Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.192
      1 /*	$NetBSD: subr_pool.c,v 1.192 2012/01/28 00:00:06 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.192 2012/01/28 00:00:06 rmind Exp $");
     36 
     37 #include "opt_ddb.h"
     38 #include "opt_pool.h"
     39 #include "opt_poollog.h"
     40 #include "opt_lockdebug.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/bitops.h>
     45 #include <sys/proc.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/vmem.h>
     50 #include <sys/pool.h>
     51 #include <sys/syslog.h>
     52 #include <sys/debug.h>
     53 #include <sys/lockdebug.h>
     54 #include <sys/xcall.h>
     55 #include <sys/cpu.h>
     56 #include <sys/atomic.h>
     57 
     58 #include <uvm/uvm_extern.h>
     59 
     60 /*
     61  * Pool resource management utility.
     62  *
     63  * Memory is allocated in pages which are split into pieces according to
     64  * the pool item size. Each page is kept on one of three lists in the
     65  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     66  * for empty, full and partially-full pages respectively. The individual
     67  * pool items are on a linked list headed by `ph_itemlist' in each page
     68  * header. The memory for building the page list is either taken from
     69  * the allocated pages themselves (for small pool items) or taken from
     70  * an internal pool of page headers (`phpool').
     71  */
     72 
     73 /* List of all pools */
     74 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     75 
     76 /* Private pool for page header structures */
     77 #define	PHPOOL_MAX	8
     78 static struct pool phpool[PHPOOL_MAX];
     79 #define	PHPOOL_FREELIST_NELEM(idx) \
     80 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     81 
     82 #ifdef POOL_SUBPAGE
     83 /* Pool of subpages for use by normal pools. */
     84 static struct pool psppool;
     85 #endif
     86 
     87 static void *pool_page_alloc_meta(struct pool *, int);
     88 static void pool_page_free_meta(struct pool *, void *);
     89 
     90 /* allocator for pool metadata */
     91 struct pool_allocator pool_allocator_meta = {
     92 	.pa_alloc = pool_page_alloc_meta,
     93 	.pa_free = pool_page_free_meta,
     94 	.pa_pagesz = 0
     95 };
     96 
     97 /* # of seconds to retain page after last use */
     98 int pool_inactive_time = 10;
     99 
    100 /* Next candidate for drainage (see pool_drain()) */
    101 static struct pool	*drainpp;
    102 
    103 /* This lock protects both pool_head and drainpp. */
    104 static kmutex_t pool_head_lock;
    105 static kcondvar_t pool_busy;
    106 
    107 /* This lock protects initialization of a potentially shared pool allocator */
    108 static kmutex_t pool_allocator_lock;
    109 
    110 typedef uint32_t pool_item_bitmap_t;
    111 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    112 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    113 
    114 struct pool_item_header {
    115 	/* Page headers */
    116 	LIST_ENTRY(pool_item_header)
    117 				ph_pagelist;	/* pool page list */
    118 	SPLAY_ENTRY(pool_item_header)
    119 				ph_node;	/* Off-page page headers */
    120 	void *			ph_page;	/* this page's address */
    121 	uint32_t		ph_time;	/* last referenced */
    122 	uint16_t		ph_nmissing;	/* # of chunks in use */
    123 	uint16_t		ph_off;		/* start offset in page */
    124 	union {
    125 		/* !PR_NOTOUCH */
    126 		struct {
    127 			LIST_HEAD(, pool_item)
    128 				phu_itemlist;	/* chunk list for this page */
    129 		} phu_normal;
    130 		/* PR_NOTOUCH */
    131 		struct {
    132 			pool_item_bitmap_t phu_bitmap[1];
    133 		} phu_notouch;
    134 	} ph_u;
    135 };
    136 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    137 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    138 
    139 struct pool_item {
    140 #ifdef DIAGNOSTIC
    141 	u_int pi_magic;
    142 #endif
    143 #define	PI_MAGIC 0xdeaddeadU
    144 	/* Other entries use only this list entry */
    145 	LIST_ENTRY(pool_item)	pi_list;
    146 };
    147 
    148 #define	POOL_NEEDS_CATCHUP(pp)						\
    149 	((pp)->pr_nitems < (pp)->pr_minitems)
    150 
    151 /*
    152  * Pool cache management.
    153  *
    154  * Pool caches provide a way for constructed objects to be cached by the
    155  * pool subsystem.  This can lead to performance improvements by avoiding
    156  * needless object construction/destruction; it is deferred until absolutely
    157  * necessary.
    158  *
    159  * Caches are grouped into cache groups.  Each cache group references up
    160  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    161  * object from the pool, it calls the object's constructor and places it
    162  * into a cache group.  When a cache group frees an object back to the
    163  * pool, it first calls the object's destructor.  This allows the object
    164  * to persist in constructed form while freed to the cache.
    165  *
    166  * The pool references each cache, so that when a pool is drained by the
    167  * pagedaemon, it can drain each individual cache as well.  Each time a
    168  * cache is drained, the most idle cache group is freed to the pool in
    169  * its entirety.
    170  *
    171  * Pool caches are layed on top of pools.  By layering them, we can avoid
    172  * the complexity of cache management for pools which would not benefit
    173  * from it.
    174  */
    175 
    176 static struct pool pcg_normal_pool;
    177 static struct pool pcg_large_pool;
    178 static struct pool cache_pool;
    179 static struct pool cache_cpu_pool;
    180 
    181 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    182 
    183 /* List of all caches. */
    184 TAILQ_HEAD(,pool_cache) pool_cache_head =
    185     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    186 
    187 int pool_cache_disable;		/* global disable for caching */
    188 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    189 
    190 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    191 				    void *);
    192 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    193 				    void **, paddr_t *, int);
    194 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    195 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    196 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    197 static void	pool_cache_xcall(pool_cache_t);
    198 
    199 static int	pool_catchup(struct pool *);
    200 static void	pool_prime_page(struct pool *, void *,
    201 		    struct pool_item_header *);
    202 static void	pool_update_curpage(struct pool *);
    203 
    204 static int	pool_grow(struct pool *, int);
    205 static void	*pool_allocator_alloc(struct pool *, int);
    206 static void	pool_allocator_free(struct pool *, void *);
    207 
    208 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    209 	void (*)(const char *, ...));
    210 static void pool_print1(struct pool *, const char *,
    211 	void (*)(const char *, ...));
    212 
    213 static int pool_chk_page(struct pool *, const char *,
    214 			 struct pool_item_header *);
    215 
    216 /*
    217  * Pool log entry. An array of these is allocated in pool_init().
    218  */
    219 struct pool_log {
    220 	const char	*pl_file;
    221 	long		pl_line;
    222 	int		pl_action;
    223 #define	PRLOG_GET	1
    224 #define	PRLOG_PUT	2
    225 	void		*pl_addr;
    226 };
    227 
    228 #ifdef POOL_DIAGNOSTIC
    229 /* Number of entries in pool log buffers */
    230 #ifndef POOL_LOGSIZE
    231 #define	POOL_LOGSIZE	10
    232 #endif
    233 
    234 int pool_logsize = POOL_LOGSIZE;
    235 
    236 static inline void
    237 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    238 {
    239 	int n;
    240 	struct pool_log *pl;
    241 
    242 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    243 		return;
    244 
    245 	if (pp->pr_log == NULL) {
    246 		if (kmem_map != NULL)
    247 			pp->pr_log = malloc(
    248 				pool_logsize * sizeof(struct pool_log),
    249 				M_TEMP, M_NOWAIT | M_ZERO);
    250 		if (pp->pr_log == NULL)
    251 			return;
    252 		pp->pr_curlogentry = 0;
    253 		pp->pr_logsize = pool_logsize;
    254 	}
    255 
    256 	/*
    257 	 * Fill in the current entry. Wrap around and overwrite
    258 	 * the oldest entry if necessary.
    259 	 */
    260 	n = pp->pr_curlogentry;
    261 	pl = &pp->pr_log[n];
    262 	pl->pl_file = file;
    263 	pl->pl_line = line;
    264 	pl->pl_action = action;
    265 	pl->pl_addr = v;
    266 	if (++n >= pp->pr_logsize)
    267 		n = 0;
    268 	pp->pr_curlogentry = n;
    269 }
    270 
    271 static void
    272 pr_printlog(struct pool *pp, struct pool_item *pi,
    273     void (*pr)(const char *, ...))
    274 {
    275 	int i = pp->pr_logsize;
    276 	int n = pp->pr_curlogentry;
    277 
    278 	if (pp->pr_log == NULL)
    279 		return;
    280 
    281 	/*
    282 	 * Print all entries in this pool's log.
    283 	 */
    284 	while (i-- > 0) {
    285 		struct pool_log *pl = &pp->pr_log[n];
    286 		if (pl->pl_action != 0) {
    287 			if (pi == NULL || pi == pl->pl_addr) {
    288 				(*pr)("\tlog entry %d:\n", i);
    289 				(*pr)("\t\taction = %s, addr = %p\n",
    290 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    291 				    pl->pl_addr);
    292 				(*pr)("\t\tfile: %s at line %lu\n",
    293 				    pl->pl_file, pl->pl_line);
    294 			}
    295 		}
    296 		if (++n >= pp->pr_logsize)
    297 			n = 0;
    298 	}
    299 }
    300 
    301 static inline void
    302 pr_enter(struct pool *pp, const char *file, long line)
    303 {
    304 
    305 	if (__predict_false(pp->pr_entered_file != NULL)) {
    306 		printf("pool %s: reentrancy at file %s line %ld\n",
    307 		    pp->pr_wchan, file, line);
    308 		printf("         previous entry at file %s line %ld\n",
    309 		    pp->pr_entered_file, pp->pr_entered_line);
    310 		panic("pr_enter");
    311 	}
    312 
    313 	pp->pr_entered_file = file;
    314 	pp->pr_entered_line = line;
    315 }
    316 
    317 static inline void
    318 pr_leave(struct pool *pp)
    319 {
    320 
    321 	if (__predict_false(pp->pr_entered_file == NULL)) {
    322 		printf("pool %s not entered?\n", pp->pr_wchan);
    323 		panic("pr_leave");
    324 	}
    325 
    326 	pp->pr_entered_file = NULL;
    327 	pp->pr_entered_line = 0;
    328 }
    329 
    330 static inline void
    331 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    332 {
    333 
    334 	if (pp->pr_entered_file != NULL)
    335 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    336 		    pp->pr_entered_file, pp->pr_entered_line);
    337 }
    338 #else
    339 #define	pr_log(pp, v, action, file, line)
    340 #define	pr_printlog(pp, pi, pr)
    341 #define	pr_enter(pp, file, line)
    342 #define	pr_leave(pp)
    343 #define	pr_enter_check(pp, pr)
    344 #endif /* POOL_DIAGNOSTIC */
    345 
    346 static inline unsigned int
    347 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    348     const void *v)
    349 {
    350 	const char *cp = v;
    351 	unsigned int idx;
    352 
    353 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    354 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    355 	KASSERT(idx < pp->pr_itemsperpage);
    356 	return idx;
    357 }
    358 
    359 static inline void
    360 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    361     void *obj)
    362 {
    363 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    364 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    365 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    366 
    367 	KASSERT((*bitmap & mask) == 0);
    368 	*bitmap |= mask;
    369 }
    370 
    371 static inline void *
    372 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    373 {
    374 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    375 	unsigned int idx;
    376 	int i;
    377 
    378 	for (i = 0; ; i++) {
    379 		int bit;
    380 
    381 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    382 		bit = ffs32(bitmap[i]);
    383 		if (bit) {
    384 			pool_item_bitmap_t mask;
    385 
    386 			bit--;
    387 			idx = (i * BITMAP_SIZE) + bit;
    388 			mask = 1 << bit;
    389 			KASSERT((bitmap[i] & mask) != 0);
    390 			bitmap[i] &= ~mask;
    391 			break;
    392 		}
    393 	}
    394 	KASSERT(idx < pp->pr_itemsperpage);
    395 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    396 }
    397 
    398 static inline void
    399 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    400 {
    401 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    402 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    403 	int i;
    404 
    405 	for (i = 0; i < n; i++) {
    406 		bitmap[i] = (pool_item_bitmap_t)-1;
    407 	}
    408 }
    409 
    410 static inline int
    411 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    412 {
    413 
    414 	/*
    415 	 * we consider pool_item_header with smaller ph_page bigger.
    416 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    417 	 */
    418 
    419 	if (a->ph_page < b->ph_page)
    420 		return (1);
    421 	else if (a->ph_page > b->ph_page)
    422 		return (-1);
    423 	else
    424 		return (0);
    425 }
    426 
    427 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    428 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    429 
    430 static inline struct pool_item_header *
    431 pr_find_pagehead_noalign(struct pool *pp, void *v)
    432 {
    433 	struct pool_item_header *ph, tmp;
    434 
    435 	tmp.ph_page = (void *)(uintptr_t)v;
    436 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    437 	if (ph == NULL) {
    438 		ph = SPLAY_ROOT(&pp->pr_phtree);
    439 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    440 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    441 		}
    442 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    443 	}
    444 
    445 	return ph;
    446 }
    447 
    448 /*
    449  * Return the pool page header based on item address.
    450  */
    451 static inline struct pool_item_header *
    452 pr_find_pagehead(struct pool *pp, void *v)
    453 {
    454 	struct pool_item_header *ph, tmp;
    455 
    456 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    457 		ph = pr_find_pagehead_noalign(pp, v);
    458 	} else {
    459 		void *page =
    460 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    461 
    462 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    463 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    464 		} else {
    465 			tmp.ph_page = page;
    466 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    467 		}
    468 	}
    469 
    470 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    471 	    ((char *)ph->ph_page <= (char *)v &&
    472 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    473 	return ph;
    474 }
    475 
    476 static void
    477 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    478 {
    479 	struct pool_item_header *ph;
    480 
    481 	while ((ph = LIST_FIRST(pq)) != NULL) {
    482 		LIST_REMOVE(ph, ph_pagelist);
    483 		pool_allocator_free(pp, ph->ph_page);
    484 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    485 			pool_put(pp->pr_phpool, ph);
    486 	}
    487 }
    488 
    489 /*
    490  * Remove a page from the pool.
    491  */
    492 static inline void
    493 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    494      struct pool_pagelist *pq)
    495 {
    496 
    497 	KASSERT(mutex_owned(&pp->pr_lock));
    498 
    499 	/*
    500 	 * If the page was idle, decrement the idle page count.
    501 	 */
    502 	if (ph->ph_nmissing == 0) {
    503 #ifdef DIAGNOSTIC
    504 		if (pp->pr_nidle == 0)
    505 			panic("pr_rmpage: nidle inconsistent");
    506 		if (pp->pr_nitems < pp->pr_itemsperpage)
    507 			panic("pr_rmpage: nitems inconsistent");
    508 #endif
    509 		pp->pr_nidle--;
    510 	}
    511 
    512 	pp->pr_nitems -= pp->pr_itemsperpage;
    513 
    514 	/*
    515 	 * Unlink the page from the pool and queue it for release.
    516 	 */
    517 	LIST_REMOVE(ph, ph_pagelist);
    518 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    519 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    520 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    521 
    522 	pp->pr_npages--;
    523 	pp->pr_npagefree++;
    524 
    525 	pool_update_curpage(pp);
    526 }
    527 
    528 /*
    529  * Initialize all the pools listed in the "pools" link set.
    530  */
    531 void
    532 pool_subsystem_init(void)
    533 {
    534 	size_t size;
    535 	int idx;
    536 
    537 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    538 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    539 	cv_init(&pool_busy, "poolbusy");
    540 
    541 	/*
    542 	 * Initialize private page header pool and cache magazine pool if we
    543 	 * haven't done so yet.
    544 	 */
    545 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    546 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    547 		int nelem;
    548 		size_t sz;
    549 
    550 		nelem = PHPOOL_FREELIST_NELEM(idx);
    551 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    552 		    "phpool-%d", nelem);
    553 		sz = sizeof(struct pool_item_header);
    554 		if (nelem) {
    555 			sz = offsetof(struct pool_item_header,
    556 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    557 		}
    558 		pool_init(&phpool[idx], sz, 0, 0, 0,
    559 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    560 	}
    561 #ifdef POOL_SUBPAGE
    562 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    563 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    564 #endif
    565 
    566 	size = sizeof(pcg_t) +
    567 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    568 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    569 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    570 
    571 	size = sizeof(pcg_t) +
    572 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    573 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    574 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    575 
    576 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    577 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    578 
    579 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    580 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    581 }
    582 
    583 /*
    584  * Initialize the given pool resource structure.
    585  *
    586  * We export this routine to allow other kernel parts to declare
    587  * static pools that must be initialized before malloc() is available.
    588  */
    589 void
    590 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    591     const char *wchan, struct pool_allocator *palloc, int ipl)
    592 {
    593 	struct pool *pp1;
    594 	size_t trysize, phsize;
    595 	int off, slack;
    596 
    597 #ifdef DEBUG
    598 	/*
    599 	 * Check that the pool hasn't already been initialised and
    600 	 * added to the list of all pools.
    601 	 */
    602 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    603 		if (pp == pp1)
    604 			panic("pool_init: pool %s already initialised",
    605 			    wchan);
    606 	}
    607 #endif
    608 
    609 #ifdef POOL_DIAGNOSTIC
    610 	/*
    611 	 * Always log if POOL_DIAGNOSTIC is defined.
    612 	 */
    613 	if (pool_logsize != 0)
    614 		flags |= PR_LOGGING;
    615 #endif
    616 
    617 	if (palloc == NULL)
    618 		palloc = &pool_allocator_kmem;
    619 #ifdef POOL_SUBPAGE
    620 	if (size > palloc->pa_pagesz) {
    621 		if (palloc == &pool_allocator_kmem)
    622 			palloc = &pool_allocator_kmem_fullpage;
    623 		else if (palloc == &pool_allocator_nointr)
    624 			palloc = &pool_allocator_nointr_fullpage;
    625 	}
    626 #endif /* POOL_SUBPAGE */
    627 	if (!cold)
    628 		mutex_enter(&pool_allocator_lock);
    629 	if (palloc->pa_refcnt++ == 0) {
    630 		if (palloc->pa_pagesz == 0)
    631 			palloc->pa_pagesz = PAGE_SIZE;
    632 
    633 		TAILQ_INIT(&palloc->pa_list);
    634 
    635 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    636 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    637 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    638 	}
    639 	if (!cold)
    640 		mutex_exit(&pool_allocator_lock);
    641 
    642 	if (align == 0)
    643 		align = ALIGN(1);
    644 
    645 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    646 		size = sizeof(struct pool_item);
    647 
    648 	size = roundup(size, align);
    649 #ifdef DIAGNOSTIC
    650 	if (size > palloc->pa_pagesz)
    651 		panic("pool_init: pool item size (%zu) too large", size);
    652 #endif
    653 
    654 	/*
    655 	 * Initialize the pool structure.
    656 	 */
    657 	LIST_INIT(&pp->pr_emptypages);
    658 	LIST_INIT(&pp->pr_fullpages);
    659 	LIST_INIT(&pp->pr_partpages);
    660 	pp->pr_cache = NULL;
    661 	pp->pr_curpage = NULL;
    662 	pp->pr_npages = 0;
    663 	pp->pr_minitems = 0;
    664 	pp->pr_minpages = 0;
    665 	pp->pr_maxpages = UINT_MAX;
    666 	pp->pr_roflags = flags;
    667 	pp->pr_flags = 0;
    668 	pp->pr_size = size;
    669 	pp->pr_align = align;
    670 	pp->pr_wchan = wchan;
    671 	pp->pr_alloc = palloc;
    672 	pp->pr_nitems = 0;
    673 	pp->pr_nout = 0;
    674 	pp->pr_hardlimit = UINT_MAX;
    675 	pp->pr_hardlimit_warning = NULL;
    676 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    677 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    678 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    679 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    680 	pp->pr_drain_hook = NULL;
    681 	pp->pr_drain_hook_arg = NULL;
    682 	pp->pr_freecheck = NULL;
    683 
    684 	/*
    685 	 * Decide whether to put the page header off page to avoid
    686 	 * wasting too large a part of the page or too big item.
    687 	 * Off-page page headers go on a hash table, so we can match
    688 	 * a returned item with its header based on the page address.
    689 	 * We use 1/16 of the page size and about 8 times of the item
    690 	 * size as the threshold (XXX: tune)
    691 	 *
    692 	 * However, we'll put the header into the page if we can put
    693 	 * it without wasting any items.
    694 	 *
    695 	 * Silently enforce `0 <= ioff < align'.
    696 	 */
    697 	pp->pr_itemoffset = ioff %= align;
    698 	/* See the comment below about reserved bytes. */
    699 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    700 	phsize = ALIGN(sizeof(struct pool_item_header));
    701 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    702 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    703 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    704 		/* Use the end of the page for the page header */
    705 		pp->pr_roflags |= PR_PHINPAGE;
    706 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    707 	} else {
    708 		/* The page header will be taken from our page header pool */
    709 		pp->pr_phoffset = 0;
    710 		off = palloc->pa_pagesz;
    711 		SPLAY_INIT(&pp->pr_phtree);
    712 	}
    713 
    714 	/*
    715 	 * Alignment is to take place at `ioff' within the item. This means
    716 	 * we must reserve up to `align - 1' bytes on the page to allow
    717 	 * appropriate positioning of each item.
    718 	 */
    719 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    720 	KASSERT(pp->pr_itemsperpage != 0);
    721 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    722 		int idx;
    723 
    724 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    725 		    idx++) {
    726 			/* nothing */
    727 		}
    728 		if (idx >= PHPOOL_MAX) {
    729 			/*
    730 			 * if you see this panic, consider to tweak
    731 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    732 			 */
    733 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    734 			    pp->pr_wchan, pp->pr_itemsperpage);
    735 		}
    736 		pp->pr_phpool = &phpool[idx];
    737 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    738 		pp->pr_phpool = &phpool[0];
    739 	}
    740 #if defined(DIAGNOSTIC)
    741 	else {
    742 		pp->pr_phpool = NULL;
    743 	}
    744 #endif
    745 
    746 	/*
    747 	 * Use the slack between the chunks and the page header
    748 	 * for "cache coloring".
    749 	 */
    750 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    751 	pp->pr_maxcolor = (slack / align) * align;
    752 	pp->pr_curcolor = 0;
    753 
    754 	pp->pr_nget = 0;
    755 	pp->pr_nfail = 0;
    756 	pp->pr_nput = 0;
    757 	pp->pr_npagealloc = 0;
    758 	pp->pr_npagefree = 0;
    759 	pp->pr_hiwat = 0;
    760 	pp->pr_nidle = 0;
    761 	pp->pr_refcnt = 0;
    762 
    763 	pp->pr_log = NULL;
    764 
    765 	pp->pr_entered_file = NULL;
    766 	pp->pr_entered_line = 0;
    767 
    768 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    769 	cv_init(&pp->pr_cv, wchan);
    770 	pp->pr_ipl = ipl;
    771 
    772 	/* Insert into the list of all pools. */
    773 	if (!cold)
    774 		mutex_enter(&pool_head_lock);
    775 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    776 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    777 			break;
    778 	}
    779 	if (pp1 == NULL)
    780 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    781 	else
    782 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    783 	if (!cold)
    784 		mutex_exit(&pool_head_lock);
    785 
    786 	/* Insert this into the list of pools using this allocator. */
    787 	if (!cold)
    788 		mutex_enter(&palloc->pa_lock);
    789 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    790 	if (!cold)
    791 		mutex_exit(&palloc->pa_lock);
    792 }
    793 
    794 /*
    795  * De-commision a pool resource.
    796  */
    797 void
    798 pool_destroy(struct pool *pp)
    799 {
    800 	struct pool_pagelist pq;
    801 	struct pool_item_header *ph;
    802 
    803 	/* Remove from global pool list */
    804 	mutex_enter(&pool_head_lock);
    805 	while (pp->pr_refcnt != 0)
    806 		cv_wait(&pool_busy, &pool_head_lock);
    807 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    808 	if (drainpp == pp)
    809 		drainpp = NULL;
    810 	mutex_exit(&pool_head_lock);
    811 
    812 	/* Remove this pool from its allocator's list of pools. */
    813 	mutex_enter(&pp->pr_alloc->pa_lock);
    814 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    815 	mutex_exit(&pp->pr_alloc->pa_lock);
    816 
    817 	mutex_enter(&pool_allocator_lock);
    818 	if (--pp->pr_alloc->pa_refcnt == 0)
    819 		mutex_destroy(&pp->pr_alloc->pa_lock);
    820 	mutex_exit(&pool_allocator_lock);
    821 
    822 	mutex_enter(&pp->pr_lock);
    823 
    824 	KASSERT(pp->pr_cache == NULL);
    825 
    826 #ifdef DIAGNOSTIC
    827 	if (pp->pr_nout != 0) {
    828 		pr_printlog(pp, NULL, printf);
    829 		panic("pool_destroy: pool busy: still out: %u",
    830 		    pp->pr_nout);
    831 	}
    832 #endif
    833 
    834 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    835 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    836 
    837 	/* Remove all pages */
    838 	LIST_INIT(&pq);
    839 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    840 		pr_rmpage(pp, ph, &pq);
    841 
    842 	mutex_exit(&pp->pr_lock);
    843 
    844 	pr_pagelist_free(pp, &pq);
    845 
    846 #ifdef POOL_DIAGNOSTIC
    847 	if (pp->pr_log != NULL) {
    848 		free(pp->pr_log, M_TEMP);
    849 		pp->pr_log = NULL;
    850 	}
    851 #endif
    852 
    853 	cv_destroy(&pp->pr_cv);
    854 	mutex_destroy(&pp->pr_lock);
    855 }
    856 
    857 void
    858 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    859 {
    860 
    861 	/* XXX no locking -- must be used just after pool_init() */
    862 #ifdef DIAGNOSTIC
    863 	if (pp->pr_drain_hook != NULL)
    864 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    865 #endif
    866 	pp->pr_drain_hook = fn;
    867 	pp->pr_drain_hook_arg = arg;
    868 }
    869 
    870 static struct pool_item_header *
    871 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    872 {
    873 	struct pool_item_header *ph;
    874 
    875 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    876 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    877 	else
    878 		ph = pool_get(pp->pr_phpool, flags);
    879 
    880 	return (ph);
    881 }
    882 
    883 /*
    884  * Grab an item from the pool.
    885  */
    886 void *
    887 #ifdef POOL_DIAGNOSTIC
    888 _pool_get(struct pool *pp, int flags, const char *file, long line)
    889 #else
    890 pool_get(struct pool *pp, int flags)
    891 #endif
    892 {
    893 	struct pool_item *pi;
    894 	struct pool_item_header *ph;
    895 	void *v;
    896 
    897 #ifdef DIAGNOSTIC
    898 	if (pp->pr_itemsperpage == 0)
    899 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    900 		    "pool not initialized?", pp->pr_wchan);
    901 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    902 	    !cold && panicstr == NULL)
    903 		panic("pool '%s' is IPL_NONE, but called from "
    904 		    "interrupt context\n", pp->pr_wchan);
    905 #endif
    906 	if (flags & PR_WAITOK) {
    907 		ASSERT_SLEEPABLE();
    908 	}
    909 
    910 	mutex_enter(&pp->pr_lock);
    911 	pr_enter(pp, file, line);
    912 
    913  startover:
    914 	/*
    915 	 * Check to see if we've reached the hard limit.  If we have,
    916 	 * and we can wait, then wait until an item has been returned to
    917 	 * the pool.
    918 	 */
    919 #ifdef DIAGNOSTIC
    920 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    921 		pr_leave(pp);
    922 		mutex_exit(&pp->pr_lock);
    923 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    924 	}
    925 #endif
    926 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    927 		if (pp->pr_drain_hook != NULL) {
    928 			/*
    929 			 * Since the drain hook is going to free things
    930 			 * back to the pool, unlock, call the hook, re-lock,
    931 			 * and check the hardlimit condition again.
    932 			 */
    933 			pr_leave(pp);
    934 			mutex_exit(&pp->pr_lock);
    935 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    936 			mutex_enter(&pp->pr_lock);
    937 			pr_enter(pp, file, line);
    938 			if (pp->pr_nout < pp->pr_hardlimit)
    939 				goto startover;
    940 		}
    941 
    942 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    943 			/*
    944 			 * XXX: A warning isn't logged in this case.  Should
    945 			 * it be?
    946 			 */
    947 			pp->pr_flags |= PR_WANTED;
    948 			pr_leave(pp);
    949 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    950 			pr_enter(pp, file, line);
    951 			goto startover;
    952 		}
    953 
    954 		/*
    955 		 * Log a message that the hard limit has been hit.
    956 		 */
    957 		if (pp->pr_hardlimit_warning != NULL &&
    958 		    ratecheck(&pp->pr_hardlimit_warning_last,
    959 			      &pp->pr_hardlimit_ratecap))
    960 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    961 
    962 		pp->pr_nfail++;
    963 
    964 		pr_leave(pp);
    965 		mutex_exit(&pp->pr_lock);
    966 		return (NULL);
    967 	}
    968 
    969 	/*
    970 	 * The convention we use is that if `curpage' is not NULL, then
    971 	 * it points at a non-empty bucket. In particular, `curpage'
    972 	 * never points at a page header which has PR_PHINPAGE set and
    973 	 * has no items in its bucket.
    974 	 */
    975 	if ((ph = pp->pr_curpage) == NULL) {
    976 		int error;
    977 
    978 #ifdef DIAGNOSTIC
    979 		if (pp->pr_nitems != 0) {
    980 			mutex_exit(&pp->pr_lock);
    981 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    982 			    pp->pr_wchan, pp->pr_nitems);
    983 			panic("pool_get: nitems inconsistent");
    984 		}
    985 #endif
    986 
    987 		/*
    988 		 * Call the back-end page allocator for more memory.
    989 		 * Release the pool lock, as the back-end page allocator
    990 		 * may block.
    991 		 */
    992 		pr_leave(pp);
    993 		error = pool_grow(pp, flags);
    994 		pr_enter(pp, file, line);
    995 		if (error != 0) {
    996 			/*
    997 			 * We were unable to allocate a page or item
    998 			 * header, but we released the lock during
    999 			 * allocation, so perhaps items were freed
   1000 			 * back to the pool.  Check for this case.
   1001 			 */
   1002 			if (pp->pr_curpage != NULL)
   1003 				goto startover;
   1004 
   1005 			pp->pr_nfail++;
   1006 			pr_leave(pp);
   1007 			mutex_exit(&pp->pr_lock);
   1008 			return (NULL);
   1009 		}
   1010 
   1011 		/* Start the allocation process over. */
   1012 		goto startover;
   1013 	}
   1014 	if (pp->pr_roflags & PR_NOTOUCH) {
   1015 #ifdef DIAGNOSTIC
   1016 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1017 			pr_leave(pp);
   1018 			mutex_exit(&pp->pr_lock);
   1019 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1020 		}
   1021 #endif
   1022 		v = pr_item_notouch_get(pp, ph);
   1023 #ifdef POOL_DIAGNOSTIC
   1024 		pr_log(pp, v, PRLOG_GET, file, line);
   1025 #endif
   1026 	} else {
   1027 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1028 		if (__predict_false(v == NULL)) {
   1029 			pr_leave(pp);
   1030 			mutex_exit(&pp->pr_lock);
   1031 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1032 		}
   1033 #ifdef DIAGNOSTIC
   1034 		if (__predict_false(pp->pr_nitems == 0)) {
   1035 			pr_leave(pp);
   1036 			mutex_exit(&pp->pr_lock);
   1037 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1038 			    pp->pr_wchan, pp->pr_nitems);
   1039 			panic("pool_get: nitems inconsistent");
   1040 		}
   1041 #endif
   1042 
   1043 #ifdef POOL_DIAGNOSTIC
   1044 		pr_log(pp, v, PRLOG_GET, file, line);
   1045 #endif
   1046 
   1047 #ifdef DIAGNOSTIC
   1048 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1049 			pr_printlog(pp, pi, printf);
   1050 			panic("pool_get(%s): free list modified: "
   1051 			    "magic=%x; page %p; item addr %p\n",
   1052 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1053 		}
   1054 #endif
   1055 
   1056 		/*
   1057 		 * Remove from item list.
   1058 		 */
   1059 		LIST_REMOVE(pi, pi_list);
   1060 	}
   1061 	pp->pr_nitems--;
   1062 	pp->pr_nout++;
   1063 	if (ph->ph_nmissing == 0) {
   1064 #ifdef DIAGNOSTIC
   1065 		if (__predict_false(pp->pr_nidle == 0))
   1066 			panic("pool_get: nidle inconsistent");
   1067 #endif
   1068 		pp->pr_nidle--;
   1069 
   1070 		/*
   1071 		 * This page was previously empty.  Move it to the list of
   1072 		 * partially-full pages.  This page is already curpage.
   1073 		 */
   1074 		LIST_REMOVE(ph, ph_pagelist);
   1075 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1076 	}
   1077 	ph->ph_nmissing++;
   1078 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1079 #ifdef DIAGNOSTIC
   1080 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1081 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1082 			pr_leave(pp);
   1083 			mutex_exit(&pp->pr_lock);
   1084 			panic("pool_get: %s: nmissing inconsistent",
   1085 			    pp->pr_wchan);
   1086 		}
   1087 #endif
   1088 		/*
   1089 		 * This page is now full.  Move it to the full list
   1090 		 * and select a new current page.
   1091 		 */
   1092 		LIST_REMOVE(ph, ph_pagelist);
   1093 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1094 		pool_update_curpage(pp);
   1095 	}
   1096 
   1097 	pp->pr_nget++;
   1098 	pr_leave(pp);
   1099 
   1100 	/*
   1101 	 * If we have a low water mark and we are now below that low
   1102 	 * water mark, add more items to the pool.
   1103 	 */
   1104 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1105 		/*
   1106 		 * XXX: Should we log a warning?  Should we set up a timeout
   1107 		 * to try again in a second or so?  The latter could break
   1108 		 * a caller's assumptions about interrupt protection, etc.
   1109 		 */
   1110 	}
   1111 
   1112 	mutex_exit(&pp->pr_lock);
   1113 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1114 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1115 	return (v);
   1116 }
   1117 
   1118 /*
   1119  * Internal version of pool_put().  Pool is already locked/entered.
   1120  */
   1121 static void
   1122 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1123 {
   1124 	struct pool_item *pi = v;
   1125 	struct pool_item_header *ph;
   1126 
   1127 	KASSERT(mutex_owned(&pp->pr_lock));
   1128 	FREECHECK_IN(&pp->pr_freecheck, v);
   1129 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1130 
   1131 #ifdef DIAGNOSTIC
   1132 	if (__predict_false(pp->pr_nout == 0)) {
   1133 		printf("pool %s: putting with none out\n",
   1134 		    pp->pr_wchan);
   1135 		panic("pool_put");
   1136 	}
   1137 #endif
   1138 
   1139 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1140 		pr_printlog(pp, NULL, printf);
   1141 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1142 	}
   1143 
   1144 	/*
   1145 	 * Return to item list.
   1146 	 */
   1147 	if (pp->pr_roflags & PR_NOTOUCH) {
   1148 		pr_item_notouch_put(pp, ph, v);
   1149 	} else {
   1150 #ifdef DIAGNOSTIC
   1151 		pi->pi_magic = PI_MAGIC;
   1152 #endif
   1153 #ifdef DEBUG
   1154 		{
   1155 			int i, *ip = v;
   1156 
   1157 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1158 				*ip++ = PI_MAGIC;
   1159 			}
   1160 		}
   1161 #endif
   1162 
   1163 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1164 	}
   1165 	KDASSERT(ph->ph_nmissing != 0);
   1166 	ph->ph_nmissing--;
   1167 	pp->pr_nput++;
   1168 	pp->pr_nitems++;
   1169 	pp->pr_nout--;
   1170 
   1171 	/* Cancel "pool empty" condition if it exists */
   1172 	if (pp->pr_curpage == NULL)
   1173 		pp->pr_curpage = ph;
   1174 
   1175 	if (pp->pr_flags & PR_WANTED) {
   1176 		pp->pr_flags &= ~PR_WANTED;
   1177 		cv_broadcast(&pp->pr_cv);
   1178 	}
   1179 
   1180 	/*
   1181 	 * If this page is now empty, do one of two things:
   1182 	 *
   1183 	 *	(1) If we have more pages than the page high water mark,
   1184 	 *	    free the page back to the system.  ONLY CONSIDER
   1185 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1186 	 *	    CLAIM.
   1187 	 *
   1188 	 *	(2) Otherwise, move the page to the empty page list.
   1189 	 *
   1190 	 * Either way, select a new current page (so we use a partially-full
   1191 	 * page if one is available).
   1192 	 */
   1193 	if (ph->ph_nmissing == 0) {
   1194 		pp->pr_nidle++;
   1195 		if (pp->pr_npages > pp->pr_minpages &&
   1196 		    pp->pr_npages > pp->pr_maxpages) {
   1197 			pr_rmpage(pp, ph, pq);
   1198 		} else {
   1199 			LIST_REMOVE(ph, ph_pagelist);
   1200 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1201 
   1202 			/*
   1203 			 * Update the timestamp on the page.  A page must
   1204 			 * be idle for some period of time before it can
   1205 			 * be reclaimed by the pagedaemon.  This minimizes
   1206 			 * ping-pong'ing for memory.
   1207 			 *
   1208 			 * note for 64-bit time_t: truncating to 32-bit is not
   1209 			 * a problem for our usage.
   1210 			 */
   1211 			ph->ph_time = time_uptime;
   1212 		}
   1213 		pool_update_curpage(pp);
   1214 	}
   1215 
   1216 	/*
   1217 	 * If the page was previously completely full, move it to the
   1218 	 * partially-full list and make it the current page.  The next
   1219 	 * allocation will get the item from this page, instead of
   1220 	 * further fragmenting the pool.
   1221 	 */
   1222 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1223 		LIST_REMOVE(ph, ph_pagelist);
   1224 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1225 		pp->pr_curpage = ph;
   1226 	}
   1227 }
   1228 
   1229 /*
   1230  * Return resource to the pool.
   1231  */
   1232 #ifdef POOL_DIAGNOSTIC
   1233 void
   1234 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1235 {
   1236 	struct pool_pagelist pq;
   1237 
   1238 	LIST_INIT(&pq);
   1239 
   1240 	mutex_enter(&pp->pr_lock);
   1241 	pr_enter(pp, file, line);
   1242 
   1243 	pr_log(pp, v, PRLOG_PUT, file, line);
   1244 
   1245 	pool_do_put(pp, v, &pq);
   1246 
   1247 	pr_leave(pp);
   1248 	mutex_exit(&pp->pr_lock);
   1249 
   1250 	pr_pagelist_free(pp, &pq);
   1251 }
   1252 #undef pool_put
   1253 #endif /* POOL_DIAGNOSTIC */
   1254 
   1255 void
   1256 pool_put(struct pool *pp, void *v)
   1257 {
   1258 	struct pool_pagelist pq;
   1259 
   1260 	LIST_INIT(&pq);
   1261 
   1262 	mutex_enter(&pp->pr_lock);
   1263 	pool_do_put(pp, v, &pq);
   1264 	mutex_exit(&pp->pr_lock);
   1265 
   1266 	pr_pagelist_free(pp, &pq);
   1267 }
   1268 
   1269 #ifdef POOL_DIAGNOSTIC
   1270 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1271 #endif
   1272 
   1273 /*
   1274  * pool_grow: grow a pool by a page.
   1275  *
   1276  * => called with pool locked.
   1277  * => unlock and relock the pool.
   1278  * => return with pool locked.
   1279  */
   1280 
   1281 static int
   1282 pool_grow(struct pool *pp, int flags)
   1283 {
   1284 	struct pool_item_header *ph = NULL;
   1285 	char *cp;
   1286 
   1287 	mutex_exit(&pp->pr_lock);
   1288 	cp = pool_allocator_alloc(pp, flags);
   1289 	if (__predict_true(cp != NULL)) {
   1290 		ph = pool_alloc_item_header(pp, cp, flags);
   1291 	}
   1292 	if (__predict_false(cp == NULL || ph == NULL)) {
   1293 		if (cp != NULL) {
   1294 			pool_allocator_free(pp, cp);
   1295 		}
   1296 		mutex_enter(&pp->pr_lock);
   1297 		return ENOMEM;
   1298 	}
   1299 
   1300 	mutex_enter(&pp->pr_lock);
   1301 	pool_prime_page(pp, cp, ph);
   1302 	pp->pr_npagealloc++;
   1303 	return 0;
   1304 }
   1305 
   1306 /*
   1307  * Add N items to the pool.
   1308  */
   1309 int
   1310 pool_prime(struct pool *pp, int n)
   1311 {
   1312 	int newpages;
   1313 	int error = 0;
   1314 
   1315 	mutex_enter(&pp->pr_lock);
   1316 
   1317 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1318 
   1319 	while (newpages-- > 0) {
   1320 		error = pool_grow(pp, PR_NOWAIT);
   1321 		if (error) {
   1322 			break;
   1323 		}
   1324 		pp->pr_minpages++;
   1325 	}
   1326 
   1327 	if (pp->pr_minpages >= pp->pr_maxpages)
   1328 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1329 
   1330 	mutex_exit(&pp->pr_lock);
   1331 	return error;
   1332 }
   1333 
   1334 /*
   1335  * Add a page worth of items to the pool.
   1336  *
   1337  * Note, we must be called with the pool descriptor LOCKED.
   1338  */
   1339 static void
   1340 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1341 {
   1342 	struct pool_item *pi;
   1343 	void *cp = storage;
   1344 	const unsigned int align = pp->pr_align;
   1345 	const unsigned int ioff = pp->pr_itemoffset;
   1346 	int n;
   1347 
   1348 	KASSERT(mutex_owned(&pp->pr_lock));
   1349 
   1350 #ifdef DIAGNOSTIC
   1351 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1352 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1353 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1354 #endif
   1355 
   1356 	/*
   1357 	 * Insert page header.
   1358 	 */
   1359 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1360 	LIST_INIT(&ph->ph_itemlist);
   1361 	ph->ph_page = storage;
   1362 	ph->ph_nmissing = 0;
   1363 	ph->ph_time = time_uptime;
   1364 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1365 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1366 
   1367 	pp->pr_nidle++;
   1368 
   1369 	/*
   1370 	 * Color this page.
   1371 	 */
   1372 	ph->ph_off = pp->pr_curcolor;
   1373 	cp = (char *)cp + ph->ph_off;
   1374 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1375 		pp->pr_curcolor = 0;
   1376 
   1377 	/*
   1378 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1379 	 */
   1380 	if (ioff != 0)
   1381 		cp = (char *)cp + align - ioff;
   1382 
   1383 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1384 
   1385 	/*
   1386 	 * Insert remaining chunks on the bucket list.
   1387 	 */
   1388 	n = pp->pr_itemsperpage;
   1389 	pp->pr_nitems += n;
   1390 
   1391 	if (pp->pr_roflags & PR_NOTOUCH) {
   1392 		pr_item_notouch_init(pp, ph);
   1393 	} else {
   1394 		while (n--) {
   1395 			pi = (struct pool_item *)cp;
   1396 
   1397 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1398 
   1399 			/* Insert on page list */
   1400 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1401 #ifdef DIAGNOSTIC
   1402 			pi->pi_magic = PI_MAGIC;
   1403 #endif
   1404 			cp = (char *)cp + pp->pr_size;
   1405 
   1406 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1407 		}
   1408 	}
   1409 
   1410 	/*
   1411 	 * If the pool was depleted, point at the new page.
   1412 	 */
   1413 	if (pp->pr_curpage == NULL)
   1414 		pp->pr_curpage = ph;
   1415 
   1416 	if (++pp->pr_npages > pp->pr_hiwat)
   1417 		pp->pr_hiwat = pp->pr_npages;
   1418 }
   1419 
   1420 /*
   1421  * Used by pool_get() when nitems drops below the low water mark.  This
   1422  * is used to catch up pr_nitems with the low water mark.
   1423  *
   1424  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1425  *
   1426  * Note 2, we must be called with the pool already locked, and we return
   1427  * with it locked.
   1428  */
   1429 static int
   1430 pool_catchup(struct pool *pp)
   1431 {
   1432 	int error = 0;
   1433 
   1434 	while (POOL_NEEDS_CATCHUP(pp)) {
   1435 		error = pool_grow(pp, PR_NOWAIT);
   1436 		if (error) {
   1437 			break;
   1438 		}
   1439 	}
   1440 	return error;
   1441 }
   1442 
   1443 static void
   1444 pool_update_curpage(struct pool *pp)
   1445 {
   1446 
   1447 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1448 	if (pp->pr_curpage == NULL) {
   1449 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1450 	}
   1451 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1452 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1453 }
   1454 
   1455 void
   1456 pool_setlowat(struct pool *pp, int n)
   1457 {
   1458 
   1459 	mutex_enter(&pp->pr_lock);
   1460 
   1461 	pp->pr_minitems = n;
   1462 	pp->pr_minpages = (n == 0)
   1463 		? 0
   1464 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1465 
   1466 	/* Make sure we're caught up with the newly-set low water mark. */
   1467 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1468 		/*
   1469 		 * XXX: Should we log a warning?  Should we set up a timeout
   1470 		 * to try again in a second or so?  The latter could break
   1471 		 * a caller's assumptions about interrupt protection, etc.
   1472 		 */
   1473 	}
   1474 
   1475 	mutex_exit(&pp->pr_lock);
   1476 }
   1477 
   1478 void
   1479 pool_sethiwat(struct pool *pp, int n)
   1480 {
   1481 
   1482 	mutex_enter(&pp->pr_lock);
   1483 
   1484 	pp->pr_maxpages = (n == 0)
   1485 		? 0
   1486 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1487 
   1488 	mutex_exit(&pp->pr_lock);
   1489 }
   1490 
   1491 void
   1492 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1493 {
   1494 
   1495 	mutex_enter(&pp->pr_lock);
   1496 
   1497 	pp->pr_hardlimit = n;
   1498 	pp->pr_hardlimit_warning = warnmess;
   1499 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1500 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1501 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1502 
   1503 	/*
   1504 	 * In-line version of pool_sethiwat(), because we don't want to
   1505 	 * release the lock.
   1506 	 */
   1507 	pp->pr_maxpages = (n == 0)
   1508 		? 0
   1509 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1510 
   1511 	mutex_exit(&pp->pr_lock);
   1512 }
   1513 
   1514 /*
   1515  * Release all complete pages that have not been used recently.
   1516  *
   1517  * Might be called from interrupt context.
   1518  */
   1519 int
   1520 #ifdef POOL_DIAGNOSTIC
   1521 _pool_reclaim(struct pool *pp, const char *file, long line)
   1522 #else
   1523 pool_reclaim(struct pool *pp)
   1524 #endif
   1525 {
   1526 	struct pool_item_header *ph, *phnext;
   1527 	struct pool_pagelist pq;
   1528 	uint32_t curtime;
   1529 	bool klock;
   1530 	int rv;
   1531 
   1532 	if (cpu_intr_p() || cpu_softintr_p()) {
   1533 		KASSERT(pp->pr_ipl != IPL_NONE);
   1534 	}
   1535 
   1536 	if (pp->pr_drain_hook != NULL) {
   1537 		/*
   1538 		 * The drain hook must be called with the pool unlocked.
   1539 		 */
   1540 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1541 	}
   1542 
   1543 	/*
   1544 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1545 	 * to block.
   1546 	 */
   1547 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1548 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1549 		KERNEL_LOCK(1, NULL);
   1550 		klock = true;
   1551 	} else
   1552 		klock = false;
   1553 
   1554 	/* Reclaim items from the pool's cache (if any). */
   1555 	if (pp->pr_cache != NULL)
   1556 		pool_cache_invalidate(pp->pr_cache);
   1557 
   1558 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1559 		if (klock) {
   1560 			KERNEL_UNLOCK_ONE(NULL);
   1561 		}
   1562 		return (0);
   1563 	}
   1564 	pr_enter(pp, file, line);
   1565 
   1566 	LIST_INIT(&pq);
   1567 
   1568 	curtime = time_uptime;
   1569 
   1570 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1571 		phnext = LIST_NEXT(ph, ph_pagelist);
   1572 
   1573 		/* Check our minimum page claim */
   1574 		if (pp->pr_npages <= pp->pr_minpages)
   1575 			break;
   1576 
   1577 		KASSERT(ph->ph_nmissing == 0);
   1578 		if (curtime - ph->ph_time < pool_inactive_time)
   1579 			continue;
   1580 
   1581 		/*
   1582 		 * If freeing this page would put us below
   1583 		 * the low water mark, stop now.
   1584 		 */
   1585 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1586 		    pp->pr_minitems)
   1587 			break;
   1588 
   1589 		pr_rmpage(pp, ph, &pq);
   1590 	}
   1591 
   1592 	pr_leave(pp);
   1593 	mutex_exit(&pp->pr_lock);
   1594 
   1595 	if (LIST_EMPTY(&pq))
   1596 		rv = 0;
   1597 	else {
   1598 		pr_pagelist_free(pp, &pq);
   1599 		rv = 1;
   1600 	}
   1601 
   1602 	if (klock) {
   1603 		KERNEL_UNLOCK_ONE(NULL);
   1604 	}
   1605 
   1606 	return (rv);
   1607 }
   1608 
   1609 /*
   1610  * Drain pools, one at a time.  This is a two stage process;
   1611  * drain_start kicks off a cross call to drain CPU-level caches
   1612  * if the pool has an associated pool_cache.  drain_end waits
   1613  * for those cross calls to finish, and then drains the cache
   1614  * (if any) and pool.
   1615  *
   1616  * Note, must never be called from interrupt context.
   1617  */
   1618 void
   1619 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1620 {
   1621 	struct pool *pp;
   1622 
   1623 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1624 
   1625 	pp = NULL;
   1626 
   1627 	/* Find next pool to drain, and add a reference. */
   1628 	mutex_enter(&pool_head_lock);
   1629 	do {
   1630 		if (drainpp == NULL) {
   1631 			drainpp = TAILQ_FIRST(&pool_head);
   1632 		}
   1633 		if (drainpp != NULL) {
   1634 			pp = drainpp;
   1635 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1636 		}
   1637 		/*
   1638 		 * Skip completely idle pools.  We depend on at least
   1639 		 * one pool in the system being active.
   1640 		 */
   1641 	} while (pp == NULL || pp->pr_npages == 0);
   1642 	pp->pr_refcnt++;
   1643 	mutex_exit(&pool_head_lock);
   1644 
   1645 	/* If there is a pool_cache, drain CPU level caches. */
   1646 	*ppp = pp;
   1647 	if (pp->pr_cache != NULL) {
   1648 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1649 		    pp->pr_cache, NULL);
   1650 	}
   1651 }
   1652 
   1653 bool
   1654 pool_drain_end(struct pool *pp, uint64_t where)
   1655 {
   1656 	bool reclaimed;
   1657 
   1658 	if (pp == NULL)
   1659 		return false;
   1660 
   1661 	KASSERT(pp->pr_refcnt > 0);
   1662 
   1663 	/* Wait for remote draining to complete. */
   1664 	if (pp->pr_cache != NULL)
   1665 		xc_wait(where);
   1666 
   1667 	/* Drain the cache (if any) and pool.. */
   1668 	reclaimed = pool_reclaim(pp);
   1669 
   1670 	/* Finally, unlock the pool. */
   1671 	mutex_enter(&pool_head_lock);
   1672 	pp->pr_refcnt--;
   1673 	cv_broadcast(&pool_busy);
   1674 	mutex_exit(&pool_head_lock);
   1675 
   1676 	return reclaimed;
   1677 }
   1678 
   1679 /*
   1680  * Diagnostic helpers.
   1681  */
   1682 void
   1683 pool_print(struct pool *pp, const char *modif)
   1684 {
   1685 
   1686 	pool_print1(pp, modif, printf);
   1687 }
   1688 
   1689 void
   1690 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1691 {
   1692 	struct pool *pp;
   1693 
   1694 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1695 		pool_printit(pp, modif, pr);
   1696 	}
   1697 }
   1698 
   1699 void
   1700 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1701 {
   1702 
   1703 	if (pp == NULL) {
   1704 		(*pr)("Must specify a pool to print.\n");
   1705 		return;
   1706 	}
   1707 
   1708 	pool_print1(pp, modif, pr);
   1709 }
   1710 
   1711 static void
   1712 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1713     void (*pr)(const char *, ...))
   1714 {
   1715 	struct pool_item_header *ph;
   1716 #ifdef DIAGNOSTIC
   1717 	struct pool_item *pi;
   1718 #endif
   1719 
   1720 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1721 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1722 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1723 #ifdef DIAGNOSTIC
   1724 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1725 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1726 				if (pi->pi_magic != PI_MAGIC) {
   1727 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1728 					    pi, pi->pi_magic);
   1729 				}
   1730 			}
   1731 		}
   1732 #endif
   1733 	}
   1734 }
   1735 
   1736 static void
   1737 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1738 {
   1739 	struct pool_item_header *ph;
   1740 	pool_cache_t pc;
   1741 	pcg_t *pcg;
   1742 	pool_cache_cpu_t *cc;
   1743 	uint64_t cpuhit, cpumiss;
   1744 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1745 	char c;
   1746 
   1747 	while ((c = *modif++) != '\0') {
   1748 		if (c == 'l')
   1749 			print_log = 1;
   1750 		if (c == 'p')
   1751 			print_pagelist = 1;
   1752 		if (c == 'c')
   1753 			print_cache = 1;
   1754 	}
   1755 
   1756 	if ((pc = pp->pr_cache) != NULL) {
   1757 		(*pr)("POOL CACHE");
   1758 	} else {
   1759 		(*pr)("POOL");
   1760 	}
   1761 
   1762 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1763 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1764 	    pp->pr_roflags);
   1765 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1766 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1767 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1768 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1769 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1770 
   1771 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1772 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1773 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1774 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1775 
   1776 	if (print_pagelist == 0)
   1777 		goto skip_pagelist;
   1778 
   1779 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1780 		(*pr)("\n\tempty page list:\n");
   1781 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1782 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1783 		(*pr)("\n\tfull page list:\n");
   1784 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1785 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1786 		(*pr)("\n\tpartial-page list:\n");
   1787 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1788 
   1789 	if (pp->pr_curpage == NULL)
   1790 		(*pr)("\tno current page\n");
   1791 	else
   1792 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1793 
   1794  skip_pagelist:
   1795 	if (print_log == 0)
   1796 		goto skip_log;
   1797 
   1798 	(*pr)("\n");
   1799 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1800 		(*pr)("\tno log\n");
   1801 	else {
   1802 		pr_printlog(pp, NULL, pr);
   1803 	}
   1804 
   1805  skip_log:
   1806 
   1807 #define PR_GROUPLIST(pcg)						\
   1808 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1809 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1810 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1811 		    POOL_PADDR_INVALID) {				\
   1812 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1813 			    pcg->pcg_objects[i].pcgo_va,		\
   1814 			    (unsigned long long)			\
   1815 			    pcg->pcg_objects[i].pcgo_pa);		\
   1816 		} else {						\
   1817 			(*pr)("\t\t\t%p\n",				\
   1818 			    pcg->pcg_objects[i].pcgo_va);		\
   1819 		}							\
   1820 	}
   1821 
   1822 	if (pc != NULL) {
   1823 		cpuhit = 0;
   1824 		cpumiss = 0;
   1825 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1826 			if ((cc = pc->pc_cpus[i]) == NULL)
   1827 				continue;
   1828 			cpuhit += cc->cc_hits;
   1829 			cpumiss += cc->cc_misses;
   1830 		}
   1831 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1832 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1833 		    pc->pc_hits, pc->pc_misses);
   1834 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1835 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1836 		    pc->pc_contended);
   1837 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1838 		    pc->pc_nempty, pc->pc_nfull);
   1839 		if (print_cache) {
   1840 			(*pr)("\tfull cache groups:\n");
   1841 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1842 			    pcg = pcg->pcg_next) {
   1843 				PR_GROUPLIST(pcg);
   1844 			}
   1845 			(*pr)("\tempty cache groups:\n");
   1846 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1847 			    pcg = pcg->pcg_next) {
   1848 				PR_GROUPLIST(pcg);
   1849 			}
   1850 		}
   1851 	}
   1852 #undef PR_GROUPLIST
   1853 
   1854 	pr_enter_check(pp, pr);
   1855 }
   1856 
   1857 static int
   1858 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1859 {
   1860 	struct pool_item *pi;
   1861 	void *page;
   1862 	int n;
   1863 
   1864 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1865 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1866 		if (page != ph->ph_page &&
   1867 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1868 			if (label != NULL)
   1869 				printf("%s: ", label);
   1870 			printf("pool(%p:%s): page inconsistency: page %p;"
   1871 			       " at page head addr %p (p %p)\n", pp,
   1872 				pp->pr_wchan, ph->ph_page,
   1873 				ph, page);
   1874 			return 1;
   1875 		}
   1876 	}
   1877 
   1878 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1879 		return 0;
   1880 
   1881 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1882 	     pi != NULL;
   1883 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1884 
   1885 #ifdef DIAGNOSTIC
   1886 		if (pi->pi_magic != PI_MAGIC) {
   1887 			if (label != NULL)
   1888 				printf("%s: ", label);
   1889 			printf("pool(%s): free list modified: magic=%x;"
   1890 			       " page %p; item ordinal %d; addr %p\n",
   1891 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1892 				n, pi);
   1893 			panic("pool");
   1894 		}
   1895 #endif
   1896 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1897 			continue;
   1898 		}
   1899 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1900 		if (page == ph->ph_page)
   1901 			continue;
   1902 
   1903 		if (label != NULL)
   1904 			printf("%s: ", label);
   1905 		printf("pool(%p:%s): page inconsistency: page %p;"
   1906 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1907 			pp->pr_wchan, ph->ph_page,
   1908 			n, pi, page);
   1909 		return 1;
   1910 	}
   1911 	return 0;
   1912 }
   1913 
   1914 
   1915 int
   1916 pool_chk(struct pool *pp, const char *label)
   1917 {
   1918 	struct pool_item_header *ph;
   1919 	int r = 0;
   1920 
   1921 	mutex_enter(&pp->pr_lock);
   1922 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1923 		r = pool_chk_page(pp, label, ph);
   1924 		if (r) {
   1925 			goto out;
   1926 		}
   1927 	}
   1928 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1929 		r = pool_chk_page(pp, label, ph);
   1930 		if (r) {
   1931 			goto out;
   1932 		}
   1933 	}
   1934 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1935 		r = pool_chk_page(pp, label, ph);
   1936 		if (r) {
   1937 			goto out;
   1938 		}
   1939 	}
   1940 
   1941 out:
   1942 	mutex_exit(&pp->pr_lock);
   1943 	return (r);
   1944 }
   1945 
   1946 /*
   1947  * pool_cache_init:
   1948  *
   1949  *	Initialize a pool cache.
   1950  */
   1951 pool_cache_t
   1952 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1953     const char *wchan, struct pool_allocator *palloc, int ipl,
   1954     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1955 {
   1956 	pool_cache_t pc;
   1957 
   1958 	pc = pool_get(&cache_pool, PR_WAITOK);
   1959 	if (pc == NULL)
   1960 		return NULL;
   1961 
   1962 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1963 	   palloc, ipl, ctor, dtor, arg);
   1964 
   1965 	return pc;
   1966 }
   1967 
   1968 /*
   1969  * pool_cache_bootstrap:
   1970  *
   1971  *	Kernel-private version of pool_cache_init().  The caller
   1972  *	provides initial storage.
   1973  */
   1974 void
   1975 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1976     u_int align_offset, u_int flags, const char *wchan,
   1977     struct pool_allocator *palloc, int ipl,
   1978     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1979     void *arg)
   1980 {
   1981 	CPU_INFO_ITERATOR cii;
   1982 	pool_cache_t pc1;
   1983 	struct cpu_info *ci;
   1984 	struct pool *pp;
   1985 
   1986 	pp = &pc->pc_pool;
   1987 	if (palloc == NULL && ipl == IPL_NONE)
   1988 		palloc = &pool_allocator_nointr;
   1989 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1990 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1991 
   1992 	if (ctor == NULL) {
   1993 		ctor = (int (*)(void *, void *, int))nullop;
   1994 	}
   1995 	if (dtor == NULL) {
   1996 		dtor = (void (*)(void *, void *))nullop;
   1997 	}
   1998 
   1999 	pc->pc_emptygroups = NULL;
   2000 	pc->pc_fullgroups = NULL;
   2001 	pc->pc_partgroups = NULL;
   2002 	pc->pc_ctor = ctor;
   2003 	pc->pc_dtor = dtor;
   2004 	pc->pc_arg  = arg;
   2005 	pc->pc_hits  = 0;
   2006 	pc->pc_misses = 0;
   2007 	pc->pc_nempty = 0;
   2008 	pc->pc_npart = 0;
   2009 	pc->pc_nfull = 0;
   2010 	pc->pc_contended = 0;
   2011 	pc->pc_refcnt = 0;
   2012 	pc->pc_freecheck = NULL;
   2013 
   2014 	if ((flags & PR_LARGECACHE) != 0) {
   2015 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2016 		pc->pc_pcgpool = &pcg_large_pool;
   2017 	} else {
   2018 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2019 		pc->pc_pcgpool = &pcg_normal_pool;
   2020 	}
   2021 
   2022 	/* Allocate per-CPU caches. */
   2023 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2024 	pc->pc_ncpu = 0;
   2025 	if (ncpu < 2) {
   2026 		/* XXX For sparc: boot CPU is not attached yet. */
   2027 		pool_cache_cpu_init1(curcpu(), pc);
   2028 	} else {
   2029 		for (CPU_INFO_FOREACH(cii, ci)) {
   2030 			pool_cache_cpu_init1(ci, pc);
   2031 		}
   2032 	}
   2033 
   2034 	/* Add to list of all pools. */
   2035 	if (__predict_true(!cold))
   2036 		mutex_enter(&pool_head_lock);
   2037 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2038 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2039 			break;
   2040 	}
   2041 	if (pc1 == NULL)
   2042 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2043 	else
   2044 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2045 	if (__predict_true(!cold))
   2046 		mutex_exit(&pool_head_lock);
   2047 
   2048 	membar_sync();
   2049 	pp->pr_cache = pc;
   2050 }
   2051 
   2052 /*
   2053  * pool_cache_destroy:
   2054  *
   2055  *	Destroy a pool cache.
   2056  */
   2057 void
   2058 pool_cache_destroy(pool_cache_t pc)
   2059 {
   2060 
   2061 	pool_cache_bootstrap_destroy(pc);
   2062 	pool_put(&cache_pool, pc);
   2063 }
   2064 
   2065 /*
   2066  * pool_cache_bootstrap_destroy:
   2067  *
   2068  *	Destroy a pool cache.
   2069  */
   2070 void
   2071 pool_cache_bootstrap_destroy(pool_cache_t pc)
   2072 {
   2073 	struct pool *pp = &pc->pc_pool;
   2074 	u_int i;
   2075 
   2076 	/* Remove it from the global list. */
   2077 	mutex_enter(&pool_head_lock);
   2078 	while (pc->pc_refcnt != 0)
   2079 		cv_wait(&pool_busy, &pool_head_lock);
   2080 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2081 	mutex_exit(&pool_head_lock);
   2082 
   2083 	/* First, invalidate the entire cache. */
   2084 	pool_cache_invalidate(pc);
   2085 
   2086 	/* Disassociate it from the pool. */
   2087 	mutex_enter(&pp->pr_lock);
   2088 	pp->pr_cache = NULL;
   2089 	mutex_exit(&pp->pr_lock);
   2090 
   2091 	/* Destroy per-CPU data */
   2092 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2093 		pool_cache_invalidate_cpu(pc, i);
   2094 
   2095 	/* Finally, destroy it. */
   2096 	mutex_destroy(&pc->pc_lock);
   2097 	pool_destroy(pp);
   2098 }
   2099 
   2100 /*
   2101  * pool_cache_cpu_init1:
   2102  *
   2103  *	Called for each pool_cache whenever a new CPU is attached.
   2104  */
   2105 static void
   2106 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2107 {
   2108 	pool_cache_cpu_t *cc;
   2109 	int index;
   2110 
   2111 	index = ci->ci_index;
   2112 
   2113 	KASSERT(index < __arraycount(pc->pc_cpus));
   2114 
   2115 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2116 		KASSERT(cc->cc_cpuindex == index);
   2117 		return;
   2118 	}
   2119 
   2120 	/*
   2121 	 * The first CPU is 'free'.  This needs to be the case for
   2122 	 * bootstrap - we may not be able to allocate yet.
   2123 	 */
   2124 	if (pc->pc_ncpu == 0) {
   2125 		cc = &pc->pc_cpu0;
   2126 		pc->pc_ncpu = 1;
   2127 	} else {
   2128 		mutex_enter(&pc->pc_lock);
   2129 		pc->pc_ncpu++;
   2130 		mutex_exit(&pc->pc_lock);
   2131 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2132 	}
   2133 
   2134 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2135 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2136 	cc->cc_cache = pc;
   2137 	cc->cc_cpuindex = index;
   2138 	cc->cc_hits = 0;
   2139 	cc->cc_misses = 0;
   2140 	cc->cc_current = __UNCONST(&pcg_dummy);
   2141 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2142 
   2143 	pc->pc_cpus[index] = cc;
   2144 }
   2145 
   2146 /*
   2147  * pool_cache_cpu_init:
   2148  *
   2149  *	Called whenever a new CPU is attached.
   2150  */
   2151 void
   2152 pool_cache_cpu_init(struct cpu_info *ci)
   2153 {
   2154 	pool_cache_t pc;
   2155 
   2156 	mutex_enter(&pool_head_lock);
   2157 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2158 		pc->pc_refcnt++;
   2159 		mutex_exit(&pool_head_lock);
   2160 
   2161 		pool_cache_cpu_init1(ci, pc);
   2162 
   2163 		mutex_enter(&pool_head_lock);
   2164 		pc->pc_refcnt--;
   2165 		cv_broadcast(&pool_busy);
   2166 	}
   2167 	mutex_exit(&pool_head_lock);
   2168 }
   2169 
   2170 /*
   2171  * pool_cache_reclaim:
   2172  *
   2173  *	Reclaim memory from a pool cache.
   2174  */
   2175 bool
   2176 pool_cache_reclaim(pool_cache_t pc)
   2177 {
   2178 
   2179 	return pool_reclaim(&pc->pc_pool);
   2180 }
   2181 
   2182 static void
   2183 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2184 {
   2185 
   2186 	(*pc->pc_dtor)(pc->pc_arg, object);
   2187 	pool_put(&pc->pc_pool, object);
   2188 }
   2189 
   2190 /*
   2191  * pool_cache_destruct_object:
   2192  *
   2193  *	Force destruction of an object and its release back into
   2194  *	the pool.
   2195  */
   2196 void
   2197 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2198 {
   2199 
   2200 	FREECHECK_IN(&pc->pc_freecheck, object);
   2201 
   2202 	pool_cache_destruct_object1(pc, object);
   2203 }
   2204 
   2205 /*
   2206  * pool_cache_invalidate_groups:
   2207  *
   2208  *	Invalidate a chain of groups and destruct all objects.
   2209  */
   2210 static void
   2211 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2212 {
   2213 	void *object;
   2214 	pcg_t *next;
   2215 	int i;
   2216 
   2217 	for (; pcg != NULL; pcg = next) {
   2218 		next = pcg->pcg_next;
   2219 
   2220 		for (i = 0; i < pcg->pcg_avail; i++) {
   2221 			object = pcg->pcg_objects[i].pcgo_va;
   2222 			pool_cache_destruct_object1(pc, object);
   2223 		}
   2224 
   2225 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2226 			pool_put(&pcg_large_pool, pcg);
   2227 		} else {
   2228 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2229 			pool_put(&pcg_normal_pool, pcg);
   2230 		}
   2231 	}
   2232 }
   2233 
   2234 /*
   2235  * pool_cache_invalidate:
   2236  *
   2237  *	Invalidate a pool cache (destruct and release all of the
   2238  *	cached objects).  Does not reclaim objects from the pool.
   2239  *
   2240  *	Note: For pool caches that provide constructed objects, there
   2241  *	is an assumption that another level of synchronization is occurring
   2242  *	between the input to the constructor and the cache invalidation.
   2243  */
   2244 void
   2245 pool_cache_invalidate(pool_cache_t pc)
   2246 {
   2247 	pcg_t *full, *empty, *part;
   2248 #if 0
   2249 	uint64_t where;
   2250 
   2251 	if (ncpu < 2 || !mp_online) {
   2252 		/*
   2253 		 * We might be called early enough in the boot process
   2254 		 * for the CPU data structures to not be fully initialized.
   2255 		 * In this case, simply gather the local CPU's cache now
   2256 		 * since it will be the only one running.
   2257 		 */
   2258 		pool_cache_xcall(pc);
   2259 	} else {
   2260 		/*
   2261 		 * Gather all of the CPU-specific caches into the
   2262 		 * global cache.
   2263 		 */
   2264 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2265 		xc_wait(where);
   2266 	}
   2267 #endif
   2268 	mutex_enter(&pc->pc_lock);
   2269 	full = pc->pc_fullgroups;
   2270 	empty = pc->pc_emptygroups;
   2271 	part = pc->pc_partgroups;
   2272 	pc->pc_fullgroups = NULL;
   2273 	pc->pc_emptygroups = NULL;
   2274 	pc->pc_partgroups = NULL;
   2275 	pc->pc_nfull = 0;
   2276 	pc->pc_nempty = 0;
   2277 	pc->pc_npart = 0;
   2278 	mutex_exit(&pc->pc_lock);
   2279 
   2280 	pool_cache_invalidate_groups(pc, full);
   2281 	pool_cache_invalidate_groups(pc, empty);
   2282 	pool_cache_invalidate_groups(pc, part);
   2283 }
   2284 
   2285 /*
   2286  * pool_cache_invalidate_cpu:
   2287  *
   2288  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2289  *	identified by its associated index.
   2290  *	It is caller's responsibility to ensure that no operation is
   2291  *	taking place on this pool cache while doing this invalidation.
   2292  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2293  *	pool cached objects from a CPU different from the one currently running
   2294  *	may result in an undefined behaviour.
   2295  */
   2296 static void
   2297 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2298 {
   2299 
   2300 	pool_cache_cpu_t *cc;
   2301 	pcg_t *pcg;
   2302 
   2303 	if ((cc = pc->pc_cpus[index]) == NULL)
   2304 		return;
   2305 
   2306 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2307 		pcg->pcg_next = NULL;
   2308 		pool_cache_invalidate_groups(pc, pcg);
   2309 	}
   2310 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2311 		pcg->pcg_next = NULL;
   2312 		pool_cache_invalidate_groups(pc, pcg);
   2313 	}
   2314 	if (cc != &pc->pc_cpu0)
   2315 		pool_put(&cache_cpu_pool, cc);
   2316 
   2317 }
   2318 
   2319 void
   2320 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2321 {
   2322 
   2323 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2324 }
   2325 
   2326 void
   2327 pool_cache_setlowat(pool_cache_t pc, int n)
   2328 {
   2329 
   2330 	pool_setlowat(&pc->pc_pool, n);
   2331 }
   2332 
   2333 void
   2334 pool_cache_sethiwat(pool_cache_t pc, int n)
   2335 {
   2336 
   2337 	pool_sethiwat(&pc->pc_pool, n);
   2338 }
   2339 
   2340 void
   2341 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2342 {
   2343 
   2344 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2345 }
   2346 
   2347 static bool __noinline
   2348 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2349 		    paddr_t *pap, int flags)
   2350 {
   2351 	pcg_t *pcg, *cur;
   2352 	uint64_t ncsw;
   2353 	pool_cache_t pc;
   2354 	void *object;
   2355 
   2356 	KASSERT(cc->cc_current->pcg_avail == 0);
   2357 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2358 
   2359 	pc = cc->cc_cache;
   2360 	cc->cc_misses++;
   2361 
   2362 	/*
   2363 	 * Nothing was available locally.  Try and grab a group
   2364 	 * from the cache.
   2365 	 */
   2366 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2367 		ncsw = curlwp->l_ncsw;
   2368 		mutex_enter(&pc->pc_lock);
   2369 		pc->pc_contended++;
   2370 
   2371 		/*
   2372 		 * If we context switched while locking, then
   2373 		 * our view of the per-CPU data is invalid:
   2374 		 * retry.
   2375 		 */
   2376 		if (curlwp->l_ncsw != ncsw) {
   2377 			mutex_exit(&pc->pc_lock);
   2378 			return true;
   2379 		}
   2380 	}
   2381 
   2382 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2383 		/*
   2384 		 * If there's a full group, release our empty
   2385 		 * group back to the cache.  Install the full
   2386 		 * group as cc_current and return.
   2387 		 */
   2388 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2389 			KASSERT(cur->pcg_avail == 0);
   2390 			cur->pcg_next = pc->pc_emptygroups;
   2391 			pc->pc_emptygroups = cur;
   2392 			pc->pc_nempty++;
   2393 		}
   2394 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2395 		cc->cc_current = pcg;
   2396 		pc->pc_fullgroups = pcg->pcg_next;
   2397 		pc->pc_hits++;
   2398 		pc->pc_nfull--;
   2399 		mutex_exit(&pc->pc_lock);
   2400 		return true;
   2401 	}
   2402 
   2403 	/*
   2404 	 * Nothing available locally or in cache.  Take the slow
   2405 	 * path: fetch a new object from the pool and construct
   2406 	 * it.
   2407 	 */
   2408 	pc->pc_misses++;
   2409 	mutex_exit(&pc->pc_lock);
   2410 	splx(s);
   2411 
   2412 	object = pool_get(&pc->pc_pool, flags);
   2413 	*objectp = object;
   2414 	if (__predict_false(object == NULL))
   2415 		return false;
   2416 
   2417 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2418 		pool_put(&pc->pc_pool, object);
   2419 		*objectp = NULL;
   2420 		return false;
   2421 	}
   2422 
   2423 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2424 	    (pc->pc_pool.pr_align - 1)) == 0);
   2425 
   2426 	if (pap != NULL) {
   2427 #ifdef POOL_VTOPHYS
   2428 		*pap = POOL_VTOPHYS(object);
   2429 #else
   2430 		*pap = POOL_PADDR_INVALID;
   2431 #endif
   2432 	}
   2433 
   2434 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2435 	return false;
   2436 }
   2437 
   2438 /*
   2439  * pool_cache_get{,_paddr}:
   2440  *
   2441  *	Get an object from a pool cache (optionally returning
   2442  *	the physical address of the object).
   2443  */
   2444 void *
   2445 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2446 {
   2447 	pool_cache_cpu_t *cc;
   2448 	pcg_t *pcg;
   2449 	void *object;
   2450 	int s;
   2451 
   2452 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2453 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2454 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2455 	    pc->pc_pool.pr_wchan);
   2456 
   2457 	if (flags & PR_WAITOK) {
   2458 		ASSERT_SLEEPABLE();
   2459 	}
   2460 
   2461 	/* Lock out interrupts and disable preemption. */
   2462 	s = splvm();
   2463 	while (/* CONSTCOND */ true) {
   2464 		/* Try and allocate an object from the current group. */
   2465 		cc = pc->pc_cpus[curcpu()->ci_index];
   2466 		KASSERT(cc->cc_cache == pc);
   2467 	 	pcg = cc->cc_current;
   2468 		if (__predict_true(pcg->pcg_avail > 0)) {
   2469 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2470 			if (__predict_false(pap != NULL))
   2471 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2472 #if defined(DIAGNOSTIC)
   2473 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2474 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2475 			KASSERT(object != NULL);
   2476 #endif
   2477 			cc->cc_hits++;
   2478 			splx(s);
   2479 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2480 			return object;
   2481 		}
   2482 
   2483 		/*
   2484 		 * That failed.  If the previous group isn't empty, swap
   2485 		 * it with the current group and allocate from there.
   2486 		 */
   2487 		pcg = cc->cc_previous;
   2488 		if (__predict_true(pcg->pcg_avail > 0)) {
   2489 			cc->cc_previous = cc->cc_current;
   2490 			cc->cc_current = pcg;
   2491 			continue;
   2492 		}
   2493 
   2494 		/*
   2495 		 * Can't allocate from either group: try the slow path.
   2496 		 * If get_slow() allocated an object for us, or if
   2497 		 * no more objects are available, it will return false.
   2498 		 * Otherwise, we need to retry.
   2499 		 */
   2500 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2501 			break;
   2502 	}
   2503 
   2504 	return object;
   2505 }
   2506 
   2507 static bool __noinline
   2508 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2509 {
   2510 	pcg_t *pcg, *cur;
   2511 	uint64_t ncsw;
   2512 	pool_cache_t pc;
   2513 
   2514 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2515 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2516 
   2517 	pc = cc->cc_cache;
   2518 	pcg = NULL;
   2519 	cc->cc_misses++;
   2520 
   2521 	/*
   2522 	 * If there are no empty groups in the cache then allocate one
   2523 	 * while still unlocked.
   2524 	 */
   2525 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2526 		if (__predict_true(!pool_cache_disable)) {
   2527 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2528 		}
   2529 		if (__predict_true(pcg != NULL)) {
   2530 			pcg->pcg_avail = 0;
   2531 			pcg->pcg_size = pc->pc_pcgsize;
   2532 		}
   2533 	}
   2534 
   2535 	/* Lock the cache. */
   2536 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2537 		ncsw = curlwp->l_ncsw;
   2538 		mutex_enter(&pc->pc_lock);
   2539 		pc->pc_contended++;
   2540 
   2541 		/*
   2542 		 * If we context switched while locking, then our view of
   2543 		 * the per-CPU data is invalid: retry.
   2544 		 */
   2545 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2546 			mutex_exit(&pc->pc_lock);
   2547 			if (pcg != NULL) {
   2548 				pool_put(pc->pc_pcgpool, pcg);
   2549 			}
   2550 			return true;
   2551 		}
   2552 	}
   2553 
   2554 	/* If there are no empty groups in the cache then allocate one. */
   2555 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2556 		pcg = pc->pc_emptygroups;
   2557 		pc->pc_emptygroups = pcg->pcg_next;
   2558 		pc->pc_nempty--;
   2559 	}
   2560 
   2561 	/*
   2562 	 * If there's a empty group, release our full group back
   2563 	 * to the cache.  Install the empty group to the local CPU
   2564 	 * and return.
   2565 	 */
   2566 	if (pcg != NULL) {
   2567 		KASSERT(pcg->pcg_avail == 0);
   2568 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2569 			cc->cc_previous = pcg;
   2570 		} else {
   2571 			cur = cc->cc_current;
   2572 			if (__predict_true(cur != &pcg_dummy)) {
   2573 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2574 				cur->pcg_next = pc->pc_fullgroups;
   2575 				pc->pc_fullgroups = cur;
   2576 				pc->pc_nfull++;
   2577 			}
   2578 			cc->cc_current = pcg;
   2579 		}
   2580 		pc->pc_hits++;
   2581 		mutex_exit(&pc->pc_lock);
   2582 		return true;
   2583 	}
   2584 
   2585 	/*
   2586 	 * Nothing available locally or in cache, and we didn't
   2587 	 * allocate an empty group.  Take the slow path and destroy
   2588 	 * the object here and now.
   2589 	 */
   2590 	pc->pc_misses++;
   2591 	mutex_exit(&pc->pc_lock);
   2592 	splx(s);
   2593 	pool_cache_destruct_object(pc, object);
   2594 
   2595 	return false;
   2596 }
   2597 
   2598 /*
   2599  * pool_cache_put{,_paddr}:
   2600  *
   2601  *	Put an object back to the pool cache (optionally caching the
   2602  *	physical address of the object).
   2603  */
   2604 void
   2605 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2606 {
   2607 	pool_cache_cpu_t *cc;
   2608 	pcg_t *pcg;
   2609 	int s;
   2610 
   2611 	KASSERT(object != NULL);
   2612 	FREECHECK_IN(&pc->pc_freecheck, object);
   2613 
   2614 	/* Lock out interrupts and disable preemption. */
   2615 	s = splvm();
   2616 	while (/* CONSTCOND */ true) {
   2617 		/* If the current group isn't full, release it there. */
   2618 		cc = pc->pc_cpus[curcpu()->ci_index];
   2619 		KASSERT(cc->cc_cache == pc);
   2620 	 	pcg = cc->cc_current;
   2621 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2622 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2623 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2624 			pcg->pcg_avail++;
   2625 			cc->cc_hits++;
   2626 			splx(s);
   2627 			return;
   2628 		}
   2629 
   2630 		/*
   2631 		 * That failed.  If the previous group isn't full, swap
   2632 		 * it with the current group and try again.
   2633 		 */
   2634 		pcg = cc->cc_previous;
   2635 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2636 			cc->cc_previous = cc->cc_current;
   2637 			cc->cc_current = pcg;
   2638 			continue;
   2639 		}
   2640 
   2641 		/*
   2642 		 * Can't free to either group: try the slow path.
   2643 		 * If put_slow() releases the object for us, it
   2644 		 * will return false.  Otherwise we need to retry.
   2645 		 */
   2646 		if (!pool_cache_put_slow(cc, s, object))
   2647 			break;
   2648 	}
   2649 }
   2650 
   2651 /*
   2652  * pool_cache_xcall:
   2653  *
   2654  *	Transfer objects from the per-CPU cache to the global cache.
   2655  *	Run within a cross-call thread.
   2656  */
   2657 static void
   2658 pool_cache_xcall(pool_cache_t pc)
   2659 {
   2660 	pool_cache_cpu_t *cc;
   2661 	pcg_t *prev, *cur, **list;
   2662 	int s;
   2663 
   2664 	s = splvm();
   2665 	mutex_enter(&pc->pc_lock);
   2666 	cc = pc->pc_cpus[curcpu()->ci_index];
   2667 	cur = cc->cc_current;
   2668 	cc->cc_current = __UNCONST(&pcg_dummy);
   2669 	prev = cc->cc_previous;
   2670 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2671 	if (cur != &pcg_dummy) {
   2672 		if (cur->pcg_avail == cur->pcg_size) {
   2673 			list = &pc->pc_fullgroups;
   2674 			pc->pc_nfull++;
   2675 		} else if (cur->pcg_avail == 0) {
   2676 			list = &pc->pc_emptygroups;
   2677 			pc->pc_nempty++;
   2678 		} else {
   2679 			list = &pc->pc_partgroups;
   2680 			pc->pc_npart++;
   2681 		}
   2682 		cur->pcg_next = *list;
   2683 		*list = cur;
   2684 	}
   2685 	if (prev != &pcg_dummy) {
   2686 		if (prev->pcg_avail == prev->pcg_size) {
   2687 			list = &pc->pc_fullgroups;
   2688 			pc->pc_nfull++;
   2689 		} else if (prev->pcg_avail == 0) {
   2690 			list = &pc->pc_emptygroups;
   2691 			pc->pc_nempty++;
   2692 		} else {
   2693 			list = &pc->pc_partgroups;
   2694 			pc->pc_npart++;
   2695 		}
   2696 		prev->pcg_next = *list;
   2697 		*list = prev;
   2698 	}
   2699 	mutex_exit(&pc->pc_lock);
   2700 	splx(s);
   2701 }
   2702 
   2703 /*
   2704  * Pool backend allocators.
   2705  *
   2706  * Each pool has a backend allocator that handles allocation, deallocation,
   2707  * and any additional draining that might be needed.
   2708  *
   2709  * We provide two standard allocators:
   2710  *
   2711  *	pool_allocator_kmem - the default when no allocator is specified
   2712  *
   2713  *	pool_allocator_nointr - used for pools that will not be accessed
   2714  *	in interrupt context.
   2715  */
   2716 void	*pool_page_alloc(struct pool *, int);
   2717 void	pool_page_free(struct pool *, void *);
   2718 
   2719 #ifdef POOL_SUBPAGE
   2720 struct pool_allocator pool_allocator_kmem_fullpage = {
   2721 	.pa_alloc = pool_page_alloc,
   2722 	.pa_free = pool_page_free,
   2723 	.pa_pagesz = 0
   2724 };
   2725 #else
   2726 struct pool_allocator pool_allocator_kmem = {
   2727 	.pa_alloc = pool_page_alloc,
   2728 	.pa_free = pool_page_free,
   2729 	.pa_pagesz = 0
   2730 };
   2731 #endif
   2732 
   2733 void	*pool_page_alloc_nointr(struct pool *, int);
   2734 void	pool_page_free_nointr(struct pool *, void *);
   2735 
   2736 #ifdef POOL_SUBPAGE
   2737 struct pool_allocator pool_allocator_nointr_fullpage = {
   2738 	.pa_alloc = pool_page_alloc_nointr,
   2739 	.pa_free = pool_page_free_nointr,
   2740 	.pa_pagesz = 0
   2741 };
   2742 #else
   2743 struct pool_allocator pool_allocator_nointr = {
   2744 	.pa_alloc = pool_page_alloc,
   2745 	.pa_free = pool_page_free,
   2746 	.pa_pagesz = 0
   2747 };
   2748 #endif
   2749 
   2750 #ifdef POOL_SUBPAGE
   2751 void	*pool_subpage_alloc(struct pool *, int);
   2752 void	pool_subpage_free(struct pool *, void *);
   2753 
   2754 struct pool_allocator pool_allocator_kmem = {
   2755 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2756 };
   2757 
   2758 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2759 void	pool_subpage_free_nointr(struct pool *, void *);
   2760 
   2761 struct pool_allocator pool_allocator_nointr = {
   2762 	.pa_alloc = pool_subpage_alloc,
   2763 	.pa_free = pool_subpage_free,
   2764 	.pa_pagesz = POOL_SUBPAGE
   2765 };
   2766 #endif /* POOL_SUBPAGE */
   2767 
   2768 static void *
   2769 pool_allocator_alloc(struct pool *pp, int flags)
   2770 {
   2771 	struct pool_allocator *pa = pp->pr_alloc;
   2772 	void *res;
   2773 
   2774 	res = (*pa->pa_alloc)(pp, flags);
   2775 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2776 		/*
   2777 		 * We only run the drain hook here if PR_NOWAIT.
   2778 		 * In other cases, the hook will be run in
   2779 		 * pool_reclaim().
   2780 		 */
   2781 		if (pp->pr_drain_hook != NULL) {
   2782 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2783 			res = (*pa->pa_alloc)(pp, flags);
   2784 		}
   2785 	}
   2786 	return res;
   2787 }
   2788 
   2789 static void
   2790 pool_allocator_free(struct pool *pp, void *v)
   2791 {
   2792 	struct pool_allocator *pa = pp->pr_alloc;
   2793 
   2794 	(*pa->pa_free)(pp, v);
   2795 }
   2796 
   2797 void *
   2798 pool_page_alloc(struct pool *pp, int flags)
   2799 {
   2800 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2801 	vmem_addr_t va;
   2802 	int ret;
   2803 
   2804 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2805 	    vflags | VM_INSTANTFIT, &va);
   2806 
   2807 	return ret ? NULL : (void *)va;
   2808 }
   2809 
   2810 void
   2811 pool_page_free(struct pool *pp, void *v)
   2812 {
   2813 
   2814 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2815 }
   2816 
   2817 static void *
   2818 pool_page_alloc_meta(struct pool *pp, int flags)
   2819 {
   2820 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2821 	vmem_addr_t va;
   2822 	int ret;
   2823 
   2824 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2825 	    vflags | VM_INSTANTFIT, &va);
   2826 
   2827 	return ret ? NULL : (void *)va;
   2828 }
   2829 
   2830 static void
   2831 pool_page_free_meta(struct pool *pp, void *v)
   2832 {
   2833 
   2834 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2835 }
   2836 
   2837 #ifdef POOL_SUBPAGE
   2838 /* Sub-page allocator, for machines with large hardware pages. */
   2839 void *
   2840 pool_subpage_alloc(struct pool *pp, int flags)
   2841 {
   2842 	return pool_get(&psppool, flags);
   2843 }
   2844 
   2845 void
   2846 pool_subpage_free(struct pool *pp, void *v)
   2847 {
   2848 	pool_put(&psppool, v);
   2849 }
   2850 
   2851 /* We don't provide a real nointr allocator.  Maybe later. */
   2852 void *
   2853 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2854 {
   2855 
   2856 	return (pool_subpage_alloc(pp, flags));
   2857 }
   2858 
   2859 void
   2860 pool_subpage_free_nointr(struct pool *pp, void *v)
   2861 {
   2862 
   2863 	pool_subpage_free(pp, v);
   2864 }
   2865 #endif /* POOL_SUBPAGE */
   2866 
   2867 #if defined(DDB)
   2868 static bool
   2869 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2870 {
   2871 
   2872 	return (uintptr_t)ph->ph_page <= addr &&
   2873 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2874 }
   2875 
   2876 static bool
   2877 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2878 {
   2879 
   2880 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2881 }
   2882 
   2883 static bool
   2884 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2885 {
   2886 	int i;
   2887 
   2888 	if (pcg == NULL) {
   2889 		return false;
   2890 	}
   2891 	for (i = 0; i < pcg->pcg_avail; i++) {
   2892 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2893 			return true;
   2894 		}
   2895 	}
   2896 	return false;
   2897 }
   2898 
   2899 static bool
   2900 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2901 {
   2902 
   2903 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2904 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2905 		pool_item_bitmap_t *bitmap =
   2906 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2907 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2908 
   2909 		return (*bitmap & mask) == 0;
   2910 	} else {
   2911 		struct pool_item *pi;
   2912 
   2913 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2914 			if (pool_in_item(pp, pi, addr)) {
   2915 				return false;
   2916 			}
   2917 		}
   2918 		return true;
   2919 	}
   2920 }
   2921 
   2922 void
   2923 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2924 {
   2925 	struct pool *pp;
   2926 
   2927 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2928 		struct pool_item_header *ph;
   2929 		uintptr_t item;
   2930 		bool allocated = true;
   2931 		bool incache = false;
   2932 		bool incpucache = false;
   2933 		char cpucachestr[32];
   2934 
   2935 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2936 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2937 				if (pool_in_page(pp, ph, addr)) {
   2938 					goto found;
   2939 				}
   2940 			}
   2941 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2942 				if (pool_in_page(pp, ph, addr)) {
   2943 					allocated =
   2944 					    pool_allocated(pp, ph, addr);
   2945 					goto found;
   2946 				}
   2947 			}
   2948 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2949 				if (pool_in_page(pp, ph, addr)) {
   2950 					allocated = false;
   2951 					goto found;
   2952 				}
   2953 			}
   2954 			continue;
   2955 		} else {
   2956 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2957 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2958 				continue;
   2959 			}
   2960 			allocated = pool_allocated(pp, ph, addr);
   2961 		}
   2962 found:
   2963 		if (allocated && pp->pr_cache) {
   2964 			pool_cache_t pc = pp->pr_cache;
   2965 			struct pool_cache_group *pcg;
   2966 			int i;
   2967 
   2968 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2969 			    pcg = pcg->pcg_next) {
   2970 				if (pool_in_cg(pp, pcg, addr)) {
   2971 					incache = true;
   2972 					goto print;
   2973 				}
   2974 			}
   2975 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2976 				pool_cache_cpu_t *cc;
   2977 
   2978 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2979 					continue;
   2980 				}
   2981 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2982 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2983 					struct cpu_info *ci =
   2984 					    cpu_lookup(i);
   2985 
   2986 					incpucache = true;
   2987 					snprintf(cpucachestr,
   2988 					    sizeof(cpucachestr),
   2989 					    "cached by CPU %u",
   2990 					    ci->ci_index);
   2991 					goto print;
   2992 				}
   2993 			}
   2994 		}
   2995 print:
   2996 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2997 		item = item + rounddown(addr - item, pp->pr_size);
   2998 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2999 		    (void *)addr, item, (size_t)(addr - item),
   3000 		    pp->pr_wchan,
   3001 		    incpucache ? cpucachestr :
   3002 		    incache ? "cached" : allocated ? "allocated" : "free");
   3003 	}
   3004 }
   3005 #endif /* defined(DDB) */
   3006