Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.190.2.4
      1 /*	$NetBSD: subr_pool.c,v 1.190.2.4 2014/05/22 11:41:03 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.190.2.4 2014/05/22 11:41:03 yamt Exp $");
     36 
     37 #include "opt_ddb.h"
     38 #include "opt_lockdebug.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/bitops.h>
     43 #include <sys/proc.h>
     44 #include <sys/errno.h>
     45 #include <sys/kernel.h>
     46 #include <sys/vmem.h>
     47 #include <sys/pool.h>
     48 #include <sys/syslog.h>
     49 #include <sys/debug.h>
     50 #include <sys/lockdebug.h>
     51 #include <sys/xcall.h>
     52 #include <sys/cpu.h>
     53 #include <sys/atomic.h>
     54 
     55 #include <uvm/uvm_extern.h>
     56 
     57 /*
     58  * Pool resource management utility.
     59  *
     60  * Memory is allocated in pages which are split into pieces according to
     61  * the pool item size. Each page is kept on one of three lists in the
     62  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     63  * for empty, full and partially-full pages respectively. The individual
     64  * pool items are on a linked list headed by `ph_itemlist' in each page
     65  * header. The memory for building the page list is either taken from
     66  * the allocated pages themselves (for small pool items) or taken from
     67  * an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools. Non static as needed by 'vmstat -i' */
     71 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 #define	PHPOOL_MAX	8
     75 static struct pool phpool[PHPOOL_MAX];
     76 #define	PHPOOL_FREELIST_NELEM(idx) \
     77 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     78 
     79 #ifdef POOL_SUBPAGE
     80 /* Pool of subpages for use by normal pools. */
     81 static struct pool psppool;
     82 #endif
     83 
     84 static void *pool_page_alloc_meta(struct pool *, int);
     85 static void pool_page_free_meta(struct pool *, void *);
     86 
     87 /* allocator for pool metadata */
     88 struct pool_allocator pool_allocator_meta = {
     89 	.pa_alloc = pool_page_alloc_meta,
     90 	.pa_free = pool_page_free_meta,
     91 	.pa_pagesz = 0
     92 };
     93 
     94 /* # of seconds to retain page after last use */
     95 int pool_inactive_time = 10;
     96 
     97 /* Next candidate for drainage (see pool_drain()) */
     98 static struct pool	*drainpp;
     99 
    100 /* This lock protects both pool_head and drainpp. */
    101 static kmutex_t pool_head_lock;
    102 static kcondvar_t pool_busy;
    103 
    104 /* This lock protects initialization of a potentially shared pool allocator */
    105 static kmutex_t pool_allocator_lock;
    106 
    107 typedef uint32_t pool_item_bitmap_t;
    108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    110 
    111 struct pool_item_header {
    112 	/* Page headers */
    113 	LIST_ENTRY(pool_item_header)
    114 				ph_pagelist;	/* pool page list */
    115 	SPLAY_ENTRY(pool_item_header)
    116 				ph_node;	/* Off-page page headers */
    117 	void *			ph_page;	/* this page's address */
    118 	uint32_t		ph_time;	/* last referenced */
    119 	uint16_t		ph_nmissing;	/* # of chunks in use */
    120 	uint16_t		ph_off;		/* start offset in page */
    121 	union {
    122 		/* !PR_NOTOUCH */
    123 		struct {
    124 			LIST_HEAD(, pool_item)
    125 				phu_itemlist;	/* chunk list for this page */
    126 		} phu_normal;
    127 		/* PR_NOTOUCH */
    128 		struct {
    129 			pool_item_bitmap_t phu_bitmap[1];
    130 		} phu_notouch;
    131 	} ph_u;
    132 };
    133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeaddeadU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references up
    157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    158  * object from the pool, it calls the object's constructor and places it
    159  * into a cache group.  When a cache group frees an object back to the
    160  * pool, it first calls the object's destructor.  This allows the object
    161  * to persist in constructed form while freed to the cache.
    162  *
    163  * The pool references each cache, so that when a pool is drained by the
    164  * pagedaemon, it can drain each individual cache as well.  Each time a
    165  * cache is drained, the most idle cache group is freed to the pool in
    166  * its entirety.
    167  *
    168  * Pool caches are layed on top of pools.  By layering them, we can avoid
    169  * the complexity of cache management for pools which would not benefit
    170  * from it.
    171  */
    172 
    173 static struct pool pcg_normal_pool;
    174 static struct pool pcg_large_pool;
    175 static struct pool cache_pool;
    176 static struct pool cache_cpu_pool;
    177 
    178 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    179 
    180 /* List of all caches. */
    181 TAILQ_HEAD(,pool_cache) pool_cache_head =
    182     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    183 
    184 int pool_cache_disable;		/* global disable for caching */
    185 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    186 
    187 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    188 				    void *);
    189 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    190 				    void **, paddr_t *, int);
    191 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    192 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    193 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    194 static void	pool_cache_transfer(pool_cache_t);
    195 
    196 static int	pool_catchup(struct pool *);
    197 static void	pool_prime_page(struct pool *, void *,
    198 		    struct pool_item_header *);
    199 static void	pool_update_curpage(struct pool *);
    200 
    201 static int	pool_grow(struct pool *, int);
    202 static void	*pool_allocator_alloc(struct pool *, int);
    203 static void	pool_allocator_free(struct pool *, void *);
    204 
    205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206 	void (*)(const char *, ...) __printflike(1, 2));
    207 static void pool_print1(struct pool *, const char *,
    208 	void (*)(const char *, ...) __printflike(1, 2));
    209 
    210 static int pool_chk_page(struct pool *, const char *,
    211 			 struct pool_item_header *);
    212 
    213 static inline unsigned int
    214 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    215     const void *v)
    216 {
    217 	const char *cp = v;
    218 	unsigned int idx;
    219 
    220 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    221 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    222 	KASSERT(idx < pp->pr_itemsperpage);
    223 	return idx;
    224 }
    225 
    226 static inline void
    227 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    228     void *obj)
    229 {
    230 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    231 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    232 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    233 
    234 	KASSERT((*bitmap & mask) == 0);
    235 	*bitmap |= mask;
    236 }
    237 
    238 static inline void *
    239 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    240 {
    241 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    242 	unsigned int idx;
    243 	int i;
    244 
    245 	for (i = 0; ; i++) {
    246 		int bit;
    247 
    248 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    249 		bit = ffs32(bitmap[i]);
    250 		if (bit) {
    251 			pool_item_bitmap_t mask;
    252 
    253 			bit--;
    254 			idx = (i * BITMAP_SIZE) + bit;
    255 			mask = 1 << bit;
    256 			KASSERT((bitmap[i] & mask) != 0);
    257 			bitmap[i] &= ~mask;
    258 			break;
    259 		}
    260 	}
    261 	KASSERT(idx < pp->pr_itemsperpage);
    262 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    263 }
    264 
    265 static inline void
    266 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    267 {
    268 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    269 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    270 	int i;
    271 
    272 	for (i = 0; i < n; i++) {
    273 		bitmap[i] = (pool_item_bitmap_t)-1;
    274 	}
    275 }
    276 
    277 static inline int
    278 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    279 {
    280 
    281 	/*
    282 	 * we consider pool_item_header with smaller ph_page bigger.
    283 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    284 	 */
    285 
    286 	if (a->ph_page < b->ph_page)
    287 		return (1);
    288 	else if (a->ph_page > b->ph_page)
    289 		return (-1);
    290 	else
    291 		return (0);
    292 }
    293 
    294 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    295 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    296 
    297 static inline struct pool_item_header *
    298 pr_find_pagehead_noalign(struct pool *pp, void *v)
    299 {
    300 	struct pool_item_header *ph, tmp;
    301 
    302 	tmp.ph_page = (void *)(uintptr_t)v;
    303 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    304 	if (ph == NULL) {
    305 		ph = SPLAY_ROOT(&pp->pr_phtree);
    306 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    307 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    308 		}
    309 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    310 	}
    311 
    312 	return ph;
    313 }
    314 
    315 /*
    316  * Return the pool page header based on item address.
    317  */
    318 static inline struct pool_item_header *
    319 pr_find_pagehead(struct pool *pp, void *v)
    320 {
    321 	struct pool_item_header *ph, tmp;
    322 
    323 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    324 		ph = pr_find_pagehead_noalign(pp, v);
    325 	} else {
    326 		void *page =
    327 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    328 
    329 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    330 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    331 		} else {
    332 			tmp.ph_page = page;
    333 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    334 		}
    335 	}
    336 
    337 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    338 	    ((char *)ph->ph_page <= (char *)v &&
    339 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    340 	return ph;
    341 }
    342 
    343 static void
    344 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    345 {
    346 	struct pool_item_header *ph;
    347 
    348 	while ((ph = LIST_FIRST(pq)) != NULL) {
    349 		LIST_REMOVE(ph, ph_pagelist);
    350 		pool_allocator_free(pp, ph->ph_page);
    351 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    352 			pool_put(pp->pr_phpool, ph);
    353 	}
    354 }
    355 
    356 /*
    357  * Remove a page from the pool.
    358  */
    359 static inline void
    360 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    361      struct pool_pagelist *pq)
    362 {
    363 
    364 	KASSERT(mutex_owned(&pp->pr_lock));
    365 
    366 	/*
    367 	 * If the page was idle, decrement the idle page count.
    368 	 */
    369 	if (ph->ph_nmissing == 0) {
    370 #ifdef DIAGNOSTIC
    371 		if (pp->pr_nidle == 0)
    372 			panic("pr_rmpage: nidle inconsistent");
    373 		if (pp->pr_nitems < pp->pr_itemsperpage)
    374 			panic("pr_rmpage: nitems inconsistent");
    375 #endif
    376 		pp->pr_nidle--;
    377 	}
    378 
    379 	pp->pr_nitems -= pp->pr_itemsperpage;
    380 
    381 	/*
    382 	 * Unlink the page from the pool and queue it for release.
    383 	 */
    384 	LIST_REMOVE(ph, ph_pagelist);
    385 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    386 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    387 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    388 
    389 	pp->pr_npages--;
    390 	pp->pr_npagefree++;
    391 
    392 	pool_update_curpage(pp);
    393 }
    394 
    395 /*
    396  * Initialize all the pools listed in the "pools" link set.
    397  */
    398 void
    399 pool_subsystem_init(void)
    400 {
    401 	size_t size;
    402 	int idx;
    403 
    404 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    405 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    406 	cv_init(&pool_busy, "poolbusy");
    407 
    408 	/*
    409 	 * Initialize private page header pool and cache magazine pool if we
    410 	 * haven't done so yet.
    411 	 */
    412 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    413 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    414 		int nelem;
    415 		size_t sz;
    416 
    417 		nelem = PHPOOL_FREELIST_NELEM(idx);
    418 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    419 		    "phpool-%d", nelem);
    420 		sz = sizeof(struct pool_item_header);
    421 		if (nelem) {
    422 			sz = offsetof(struct pool_item_header,
    423 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    424 		}
    425 		pool_init(&phpool[idx], sz, 0, 0, 0,
    426 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    427 	}
    428 #ifdef POOL_SUBPAGE
    429 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    430 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    431 #endif
    432 
    433 	size = sizeof(pcg_t) +
    434 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    435 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    436 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    437 
    438 	size = sizeof(pcg_t) +
    439 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    440 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    441 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    442 
    443 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    444 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    445 
    446 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    447 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    448 }
    449 
    450 /*
    451  * Initialize the given pool resource structure.
    452  *
    453  * We export this routine to allow other kernel parts to declare
    454  * static pools that must be initialized before kmem(9) is available.
    455  */
    456 void
    457 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    458     const char *wchan, struct pool_allocator *palloc, int ipl)
    459 {
    460 	struct pool *pp1;
    461 	size_t trysize, phsize;
    462 	int off, slack;
    463 
    464 #ifdef DEBUG
    465 	if (__predict_true(!cold))
    466 		mutex_enter(&pool_head_lock);
    467 	/*
    468 	 * Check that the pool hasn't already been initialised and
    469 	 * added to the list of all pools.
    470 	 */
    471 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    472 		if (pp == pp1)
    473 			panic("pool_init: pool %s already initialised",
    474 			    wchan);
    475 	}
    476 	if (__predict_true(!cold))
    477 		mutex_exit(&pool_head_lock);
    478 #endif
    479 
    480 	if (palloc == NULL)
    481 		palloc = &pool_allocator_kmem;
    482 #ifdef POOL_SUBPAGE
    483 	if (size > palloc->pa_pagesz) {
    484 		if (palloc == &pool_allocator_kmem)
    485 			palloc = &pool_allocator_kmem_fullpage;
    486 		else if (palloc == &pool_allocator_nointr)
    487 			palloc = &pool_allocator_nointr_fullpage;
    488 	}
    489 #endif /* POOL_SUBPAGE */
    490 	if (!cold)
    491 		mutex_enter(&pool_allocator_lock);
    492 	if (palloc->pa_refcnt++ == 0) {
    493 		if (palloc->pa_pagesz == 0)
    494 			palloc->pa_pagesz = PAGE_SIZE;
    495 
    496 		TAILQ_INIT(&palloc->pa_list);
    497 
    498 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    499 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    500 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    501 	}
    502 	if (!cold)
    503 		mutex_exit(&pool_allocator_lock);
    504 
    505 	if (align == 0)
    506 		align = ALIGN(1);
    507 
    508 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    509 		size = sizeof(struct pool_item);
    510 
    511 	size = roundup(size, align);
    512 #ifdef DIAGNOSTIC
    513 	if (size > palloc->pa_pagesz)
    514 		panic("pool_init: pool item size (%zu) too large", size);
    515 #endif
    516 
    517 	/*
    518 	 * Initialize the pool structure.
    519 	 */
    520 	LIST_INIT(&pp->pr_emptypages);
    521 	LIST_INIT(&pp->pr_fullpages);
    522 	LIST_INIT(&pp->pr_partpages);
    523 	pp->pr_cache = NULL;
    524 	pp->pr_curpage = NULL;
    525 	pp->pr_npages = 0;
    526 	pp->pr_minitems = 0;
    527 	pp->pr_minpages = 0;
    528 	pp->pr_maxpages = UINT_MAX;
    529 	pp->pr_roflags = flags;
    530 	pp->pr_flags = 0;
    531 	pp->pr_size = size;
    532 	pp->pr_align = align;
    533 	pp->pr_wchan = wchan;
    534 	pp->pr_alloc = palloc;
    535 	pp->pr_nitems = 0;
    536 	pp->pr_nout = 0;
    537 	pp->pr_hardlimit = UINT_MAX;
    538 	pp->pr_hardlimit_warning = NULL;
    539 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    540 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    541 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    542 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    543 	pp->pr_drain_hook = NULL;
    544 	pp->pr_drain_hook_arg = NULL;
    545 	pp->pr_freecheck = NULL;
    546 
    547 	/*
    548 	 * Decide whether to put the page header off page to avoid
    549 	 * wasting too large a part of the page or too big item.
    550 	 * Off-page page headers go on a hash table, so we can match
    551 	 * a returned item with its header based on the page address.
    552 	 * We use 1/16 of the page size and about 8 times of the item
    553 	 * size as the threshold (XXX: tune)
    554 	 *
    555 	 * However, we'll put the header into the page if we can put
    556 	 * it without wasting any items.
    557 	 *
    558 	 * Silently enforce `0 <= ioff < align'.
    559 	 */
    560 	pp->pr_itemoffset = ioff %= align;
    561 	/* See the comment below about reserved bytes. */
    562 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    563 	phsize = ALIGN(sizeof(struct pool_item_header));
    564 	if (pp->pr_roflags & PR_PHINPAGE ||
    565 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    566 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    567 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    568 		/* Use the end of the page for the page header */
    569 		pp->pr_roflags |= PR_PHINPAGE;
    570 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    571 	} else {
    572 		/* The page header will be taken from our page header pool */
    573 		pp->pr_phoffset = 0;
    574 		off = palloc->pa_pagesz;
    575 		SPLAY_INIT(&pp->pr_phtree);
    576 	}
    577 
    578 	/*
    579 	 * Alignment is to take place at `ioff' within the item. This means
    580 	 * we must reserve up to `align - 1' bytes on the page to allow
    581 	 * appropriate positioning of each item.
    582 	 */
    583 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    584 	KASSERT(pp->pr_itemsperpage != 0);
    585 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    586 		int idx;
    587 
    588 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    589 		    idx++) {
    590 			/* nothing */
    591 		}
    592 		if (idx >= PHPOOL_MAX) {
    593 			/*
    594 			 * if you see this panic, consider to tweak
    595 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    596 			 */
    597 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    598 			    pp->pr_wchan, pp->pr_itemsperpage);
    599 		}
    600 		pp->pr_phpool = &phpool[idx];
    601 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    602 		pp->pr_phpool = &phpool[0];
    603 	}
    604 #if defined(DIAGNOSTIC)
    605 	else {
    606 		pp->pr_phpool = NULL;
    607 	}
    608 #endif
    609 
    610 	/*
    611 	 * Use the slack between the chunks and the page header
    612 	 * for "cache coloring".
    613 	 */
    614 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    615 	pp->pr_maxcolor = (slack / align) * align;
    616 	pp->pr_curcolor = 0;
    617 
    618 	pp->pr_nget = 0;
    619 	pp->pr_nfail = 0;
    620 	pp->pr_nput = 0;
    621 	pp->pr_npagealloc = 0;
    622 	pp->pr_npagefree = 0;
    623 	pp->pr_hiwat = 0;
    624 	pp->pr_nidle = 0;
    625 	pp->pr_refcnt = 0;
    626 
    627 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    628 	cv_init(&pp->pr_cv, wchan);
    629 	pp->pr_ipl = ipl;
    630 
    631 	/* Insert into the list of all pools. */
    632 	if (!cold)
    633 		mutex_enter(&pool_head_lock);
    634 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    635 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    636 			break;
    637 	}
    638 	if (pp1 == NULL)
    639 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    640 	else
    641 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    642 	if (!cold)
    643 		mutex_exit(&pool_head_lock);
    644 
    645 	/* Insert this into the list of pools using this allocator. */
    646 	if (!cold)
    647 		mutex_enter(&palloc->pa_lock);
    648 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    649 	if (!cold)
    650 		mutex_exit(&palloc->pa_lock);
    651 }
    652 
    653 /*
    654  * De-commision a pool resource.
    655  */
    656 void
    657 pool_destroy(struct pool *pp)
    658 {
    659 	struct pool_pagelist pq;
    660 	struct pool_item_header *ph;
    661 
    662 	/* Remove from global pool list */
    663 	mutex_enter(&pool_head_lock);
    664 	while (pp->pr_refcnt != 0)
    665 		cv_wait(&pool_busy, &pool_head_lock);
    666 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    667 	if (drainpp == pp)
    668 		drainpp = NULL;
    669 	mutex_exit(&pool_head_lock);
    670 
    671 	/* Remove this pool from its allocator's list of pools. */
    672 	mutex_enter(&pp->pr_alloc->pa_lock);
    673 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    674 	mutex_exit(&pp->pr_alloc->pa_lock);
    675 
    676 	mutex_enter(&pool_allocator_lock);
    677 	if (--pp->pr_alloc->pa_refcnt == 0)
    678 		mutex_destroy(&pp->pr_alloc->pa_lock);
    679 	mutex_exit(&pool_allocator_lock);
    680 
    681 	mutex_enter(&pp->pr_lock);
    682 
    683 	KASSERT(pp->pr_cache == NULL);
    684 
    685 #ifdef DIAGNOSTIC
    686 	if (pp->pr_nout != 0) {
    687 		panic("pool_destroy: pool busy: still out: %u",
    688 		    pp->pr_nout);
    689 	}
    690 #endif
    691 
    692 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    693 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    694 
    695 	/* Remove all pages */
    696 	LIST_INIT(&pq);
    697 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    698 		pr_rmpage(pp, ph, &pq);
    699 
    700 	mutex_exit(&pp->pr_lock);
    701 
    702 	pr_pagelist_free(pp, &pq);
    703 	cv_destroy(&pp->pr_cv);
    704 	mutex_destroy(&pp->pr_lock);
    705 }
    706 
    707 void
    708 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    709 {
    710 
    711 	/* XXX no locking -- must be used just after pool_init() */
    712 #ifdef DIAGNOSTIC
    713 	if (pp->pr_drain_hook != NULL)
    714 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    715 #endif
    716 	pp->pr_drain_hook = fn;
    717 	pp->pr_drain_hook_arg = arg;
    718 }
    719 
    720 static struct pool_item_header *
    721 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    722 {
    723 	struct pool_item_header *ph;
    724 
    725 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    726 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    727 	else
    728 		ph = pool_get(pp->pr_phpool, flags);
    729 
    730 	return (ph);
    731 }
    732 
    733 /*
    734  * Grab an item from the pool.
    735  */
    736 void *
    737 pool_get(struct pool *pp, int flags)
    738 {
    739 	struct pool_item *pi;
    740 	struct pool_item_header *ph;
    741 	void *v;
    742 
    743 #ifdef DIAGNOSTIC
    744 	if (pp->pr_itemsperpage == 0)
    745 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    746 		    "pool not initialized?", pp->pr_wchan);
    747 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    748 	    !cold && panicstr == NULL)
    749 		panic("pool '%s' is IPL_NONE, but called from "
    750 		    "interrupt context\n", pp->pr_wchan);
    751 #endif
    752 	if (flags & PR_WAITOK) {
    753 		ASSERT_SLEEPABLE();
    754 	}
    755 
    756 	mutex_enter(&pp->pr_lock);
    757  startover:
    758 	/*
    759 	 * Check to see if we've reached the hard limit.  If we have,
    760 	 * and we can wait, then wait until an item has been returned to
    761 	 * the pool.
    762 	 */
    763 #ifdef DIAGNOSTIC
    764 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    765 		mutex_exit(&pp->pr_lock);
    766 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    767 	}
    768 #endif
    769 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    770 		if (pp->pr_drain_hook != NULL) {
    771 			/*
    772 			 * Since the drain hook is going to free things
    773 			 * back to the pool, unlock, call the hook, re-lock,
    774 			 * and check the hardlimit condition again.
    775 			 */
    776 			mutex_exit(&pp->pr_lock);
    777 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    778 			mutex_enter(&pp->pr_lock);
    779 			if (pp->pr_nout < pp->pr_hardlimit)
    780 				goto startover;
    781 		}
    782 
    783 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    784 			/*
    785 			 * XXX: A warning isn't logged in this case.  Should
    786 			 * it be?
    787 			 */
    788 			pp->pr_flags |= PR_WANTED;
    789 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    790 			goto startover;
    791 		}
    792 
    793 		/*
    794 		 * Log a message that the hard limit has been hit.
    795 		 */
    796 		if (pp->pr_hardlimit_warning != NULL &&
    797 		    ratecheck(&pp->pr_hardlimit_warning_last,
    798 			      &pp->pr_hardlimit_ratecap))
    799 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    800 
    801 		pp->pr_nfail++;
    802 
    803 		mutex_exit(&pp->pr_lock);
    804 		return (NULL);
    805 	}
    806 
    807 	/*
    808 	 * The convention we use is that if `curpage' is not NULL, then
    809 	 * it points at a non-empty bucket. In particular, `curpage'
    810 	 * never points at a page header which has PR_PHINPAGE set and
    811 	 * has no items in its bucket.
    812 	 */
    813 	if ((ph = pp->pr_curpage) == NULL) {
    814 		int error;
    815 
    816 #ifdef DIAGNOSTIC
    817 		if (pp->pr_nitems != 0) {
    818 			mutex_exit(&pp->pr_lock);
    819 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    820 			    pp->pr_wchan, pp->pr_nitems);
    821 			panic("pool_get: nitems inconsistent");
    822 		}
    823 #endif
    824 
    825 		/*
    826 		 * Call the back-end page allocator for more memory.
    827 		 * Release the pool lock, as the back-end page allocator
    828 		 * may block.
    829 		 */
    830 		error = pool_grow(pp, flags);
    831 		if (error != 0) {
    832 			/*
    833 			 * We were unable to allocate a page or item
    834 			 * header, but we released the lock during
    835 			 * allocation, so perhaps items were freed
    836 			 * back to the pool.  Check for this case.
    837 			 */
    838 			if (pp->pr_curpage != NULL)
    839 				goto startover;
    840 
    841 			pp->pr_nfail++;
    842 			mutex_exit(&pp->pr_lock);
    843 			return (NULL);
    844 		}
    845 
    846 		/* Start the allocation process over. */
    847 		goto startover;
    848 	}
    849 	if (pp->pr_roflags & PR_NOTOUCH) {
    850 #ifdef DIAGNOSTIC
    851 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    852 			mutex_exit(&pp->pr_lock);
    853 			panic("pool_get: %s: page empty", pp->pr_wchan);
    854 		}
    855 #endif
    856 		v = pr_item_notouch_get(pp, ph);
    857 	} else {
    858 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    859 		if (__predict_false(v == NULL)) {
    860 			mutex_exit(&pp->pr_lock);
    861 			panic("pool_get: %s: page empty", pp->pr_wchan);
    862 		}
    863 #ifdef DIAGNOSTIC
    864 		if (__predict_false(pp->pr_nitems == 0)) {
    865 			mutex_exit(&pp->pr_lock);
    866 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    867 			    pp->pr_wchan, pp->pr_nitems);
    868 			panic("pool_get: nitems inconsistent");
    869 		}
    870 #endif
    871 
    872 #ifdef DIAGNOSTIC
    873 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    874 			panic("pool_get(%s): free list modified: "
    875 			    "magic=%x; page %p; item addr %p\n",
    876 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    877 		}
    878 #endif
    879 
    880 		/*
    881 		 * Remove from item list.
    882 		 */
    883 		LIST_REMOVE(pi, pi_list);
    884 	}
    885 	pp->pr_nitems--;
    886 	pp->pr_nout++;
    887 	if (ph->ph_nmissing == 0) {
    888 #ifdef DIAGNOSTIC
    889 		if (__predict_false(pp->pr_nidle == 0))
    890 			panic("pool_get: nidle inconsistent");
    891 #endif
    892 		pp->pr_nidle--;
    893 
    894 		/*
    895 		 * This page was previously empty.  Move it to the list of
    896 		 * partially-full pages.  This page is already curpage.
    897 		 */
    898 		LIST_REMOVE(ph, ph_pagelist);
    899 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    900 	}
    901 	ph->ph_nmissing++;
    902 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    903 #ifdef DIAGNOSTIC
    904 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    905 		    !LIST_EMPTY(&ph->ph_itemlist))) {
    906 			mutex_exit(&pp->pr_lock);
    907 			panic("pool_get: %s: nmissing inconsistent",
    908 			    pp->pr_wchan);
    909 		}
    910 #endif
    911 		/*
    912 		 * This page is now full.  Move it to the full list
    913 		 * and select a new current page.
    914 		 */
    915 		LIST_REMOVE(ph, ph_pagelist);
    916 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    917 		pool_update_curpage(pp);
    918 	}
    919 
    920 	pp->pr_nget++;
    921 
    922 	/*
    923 	 * If we have a low water mark and we are now below that low
    924 	 * water mark, add more items to the pool.
    925 	 */
    926 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    927 		/*
    928 		 * XXX: Should we log a warning?  Should we set up a timeout
    929 		 * to try again in a second or so?  The latter could break
    930 		 * a caller's assumptions about interrupt protection, etc.
    931 		 */
    932 	}
    933 
    934 	mutex_exit(&pp->pr_lock);
    935 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    936 	FREECHECK_OUT(&pp->pr_freecheck, v);
    937 	return (v);
    938 }
    939 
    940 /*
    941  * Internal version of pool_put().  Pool is already locked/entered.
    942  */
    943 static void
    944 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    945 {
    946 	struct pool_item *pi = v;
    947 	struct pool_item_header *ph;
    948 
    949 	KASSERT(mutex_owned(&pp->pr_lock));
    950 	FREECHECK_IN(&pp->pr_freecheck, v);
    951 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    952 
    953 #ifdef DIAGNOSTIC
    954 	if (__predict_false(pp->pr_nout == 0)) {
    955 		printf("pool %s: putting with none out\n",
    956 		    pp->pr_wchan);
    957 		panic("pool_put");
    958 	}
    959 #endif
    960 
    961 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    962 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    963 	}
    964 
    965 	/*
    966 	 * Return to item list.
    967 	 */
    968 	if (pp->pr_roflags & PR_NOTOUCH) {
    969 		pr_item_notouch_put(pp, ph, v);
    970 	} else {
    971 #ifdef DIAGNOSTIC
    972 		pi->pi_magic = PI_MAGIC;
    973 #endif
    974 #ifdef DEBUG
    975 		{
    976 			int i, *ip = v;
    977 
    978 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    979 				*ip++ = PI_MAGIC;
    980 			}
    981 		}
    982 #endif
    983 
    984 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    985 	}
    986 	KDASSERT(ph->ph_nmissing != 0);
    987 	ph->ph_nmissing--;
    988 	pp->pr_nput++;
    989 	pp->pr_nitems++;
    990 	pp->pr_nout--;
    991 
    992 	/* Cancel "pool empty" condition if it exists */
    993 	if (pp->pr_curpage == NULL)
    994 		pp->pr_curpage = ph;
    995 
    996 	if (pp->pr_flags & PR_WANTED) {
    997 		pp->pr_flags &= ~PR_WANTED;
    998 		cv_broadcast(&pp->pr_cv);
    999 	}
   1000 
   1001 	/*
   1002 	 * If this page is now empty, do one of two things:
   1003 	 *
   1004 	 *	(1) If we have more pages than the page high water mark,
   1005 	 *	    free the page back to the system.  ONLY CONSIDER
   1006 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1007 	 *	    CLAIM.
   1008 	 *
   1009 	 *	(2) Otherwise, move the page to the empty page list.
   1010 	 *
   1011 	 * Either way, select a new current page (so we use a partially-full
   1012 	 * page if one is available).
   1013 	 */
   1014 	if (ph->ph_nmissing == 0) {
   1015 		pp->pr_nidle++;
   1016 		if (pp->pr_npages > pp->pr_minpages &&
   1017 		    pp->pr_npages > pp->pr_maxpages) {
   1018 			pr_rmpage(pp, ph, pq);
   1019 		} else {
   1020 			LIST_REMOVE(ph, ph_pagelist);
   1021 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1022 
   1023 			/*
   1024 			 * Update the timestamp on the page.  A page must
   1025 			 * be idle for some period of time before it can
   1026 			 * be reclaimed by the pagedaemon.  This minimizes
   1027 			 * ping-pong'ing for memory.
   1028 			 *
   1029 			 * note for 64-bit time_t: truncating to 32-bit is not
   1030 			 * a problem for our usage.
   1031 			 */
   1032 			ph->ph_time = time_uptime;
   1033 		}
   1034 		pool_update_curpage(pp);
   1035 	}
   1036 
   1037 	/*
   1038 	 * If the page was previously completely full, move it to the
   1039 	 * partially-full list and make it the current page.  The next
   1040 	 * allocation will get the item from this page, instead of
   1041 	 * further fragmenting the pool.
   1042 	 */
   1043 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1044 		LIST_REMOVE(ph, ph_pagelist);
   1045 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1046 		pp->pr_curpage = ph;
   1047 	}
   1048 }
   1049 
   1050 void
   1051 pool_put(struct pool *pp, void *v)
   1052 {
   1053 	struct pool_pagelist pq;
   1054 
   1055 	LIST_INIT(&pq);
   1056 
   1057 	mutex_enter(&pp->pr_lock);
   1058 	pool_do_put(pp, v, &pq);
   1059 	mutex_exit(&pp->pr_lock);
   1060 
   1061 	pr_pagelist_free(pp, &pq);
   1062 }
   1063 
   1064 /*
   1065  * pool_grow: grow a pool by a page.
   1066  *
   1067  * => called with pool locked.
   1068  * => unlock and relock the pool.
   1069  * => return with pool locked.
   1070  */
   1071 
   1072 static int
   1073 pool_grow(struct pool *pp, int flags)
   1074 {
   1075 	struct pool_item_header *ph = NULL;
   1076 	char *cp;
   1077 
   1078 	mutex_exit(&pp->pr_lock);
   1079 	cp = pool_allocator_alloc(pp, flags);
   1080 	if (__predict_true(cp != NULL)) {
   1081 		ph = pool_alloc_item_header(pp, cp, flags);
   1082 	}
   1083 	if (__predict_false(cp == NULL || ph == NULL)) {
   1084 		if (cp != NULL) {
   1085 			pool_allocator_free(pp, cp);
   1086 		}
   1087 		mutex_enter(&pp->pr_lock);
   1088 		return ENOMEM;
   1089 	}
   1090 
   1091 	mutex_enter(&pp->pr_lock);
   1092 	pool_prime_page(pp, cp, ph);
   1093 	pp->pr_npagealloc++;
   1094 	return 0;
   1095 }
   1096 
   1097 /*
   1098  * Add N items to the pool.
   1099  */
   1100 int
   1101 pool_prime(struct pool *pp, int n)
   1102 {
   1103 	int newpages;
   1104 	int error = 0;
   1105 
   1106 	mutex_enter(&pp->pr_lock);
   1107 
   1108 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1109 
   1110 	while (newpages-- > 0) {
   1111 		error = pool_grow(pp, PR_NOWAIT);
   1112 		if (error) {
   1113 			break;
   1114 		}
   1115 		pp->pr_minpages++;
   1116 	}
   1117 
   1118 	if (pp->pr_minpages >= pp->pr_maxpages)
   1119 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1120 
   1121 	mutex_exit(&pp->pr_lock);
   1122 	return error;
   1123 }
   1124 
   1125 /*
   1126  * Add a page worth of items to the pool.
   1127  *
   1128  * Note, we must be called with the pool descriptor LOCKED.
   1129  */
   1130 static void
   1131 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1132 {
   1133 	struct pool_item *pi;
   1134 	void *cp = storage;
   1135 	const unsigned int align = pp->pr_align;
   1136 	const unsigned int ioff = pp->pr_itemoffset;
   1137 	int n;
   1138 
   1139 	KASSERT(mutex_owned(&pp->pr_lock));
   1140 
   1141 #ifdef DIAGNOSTIC
   1142 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1143 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1144 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1145 #endif
   1146 
   1147 	/*
   1148 	 * Insert page header.
   1149 	 */
   1150 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1151 	LIST_INIT(&ph->ph_itemlist);
   1152 	ph->ph_page = storage;
   1153 	ph->ph_nmissing = 0;
   1154 	ph->ph_time = time_uptime;
   1155 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1156 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1157 
   1158 	pp->pr_nidle++;
   1159 
   1160 	/*
   1161 	 * Color this page.
   1162 	 */
   1163 	ph->ph_off = pp->pr_curcolor;
   1164 	cp = (char *)cp + ph->ph_off;
   1165 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1166 		pp->pr_curcolor = 0;
   1167 
   1168 	/*
   1169 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1170 	 */
   1171 	if (ioff != 0)
   1172 		cp = (char *)cp + align - ioff;
   1173 
   1174 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1175 
   1176 	/*
   1177 	 * Insert remaining chunks on the bucket list.
   1178 	 */
   1179 	n = pp->pr_itemsperpage;
   1180 	pp->pr_nitems += n;
   1181 
   1182 	if (pp->pr_roflags & PR_NOTOUCH) {
   1183 		pr_item_notouch_init(pp, ph);
   1184 	} else {
   1185 		while (n--) {
   1186 			pi = (struct pool_item *)cp;
   1187 
   1188 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1189 
   1190 			/* Insert on page list */
   1191 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1192 #ifdef DIAGNOSTIC
   1193 			pi->pi_magic = PI_MAGIC;
   1194 #endif
   1195 			cp = (char *)cp + pp->pr_size;
   1196 
   1197 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1198 		}
   1199 	}
   1200 
   1201 	/*
   1202 	 * If the pool was depleted, point at the new page.
   1203 	 */
   1204 	if (pp->pr_curpage == NULL)
   1205 		pp->pr_curpage = ph;
   1206 
   1207 	if (++pp->pr_npages > pp->pr_hiwat)
   1208 		pp->pr_hiwat = pp->pr_npages;
   1209 }
   1210 
   1211 /*
   1212  * Used by pool_get() when nitems drops below the low water mark.  This
   1213  * is used to catch up pr_nitems with the low water mark.
   1214  *
   1215  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1216  *
   1217  * Note 2, we must be called with the pool already locked, and we return
   1218  * with it locked.
   1219  */
   1220 static int
   1221 pool_catchup(struct pool *pp)
   1222 {
   1223 	int error = 0;
   1224 
   1225 	while (POOL_NEEDS_CATCHUP(pp)) {
   1226 		error = pool_grow(pp, PR_NOWAIT);
   1227 		if (error) {
   1228 			break;
   1229 		}
   1230 	}
   1231 	return error;
   1232 }
   1233 
   1234 static void
   1235 pool_update_curpage(struct pool *pp)
   1236 {
   1237 
   1238 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1239 	if (pp->pr_curpage == NULL) {
   1240 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1241 	}
   1242 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1243 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1244 }
   1245 
   1246 void
   1247 pool_setlowat(struct pool *pp, int n)
   1248 {
   1249 
   1250 	mutex_enter(&pp->pr_lock);
   1251 
   1252 	pp->pr_minitems = n;
   1253 	pp->pr_minpages = (n == 0)
   1254 		? 0
   1255 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1256 
   1257 	/* Make sure we're caught up with the newly-set low water mark. */
   1258 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1259 		/*
   1260 		 * XXX: Should we log a warning?  Should we set up a timeout
   1261 		 * to try again in a second or so?  The latter could break
   1262 		 * a caller's assumptions about interrupt protection, etc.
   1263 		 */
   1264 	}
   1265 
   1266 	mutex_exit(&pp->pr_lock);
   1267 }
   1268 
   1269 void
   1270 pool_sethiwat(struct pool *pp, int n)
   1271 {
   1272 
   1273 	mutex_enter(&pp->pr_lock);
   1274 
   1275 	pp->pr_maxpages = (n == 0)
   1276 		? 0
   1277 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1278 
   1279 	mutex_exit(&pp->pr_lock);
   1280 }
   1281 
   1282 void
   1283 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1284 {
   1285 
   1286 	mutex_enter(&pp->pr_lock);
   1287 
   1288 	pp->pr_hardlimit = n;
   1289 	pp->pr_hardlimit_warning = warnmess;
   1290 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1291 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1292 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1293 
   1294 	/*
   1295 	 * In-line version of pool_sethiwat(), because we don't want to
   1296 	 * release the lock.
   1297 	 */
   1298 	pp->pr_maxpages = (n == 0)
   1299 		? 0
   1300 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1301 
   1302 	mutex_exit(&pp->pr_lock);
   1303 }
   1304 
   1305 /*
   1306  * Release all complete pages that have not been used recently.
   1307  *
   1308  * Must not be called from interrupt context.
   1309  */
   1310 int
   1311 pool_reclaim(struct pool *pp)
   1312 {
   1313 	struct pool_item_header *ph, *phnext;
   1314 	struct pool_pagelist pq;
   1315 	uint32_t curtime;
   1316 	bool klock;
   1317 	int rv;
   1318 
   1319 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1320 
   1321 	if (pp->pr_drain_hook != NULL) {
   1322 		/*
   1323 		 * The drain hook must be called with the pool unlocked.
   1324 		 */
   1325 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1326 	}
   1327 
   1328 	/*
   1329 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1330 	 * to block.
   1331 	 */
   1332 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1333 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1334 		KERNEL_LOCK(1, NULL);
   1335 		klock = true;
   1336 	} else
   1337 		klock = false;
   1338 
   1339 	/* Reclaim items from the pool's cache (if any). */
   1340 	if (pp->pr_cache != NULL)
   1341 		pool_cache_invalidate(pp->pr_cache);
   1342 
   1343 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1344 		if (klock) {
   1345 			KERNEL_UNLOCK_ONE(NULL);
   1346 		}
   1347 		return (0);
   1348 	}
   1349 
   1350 	LIST_INIT(&pq);
   1351 
   1352 	curtime = time_uptime;
   1353 
   1354 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1355 		phnext = LIST_NEXT(ph, ph_pagelist);
   1356 
   1357 		/* Check our minimum page claim */
   1358 		if (pp->pr_npages <= pp->pr_minpages)
   1359 			break;
   1360 
   1361 		KASSERT(ph->ph_nmissing == 0);
   1362 		if (curtime - ph->ph_time < pool_inactive_time)
   1363 			continue;
   1364 
   1365 		/*
   1366 		 * If freeing this page would put us below
   1367 		 * the low water mark, stop now.
   1368 		 */
   1369 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1370 		    pp->pr_minitems)
   1371 			break;
   1372 
   1373 		pr_rmpage(pp, ph, &pq);
   1374 	}
   1375 
   1376 	mutex_exit(&pp->pr_lock);
   1377 
   1378 	if (LIST_EMPTY(&pq))
   1379 		rv = 0;
   1380 	else {
   1381 		pr_pagelist_free(pp, &pq);
   1382 		rv = 1;
   1383 	}
   1384 
   1385 	if (klock) {
   1386 		KERNEL_UNLOCK_ONE(NULL);
   1387 	}
   1388 
   1389 	return (rv);
   1390 }
   1391 
   1392 /*
   1393  * Drain pools, one at a time. The drained pool is returned within ppp.
   1394  *
   1395  * Note, must never be called from interrupt context.
   1396  */
   1397 bool
   1398 pool_drain(struct pool **ppp)
   1399 {
   1400 	bool reclaimed;
   1401 	struct pool *pp;
   1402 
   1403 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1404 
   1405 	pp = NULL;
   1406 
   1407 	/* Find next pool to drain, and add a reference. */
   1408 	mutex_enter(&pool_head_lock);
   1409 	do {
   1410 		if (drainpp == NULL) {
   1411 			drainpp = TAILQ_FIRST(&pool_head);
   1412 		}
   1413 		if (drainpp != NULL) {
   1414 			pp = drainpp;
   1415 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1416 		}
   1417 		/*
   1418 		 * Skip completely idle pools.  We depend on at least
   1419 		 * one pool in the system being active.
   1420 		 */
   1421 	} while (pp == NULL || pp->pr_npages == 0);
   1422 	pp->pr_refcnt++;
   1423 	mutex_exit(&pool_head_lock);
   1424 
   1425 	/* Drain the cache (if any) and pool.. */
   1426 	reclaimed = pool_reclaim(pp);
   1427 
   1428 	/* Finally, unlock the pool. */
   1429 	mutex_enter(&pool_head_lock);
   1430 	pp->pr_refcnt--;
   1431 	cv_broadcast(&pool_busy);
   1432 	mutex_exit(&pool_head_lock);
   1433 
   1434 	if (ppp != NULL)
   1435 		*ppp = pp;
   1436 
   1437 	return reclaimed;
   1438 }
   1439 
   1440 /*
   1441  * Diagnostic helpers.
   1442  */
   1443 
   1444 void
   1445 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1446 {
   1447 	struct pool *pp;
   1448 
   1449 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1450 		pool_printit(pp, modif, pr);
   1451 	}
   1452 }
   1453 
   1454 void
   1455 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1456 {
   1457 
   1458 	if (pp == NULL) {
   1459 		(*pr)("Must specify a pool to print.\n");
   1460 		return;
   1461 	}
   1462 
   1463 	pool_print1(pp, modif, pr);
   1464 }
   1465 
   1466 static void
   1467 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1468     void (*pr)(const char *, ...))
   1469 {
   1470 	struct pool_item_header *ph;
   1471 #ifdef DIAGNOSTIC
   1472 	struct pool_item *pi;
   1473 #endif
   1474 
   1475 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1476 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1477 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1478 #ifdef DIAGNOSTIC
   1479 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1480 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1481 				if (pi->pi_magic != PI_MAGIC) {
   1482 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1483 					    pi, pi->pi_magic);
   1484 				}
   1485 			}
   1486 		}
   1487 #endif
   1488 	}
   1489 }
   1490 
   1491 static void
   1492 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1493 {
   1494 	struct pool_item_header *ph;
   1495 	pool_cache_t pc;
   1496 	pcg_t *pcg;
   1497 	pool_cache_cpu_t *cc;
   1498 	uint64_t cpuhit, cpumiss;
   1499 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1500 	char c;
   1501 
   1502 	while ((c = *modif++) != '\0') {
   1503 		if (c == 'l')
   1504 			print_log = 1;
   1505 		if (c == 'p')
   1506 			print_pagelist = 1;
   1507 		if (c == 'c')
   1508 			print_cache = 1;
   1509 	}
   1510 
   1511 	if ((pc = pp->pr_cache) != NULL) {
   1512 		(*pr)("POOL CACHE");
   1513 	} else {
   1514 		(*pr)("POOL");
   1515 	}
   1516 
   1517 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1518 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1519 	    pp->pr_roflags);
   1520 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1521 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1522 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1523 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1524 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1525 
   1526 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1527 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1528 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1529 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1530 
   1531 	if (print_pagelist == 0)
   1532 		goto skip_pagelist;
   1533 
   1534 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1535 		(*pr)("\n\tempty page list:\n");
   1536 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1537 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1538 		(*pr)("\n\tfull page list:\n");
   1539 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1540 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1541 		(*pr)("\n\tpartial-page list:\n");
   1542 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1543 
   1544 	if (pp->pr_curpage == NULL)
   1545 		(*pr)("\tno current page\n");
   1546 	else
   1547 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1548 
   1549  skip_pagelist:
   1550 	if (print_log == 0)
   1551 		goto skip_log;
   1552 
   1553 	(*pr)("\n");
   1554 
   1555  skip_log:
   1556 
   1557 #define PR_GROUPLIST(pcg)						\
   1558 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1559 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1560 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1561 		    POOL_PADDR_INVALID) {				\
   1562 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1563 			    pcg->pcg_objects[i].pcgo_va,		\
   1564 			    (unsigned long long)			\
   1565 			    pcg->pcg_objects[i].pcgo_pa);		\
   1566 		} else {						\
   1567 			(*pr)("\t\t\t%p\n",				\
   1568 			    pcg->pcg_objects[i].pcgo_va);		\
   1569 		}							\
   1570 	}
   1571 
   1572 	if (pc != NULL) {
   1573 		cpuhit = 0;
   1574 		cpumiss = 0;
   1575 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1576 			if ((cc = pc->pc_cpus[i]) == NULL)
   1577 				continue;
   1578 			cpuhit += cc->cc_hits;
   1579 			cpumiss += cc->cc_misses;
   1580 		}
   1581 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1582 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1583 		    pc->pc_hits, pc->pc_misses);
   1584 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1585 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1586 		    pc->pc_contended);
   1587 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1588 		    pc->pc_nempty, pc->pc_nfull);
   1589 		if (print_cache) {
   1590 			(*pr)("\tfull cache groups:\n");
   1591 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1592 			    pcg = pcg->pcg_next) {
   1593 				PR_GROUPLIST(pcg);
   1594 			}
   1595 			(*pr)("\tempty cache groups:\n");
   1596 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1597 			    pcg = pcg->pcg_next) {
   1598 				PR_GROUPLIST(pcg);
   1599 			}
   1600 		}
   1601 	}
   1602 #undef PR_GROUPLIST
   1603 }
   1604 
   1605 static int
   1606 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1607 {
   1608 	struct pool_item *pi;
   1609 	void *page;
   1610 	int n;
   1611 
   1612 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1613 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1614 		if (page != ph->ph_page &&
   1615 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1616 			if (label != NULL)
   1617 				printf("%s: ", label);
   1618 			printf("pool(%p:%s): page inconsistency: page %p;"
   1619 			       " at page head addr %p (p %p)\n", pp,
   1620 				pp->pr_wchan, ph->ph_page,
   1621 				ph, page);
   1622 			return 1;
   1623 		}
   1624 	}
   1625 
   1626 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1627 		return 0;
   1628 
   1629 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1630 	     pi != NULL;
   1631 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1632 
   1633 #ifdef DIAGNOSTIC
   1634 		if (pi->pi_magic != PI_MAGIC) {
   1635 			if (label != NULL)
   1636 				printf("%s: ", label);
   1637 			printf("pool(%s): free list modified: magic=%x;"
   1638 			       " page %p; item ordinal %d; addr %p\n",
   1639 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1640 				n, pi);
   1641 			panic("pool");
   1642 		}
   1643 #endif
   1644 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1645 			continue;
   1646 		}
   1647 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1648 		if (page == ph->ph_page)
   1649 			continue;
   1650 
   1651 		if (label != NULL)
   1652 			printf("%s: ", label);
   1653 		printf("pool(%p:%s): page inconsistency: page %p;"
   1654 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1655 			pp->pr_wchan, ph->ph_page,
   1656 			n, pi, page);
   1657 		return 1;
   1658 	}
   1659 	return 0;
   1660 }
   1661 
   1662 
   1663 int
   1664 pool_chk(struct pool *pp, const char *label)
   1665 {
   1666 	struct pool_item_header *ph;
   1667 	int r = 0;
   1668 
   1669 	mutex_enter(&pp->pr_lock);
   1670 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1671 		r = pool_chk_page(pp, label, ph);
   1672 		if (r) {
   1673 			goto out;
   1674 		}
   1675 	}
   1676 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1677 		r = pool_chk_page(pp, label, ph);
   1678 		if (r) {
   1679 			goto out;
   1680 		}
   1681 	}
   1682 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1683 		r = pool_chk_page(pp, label, ph);
   1684 		if (r) {
   1685 			goto out;
   1686 		}
   1687 	}
   1688 
   1689 out:
   1690 	mutex_exit(&pp->pr_lock);
   1691 	return (r);
   1692 }
   1693 
   1694 /*
   1695  * pool_cache_init:
   1696  *
   1697  *	Initialize a pool cache.
   1698  */
   1699 pool_cache_t
   1700 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1701     const char *wchan, struct pool_allocator *palloc, int ipl,
   1702     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1703 {
   1704 	pool_cache_t pc;
   1705 
   1706 	pc = pool_get(&cache_pool, PR_WAITOK);
   1707 	if (pc == NULL)
   1708 		return NULL;
   1709 
   1710 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1711 	   palloc, ipl, ctor, dtor, arg);
   1712 
   1713 	return pc;
   1714 }
   1715 
   1716 /*
   1717  * pool_cache_bootstrap:
   1718  *
   1719  *	Kernel-private version of pool_cache_init().  The caller
   1720  *	provides initial storage.
   1721  */
   1722 void
   1723 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1724     u_int align_offset, u_int flags, const char *wchan,
   1725     struct pool_allocator *palloc, int ipl,
   1726     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1727     void *arg)
   1728 {
   1729 	CPU_INFO_ITERATOR cii;
   1730 	pool_cache_t pc1;
   1731 	struct cpu_info *ci;
   1732 	struct pool *pp;
   1733 
   1734 	pp = &pc->pc_pool;
   1735 	if (palloc == NULL && ipl == IPL_NONE)
   1736 		palloc = &pool_allocator_nointr;
   1737 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1738 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1739 
   1740 	if (ctor == NULL) {
   1741 		ctor = (int (*)(void *, void *, int))nullop;
   1742 	}
   1743 	if (dtor == NULL) {
   1744 		dtor = (void (*)(void *, void *))nullop;
   1745 	}
   1746 
   1747 	pc->pc_emptygroups = NULL;
   1748 	pc->pc_fullgroups = NULL;
   1749 	pc->pc_partgroups = NULL;
   1750 	pc->pc_ctor = ctor;
   1751 	pc->pc_dtor = dtor;
   1752 	pc->pc_arg  = arg;
   1753 	pc->pc_hits  = 0;
   1754 	pc->pc_misses = 0;
   1755 	pc->pc_nempty = 0;
   1756 	pc->pc_npart = 0;
   1757 	pc->pc_nfull = 0;
   1758 	pc->pc_contended = 0;
   1759 	pc->pc_refcnt = 0;
   1760 	pc->pc_freecheck = NULL;
   1761 
   1762 	if ((flags & PR_LARGECACHE) != 0) {
   1763 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1764 		pc->pc_pcgpool = &pcg_large_pool;
   1765 	} else {
   1766 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1767 		pc->pc_pcgpool = &pcg_normal_pool;
   1768 	}
   1769 
   1770 	/* Allocate per-CPU caches. */
   1771 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1772 	pc->pc_ncpu = 0;
   1773 	if (ncpu < 2) {
   1774 		/* XXX For sparc: boot CPU is not attached yet. */
   1775 		pool_cache_cpu_init1(curcpu(), pc);
   1776 	} else {
   1777 		for (CPU_INFO_FOREACH(cii, ci)) {
   1778 			pool_cache_cpu_init1(ci, pc);
   1779 		}
   1780 	}
   1781 
   1782 	/* Add to list of all pools. */
   1783 	if (__predict_true(!cold))
   1784 		mutex_enter(&pool_head_lock);
   1785 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1786 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1787 			break;
   1788 	}
   1789 	if (pc1 == NULL)
   1790 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1791 	else
   1792 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1793 	if (__predict_true(!cold))
   1794 		mutex_exit(&pool_head_lock);
   1795 
   1796 	membar_sync();
   1797 	pp->pr_cache = pc;
   1798 }
   1799 
   1800 /*
   1801  * pool_cache_destroy:
   1802  *
   1803  *	Destroy a pool cache.
   1804  */
   1805 void
   1806 pool_cache_destroy(pool_cache_t pc)
   1807 {
   1808 
   1809 	pool_cache_bootstrap_destroy(pc);
   1810 	pool_put(&cache_pool, pc);
   1811 }
   1812 
   1813 /*
   1814  * pool_cache_bootstrap_destroy:
   1815  *
   1816  *	Destroy a pool cache.
   1817  */
   1818 void
   1819 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1820 {
   1821 	struct pool *pp = &pc->pc_pool;
   1822 	u_int i;
   1823 
   1824 	/* Remove it from the global list. */
   1825 	mutex_enter(&pool_head_lock);
   1826 	while (pc->pc_refcnt != 0)
   1827 		cv_wait(&pool_busy, &pool_head_lock);
   1828 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1829 	mutex_exit(&pool_head_lock);
   1830 
   1831 	/* First, invalidate the entire cache. */
   1832 	pool_cache_invalidate(pc);
   1833 
   1834 	/* Disassociate it from the pool. */
   1835 	mutex_enter(&pp->pr_lock);
   1836 	pp->pr_cache = NULL;
   1837 	mutex_exit(&pp->pr_lock);
   1838 
   1839 	/* Destroy per-CPU data */
   1840 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1841 		pool_cache_invalidate_cpu(pc, i);
   1842 
   1843 	/* Finally, destroy it. */
   1844 	mutex_destroy(&pc->pc_lock);
   1845 	pool_destroy(pp);
   1846 }
   1847 
   1848 /*
   1849  * pool_cache_cpu_init1:
   1850  *
   1851  *	Called for each pool_cache whenever a new CPU is attached.
   1852  */
   1853 static void
   1854 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1855 {
   1856 	pool_cache_cpu_t *cc;
   1857 	int index;
   1858 
   1859 	index = ci->ci_index;
   1860 
   1861 	KASSERT(index < __arraycount(pc->pc_cpus));
   1862 
   1863 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1864 		KASSERT(cc->cc_cpuindex == index);
   1865 		return;
   1866 	}
   1867 
   1868 	/*
   1869 	 * The first CPU is 'free'.  This needs to be the case for
   1870 	 * bootstrap - we may not be able to allocate yet.
   1871 	 */
   1872 	if (pc->pc_ncpu == 0) {
   1873 		cc = &pc->pc_cpu0;
   1874 		pc->pc_ncpu = 1;
   1875 	} else {
   1876 		mutex_enter(&pc->pc_lock);
   1877 		pc->pc_ncpu++;
   1878 		mutex_exit(&pc->pc_lock);
   1879 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1880 	}
   1881 
   1882 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1883 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1884 	cc->cc_cache = pc;
   1885 	cc->cc_cpuindex = index;
   1886 	cc->cc_hits = 0;
   1887 	cc->cc_misses = 0;
   1888 	cc->cc_current = __UNCONST(&pcg_dummy);
   1889 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1890 
   1891 	pc->pc_cpus[index] = cc;
   1892 }
   1893 
   1894 /*
   1895  * pool_cache_cpu_init:
   1896  *
   1897  *	Called whenever a new CPU is attached.
   1898  */
   1899 void
   1900 pool_cache_cpu_init(struct cpu_info *ci)
   1901 {
   1902 	pool_cache_t pc;
   1903 
   1904 	mutex_enter(&pool_head_lock);
   1905 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1906 		pc->pc_refcnt++;
   1907 		mutex_exit(&pool_head_lock);
   1908 
   1909 		pool_cache_cpu_init1(ci, pc);
   1910 
   1911 		mutex_enter(&pool_head_lock);
   1912 		pc->pc_refcnt--;
   1913 		cv_broadcast(&pool_busy);
   1914 	}
   1915 	mutex_exit(&pool_head_lock);
   1916 }
   1917 
   1918 /*
   1919  * pool_cache_reclaim:
   1920  *
   1921  *	Reclaim memory from a pool cache.
   1922  */
   1923 bool
   1924 pool_cache_reclaim(pool_cache_t pc)
   1925 {
   1926 
   1927 	return pool_reclaim(&pc->pc_pool);
   1928 }
   1929 
   1930 static void
   1931 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1932 {
   1933 
   1934 	(*pc->pc_dtor)(pc->pc_arg, object);
   1935 	pool_put(&pc->pc_pool, object);
   1936 }
   1937 
   1938 /*
   1939  * pool_cache_destruct_object:
   1940  *
   1941  *	Force destruction of an object and its release back into
   1942  *	the pool.
   1943  */
   1944 void
   1945 pool_cache_destruct_object(pool_cache_t pc, void *object)
   1946 {
   1947 
   1948 	FREECHECK_IN(&pc->pc_freecheck, object);
   1949 
   1950 	pool_cache_destruct_object1(pc, object);
   1951 }
   1952 
   1953 /*
   1954  * pool_cache_invalidate_groups:
   1955  *
   1956  *	Invalidate a chain of groups and destruct all objects.
   1957  */
   1958 static void
   1959 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1960 {
   1961 	void *object;
   1962 	pcg_t *next;
   1963 	int i;
   1964 
   1965 	for (; pcg != NULL; pcg = next) {
   1966 		next = pcg->pcg_next;
   1967 
   1968 		for (i = 0; i < pcg->pcg_avail; i++) {
   1969 			object = pcg->pcg_objects[i].pcgo_va;
   1970 			pool_cache_destruct_object1(pc, object);
   1971 		}
   1972 
   1973 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1974 			pool_put(&pcg_large_pool, pcg);
   1975 		} else {
   1976 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1977 			pool_put(&pcg_normal_pool, pcg);
   1978 		}
   1979 	}
   1980 }
   1981 
   1982 /*
   1983  * pool_cache_invalidate:
   1984  *
   1985  *	Invalidate a pool cache (destruct and release all of the
   1986  *	cached objects).  Does not reclaim objects from the pool.
   1987  *
   1988  *	Note: For pool caches that provide constructed objects, there
   1989  *	is an assumption that another level of synchronization is occurring
   1990  *	between the input to the constructor and the cache invalidation.
   1991  *
   1992  *	Invalidation is a costly process and should not be called from
   1993  *	interrupt context.
   1994  */
   1995 void
   1996 pool_cache_invalidate(pool_cache_t pc)
   1997 {
   1998 	uint64_t where;
   1999 	pcg_t *full, *empty, *part;
   2000 
   2001 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2002 
   2003 	if (ncpu < 2 || !mp_online) {
   2004 		/*
   2005 		 * We might be called early enough in the boot process
   2006 		 * for the CPU data structures to not be fully initialized.
   2007 		 * In this case, transfer the content of the local CPU's
   2008 		 * cache back into global cache as only this CPU is currently
   2009 		 * running.
   2010 		 */
   2011 		pool_cache_transfer(pc);
   2012 	} else {
   2013 		/*
   2014 		 * Signal all CPUs that they must transfer their local
   2015 		 * cache back to the global pool then wait for the xcall to
   2016 		 * complete.
   2017 		 */
   2018 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2019 		    pc, NULL);
   2020 		xc_wait(where);
   2021 	}
   2022 
   2023 	/* Empty pool caches, then invalidate objects */
   2024 	mutex_enter(&pc->pc_lock);
   2025 	full = pc->pc_fullgroups;
   2026 	empty = pc->pc_emptygroups;
   2027 	part = pc->pc_partgroups;
   2028 	pc->pc_fullgroups = NULL;
   2029 	pc->pc_emptygroups = NULL;
   2030 	pc->pc_partgroups = NULL;
   2031 	pc->pc_nfull = 0;
   2032 	pc->pc_nempty = 0;
   2033 	pc->pc_npart = 0;
   2034 	mutex_exit(&pc->pc_lock);
   2035 
   2036 	pool_cache_invalidate_groups(pc, full);
   2037 	pool_cache_invalidate_groups(pc, empty);
   2038 	pool_cache_invalidate_groups(pc, part);
   2039 }
   2040 
   2041 /*
   2042  * pool_cache_invalidate_cpu:
   2043  *
   2044  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2045  *	identified by its associated index.
   2046  *	It is caller's responsibility to ensure that no operation is
   2047  *	taking place on this pool cache while doing this invalidation.
   2048  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2049  *	pool cached objects from a CPU different from the one currently running
   2050  *	may result in an undefined behaviour.
   2051  */
   2052 static void
   2053 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2054 {
   2055 	pool_cache_cpu_t *cc;
   2056 	pcg_t *pcg;
   2057 
   2058 	if ((cc = pc->pc_cpus[index]) == NULL)
   2059 		return;
   2060 
   2061 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2062 		pcg->pcg_next = NULL;
   2063 		pool_cache_invalidate_groups(pc, pcg);
   2064 	}
   2065 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2066 		pcg->pcg_next = NULL;
   2067 		pool_cache_invalidate_groups(pc, pcg);
   2068 	}
   2069 	if (cc != &pc->pc_cpu0)
   2070 		pool_put(&cache_cpu_pool, cc);
   2071 
   2072 }
   2073 
   2074 void
   2075 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2076 {
   2077 
   2078 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2079 }
   2080 
   2081 void
   2082 pool_cache_setlowat(pool_cache_t pc, int n)
   2083 {
   2084 
   2085 	pool_setlowat(&pc->pc_pool, n);
   2086 }
   2087 
   2088 void
   2089 pool_cache_sethiwat(pool_cache_t pc, int n)
   2090 {
   2091 
   2092 	pool_sethiwat(&pc->pc_pool, n);
   2093 }
   2094 
   2095 void
   2096 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2097 {
   2098 
   2099 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2100 }
   2101 
   2102 static bool __noinline
   2103 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2104 		    paddr_t *pap, int flags)
   2105 {
   2106 	pcg_t *pcg, *cur;
   2107 	uint64_t ncsw;
   2108 	pool_cache_t pc;
   2109 	void *object;
   2110 
   2111 	KASSERT(cc->cc_current->pcg_avail == 0);
   2112 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2113 
   2114 	pc = cc->cc_cache;
   2115 	cc->cc_misses++;
   2116 
   2117 	/*
   2118 	 * Nothing was available locally.  Try and grab a group
   2119 	 * from the cache.
   2120 	 */
   2121 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2122 		ncsw = curlwp->l_ncsw;
   2123 		mutex_enter(&pc->pc_lock);
   2124 		pc->pc_contended++;
   2125 
   2126 		/*
   2127 		 * If we context switched while locking, then
   2128 		 * our view of the per-CPU data is invalid:
   2129 		 * retry.
   2130 		 */
   2131 		if (curlwp->l_ncsw != ncsw) {
   2132 			mutex_exit(&pc->pc_lock);
   2133 			return true;
   2134 		}
   2135 	}
   2136 
   2137 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2138 		/*
   2139 		 * If there's a full group, release our empty
   2140 		 * group back to the cache.  Install the full
   2141 		 * group as cc_current and return.
   2142 		 */
   2143 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2144 			KASSERT(cur->pcg_avail == 0);
   2145 			cur->pcg_next = pc->pc_emptygroups;
   2146 			pc->pc_emptygroups = cur;
   2147 			pc->pc_nempty++;
   2148 		}
   2149 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2150 		cc->cc_current = pcg;
   2151 		pc->pc_fullgroups = pcg->pcg_next;
   2152 		pc->pc_hits++;
   2153 		pc->pc_nfull--;
   2154 		mutex_exit(&pc->pc_lock);
   2155 		return true;
   2156 	}
   2157 
   2158 	/*
   2159 	 * Nothing available locally or in cache.  Take the slow
   2160 	 * path: fetch a new object from the pool and construct
   2161 	 * it.
   2162 	 */
   2163 	pc->pc_misses++;
   2164 	mutex_exit(&pc->pc_lock);
   2165 	splx(s);
   2166 
   2167 	object = pool_get(&pc->pc_pool, flags);
   2168 	*objectp = object;
   2169 	if (__predict_false(object == NULL))
   2170 		return false;
   2171 
   2172 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2173 		pool_put(&pc->pc_pool, object);
   2174 		*objectp = NULL;
   2175 		return false;
   2176 	}
   2177 
   2178 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2179 	    (pc->pc_pool.pr_align - 1)) == 0);
   2180 
   2181 	if (pap != NULL) {
   2182 #ifdef POOL_VTOPHYS
   2183 		*pap = POOL_VTOPHYS(object);
   2184 #else
   2185 		*pap = POOL_PADDR_INVALID;
   2186 #endif
   2187 	}
   2188 
   2189 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2190 	return false;
   2191 }
   2192 
   2193 /*
   2194  * pool_cache_get{,_paddr}:
   2195  *
   2196  *	Get an object from a pool cache (optionally returning
   2197  *	the physical address of the object).
   2198  */
   2199 void *
   2200 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2201 {
   2202 	pool_cache_cpu_t *cc;
   2203 	pcg_t *pcg;
   2204 	void *object;
   2205 	int s;
   2206 
   2207 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2208 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2209 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2210 	    pc->pc_pool.pr_wchan);
   2211 
   2212 	if (flags & PR_WAITOK) {
   2213 		ASSERT_SLEEPABLE();
   2214 	}
   2215 
   2216 	/* Lock out interrupts and disable preemption. */
   2217 	s = splvm();
   2218 	while (/* CONSTCOND */ true) {
   2219 		/* Try and allocate an object from the current group. */
   2220 		cc = pc->pc_cpus[curcpu()->ci_index];
   2221 		KASSERT(cc->cc_cache == pc);
   2222 	 	pcg = cc->cc_current;
   2223 		if (__predict_true(pcg->pcg_avail > 0)) {
   2224 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2225 			if (__predict_false(pap != NULL))
   2226 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2227 #if defined(DIAGNOSTIC)
   2228 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2229 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2230 			KASSERT(object != NULL);
   2231 #endif
   2232 			cc->cc_hits++;
   2233 			splx(s);
   2234 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2235 			return object;
   2236 		}
   2237 
   2238 		/*
   2239 		 * That failed.  If the previous group isn't empty, swap
   2240 		 * it with the current group and allocate from there.
   2241 		 */
   2242 		pcg = cc->cc_previous;
   2243 		if (__predict_true(pcg->pcg_avail > 0)) {
   2244 			cc->cc_previous = cc->cc_current;
   2245 			cc->cc_current = pcg;
   2246 			continue;
   2247 		}
   2248 
   2249 		/*
   2250 		 * Can't allocate from either group: try the slow path.
   2251 		 * If get_slow() allocated an object for us, or if
   2252 		 * no more objects are available, it will return false.
   2253 		 * Otherwise, we need to retry.
   2254 		 */
   2255 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2256 			break;
   2257 	}
   2258 
   2259 	return object;
   2260 }
   2261 
   2262 static bool __noinline
   2263 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2264 {
   2265 	struct lwp *l = curlwp;
   2266 	pcg_t *pcg, *cur;
   2267 	uint64_t ncsw;
   2268 	pool_cache_t pc;
   2269 
   2270 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2271 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2272 
   2273 	pc = cc->cc_cache;
   2274 	pcg = NULL;
   2275 	cc->cc_misses++;
   2276 	ncsw = l->l_ncsw;
   2277 
   2278 	/*
   2279 	 * If there are no empty groups in the cache then allocate one
   2280 	 * while still unlocked.
   2281 	 */
   2282 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2283 		if (__predict_true(!pool_cache_disable)) {
   2284 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2285 		}
   2286 		/*
   2287 		 * If pool_get() blocked, then our view of
   2288 		 * the per-CPU data is invalid: retry.
   2289 		 */
   2290 		if (__predict_false(l->l_ncsw != ncsw)) {
   2291 			if (pcg != NULL) {
   2292 				pool_put(pc->pc_pcgpool, pcg);
   2293 			}
   2294 			return true;
   2295 		}
   2296 		if (__predict_true(pcg != NULL)) {
   2297 			pcg->pcg_avail = 0;
   2298 			pcg->pcg_size = pc->pc_pcgsize;
   2299 		}
   2300 	}
   2301 
   2302 	/* Lock the cache. */
   2303 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2304 		mutex_enter(&pc->pc_lock);
   2305 		pc->pc_contended++;
   2306 
   2307 		/*
   2308 		 * If we context switched while locking, then our view of
   2309 		 * the per-CPU data is invalid: retry.
   2310 		 */
   2311 		if (__predict_false(l->l_ncsw != ncsw)) {
   2312 			mutex_exit(&pc->pc_lock);
   2313 			if (pcg != NULL) {
   2314 				pool_put(pc->pc_pcgpool, pcg);
   2315 			}
   2316 			return true;
   2317 		}
   2318 	}
   2319 
   2320 	/* If there are no empty groups in the cache then allocate one. */
   2321 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2322 		pcg = pc->pc_emptygroups;
   2323 		pc->pc_emptygroups = pcg->pcg_next;
   2324 		pc->pc_nempty--;
   2325 	}
   2326 
   2327 	/*
   2328 	 * If there's a empty group, release our full group back
   2329 	 * to the cache.  Install the empty group to the local CPU
   2330 	 * and return.
   2331 	 */
   2332 	if (pcg != NULL) {
   2333 		KASSERT(pcg->pcg_avail == 0);
   2334 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2335 			cc->cc_previous = pcg;
   2336 		} else {
   2337 			cur = cc->cc_current;
   2338 			if (__predict_true(cur != &pcg_dummy)) {
   2339 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2340 				cur->pcg_next = pc->pc_fullgroups;
   2341 				pc->pc_fullgroups = cur;
   2342 				pc->pc_nfull++;
   2343 			}
   2344 			cc->cc_current = pcg;
   2345 		}
   2346 		pc->pc_hits++;
   2347 		mutex_exit(&pc->pc_lock);
   2348 		return true;
   2349 	}
   2350 
   2351 	/*
   2352 	 * Nothing available locally or in cache, and we didn't
   2353 	 * allocate an empty group.  Take the slow path and destroy
   2354 	 * the object here and now.
   2355 	 */
   2356 	pc->pc_misses++;
   2357 	mutex_exit(&pc->pc_lock);
   2358 	splx(s);
   2359 	pool_cache_destruct_object(pc, object);
   2360 
   2361 	return false;
   2362 }
   2363 
   2364 /*
   2365  * pool_cache_put{,_paddr}:
   2366  *
   2367  *	Put an object back to the pool cache (optionally caching the
   2368  *	physical address of the object).
   2369  */
   2370 void
   2371 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2372 {
   2373 	pool_cache_cpu_t *cc;
   2374 	pcg_t *pcg;
   2375 	int s;
   2376 
   2377 	KASSERT(object != NULL);
   2378 	FREECHECK_IN(&pc->pc_freecheck, object);
   2379 
   2380 	/* Lock out interrupts and disable preemption. */
   2381 	s = splvm();
   2382 	while (/* CONSTCOND */ true) {
   2383 		/* If the current group isn't full, release it there. */
   2384 		cc = pc->pc_cpus[curcpu()->ci_index];
   2385 		KASSERT(cc->cc_cache == pc);
   2386 	 	pcg = cc->cc_current;
   2387 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2388 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2389 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2390 			pcg->pcg_avail++;
   2391 			cc->cc_hits++;
   2392 			splx(s);
   2393 			return;
   2394 		}
   2395 
   2396 		/*
   2397 		 * That failed.  If the previous group isn't full, swap
   2398 		 * it with the current group and try again.
   2399 		 */
   2400 		pcg = cc->cc_previous;
   2401 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2402 			cc->cc_previous = cc->cc_current;
   2403 			cc->cc_current = pcg;
   2404 			continue;
   2405 		}
   2406 
   2407 		/*
   2408 		 * Can't free to either group: try the slow path.
   2409 		 * If put_slow() releases the object for us, it
   2410 		 * will return false.  Otherwise we need to retry.
   2411 		 */
   2412 		if (!pool_cache_put_slow(cc, s, object))
   2413 			break;
   2414 	}
   2415 }
   2416 
   2417 /*
   2418  * pool_cache_transfer:
   2419  *
   2420  *	Transfer objects from the per-CPU cache to the global cache.
   2421  *	Run within a cross-call thread.
   2422  */
   2423 static void
   2424 pool_cache_transfer(pool_cache_t pc)
   2425 {
   2426 	pool_cache_cpu_t *cc;
   2427 	pcg_t *prev, *cur, **list;
   2428 	int s;
   2429 
   2430 	s = splvm();
   2431 	mutex_enter(&pc->pc_lock);
   2432 	cc = pc->pc_cpus[curcpu()->ci_index];
   2433 	cur = cc->cc_current;
   2434 	cc->cc_current = __UNCONST(&pcg_dummy);
   2435 	prev = cc->cc_previous;
   2436 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2437 	if (cur != &pcg_dummy) {
   2438 		if (cur->pcg_avail == cur->pcg_size) {
   2439 			list = &pc->pc_fullgroups;
   2440 			pc->pc_nfull++;
   2441 		} else if (cur->pcg_avail == 0) {
   2442 			list = &pc->pc_emptygroups;
   2443 			pc->pc_nempty++;
   2444 		} else {
   2445 			list = &pc->pc_partgroups;
   2446 			pc->pc_npart++;
   2447 		}
   2448 		cur->pcg_next = *list;
   2449 		*list = cur;
   2450 	}
   2451 	if (prev != &pcg_dummy) {
   2452 		if (prev->pcg_avail == prev->pcg_size) {
   2453 			list = &pc->pc_fullgroups;
   2454 			pc->pc_nfull++;
   2455 		} else if (prev->pcg_avail == 0) {
   2456 			list = &pc->pc_emptygroups;
   2457 			pc->pc_nempty++;
   2458 		} else {
   2459 			list = &pc->pc_partgroups;
   2460 			pc->pc_npart++;
   2461 		}
   2462 		prev->pcg_next = *list;
   2463 		*list = prev;
   2464 	}
   2465 	mutex_exit(&pc->pc_lock);
   2466 	splx(s);
   2467 }
   2468 
   2469 /*
   2470  * Pool backend allocators.
   2471  *
   2472  * Each pool has a backend allocator that handles allocation, deallocation,
   2473  * and any additional draining that might be needed.
   2474  *
   2475  * We provide two standard allocators:
   2476  *
   2477  *	pool_allocator_kmem - the default when no allocator is specified
   2478  *
   2479  *	pool_allocator_nointr - used for pools that will not be accessed
   2480  *	in interrupt context.
   2481  */
   2482 void	*pool_page_alloc(struct pool *, int);
   2483 void	pool_page_free(struct pool *, void *);
   2484 
   2485 #ifdef POOL_SUBPAGE
   2486 struct pool_allocator pool_allocator_kmem_fullpage = {
   2487 	.pa_alloc = pool_page_alloc,
   2488 	.pa_free = pool_page_free,
   2489 	.pa_pagesz = 0
   2490 };
   2491 #else
   2492 struct pool_allocator pool_allocator_kmem = {
   2493 	.pa_alloc = pool_page_alloc,
   2494 	.pa_free = pool_page_free,
   2495 	.pa_pagesz = 0
   2496 };
   2497 #endif
   2498 
   2499 #ifdef POOL_SUBPAGE
   2500 struct pool_allocator pool_allocator_nointr_fullpage = {
   2501 	.pa_alloc = pool_page_alloc,
   2502 	.pa_free = pool_page_free,
   2503 	.pa_pagesz = 0
   2504 };
   2505 #else
   2506 struct pool_allocator pool_allocator_nointr = {
   2507 	.pa_alloc = pool_page_alloc,
   2508 	.pa_free = pool_page_free,
   2509 	.pa_pagesz = 0
   2510 };
   2511 #endif
   2512 
   2513 #ifdef POOL_SUBPAGE
   2514 void	*pool_subpage_alloc(struct pool *, int);
   2515 void	pool_subpage_free(struct pool *, void *);
   2516 
   2517 struct pool_allocator pool_allocator_kmem = {
   2518 	.pa_alloc = pool_subpage_alloc,
   2519 	.pa_free = pool_subpage_free,
   2520 	.pa_pagesz = POOL_SUBPAGE
   2521 };
   2522 
   2523 struct pool_allocator pool_allocator_nointr = {
   2524 	.pa_alloc = pool_subpage_alloc,
   2525 	.pa_free = pool_subpage_free,
   2526 	.pa_pagesz = POOL_SUBPAGE
   2527 };
   2528 #endif /* POOL_SUBPAGE */
   2529 
   2530 static void *
   2531 pool_allocator_alloc(struct pool *pp, int flags)
   2532 {
   2533 	struct pool_allocator *pa = pp->pr_alloc;
   2534 	void *res;
   2535 
   2536 	res = (*pa->pa_alloc)(pp, flags);
   2537 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2538 		/*
   2539 		 * We only run the drain hook here if PR_NOWAIT.
   2540 		 * In other cases, the hook will be run in
   2541 		 * pool_reclaim().
   2542 		 */
   2543 		if (pp->pr_drain_hook != NULL) {
   2544 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2545 			res = (*pa->pa_alloc)(pp, flags);
   2546 		}
   2547 	}
   2548 	return res;
   2549 }
   2550 
   2551 static void
   2552 pool_allocator_free(struct pool *pp, void *v)
   2553 {
   2554 	struct pool_allocator *pa = pp->pr_alloc;
   2555 
   2556 	(*pa->pa_free)(pp, v);
   2557 }
   2558 
   2559 void *
   2560 pool_page_alloc(struct pool *pp, int flags)
   2561 {
   2562 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2563 	vmem_addr_t va;
   2564 	int ret;
   2565 
   2566 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2567 	    vflags | VM_INSTANTFIT, &va);
   2568 
   2569 	return ret ? NULL : (void *)va;
   2570 }
   2571 
   2572 void
   2573 pool_page_free(struct pool *pp, void *v)
   2574 {
   2575 
   2576 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2577 }
   2578 
   2579 static void *
   2580 pool_page_alloc_meta(struct pool *pp, int flags)
   2581 {
   2582 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2583 	vmem_addr_t va;
   2584 	int ret;
   2585 
   2586 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2587 	    vflags | VM_INSTANTFIT, &va);
   2588 
   2589 	return ret ? NULL : (void *)va;
   2590 }
   2591 
   2592 static void
   2593 pool_page_free_meta(struct pool *pp, void *v)
   2594 {
   2595 
   2596 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2597 }
   2598 
   2599 #ifdef POOL_SUBPAGE
   2600 /* Sub-page allocator, for machines with large hardware pages. */
   2601 void *
   2602 pool_subpage_alloc(struct pool *pp, int flags)
   2603 {
   2604 	return pool_get(&psppool, flags);
   2605 }
   2606 
   2607 void
   2608 pool_subpage_free(struct pool *pp, void *v)
   2609 {
   2610 	pool_put(&psppool, v);
   2611 }
   2612 
   2613 #endif /* POOL_SUBPAGE */
   2614 
   2615 #if defined(DDB)
   2616 static bool
   2617 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2618 {
   2619 
   2620 	return (uintptr_t)ph->ph_page <= addr &&
   2621 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2622 }
   2623 
   2624 static bool
   2625 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2626 {
   2627 
   2628 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2629 }
   2630 
   2631 static bool
   2632 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2633 {
   2634 	int i;
   2635 
   2636 	if (pcg == NULL) {
   2637 		return false;
   2638 	}
   2639 	for (i = 0; i < pcg->pcg_avail; i++) {
   2640 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2641 			return true;
   2642 		}
   2643 	}
   2644 	return false;
   2645 }
   2646 
   2647 static bool
   2648 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2649 {
   2650 
   2651 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2652 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2653 		pool_item_bitmap_t *bitmap =
   2654 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2655 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2656 
   2657 		return (*bitmap & mask) == 0;
   2658 	} else {
   2659 		struct pool_item *pi;
   2660 
   2661 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2662 			if (pool_in_item(pp, pi, addr)) {
   2663 				return false;
   2664 			}
   2665 		}
   2666 		return true;
   2667 	}
   2668 }
   2669 
   2670 void
   2671 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2672 {
   2673 	struct pool *pp;
   2674 
   2675 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2676 		struct pool_item_header *ph;
   2677 		uintptr_t item;
   2678 		bool allocated = true;
   2679 		bool incache = false;
   2680 		bool incpucache = false;
   2681 		char cpucachestr[32];
   2682 
   2683 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2684 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2685 				if (pool_in_page(pp, ph, addr)) {
   2686 					goto found;
   2687 				}
   2688 			}
   2689 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2690 				if (pool_in_page(pp, ph, addr)) {
   2691 					allocated =
   2692 					    pool_allocated(pp, ph, addr);
   2693 					goto found;
   2694 				}
   2695 			}
   2696 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2697 				if (pool_in_page(pp, ph, addr)) {
   2698 					allocated = false;
   2699 					goto found;
   2700 				}
   2701 			}
   2702 			continue;
   2703 		} else {
   2704 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2705 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2706 				continue;
   2707 			}
   2708 			allocated = pool_allocated(pp, ph, addr);
   2709 		}
   2710 found:
   2711 		if (allocated && pp->pr_cache) {
   2712 			pool_cache_t pc = pp->pr_cache;
   2713 			struct pool_cache_group *pcg;
   2714 			int i;
   2715 
   2716 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2717 			    pcg = pcg->pcg_next) {
   2718 				if (pool_in_cg(pp, pcg, addr)) {
   2719 					incache = true;
   2720 					goto print;
   2721 				}
   2722 			}
   2723 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2724 				pool_cache_cpu_t *cc;
   2725 
   2726 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2727 					continue;
   2728 				}
   2729 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2730 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2731 					struct cpu_info *ci =
   2732 					    cpu_lookup(i);
   2733 
   2734 					incpucache = true;
   2735 					snprintf(cpucachestr,
   2736 					    sizeof(cpucachestr),
   2737 					    "cached by CPU %u",
   2738 					    ci->ci_index);
   2739 					goto print;
   2740 				}
   2741 			}
   2742 		}
   2743 print:
   2744 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2745 		item = item + rounddown(addr - item, pp->pr_size);
   2746 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2747 		    (void *)addr, item, (size_t)(addr - item),
   2748 		    pp->pr_wchan,
   2749 		    incpucache ? cpucachestr :
   2750 		    incache ? "cached" : allocated ? "allocated" : "free");
   2751 	}
   2752 }
   2753 #endif /* defined(DDB) */
   2754