subr_pool.c revision 1.194.2.2 1 /* $NetBSD: subr_pool.c,v 1.194.2.2 2014/05/21 20:34:38 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.194.2.2 2014/05/21 20:34:38 bouyer Exp $");
36
37 #include "opt_ddb.h"
38 #include "opt_pool.h"
39 #include "opt_poollog.h"
40 #include "opt_lockdebug.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitops.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/vmem.h>
50 #include <sys/pool.h>
51 #include <sys/syslog.h>
52 #include <sys/debug.h>
53 #include <sys/lockdebug.h>
54 #include <sys/xcall.h>
55 #include <sys/cpu.h>
56 #include <sys/atomic.h>
57
58 #include <uvm/uvm_extern.h>
59
60 /*
61 * Pool resource management utility.
62 *
63 * Memory is allocated in pages which are split into pieces according to
64 * the pool item size. Each page is kept on one of three lists in the
65 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
66 * for empty, full and partially-full pages respectively. The individual
67 * pool items are on a linked list headed by `ph_itemlist' in each page
68 * header. The memory for building the page list is either taken from
69 * the allocated pages themselves (for small pool items) or taken from
70 * an internal pool of page headers (`phpool').
71 */
72
73 /* List of all pools. Non static as needed by 'vmstat -i' */
74 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
75
76 /* Private pool for page header structures */
77 #define PHPOOL_MAX 8
78 static struct pool phpool[PHPOOL_MAX];
79 #define PHPOOL_FREELIST_NELEM(idx) \
80 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
81
82 #ifdef POOL_SUBPAGE
83 /* Pool of subpages for use by normal pools. */
84 static struct pool psppool;
85 #endif
86
87 static void *pool_page_alloc_meta(struct pool *, int);
88 static void pool_page_free_meta(struct pool *, void *);
89
90 /* allocator for pool metadata */
91 struct pool_allocator pool_allocator_meta = {
92 .pa_alloc = pool_page_alloc_meta,
93 .pa_free = pool_page_free_meta,
94 .pa_pagesz = 0
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
106
107 /* This lock protects initialization of a potentially shared pool allocator */
108 static kmutex_t pool_allocator_lock;
109
110 typedef uint32_t pool_item_bitmap_t;
111 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
112 #define BITMAP_MASK (BITMAP_SIZE - 1)
113
114 struct pool_item_header {
115 /* Page headers */
116 LIST_ENTRY(pool_item_header)
117 ph_pagelist; /* pool page list */
118 SPLAY_ENTRY(pool_item_header)
119 ph_node; /* Off-page page headers */
120 void * ph_page; /* this page's address */
121 uint32_t ph_time; /* last referenced */
122 uint16_t ph_nmissing; /* # of chunks in use */
123 uint16_t ph_off; /* start offset in page */
124 union {
125 /* !PR_NOTOUCH */
126 struct {
127 LIST_HEAD(, pool_item)
128 phu_itemlist; /* chunk list for this page */
129 } phu_normal;
130 /* PR_NOTOUCH */
131 struct {
132 pool_item_bitmap_t phu_bitmap[1];
133 } phu_notouch;
134 } ph_u;
135 };
136 #define ph_itemlist ph_u.phu_normal.phu_itemlist
137 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
138
139 struct pool_item {
140 #ifdef DIAGNOSTIC
141 u_int pi_magic;
142 #endif
143 #define PI_MAGIC 0xdeaddeadU
144 /* Other entries use only this list entry */
145 LIST_ENTRY(pool_item) pi_list;
146 };
147
148 #define POOL_NEEDS_CATCHUP(pp) \
149 ((pp)->pr_nitems < (pp)->pr_minitems)
150
151 /*
152 * Pool cache management.
153 *
154 * Pool caches provide a way for constructed objects to be cached by the
155 * pool subsystem. This can lead to performance improvements by avoiding
156 * needless object construction/destruction; it is deferred until absolutely
157 * necessary.
158 *
159 * Caches are grouped into cache groups. Each cache group references up
160 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
161 * object from the pool, it calls the object's constructor and places it
162 * into a cache group. When a cache group frees an object back to the
163 * pool, it first calls the object's destructor. This allows the object
164 * to persist in constructed form while freed to the cache.
165 *
166 * The pool references each cache, so that when a pool is drained by the
167 * pagedaemon, it can drain each individual cache as well. Each time a
168 * cache is drained, the most idle cache group is freed to the pool in
169 * its entirety.
170 *
171 * Pool caches are layed on top of pools. By layering them, we can avoid
172 * the complexity of cache management for pools which would not benefit
173 * from it.
174 */
175
176 static struct pool pcg_normal_pool;
177 static struct pool pcg_large_pool;
178 static struct pool cache_pool;
179 static struct pool cache_cpu_pool;
180
181 pool_cache_t pnbuf_cache; /* pathname buffer cache */
182
183 /* List of all caches. */
184 TAILQ_HEAD(,pool_cache) pool_cache_head =
185 TAILQ_HEAD_INITIALIZER(pool_cache_head);
186
187 int pool_cache_disable; /* global disable for caching */
188 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
189
190 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
191 void *);
192 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
193 void **, paddr_t *, int);
194 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
195 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
196 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
197 static void pool_cache_xcall(pool_cache_t);
198
199 static int pool_catchup(struct pool *);
200 static void pool_prime_page(struct pool *, void *,
201 struct pool_item_header *);
202 static void pool_update_curpage(struct pool *);
203
204 static int pool_grow(struct pool *, int);
205 static void *pool_allocator_alloc(struct pool *, int);
206 static void pool_allocator_free(struct pool *, void *);
207
208 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
209 void (*)(const char *, ...));
210 static void pool_print1(struct pool *, const char *,
211 void (*)(const char *, ...));
212
213 static int pool_chk_page(struct pool *, const char *,
214 struct pool_item_header *);
215
216 /*
217 * Pool log entry. An array of these is allocated in pool_init().
218 */
219 struct pool_log {
220 const char *pl_file;
221 long pl_line;
222 int pl_action;
223 #define PRLOG_GET 1
224 #define PRLOG_PUT 2
225 void *pl_addr;
226 };
227
228 #ifdef POOL_DIAGNOSTIC
229 /* Number of entries in pool log buffers */
230 #ifndef POOL_LOGSIZE
231 #define POOL_LOGSIZE 10
232 #endif
233
234 int pool_logsize = POOL_LOGSIZE;
235
236 static inline void
237 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
238 {
239 int n;
240 struct pool_log *pl;
241
242 if ((pp->pr_roflags & PR_LOGGING) == 0)
243 return;
244
245 if (pp->pr_log == NULL) {
246 if (kmem_map != NULL)
247 pp->pr_log = malloc(
248 pool_logsize * sizeof(struct pool_log),
249 M_TEMP, M_NOWAIT | M_ZERO);
250 if (pp->pr_log == NULL)
251 return;
252 pp->pr_curlogentry = 0;
253 pp->pr_logsize = pool_logsize;
254 }
255
256 /*
257 * Fill in the current entry. Wrap around and overwrite
258 * the oldest entry if necessary.
259 */
260 n = pp->pr_curlogentry;
261 pl = &pp->pr_log[n];
262 pl->pl_file = file;
263 pl->pl_line = line;
264 pl->pl_action = action;
265 pl->pl_addr = v;
266 if (++n >= pp->pr_logsize)
267 n = 0;
268 pp->pr_curlogentry = n;
269 }
270
271 static void
272 pr_printlog(struct pool *pp, struct pool_item *pi,
273 void (*pr)(const char *, ...))
274 {
275 int i = pp->pr_logsize;
276 int n = pp->pr_curlogentry;
277
278 if (pp->pr_log == NULL)
279 return;
280
281 /*
282 * Print all entries in this pool's log.
283 */
284 while (i-- > 0) {
285 struct pool_log *pl = &pp->pr_log[n];
286 if (pl->pl_action != 0) {
287 if (pi == NULL || pi == pl->pl_addr) {
288 (*pr)("\tlog entry %d:\n", i);
289 (*pr)("\t\taction = %s, addr = %p\n",
290 pl->pl_action == PRLOG_GET ? "get" : "put",
291 pl->pl_addr);
292 (*pr)("\t\tfile: %s at line %lu\n",
293 pl->pl_file, pl->pl_line);
294 }
295 }
296 if (++n >= pp->pr_logsize)
297 n = 0;
298 }
299 }
300
301 static inline void
302 pr_enter(struct pool *pp, const char *file, long line)
303 {
304
305 if (__predict_false(pp->pr_entered_file != NULL)) {
306 printf("pool %s: reentrancy at file %s line %ld\n",
307 pp->pr_wchan, file, line);
308 printf(" previous entry at file %s line %ld\n",
309 pp->pr_entered_file, pp->pr_entered_line);
310 panic("pr_enter");
311 }
312
313 pp->pr_entered_file = file;
314 pp->pr_entered_line = line;
315 }
316
317 static inline void
318 pr_leave(struct pool *pp)
319 {
320
321 if (__predict_false(pp->pr_entered_file == NULL)) {
322 printf("pool %s not entered?\n", pp->pr_wchan);
323 panic("pr_leave");
324 }
325
326 pp->pr_entered_file = NULL;
327 pp->pr_entered_line = 0;
328 }
329
330 static inline void
331 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
332 {
333
334 if (pp->pr_entered_file != NULL)
335 (*pr)("\n\tcurrently entered from file %s line %ld\n",
336 pp->pr_entered_file, pp->pr_entered_line);
337 }
338 #else
339 #define pr_log(pp, v, action, file, line)
340 #define pr_printlog(pp, pi, pr)
341 #define pr_enter(pp, file, line)
342 #define pr_leave(pp)
343 #define pr_enter_check(pp, pr)
344 #endif /* POOL_DIAGNOSTIC */
345
346 static inline unsigned int
347 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
348 const void *v)
349 {
350 const char *cp = v;
351 unsigned int idx;
352
353 KASSERT(pp->pr_roflags & PR_NOTOUCH);
354 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
355 KASSERT(idx < pp->pr_itemsperpage);
356 return idx;
357 }
358
359 static inline void
360 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
361 void *obj)
362 {
363 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
364 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
365 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
366
367 KASSERT((*bitmap & mask) == 0);
368 *bitmap |= mask;
369 }
370
371 static inline void *
372 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
373 {
374 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
375 unsigned int idx;
376 int i;
377
378 for (i = 0; ; i++) {
379 int bit;
380
381 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
382 bit = ffs32(bitmap[i]);
383 if (bit) {
384 pool_item_bitmap_t mask;
385
386 bit--;
387 idx = (i * BITMAP_SIZE) + bit;
388 mask = 1 << bit;
389 KASSERT((bitmap[i] & mask) != 0);
390 bitmap[i] &= ~mask;
391 break;
392 }
393 }
394 KASSERT(idx < pp->pr_itemsperpage);
395 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
396 }
397
398 static inline void
399 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
400 {
401 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
402 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
403 int i;
404
405 for (i = 0; i < n; i++) {
406 bitmap[i] = (pool_item_bitmap_t)-1;
407 }
408 }
409
410 static inline int
411 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
412 {
413
414 /*
415 * we consider pool_item_header with smaller ph_page bigger.
416 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
417 */
418
419 if (a->ph_page < b->ph_page)
420 return (1);
421 else if (a->ph_page > b->ph_page)
422 return (-1);
423 else
424 return (0);
425 }
426
427 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
428 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
429
430 static inline struct pool_item_header *
431 pr_find_pagehead_noalign(struct pool *pp, void *v)
432 {
433 struct pool_item_header *ph, tmp;
434
435 tmp.ph_page = (void *)(uintptr_t)v;
436 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
437 if (ph == NULL) {
438 ph = SPLAY_ROOT(&pp->pr_phtree);
439 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
440 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
441 }
442 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
443 }
444
445 return ph;
446 }
447
448 /*
449 * Return the pool page header based on item address.
450 */
451 static inline struct pool_item_header *
452 pr_find_pagehead(struct pool *pp, void *v)
453 {
454 struct pool_item_header *ph, tmp;
455
456 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
457 ph = pr_find_pagehead_noalign(pp, v);
458 } else {
459 void *page =
460 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
461
462 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
463 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
464 } else {
465 tmp.ph_page = page;
466 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
467 }
468 }
469
470 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
471 ((char *)ph->ph_page <= (char *)v &&
472 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
473 return ph;
474 }
475
476 static void
477 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
478 {
479 struct pool_item_header *ph;
480
481 while ((ph = LIST_FIRST(pq)) != NULL) {
482 LIST_REMOVE(ph, ph_pagelist);
483 pool_allocator_free(pp, ph->ph_page);
484 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
485 pool_put(pp->pr_phpool, ph);
486 }
487 }
488
489 /*
490 * Remove a page from the pool.
491 */
492 static inline void
493 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
494 struct pool_pagelist *pq)
495 {
496
497 KASSERT(mutex_owned(&pp->pr_lock));
498
499 /*
500 * If the page was idle, decrement the idle page count.
501 */
502 if (ph->ph_nmissing == 0) {
503 #ifdef DIAGNOSTIC
504 if (pp->pr_nidle == 0)
505 panic("pr_rmpage: nidle inconsistent");
506 if (pp->pr_nitems < pp->pr_itemsperpage)
507 panic("pr_rmpage: nitems inconsistent");
508 #endif
509 pp->pr_nidle--;
510 }
511
512 pp->pr_nitems -= pp->pr_itemsperpage;
513
514 /*
515 * Unlink the page from the pool and queue it for release.
516 */
517 LIST_REMOVE(ph, ph_pagelist);
518 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
519 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
520 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
521
522 pp->pr_npages--;
523 pp->pr_npagefree++;
524
525 pool_update_curpage(pp);
526 }
527
528 /*
529 * Initialize all the pools listed in the "pools" link set.
530 */
531 void
532 pool_subsystem_init(void)
533 {
534 size_t size;
535 int idx;
536
537 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
538 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
539 cv_init(&pool_busy, "poolbusy");
540
541 /*
542 * Initialize private page header pool and cache magazine pool if we
543 * haven't done so yet.
544 */
545 for (idx = 0; idx < PHPOOL_MAX; idx++) {
546 static char phpool_names[PHPOOL_MAX][6+1+6+1];
547 int nelem;
548 size_t sz;
549
550 nelem = PHPOOL_FREELIST_NELEM(idx);
551 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
552 "phpool-%d", nelem);
553 sz = sizeof(struct pool_item_header);
554 if (nelem) {
555 sz = offsetof(struct pool_item_header,
556 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
557 }
558 pool_init(&phpool[idx], sz, 0, 0, 0,
559 phpool_names[idx], &pool_allocator_meta, IPL_VM);
560 }
561 #ifdef POOL_SUBPAGE
562 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
563 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
564 #endif
565
566 size = sizeof(pcg_t) +
567 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
568 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
569 "pcgnormal", &pool_allocator_meta, IPL_VM);
570
571 size = sizeof(pcg_t) +
572 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
573 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
574 "pcglarge", &pool_allocator_meta, IPL_VM);
575
576 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
577 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
578
579 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
580 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
581 }
582
583 /*
584 * Initialize the given pool resource structure.
585 *
586 * We export this routine to allow other kernel parts to declare
587 * static pools that must be initialized before malloc() is available.
588 */
589 void
590 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
591 const char *wchan, struct pool_allocator *palloc, int ipl)
592 {
593 struct pool *pp1;
594 size_t trysize, phsize;
595 int off, slack;
596
597 #ifdef DEBUG
598 /*
599 * Check that the pool hasn't already been initialised and
600 * added to the list of all pools.
601 */
602 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
603 if (pp == pp1)
604 panic("pool_init: pool %s already initialised",
605 wchan);
606 }
607 #endif
608
609 #ifdef POOL_DIAGNOSTIC
610 /*
611 * Always log if POOL_DIAGNOSTIC is defined.
612 */
613 if (pool_logsize != 0)
614 flags |= PR_LOGGING;
615 #endif
616
617 if (palloc == NULL)
618 palloc = &pool_allocator_kmem;
619 #ifdef POOL_SUBPAGE
620 if (size > palloc->pa_pagesz) {
621 if (palloc == &pool_allocator_kmem)
622 palloc = &pool_allocator_kmem_fullpage;
623 else if (palloc == &pool_allocator_nointr)
624 palloc = &pool_allocator_nointr_fullpage;
625 }
626 #endif /* POOL_SUBPAGE */
627 if (!cold)
628 mutex_enter(&pool_allocator_lock);
629 if (palloc->pa_refcnt++ == 0) {
630 if (palloc->pa_pagesz == 0)
631 palloc->pa_pagesz = PAGE_SIZE;
632
633 TAILQ_INIT(&palloc->pa_list);
634
635 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
636 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
637 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
638 }
639 if (!cold)
640 mutex_exit(&pool_allocator_lock);
641
642 if (align == 0)
643 align = ALIGN(1);
644
645 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
646 size = sizeof(struct pool_item);
647
648 size = roundup(size, align);
649 #ifdef DIAGNOSTIC
650 if (size > palloc->pa_pagesz)
651 panic("pool_init: pool item size (%zu) too large", size);
652 #endif
653
654 /*
655 * Initialize the pool structure.
656 */
657 LIST_INIT(&pp->pr_emptypages);
658 LIST_INIT(&pp->pr_fullpages);
659 LIST_INIT(&pp->pr_partpages);
660 pp->pr_cache = NULL;
661 pp->pr_curpage = NULL;
662 pp->pr_npages = 0;
663 pp->pr_minitems = 0;
664 pp->pr_minpages = 0;
665 pp->pr_maxpages = UINT_MAX;
666 pp->pr_roflags = flags;
667 pp->pr_flags = 0;
668 pp->pr_size = size;
669 pp->pr_align = align;
670 pp->pr_wchan = wchan;
671 pp->pr_alloc = palloc;
672 pp->pr_nitems = 0;
673 pp->pr_nout = 0;
674 pp->pr_hardlimit = UINT_MAX;
675 pp->pr_hardlimit_warning = NULL;
676 pp->pr_hardlimit_ratecap.tv_sec = 0;
677 pp->pr_hardlimit_ratecap.tv_usec = 0;
678 pp->pr_hardlimit_warning_last.tv_sec = 0;
679 pp->pr_hardlimit_warning_last.tv_usec = 0;
680 pp->pr_drain_hook = NULL;
681 pp->pr_drain_hook_arg = NULL;
682 pp->pr_freecheck = NULL;
683
684 /*
685 * Decide whether to put the page header off page to avoid
686 * wasting too large a part of the page or too big item.
687 * Off-page page headers go on a hash table, so we can match
688 * a returned item with its header based on the page address.
689 * We use 1/16 of the page size and about 8 times of the item
690 * size as the threshold (XXX: tune)
691 *
692 * However, we'll put the header into the page if we can put
693 * it without wasting any items.
694 *
695 * Silently enforce `0 <= ioff < align'.
696 */
697 pp->pr_itemoffset = ioff %= align;
698 /* See the comment below about reserved bytes. */
699 trysize = palloc->pa_pagesz - ((align - ioff) % align);
700 phsize = ALIGN(sizeof(struct pool_item_header));
701 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
702 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
703 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
704 /* Use the end of the page for the page header */
705 pp->pr_roflags |= PR_PHINPAGE;
706 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
707 } else {
708 /* The page header will be taken from our page header pool */
709 pp->pr_phoffset = 0;
710 off = palloc->pa_pagesz;
711 SPLAY_INIT(&pp->pr_phtree);
712 }
713
714 /*
715 * Alignment is to take place at `ioff' within the item. This means
716 * we must reserve up to `align - 1' bytes on the page to allow
717 * appropriate positioning of each item.
718 */
719 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
720 KASSERT(pp->pr_itemsperpage != 0);
721 if ((pp->pr_roflags & PR_NOTOUCH)) {
722 int idx;
723
724 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
725 idx++) {
726 /* nothing */
727 }
728 if (idx >= PHPOOL_MAX) {
729 /*
730 * if you see this panic, consider to tweak
731 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
732 */
733 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
734 pp->pr_wchan, pp->pr_itemsperpage);
735 }
736 pp->pr_phpool = &phpool[idx];
737 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
738 pp->pr_phpool = &phpool[0];
739 }
740 #if defined(DIAGNOSTIC)
741 else {
742 pp->pr_phpool = NULL;
743 }
744 #endif
745
746 /*
747 * Use the slack between the chunks and the page header
748 * for "cache coloring".
749 */
750 slack = off - pp->pr_itemsperpage * pp->pr_size;
751 pp->pr_maxcolor = (slack / align) * align;
752 pp->pr_curcolor = 0;
753
754 pp->pr_nget = 0;
755 pp->pr_nfail = 0;
756 pp->pr_nput = 0;
757 pp->pr_npagealloc = 0;
758 pp->pr_npagefree = 0;
759 pp->pr_hiwat = 0;
760 pp->pr_nidle = 0;
761 pp->pr_refcnt = 0;
762
763 pp->pr_log = NULL;
764
765 pp->pr_entered_file = NULL;
766 pp->pr_entered_line = 0;
767
768 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
769 cv_init(&pp->pr_cv, wchan);
770 pp->pr_ipl = ipl;
771
772 /* Insert into the list of all pools. */
773 if (!cold)
774 mutex_enter(&pool_head_lock);
775 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
776 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
777 break;
778 }
779 if (pp1 == NULL)
780 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
781 else
782 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
783 if (!cold)
784 mutex_exit(&pool_head_lock);
785
786 /* Insert this into the list of pools using this allocator. */
787 if (!cold)
788 mutex_enter(&palloc->pa_lock);
789 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
790 if (!cold)
791 mutex_exit(&palloc->pa_lock);
792 }
793
794 /*
795 * De-commision a pool resource.
796 */
797 void
798 pool_destroy(struct pool *pp)
799 {
800 struct pool_pagelist pq;
801 struct pool_item_header *ph;
802
803 /* Remove from global pool list */
804 mutex_enter(&pool_head_lock);
805 while (pp->pr_refcnt != 0)
806 cv_wait(&pool_busy, &pool_head_lock);
807 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
808 if (drainpp == pp)
809 drainpp = NULL;
810 mutex_exit(&pool_head_lock);
811
812 /* Remove this pool from its allocator's list of pools. */
813 mutex_enter(&pp->pr_alloc->pa_lock);
814 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
815 mutex_exit(&pp->pr_alloc->pa_lock);
816
817 mutex_enter(&pool_allocator_lock);
818 if (--pp->pr_alloc->pa_refcnt == 0)
819 mutex_destroy(&pp->pr_alloc->pa_lock);
820 mutex_exit(&pool_allocator_lock);
821
822 mutex_enter(&pp->pr_lock);
823
824 KASSERT(pp->pr_cache == NULL);
825
826 #ifdef DIAGNOSTIC
827 if (pp->pr_nout != 0) {
828 pr_printlog(pp, NULL, printf);
829 panic("pool_destroy: pool busy: still out: %u",
830 pp->pr_nout);
831 }
832 #endif
833
834 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
835 KASSERT(LIST_EMPTY(&pp->pr_partpages));
836
837 /* Remove all pages */
838 LIST_INIT(&pq);
839 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
840 pr_rmpage(pp, ph, &pq);
841
842 mutex_exit(&pp->pr_lock);
843
844 pr_pagelist_free(pp, &pq);
845
846 #ifdef POOL_DIAGNOSTIC
847 if (pp->pr_log != NULL) {
848 free(pp->pr_log, M_TEMP);
849 pp->pr_log = NULL;
850 }
851 #endif
852
853 cv_destroy(&pp->pr_cv);
854 mutex_destroy(&pp->pr_lock);
855 }
856
857 void
858 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
859 {
860
861 /* XXX no locking -- must be used just after pool_init() */
862 #ifdef DIAGNOSTIC
863 if (pp->pr_drain_hook != NULL)
864 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
865 #endif
866 pp->pr_drain_hook = fn;
867 pp->pr_drain_hook_arg = arg;
868 }
869
870 static struct pool_item_header *
871 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
872 {
873 struct pool_item_header *ph;
874
875 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
876 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
877 else
878 ph = pool_get(pp->pr_phpool, flags);
879
880 return (ph);
881 }
882
883 /*
884 * Grab an item from the pool.
885 */
886 void *
887 #ifdef POOL_DIAGNOSTIC
888 _pool_get(struct pool *pp, int flags, const char *file, long line)
889 #else
890 pool_get(struct pool *pp, int flags)
891 #endif
892 {
893 struct pool_item *pi;
894 struct pool_item_header *ph;
895 void *v;
896
897 #ifdef DIAGNOSTIC
898 if (pp->pr_itemsperpage == 0)
899 panic("pool_get: pool '%s': pr_itemsperpage is zero, "
900 "pool not initialized?", pp->pr_wchan);
901 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
902 !cold && panicstr == NULL)
903 panic("pool '%s' is IPL_NONE, but called from "
904 "interrupt context\n", pp->pr_wchan);
905 #endif
906 if (flags & PR_WAITOK) {
907 ASSERT_SLEEPABLE();
908 }
909
910 mutex_enter(&pp->pr_lock);
911 pr_enter(pp, file, line);
912
913 startover:
914 /*
915 * Check to see if we've reached the hard limit. If we have,
916 * and we can wait, then wait until an item has been returned to
917 * the pool.
918 */
919 #ifdef DIAGNOSTIC
920 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
921 pr_leave(pp);
922 mutex_exit(&pp->pr_lock);
923 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
924 }
925 #endif
926 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
927 if (pp->pr_drain_hook != NULL) {
928 /*
929 * Since the drain hook is going to free things
930 * back to the pool, unlock, call the hook, re-lock,
931 * and check the hardlimit condition again.
932 */
933 pr_leave(pp);
934 mutex_exit(&pp->pr_lock);
935 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
936 mutex_enter(&pp->pr_lock);
937 pr_enter(pp, file, line);
938 if (pp->pr_nout < pp->pr_hardlimit)
939 goto startover;
940 }
941
942 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
943 /*
944 * XXX: A warning isn't logged in this case. Should
945 * it be?
946 */
947 pp->pr_flags |= PR_WANTED;
948 pr_leave(pp);
949 cv_wait(&pp->pr_cv, &pp->pr_lock);
950 pr_enter(pp, file, line);
951 goto startover;
952 }
953
954 /*
955 * Log a message that the hard limit has been hit.
956 */
957 if (pp->pr_hardlimit_warning != NULL &&
958 ratecheck(&pp->pr_hardlimit_warning_last,
959 &pp->pr_hardlimit_ratecap))
960 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
961
962 pp->pr_nfail++;
963
964 pr_leave(pp);
965 mutex_exit(&pp->pr_lock);
966 return (NULL);
967 }
968
969 /*
970 * The convention we use is that if `curpage' is not NULL, then
971 * it points at a non-empty bucket. In particular, `curpage'
972 * never points at a page header which has PR_PHINPAGE set and
973 * has no items in its bucket.
974 */
975 if ((ph = pp->pr_curpage) == NULL) {
976 int error;
977
978 #ifdef DIAGNOSTIC
979 if (pp->pr_nitems != 0) {
980 mutex_exit(&pp->pr_lock);
981 printf("pool_get: %s: curpage NULL, nitems %u\n",
982 pp->pr_wchan, pp->pr_nitems);
983 panic("pool_get: nitems inconsistent");
984 }
985 #endif
986
987 /*
988 * Call the back-end page allocator for more memory.
989 * Release the pool lock, as the back-end page allocator
990 * may block.
991 */
992 pr_leave(pp);
993 error = pool_grow(pp, flags);
994 pr_enter(pp, file, line);
995 if (error != 0) {
996 /*
997 * We were unable to allocate a page or item
998 * header, but we released the lock during
999 * allocation, so perhaps items were freed
1000 * back to the pool. Check for this case.
1001 */
1002 if (pp->pr_curpage != NULL)
1003 goto startover;
1004
1005 pp->pr_nfail++;
1006 pr_leave(pp);
1007 mutex_exit(&pp->pr_lock);
1008 return (NULL);
1009 }
1010
1011 /* Start the allocation process over. */
1012 goto startover;
1013 }
1014 if (pp->pr_roflags & PR_NOTOUCH) {
1015 #ifdef DIAGNOSTIC
1016 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1017 pr_leave(pp);
1018 mutex_exit(&pp->pr_lock);
1019 panic("pool_get: %s: page empty", pp->pr_wchan);
1020 }
1021 #endif
1022 v = pr_item_notouch_get(pp, ph);
1023 #ifdef POOL_DIAGNOSTIC
1024 pr_log(pp, v, PRLOG_GET, file, line);
1025 #endif
1026 } else {
1027 v = pi = LIST_FIRST(&ph->ph_itemlist);
1028 if (__predict_false(v == NULL)) {
1029 pr_leave(pp);
1030 mutex_exit(&pp->pr_lock);
1031 panic("pool_get: %s: page empty", pp->pr_wchan);
1032 }
1033 #ifdef DIAGNOSTIC
1034 if (__predict_false(pp->pr_nitems == 0)) {
1035 pr_leave(pp);
1036 mutex_exit(&pp->pr_lock);
1037 printf("pool_get: %s: items on itemlist, nitems %u\n",
1038 pp->pr_wchan, pp->pr_nitems);
1039 panic("pool_get: nitems inconsistent");
1040 }
1041 #endif
1042
1043 #ifdef POOL_DIAGNOSTIC
1044 pr_log(pp, v, PRLOG_GET, file, line);
1045 #endif
1046
1047 #ifdef DIAGNOSTIC
1048 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1049 pr_printlog(pp, pi, printf);
1050 panic("pool_get(%s): free list modified: "
1051 "magic=%x; page %p; item addr %p\n",
1052 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1053 }
1054 #endif
1055
1056 /*
1057 * Remove from item list.
1058 */
1059 LIST_REMOVE(pi, pi_list);
1060 }
1061 pp->pr_nitems--;
1062 pp->pr_nout++;
1063 if (ph->ph_nmissing == 0) {
1064 #ifdef DIAGNOSTIC
1065 if (__predict_false(pp->pr_nidle == 0))
1066 panic("pool_get: nidle inconsistent");
1067 #endif
1068 pp->pr_nidle--;
1069
1070 /*
1071 * This page was previously empty. Move it to the list of
1072 * partially-full pages. This page is already curpage.
1073 */
1074 LIST_REMOVE(ph, ph_pagelist);
1075 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1076 }
1077 ph->ph_nmissing++;
1078 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1079 #ifdef DIAGNOSTIC
1080 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1081 !LIST_EMPTY(&ph->ph_itemlist))) {
1082 pr_leave(pp);
1083 mutex_exit(&pp->pr_lock);
1084 panic("pool_get: %s: nmissing inconsistent",
1085 pp->pr_wchan);
1086 }
1087 #endif
1088 /*
1089 * This page is now full. Move it to the full list
1090 * and select a new current page.
1091 */
1092 LIST_REMOVE(ph, ph_pagelist);
1093 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1094 pool_update_curpage(pp);
1095 }
1096
1097 pp->pr_nget++;
1098 pr_leave(pp);
1099
1100 /*
1101 * If we have a low water mark and we are now below that low
1102 * water mark, add more items to the pool.
1103 */
1104 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1105 /*
1106 * XXX: Should we log a warning? Should we set up a timeout
1107 * to try again in a second or so? The latter could break
1108 * a caller's assumptions about interrupt protection, etc.
1109 */
1110 }
1111
1112 mutex_exit(&pp->pr_lock);
1113 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1114 FREECHECK_OUT(&pp->pr_freecheck, v);
1115 return (v);
1116 }
1117
1118 /*
1119 * Internal version of pool_put(). Pool is already locked/entered.
1120 */
1121 static void
1122 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1123 {
1124 struct pool_item *pi = v;
1125 struct pool_item_header *ph;
1126
1127 KASSERT(mutex_owned(&pp->pr_lock));
1128 FREECHECK_IN(&pp->pr_freecheck, v);
1129 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1130
1131 #ifdef DIAGNOSTIC
1132 if (__predict_false(pp->pr_nout == 0)) {
1133 printf("pool %s: putting with none out\n",
1134 pp->pr_wchan);
1135 panic("pool_put");
1136 }
1137 #endif
1138
1139 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1140 pr_printlog(pp, NULL, printf);
1141 panic("pool_put: %s: page header missing", pp->pr_wchan);
1142 }
1143
1144 /*
1145 * Return to item list.
1146 */
1147 if (pp->pr_roflags & PR_NOTOUCH) {
1148 pr_item_notouch_put(pp, ph, v);
1149 } else {
1150 #ifdef DIAGNOSTIC
1151 pi->pi_magic = PI_MAGIC;
1152 #endif
1153 #ifdef DEBUG
1154 {
1155 int i, *ip = v;
1156
1157 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1158 *ip++ = PI_MAGIC;
1159 }
1160 }
1161 #endif
1162
1163 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1164 }
1165 KDASSERT(ph->ph_nmissing != 0);
1166 ph->ph_nmissing--;
1167 pp->pr_nput++;
1168 pp->pr_nitems++;
1169 pp->pr_nout--;
1170
1171 /* Cancel "pool empty" condition if it exists */
1172 if (pp->pr_curpage == NULL)
1173 pp->pr_curpage = ph;
1174
1175 if (pp->pr_flags & PR_WANTED) {
1176 pp->pr_flags &= ~PR_WANTED;
1177 cv_broadcast(&pp->pr_cv);
1178 }
1179
1180 /*
1181 * If this page is now empty, do one of two things:
1182 *
1183 * (1) If we have more pages than the page high water mark,
1184 * free the page back to the system. ONLY CONSIDER
1185 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1186 * CLAIM.
1187 *
1188 * (2) Otherwise, move the page to the empty page list.
1189 *
1190 * Either way, select a new current page (so we use a partially-full
1191 * page if one is available).
1192 */
1193 if (ph->ph_nmissing == 0) {
1194 pp->pr_nidle++;
1195 if (pp->pr_npages > pp->pr_minpages &&
1196 pp->pr_npages > pp->pr_maxpages) {
1197 pr_rmpage(pp, ph, pq);
1198 } else {
1199 LIST_REMOVE(ph, ph_pagelist);
1200 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1201
1202 /*
1203 * Update the timestamp on the page. A page must
1204 * be idle for some period of time before it can
1205 * be reclaimed by the pagedaemon. This minimizes
1206 * ping-pong'ing for memory.
1207 *
1208 * note for 64-bit time_t: truncating to 32-bit is not
1209 * a problem for our usage.
1210 */
1211 ph->ph_time = time_uptime;
1212 }
1213 pool_update_curpage(pp);
1214 }
1215
1216 /*
1217 * If the page was previously completely full, move it to the
1218 * partially-full list and make it the current page. The next
1219 * allocation will get the item from this page, instead of
1220 * further fragmenting the pool.
1221 */
1222 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1223 LIST_REMOVE(ph, ph_pagelist);
1224 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1225 pp->pr_curpage = ph;
1226 }
1227 }
1228
1229 /*
1230 * Return resource to the pool.
1231 */
1232 #ifdef POOL_DIAGNOSTIC
1233 void
1234 _pool_put(struct pool *pp, void *v, const char *file, long line)
1235 {
1236 struct pool_pagelist pq;
1237
1238 LIST_INIT(&pq);
1239
1240 mutex_enter(&pp->pr_lock);
1241 pr_enter(pp, file, line);
1242
1243 pr_log(pp, v, PRLOG_PUT, file, line);
1244
1245 pool_do_put(pp, v, &pq);
1246
1247 pr_leave(pp);
1248 mutex_exit(&pp->pr_lock);
1249
1250 pr_pagelist_free(pp, &pq);
1251 }
1252 #undef pool_put
1253 #endif /* POOL_DIAGNOSTIC */
1254
1255 void
1256 pool_put(struct pool *pp, void *v)
1257 {
1258 struct pool_pagelist pq;
1259
1260 LIST_INIT(&pq);
1261
1262 mutex_enter(&pp->pr_lock);
1263 pool_do_put(pp, v, &pq);
1264 mutex_exit(&pp->pr_lock);
1265
1266 pr_pagelist_free(pp, &pq);
1267 }
1268
1269 #ifdef POOL_DIAGNOSTIC
1270 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1271 #endif
1272
1273 /*
1274 * pool_grow: grow a pool by a page.
1275 *
1276 * => called with pool locked.
1277 * => unlock and relock the pool.
1278 * => return with pool locked.
1279 */
1280
1281 static int
1282 pool_grow(struct pool *pp, int flags)
1283 {
1284 struct pool_item_header *ph = NULL;
1285 char *cp;
1286
1287 mutex_exit(&pp->pr_lock);
1288 cp = pool_allocator_alloc(pp, flags);
1289 if (__predict_true(cp != NULL)) {
1290 ph = pool_alloc_item_header(pp, cp, flags);
1291 }
1292 if (__predict_false(cp == NULL || ph == NULL)) {
1293 if (cp != NULL) {
1294 pool_allocator_free(pp, cp);
1295 }
1296 mutex_enter(&pp->pr_lock);
1297 return ENOMEM;
1298 }
1299
1300 mutex_enter(&pp->pr_lock);
1301 pool_prime_page(pp, cp, ph);
1302 pp->pr_npagealloc++;
1303 return 0;
1304 }
1305
1306 /*
1307 * Add N items to the pool.
1308 */
1309 int
1310 pool_prime(struct pool *pp, int n)
1311 {
1312 int newpages;
1313 int error = 0;
1314
1315 mutex_enter(&pp->pr_lock);
1316
1317 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1318
1319 while (newpages-- > 0) {
1320 error = pool_grow(pp, PR_NOWAIT);
1321 if (error) {
1322 break;
1323 }
1324 pp->pr_minpages++;
1325 }
1326
1327 if (pp->pr_minpages >= pp->pr_maxpages)
1328 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1329
1330 mutex_exit(&pp->pr_lock);
1331 return error;
1332 }
1333
1334 /*
1335 * Add a page worth of items to the pool.
1336 *
1337 * Note, we must be called with the pool descriptor LOCKED.
1338 */
1339 static void
1340 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1341 {
1342 struct pool_item *pi;
1343 void *cp = storage;
1344 const unsigned int align = pp->pr_align;
1345 const unsigned int ioff = pp->pr_itemoffset;
1346 int n;
1347
1348 KASSERT(mutex_owned(&pp->pr_lock));
1349
1350 #ifdef DIAGNOSTIC
1351 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1352 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1353 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1354 #endif
1355
1356 /*
1357 * Insert page header.
1358 */
1359 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1360 LIST_INIT(&ph->ph_itemlist);
1361 ph->ph_page = storage;
1362 ph->ph_nmissing = 0;
1363 ph->ph_time = time_uptime;
1364 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1365 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1366
1367 pp->pr_nidle++;
1368
1369 /*
1370 * Color this page.
1371 */
1372 ph->ph_off = pp->pr_curcolor;
1373 cp = (char *)cp + ph->ph_off;
1374 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1375 pp->pr_curcolor = 0;
1376
1377 /*
1378 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1379 */
1380 if (ioff != 0)
1381 cp = (char *)cp + align - ioff;
1382
1383 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1384
1385 /*
1386 * Insert remaining chunks on the bucket list.
1387 */
1388 n = pp->pr_itemsperpage;
1389 pp->pr_nitems += n;
1390
1391 if (pp->pr_roflags & PR_NOTOUCH) {
1392 pr_item_notouch_init(pp, ph);
1393 } else {
1394 while (n--) {
1395 pi = (struct pool_item *)cp;
1396
1397 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1398
1399 /* Insert on page list */
1400 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1401 #ifdef DIAGNOSTIC
1402 pi->pi_magic = PI_MAGIC;
1403 #endif
1404 cp = (char *)cp + pp->pr_size;
1405
1406 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1407 }
1408 }
1409
1410 /*
1411 * If the pool was depleted, point at the new page.
1412 */
1413 if (pp->pr_curpage == NULL)
1414 pp->pr_curpage = ph;
1415
1416 if (++pp->pr_npages > pp->pr_hiwat)
1417 pp->pr_hiwat = pp->pr_npages;
1418 }
1419
1420 /*
1421 * Used by pool_get() when nitems drops below the low water mark. This
1422 * is used to catch up pr_nitems with the low water mark.
1423 *
1424 * Note 1, we never wait for memory here, we let the caller decide what to do.
1425 *
1426 * Note 2, we must be called with the pool already locked, and we return
1427 * with it locked.
1428 */
1429 static int
1430 pool_catchup(struct pool *pp)
1431 {
1432 int error = 0;
1433
1434 while (POOL_NEEDS_CATCHUP(pp)) {
1435 error = pool_grow(pp, PR_NOWAIT);
1436 if (error) {
1437 break;
1438 }
1439 }
1440 return error;
1441 }
1442
1443 static void
1444 pool_update_curpage(struct pool *pp)
1445 {
1446
1447 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1448 if (pp->pr_curpage == NULL) {
1449 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1450 }
1451 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1452 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1453 }
1454
1455 void
1456 pool_setlowat(struct pool *pp, int n)
1457 {
1458
1459 mutex_enter(&pp->pr_lock);
1460
1461 pp->pr_minitems = n;
1462 pp->pr_minpages = (n == 0)
1463 ? 0
1464 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1465
1466 /* Make sure we're caught up with the newly-set low water mark. */
1467 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1468 /*
1469 * XXX: Should we log a warning? Should we set up a timeout
1470 * to try again in a second or so? The latter could break
1471 * a caller's assumptions about interrupt protection, etc.
1472 */
1473 }
1474
1475 mutex_exit(&pp->pr_lock);
1476 }
1477
1478 void
1479 pool_sethiwat(struct pool *pp, int n)
1480 {
1481
1482 mutex_enter(&pp->pr_lock);
1483
1484 pp->pr_maxpages = (n == 0)
1485 ? 0
1486 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1487
1488 mutex_exit(&pp->pr_lock);
1489 }
1490
1491 void
1492 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1493 {
1494
1495 mutex_enter(&pp->pr_lock);
1496
1497 pp->pr_hardlimit = n;
1498 pp->pr_hardlimit_warning = warnmess;
1499 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1500 pp->pr_hardlimit_warning_last.tv_sec = 0;
1501 pp->pr_hardlimit_warning_last.tv_usec = 0;
1502
1503 /*
1504 * In-line version of pool_sethiwat(), because we don't want to
1505 * release the lock.
1506 */
1507 pp->pr_maxpages = (n == 0)
1508 ? 0
1509 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1510
1511 mutex_exit(&pp->pr_lock);
1512 }
1513
1514 /*
1515 * Release all complete pages that have not been used recently.
1516 *
1517 * Might be called from interrupt context.
1518 */
1519 int
1520 #ifdef POOL_DIAGNOSTIC
1521 _pool_reclaim(struct pool *pp, const char *file, long line)
1522 #else
1523 pool_reclaim(struct pool *pp)
1524 #endif
1525 {
1526 struct pool_item_header *ph, *phnext;
1527 struct pool_pagelist pq;
1528 uint32_t curtime;
1529 bool klock;
1530 int rv;
1531
1532 if (cpu_intr_p() || cpu_softintr_p()) {
1533 KASSERT(pp->pr_ipl != IPL_NONE);
1534 }
1535
1536 if (pp->pr_drain_hook != NULL) {
1537 /*
1538 * The drain hook must be called with the pool unlocked.
1539 */
1540 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1541 }
1542
1543 /*
1544 * XXXSMP Because we do not want to cause non-MPSAFE code
1545 * to block.
1546 */
1547 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1548 pp->pr_ipl == IPL_SOFTSERIAL) {
1549 KERNEL_LOCK(1, NULL);
1550 klock = true;
1551 } else
1552 klock = false;
1553
1554 /* Reclaim items from the pool's cache (if any). */
1555 if (pp->pr_cache != NULL)
1556 pool_cache_invalidate(pp->pr_cache);
1557
1558 if (mutex_tryenter(&pp->pr_lock) == 0) {
1559 if (klock) {
1560 KERNEL_UNLOCK_ONE(NULL);
1561 }
1562 return (0);
1563 }
1564 pr_enter(pp, file, line);
1565
1566 LIST_INIT(&pq);
1567
1568 curtime = time_uptime;
1569
1570 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1571 phnext = LIST_NEXT(ph, ph_pagelist);
1572
1573 /* Check our minimum page claim */
1574 if (pp->pr_npages <= pp->pr_minpages)
1575 break;
1576
1577 KASSERT(ph->ph_nmissing == 0);
1578 if (curtime - ph->ph_time < pool_inactive_time)
1579 continue;
1580
1581 /*
1582 * If freeing this page would put us below
1583 * the low water mark, stop now.
1584 */
1585 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1586 pp->pr_minitems)
1587 break;
1588
1589 pr_rmpage(pp, ph, &pq);
1590 }
1591
1592 pr_leave(pp);
1593 mutex_exit(&pp->pr_lock);
1594
1595 if (LIST_EMPTY(&pq))
1596 rv = 0;
1597 else {
1598 pr_pagelist_free(pp, &pq);
1599 rv = 1;
1600 }
1601
1602 if (klock) {
1603 KERNEL_UNLOCK_ONE(NULL);
1604 }
1605
1606 return (rv);
1607 }
1608
1609 /*
1610 * Drain pools, one at a time. This is a two stage process;
1611 * drain_start kicks off a cross call to drain CPU-level caches
1612 * if the pool has an associated pool_cache. drain_end waits
1613 * for those cross calls to finish, and then drains the cache
1614 * (if any) and pool.
1615 *
1616 * Note, must never be called from interrupt context.
1617 */
1618 void
1619 pool_drain_start(struct pool **ppp, uint64_t *wp)
1620 {
1621 struct pool *pp;
1622
1623 KASSERT(!TAILQ_EMPTY(&pool_head));
1624
1625 pp = NULL;
1626
1627 /* Find next pool to drain, and add a reference. */
1628 mutex_enter(&pool_head_lock);
1629 do {
1630 if (drainpp == NULL) {
1631 drainpp = TAILQ_FIRST(&pool_head);
1632 }
1633 if (drainpp != NULL) {
1634 pp = drainpp;
1635 drainpp = TAILQ_NEXT(pp, pr_poollist);
1636 }
1637 /*
1638 * Skip completely idle pools. We depend on at least
1639 * one pool in the system being active.
1640 */
1641 } while (pp == NULL || pp->pr_npages == 0);
1642 pp->pr_refcnt++;
1643 mutex_exit(&pool_head_lock);
1644
1645 /* If there is a pool_cache, drain CPU level caches. */
1646 *ppp = pp;
1647 if (pp->pr_cache != NULL) {
1648 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1649 pp->pr_cache, NULL);
1650 }
1651 }
1652
1653 bool
1654 pool_drain_end(struct pool *pp, uint64_t where)
1655 {
1656 bool reclaimed;
1657
1658 if (pp == NULL)
1659 return false;
1660
1661 KASSERT(pp->pr_refcnt > 0);
1662
1663 /* Wait for remote draining to complete. */
1664 if (pp->pr_cache != NULL)
1665 xc_wait(where);
1666
1667 /* Drain the cache (if any) and pool.. */
1668 reclaimed = pool_reclaim(pp);
1669
1670 /* Finally, unlock the pool. */
1671 mutex_enter(&pool_head_lock);
1672 pp->pr_refcnt--;
1673 cv_broadcast(&pool_busy);
1674 mutex_exit(&pool_head_lock);
1675
1676 return reclaimed;
1677 }
1678
1679 /*
1680 * Diagnostic helpers.
1681 */
1682 void
1683 pool_print(struct pool *pp, const char *modif)
1684 {
1685
1686 pool_print1(pp, modif, printf);
1687 }
1688
1689 void
1690 pool_printall(const char *modif, void (*pr)(const char *, ...))
1691 {
1692 struct pool *pp;
1693
1694 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1695 pool_printit(pp, modif, pr);
1696 }
1697 }
1698
1699 void
1700 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1701 {
1702
1703 if (pp == NULL) {
1704 (*pr)("Must specify a pool to print.\n");
1705 return;
1706 }
1707
1708 pool_print1(pp, modif, pr);
1709 }
1710
1711 static void
1712 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1713 void (*pr)(const char *, ...))
1714 {
1715 struct pool_item_header *ph;
1716 #ifdef DIAGNOSTIC
1717 struct pool_item *pi;
1718 #endif
1719
1720 LIST_FOREACH(ph, pl, ph_pagelist) {
1721 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1722 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1723 #ifdef DIAGNOSTIC
1724 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1725 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1726 if (pi->pi_magic != PI_MAGIC) {
1727 (*pr)("\t\t\titem %p, magic 0x%x\n",
1728 pi, pi->pi_magic);
1729 }
1730 }
1731 }
1732 #endif
1733 }
1734 }
1735
1736 static void
1737 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1738 {
1739 struct pool_item_header *ph;
1740 pool_cache_t pc;
1741 pcg_t *pcg;
1742 pool_cache_cpu_t *cc;
1743 uint64_t cpuhit, cpumiss;
1744 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1745 char c;
1746
1747 while ((c = *modif++) != '\0') {
1748 if (c == 'l')
1749 print_log = 1;
1750 if (c == 'p')
1751 print_pagelist = 1;
1752 if (c == 'c')
1753 print_cache = 1;
1754 }
1755
1756 if ((pc = pp->pr_cache) != NULL) {
1757 (*pr)("POOL CACHE");
1758 } else {
1759 (*pr)("POOL");
1760 }
1761
1762 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1763 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1764 pp->pr_roflags);
1765 (*pr)("\talloc %p\n", pp->pr_alloc);
1766 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1767 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1768 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1769 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1770
1771 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1772 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1773 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1774 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1775
1776 if (print_pagelist == 0)
1777 goto skip_pagelist;
1778
1779 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1780 (*pr)("\n\tempty page list:\n");
1781 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1782 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1783 (*pr)("\n\tfull page list:\n");
1784 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1785 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1786 (*pr)("\n\tpartial-page list:\n");
1787 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1788
1789 if (pp->pr_curpage == NULL)
1790 (*pr)("\tno current page\n");
1791 else
1792 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1793
1794 skip_pagelist:
1795 if (print_log == 0)
1796 goto skip_log;
1797
1798 (*pr)("\n");
1799 if ((pp->pr_roflags & PR_LOGGING) == 0)
1800 (*pr)("\tno log\n");
1801 else {
1802 pr_printlog(pp, NULL, pr);
1803 }
1804
1805 skip_log:
1806
1807 #define PR_GROUPLIST(pcg) \
1808 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1809 for (i = 0; i < pcg->pcg_size; i++) { \
1810 if (pcg->pcg_objects[i].pcgo_pa != \
1811 POOL_PADDR_INVALID) { \
1812 (*pr)("\t\t\t%p, 0x%llx\n", \
1813 pcg->pcg_objects[i].pcgo_va, \
1814 (unsigned long long) \
1815 pcg->pcg_objects[i].pcgo_pa); \
1816 } else { \
1817 (*pr)("\t\t\t%p\n", \
1818 pcg->pcg_objects[i].pcgo_va); \
1819 } \
1820 }
1821
1822 if (pc != NULL) {
1823 cpuhit = 0;
1824 cpumiss = 0;
1825 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1826 if ((cc = pc->pc_cpus[i]) == NULL)
1827 continue;
1828 cpuhit += cc->cc_hits;
1829 cpumiss += cc->cc_misses;
1830 }
1831 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1832 (*pr)("\tcache layer hits %llu misses %llu\n",
1833 pc->pc_hits, pc->pc_misses);
1834 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1835 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1836 pc->pc_contended);
1837 (*pr)("\tcache layer empty groups %u full groups %u\n",
1838 pc->pc_nempty, pc->pc_nfull);
1839 if (print_cache) {
1840 (*pr)("\tfull cache groups:\n");
1841 for (pcg = pc->pc_fullgroups; pcg != NULL;
1842 pcg = pcg->pcg_next) {
1843 PR_GROUPLIST(pcg);
1844 }
1845 (*pr)("\tempty cache groups:\n");
1846 for (pcg = pc->pc_emptygroups; pcg != NULL;
1847 pcg = pcg->pcg_next) {
1848 PR_GROUPLIST(pcg);
1849 }
1850 }
1851 }
1852 #undef PR_GROUPLIST
1853
1854 pr_enter_check(pp, pr);
1855 }
1856
1857 static int
1858 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1859 {
1860 struct pool_item *pi;
1861 void *page;
1862 int n;
1863
1864 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1865 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1866 if (page != ph->ph_page &&
1867 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1868 if (label != NULL)
1869 printf("%s: ", label);
1870 printf("pool(%p:%s): page inconsistency: page %p;"
1871 " at page head addr %p (p %p)\n", pp,
1872 pp->pr_wchan, ph->ph_page,
1873 ph, page);
1874 return 1;
1875 }
1876 }
1877
1878 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1879 return 0;
1880
1881 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1882 pi != NULL;
1883 pi = LIST_NEXT(pi,pi_list), n++) {
1884
1885 #ifdef DIAGNOSTIC
1886 if (pi->pi_magic != PI_MAGIC) {
1887 if (label != NULL)
1888 printf("%s: ", label);
1889 printf("pool(%s): free list modified: magic=%x;"
1890 " page %p; item ordinal %d; addr %p\n",
1891 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1892 n, pi);
1893 panic("pool");
1894 }
1895 #endif
1896 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1897 continue;
1898 }
1899 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1900 if (page == ph->ph_page)
1901 continue;
1902
1903 if (label != NULL)
1904 printf("%s: ", label);
1905 printf("pool(%p:%s): page inconsistency: page %p;"
1906 " item ordinal %d; addr %p (p %p)\n", pp,
1907 pp->pr_wchan, ph->ph_page,
1908 n, pi, page);
1909 return 1;
1910 }
1911 return 0;
1912 }
1913
1914
1915 int
1916 pool_chk(struct pool *pp, const char *label)
1917 {
1918 struct pool_item_header *ph;
1919 int r = 0;
1920
1921 mutex_enter(&pp->pr_lock);
1922 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1923 r = pool_chk_page(pp, label, ph);
1924 if (r) {
1925 goto out;
1926 }
1927 }
1928 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1929 r = pool_chk_page(pp, label, ph);
1930 if (r) {
1931 goto out;
1932 }
1933 }
1934 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1935 r = pool_chk_page(pp, label, ph);
1936 if (r) {
1937 goto out;
1938 }
1939 }
1940
1941 out:
1942 mutex_exit(&pp->pr_lock);
1943 return (r);
1944 }
1945
1946 /*
1947 * pool_cache_init:
1948 *
1949 * Initialize a pool cache.
1950 */
1951 pool_cache_t
1952 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1953 const char *wchan, struct pool_allocator *palloc, int ipl,
1954 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1955 {
1956 pool_cache_t pc;
1957
1958 pc = pool_get(&cache_pool, PR_WAITOK);
1959 if (pc == NULL)
1960 return NULL;
1961
1962 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1963 palloc, ipl, ctor, dtor, arg);
1964
1965 return pc;
1966 }
1967
1968 /*
1969 * pool_cache_bootstrap:
1970 *
1971 * Kernel-private version of pool_cache_init(). The caller
1972 * provides initial storage.
1973 */
1974 void
1975 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1976 u_int align_offset, u_int flags, const char *wchan,
1977 struct pool_allocator *palloc, int ipl,
1978 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1979 void *arg)
1980 {
1981 CPU_INFO_ITERATOR cii;
1982 pool_cache_t pc1;
1983 struct cpu_info *ci;
1984 struct pool *pp;
1985
1986 pp = &pc->pc_pool;
1987 if (palloc == NULL && ipl == IPL_NONE)
1988 palloc = &pool_allocator_nointr;
1989 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1990 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1991
1992 if (ctor == NULL) {
1993 ctor = (int (*)(void *, void *, int))nullop;
1994 }
1995 if (dtor == NULL) {
1996 dtor = (void (*)(void *, void *))nullop;
1997 }
1998
1999 pc->pc_emptygroups = NULL;
2000 pc->pc_fullgroups = NULL;
2001 pc->pc_partgroups = NULL;
2002 pc->pc_ctor = ctor;
2003 pc->pc_dtor = dtor;
2004 pc->pc_arg = arg;
2005 pc->pc_hits = 0;
2006 pc->pc_misses = 0;
2007 pc->pc_nempty = 0;
2008 pc->pc_npart = 0;
2009 pc->pc_nfull = 0;
2010 pc->pc_contended = 0;
2011 pc->pc_refcnt = 0;
2012 pc->pc_freecheck = NULL;
2013
2014 if ((flags & PR_LARGECACHE) != 0) {
2015 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2016 pc->pc_pcgpool = &pcg_large_pool;
2017 } else {
2018 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2019 pc->pc_pcgpool = &pcg_normal_pool;
2020 }
2021
2022 /* Allocate per-CPU caches. */
2023 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2024 pc->pc_ncpu = 0;
2025 if (ncpu < 2) {
2026 /* XXX For sparc: boot CPU is not attached yet. */
2027 pool_cache_cpu_init1(curcpu(), pc);
2028 } else {
2029 for (CPU_INFO_FOREACH(cii, ci)) {
2030 pool_cache_cpu_init1(ci, pc);
2031 }
2032 }
2033
2034 /* Add to list of all pools. */
2035 if (__predict_true(!cold))
2036 mutex_enter(&pool_head_lock);
2037 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2038 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2039 break;
2040 }
2041 if (pc1 == NULL)
2042 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2043 else
2044 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2045 if (__predict_true(!cold))
2046 mutex_exit(&pool_head_lock);
2047
2048 membar_sync();
2049 pp->pr_cache = pc;
2050 }
2051
2052 /*
2053 * pool_cache_destroy:
2054 *
2055 * Destroy a pool cache.
2056 */
2057 void
2058 pool_cache_destroy(pool_cache_t pc)
2059 {
2060
2061 pool_cache_bootstrap_destroy(pc);
2062 pool_put(&cache_pool, pc);
2063 }
2064
2065 /*
2066 * pool_cache_bootstrap_destroy:
2067 *
2068 * Destroy a pool cache.
2069 */
2070 void
2071 pool_cache_bootstrap_destroy(pool_cache_t pc)
2072 {
2073 struct pool *pp = &pc->pc_pool;
2074 u_int i;
2075
2076 /* Remove it from the global list. */
2077 mutex_enter(&pool_head_lock);
2078 while (pc->pc_refcnt != 0)
2079 cv_wait(&pool_busy, &pool_head_lock);
2080 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2081 mutex_exit(&pool_head_lock);
2082
2083 /* First, invalidate the entire cache. */
2084 pool_cache_invalidate(pc);
2085
2086 /* Disassociate it from the pool. */
2087 mutex_enter(&pp->pr_lock);
2088 pp->pr_cache = NULL;
2089 mutex_exit(&pp->pr_lock);
2090
2091 /* Destroy per-CPU data */
2092 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2093 pool_cache_invalidate_cpu(pc, i);
2094
2095 /* Finally, destroy it. */
2096 mutex_destroy(&pc->pc_lock);
2097 pool_destroy(pp);
2098 }
2099
2100 /*
2101 * pool_cache_cpu_init1:
2102 *
2103 * Called for each pool_cache whenever a new CPU is attached.
2104 */
2105 static void
2106 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2107 {
2108 pool_cache_cpu_t *cc;
2109 int index;
2110
2111 index = ci->ci_index;
2112
2113 KASSERT(index < __arraycount(pc->pc_cpus));
2114
2115 if ((cc = pc->pc_cpus[index]) != NULL) {
2116 KASSERT(cc->cc_cpuindex == index);
2117 return;
2118 }
2119
2120 /*
2121 * The first CPU is 'free'. This needs to be the case for
2122 * bootstrap - we may not be able to allocate yet.
2123 */
2124 if (pc->pc_ncpu == 0) {
2125 cc = &pc->pc_cpu0;
2126 pc->pc_ncpu = 1;
2127 } else {
2128 mutex_enter(&pc->pc_lock);
2129 pc->pc_ncpu++;
2130 mutex_exit(&pc->pc_lock);
2131 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2132 }
2133
2134 cc->cc_ipl = pc->pc_pool.pr_ipl;
2135 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2136 cc->cc_cache = pc;
2137 cc->cc_cpuindex = index;
2138 cc->cc_hits = 0;
2139 cc->cc_misses = 0;
2140 cc->cc_current = __UNCONST(&pcg_dummy);
2141 cc->cc_previous = __UNCONST(&pcg_dummy);
2142
2143 pc->pc_cpus[index] = cc;
2144 }
2145
2146 /*
2147 * pool_cache_cpu_init:
2148 *
2149 * Called whenever a new CPU is attached.
2150 */
2151 void
2152 pool_cache_cpu_init(struct cpu_info *ci)
2153 {
2154 pool_cache_t pc;
2155
2156 mutex_enter(&pool_head_lock);
2157 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2158 pc->pc_refcnt++;
2159 mutex_exit(&pool_head_lock);
2160
2161 pool_cache_cpu_init1(ci, pc);
2162
2163 mutex_enter(&pool_head_lock);
2164 pc->pc_refcnt--;
2165 cv_broadcast(&pool_busy);
2166 }
2167 mutex_exit(&pool_head_lock);
2168 }
2169
2170 /*
2171 * pool_cache_reclaim:
2172 *
2173 * Reclaim memory from a pool cache.
2174 */
2175 bool
2176 pool_cache_reclaim(pool_cache_t pc)
2177 {
2178
2179 return pool_reclaim(&pc->pc_pool);
2180 }
2181
2182 static void
2183 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2184 {
2185
2186 (*pc->pc_dtor)(pc->pc_arg, object);
2187 pool_put(&pc->pc_pool, object);
2188 }
2189
2190 /*
2191 * pool_cache_destruct_object:
2192 *
2193 * Force destruction of an object and its release back into
2194 * the pool.
2195 */
2196 void
2197 pool_cache_destruct_object(pool_cache_t pc, void *object)
2198 {
2199
2200 FREECHECK_IN(&pc->pc_freecheck, object);
2201
2202 pool_cache_destruct_object1(pc, object);
2203 }
2204
2205 /*
2206 * pool_cache_invalidate_groups:
2207 *
2208 * Invalidate a chain of groups and destruct all objects.
2209 */
2210 static void
2211 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2212 {
2213 void *object;
2214 pcg_t *next;
2215 int i;
2216
2217 for (; pcg != NULL; pcg = next) {
2218 next = pcg->pcg_next;
2219
2220 for (i = 0; i < pcg->pcg_avail; i++) {
2221 object = pcg->pcg_objects[i].pcgo_va;
2222 pool_cache_destruct_object1(pc, object);
2223 }
2224
2225 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2226 pool_put(&pcg_large_pool, pcg);
2227 } else {
2228 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2229 pool_put(&pcg_normal_pool, pcg);
2230 }
2231 }
2232 }
2233
2234 /*
2235 * pool_cache_invalidate:
2236 *
2237 * Invalidate a pool cache (destruct and release all of the
2238 * cached objects). Does not reclaim objects from the pool.
2239 *
2240 * Note: For pool caches that provide constructed objects, there
2241 * is an assumption that another level of synchronization is occurring
2242 * between the input to the constructor and the cache invalidation.
2243 */
2244 void
2245 pool_cache_invalidate(pool_cache_t pc)
2246 {
2247 pcg_t *full, *empty, *part;
2248
2249 /*
2250 * Transfer the content of the local CPU's cache back into global
2251 * cache. Note that this does not handle objects cached for other CPUs.
2252 * A xcall(9) must be scheduled to take care of them.
2253 */
2254 pool_cache_xcall(pc);
2255
2256 /* Invalidate the global cache. */
2257 mutex_enter(&pc->pc_lock);
2258 full = pc->pc_fullgroups;
2259 empty = pc->pc_emptygroups;
2260 part = pc->pc_partgroups;
2261 pc->pc_fullgroups = NULL;
2262 pc->pc_emptygroups = NULL;
2263 pc->pc_partgroups = NULL;
2264 pc->pc_nfull = 0;
2265 pc->pc_nempty = 0;
2266 pc->pc_npart = 0;
2267 mutex_exit(&pc->pc_lock);
2268
2269 pool_cache_invalidate_groups(pc, full);
2270 pool_cache_invalidate_groups(pc, empty);
2271 pool_cache_invalidate_groups(pc, part);
2272 }
2273
2274 /*
2275 * pool_cache_invalidate_cpu:
2276 *
2277 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2278 * identified by its associated index.
2279 * It is caller's responsibility to ensure that no operation is
2280 * taking place on this pool cache while doing this invalidation.
2281 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2282 * pool cached objects from a CPU different from the one currently running
2283 * may result in an undefined behaviour.
2284 */
2285 static void
2286 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2287 {
2288
2289 pool_cache_cpu_t *cc;
2290 pcg_t *pcg;
2291
2292 if ((cc = pc->pc_cpus[index]) == NULL)
2293 return;
2294
2295 if ((pcg = cc->cc_current) != &pcg_dummy) {
2296 pcg->pcg_next = NULL;
2297 pool_cache_invalidate_groups(pc, pcg);
2298 }
2299 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2300 pcg->pcg_next = NULL;
2301 pool_cache_invalidate_groups(pc, pcg);
2302 }
2303 if (cc != &pc->pc_cpu0)
2304 pool_put(&cache_cpu_pool, cc);
2305
2306 }
2307
2308 void
2309 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2310 {
2311
2312 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2313 }
2314
2315 void
2316 pool_cache_setlowat(pool_cache_t pc, int n)
2317 {
2318
2319 pool_setlowat(&pc->pc_pool, n);
2320 }
2321
2322 void
2323 pool_cache_sethiwat(pool_cache_t pc, int n)
2324 {
2325
2326 pool_sethiwat(&pc->pc_pool, n);
2327 }
2328
2329 void
2330 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2331 {
2332
2333 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2334 }
2335
2336 static bool __noinline
2337 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2338 paddr_t *pap, int flags)
2339 {
2340 pcg_t *pcg, *cur;
2341 uint64_t ncsw;
2342 pool_cache_t pc;
2343 void *object;
2344
2345 KASSERT(cc->cc_current->pcg_avail == 0);
2346 KASSERT(cc->cc_previous->pcg_avail == 0);
2347
2348 pc = cc->cc_cache;
2349 cc->cc_misses++;
2350
2351 /*
2352 * Nothing was available locally. Try and grab a group
2353 * from the cache.
2354 */
2355 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2356 ncsw = curlwp->l_ncsw;
2357 mutex_enter(&pc->pc_lock);
2358 pc->pc_contended++;
2359
2360 /*
2361 * If we context switched while locking, then
2362 * our view of the per-CPU data is invalid:
2363 * retry.
2364 */
2365 if (curlwp->l_ncsw != ncsw) {
2366 mutex_exit(&pc->pc_lock);
2367 return true;
2368 }
2369 }
2370
2371 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2372 /*
2373 * If there's a full group, release our empty
2374 * group back to the cache. Install the full
2375 * group as cc_current and return.
2376 */
2377 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2378 KASSERT(cur->pcg_avail == 0);
2379 cur->pcg_next = pc->pc_emptygroups;
2380 pc->pc_emptygroups = cur;
2381 pc->pc_nempty++;
2382 }
2383 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2384 cc->cc_current = pcg;
2385 pc->pc_fullgroups = pcg->pcg_next;
2386 pc->pc_hits++;
2387 pc->pc_nfull--;
2388 mutex_exit(&pc->pc_lock);
2389 return true;
2390 }
2391
2392 /*
2393 * Nothing available locally or in cache. Take the slow
2394 * path: fetch a new object from the pool and construct
2395 * it.
2396 */
2397 pc->pc_misses++;
2398 mutex_exit(&pc->pc_lock);
2399 splx(s);
2400
2401 object = pool_get(&pc->pc_pool, flags);
2402 *objectp = object;
2403 if (__predict_false(object == NULL))
2404 return false;
2405
2406 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2407 pool_put(&pc->pc_pool, object);
2408 *objectp = NULL;
2409 return false;
2410 }
2411
2412 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2413 (pc->pc_pool.pr_align - 1)) == 0);
2414
2415 if (pap != NULL) {
2416 #ifdef POOL_VTOPHYS
2417 *pap = POOL_VTOPHYS(object);
2418 #else
2419 *pap = POOL_PADDR_INVALID;
2420 #endif
2421 }
2422
2423 FREECHECK_OUT(&pc->pc_freecheck, object);
2424 return false;
2425 }
2426
2427 /*
2428 * pool_cache_get{,_paddr}:
2429 *
2430 * Get an object from a pool cache (optionally returning
2431 * the physical address of the object).
2432 */
2433 void *
2434 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2435 {
2436 pool_cache_cpu_t *cc;
2437 pcg_t *pcg;
2438 void *object;
2439 int s;
2440
2441 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2442 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2443 "pool '%s' is IPL_NONE, but called from interrupt context\n",
2444 pc->pc_pool.pr_wchan);
2445
2446 if (flags & PR_WAITOK) {
2447 ASSERT_SLEEPABLE();
2448 }
2449
2450 /* Lock out interrupts and disable preemption. */
2451 s = splvm();
2452 while (/* CONSTCOND */ true) {
2453 /* Try and allocate an object from the current group. */
2454 cc = pc->pc_cpus[curcpu()->ci_index];
2455 KASSERT(cc->cc_cache == pc);
2456 pcg = cc->cc_current;
2457 if (__predict_true(pcg->pcg_avail > 0)) {
2458 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2459 if (__predict_false(pap != NULL))
2460 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2461 #if defined(DIAGNOSTIC)
2462 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2463 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2464 KASSERT(object != NULL);
2465 #endif
2466 cc->cc_hits++;
2467 splx(s);
2468 FREECHECK_OUT(&pc->pc_freecheck, object);
2469 return object;
2470 }
2471
2472 /*
2473 * That failed. If the previous group isn't empty, swap
2474 * it with the current group and allocate from there.
2475 */
2476 pcg = cc->cc_previous;
2477 if (__predict_true(pcg->pcg_avail > 0)) {
2478 cc->cc_previous = cc->cc_current;
2479 cc->cc_current = pcg;
2480 continue;
2481 }
2482
2483 /*
2484 * Can't allocate from either group: try the slow path.
2485 * If get_slow() allocated an object for us, or if
2486 * no more objects are available, it will return false.
2487 * Otherwise, we need to retry.
2488 */
2489 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2490 break;
2491 }
2492
2493 return object;
2494 }
2495
2496 static bool __noinline
2497 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2498 {
2499 pcg_t *pcg, *cur;
2500 uint64_t ncsw;
2501 pool_cache_t pc;
2502
2503 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2504 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2505
2506 pc = cc->cc_cache;
2507 pcg = NULL;
2508 cc->cc_misses++;
2509
2510 /*
2511 * If there are no empty groups in the cache then allocate one
2512 * while still unlocked.
2513 */
2514 if (__predict_false(pc->pc_emptygroups == NULL)) {
2515 if (__predict_true(!pool_cache_disable)) {
2516 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2517 }
2518 if (__predict_true(pcg != NULL)) {
2519 pcg->pcg_avail = 0;
2520 pcg->pcg_size = pc->pc_pcgsize;
2521 }
2522 }
2523
2524 /* Lock the cache. */
2525 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2526 ncsw = curlwp->l_ncsw;
2527 mutex_enter(&pc->pc_lock);
2528 pc->pc_contended++;
2529
2530 /*
2531 * If we context switched while locking, then our view of
2532 * the per-CPU data is invalid: retry.
2533 */
2534 if (__predict_false(curlwp->l_ncsw != ncsw)) {
2535 mutex_exit(&pc->pc_lock);
2536 if (pcg != NULL) {
2537 pool_put(pc->pc_pcgpool, pcg);
2538 }
2539 return true;
2540 }
2541 }
2542
2543 /* If there are no empty groups in the cache then allocate one. */
2544 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2545 pcg = pc->pc_emptygroups;
2546 pc->pc_emptygroups = pcg->pcg_next;
2547 pc->pc_nempty--;
2548 }
2549
2550 /*
2551 * If there's a empty group, release our full group back
2552 * to the cache. Install the empty group to the local CPU
2553 * and return.
2554 */
2555 if (pcg != NULL) {
2556 KASSERT(pcg->pcg_avail == 0);
2557 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2558 cc->cc_previous = pcg;
2559 } else {
2560 cur = cc->cc_current;
2561 if (__predict_true(cur != &pcg_dummy)) {
2562 KASSERT(cur->pcg_avail == cur->pcg_size);
2563 cur->pcg_next = pc->pc_fullgroups;
2564 pc->pc_fullgroups = cur;
2565 pc->pc_nfull++;
2566 }
2567 cc->cc_current = pcg;
2568 }
2569 pc->pc_hits++;
2570 mutex_exit(&pc->pc_lock);
2571 return true;
2572 }
2573
2574 /*
2575 * Nothing available locally or in cache, and we didn't
2576 * allocate an empty group. Take the slow path and destroy
2577 * the object here and now.
2578 */
2579 pc->pc_misses++;
2580 mutex_exit(&pc->pc_lock);
2581 splx(s);
2582 pool_cache_destruct_object(pc, object);
2583
2584 return false;
2585 }
2586
2587 /*
2588 * pool_cache_put{,_paddr}:
2589 *
2590 * Put an object back to the pool cache (optionally caching the
2591 * physical address of the object).
2592 */
2593 void
2594 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2595 {
2596 pool_cache_cpu_t *cc;
2597 pcg_t *pcg;
2598 int s;
2599
2600 KASSERT(object != NULL);
2601 FREECHECK_IN(&pc->pc_freecheck, object);
2602
2603 /* Lock out interrupts and disable preemption. */
2604 s = splvm();
2605 while (/* CONSTCOND */ true) {
2606 /* If the current group isn't full, release it there. */
2607 cc = pc->pc_cpus[curcpu()->ci_index];
2608 KASSERT(cc->cc_cache == pc);
2609 pcg = cc->cc_current;
2610 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2611 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2612 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2613 pcg->pcg_avail++;
2614 cc->cc_hits++;
2615 splx(s);
2616 return;
2617 }
2618
2619 /*
2620 * That failed. If the previous group isn't full, swap
2621 * it with the current group and try again.
2622 */
2623 pcg = cc->cc_previous;
2624 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2625 cc->cc_previous = cc->cc_current;
2626 cc->cc_current = pcg;
2627 continue;
2628 }
2629
2630 /*
2631 * Can't free to either group: try the slow path.
2632 * If put_slow() releases the object for us, it
2633 * will return false. Otherwise we need to retry.
2634 */
2635 if (!pool_cache_put_slow(cc, s, object))
2636 break;
2637 }
2638 }
2639
2640 /*
2641 * pool_cache_xcall:
2642 *
2643 * Transfer objects from the per-CPU cache to the global cache.
2644 * Run within a cross-call thread.
2645 */
2646 static void
2647 pool_cache_xcall(pool_cache_t pc)
2648 {
2649 pool_cache_cpu_t *cc;
2650 pcg_t *prev, *cur, **list;
2651 int s;
2652
2653 s = splvm();
2654 mutex_enter(&pc->pc_lock);
2655 cc = pc->pc_cpus[curcpu()->ci_index];
2656 cur = cc->cc_current;
2657 cc->cc_current = __UNCONST(&pcg_dummy);
2658 prev = cc->cc_previous;
2659 cc->cc_previous = __UNCONST(&pcg_dummy);
2660 if (cur != &pcg_dummy) {
2661 if (cur->pcg_avail == cur->pcg_size) {
2662 list = &pc->pc_fullgroups;
2663 pc->pc_nfull++;
2664 } else if (cur->pcg_avail == 0) {
2665 list = &pc->pc_emptygroups;
2666 pc->pc_nempty++;
2667 } else {
2668 list = &pc->pc_partgroups;
2669 pc->pc_npart++;
2670 }
2671 cur->pcg_next = *list;
2672 *list = cur;
2673 }
2674 if (prev != &pcg_dummy) {
2675 if (prev->pcg_avail == prev->pcg_size) {
2676 list = &pc->pc_fullgroups;
2677 pc->pc_nfull++;
2678 } else if (prev->pcg_avail == 0) {
2679 list = &pc->pc_emptygroups;
2680 pc->pc_nempty++;
2681 } else {
2682 list = &pc->pc_partgroups;
2683 pc->pc_npart++;
2684 }
2685 prev->pcg_next = *list;
2686 *list = prev;
2687 }
2688 mutex_exit(&pc->pc_lock);
2689 splx(s);
2690 }
2691
2692 /*
2693 * Pool backend allocators.
2694 *
2695 * Each pool has a backend allocator that handles allocation, deallocation,
2696 * and any additional draining that might be needed.
2697 *
2698 * We provide two standard allocators:
2699 *
2700 * pool_allocator_kmem - the default when no allocator is specified
2701 *
2702 * pool_allocator_nointr - used for pools that will not be accessed
2703 * in interrupt context.
2704 */
2705 void *pool_page_alloc(struct pool *, int);
2706 void pool_page_free(struct pool *, void *);
2707
2708 #ifdef POOL_SUBPAGE
2709 struct pool_allocator pool_allocator_kmem_fullpage = {
2710 .pa_alloc = pool_page_alloc,
2711 .pa_free = pool_page_free,
2712 .pa_pagesz = 0
2713 };
2714 #else
2715 struct pool_allocator pool_allocator_kmem = {
2716 .pa_alloc = pool_page_alloc,
2717 .pa_free = pool_page_free,
2718 .pa_pagesz = 0
2719 };
2720 #endif
2721
2722 #ifdef POOL_SUBPAGE
2723 struct pool_allocator pool_allocator_nointr_fullpage = {
2724 .pa_alloc = pool_page_alloc,
2725 .pa_free = pool_page_free,
2726 .pa_pagesz = 0
2727 };
2728 #else
2729 struct pool_allocator pool_allocator_nointr = {
2730 .pa_alloc = pool_page_alloc,
2731 .pa_free = pool_page_free,
2732 .pa_pagesz = 0
2733 };
2734 #endif
2735
2736 #ifdef POOL_SUBPAGE
2737 void *pool_subpage_alloc(struct pool *, int);
2738 void pool_subpage_free(struct pool *, void *);
2739
2740 struct pool_allocator pool_allocator_kmem = {
2741 .pa_alloc = pool_subpage_alloc,
2742 .pa_free = pool_subpage_free,
2743 .pa_pagesz = POOL_SUBPAGE
2744 };
2745
2746 struct pool_allocator pool_allocator_nointr = {
2747 .pa_alloc = pool_subpage_alloc,
2748 .pa_free = pool_subpage_free,
2749 .pa_pagesz = POOL_SUBPAGE
2750 };
2751 #endif /* POOL_SUBPAGE */
2752
2753 static void *
2754 pool_allocator_alloc(struct pool *pp, int flags)
2755 {
2756 struct pool_allocator *pa = pp->pr_alloc;
2757 void *res;
2758
2759 res = (*pa->pa_alloc)(pp, flags);
2760 if (res == NULL && (flags & PR_WAITOK) == 0) {
2761 /*
2762 * We only run the drain hook here if PR_NOWAIT.
2763 * In other cases, the hook will be run in
2764 * pool_reclaim().
2765 */
2766 if (pp->pr_drain_hook != NULL) {
2767 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2768 res = (*pa->pa_alloc)(pp, flags);
2769 }
2770 }
2771 return res;
2772 }
2773
2774 static void
2775 pool_allocator_free(struct pool *pp, void *v)
2776 {
2777 struct pool_allocator *pa = pp->pr_alloc;
2778
2779 (*pa->pa_free)(pp, v);
2780 }
2781
2782 void *
2783 pool_page_alloc(struct pool *pp, int flags)
2784 {
2785 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2786 vmem_addr_t va;
2787 int ret;
2788
2789 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2790 vflags | VM_INSTANTFIT, &va);
2791
2792 return ret ? NULL : (void *)va;
2793 }
2794
2795 void
2796 pool_page_free(struct pool *pp, void *v)
2797 {
2798
2799 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2800 }
2801
2802 static void *
2803 pool_page_alloc_meta(struct pool *pp, int flags)
2804 {
2805 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2806 vmem_addr_t va;
2807 int ret;
2808
2809 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2810 vflags | VM_INSTANTFIT, &va);
2811
2812 return ret ? NULL : (void *)va;
2813 }
2814
2815 static void
2816 pool_page_free_meta(struct pool *pp, void *v)
2817 {
2818
2819 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2820 }
2821
2822 #ifdef POOL_SUBPAGE
2823 /* Sub-page allocator, for machines with large hardware pages. */
2824 void *
2825 pool_subpage_alloc(struct pool *pp, int flags)
2826 {
2827 return pool_get(&psppool, flags);
2828 }
2829
2830 void
2831 pool_subpage_free(struct pool *pp, void *v)
2832 {
2833 pool_put(&psppool, v);
2834 }
2835
2836 #endif /* POOL_SUBPAGE */
2837
2838 #if defined(DDB)
2839 static bool
2840 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2841 {
2842
2843 return (uintptr_t)ph->ph_page <= addr &&
2844 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2845 }
2846
2847 static bool
2848 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2849 {
2850
2851 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2852 }
2853
2854 static bool
2855 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2856 {
2857 int i;
2858
2859 if (pcg == NULL) {
2860 return false;
2861 }
2862 for (i = 0; i < pcg->pcg_avail; i++) {
2863 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2864 return true;
2865 }
2866 }
2867 return false;
2868 }
2869
2870 static bool
2871 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2872 {
2873
2874 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2875 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2876 pool_item_bitmap_t *bitmap =
2877 ph->ph_bitmap + (idx / BITMAP_SIZE);
2878 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2879
2880 return (*bitmap & mask) == 0;
2881 } else {
2882 struct pool_item *pi;
2883
2884 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2885 if (pool_in_item(pp, pi, addr)) {
2886 return false;
2887 }
2888 }
2889 return true;
2890 }
2891 }
2892
2893 void
2894 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2895 {
2896 struct pool *pp;
2897
2898 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2899 struct pool_item_header *ph;
2900 uintptr_t item;
2901 bool allocated = true;
2902 bool incache = false;
2903 bool incpucache = false;
2904 char cpucachestr[32];
2905
2906 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2907 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2908 if (pool_in_page(pp, ph, addr)) {
2909 goto found;
2910 }
2911 }
2912 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2913 if (pool_in_page(pp, ph, addr)) {
2914 allocated =
2915 pool_allocated(pp, ph, addr);
2916 goto found;
2917 }
2918 }
2919 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2920 if (pool_in_page(pp, ph, addr)) {
2921 allocated = false;
2922 goto found;
2923 }
2924 }
2925 continue;
2926 } else {
2927 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2928 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2929 continue;
2930 }
2931 allocated = pool_allocated(pp, ph, addr);
2932 }
2933 found:
2934 if (allocated && pp->pr_cache) {
2935 pool_cache_t pc = pp->pr_cache;
2936 struct pool_cache_group *pcg;
2937 int i;
2938
2939 for (pcg = pc->pc_fullgroups; pcg != NULL;
2940 pcg = pcg->pcg_next) {
2941 if (pool_in_cg(pp, pcg, addr)) {
2942 incache = true;
2943 goto print;
2944 }
2945 }
2946 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2947 pool_cache_cpu_t *cc;
2948
2949 if ((cc = pc->pc_cpus[i]) == NULL) {
2950 continue;
2951 }
2952 if (pool_in_cg(pp, cc->cc_current, addr) ||
2953 pool_in_cg(pp, cc->cc_previous, addr)) {
2954 struct cpu_info *ci =
2955 cpu_lookup(i);
2956
2957 incpucache = true;
2958 snprintf(cpucachestr,
2959 sizeof(cpucachestr),
2960 "cached by CPU %u",
2961 ci->ci_index);
2962 goto print;
2963 }
2964 }
2965 }
2966 print:
2967 item = (uintptr_t)ph->ph_page + ph->ph_off;
2968 item = item + rounddown(addr - item, pp->pr_size);
2969 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2970 (void *)addr, item, (size_t)(addr - item),
2971 pp->pr_wchan,
2972 incpucache ? cpucachestr :
2973 incache ? "cached" : allocated ? "allocated" : "free");
2974 }
2975 }
2976 #endif /* defined(DDB) */
2977