subr_pool.c revision 1.190.2.4 1 /* $NetBSD: subr_pool.c,v 1.190.2.4 2014/05/22 11:41:03 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.190.2.4 2014/05/22 11:41:03 yamt Exp $");
36
37 #include "opt_ddb.h"
38 #include "opt_lockdebug.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bitops.h>
43 #include <sys/proc.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/vmem.h>
47 #include <sys/pool.h>
48 #include <sys/syslog.h>
49 #include <sys/debug.h>
50 #include <sys/lockdebug.h>
51 #include <sys/xcall.h>
52 #include <sys/cpu.h>
53 #include <sys/atomic.h>
54
55 #include <uvm/uvm_extern.h>
56
57 /*
58 * Pool resource management utility.
59 *
60 * Memory is allocated in pages which are split into pieces according to
61 * the pool item size. Each page is kept on one of three lists in the
62 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
63 * for empty, full and partially-full pages respectively. The individual
64 * pool items are on a linked list headed by `ph_itemlist' in each page
65 * header. The memory for building the page list is either taken from
66 * the allocated pages themselves (for small pool items) or taken from
67 * an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools. Non static as needed by 'vmstat -i' */
71 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 #define PHPOOL_MAX 8
75 static struct pool phpool[PHPOOL_MAX];
76 #define PHPOOL_FREELIST_NELEM(idx) \
77 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
78
79 #ifdef POOL_SUBPAGE
80 /* Pool of subpages for use by normal pools. */
81 static struct pool psppool;
82 #endif
83
84 static void *pool_page_alloc_meta(struct pool *, int);
85 static void pool_page_free_meta(struct pool *, void *);
86
87 /* allocator for pool metadata */
88 struct pool_allocator pool_allocator_meta = {
89 .pa_alloc = pool_page_alloc_meta,
90 .pa_free = pool_page_free_meta,
91 .pa_pagesz = 0
92 };
93
94 /* # of seconds to retain page after last use */
95 int pool_inactive_time = 10;
96
97 /* Next candidate for drainage (see pool_drain()) */
98 static struct pool *drainpp;
99
100 /* This lock protects both pool_head and drainpp. */
101 static kmutex_t pool_head_lock;
102 static kcondvar_t pool_busy;
103
104 /* This lock protects initialization of a potentially shared pool allocator */
105 static kmutex_t pool_allocator_lock;
106
107 typedef uint32_t pool_item_bitmap_t;
108 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define BITMAP_MASK (BITMAP_SIZE - 1)
110
111 struct pool_item_header {
112 /* Page headers */
113 LIST_ENTRY(pool_item_header)
114 ph_pagelist; /* pool page list */
115 SPLAY_ENTRY(pool_item_header)
116 ph_node; /* Off-page page headers */
117 void * ph_page; /* this page's address */
118 uint32_t ph_time; /* last referenced */
119 uint16_t ph_nmissing; /* # of chunks in use */
120 uint16_t ph_off; /* start offset in page */
121 union {
122 /* !PR_NOTOUCH */
123 struct {
124 LIST_HEAD(, pool_item)
125 phu_itemlist; /* chunk list for this page */
126 } phu_normal;
127 /* PR_NOTOUCH */
128 struct {
129 pool_item_bitmap_t phu_bitmap[1];
130 } phu_notouch;
131 } ph_u;
132 };
133 #define ph_itemlist ph_u.phu_normal.phu_itemlist
134 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
135
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 u_int pi_magic;
139 #endif
140 #define PI_MAGIC 0xdeaddeadU
141 /* Other entries use only this list entry */
142 LIST_ENTRY(pool_item) pi_list;
143 };
144
145 #define POOL_NEEDS_CATCHUP(pp) \
146 ((pp)->pr_nitems < (pp)->pr_minitems)
147
148 /*
149 * Pool cache management.
150 *
151 * Pool caches provide a way for constructed objects to be cached by the
152 * pool subsystem. This can lead to performance improvements by avoiding
153 * needless object construction/destruction; it is deferred until absolutely
154 * necessary.
155 *
156 * Caches are grouped into cache groups. Each cache group references up
157 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
158 * object from the pool, it calls the object's constructor and places it
159 * into a cache group. When a cache group frees an object back to the
160 * pool, it first calls the object's destructor. This allows the object
161 * to persist in constructed form while freed to the cache.
162 *
163 * The pool references each cache, so that when a pool is drained by the
164 * pagedaemon, it can drain each individual cache as well. Each time a
165 * cache is drained, the most idle cache group is freed to the pool in
166 * its entirety.
167 *
168 * Pool caches are layed on top of pools. By layering them, we can avoid
169 * the complexity of cache management for pools which would not benefit
170 * from it.
171 */
172
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177
178 pool_cache_t pnbuf_cache; /* pathname buffer cache */
179
180 /* List of all caches. */
181 TAILQ_HEAD(,pool_cache) pool_cache_head =
182 TAILQ_HEAD_INITIALIZER(pool_cache_head);
183
184 int pool_cache_disable; /* global disable for caching */
185 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
186
187 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
188 void *);
189 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
190 void **, paddr_t *, int);
191 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
192 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
193 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
194 static void pool_cache_transfer(pool_cache_t);
195
196 static int pool_catchup(struct pool *);
197 static void pool_prime_page(struct pool *, void *,
198 struct pool_item_header *);
199 static void pool_update_curpage(struct pool *);
200
201 static int pool_grow(struct pool *, int);
202 static void *pool_allocator_alloc(struct pool *, int);
203 static void pool_allocator_free(struct pool *, void *);
204
205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 void (*)(const char *, ...) __printflike(1, 2));
207 static void pool_print1(struct pool *, const char *,
208 void (*)(const char *, ...) __printflike(1, 2));
209
210 static int pool_chk_page(struct pool *, const char *,
211 struct pool_item_header *);
212
213 static inline unsigned int
214 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
215 const void *v)
216 {
217 const char *cp = v;
218 unsigned int idx;
219
220 KASSERT(pp->pr_roflags & PR_NOTOUCH);
221 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
222 KASSERT(idx < pp->pr_itemsperpage);
223 return idx;
224 }
225
226 static inline void
227 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
228 void *obj)
229 {
230 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
231 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
232 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
233
234 KASSERT((*bitmap & mask) == 0);
235 *bitmap |= mask;
236 }
237
238 static inline void *
239 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
240 {
241 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
242 unsigned int idx;
243 int i;
244
245 for (i = 0; ; i++) {
246 int bit;
247
248 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
249 bit = ffs32(bitmap[i]);
250 if (bit) {
251 pool_item_bitmap_t mask;
252
253 bit--;
254 idx = (i * BITMAP_SIZE) + bit;
255 mask = 1 << bit;
256 KASSERT((bitmap[i] & mask) != 0);
257 bitmap[i] &= ~mask;
258 break;
259 }
260 }
261 KASSERT(idx < pp->pr_itemsperpage);
262 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
263 }
264
265 static inline void
266 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
267 {
268 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
269 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
270 int i;
271
272 for (i = 0; i < n; i++) {
273 bitmap[i] = (pool_item_bitmap_t)-1;
274 }
275 }
276
277 static inline int
278 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
279 {
280
281 /*
282 * we consider pool_item_header with smaller ph_page bigger.
283 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
284 */
285
286 if (a->ph_page < b->ph_page)
287 return (1);
288 else if (a->ph_page > b->ph_page)
289 return (-1);
290 else
291 return (0);
292 }
293
294 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
295 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
296
297 static inline struct pool_item_header *
298 pr_find_pagehead_noalign(struct pool *pp, void *v)
299 {
300 struct pool_item_header *ph, tmp;
301
302 tmp.ph_page = (void *)(uintptr_t)v;
303 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
304 if (ph == NULL) {
305 ph = SPLAY_ROOT(&pp->pr_phtree);
306 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
307 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
308 }
309 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
310 }
311
312 return ph;
313 }
314
315 /*
316 * Return the pool page header based on item address.
317 */
318 static inline struct pool_item_header *
319 pr_find_pagehead(struct pool *pp, void *v)
320 {
321 struct pool_item_header *ph, tmp;
322
323 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
324 ph = pr_find_pagehead_noalign(pp, v);
325 } else {
326 void *page =
327 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
328
329 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
330 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
331 } else {
332 tmp.ph_page = page;
333 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
334 }
335 }
336
337 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
338 ((char *)ph->ph_page <= (char *)v &&
339 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
340 return ph;
341 }
342
343 static void
344 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
345 {
346 struct pool_item_header *ph;
347
348 while ((ph = LIST_FIRST(pq)) != NULL) {
349 LIST_REMOVE(ph, ph_pagelist);
350 pool_allocator_free(pp, ph->ph_page);
351 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
352 pool_put(pp->pr_phpool, ph);
353 }
354 }
355
356 /*
357 * Remove a page from the pool.
358 */
359 static inline void
360 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
361 struct pool_pagelist *pq)
362 {
363
364 KASSERT(mutex_owned(&pp->pr_lock));
365
366 /*
367 * If the page was idle, decrement the idle page count.
368 */
369 if (ph->ph_nmissing == 0) {
370 #ifdef DIAGNOSTIC
371 if (pp->pr_nidle == 0)
372 panic("pr_rmpage: nidle inconsistent");
373 if (pp->pr_nitems < pp->pr_itemsperpage)
374 panic("pr_rmpage: nitems inconsistent");
375 #endif
376 pp->pr_nidle--;
377 }
378
379 pp->pr_nitems -= pp->pr_itemsperpage;
380
381 /*
382 * Unlink the page from the pool and queue it for release.
383 */
384 LIST_REMOVE(ph, ph_pagelist);
385 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
386 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
387 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
388
389 pp->pr_npages--;
390 pp->pr_npagefree++;
391
392 pool_update_curpage(pp);
393 }
394
395 /*
396 * Initialize all the pools listed in the "pools" link set.
397 */
398 void
399 pool_subsystem_init(void)
400 {
401 size_t size;
402 int idx;
403
404 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
405 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
406 cv_init(&pool_busy, "poolbusy");
407
408 /*
409 * Initialize private page header pool and cache magazine pool if we
410 * haven't done so yet.
411 */
412 for (idx = 0; idx < PHPOOL_MAX; idx++) {
413 static char phpool_names[PHPOOL_MAX][6+1+6+1];
414 int nelem;
415 size_t sz;
416
417 nelem = PHPOOL_FREELIST_NELEM(idx);
418 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
419 "phpool-%d", nelem);
420 sz = sizeof(struct pool_item_header);
421 if (nelem) {
422 sz = offsetof(struct pool_item_header,
423 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
424 }
425 pool_init(&phpool[idx], sz, 0, 0, 0,
426 phpool_names[idx], &pool_allocator_meta, IPL_VM);
427 }
428 #ifdef POOL_SUBPAGE
429 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
430 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
431 #endif
432
433 size = sizeof(pcg_t) +
434 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
435 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
436 "pcgnormal", &pool_allocator_meta, IPL_VM);
437
438 size = sizeof(pcg_t) +
439 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
440 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
441 "pcglarge", &pool_allocator_meta, IPL_VM);
442
443 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
444 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
445
446 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
447 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
448 }
449
450 /*
451 * Initialize the given pool resource structure.
452 *
453 * We export this routine to allow other kernel parts to declare
454 * static pools that must be initialized before kmem(9) is available.
455 */
456 void
457 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
458 const char *wchan, struct pool_allocator *palloc, int ipl)
459 {
460 struct pool *pp1;
461 size_t trysize, phsize;
462 int off, slack;
463
464 #ifdef DEBUG
465 if (__predict_true(!cold))
466 mutex_enter(&pool_head_lock);
467 /*
468 * Check that the pool hasn't already been initialised and
469 * added to the list of all pools.
470 */
471 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
472 if (pp == pp1)
473 panic("pool_init: pool %s already initialised",
474 wchan);
475 }
476 if (__predict_true(!cold))
477 mutex_exit(&pool_head_lock);
478 #endif
479
480 if (palloc == NULL)
481 palloc = &pool_allocator_kmem;
482 #ifdef POOL_SUBPAGE
483 if (size > palloc->pa_pagesz) {
484 if (palloc == &pool_allocator_kmem)
485 palloc = &pool_allocator_kmem_fullpage;
486 else if (palloc == &pool_allocator_nointr)
487 palloc = &pool_allocator_nointr_fullpage;
488 }
489 #endif /* POOL_SUBPAGE */
490 if (!cold)
491 mutex_enter(&pool_allocator_lock);
492 if (palloc->pa_refcnt++ == 0) {
493 if (palloc->pa_pagesz == 0)
494 palloc->pa_pagesz = PAGE_SIZE;
495
496 TAILQ_INIT(&palloc->pa_list);
497
498 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
499 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
500 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
501 }
502 if (!cold)
503 mutex_exit(&pool_allocator_lock);
504
505 if (align == 0)
506 align = ALIGN(1);
507
508 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
509 size = sizeof(struct pool_item);
510
511 size = roundup(size, align);
512 #ifdef DIAGNOSTIC
513 if (size > palloc->pa_pagesz)
514 panic("pool_init: pool item size (%zu) too large", size);
515 #endif
516
517 /*
518 * Initialize the pool structure.
519 */
520 LIST_INIT(&pp->pr_emptypages);
521 LIST_INIT(&pp->pr_fullpages);
522 LIST_INIT(&pp->pr_partpages);
523 pp->pr_cache = NULL;
524 pp->pr_curpage = NULL;
525 pp->pr_npages = 0;
526 pp->pr_minitems = 0;
527 pp->pr_minpages = 0;
528 pp->pr_maxpages = UINT_MAX;
529 pp->pr_roflags = flags;
530 pp->pr_flags = 0;
531 pp->pr_size = size;
532 pp->pr_align = align;
533 pp->pr_wchan = wchan;
534 pp->pr_alloc = palloc;
535 pp->pr_nitems = 0;
536 pp->pr_nout = 0;
537 pp->pr_hardlimit = UINT_MAX;
538 pp->pr_hardlimit_warning = NULL;
539 pp->pr_hardlimit_ratecap.tv_sec = 0;
540 pp->pr_hardlimit_ratecap.tv_usec = 0;
541 pp->pr_hardlimit_warning_last.tv_sec = 0;
542 pp->pr_hardlimit_warning_last.tv_usec = 0;
543 pp->pr_drain_hook = NULL;
544 pp->pr_drain_hook_arg = NULL;
545 pp->pr_freecheck = NULL;
546
547 /*
548 * Decide whether to put the page header off page to avoid
549 * wasting too large a part of the page or too big item.
550 * Off-page page headers go on a hash table, so we can match
551 * a returned item with its header based on the page address.
552 * We use 1/16 of the page size and about 8 times of the item
553 * size as the threshold (XXX: tune)
554 *
555 * However, we'll put the header into the page if we can put
556 * it without wasting any items.
557 *
558 * Silently enforce `0 <= ioff < align'.
559 */
560 pp->pr_itemoffset = ioff %= align;
561 /* See the comment below about reserved bytes. */
562 trysize = palloc->pa_pagesz - ((align - ioff) % align);
563 phsize = ALIGN(sizeof(struct pool_item_header));
564 if (pp->pr_roflags & PR_PHINPAGE ||
565 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
566 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
567 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
568 /* Use the end of the page for the page header */
569 pp->pr_roflags |= PR_PHINPAGE;
570 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
571 } else {
572 /* The page header will be taken from our page header pool */
573 pp->pr_phoffset = 0;
574 off = palloc->pa_pagesz;
575 SPLAY_INIT(&pp->pr_phtree);
576 }
577
578 /*
579 * Alignment is to take place at `ioff' within the item. This means
580 * we must reserve up to `align - 1' bytes on the page to allow
581 * appropriate positioning of each item.
582 */
583 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
584 KASSERT(pp->pr_itemsperpage != 0);
585 if ((pp->pr_roflags & PR_NOTOUCH)) {
586 int idx;
587
588 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
589 idx++) {
590 /* nothing */
591 }
592 if (idx >= PHPOOL_MAX) {
593 /*
594 * if you see this panic, consider to tweak
595 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
596 */
597 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
598 pp->pr_wchan, pp->pr_itemsperpage);
599 }
600 pp->pr_phpool = &phpool[idx];
601 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
602 pp->pr_phpool = &phpool[0];
603 }
604 #if defined(DIAGNOSTIC)
605 else {
606 pp->pr_phpool = NULL;
607 }
608 #endif
609
610 /*
611 * Use the slack between the chunks and the page header
612 * for "cache coloring".
613 */
614 slack = off - pp->pr_itemsperpage * pp->pr_size;
615 pp->pr_maxcolor = (slack / align) * align;
616 pp->pr_curcolor = 0;
617
618 pp->pr_nget = 0;
619 pp->pr_nfail = 0;
620 pp->pr_nput = 0;
621 pp->pr_npagealloc = 0;
622 pp->pr_npagefree = 0;
623 pp->pr_hiwat = 0;
624 pp->pr_nidle = 0;
625 pp->pr_refcnt = 0;
626
627 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
628 cv_init(&pp->pr_cv, wchan);
629 pp->pr_ipl = ipl;
630
631 /* Insert into the list of all pools. */
632 if (!cold)
633 mutex_enter(&pool_head_lock);
634 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
635 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
636 break;
637 }
638 if (pp1 == NULL)
639 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
640 else
641 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
642 if (!cold)
643 mutex_exit(&pool_head_lock);
644
645 /* Insert this into the list of pools using this allocator. */
646 if (!cold)
647 mutex_enter(&palloc->pa_lock);
648 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
649 if (!cold)
650 mutex_exit(&palloc->pa_lock);
651 }
652
653 /*
654 * De-commision a pool resource.
655 */
656 void
657 pool_destroy(struct pool *pp)
658 {
659 struct pool_pagelist pq;
660 struct pool_item_header *ph;
661
662 /* Remove from global pool list */
663 mutex_enter(&pool_head_lock);
664 while (pp->pr_refcnt != 0)
665 cv_wait(&pool_busy, &pool_head_lock);
666 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
667 if (drainpp == pp)
668 drainpp = NULL;
669 mutex_exit(&pool_head_lock);
670
671 /* Remove this pool from its allocator's list of pools. */
672 mutex_enter(&pp->pr_alloc->pa_lock);
673 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
674 mutex_exit(&pp->pr_alloc->pa_lock);
675
676 mutex_enter(&pool_allocator_lock);
677 if (--pp->pr_alloc->pa_refcnt == 0)
678 mutex_destroy(&pp->pr_alloc->pa_lock);
679 mutex_exit(&pool_allocator_lock);
680
681 mutex_enter(&pp->pr_lock);
682
683 KASSERT(pp->pr_cache == NULL);
684
685 #ifdef DIAGNOSTIC
686 if (pp->pr_nout != 0) {
687 panic("pool_destroy: pool busy: still out: %u",
688 pp->pr_nout);
689 }
690 #endif
691
692 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
693 KASSERT(LIST_EMPTY(&pp->pr_partpages));
694
695 /* Remove all pages */
696 LIST_INIT(&pq);
697 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
698 pr_rmpage(pp, ph, &pq);
699
700 mutex_exit(&pp->pr_lock);
701
702 pr_pagelist_free(pp, &pq);
703 cv_destroy(&pp->pr_cv);
704 mutex_destroy(&pp->pr_lock);
705 }
706
707 void
708 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
709 {
710
711 /* XXX no locking -- must be used just after pool_init() */
712 #ifdef DIAGNOSTIC
713 if (pp->pr_drain_hook != NULL)
714 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
715 #endif
716 pp->pr_drain_hook = fn;
717 pp->pr_drain_hook_arg = arg;
718 }
719
720 static struct pool_item_header *
721 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
722 {
723 struct pool_item_header *ph;
724
725 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
726 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
727 else
728 ph = pool_get(pp->pr_phpool, flags);
729
730 return (ph);
731 }
732
733 /*
734 * Grab an item from the pool.
735 */
736 void *
737 pool_get(struct pool *pp, int flags)
738 {
739 struct pool_item *pi;
740 struct pool_item_header *ph;
741 void *v;
742
743 #ifdef DIAGNOSTIC
744 if (pp->pr_itemsperpage == 0)
745 panic("pool_get: pool '%s': pr_itemsperpage is zero, "
746 "pool not initialized?", pp->pr_wchan);
747 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
748 !cold && panicstr == NULL)
749 panic("pool '%s' is IPL_NONE, but called from "
750 "interrupt context\n", pp->pr_wchan);
751 #endif
752 if (flags & PR_WAITOK) {
753 ASSERT_SLEEPABLE();
754 }
755
756 mutex_enter(&pp->pr_lock);
757 startover:
758 /*
759 * Check to see if we've reached the hard limit. If we have,
760 * and we can wait, then wait until an item has been returned to
761 * the pool.
762 */
763 #ifdef DIAGNOSTIC
764 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
765 mutex_exit(&pp->pr_lock);
766 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
767 }
768 #endif
769 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
770 if (pp->pr_drain_hook != NULL) {
771 /*
772 * Since the drain hook is going to free things
773 * back to the pool, unlock, call the hook, re-lock,
774 * and check the hardlimit condition again.
775 */
776 mutex_exit(&pp->pr_lock);
777 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
778 mutex_enter(&pp->pr_lock);
779 if (pp->pr_nout < pp->pr_hardlimit)
780 goto startover;
781 }
782
783 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
784 /*
785 * XXX: A warning isn't logged in this case. Should
786 * it be?
787 */
788 pp->pr_flags |= PR_WANTED;
789 cv_wait(&pp->pr_cv, &pp->pr_lock);
790 goto startover;
791 }
792
793 /*
794 * Log a message that the hard limit has been hit.
795 */
796 if (pp->pr_hardlimit_warning != NULL &&
797 ratecheck(&pp->pr_hardlimit_warning_last,
798 &pp->pr_hardlimit_ratecap))
799 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
800
801 pp->pr_nfail++;
802
803 mutex_exit(&pp->pr_lock);
804 return (NULL);
805 }
806
807 /*
808 * The convention we use is that if `curpage' is not NULL, then
809 * it points at a non-empty bucket. In particular, `curpage'
810 * never points at a page header which has PR_PHINPAGE set and
811 * has no items in its bucket.
812 */
813 if ((ph = pp->pr_curpage) == NULL) {
814 int error;
815
816 #ifdef DIAGNOSTIC
817 if (pp->pr_nitems != 0) {
818 mutex_exit(&pp->pr_lock);
819 printf("pool_get: %s: curpage NULL, nitems %u\n",
820 pp->pr_wchan, pp->pr_nitems);
821 panic("pool_get: nitems inconsistent");
822 }
823 #endif
824
825 /*
826 * Call the back-end page allocator for more memory.
827 * Release the pool lock, as the back-end page allocator
828 * may block.
829 */
830 error = pool_grow(pp, flags);
831 if (error != 0) {
832 /*
833 * We were unable to allocate a page or item
834 * header, but we released the lock during
835 * allocation, so perhaps items were freed
836 * back to the pool. Check for this case.
837 */
838 if (pp->pr_curpage != NULL)
839 goto startover;
840
841 pp->pr_nfail++;
842 mutex_exit(&pp->pr_lock);
843 return (NULL);
844 }
845
846 /* Start the allocation process over. */
847 goto startover;
848 }
849 if (pp->pr_roflags & PR_NOTOUCH) {
850 #ifdef DIAGNOSTIC
851 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
852 mutex_exit(&pp->pr_lock);
853 panic("pool_get: %s: page empty", pp->pr_wchan);
854 }
855 #endif
856 v = pr_item_notouch_get(pp, ph);
857 } else {
858 v = pi = LIST_FIRST(&ph->ph_itemlist);
859 if (__predict_false(v == NULL)) {
860 mutex_exit(&pp->pr_lock);
861 panic("pool_get: %s: page empty", pp->pr_wchan);
862 }
863 #ifdef DIAGNOSTIC
864 if (__predict_false(pp->pr_nitems == 0)) {
865 mutex_exit(&pp->pr_lock);
866 printf("pool_get: %s: items on itemlist, nitems %u\n",
867 pp->pr_wchan, pp->pr_nitems);
868 panic("pool_get: nitems inconsistent");
869 }
870 #endif
871
872 #ifdef DIAGNOSTIC
873 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
874 panic("pool_get(%s): free list modified: "
875 "magic=%x; page %p; item addr %p\n",
876 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
877 }
878 #endif
879
880 /*
881 * Remove from item list.
882 */
883 LIST_REMOVE(pi, pi_list);
884 }
885 pp->pr_nitems--;
886 pp->pr_nout++;
887 if (ph->ph_nmissing == 0) {
888 #ifdef DIAGNOSTIC
889 if (__predict_false(pp->pr_nidle == 0))
890 panic("pool_get: nidle inconsistent");
891 #endif
892 pp->pr_nidle--;
893
894 /*
895 * This page was previously empty. Move it to the list of
896 * partially-full pages. This page is already curpage.
897 */
898 LIST_REMOVE(ph, ph_pagelist);
899 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
900 }
901 ph->ph_nmissing++;
902 if (ph->ph_nmissing == pp->pr_itemsperpage) {
903 #ifdef DIAGNOSTIC
904 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
905 !LIST_EMPTY(&ph->ph_itemlist))) {
906 mutex_exit(&pp->pr_lock);
907 panic("pool_get: %s: nmissing inconsistent",
908 pp->pr_wchan);
909 }
910 #endif
911 /*
912 * This page is now full. Move it to the full list
913 * and select a new current page.
914 */
915 LIST_REMOVE(ph, ph_pagelist);
916 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
917 pool_update_curpage(pp);
918 }
919
920 pp->pr_nget++;
921
922 /*
923 * If we have a low water mark and we are now below that low
924 * water mark, add more items to the pool.
925 */
926 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
927 /*
928 * XXX: Should we log a warning? Should we set up a timeout
929 * to try again in a second or so? The latter could break
930 * a caller's assumptions about interrupt protection, etc.
931 */
932 }
933
934 mutex_exit(&pp->pr_lock);
935 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
936 FREECHECK_OUT(&pp->pr_freecheck, v);
937 return (v);
938 }
939
940 /*
941 * Internal version of pool_put(). Pool is already locked/entered.
942 */
943 static void
944 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
945 {
946 struct pool_item *pi = v;
947 struct pool_item_header *ph;
948
949 KASSERT(mutex_owned(&pp->pr_lock));
950 FREECHECK_IN(&pp->pr_freecheck, v);
951 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
952
953 #ifdef DIAGNOSTIC
954 if (__predict_false(pp->pr_nout == 0)) {
955 printf("pool %s: putting with none out\n",
956 pp->pr_wchan);
957 panic("pool_put");
958 }
959 #endif
960
961 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
962 panic("pool_put: %s: page header missing", pp->pr_wchan);
963 }
964
965 /*
966 * Return to item list.
967 */
968 if (pp->pr_roflags & PR_NOTOUCH) {
969 pr_item_notouch_put(pp, ph, v);
970 } else {
971 #ifdef DIAGNOSTIC
972 pi->pi_magic = PI_MAGIC;
973 #endif
974 #ifdef DEBUG
975 {
976 int i, *ip = v;
977
978 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
979 *ip++ = PI_MAGIC;
980 }
981 }
982 #endif
983
984 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
985 }
986 KDASSERT(ph->ph_nmissing != 0);
987 ph->ph_nmissing--;
988 pp->pr_nput++;
989 pp->pr_nitems++;
990 pp->pr_nout--;
991
992 /* Cancel "pool empty" condition if it exists */
993 if (pp->pr_curpage == NULL)
994 pp->pr_curpage = ph;
995
996 if (pp->pr_flags & PR_WANTED) {
997 pp->pr_flags &= ~PR_WANTED;
998 cv_broadcast(&pp->pr_cv);
999 }
1000
1001 /*
1002 * If this page is now empty, do one of two things:
1003 *
1004 * (1) If we have more pages than the page high water mark,
1005 * free the page back to the system. ONLY CONSIDER
1006 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1007 * CLAIM.
1008 *
1009 * (2) Otherwise, move the page to the empty page list.
1010 *
1011 * Either way, select a new current page (so we use a partially-full
1012 * page if one is available).
1013 */
1014 if (ph->ph_nmissing == 0) {
1015 pp->pr_nidle++;
1016 if (pp->pr_npages > pp->pr_minpages &&
1017 pp->pr_npages > pp->pr_maxpages) {
1018 pr_rmpage(pp, ph, pq);
1019 } else {
1020 LIST_REMOVE(ph, ph_pagelist);
1021 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1022
1023 /*
1024 * Update the timestamp on the page. A page must
1025 * be idle for some period of time before it can
1026 * be reclaimed by the pagedaemon. This minimizes
1027 * ping-pong'ing for memory.
1028 *
1029 * note for 64-bit time_t: truncating to 32-bit is not
1030 * a problem for our usage.
1031 */
1032 ph->ph_time = time_uptime;
1033 }
1034 pool_update_curpage(pp);
1035 }
1036
1037 /*
1038 * If the page was previously completely full, move it to the
1039 * partially-full list and make it the current page. The next
1040 * allocation will get the item from this page, instead of
1041 * further fragmenting the pool.
1042 */
1043 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1044 LIST_REMOVE(ph, ph_pagelist);
1045 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1046 pp->pr_curpage = ph;
1047 }
1048 }
1049
1050 void
1051 pool_put(struct pool *pp, void *v)
1052 {
1053 struct pool_pagelist pq;
1054
1055 LIST_INIT(&pq);
1056
1057 mutex_enter(&pp->pr_lock);
1058 pool_do_put(pp, v, &pq);
1059 mutex_exit(&pp->pr_lock);
1060
1061 pr_pagelist_free(pp, &pq);
1062 }
1063
1064 /*
1065 * pool_grow: grow a pool by a page.
1066 *
1067 * => called with pool locked.
1068 * => unlock and relock the pool.
1069 * => return with pool locked.
1070 */
1071
1072 static int
1073 pool_grow(struct pool *pp, int flags)
1074 {
1075 struct pool_item_header *ph = NULL;
1076 char *cp;
1077
1078 mutex_exit(&pp->pr_lock);
1079 cp = pool_allocator_alloc(pp, flags);
1080 if (__predict_true(cp != NULL)) {
1081 ph = pool_alloc_item_header(pp, cp, flags);
1082 }
1083 if (__predict_false(cp == NULL || ph == NULL)) {
1084 if (cp != NULL) {
1085 pool_allocator_free(pp, cp);
1086 }
1087 mutex_enter(&pp->pr_lock);
1088 return ENOMEM;
1089 }
1090
1091 mutex_enter(&pp->pr_lock);
1092 pool_prime_page(pp, cp, ph);
1093 pp->pr_npagealloc++;
1094 return 0;
1095 }
1096
1097 /*
1098 * Add N items to the pool.
1099 */
1100 int
1101 pool_prime(struct pool *pp, int n)
1102 {
1103 int newpages;
1104 int error = 0;
1105
1106 mutex_enter(&pp->pr_lock);
1107
1108 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1109
1110 while (newpages-- > 0) {
1111 error = pool_grow(pp, PR_NOWAIT);
1112 if (error) {
1113 break;
1114 }
1115 pp->pr_minpages++;
1116 }
1117
1118 if (pp->pr_minpages >= pp->pr_maxpages)
1119 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1120
1121 mutex_exit(&pp->pr_lock);
1122 return error;
1123 }
1124
1125 /*
1126 * Add a page worth of items to the pool.
1127 *
1128 * Note, we must be called with the pool descriptor LOCKED.
1129 */
1130 static void
1131 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1132 {
1133 struct pool_item *pi;
1134 void *cp = storage;
1135 const unsigned int align = pp->pr_align;
1136 const unsigned int ioff = pp->pr_itemoffset;
1137 int n;
1138
1139 KASSERT(mutex_owned(&pp->pr_lock));
1140
1141 #ifdef DIAGNOSTIC
1142 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1143 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1144 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1145 #endif
1146
1147 /*
1148 * Insert page header.
1149 */
1150 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1151 LIST_INIT(&ph->ph_itemlist);
1152 ph->ph_page = storage;
1153 ph->ph_nmissing = 0;
1154 ph->ph_time = time_uptime;
1155 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1156 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1157
1158 pp->pr_nidle++;
1159
1160 /*
1161 * Color this page.
1162 */
1163 ph->ph_off = pp->pr_curcolor;
1164 cp = (char *)cp + ph->ph_off;
1165 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1166 pp->pr_curcolor = 0;
1167
1168 /*
1169 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1170 */
1171 if (ioff != 0)
1172 cp = (char *)cp + align - ioff;
1173
1174 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1175
1176 /*
1177 * Insert remaining chunks on the bucket list.
1178 */
1179 n = pp->pr_itemsperpage;
1180 pp->pr_nitems += n;
1181
1182 if (pp->pr_roflags & PR_NOTOUCH) {
1183 pr_item_notouch_init(pp, ph);
1184 } else {
1185 while (n--) {
1186 pi = (struct pool_item *)cp;
1187
1188 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1189
1190 /* Insert on page list */
1191 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1192 #ifdef DIAGNOSTIC
1193 pi->pi_magic = PI_MAGIC;
1194 #endif
1195 cp = (char *)cp + pp->pr_size;
1196
1197 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1198 }
1199 }
1200
1201 /*
1202 * If the pool was depleted, point at the new page.
1203 */
1204 if (pp->pr_curpage == NULL)
1205 pp->pr_curpage = ph;
1206
1207 if (++pp->pr_npages > pp->pr_hiwat)
1208 pp->pr_hiwat = pp->pr_npages;
1209 }
1210
1211 /*
1212 * Used by pool_get() when nitems drops below the low water mark. This
1213 * is used to catch up pr_nitems with the low water mark.
1214 *
1215 * Note 1, we never wait for memory here, we let the caller decide what to do.
1216 *
1217 * Note 2, we must be called with the pool already locked, and we return
1218 * with it locked.
1219 */
1220 static int
1221 pool_catchup(struct pool *pp)
1222 {
1223 int error = 0;
1224
1225 while (POOL_NEEDS_CATCHUP(pp)) {
1226 error = pool_grow(pp, PR_NOWAIT);
1227 if (error) {
1228 break;
1229 }
1230 }
1231 return error;
1232 }
1233
1234 static void
1235 pool_update_curpage(struct pool *pp)
1236 {
1237
1238 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1239 if (pp->pr_curpage == NULL) {
1240 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1241 }
1242 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1243 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1244 }
1245
1246 void
1247 pool_setlowat(struct pool *pp, int n)
1248 {
1249
1250 mutex_enter(&pp->pr_lock);
1251
1252 pp->pr_minitems = n;
1253 pp->pr_minpages = (n == 0)
1254 ? 0
1255 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1256
1257 /* Make sure we're caught up with the newly-set low water mark. */
1258 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1259 /*
1260 * XXX: Should we log a warning? Should we set up a timeout
1261 * to try again in a second or so? The latter could break
1262 * a caller's assumptions about interrupt protection, etc.
1263 */
1264 }
1265
1266 mutex_exit(&pp->pr_lock);
1267 }
1268
1269 void
1270 pool_sethiwat(struct pool *pp, int n)
1271 {
1272
1273 mutex_enter(&pp->pr_lock);
1274
1275 pp->pr_maxpages = (n == 0)
1276 ? 0
1277 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1278
1279 mutex_exit(&pp->pr_lock);
1280 }
1281
1282 void
1283 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1284 {
1285
1286 mutex_enter(&pp->pr_lock);
1287
1288 pp->pr_hardlimit = n;
1289 pp->pr_hardlimit_warning = warnmess;
1290 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1291 pp->pr_hardlimit_warning_last.tv_sec = 0;
1292 pp->pr_hardlimit_warning_last.tv_usec = 0;
1293
1294 /*
1295 * In-line version of pool_sethiwat(), because we don't want to
1296 * release the lock.
1297 */
1298 pp->pr_maxpages = (n == 0)
1299 ? 0
1300 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1301
1302 mutex_exit(&pp->pr_lock);
1303 }
1304
1305 /*
1306 * Release all complete pages that have not been used recently.
1307 *
1308 * Must not be called from interrupt context.
1309 */
1310 int
1311 pool_reclaim(struct pool *pp)
1312 {
1313 struct pool_item_header *ph, *phnext;
1314 struct pool_pagelist pq;
1315 uint32_t curtime;
1316 bool klock;
1317 int rv;
1318
1319 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1320
1321 if (pp->pr_drain_hook != NULL) {
1322 /*
1323 * The drain hook must be called with the pool unlocked.
1324 */
1325 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1326 }
1327
1328 /*
1329 * XXXSMP Because we do not want to cause non-MPSAFE code
1330 * to block.
1331 */
1332 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1333 pp->pr_ipl == IPL_SOFTSERIAL) {
1334 KERNEL_LOCK(1, NULL);
1335 klock = true;
1336 } else
1337 klock = false;
1338
1339 /* Reclaim items from the pool's cache (if any). */
1340 if (pp->pr_cache != NULL)
1341 pool_cache_invalidate(pp->pr_cache);
1342
1343 if (mutex_tryenter(&pp->pr_lock) == 0) {
1344 if (klock) {
1345 KERNEL_UNLOCK_ONE(NULL);
1346 }
1347 return (0);
1348 }
1349
1350 LIST_INIT(&pq);
1351
1352 curtime = time_uptime;
1353
1354 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1355 phnext = LIST_NEXT(ph, ph_pagelist);
1356
1357 /* Check our minimum page claim */
1358 if (pp->pr_npages <= pp->pr_minpages)
1359 break;
1360
1361 KASSERT(ph->ph_nmissing == 0);
1362 if (curtime - ph->ph_time < pool_inactive_time)
1363 continue;
1364
1365 /*
1366 * If freeing this page would put us below
1367 * the low water mark, stop now.
1368 */
1369 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1370 pp->pr_minitems)
1371 break;
1372
1373 pr_rmpage(pp, ph, &pq);
1374 }
1375
1376 mutex_exit(&pp->pr_lock);
1377
1378 if (LIST_EMPTY(&pq))
1379 rv = 0;
1380 else {
1381 pr_pagelist_free(pp, &pq);
1382 rv = 1;
1383 }
1384
1385 if (klock) {
1386 KERNEL_UNLOCK_ONE(NULL);
1387 }
1388
1389 return (rv);
1390 }
1391
1392 /*
1393 * Drain pools, one at a time. The drained pool is returned within ppp.
1394 *
1395 * Note, must never be called from interrupt context.
1396 */
1397 bool
1398 pool_drain(struct pool **ppp)
1399 {
1400 bool reclaimed;
1401 struct pool *pp;
1402
1403 KASSERT(!TAILQ_EMPTY(&pool_head));
1404
1405 pp = NULL;
1406
1407 /* Find next pool to drain, and add a reference. */
1408 mutex_enter(&pool_head_lock);
1409 do {
1410 if (drainpp == NULL) {
1411 drainpp = TAILQ_FIRST(&pool_head);
1412 }
1413 if (drainpp != NULL) {
1414 pp = drainpp;
1415 drainpp = TAILQ_NEXT(pp, pr_poollist);
1416 }
1417 /*
1418 * Skip completely idle pools. We depend on at least
1419 * one pool in the system being active.
1420 */
1421 } while (pp == NULL || pp->pr_npages == 0);
1422 pp->pr_refcnt++;
1423 mutex_exit(&pool_head_lock);
1424
1425 /* Drain the cache (if any) and pool.. */
1426 reclaimed = pool_reclaim(pp);
1427
1428 /* Finally, unlock the pool. */
1429 mutex_enter(&pool_head_lock);
1430 pp->pr_refcnt--;
1431 cv_broadcast(&pool_busy);
1432 mutex_exit(&pool_head_lock);
1433
1434 if (ppp != NULL)
1435 *ppp = pp;
1436
1437 return reclaimed;
1438 }
1439
1440 /*
1441 * Diagnostic helpers.
1442 */
1443
1444 void
1445 pool_printall(const char *modif, void (*pr)(const char *, ...))
1446 {
1447 struct pool *pp;
1448
1449 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1450 pool_printit(pp, modif, pr);
1451 }
1452 }
1453
1454 void
1455 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1456 {
1457
1458 if (pp == NULL) {
1459 (*pr)("Must specify a pool to print.\n");
1460 return;
1461 }
1462
1463 pool_print1(pp, modif, pr);
1464 }
1465
1466 static void
1467 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1468 void (*pr)(const char *, ...))
1469 {
1470 struct pool_item_header *ph;
1471 #ifdef DIAGNOSTIC
1472 struct pool_item *pi;
1473 #endif
1474
1475 LIST_FOREACH(ph, pl, ph_pagelist) {
1476 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1477 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1478 #ifdef DIAGNOSTIC
1479 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1480 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1481 if (pi->pi_magic != PI_MAGIC) {
1482 (*pr)("\t\t\titem %p, magic 0x%x\n",
1483 pi, pi->pi_magic);
1484 }
1485 }
1486 }
1487 #endif
1488 }
1489 }
1490
1491 static void
1492 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1493 {
1494 struct pool_item_header *ph;
1495 pool_cache_t pc;
1496 pcg_t *pcg;
1497 pool_cache_cpu_t *cc;
1498 uint64_t cpuhit, cpumiss;
1499 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1500 char c;
1501
1502 while ((c = *modif++) != '\0') {
1503 if (c == 'l')
1504 print_log = 1;
1505 if (c == 'p')
1506 print_pagelist = 1;
1507 if (c == 'c')
1508 print_cache = 1;
1509 }
1510
1511 if ((pc = pp->pr_cache) != NULL) {
1512 (*pr)("POOL CACHE");
1513 } else {
1514 (*pr)("POOL");
1515 }
1516
1517 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1518 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1519 pp->pr_roflags);
1520 (*pr)("\talloc %p\n", pp->pr_alloc);
1521 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1522 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1523 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1524 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1525
1526 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1527 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1528 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1529 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1530
1531 if (print_pagelist == 0)
1532 goto skip_pagelist;
1533
1534 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1535 (*pr)("\n\tempty page list:\n");
1536 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1537 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1538 (*pr)("\n\tfull page list:\n");
1539 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1540 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1541 (*pr)("\n\tpartial-page list:\n");
1542 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1543
1544 if (pp->pr_curpage == NULL)
1545 (*pr)("\tno current page\n");
1546 else
1547 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1548
1549 skip_pagelist:
1550 if (print_log == 0)
1551 goto skip_log;
1552
1553 (*pr)("\n");
1554
1555 skip_log:
1556
1557 #define PR_GROUPLIST(pcg) \
1558 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1559 for (i = 0; i < pcg->pcg_size; i++) { \
1560 if (pcg->pcg_objects[i].pcgo_pa != \
1561 POOL_PADDR_INVALID) { \
1562 (*pr)("\t\t\t%p, 0x%llx\n", \
1563 pcg->pcg_objects[i].pcgo_va, \
1564 (unsigned long long) \
1565 pcg->pcg_objects[i].pcgo_pa); \
1566 } else { \
1567 (*pr)("\t\t\t%p\n", \
1568 pcg->pcg_objects[i].pcgo_va); \
1569 } \
1570 }
1571
1572 if (pc != NULL) {
1573 cpuhit = 0;
1574 cpumiss = 0;
1575 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1576 if ((cc = pc->pc_cpus[i]) == NULL)
1577 continue;
1578 cpuhit += cc->cc_hits;
1579 cpumiss += cc->cc_misses;
1580 }
1581 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1582 (*pr)("\tcache layer hits %llu misses %llu\n",
1583 pc->pc_hits, pc->pc_misses);
1584 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1585 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1586 pc->pc_contended);
1587 (*pr)("\tcache layer empty groups %u full groups %u\n",
1588 pc->pc_nempty, pc->pc_nfull);
1589 if (print_cache) {
1590 (*pr)("\tfull cache groups:\n");
1591 for (pcg = pc->pc_fullgroups; pcg != NULL;
1592 pcg = pcg->pcg_next) {
1593 PR_GROUPLIST(pcg);
1594 }
1595 (*pr)("\tempty cache groups:\n");
1596 for (pcg = pc->pc_emptygroups; pcg != NULL;
1597 pcg = pcg->pcg_next) {
1598 PR_GROUPLIST(pcg);
1599 }
1600 }
1601 }
1602 #undef PR_GROUPLIST
1603 }
1604
1605 static int
1606 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1607 {
1608 struct pool_item *pi;
1609 void *page;
1610 int n;
1611
1612 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1613 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1614 if (page != ph->ph_page &&
1615 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1616 if (label != NULL)
1617 printf("%s: ", label);
1618 printf("pool(%p:%s): page inconsistency: page %p;"
1619 " at page head addr %p (p %p)\n", pp,
1620 pp->pr_wchan, ph->ph_page,
1621 ph, page);
1622 return 1;
1623 }
1624 }
1625
1626 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1627 return 0;
1628
1629 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1630 pi != NULL;
1631 pi = LIST_NEXT(pi,pi_list), n++) {
1632
1633 #ifdef DIAGNOSTIC
1634 if (pi->pi_magic != PI_MAGIC) {
1635 if (label != NULL)
1636 printf("%s: ", label);
1637 printf("pool(%s): free list modified: magic=%x;"
1638 " page %p; item ordinal %d; addr %p\n",
1639 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1640 n, pi);
1641 panic("pool");
1642 }
1643 #endif
1644 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1645 continue;
1646 }
1647 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1648 if (page == ph->ph_page)
1649 continue;
1650
1651 if (label != NULL)
1652 printf("%s: ", label);
1653 printf("pool(%p:%s): page inconsistency: page %p;"
1654 " item ordinal %d; addr %p (p %p)\n", pp,
1655 pp->pr_wchan, ph->ph_page,
1656 n, pi, page);
1657 return 1;
1658 }
1659 return 0;
1660 }
1661
1662
1663 int
1664 pool_chk(struct pool *pp, const char *label)
1665 {
1666 struct pool_item_header *ph;
1667 int r = 0;
1668
1669 mutex_enter(&pp->pr_lock);
1670 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1671 r = pool_chk_page(pp, label, ph);
1672 if (r) {
1673 goto out;
1674 }
1675 }
1676 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1677 r = pool_chk_page(pp, label, ph);
1678 if (r) {
1679 goto out;
1680 }
1681 }
1682 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1683 r = pool_chk_page(pp, label, ph);
1684 if (r) {
1685 goto out;
1686 }
1687 }
1688
1689 out:
1690 mutex_exit(&pp->pr_lock);
1691 return (r);
1692 }
1693
1694 /*
1695 * pool_cache_init:
1696 *
1697 * Initialize a pool cache.
1698 */
1699 pool_cache_t
1700 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1701 const char *wchan, struct pool_allocator *palloc, int ipl,
1702 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1703 {
1704 pool_cache_t pc;
1705
1706 pc = pool_get(&cache_pool, PR_WAITOK);
1707 if (pc == NULL)
1708 return NULL;
1709
1710 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1711 palloc, ipl, ctor, dtor, arg);
1712
1713 return pc;
1714 }
1715
1716 /*
1717 * pool_cache_bootstrap:
1718 *
1719 * Kernel-private version of pool_cache_init(). The caller
1720 * provides initial storage.
1721 */
1722 void
1723 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1724 u_int align_offset, u_int flags, const char *wchan,
1725 struct pool_allocator *palloc, int ipl,
1726 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1727 void *arg)
1728 {
1729 CPU_INFO_ITERATOR cii;
1730 pool_cache_t pc1;
1731 struct cpu_info *ci;
1732 struct pool *pp;
1733
1734 pp = &pc->pc_pool;
1735 if (palloc == NULL && ipl == IPL_NONE)
1736 palloc = &pool_allocator_nointr;
1737 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1738 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1739
1740 if (ctor == NULL) {
1741 ctor = (int (*)(void *, void *, int))nullop;
1742 }
1743 if (dtor == NULL) {
1744 dtor = (void (*)(void *, void *))nullop;
1745 }
1746
1747 pc->pc_emptygroups = NULL;
1748 pc->pc_fullgroups = NULL;
1749 pc->pc_partgroups = NULL;
1750 pc->pc_ctor = ctor;
1751 pc->pc_dtor = dtor;
1752 pc->pc_arg = arg;
1753 pc->pc_hits = 0;
1754 pc->pc_misses = 0;
1755 pc->pc_nempty = 0;
1756 pc->pc_npart = 0;
1757 pc->pc_nfull = 0;
1758 pc->pc_contended = 0;
1759 pc->pc_refcnt = 0;
1760 pc->pc_freecheck = NULL;
1761
1762 if ((flags & PR_LARGECACHE) != 0) {
1763 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1764 pc->pc_pcgpool = &pcg_large_pool;
1765 } else {
1766 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1767 pc->pc_pcgpool = &pcg_normal_pool;
1768 }
1769
1770 /* Allocate per-CPU caches. */
1771 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1772 pc->pc_ncpu = 0;
1773 if (ncpu < 2) {
1774 /* XXX For sparc: boot CPU is not attached yet. */
1775 pool_cache_cpu_init1(curcpu(), pc);
1776 } else {
1777 for (CPU_INFO_FOREACH(cii, ci)) {
1778 pool_cache_cpu_init1(ci, pc);
1779 }
1780 }
1781
1782 /* Add to list of all pools. */
1783 if (__predict_true(!cold))
1784 mutex_enter(&pool_head_lock);
1785 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1786 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1787 break;
1788 }
1789 if (pc1 == NULL)
1790 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1791 else
1792 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1793 if (__predict_true(!cold))
1794 mutex_exit(&pool_head_lock);
1795
1796 membar_sync();
1797 pp->pr_cache = pc;
1798 }
1799
1800 /*
1801 * pool_cache_destroy:
1802 *
1803 * Destroy a pool cache.
1804 */
1805 void
1806 pool_cache_destroy(pool_cache_t pc)
1807 {
1808
1809 pool_cache_bootstrap_destroy(pc);
1810 pool_put(&cache_pool, pc);
1811 }
1812
1813 /*
1814 * pool_cache_bootstrap_destroy:
1815 *
1816 * Destroy a pool cache.
1817 */
1818 void
1819 pool_cache_bootstrap_destroy(pool_cache_t pc)
1820 {
1821 struct pool *pp = &pc->pc_pool;
1822 u_int i;
1823
1824 /* Remove it from the global list. */
1825 mutex_enter(&pool_head_lock);
1826 while (pc->pc_refcnt != 0)
1827 cv_wait(&pool_busy, &pool_head_lock);
1828 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1829 mutex_exit(&pool_head_lock);
1830
1831 /* First, invalidate the entire cache. */
1832 pool_cache_invalidate(pc);
1833
1834 /* Disassociate it from the pool. */
1835 mutex_enter(&pp->pr_lock);
1836 pp->pr_cache = NULL;
1837 mutex_exit(&pp->pr_lock);
1838
1839 /* Destroy per-CPU data */
1840 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1841 pool_cache_invalidate_cpu(pc, i);
1842
1843 /* Finally, destroy it. */
1844 mutex_destroy(&pc->pc_lock);
1845 pool_destroy(pp);
1846 }
1847
1848 /*
1849 * pool_cache_cpu_init1:
1850 *
1851 * Called for each pool_cache whenever a new CPU is attached.
1852 */
1853 static void
1854 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1855 {
1856 pool_cache_cpu_t *cc;
1857 int index;
1858
1859 index = ci->ci_index;
1860
1861 KASSERT(index < __arraycount(pc->pc_cpus));
1862
1863 if ((cc = pc->pc_cpus[index]) != NULL) {
1864 KASSERT(cc->cc_cpuindex == index);
1865 return;
1866 }
1867
1868 /*
1869 * The first CPU is 'free'. This needs to be the case for
1870 * bootstrap - we may not be able to allocate yet.
1871 */
1872 if (pc->pc_ncpu == 0) {
1873 cc = &pc->pc_cpu0;
1874 pc->pc_ncpu = 1;
1875 } else {
1876 mutex_enter(&pc->pc_lock);
1877 pc->pc_ncpu++;
1878 mutex_exit(&pc->pc_lock);
1879 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1880 }
1881
1882 cc->cc_ipl = pc->pc_pool.pr_ipl;
1883 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1884 cc->cc_cache = pc;
1885 cc->cc_cpuindex = index;
1886 cc->cc_hits = 0;
1887 cc->cc_misses = 0;
1888 cc->cc_current = __UNCONST(&pcg_dummy);
1889 cc->cc_previous = __UNCONST(&pcg_dummy);
1890
1891 pc->pc_cpus[index] = cc;
1892 }
1893
1894 /*
1895 * pool_cache_cpu_init:
1896 *
1897 * Called whenever a new CPU is attached.
1898 */
1899 void
1900 pool_cache_cpu_init(struct cpu_info *ci)
1901 {
1902 pool_cache_t pc;
1903
1904 mutex_enter(&pool_head_lock);
1905 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1906 pc->pc_refcnt++;
1907 mutex_exit(&pool_head_lock);
1908
1909 pool_cache_cpu_init1(ci, pc);
1910
1911 mutex_enter(&pool_head_lock);
1912 pc->pc_refcnt--;
1913 cv_broadcast(&pool_busy);
1914 }
1915 mutex_exit(&pool_head_lock);
1916 }
1917
1918 /*
1919 * pool_cache_reclaim:
1920 *
1921 * Reclaim memory from a pool cache.
1922 */
1923 bool
1924 pool_cache_reclaim(pool_cache_t pc)
1925 {
1926
1927 return pool_reclaim(&pc->pc_pool);
1928 }
1929
1930 static void
1931 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1932 {
1933
1934 (*pc->pc_dtor)(pc->pc_arg, object);
1935 pool_put(&pc->pc_pool, object);
1936 }
1937
1938 /*
1939 * pool_cache_destruct_object:
1940 *
1941 * Force destruction of an object and its release back into
1942 * the pool.
1943 */
1944 void
1945 pool_cache_destruct_object(pool_cache_t pc, void *object)
1946 {
1947
1948 FREECHECK_IN(&pc->pc_freecheck, object);
1949
1950 pool_cache_destruct_object1(pc, object);
1951 }
1952
1953 /*
1954 * pool_cache_invalidate_groups:
1955 *
1956 * Invalidate a chain of groups and destruct all objects.
1957 */
1958 static void
1959 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1960 {
1961 void *object;
1962 pcg_t *next;
1963 int i;
1964
1965 for (; pcg != NULL; pcg = next) {
1966 next = pcg->pcg_next;
1967
1968 for (i = 0; i < pcg->pcg_avail; i++) {
1969 object = pcg->pcg_objects[i].pcgo_va;
1970 pool_cache_destruct_object1(pc, object);
1971 }
1972
1973 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
1974 pool_put(&pcg_large_pool, pcg);
1975 } else {
1976 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
1977 pool_put(&pcg_normal_pool, pcg);
1978 }
1979 }
1980 }
1981
1982 /*
1983 * pool_cache_invalidate:
1984 *
1985 * Invalidate a pool cache (destruct and release all of the
1986 * cached objects). Does not reclaim objects from the pool.
1987 *
1988 * Note: For pool caches that provide constructed objects, there
1989 * is an assumption that another level of synchronization is occurring
1990 * between the input to the constructor and the cache invalidation.
1991 *
1992 * Invalidation is a costly process and should not be called from
1993 * interrupt context.
1994 */
1995 void
1996 pool_cache_invalidate(pool_cache_t pc)
1997 {
1998 uint64_t where;
1999 pcg_t *full, *empty, *part;
2000
2001 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2002
2003 if (ncpu < 2 || !mp_online) {
2004 /*
2005 * We might be called early enough in the boot process
2006 * for the CPU data structures to not be fully initialized.
2007 * In this case, transfer the content of the local CPU's
2008 * cache back into global cache as only this CPU is currently
2009 * running.
2010 */
2011 pool_cache_transfer(pc);
2012 } else {
2013 /*
2014 * Signal all CPUs that they must transfer their local
2015 * cache back to the global pool then wait for the xcall to
2016 * complete.
2017 */
2018 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2019 pc, NULL);
2020 xc_wait(where);
2021 }
2022
2023 /* Empty pool caches, then invalidate objects */
2024 mutex_enter(&pc->pc_lock);
2025 full = pc->pc_fullgroups;
2026 empty = pc->pc_emptygroups;
2027 part = pc->pc_partgroups;
2028 pc->pc_fullgroups = NULL;
2029 pc->pc_emptygroups = NULL;
2030 pc->pc_partgroups = NULL;
2031 pc->pc_nfull = 0;
2032 pc->pc_nempty = 0;
2033 pc->pc_npart = 0;
2034 mutex_exit(&pc->pc_lock);
2035
2036 pool_cache_invalidate_groups(pc, full);
2037 pool_cache_invalidate_groups(pc, empty);
2038 pool_cache_invalidate_groups(pc, part);
2039 }
2040
2041 /*
2042 * pool_cache_invalidate_cpu:
2043 *
2044 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2045 * identified by its associated index.
2046 * It is caller's responsibility to ensure that no operation is
2047 * taking place on this pool cache while doing this invalidation.
2048 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2049 * pool cached objects from a CPU different from the one currently running
2050 * may result in an undefined behaviour.
2051 */
2052 static void
2053 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2054 {
2055 pool_cache_cpu_t *cc;
2056 pcg_t *pcg;
2057
2058 if ((cc = pc->pc_cpus[index]) == NULL)
2059 return;
2060
2061 if ((pcg = cc->cc_current) != &pcg_dummy) {
2062 pcg->pcg_next = NULL;
2063 pool_cache_invalidate_groups(pc, pcg);
2064 }
2065 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2066 pcg->pcg_next = NULL;
2067 pool_cache_invalidate_groups(pc, pcg);
2068 }
2069 if (cc != &pc->pc_cpu0)
2070 pool_put(&cache_cpu_pool, cc);
2071
2072 }
2073
2074 void
2075 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2076 {
2077
2078 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2079 }
2080
2081 void
2082 pool_cache_setlowat(pool_cache_t pc, int n)
2083 {
2084
2085 pool_setlowat(&pc->pc_pool, n);
2086 }
2087
2088 void
2089 pool_cache_sethiwat(pool_cache_t pc, int n)
2090 {
2091
2092 pool_sethiwat(&pc->pc_pool, n);
2093 }
2094
2095 void
2096 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2097 {
2098
2099 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2100 }
2101
2102 static bool __noinline
2103 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2104 paddr_t *pap, int flags)
2105 {
2106 pcg_t *pcg, *cur;
2107 uint64_t ncsw;
2108 pool_cache_t pc;
2109 void *object;
2110
2111 KASSERT(cc->cc_current->pcg_avail == 0);
2112 KASSERT(cc->cc_previous->pcg_avail == 0);
2113
2114 pc = cc->cc_cache;
2115 cc->cc_misses++;
2116
2117 /*
2118 * Nothing was available locally. Try and grab a group
2119 * from the cache.
2120 */
2121 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2122 ncsw = curlwp->l_ncsw;
2123 mutex_enter(&pc->pc_lock);
2124 pc->pc_contended++;
2125
2126 /*
2127 * If we context switched while locking, then
2128 * our view of the per-CPU data is invalid:
2129 * retry.
2130 */
2131 if (curlwp->l_ncsw != ncsw) {
2132 mutex_exit(&pc->pc_lock);
2133 return true;
2134 }
2135 }
2136
2137 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2138 /*
2139 * If there's a full group, release our empty
2140 * group back to the cache. Install the full
2141 * group as cc_current and return.
2142 */
2143 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2144 KASSERT(cur->pcg_avail == 0);
2145 cur->pcg_next = pc->pc_emptygroups;
2146 pc->pc_emptygroups = cur;
2147 pc->pc_nempty++;
2148 }
2149 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2150 cc->cc_current = pcg;
2151 pc->pc_fullgroups = pcg->pcg_next;
2152 pc->pc_hits++;
2153 pc->pc_nfull--;
2154 mutex_exit(&pc->pc_lock);
2155 return true;
2156 }
2157
2158 /*
2159 * Nothing available locally or in cache. Take the slow
2160 * path: fetch a new object from the pool and construct
2161 * it.
2162 */
2163 pc->pc_misses++;
2164 mutex_exit(&pc->pc_lock);
2165 splx(s);
2166
2167 object = pool_get(&pc->pc_pool, flags);
2168 *objectp = object;
2169 if (__predict_false(object == NULL))
2170 return false;
2171
2172 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2173 pool_put(&pc->pc_pool, object);
2174 *objectp = NULL;
2175 return false;
2176 }
2177
2178 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2179 (pc->pc_pool.pr_align - 1)) == 0);
2180
2181 if (pap != NULL) {
2182 #ifdef POOL_VTOPHYS
2183 *pap = POOL_VTOPHYS(object);
2184 #else
2185 *pap = POOL_PADDR_INVALID;
2186 #endif
2187 }
2188
2189 FREECHECK_OUT(&pc->pc_freecheck, object);
2190 return false;
2191 }
2192
2193 /*
2194 * pool_cache_get{,_paddr}:
2195 *
2196 * Get an object from a pool cache (optionally returning
2197 * the physical address of the object).
2198 */
2199 void *
2200 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2201 {
2202 pool_cache_cpu_t *cc;
2203 pcg_t *pcg;
2204 void *object;
2205 int s;
2206
2207 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2208 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2209 "pool '%s' is IPL_NONE, but called from interrupt context\n",
2210 pc->pc_pool.pr_wchan);
2211
2212 if (flags & PR_WAITOK) {
2213 ASSERT_SLEEPABLE();
2214 }
2215
2216 /* Lock out interrupts and disable preemption. */
2217 s = splvm();
2218 while (/* CONSTCOND */ true) {
2219 /* Try and allocate an object from the current group. */
2220 cc = pc->pc_cpus[curcpu()->ci_index];
2221 KASSERT(cc->cc_cache == pc);
2222 pcg = cc->cc_current;
2223 if (__predict_true(pcg->pcg_avail > 0)) {
2224 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2225 if (__predict_false(pap != NULL))
2226 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2227 #if defined(DIAGNOSTIC)
2228 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2229 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2230 KASSERT(object != NULL);
2231 #endif
2232 cc->cc_hits++;
2233 splx(s);
2234 FREECHECK_OUT(&pc->pc_freecheck, object);
2235 return object;
2236 }
2237
2238 /*
2239 * That failed. If the previous group isn't empty, swap
2240 * it with the current group and allocate from there.
2241 */
2242 pcg = cc->cc_previous;
2243 if (__predict_true(pcg->pcg_avail > 0)) {
2244 cc->cc_previous = cc->cc_current;
2245 cc->cc_current = pcg;
2246 continue;
2247 }
2248
2249 /*
2250 * Can't allocate from either group: try the slow path.
2251 * If get_slow() allocated an object for us, or if
2252 * no more objects are available, it will return false.
2253 * Otherwise, we need to retry.
2254 */
2255 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2256 break;
2257 }
2258
2259 return object;
2260 }
2261
2262 static bool __noinline
2263 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2264 {
2265 struct lwp *l = curlwp;
2266 pcg_t *pcg, *cur;
2267 uint64_t ncsw;
2268 pool_cache_t pc;
2269
2270 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2271 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2272
2273 pc = cc->cc_cache;
2274 pcg = NULL;
2275 cc->cc_misses++;
2276 ncsw = l->l_ncsw;
2277
2278 /*
2279 * If there are no empty groups in the cache then allocate one
2280 * while still unlocked.
2281 */
2282 if (__predict_false(pc->pc_emptygroups == NULL)) {
2283 if (__predict_true(!pool_cache_disable)) {
2284 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2285 }
2286 /*
2287 * If pool_get() blocked, then our view of
2288 * the per-CPU data is invalid: retry.
2289 */
2290 if (__predict_false(l->l_ncsw != ncsw)) {
2291 if (pcg != NULL) {
2292 pool_put(pc->pc_pcgpool, pcg);
2293 }
2294 return true;
2295 }
2296 if (__predict_true(pcg != NULL)) {
2297 pcg->pcg_avail = 0;
2298 pcg->pcg_size = pc->pc_pcgsize;
2299 }
2300 }
2301
2302 /* Lock the cache. */
2303 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2304 mutex_enter(&pc->pc_lock);
2305 pc->pc_contended++;
2306
2307 /*
2308 * If we context switched while locking, then our view of
2309 * the per-CPU data is invalid: retry.
2310 */
2311 if (__predict_false(l->l_ncsw != ncsw)) {
2312 mutex_exit(&pc->pc_lock);
2313 if (pcg != NULL) {
2314 pool_put(pc->pc_pcgpool, pcg);
2315 }
2316 return true;
2317 }
2318 }
2319
2320 /* If there are no empty groups in the cache then allocate one. */
2321 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2322 pcg = pc->pc_emptygroups;
2323 pc->pc_emptygroups = pcg->pcg_next;
2324 pc->pc_nempty--;
2325 }
2326
2327 /*
2328 * If there's a empty group, release our full group back
2329 * to the cache. Install the empty group to the local CPU
2330 * and return.
2331 */
2332 if (pcg != NULL) {
2333 KASSERT(pcg->pcg_avail == 0);
2334 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2335 cc->cc_previous = pcg;
2336 } else {
2337 cur = cc->cc_current;
2338 if (__predict_true(cur != &pcg_dummy)) {
2339 KASSERT(cur->pcg_avail == cur->pcg_size);
2340 cur->pcg_next = pc->pc_fullgroups;
2341 pc->pc_fullgroups = cur;
2342 pc->pc_nfull++;
2343 }
2344 cc->cc_current = pcg;
2345 }
2346 pc->pc_hits++;
2347 mutex_exit(&pc->pc_lock);
2348 return true;
2349 }
2350
2351 /*
2352 * Nothing available locally or in cache, and we didn't
2353 * allocate an empty group. Take the slow path and destroy
2354 * the object here and now.
2355 */
2356 pc->pc_misses++;
2357 mutex_exit(&pc->pc_lock);
2358 splx(s);
2359 pool_cache_destruct_object(pc, object);
2360
2361 return false;
2362 }
2363
2364 /*
2365 * pool_cache_put{,_paddr}:
2366 *
2367 * Put an object back to the pool cache (optionally caching the
2368 * physical address of the object).
2369 */
2370 void
2371 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2372 {
2373 pool_cache_cpu_t *cc;
2374 pcg_t *pcg;
2375 int s;
2376
2377 KASSERT(object != NULL);
2378 FREECHECK_IN(&pc->pc_freecheck, object);
2379
2380 /* Lock out interrupts and disable preemption. */
2381 s = splvm();
2382 while (/* CONSTCOND */ true) {
2383 /* If the current group isn't full, release it there. */
2384 cc = pc->pc_cpus[curcpu()->ci_index];
2385 KASSERT(cc->cc_cache == pc);
2386 pcg = cc->cc_current;
2387 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2388 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2389 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2390 pcg->pcg_avail++;
2391 cc->cc_hits++;
2392 splx(s);
2393 return;
2394 }
2395
2396 /*
2397 * That failed. If the previous group isn't full, swap
2398 * it with the current group and try again.
2399 */
2400 pcg = cc->cc_previous;
2401 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2402 cc->cc_previous = cc->cc_current;
2403 cc->cc_current = pcg;
2404 continue;
2405 }
2406
2407 /*
2408 * Can't free to either group: try the slow path.
2409 * If put_slow() releases the object for us, it
2410 * will return false. Otherwise we need to retry.
2411 */
2412 if (!pool_cache_put_slow(cc, s, object))
2413 break;
2414 }
2415 }
2416
2417 /*
2418 * pool_cache_transfer:
2419 *
2420 * Transfer objects from the per-CPU cache to the global cache.
2421 * Run within a cross-call thread.
2422 */
2423 static void
2424 pool_cache_transfer(pool_cache_t pc)
2425 {
2426 pool_cache_cpu_t *cc;
2427 pcg_t *prev, *cur, **list;
2428 int s;
2429
2430 s = splvm();
2431 mutex_enter(&pc->pc_lock);
2432 cc = pc->pc_cpus[curcpu()->ci_index];
2433 cur = cc->cc_current;
2434 cc->cc_current = __UNCONST(&pcg_dummy);
2435 prev = cc->cc_previous;
2436 cc->cc_previous = __UNCONST(&pcg_dummy);
2437 if (cur != &pcg_dummy) {
2438 if (cur->pcg_avail == cur->pcg_size) {
2439 list = &pc->pc_fullgroups;
2440 pc->pc_nfull++;
2441 } else if (cur->pcg_avail == 0) {
2442 list = &pc->pc_emptygroups;
2443 pc->pc_nempty++;
2444 } else {
2445 list = &pc->pc_partgroups;
2446 pc->pc_npart++;
2447 }
2448 cur->pcg_next = *list;
2449 *list = cur;
2450 }
2451 if (prev != &pcg_dummy) {
2452 if (prev->pcg_avail == prev->pcg_size) {
2453 list = &pc->pc_fullgroups;
2454 pc->pc_nfull++;
2455 } else if (prev->pcg_avail == 0) {
2456 list = &pc->pc_emptygroups;
2457 pc->pc_nempty++;
2458 } else {
2459 list = &pc->pc_partgroups;
2460 pc->pc_npart++;
2461 }
2462 prev->pcg_next = *list;
2463 *list = prev;
2464 }
2465 mutex_exit(&pc->pc_lock);
2466 splx(s);
2467 }
2468
2469 /*
2470 * Pool backend allocators.
2471 *
2472 * Each pool has a backend allocator that handles allocation, deallocation,
2473 * and any additional draining that might be needed.
2474 *
2475 * We provide two standard allocators:
2476 *
2477 * pool_allocator_kmem - the default when no allocator is specified
2478 *
2479 * pool_allocator_nointr - used for pools that will not be accessed
2480 * in interrupt context.
2481 */
2482 void *pool_page_alloc(struct pool *, int);
2483 void pool_page_free(struct pool *, void *);
2484
2485 #ifdef POOL_SUBPAGE
2486 struct pool_allocator pool_allocator_kmem_fullpage = {
2487 .pa_alloc = pool_page_alloc,
2488 .pa_free = pool_page_free,
2489 .pa_pagesz = 0
2490 };
2491 #else
2492 struct pool_allocator pool_allocator_kmem = {
2493 .pa_alloc = pool_page_alloc,
2494 .pa_free = pool_page_free,
2495 .pa_pagesz = 0
2496 };
2497 #endif
2498
2499 #ifdef POOL_SUBPAGE
2500 struct pool_allocator pool_allocator_nointr_fullpage = {
2501 .pa_alloc = pool_page_alloc,
2502 .pa_free = pool_page_free,
2503 .pa_pagesz = 0
2504 };
2505 #else
2506 struct pool_allocator pool_allocator_nointr = {
2507 .pa_alloc = pool_page_alloc,
2508 .pa_free = pool_page_free,
2509 .pa_pagesz = 0
2510 };
2511 #endif
2512
2513 #ifdef POOL_SUBPAGE
2514 void *pool_subpage_alloc(struct pool *, int);
2515 void pool_subpage_free(struct pool *, void *);
2516
2517 struct pool_allocator pool_allocator_kmem = {
2518 .pa_alloc = pool_subpage_alloc,
2519 .pa_free = pool_subpage_free,
2520 .pa_pagesz = POOL_SUBPAGE
2521 };
2522
2523 struct pool_allocator pool_allocator_nointr = {
2524 .pa_alloc = pool_subpage_alloc,
2525 .pa_free = pool_subpage_free,
2526 .pa_pagesz = POOL_SUBPAGE
2527 };
2528 #endif /* POOL_SUBPAGE */
2529
2530 static void *
2531 pool_allocator_alloc(struct pool *pp, int flags)
2532 {
2533 struct pool_allocator *pa = pp->pr_alloc;
2534 void *res;
2535
2536 res = (*pa->pa_alloc)(pp, flags);
2537 if (res == NULL && (flags & PR_WAITOK) == 0) {
2538 /*
2539 * We only run the drain hook here if PR_NOWAIT.
2540 * In other cases, the hook will be run in
2541 * pool_reclaim().
2542 */
2543 if (pp->pr_drain_hook != NULL) {
2544 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2545 res = (*pa->pa_alloc)(pp, flags);
2546 }
2547 }
2548 return res;
2549 }
2550
2551 static void
2552 pool_allocator_free(struct pool *pp, void *v)
2553 {
2554 struct pool_allocator *pa = pp->pr_alloc;
2555
2556 (*pa->pa_free)(pp, v);
2557 }
2558
2559 void *
2560 pool_page_alloc(struct pool *pp, int flags)
2561 {
2562 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2563 vmem_addr_t va;
2564 int ret;
2565
2566 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2567 vflags | VM_INSTANTFIT, &va);
2568
2569 return ret ? NULL : (void *)va;
2570 }
2571
2572 void
2573 pool_page_free(struct pool *pp, void *v)
2574 {
2575
2576 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2577 }
2578
2579 static void *
2580 pool_page_alloc_meta(struct pool *pp, int flags)
2581 {
2582 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2583 vmem_addr_t va;
2584 int ret;
2585
2586 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2587 vflags | VM_INSTANTFIT, &va);
2588
2589 return ret ? NULL : (void *)va;
2590 }
2591
2592 static void
2593 pool_page_free_meta(struct pool *pp, void *v)
2594 {
2595
2596 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2597 }
2598
2599 #ifdef POOL_SUBPAGE
2600 /* Sub-page allocator, for machines with large hardware pages. */
2601 void *
2602 pool_subpage_alloc(struct pool *pp, int flags)
2603 {
2604 return pool_get(&psppool, flags);
2605 }
2606
2607 void
2608 pool_subpage_free(struct pool *pp, void *v)
2609 {
2610 pool_put(&psppool, v);
2611 }
2612
2613 #endif /* POOL_SUBPAGE */
2614
2615 #if defined(DDB)
2616 static bool
2617 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2618 {
2619
2620 return (uintptr_t)ph->ph_page <= addr &&
2621 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2622 }
2623
2624 static bool
2625 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2626 {
2627
2628 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2629 }
2630
2631 static bool
2632 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2633 {
2634 int i;
2635
2636 if (pcg == NULL) {
2637 return false;
2638 }
2639 for (i = 0; i < pcg->pcg_avail; i++) {
2640 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2641 return true;
2642 }
2643 }
2644 return false;
2645 }
2646
2647 static bool
2648 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2649 {
2650
2651 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2652 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2653 pool_item_bitmap_t *bitmap =
2654 ph->ph_bitmap + (idx / BITMAP_SIZE);
2655 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2656
2657 return (*bitmap & mask) == 0;
2658 } else {
2659 struct pool_item *pi;
2660
2661 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2662 if (pool_in_item(pp, pi, addr)) {
2663 return false;
2664 }
2665 }
2666 return true;
2667 }
2668 }
2669
2670 void
2671 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2672 {
2673 struct pool *pp;
2674
2675 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2676 struct pool_item_header *ph;
2677 uintptr_t item;
2678 bool allocated = true;
2679 bool incache = false;
2680 bool incpucache = false;
2681 char cpucachestr[32];
2682
2683 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2684 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2685 if (pool_in_page(pp, ph, addr)) {
2686 goto found;
2687 }
2688 }
2689 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2690 if (pool_in_page(pp, ph, addr)) {
2691 allocated =
2692 pool_allocated(pp, ph, addr);
2693 goto found;
2694 }
2695 }
2696 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2697 if (pool_in_page(pp, ph, addr)) {
2698 allocated = false;
2699 goto found;
2700 }
2701 }
2702 continue;
2703 } else {
2704 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2705 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2706 continue;
2707 }
2708 allocated = pool_allocated(pp, ph, addr);
2709 }
2710 found:
2711 if (allocated && pp->pr_cache) {
2712 pool_cache_t pc = pp->pr_cache;
2713 struct pool_cache_group *pcg;
2714 int i;
2715
2716 for (pcg = pc->pc_fullgroups; pcg != NULL;
2717 pcg = pcg->pcg_next) {
2718 if (pool_in_cg(pp, pcg, addr)) {
2719 incache = true;
2720 goto print;
2721 }
2722 }
2723 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2724 pool_cache_cpu_t *cc;
2725
2726 if ((cc = pc->pc_cpus[i]) == NULL) {
2727 continue;
2728 }
2729 if (pool_in_cg(pp, cc->cc_current, addr) ||
2730 pool_in_cg(pp, cc->cc_previous, addr)) {
2731 struct cpu_info *ci =
2732 cpu_lookup(i);
2733
2734 incpucache = true;
2735 snprintf(cpucachestr,
2736 sizeof(cpucachestr),
2737 "cached by CPU %u",
2738 ci->ci_index);
2739 goto print;
2740 }
2741 }
2742 }
2743 print:
2744 item = (uintptr_t)ph->ph_page + ph->ph_off;
2745 item = item + rounddown(addr - item, pp->pr_size);
2746 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2747 (void *)addr, item, (size_t)(addr - item),
2748 pp->pr_wchan,
2749 incpucache ? cpucachestr :
2750 incache ? "cached" : allocated ? "allocated" : "free");
2751 }
2752 }
2753 #endif /* defined(DDB) */
2754