2098 
   2099 void
   2100 pool_cache_sethiwat(pool_cache_t pc, int n)
   2101 {
   2102 
   2103 	pool_sethiwat(&pc->pc_pool, n);
   2104 }
   2105 
   2106 void
   2107 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2108 {
   2109 
   2110 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2111 }
   2112 
   2113 static bool __noinline
   2114 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2115 		    paddr_t *pap, int flags)
   2116 {
   2117 	pcg_t *pcg, *cur;
   2118 	uint64_t ncsw;
   2119 	pool_cache_t pc;
   2120 	void *object;
   2121 
   2122 	KASSERT(cc->cc_current->pcg_avail == 0);
   2123 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2124 
   2125 	pc = cc->cc_cache;
   2126 	cc->cc_misses++;
   2127 
   2128 	/*
   2129 	 * Nothing was available locally.  Try and grab a group
   2130 	 * from the cache.
   2131 	 */
   2132 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2133 		ncsw = curlwp->l_ncsw;
   2134 		mutex_enter(&pc->pc_lock);
   2135 		pc->pc_contended++;
   2136 
   2137 		/*
   2138 		 * If we context switched while locking, then
   2139 		 * our view of the per-CPU data is invalid:
   2140 		 * retry.
   2141 		 */
   2142 		if (curlwp->l_ncsw != ncsw) {
   2143 			mutex_exit(&pc->pc_lock);
   2144 			return true;
   2145 		}
   2146 	}
   2147 
   2148 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2149 		/*
   2150 		 * If there's a full group, release our empty
   2151 		 * group back to the cache.  Install the full
   2152 		 * group as cc_current and return.
   2153 		 */
   2154 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2155 			KASSERT(cur->pcg_avail == 0);
   2156 			cur->pcg_next = pc->pc_emptygroups;
   2157 			pc->pc_emptygroups = cur;
   2158 			pc->pc_nempty++;
   2159 		}
   2160 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2161 		cc->cc_current = pcg;
   2162 		pc->pc_fullgroups = pcg->pcg_next;
   2163 		pc->pc_hits++;
   2164 		pc->pc_nfull--;
   2165 		mutex_exit(&pc->pc_lock);
   2166 		return true;
   2167 	}
   2168 
   2169 	/*
   2170 	 * Nothing available locally or in cache.  Take the slow
   2171 	 * path: fetch a new object from the pool and construct
   2172 	 * it.
   2173 	 */
   2174 	pc->pc_misses++;
   2175 	mutex_exit(&pc->pc_lock);
   2176 	splx(s);
   2177 
   2178 	object = pool_get(&pc->pc_pool, flags);
   2179 	*objectp = object;
   2180 	if (__predict_false(object == NULL))
   2181 		return false;
   2182 
   2183 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2184 		pool_put(&pc->pc_pool, object);
   2185 		*objectp = NULL;
   2186 		return false;
   2187 	}
   2188 
   2189 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2190 	    (pc->pc_pool.pr_align - 1)) == 0);
   2191 
   2192 	if (pap != NULL) {
   2193 #ifdef POOL_VTOPHYS
   2194 		*pap = POOL_VTOPHYS(object);
   2195 #else
   2196 		*pap = POOL_PADDR_INVALID;
   2197 #endif
   2198 	}
   2199 
   2200 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2201 	return false;
   2202 }
   2203 
   2204 /*
   2205  * pool_cache_get{,_paddr}:
   2206  *
   2207  *	Get an object from a pool cache (optionally returning
   2208  *	the physical address of the object).
   2209  */
   2210 void *
   2211 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2212 {
   2213 	pool_cache_cpu_t *cc;
   2214 	pcg_t *pcg;
   2215 	void *object;
   2216 	int s;
   2217 
   2218 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2219 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2220 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2221 	    pc->pc_pool.pr_wchan);
   2222 
   2223 	if (flags & PR_WAITOK) {
   2224 		ASSERT_SLEEPABLE();
   2225 	}
   2226 
   2227 	/* Lock out interrupts and disable preemption. */
   2228 	s = splvm();
   2229 	while (/* CONSTCOND */ true) {
   2230 		/* Try and allocate an object from the current group. */
   2231 		cc = pc->pc_cpus[curcpu()->ci_index];
   2232 		KASSERT(cc->cc_cache == pc);
   2233 	 	pcg = cc->cc_current;
   2234 		if (__predict_true(pcg->pcg_avail > 0)) {
   2235 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2236 			if (__predict_false(pap != NULL))
   2237 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2238 #if defined(DIAGNOSTIC)
   2239 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2240 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2241 			KASSERT(object != NULL);
   2242 #endif
   2243 			cc->cc_hits++;
   2244 			splx(s);
   2245 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2246 			return object;
   2247 		}
   2248 
   2249 		/*
   2250 		 * That failed.  If the previous group isn't empty, swap
   2251 		 * it with the current group and allocate from there.
   2252 		 */
   2253 		pcg = cc->cc_previous;
   2254 		if (__predict_true(pcg->pcg_avail > 0)) {
   2255 			cc->cc_previous = cc->cc_current;
   2256 			cc->cc_current = pcg;
   2257 			continue;
   2258 		}
   2259 
   2260 		/*
   2261 		 * Can't allocate from either group: try the slow path.
   2262 		 * If get_slow() allocated an object for us, or if
   2263 		 * no more objects are available, it will return false.
   2264 		 * Otherwise, we need to retry.
   2265 		 */
   2266 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2267 			break;
   2268 	}
   2269 
   2270 	return object;
   2271 }
   2272 
   2273 static bool __noinline
   2274 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2275 {
   2276 	pcg_t *pcg, *cur;
   2277 	uint64_t ncsw;
   2278 	pool_cache_t pc;
   2279 
   2280 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2281 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2282 
   2283 	pc = cc->cc_cache;
   2284 	pcg = NULL;
   2285 	cc->cc_misses++;
   2286 
   2287 	/*
   2288 	 * If there are no empty groups in the cache then allocate one
   2289 	 * while still unlocked.
   2290 	 */
   2291 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2292 		if (__predict_true(!pool_cache_disable)) {
   2293 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2294 		}
   2295 		if (__predict_true(pcg != NULL)) {
   2296 			pcg->pcg_avail = 0;
   2297 			pcg->pcg_size = pc->pc_pcgsize;
   2298 		}
   2299 	}
   2300 
   2301 	/* Lock the cache. */
   2302 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2303 		ncsw = curlwp->l_ncsw;
   2304 		mutex_enter(&pc->pc_lock);
   2305 		pc->pc_contended++;
   2306 
   2307 		/*
   2308 		 * If we context switched while locking, then our view of
   2309 		 * the per-CPU data is invalid: retry.
   2310 		 */
   2311 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2312 			mutex_exit(&pc->pc_lock);
   2313 			if (pcg != NULL) {
   2314 				pool_put(pc->pc_pcgpool, pcg);
   2315 			}
   2316 			return true;
   2317 		}
   2318 	}
   2319 
   2320 	/* If there are no empty groups in the cache then allocate one. */
   2321 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2322 		pcg = pc->pc_emptygroups;
   2323 		pc->pc_emptygroups = pcg->pcg_next;
   2324 		pc->pc_nempty--;
   2325 	}
   2326 
   2327 	/*
   2328 	 * If there's a empty group, release our full group back
   2329 	 * to the cache.  Install the empty group to the local CPU
   2330 	 * and return.
   2331 	 */
   2332 	if (pcg != NULL) {
   2333 		KASSERT(pcg->pcg_avail == 0);
   2334 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2335 			cc->cc_previous = pcg;
   2336 		} else {
   2337 			cur = cc->cc_current;
   2338 			if (__predict_true(cur != &pcg_dummy)) {
   2339 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2340 				cur->pcg_next = pc->pc_fullgroups;
   2341 				pc->pc_fullgroups = cur;
   2342 				pc->pc_nfull++;
   2343 			}
   2344 			cc->cc_current = pcg;
   2345 		}
   2346 		pc->pc_hits++;
   2347 		mutex_exit(&pc->pc_lock);
   2348 		return true;
   2349 	}
   2350 
   2351 	/*
   2352 	 * Nothing available locally or in cache, and we didn't
   2353 	 * allocate an empty group.  Take the slow path and destroy
   2354 	 * the object here and now.
   2355 	 */
   2356 	pc->pc_misses++;
   2357 	mutex_exit(&pc->pc_lock);
   2358 	splx(s);
   2359 	pool_cache_destruct_object(pc, object);
   2360 
   2361 	return false;
   2362 }
   2363 
   2364 /*
   2365  * pool_cache_put{,_paddr}:
   2366  *
   2367  *	Put an object back to the pool cache (optionally caching the
   2368  *	physical address of the object).
   2369  */
   2370 void
   2371 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2372 {
   2373 	pool_cache_cpu_t *cc;
   2374 	pcg_t *pcg;
   2375 	int s;
   2376 
   2377 	KASSERT(object != NULL);
   2378 	FREECHECK_IN(&pc->pc_freecheck, object);
   2379 
   2380 	/* Lock out interrupts and disable preemption. */
   2381 	s = splvm();
   2382 	while (/* CONSTCOND */ true) {
   2383 		/* If the current group isn't full, release it there. */
   2384 		cc = pc->pc_cpus[curcpu()->ci_index];
   2385 		KASSERT(cc->cc_cache == pc);
   2386 	 	pcg = cc->cc_current;
   2387 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2388 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2389 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2390 			pcg->pcg_avail++;
   2391 			cc->cc_hits++;
   2392 			splx(s);
   2393 			return;
   2394 		}
   2395 
   2396 		/*
   2397 		 * That failed.  If the previous group isn't full, swap
   2398 		 * it with the current group and try again.
   2399 		 */
   2400 		pcg = cc->cc_previous;
   2401 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2402 			cc->cc_previous = cc->cc_current;
   2403 			cc->cc_current = pcg;
   2404 			continue;
   2405 		}
   2406 
   2407 		/*
   2408 		 * Can't free to either group: try the slow path.
   2409 		 * If put_slow() releases the object for us, it
   2410 		 * will return false.  Otherwise we need to retry.
   2411 		 */
   2412 		if (!pool_cache_put_slow(cc, s, object))
   2413 			break;
   2414 	}
   2415 }
   2416 
   2417 /*
   2418  * pool_cache_xcall:
   2419  *
   2420  *	Transfer objects from the per-CPU cache to the global cache.
   2421  *	Run within a cross-call thread.
   2422  */
   2423 static void
   2424 pool_cache_xcall(pool_cache_t pc)
   2425 {
   2426 	pool_cache_cpu_t *cc;
   2427 	pcg_t *prev, *cur, **list;
   2428 	int s;
   2429 
   2430 	s = splvm();
   2431 	mutex_enter(&pc->pc_lock);
   2432 	cc = pc->pc_cpus[curcpu()->ci_index];
   2433 	cur = cc->cc_current;
   2434 	cc->cc_current = __UNCONST(&pcg_dummy);
   2435 	prev = cc->cc_previous;
   2436 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2437 	if (cur != &pcg_dummy) {
   2438 		if (cur->pcg_avail == cur->pcg_size) {
   2439 			list = &pc->pc_fullgroups;
   2440 			pc->pc_nfull++;
   2441 		} else if (cur->pcg_avail == 0) {
   2442 			list = &pc->pc_emptygroups;
   2443 			pc->pc_nempty++;
   2444 		} else {
   2445 			list = &pc->pc_partgroups;
   2446 			pc->pc_npart++;
   2447 		}
   2448 		cur->pcg_next = *list;
   2449 		*list = cur;
   2450 	}
   2451 	if (prev != &pcg_dummy) {
   2452 		if (prev->pcg_avail == prev->pcg_size) {
   2453 			list = &pc->pc_fullgroups;
   2454 			pc->pc_nfull++;
   2455 		} else if (prev->pcg_avail == 0) {
   2456 			list = &pc->pc_emptygroups;
   2457 			pc->pc_nempty++;
   2458 		} else {
   2459 			list = &pc->pc_partgroups;
   2460 			pc->pc_npart++;
   2461 		}
   2462 		prev->pcg_next = *list;
   2463 		*list = prev;
   2464 	}
   2465 	mutex_exit(&pc->pc_lock);
   2466 	splx(s);
   2467 }
   2468 
   2469 /*
   2470  * Pool backend allocators.
   2471  *
   2472  * Each pool has a backend allocator that handles allocation, deallocation,
   2473  * and any additional draining that might be needed.
   2474  *
   2475  * We provide two standard allocators:
   2476  *
   2477  *	pool_allocator_kmem - the default when no allocator is specified
   2478  *
   2479  *	pool_allocator_nointr - used for pools that will not be accessed
   2480  *	in interrupt context.
   2481  */
   2482 void	*pool_page_alloc(struct pool *, int);
   2483 void	pool_page_free(struct pool *, void *);
   2484 
   2485 #ifdef POOL_SUBPAGE
   2486 struct pool_allocator pool_allocator_kmem_fullpage = {
   2487 	.pa_alloc = pool_page_alloc,
   2488 	.pa_free = pool_page_free,
   2489 	.pa_pagesz = 0
   2490 };
   2491 #else
   2492 struct pool_allocator pool_allocator_kmem = {
   2493 	.pa_alloc = pool_page_alloc,
   2494 	.pa_free = pool_page_free,
   2495 	.pa_pagesz = 0
   2496 };
   2497 #endif
   2498 
   2499 #ifdef POOL_SUBPAGE
   2500 struct pool_allocator pool_allocator_nointr_fullpage = {
   2501 	.pa_alloc = pool_page_alloc,
   2502 	.pa_free = pool_page_free,
   2503 	.pa_pagesz = 0
   2504 };
   2505 #else
   2506 struct pool_allocator pool_allocator_nointr = {
   2507 	.pa_alloc = pool_page_alloc,
   2508 	.pa_free = pool_page_free,
   2509 	.pa_pagesz = 0
   2510 };
   2511 #endif
   2512 
   2513 #ifdef POOL_SUBPAGE
   2514 void	*pool_subpage_alloc(struct pool *, int);
   2515 void	pool_subpage_free(struct pool *, void *);
   2516 
   2517 struct pool_allocator pool_allocator_kmem = {
   2518 	.pa_alloc = pool_subpage_alloc,
   2519 	.pa_free = pool_subpage_free,
   2520 	.pa_pagesz = POOL_SUBPAGE
   2521 };
   2522 
   2523 struct pool_allocator pool_allocator_nointr = {
   2524 	.pa_alloc = pool_subpage_alloc,
   2525 	.pa_free = pool_subpage_free,
   2526 	.pa_pagesz = POOL_SUBPAGE
   2527 };
   2528 #endif /* POOL_SUBPAGE */
   2529 
   2530 static void *
   2531 pool_allocator_alloc(struct pool *pp, int flags)
   2532 {
   2533 	struct pool_allocator *pa = pp->pr_alloc;
   2534 	void *res;
   2535 
   2536 	res = (*pa->pa_alloc)(pp, flags);
   2537 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2538 		/*
   2539 		 * We only run the drain hook here if PR_NOWAIT.
   2540 		 * In other cases, the hook will be run in
   2541 		 * pool_reclaim().
   2542 		 */
   2543 		if (pp->pr_drain_hook != NULL) {
   2544 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2545 			res = (*pa->pa_alloc)(pp, flags);
   2546 		}
   2547 	}
   2548 	return res;
   2549 }
   2550 
   2551 static void
   2552 pool_allocator_free(struct pool *pp, void *v)
   2553 {
   2554 	struct pool_allocator *pa = pp->pr_alloc;
   2555 
   2556 	(*pa->pa_free)(pp, v);
   2557 }
   2558 
   2559 void *
   2560 pool_page_alloc(struct pool *pp, int flags)
   2561 {
   2562 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2563 	vmem_addr_t va;
   2564 	int ret;
   2565 
   2566 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2567 	    vflags | VM_INSTANTFIT, &va);
   2568 
   2569 	return ret ? NULL : (void *)va;
   2570 }
   2571 
   2572 void
   2573 pool_page_free(struct pool *pp, void *v)
   2574 {
   2575 
   2576 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2577 }
   2578 
   2579 static void *
   2580 pool_page_alloc_meta(struct pool *pp, int flags)
   2581 {
   2582 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2583 	vmem_addr_t va;
   2584 	int ret;
   2585 
   2586 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2587 	    vflags | VM_INSTANTFIT, &va);
   2588 
   2589 	return ret ? NULL : (void *)va;
   2590 }
   2591 
   2592 static void
   2593 pool_page_free_meta(struct pool *pp, void *v)
   2594 {
   2595 
   2596 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2597 }
   2598 
   2599 #ifdef POOL_SUBPAGE
   2600 /* Sub-page allocator, for machines with large hardware pages. */
   2601 void *
   2602 pool_subpage_alloc(struct pool *pp, int flags)
   2603 {
   2604 	return pool_get(&psppool, flags);
   2605 }
   2606 
   2607 void
   2608 pool_subpage_free(struct pool *pp, void *v)
   2609 {
   2610 	pool_put(&psppool, v);
   2611 }
   2612 
   2613 #endif /* POOL_SUBPAGE */
   2614 
   2615 #if defined(DDB)
   2616 static bool
   2617 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2618 {
   2619 
   2620 	return (uintptr_t)ph->ph_page <= addr &&
   2621 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2622 }
   2623 
   2624 static bool
   2625 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2626 {
   2627 
   2628 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2629 }
   2630 
   2631 static bool
   2632 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2633 {
   2634 	int i;
   2635 
   2636 	if (pcg == NULL) {
   2637 		return false;
   2638 	}
   2639 	for (i = 0; i < pcg->pcg_avail; i++) {
   2640 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2641 			return true;
   2642 		}
   2643 	}
   2644 	return false;
   2645 }
   2646 
   2647 static bool
   2648 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2649 {
   2650 
   2651 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2652 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2653 		pool_item_bitmap_t *bitmap =
   2654 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2655 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2656 
   2657 		return (*bitmap & mask) == 0;
   2658 	} else {
   2659 		struct pool_item *pi;
   2660 
   2661 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2662 			if (pool_in_item(pp, pi, addr)) {
   2663 				return false;
   2664 			}
   2665 		}
   2666 		return true;
   2667 	}
   2668 }
   2669 
   2670 void
   2671 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2672 {
   2673 	struct pool *pp;
   2674 
   2675 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2676 		struct pool_item_header *ph;
   2677 		uintptr_t item;
   2678 		bool allocated = true;
   2679 		bool incache = false;
   2680 		bool incpucache = false;
   2681 		char cpucachestr[32];
   2682 
   2683 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2684 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2685 				if (pool_in_page(pp, ph, addr)) {
   2686 					goto found;
   2687 				}
   2688 			}
   2689 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2690 				if (pool_in_page(pp, ph, addr)) {
   2691 					allocated =
   2692 					    pool_allocated(pp, ph, addr);
   2693 					goto found;
   2694 				}
   2695 			}
   2696 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2697 				if (pool_in_page(pp, ph, addr)) {
   2698 					allocated = false;
   2699 					goto found;
   2700 				}
   2701 			}
   2702 			continue;
   2703 		} else {
   2704 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2705 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2706 				continue;
   2707 			}
   2708 			allocated = pool_allocated(pp, ph, addr);
   2709 		}
   2710 found:
   2711 		if (allocated && pp->pr_cache) {
   2712 			pool_cache_t pc = pp->pr_cache;
   2713 			struct pool_cache_group *pcg;
   2714 			int i;
   2715 
   2716 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2717 			    pcg = pcg->pcg_next) {
   2718 				if (pool_in_cg(pp, pcg, addr)) {
   2719 					incache = true;
   2720 					goto print;
   2721 				}
   2722 			}
   2723 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2724 				pool_cache_cpu_t *cc;
   2725 
   2726 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2727 					continue;
   2728 				}
   2729 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2730 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2731 					struct cpu_info *ci =
   2732 					    cpu_lookup(i);
   2733 
   2734 					incpucache = true;
   2735 					snprintf(cpucachestr,
   2736 					    sizeof(cpucachestr),
   2737 					    "cached by CPU %u",
   2738 					    ci->ci_index);
   2739 					goto print;
   2740 				}
   2741 			}
   2742 		}
   2743 print:
   2744 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2745 		item = item + rounddown(addr - item, pp->pr_size);
   2746 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2747 		    (void *)addr, item, (size_t)(addr - item),
   2748 		    pp->pr_wchan,
   2749 		    incpucache ? cpucachestr :
   2750 		    incache ? "cached" : allocated ? "allocated" : "free");
   2751 	}
   2752 }
   2753 #endif /* defined(DDB) */
   2754