subr_pool.c revision 1.201.2.1 1 /* $NetBSD: subr_pool.c,v 1.201.2.1 2014/08/10 06:55:58 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.201.2.1 2014/08/10 06:55:58 tls Exp $");
36
37 #include "opt_ddb.h"
38 #include "opt_lockdebug.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/vmem.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
55
56 #include <uvm/uvm_extern.h>
57
58 /*
59 * Pool resource management utility.
60 *
61 * Memory is allocated in pages which are split into pieces according to
62 * the pool item size. Each page is kept on one of three lists in the
63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64 * for empty, full and partially-full pages respectively. The individual
65 * pool items are on a linked list headed by `ph_itemlist' in each page
66 * header. The memory for building the page list is either taken from
67 * the allocated pages themselves (for small pool items) or taken from
68 * an internal pool of page headers (`phpool').
69 */
70
71 /* List of all pools. Non static as needed by 'vmstat -i' */
72 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
73
74 /* Private pool for page header structures */
75 #define PHPOOL_MAX 8
76 static struct pool phpool[PHPOOL_MAX];
77 #define PHPOOL_FREELIST_NELEM(idx) \
78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static void *pool_page_alloc_meta(struct pool *, int);
86 static void pool_page_free_meta(struct pool *, void *);
87
88 /* allocator for pool metadata */
89 struct pool_allocator pool_allocator_meta = {
90 .pa_alloc = pool_page_alloc_meta,
91 .pa_free = pool_page_free_meta,
92 .pa_pagesz = 0
93 };
94
95 /* # of seconds to retain page after last use */
96 int pool_inactive_time = 10;
97
98 /* Next candidate for drainage (see pool_drain()) */
99 static struct pool *drainpp;
100
101 /* This lock protects both pool_head and drainpp. */
102 static kmutex_t pool_head_lock;
103 static kcondvar_t pool_busy;
104
105 /* This lock protects initialization of a potentially shared pool allocator */
106 static kmutex_t pool_allocator_lock;
107
108 typedef uint32_t pool_item_bitmap_t;
109 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
110 #define BITMAP_MASK (BITMAP_SIZE - 1)
111
112 struct pool_item_header {
113 /* Page headers */
114 LIST_ENTRY(pool_item_header)
115 ph_pagelist; /* pool page list */
116 SPLAY_ENTRY(pool_item_header)
117 ph_node; /* Off-page page headers */
118 void * ph_page; /* this page's address */
119 uint32_t ph_time; /* last referenced */
120 uint16_t ph_nmissing; /* # of chunks in use */
121 uint16_t ph_off; /* start offset in page */
122 union {
123 /* !PR_NOTOUCH */
124 struct {
125 LIST_HEAD(, pool_item)
126 phu_itemlist; /* chunk list for this page */
127 } phu_normal;
128 /* PR_NOTOUCH */
129 struct {
130 pool_item_bitmap_t phu_bitmap[1];
131 } phu_notouch;
132 } ph_u;
133 };
134 #define ph_itemlist ph_u.phu_normal.phu_itemlist
135 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
136
137 struct pool_item {
138 #ifdef DIAGNOSTIC
139 u_int pi_magic;
140 #endif
141 #define PI_MAGIC 0xdeaddeadU
142 /* Other entries use only this list entry */
143 LIST_ENTRY(pool_item) pi_list;
144 };
145
146 #define POOL_NEEDS_CATCHUP(pp) \
147 ((pp)->pr_nitems < (pp)->pr_minitems)
148
149 /*
150 * Pool cache management.
151 *
152 * Pool caches provide a way for constructed objects to be cached by the
153 * pool subsystem. This can lead to performance improvements by avoiding
154 * needless object construction/destruction; it is deferred until absolutely
155 * necessary.
156 *
157 * Caches are grouped into cache groups. Each cache group references up
158 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
159 * object from the pool, it calls the object's constructor and places it
160 * into a cache group. When a cache group frees an object back to the
161 * pool, it first calls the object's destructor. This allows the object
162 * to persist in constructed form while freed to the cache.
163 *
164 * The pool references each cache, so that when a pool is drained by the
165 * pagedaemon, it can drain each individual cache as well. Each time a
166 * cache is drained, the most idle cache group is freed to the pool in
167 * its entirety.
168 *
169 * Pool caches are layed on top of pools. By layering them, we can avoid
170 * the complexity of cache management for pools which would not benefit
171 * from it.
172 */
173
174 static struct pool pcg_normal_pool;
175 static struct pool pcg_large_pool;
176 static struct pool cache_pool;
177 static struct pool cache_cpu_pool;
178
179 pool_cache_t pnbuf_cache; /* pathname buffer cache */
180
181 /* List of all caches. */
182 TAILQ_HEAD(,pool_cache) pool_cache_head =
183 TAILQ_HEAD_INITIALIZER(pool_cache_head);
184
185 int pool_cache_disable; /* global disable for caching */
186 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
187
188 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
189 void *);
190 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
191 void **, paddr_t *, int);
192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
195 static void pool_cache_transfer(pool_cache_t);
196
197 static int pool_catchup(struct pool *);
198 static void pool_prime_page(struct pool *, void *,
199 struct pool_item_header *);
200 static void pool_update_curpage(struct pool *);
201
202 static int pool_grow(struct pool *, int);
203 static void *pool_allocator_alloc(struct pool *, int);
204 static void pool_allocator_free(struct pool *, void *);
205
206 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
207 void (*)(const char *, ...) __printflike(1, 2));
208 static void pool_print1(struct pool *, const char *,
209 void (*)(const char *, ...) __printflike(1, 2));
210
211 static int pool_chk_page(struct pool *, const char *,
212 struct pool_item_header *);
213
214 static inline unsigned int
215 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
216 const void *v)
217 {
218 const char *cp = v;
219 unsigned int idx;
220
221 KASSERT(pp->pr_roflags & PR_NOTOUCH);
222 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
223 KASSERT(idx < pp->pr_itemsperpage);
224 return idx;
225 }
226
227 static inline void
228 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
229 void *obj)
230 {
231 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
232 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
233 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
234
235 KASSERT((*bitmap & mask) == 0);
236 *bitmap |= mask;
237 }
238
239 static inline void *
240 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
241 {
242 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
243 unsigned int idx;
244 int i;
245
246 for (i = 0; ; i++) {
247 int bit;
248
249 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
250 bit = ffs32(bitmap[i]);
251 if (bit) {
252 pool_item_bitmap_t mask;
253
254 bit--;
255 idx = (i * BITMAP_SIZE) + bit;
256 mask = 1 << bit;
257 KASSERT((bitmap[i] & mask) != 0);
258 bitmap[i] &= ~mask;
259 break;
260 }
261 }
262 KASSERT(idx < pp->pr_itemsperpage);
263 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
264 }
265
266 static inline void
267 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
268 {
269 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
270 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
271 int i;
272
273 for (i = 0; i < n; i++) {
274 bitmap[i] = (pool_item_bitmap_t)-1;
275 }
276 }
277
278 static inline int
279 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
280 {
281
282 /*
283 * we consider pool_item_header with smaller ph_page bigger.
284 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
285 */
286
287 if (a->ph_page < b->ph_page)
288 return (1);
289 else if (a->ph_page > b->ph_page)
290 return (-1);
291 else
292 return (0);
293 }
294
295 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
296 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
297
298 static inline struct pool_item_header *
299 pr_find_pagehead_noalign(struct pool *pp, void *v)
300 {
301 struct pool_item_header *ph, tmp;
302
303 tmp.ph_page = (void *)(uintptr_t)v;
304 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
305 if (ph == NULL) {
306 ph = SPLAY_ROOT(&pp->pr_phtree);
307 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
308 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
309 }
310 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
311 }
312
313 return ph;
314 }
315
316 /*
317 * Return the pool page header based on item address.
318 */
319 static inline struct pool_item_header *
320 pr_find_pagehead(struct pool *pp, void *v)
321 {
322 struct pool_item_header *ph, tmp;
323
324 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
325 ph = pr_find_pagehead_noalign(pp, v);
326 } else {
327 void *page =
328 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
329
330 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
331 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
332 } else {
333 tmp.ph_page = page;
334 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
335 }
336 }
337
338 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
339 ((char *)ph->ph_page <= (char *)v &&
340 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
341 return ph;
342 }
343
344 static void
345 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
346 {
347 struct pool_item_header *ph;
348
349 while ((ph = LIST_FIRST(pq)) != NULL) {
350 LIST_REMOVE(ph, ph_pagelist);
351 pool_allocator_free(pp, ph->ph_page);
352 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
353 pool_put(pp->pr_phpool, ph);
354 }
355 }
356
357 /*
358 * Remove a page from the pool.
359 */
360 static inline void
361 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
362 struct pool_pagelist *pq)
363 {
364
365 KASSERT(mutex_owned(&pp->pr_lock));
366
367 /*
368 * If the page was idle, decrement the idle page count.
369 */
370 if (ph->ph_nmissing == 0) {
371 #ifdef DIAGNOSTIC
372 if (pp->pr_nidle == 0)
373 panic("pr_rmpage: nidle inconsistent");
374 if (pp->pr_nitems < pp->pr_itemsperpage)
375 panic("pr_rmpage: nitems inconsistent");
376 #endif
377 pp->pr_nidle--;
378 }
379
380 pp->pr_nitems -= pp->pr_itemsperpage;
381
382 /*
383 * Unlink the page from the pool and queue it for release.
384 */
385 LIST_REMOVE(ph, ph_pagelist);
386 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
387 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
388 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
389
390 pp->pr_npages--;
391 pp->pr_npagefree++;
392
393 pool_update_curpage(pp);
394 }
395
396 /*
397 * Initialize all the pools listed in the "pools" link set.
398 */
399 void
400 pool_subsystem_init(void)
401 {
402 size_t size;
403 int idx;
404
405 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
406 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
407 cv_init(&pool_busy, "poolbusy");
408
409 /*
410 * Initialize private page header pool and cache magazine pool if we
411 * haven't done so yet.
412 */
413 for (idx = 0; idx < PHPOOL_MAX; idx++) {
414 static char phpool_names[PHPOOL_MAX][6+1+6+1];
415 int nelem;
416 size_t sz;
417
418 nelem = PHPOOL_FREELIST_NELEM(idx);
419 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
420 "phpool-%d", nelem);
421 sz = sizeof(struct pool_item_header);
422 if (nelem) {
423 sz = offsetof(struct pool_item_header,
424 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
425 }
426 pool_init(&phpool[idx], sz, 0, 0, 0,
427 phpool_names[idx], &pool_allocator_meta, IPL_VM);
428 }
429 #ifdef POOL_SUBPAGE
430 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
431 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
432 #endif
433
434 size = sizeof(pcg_t) +
435 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
436 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
437 "pcgnormal", &pool_allocator_meta, IPL_VM);
438
439 size = sizeof(pcg_t) +
440 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
441 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
442 "pcglarge", &pool_allocator_meta, IPL_VM);
443
444 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
445 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
446
447 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
448 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
449 }
450
451 /*
452 * Initialize the given pool resource structure.
453 *
454 * We export this routine to allow other kernel parts to declare
455 * static pools that must be initialized before kmem(9) is available.
456 */
457 void
458 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
459 const char *wchan, struct pool_allocator *palloc, int ipl)
460 {
461 struct pool *pp1;
462 size_t trysize, phsize;
463 int off, slack;
464
465 #ifdef DEBUG
466 if (__predict_true(!cold))
467 mutex_enter(&pool_head_lock);
468 /*
469 * Check that the pool hasn't already been initialised and
470 * added to the list of all pools.
471 */
472 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
473 if (pp == pp1)
474 panic("pool_init: pool %s already initialised",
475 wchan);
476 }
477 if (__predict_true(!cold))
478 mutex_exit(&pool_head_lock);
479 #endif
480
481 if (palloc == NULL)
482 palloc = &pool_allocator_kmem;
483 #ifdef POOL_SUBPAGE
484 if (size > palloc->pa_pagesz) {
485 if (palloc == &pool_allocator_kmem)
486 palloc = &pool_allocator_kmem_fullpage;
487 else if (palloc == &pool_allocator_nointr)
488 palloc = &pool_allocator_nointr_fullpage;
489 }
490 #endif /* POOL_SUBPAGE */
491 if (!cold)
492 mutex_enter(&pool_allocator_lock);
493 if (palloc->pa_refcnt++ == 0) {
494 if (palloc->pa_pagesz == 0)
495 palloc->pa_pagesz = PAGE_SIZE;
496
497 TAILQ_INIT(&palloc->pa_list);
498
499 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
500 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
501 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
502 }
503 if (!cold)
504 mutex_exit(&pool_allocator_lock);
505
506 if (align == 0)
507 align = ALIGN(1);
508
509 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
510 size = sizeof(struct pool_item);
511
512 size = roundup(size, align);
513 #ifdef DIAGNOSTIC
514 if (size > palloc->pa_pagesz)
515 panic("pool_init: pool item size (%zu) too large", size);
516 #endif
517
518 /*
519 * Initialize the pool structure.
520 */
521 LIST_INIT(&pp->pr_emptypages);
522 LIST_INIT(&pp->pr_fullpages);
523 LIST_INIT(&pp->pr_partpages);
524 pp->pr_cache = NULL;
525 pp->pr_curpage = NULL;
526 pp->pr_npages = 0;
527 pp->pr_minitems = 0;
528 pp->pr_minpages = 0;
529 pp->pr_maxpages = UINT_MAX;
530 pp->pr_roflags = flags;
531 pp->pr_flags = 0;
532 pp->pr_size = size;
533 pp->pr_align = align;
534 pp->pr_wchan = wchan;
535 pp->pr_alloc = palloc;
536 pp->pr_nitems = 0;
537 pp->pr_nout = 0;
538 pp->pr_hardlimit = UINT_MAX;
539 pp->pr_hardlimit_warning = NULL;
540 pp->pr_hardlimit_ratecap.tv_sec = 0;
541 pp->pr_hardlimit_ratecap.tv_usec = 0;
542 pp->pr_hardlimit_warning_last.tv_sec = 0;
543 pp->pr_hardlimit_warning_last.tv_usec = 0;
544 pp->pr_drain_hook = NULL;
545 pp->pr_drain_hook_arg = NULL;
546 pp->pr_freecheck = NULL;
547
548 /*
549 * Decide whether to put the page header off page to avoid
550 * wasting too large a part of the page or too big item.
551 * Off-page page headers go on a hash table, so we can match
552 * a returned item with its header based on the page address.
553 * We use 1/16 of the page size and about 8 times of the item
554 * size as the threshold (XXX: tune)
555 *
556 * However, we'll put the header into the page if we can put
557 * it without wasting any items.
558 *
559 * Silently enforce `0 <= ioff < align'.
560 */
561 pp->pr_itemoffset = ioff %= align;
562 /* See the comment below about reserved bytes. */
563 trysize = palloc->pa_pagesz - ((align - ioff) % align);
564 phsize = ALIGN(sizeof(struct pool_item_header));
565 if (pp->pr_roflags & PR_PHINPAGE ||
566 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
567 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
568 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
569 /* Use the end of the page for the page header */
570 pp->pr_roflags |= PR_PHINPAGE;
571 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
572 } else {
573 /* The page header will be taken from our page header pool */
574 pp->pr_phoffset = 0;
575 off = palloc->pa_pagesz;
576 SPLAY_INIT(&pp->pr_phtree);
577 }
578
579 /*
580 * Alignment is to take place at `ioff' within the item. This means
581 * we must reserve up to `align - 1' bytes on the page to allow
582 * appropriate positioning of each item.
583 */
584 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
585 KASSERT(pp->pr_itemsperpage != 0);
586 if ((pp->pr_roflags & PR_NOTOUCH)) {
587 int idx;
588
589 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
590 idx++) {
591 /* nothing */
592 }
593 if (idx >= PHPOOL_MAX) {
594 /*
595 * if you see this panic, consider to tweak
596 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
597 */
598 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
599 pp->pr_wchan, pp->pr_itemsperpage);
600 }
601 pp->pr_phpool = &phpool[idx];
602 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
603 pp->pr_phpool = &phpool[0];
604 }
605 #if defined(DIAGNOSTIC)
606 else {
607 pp->pr_phpool = NULL;
608 }
609 #endif
610
611 /*
612 * Use the slack between the chunks and the page header
613 * for "cache coloring".
614 */
615 slack = off - pp->pr_itemsperpage * pp->pr_size;
616 pp->pr_maxcolor = (slack / align) * align;
617 pp->pr_curcolor = 0;
618
619 pp->pr_nget = 0;
620 pp->pr_nfail = 0;
621 pp->pr_nput = 0;
622 pp->pr_npagealloc = 0;
623 pp->pr_npagefree = 0;
624 pp->pr_hiwat = 0;
625 pp->pr_nidle = 0;
626 pp->pr_refcnt = 0;
627
628 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
629 cv_init(&pp->pr_cv, wchan);
630 pp->pr_ipl = ipl;
631
632 /* Insert into the list of all pools. */
633 if (!cold)
634 mutex_enter(&pool_head_lock);
635 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
636 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
637 break;
638 }
639 if (pp1 == NULL)
640 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
641 else
642 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
643 if (!cold)
644 mutex_exit(&pool_head_lock);
645
646 /* Insert this into the list of pools using this allocator. */
647 if (!cold)
648 mutex_enter(&palloc->pa_lock);
649 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
650 if (!cold)
651 mutex_exit(&palloc->pa_lock);
652 }
653
654 /*
655 * De-commision a pool resource.
656 */
657 void
658 pool_destroy(struct pool *pp)
659 {
660 struct pool_pagelist pq;
661 struct pool_item_header *ph;
662
663 /* Remove from global pool list */
664 mutex_enter(&pool_head_lock);
665 while (pp->pr_refcnt != 0)
666 cv_wait(&pool_busy, &pool_head_lock);
667 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
668 if (drainpp == pp)
669 drainpp = NULL;
670 mutex_exit(&pool_head_lock);
671
672 /* Remove this pool from its allocator's list of pools. */
673 mutex_enter(&pp->pr_alloc->pa_lock);
674 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
675 mutex_exit(&pp->pr_alloc->pa_lock);
676
677 mutex_enter(&pool_allocator_lock);
678 if (--pp->pr_alloc->pa_refcnt == 0)
679 mutex_destroy(&pp->pr_alloc->pa_lock);
680 mutex_exit(&pool_allocator_lock);
681
682 mutex_enter(&pp->pr_lock);
683
684 KASSERT(pp->pr_cache == NULL);
685
686 #ifdef DIAGNOSTIC
687 if (pp->pr_nout != 0) {
688 panic("pool_destroy: pool busy: still out: %u",
689 pp->pr_nout);
690 }
691 #endif
692
693 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
694 KASSERT(LIST_EMPTY(&pp->pr_partpages));
695
696 /* Remove all pages */
697 LIST_INIT(&pq);
698 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
699 pr_rmpage(pp, ph, &pq);
700
701 mutex_exit(&pp->pr_lock);
702
703 pr_pagelist_free(pp, &pq);
704 cv_destroy(&pp->pr_cv);
705 mutex_destroy(&pp->pr_lock);
706 }
707
708 void
709 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
710 {
711
712 /* XXX no locking -- must be used just after pool_init() */
713 #ifdef DIAGNOSTIC
714 if (pp->pr_drain_hook != NULL)
715 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
716 #endif
717 pp->pr_drain_hook = fn;
718 pp->pr_drain_hook_arg = arg;
719 }
720
721 static struct pool_item_header *
722 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
723 {
724 struct pool_item_header *ph;
725
726 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
727 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
728 else
729 ph = pool_get(pp->pr_phpool, flags);
730
731 return (ph);
732 }
733
734 /*
735 * Grab an item from the pool.
736 */
737 void *
738 pool_get(struct pool *pp, int flags)
739 {
740 struct pool_item *pi;
741 struct pool_item_header *ph;
742 void *v;
743
744 #ifdef DIAGNOSTIC
745 if (pp->pr_itemsperpage == 0)
746 panic("pool_get: pool '%s': pr_itemsperpage is zero, "
747 "pool not initialized?", pp->pr_wchan);
748 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
749 !cold && panicstr == NULL)
750 panic("pool '%s' is IPL_NONE, but called from "
751 "interrupt context\n", pp->pr_wchan);
752 #endif
753 if (flags & PR_WAITOK) {
754 ASSERT_SLEEPABLE();
755 }
756
757 mutex_enter(&pp->pr_lock);
758 startover:
759 /*
760 * Check to see if we've reached the hard limit. If we have,
761 * and we can wait, then wait until an item has been returned to
762 * the pool.
763 */
764 #ifdef DIAGNOSTIC
765 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
766 mutex_exit(&pp->pr_lock);
767 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
768 }
769 #endif
770 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
771 if (pp->pr_drain_hook != NULL) {
772 /*
773 * Since the drain hook is going to free things
774 * back to the pool, unlock, call the hook, re-lock,
775 * and check the hardlimit condition again.
776 */
777 mutex_exit(&pp->pr_lock);
778 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
779 mutex_enter(&pp->pr_lock);
780 if (pp->pr_nout < pp->pr_hardlimit)
781 goto startover;
782 }
783
784 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
785 /*
786 * XXX: A warning isn't logged in this case. Should
787 * it be?
788 */
789 pp->pr_flags |= PR_WANTED;
790 cv_wait(&pp->pr_cv, &pp->pr_lock);
791 goto startover;
792 }
793
794 /*
795 * Log a message that the hard limit has been hit.
796 */
797 if (pp->pr_hardlimit_warning != NULL &&
798 ratecheck(&pp->pr_hardlimit_warning_last,
799 &pp->pr_hardlimit_ratecap))
800 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
801
802 pp->pr_nfail++;
803
804 mutex_exit(&pp->pr_lock);
805 return (NULL);
806 }
807
808 /*
809 * The convention we use is that if `curpage' is not NULL, then
810 * it points at a non-empty bucket. In particular, `curpage'
811 * never points at a page header which has PR_PHINPAGE set and
812 * has no items in its bucket.
813 */
814 if ((ph = pp->pr_curpage) == NULL) {
815 int error;
816
817 #ifdef DIAGNOSTIC
818 if (pp->pr_nitems != 0) {
819 mutex_exit(&pp->pr_lock);
820 printf("pool_get: %s: curpage NULL, nitems %u\n",
821 pp->pr_wchan, pp->pr_nitems);
822 panic("pool_get: nitems inconsistent");
823 }
824 #endif
825
826 /*
827 * Call the back-end page allocator for more memory.
828 * Release the pool lock, as the back-end page allocator
829 * may block.
830 */
831 error = pool_grow(pp, flags);
832 if (error != 0) {
833 /*
834 * We were unable to allocate a page or item
835 * header, but we released the lock during
836 * allocation, so perhaps items were freed
837 * back to the pool. Check for this case.
838 */
839 if (pp->pr_curpage != NULL)
840 goto startover;
841
842 pp->pr_nfail++;
843 mutex_exit(&pp->pr_lock);
844 return (NULL);
845 }
846
847 /* Start the allocation process over. */
848 goto startover;
849 }
850 if (pp->pr_roflags & PR_NOTOUCH) {
851 #ifdef DIAGNOSTIC
852 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
853 mutex_exit(&pp->pr_lock);
854 panic("pool_get: %s: page empty", pp->pr_wchan);
855 }
856 #endif
857 v = pr_item_notouch_get(pp, ph);
858 } else {
859 v = pi = LIST_FIRST(&ph->ph_itemlist);
860 if (__predict_false(v == NULL)) {
861 mutex_exit(&pp->pr_lock);
862 panic("pool_get: %s: page empty", pp->pr_wchan);
863 }
864 #ifdef DIAGNOSTIC
865 if (__predict_false(pp->pr_nitems == 0)) {
866 mutex_exit(&pp->pr_lock);
867 printf("pool_get: %s: items on itemlist, nitems %u\n",
868 pp->pr_wchan, pp->pr_nitems);
869 panic("pool_get: nitems inconsistent");
870 }
871 #endif
872
873 #ifdef DIAGNOSTIC
874 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
875 panic("pool_get(%s): free list modified: "
876 "magic=%x; page %p; item addr %p\n",
877 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
878 }
879 #endif
880
881 /*
882 * Remove from item list.
883 */
884 LIST_REMOVE(pi, pi_list);
885 }
886 pp->pr_nitems--;
887 pp->pr_nout++;
888 if (ph->ph_nmissing == 0) {
889 #ifdef DIAGNOSTIC
890 if (__predict_false(pp->pr_nidle == 0))
891 panic("pool_get: nidle inconsistent");
892 #endif
893 pp->pr_nidle--;
894
895 /*
896 * This page was previously empty. Move it to the list of
897 * partially-full pages. This page is already curpage.
898 */
899 LIST_REMOVE(ph, ph_pagelist);
900 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
901 }
902 ph->ph_nmissing++;
903 if (ph->ph_nmissing == pp->pr_itemsperpage) {
904 #ifdef DIAGNOSTIC
905 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
906 !LIST_EMPTY(&ph->ph_itemlist))) {
907 mutex_exit(&pp->pr_lock);
908 panic("pool_get: %s: nmissing inconsistent",
909 pp->pr_wchan);
910 }
911 #endif
912 /*
913 * This page is now full. Move it to the full list
914 * and select a new current page.
915 */
916 LIST_REMOVE(ph, ph_pagelist);
917 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
918 pool_update_curpage(pp);
919 }
920
921 pp->pr_nget++;
922
923 /*
924 * If we have a low water mark and we are now below that low
925 * water mark, add more items to the pool.
926 */
927 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
928 /*
929 * XXX: Should we log a warning? Should we set up a timeout
930 * to try again in a second or so? The latter could break
931 * a caller's assumptions about interrupt protection, etc.
932 */
933 }
934
935 mutex_exit(&pp->pr_lock);
936 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
937 FREECHECK_OUT(&pp->pr_freecheck, v);
938 return (v);
939 }
940
941 /*
942 * Internal version of pool_put(). Pool is already locked/entered.
943 */
944 static void
945 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
946 {
947 struct pool_item *pi = v;
948 struct pool_item_header *ph;
949
950 KASSERT(mutex_owned(&pp->pr_lock));
951 FREECHECK_IN(&pp->pr_freecheck, v);
952 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
953
954 #ifdef DIAGNOSTIC
955 if (__predict_false(pp->pr_nout == 0)) {
956 printf("pool %s: putting with none out\n",
957 pp->pr_wchan);
958 panic("pool_put");
959 }
960 #endif
961
962 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
963 panic("pool_put: %s: page header missing", pp->pr_wchan);
964 }
965
966 /*
967 * Return to item list.
968 */
969 if (pp->pr_roflags & PR_NOTOUCH) {
970 pr_item_notouch_put(pp, ph, v);
971 } else {
972 #ifdef DIAGNOSTIC
973 pi->pi_magic = PI_MAGIC;
974 #endif
975 #ifdef DEBUG
976 {
977 int i, *ip = v;
978
979 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
980 *ip++ = PI_MAGIC;
981 }
982 }
983 #endif
984
985 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
986 }
987 KDASSERT(ph->ph_nmissing != 0);
988 ph->ph_nmissing--;
989 pp->pr_nput++;
990 pp->pr_nitems++;
991 pp->pr_nout--;
992
993 /* Cancel "pool empty" condition if it exists */
994 if (pp->pr_curpage == NULL)
995 pp->pr_curpage = ph;
996
997 if (pp->pr_flags & PR_WANTED) {
998 pp->pr_flags &= ~PR_WANTED;
999 cv_broadcast(&pp->pr_cv);
1000 }
1001
1002 /*
1003 * If this page is now empty, do one of two things:
1004 *
1005 * (1) If we have more pages than the page high water mark,
1006 * free the page back to the system. ONLY CONSIDER
1007 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1008 * CLAIM.
1009 *
1010 * (2) Otherwise, move the page to the empty page list.
1011 *
1012 * Either way, select a new current page (so we use a partially-full
1013 * page if one is available).
1014 */
1015 if (ph->ph_nmissing == 0) {
1016 pp->pr_nidle++;
1017 if (pp->pr_npages > pp->pr_minpages &&
1018 pp->pr_npages > pp->pr_maxpages) {
1019 pr_rmpage(pp, ph, pq);
1020 } else {
1021 LIST_REMOVE(ph, ph_pagelist);
1022 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1023
1024 /*
1025 * Update the timestamp on the page. A page must
1026 * be idle for some period of time before it can
1027 * be reclaimed by the pagedaemon. This minimizes
1028 * ping-pong'ing for memory.
1029 *
1030 * note for 64-bit time_t: truncating to 32-bit is not
1031 * a problem for our usage.
1032 */
1033 ph->ph_time = time_uptime;
1034 }
1035 pool_update_curpage(pp);
1036 }
1037
1038 /*
1039 * If the page was previously completely full, move it to the
1040 * partially-full list and make it the current page. The next
1041 * allocation will get the item from this page, instead of
1042 * further fragmenting the pool.
1043 */
1044 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1045 LIST_REMOVE(ph, ph_pagelist);
1046 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1047 pp->pr_curpage = ph;
1048 }
1049 }
1050
1051 void
1052 pool_put(struct pool *pp, void *v)
1053 {
1054 struct pool_pagelist pq;
1055
1056 LIST_INIT(&pq);
1057
1058 mutex_enter(&pp->pr_lock);
1059 pool_do_put(pp, v, &pq);
1060 mutex_exit(&pp->pr_lock);
1061
1062 pr_pagelist_free(pp, &pq);
1063 }
1064
1065 /*
1066 * pool_grow: grow a pool by a page.
1067 *
1068 * => called with pool locked.
1069 * => unlock and relock the pool.
1070 * => return with pool locked.
1071 */
1072
1073 static int
1074 pool_grow(struct pool *pp, int flags)
1075 {
1076 struct pool_item_header *ph = NULL;
1077 char *cp;
1078
1079 mutex_exit(&pp->pr_lock);
1080 cp = pool_allocator_alloc(pp, flags);
1081 if (__predict_true(cp != NULL)) {
1082 ph = pool_alloc_item_header(pp, cp, flags);
1083 }
1084 if (__predict_false(cp == NULL || ph == NULL)) {
1085 if (cp != NULL) {
1086 pool_allocator_free(pp, cp);
1087 }
1088 mutex_enter(&pp->pr_lock);
1089 return ENOMEM;
1090 }
1091
1092 mutex_enter(&pp->pr_lock);
1093 pool_prime_page(pp, cp, ph);
1094 pp->pr_npagealloc++;
1095 return 0;
1096 }
1097
1098 /*
1099 * Add N items to the pool.
1100 */
1101 int
1102 pool_prime(struct pool *pp, int n)
1103 {
1104 int newpages;
1105 int error = 0;
1106
1107 mutex_enter(&pp->pr_lock);
1108
1109 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1110
1111 while (newpages-- > 0) {
1112 error = pool_grow(pp, PR_NOWAIT);
1113 if (error) {
1114 break;
1115 }
1116 pp->pr_minpages++;
1117 }
1118
1119 if (pp->pr_minpages >= pp->pr_maxpages)
1120 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1121
1122 mutex_exit(&pp->pr_lock);
1123 return error;
1124 }
1125
1126 /*
1127 * Add a page worth of items to the pool.
1128 *
1129 * Note, we must be called with the pool descriptor LOCKED.
1130 */
1131 static void
1132 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1133 {
1134 struct pool_item *pi;
1135 void *cp = storage;
1136 const unsigned int align = pp->pr_align;
1137 const unsigned int ioff = pp->pr_itemoffset;
1138 int n;
1139
1140 KASSERT(mutex_owned(&pp->pr_lock));
1141
1142 #ifdef DIAGNOSTIC
1143 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1144 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1145 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1146 #endif
1147
1148 /*
1149 * Insert page header.
1150 */
1151 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1152 LIST_INIT(&ph->ph_itemlist);
1153 ph->ph_page = storage;
1154 ph->ph_nmissing = 0;
1155 ph->ph_time = time_uptime;
1156 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1157 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1158
1159 pp->pr_nidle++;
1160
1161 /*
1162 * Color this page.
1163 */
1164 ph->ph_off = pp->pr_curcolor;
1165 cp = (char *)cp + ph->ph_off;
1166 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1167 pp->pr_curcolor = 0;
1168
1169 /*
1170 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1171 */
1172 if (ioff != 0)
1173 cp = (char *)cp + align - ioff;
1174
1175 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1176
1177 /*
1178 * Insert remaining chunks on the bucket list.
1179 */
1180 n = pp->pr_itemsperpage;
1181 pp->pr_nitems += n;
1182
1183 if (pp->pr_roflags & PR_NOTOUCH) {
1184 pr_item_notouch_init(pp, ph);
1185 } else {
1186 while (n--) {
1187 pi = (struct pool_item *)cp;
1188
1189 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1190
1191 /* Insert on page list */
1192 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1193 #ifdef DIAGNOSTIC
1194 pi->pi_magic = PI_MAGIC;
1195 #endif
1196 cp = (char *)cp + pp->pr_size;
1197
1198 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1199 }
1200 }
1201
1202 /*
1203 * If the pool was depleted, point at the new page.
1204 */
1205 if (pp->pr_curpage == NULL)
1206 pp->pr_curpage = ph;
1207
1208 if (++pp->pr_npages > pp->pr_hiwat)
1209 pp->pr_hiwat = pp->pr_npages;
1210 }
1211
1212 /*
1213 * Used by pool_get() when nitems drops below the low water mark. This
1214 * is used to catch up pr_nitems with the low water mark.
1215 *
1216 * Note 1, we never wait for memory here, we let the caller decide what to do.
1217 *
1218 * Note 2, we must be called with the pool already locked, and we return
1219 * with it locked.
1220 */
1221 static int
1222 pool_catchup(struct pool *pp)
1223 {
1224 int error = 0;
1225
1226 while (POOL_NEEDS_CATCHUP(pp)) {
1227 error = pool_grow(pp, PR_NOWAIT);
1228 if (error) {
1229 break;
1230 }
1231 }
1232 return error;
1233 }
1234
1235 static void
1236 pool_update_curpage(struct pool *pp)
1237 {
1238
1239 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1240 if (pp->pr_curpage == NULL) {
1241 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1242 }
1243 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1244 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1245 }
1246
1247 void
1248 pool_setlowat(struct pool *pp, int n)
1249 {
1250
1251 mutex_enter(&pp->pr_lock);
1252
1253 pp->pr_minitems = n;
1254 pp->pr_minpages = (n == 0)
1255 ? 0
1256 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1257
1258 /* Make sure we're caught up with the newly-set low water mark. */
1259 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1260 /*
1261 * XXX: Should we log a warning? Should we set up a timeout
1262 * to try again in a second or so? The latter could break
1263 * a caller's assumptions about interrupt protection, etc.
1264 */
1265 }
1266
1267 mutex_exit(&pp->pr_lock);
1268 }
1269
1270 void
1271 pool_sethiwat(struct pool *pp, int n)
1272 {
1273
1274 mutex_enter(&pp->pr_lock);
1275
1276 pp->pr_maxpages = (n == 0)
1277 ? 0
1278 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1279
1280 mutex_exit(&pp->pr_lock);
1281 }
1282
1283 void
1284 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1285 {
1286
1287 mutex_enter(&pp->pr_lock);
1288
1289 pp->pr_hardlimit = n;
1290 pp->pr_hardlimit_warning = warnmess;
1291 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1292 pp->pr_hardlimit_warning_last.tv_sec = 0;
1293 pp->pr_hardlimit_warning_last.tv_usec = 0;
1294
1295 /*
1296 * In-line version of pool_sethiwat(), because we don't want to
1297 * release the lock.
1298 */
1299 pp->pr_maxpages = (n == 0)
1300 ? 0
1301 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1302
1303 mutex_exit(&pp->pr_lock);
1304 }
1305
1306 /*
1307 * Release all complete pages that have not been used recently.
1308 *
1309 * Must not be called from interrupt context.
1310 */
1311 int
1312 pool_reclaim(struct pool *pp)
1313 {
1314 struct pool_item_header *ph, *phnext;
1315 struct pool_pagelist pq;
1316 uint32_t curtime;
1317 bool klock;
1318 int rv;
1319
1320 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1321
1322 if (pp->pr_drain_hook != NULL) {
1323 /*
1324 * The drain hook must be called with the pool unlocked.
1325 */
1326 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1327 }
1328
1329 /*
1330 * XXXSMP Because we do not want to cause non-MPSAFE code
1331 * to block.
1332 */
1333 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1334 pp->pr_ipl == IPL_SOFTSERIAL) {
1335 KERNEL_LOCK(1, NULL);
1336 klock = true;
1337 } else
1338 klock = false;
1339
1340 /* Reclaim items from the pool's cache (if any). */
1341 if (pp->pr_cache != NULL)
1342 pool_cache_invalidate(pp->pr_cache);
1343
1344 if (mutex_tryenter(&pp->pr_lock) == 0) {
1345 if (klock) {
1346 KERNEL_UNLOCK_ONE(NULL);
1347 }
1348 return (0);
1349 }
1350
1351 LIST_INIT(&pq);
1352
1353 curtime = time_uptime;
1354
1355 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1356 phnext = LIST_NEXT(ph, ph_pagelist);
1357
1358 /* Check our minimum page claim */
1359 if (pp->pr_npages <= pp->pr_minpages)
1360 break;
1361
1362 KASSERT(ph->ph_nmissing == 0);
1363 if (curtime - ph->ph_time < pool_inactive_time)
1364 continue;
1365
1366 /*
1367 * If freeing this page would put us below
1368 * the low water mark, stop now.
1369 */
1370 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1371 pp->pr_minitems)
1372 break;
1373
1374 pr_rmpage(pp, ph, &pq);
1375 }
1376
1377 mutex_exit(&pp->pr_lock);
1378
1379 if (LIST_EMPTY(&pq))
1380 rv = 0;
1381 else {
1382 pr_pagelist_free(pp, &pq);
1383 rv = 1;
1384 }
1385
1386 if (klock) {
1387 KERNEL_UNLOCK_ONE(NULL);
1388 }
1389
1390 return (rv);
1391 }
1392
1393 /*
1394 * Drain pools, one at a time. The drained pool is returned within ppp.
1395 *
1396 * Note, must never be called from interrupt context.
1397 */
1398 bool
1399 pool_drain(struct pool **ppp)
1400 {
1401 bool reclaimed;
1402 struct pool *pp;
1403
1404 KASSERT(!TAILQ_EMPTY(&pool_head));
1405
1406 pp = NULL;
1407
1408 /* Find next pool to drain, and add a reference. */
1409 mutex_enter(&pool_head_lock);
1410 do {
1411 if (drainpp == NULL) {
1412 drainpp = TAILQ_FIRST(&pool_head);
1413 }
1414 if (drainpp != NULL) {
1415 pp = drainpp;
1416 drainpp = TAILQ_NEXT(pp, pr_poollist);
1417 }
1418 /*
1419 * Skip completely idle pools. We depend on at least
1420 * one pool in the system being active.
1421 */
1422 } while (pp == NULL || pp->pr_npages == 0);
1423 pp->pr_refcnt++;
1424 mutex_exit(&pool_head_lock);
1425
1426 /* Drain the cache (if any) and pool.. */
1427 reclaimed = pool_reclaim(pp);
1428
1429 /* Finally, unlock the pool. */
1430 mutex_enter(&pool_head_lock);
1431 pp->pr_refcnt--;
1432 cv_broadcast(&pool_busy);
1433 mutex_exit(&pool_head_lock);
1434
1435 if (ppp != NULL)
1436 *ppp = pp;
1437
1438 return reclaimed;
1439 }
1440
1441 /*
1442 * Diagnostic helpers.
1443 */
1444
1445 void
1446 pool_printall(const char *modif, void (*pr)(const char *, ...))
1447 {
1448 struct pool *pp;
1449
1450 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1451 pool_printit(pp, modif, pr);
1452 }
1453 }
1454
1455 void
1456 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1457 {
1458
1459 if (pp == NULL) {
1460 (*pr)("Must specify a pool to print.\n");
1461 return;
1462 }
1463
1464 pool_print1(pp, modif, pr);
1465 }
1466
1467 static void
1468 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1469 void (*pr)(const char *, ...))
1470 {
1471 struct pool_item_header *ph;
1472 #ifdef DIAGNOSTIC
1473 struct pool_item *pi;
1474 #endif
1475
1476 LIST_FOREACH(ph, pl, ph_pagelist) {
1477 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1478 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1479 #ifdef DIAGNOSTIC
1480 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1481 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1482 if (pi->pi_magic != PI_MAGIC) {
1483 (*pr)("\t\t\titem %p, magic 0x%x\n",
1484 pi, pi->pi_magic);
1485 }
1486 }
1487 }
1488 #endif
1489 }
1490 }
1491
1492 static void
1493 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1494 {
1495 struct pool_item_header *ph;
1496 pool_cache_t pc;
1497 pcg_t *pcg;
1498 pool_cache_cpu_t *cc;
1499 uint64_t cpuhit, cpumiss;
1500 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1501 char c;
1502
1503 while ((c = *modif++) != '\0') {
1504 if (c == 'l')
1505 print_log = 1;
1506 if (c == 'p')
1507 print_pagelist = 1;
1508 if (c == 'c')
1509 print_cache = 1;
1510 }
1511
1512 if ((pc = pp->pr_cache) != NULL) {
1513 (*pr)("POOL CACHE");
1514 } else {
1515 (*pr)("POOL");
1516 }
1517
1518 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1519 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1520 pp->pr_roflags);
1521 (*pr)("\talloc %p\n", pp->pr_alloc);
1522 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1523 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1524 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1525 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1526
1527 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1528 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1529 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1530 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1531
1532 if (print_pagelist == 0)
1533 goto skip_pagelist;
1534
1535 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1536 (*pr)("\n\tempty page list:\n");
1537 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1538 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1539 (*pr)("\n\tfull page list:\n");
1540 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1541 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1542 (*pr)("\n\tpartial-page list:\n");
1543 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1544
1545 if (pp->pr_curpage == NULL)
1546 (*pr)("\tno current page\n");
1547 else
1548 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1549
1550 skip_pagelist:
1551 if (print_log == 0)
1552 goto skip_log;
1553
1554 (*pr)("\n");
1555
1556 skip_log:
1557
1558 #define PR_GROUPLIST(pcg) \
1559 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1560 for (i = 0; i < pcg->pcg_size; i++) { \
1561 if (pcg->pcg_objects[i].pcgo_pa != \
1562 POOL_PADDR_INVALID) { \
1563 (*pr)("\t\t\t%p, 0x%llx\n", \
1564 pcg->pcg_objects[i].pcgo_va, \
1565 (unsigned long long) \
1566 pcg->pcg_objects[i].pcgo_pa); \
1567 } else { \
1568 (*pr)("\t\t\t%p\n", \
1569 pcg->pcg_objects[i].pcgo_va); \
1570 } \
1571 }
1572
1573 if (pc != NULL) {
1574 cpuhit = 0;
1575 cpumiss = 0;
1576 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1577 if ((cc = pc->pc_cpus[i]) == NULL)
1578 continue;
1579 cpuhit += cc->cc_hits;
1580 cpumiss += cc->cc_misses;
1581 }
1582 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1583 (*pr)("\tcache layer hits %llu misses %llu\n",
1584 pc->pc_hits, pc->pc_misses);
1585 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1586 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1587 pc->pc_contended);
1588 (*pr)("\tcache layer empty groups %u full groups %u\n",
1589 pc->pc_nempty, pc->pc_nfull);
1590 if (print_cache) {
1591 (*pr)("\tfull cache groups:\n");
1592 for (pcg = pc->pc_fullgroups; pcg != NULL;
1593 pcg = pcg->pcg_next) {
1594 PR_GROUPLIST(pcg);
1595 }
1596 (*pr)("\tempty cache groups:\n");
1597 for (pcg = pc->pc_emptygroups; pcg != NULL;
1598 pcg = pcg->pcg_next) {
1599 PR_GROUPLIST(pcg);
1600 }
1601 }
1602 }
1603 #undef PR_GROUPLIST
1604 }
1605
1606 static int
1607 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1608 {
1609 struct pool_item *pi;
1610 void *page;
1611 int n;
1612
1613 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1614 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1615 if (page != ph->ph_page &&
1616 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1617 if (label != NULL)
1618 printf("%s: ", label);
1619 printf("pool(%p:%s): page inconsistency: page %p;"
1620 " at page head addr %p (p %p)\n", pp,
1621 pp->pr_wchan, ph->ph_page,
1622 ph, page);
1623 return 1;
1624 }
1625 }
1626
1627 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1628 return 0;
1629
1630 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1631 pi != NULL;
1632 pi = LIST_NEXT(pi,pi_list), n++) {
1633
1634 #ifdef DIAGNOSTIC
1635 if (pi->pi_magic != PI_MAGIC) {
1636 if (label != NULL)
1637 printf("%s: ", label);
1638 printf("pool(%s): free list modified: magic=%x;"
1639 " page %p; item ordinal %d; addr %p\n",
1640 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1641 n, pi);
1642 panic("pool");
1643 }
1644 #endif
1645 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1646 continue;
1647 }
1648 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1649 if (page == ph->ph_page)
1650 continue;
1651
1652 if (label != NULL)
1653 printf("%s: ", label);
1654 printf("pool(%p:%s): page inconsistency: page %p;"
1655 " item ordinal %d; addr %p (p %p)\n", pp,
1656 pp->pr_wchan, ph->ph_page,
1657 n, pi, page);
1658 return 1;
1659 }
1660 return 0;
1661 }
1662
1663
1664 int
1665 pool_chk(struct pool *pp, const char *label)
1666 {
1667 struct pool_item_header *ph;
1668 int r = 0;
1669
1670 mutex_enter(&pp->pr_lock);
1671 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1672 r = pool_chk_page(pp, label, ph);
1673 if (r) {
1674 goto out;
1675 }
1676 }
1677 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1678 r = pool_chk_page(pp, label, ph);
1679 if (r) {
1680 goto out;
1681 }
1682 }
1683 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1684 r = pool_chk_page(pp, label, ph);
1685 if (r) {
1686 goto out;
1687 }
1688 }
1689
1690 out:
1691 mutex_exit(&pp->pr_lock);
1692 return (r);
1693 }
1694
1695 /*
1696 * pool_cache_init:
1697 *
1698 * Initialize a pool cache.
1699 */
1700 pool_cache_t
1701 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1702 const char *wchan, struct pool_allocator *palloc, int ipl,
1703 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1704 {
1705 pool_cache_t pc;
1706
1707 pc = pool_get(&cache_pool, PR_WAITOK);
1708 if (pc == NULL)
1709 return NULL;
1710
1711 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1712 palloc, ipl, ctor, dtor, arg);
1713
1714 return pc;
1715 }
1716
1717 /*
1718 * pool_cache_bootstrap:
1719 *
1720 * Kernel-private version of pool_cache_init(). The caller
1721 * provides initial storage.
1722 */
1723 void
1724 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1725 u_int align_offset, u_int flags, const char *wchan,
1726 struct pool_allocator *palloc, int ipl,
1727 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1728 void *arg)
1729 {
1730 CPU_INFO_ITERATOR cii;
1731 pool_cache_t pc1;
1732 struct cpu_info *ci;
1733 struct pool *pp;
1734
1735 pp = &pc->pc_pool;
1736 if (palloc == NULL && ipl == IPL_NONE)
1737 palloc = &pool_allocator_nointr;
1738 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1739 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1740
1741 if (ctor == NULL) {
1742 ctor = (int (*)(void *, void *, int))nullop;
1743 }
1744 if (dtor == NULL) {
1745 dtor = (void (*)(void *, void *))nullop;
1746 }
1747
1748 pc->pc_emptygroups = NULL;
1749 pc->pc_fullgroups = NULL;
1750 pc->pc_partgroups = NULL;
1751 pc->pc_ctor = ctor;
1752 pc->pc_dtor = dtor;
1753 pc->pc_arg = arg;
1754 pc->pc_hits = 0;
1755 pc->pc_misses = 0;
1756 pc->pc_nempty = 0;
1757 pc->pc_npart = 0;
1758 pc->pc_nfull = 0;
1759 pc->pc_contended = 0;
1760 pc->pc_refcnt = 0;
1761 pc->pc_freecheck = NULL;
1762
1763 if ((flags & PR_LARGECACHE) != 0) {
1764 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1765 pc->pc_pcgpool = &pcg_large_pool;
1766 } else {
1767 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1768 pc->pc_pcgpool = &pcg_normal_pool;
1769 }
1770
1771 /* Allocate per-CPU caches. */
1772 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1773 pc->pc_ncpu = 0;
1774 if (ncpu < 2) {
1775 /* XXX For sparc: boot CPU is not attached yet. */
1776 pool_cache_cpu_init1(curcpu(), pc);
1777 } else {
1778 for (CPU_INFO_FOREACH(cii, ci)) {
1779 pool_cache_cpu_init1(ci, pc);
1780 }
1781 }
1782
1783 /* Add to list of all pools. */
1784 if (__predict_true(!cold))
1785 mutex_enter(&pool_head_lock);
1786 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1787 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1788 break;
1789 }
1790 if (pc1 == NULL)
1791 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1792 else
1793 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1794 if (__predict_true(!cold))
1795 mutex_exit(&pool_head_lock);
1796
1797 membar_sync();
1798 pp->pr_cache = pc;
1799 }
1800
1801 /*
1802 * pool_cache_destroy:
1803 *
1804 * Destroy a pool cache.
1805 */
1806 void
1807 pool_cache_destroy(pool_cache_t pc)
1808 {
1809
1810 pool_cache_bootstrap_destroy(pc);
1811 pool_put(&cache_pool, pc);
1812 }
1813
1814 /*
1815 * pool_cache_bootstrap_destroy:
1816 *
1817 * Destroy a pool cache.
1818 */
1819 void
1820 pool_cache_bootstrap_destroy(pool_cache_t pc)
1821 {
1822 struct pool *pp = &pc->pc_pool;
1823 u_int i;
1824
1825 /* Remove it from the global list. */
1826 mutex_enter(&pool_head_lock);
1827 while (pc->pc_refcnt != 0)
1828 cv_wait(&pool_busy, &pool_head_lock);
1829 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1830 mutex_exit(&pool_head_lock);
1831
1832 /* First, invalidate the entire cache. */
1833 pool_cache_invalidate(pc);
1834
1835 /* Disassociate it from the pool. */
1836 mutex_enter(&pp->pr_lock);
1837 pp->pr_cache = NULL;
1838 mutex_exit(&pp->pr_lock);
1839
1840 /* Destroy per-CPU data */
1841 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1842 pool_cache_invalidate_cpu(pc, i);
1843
1844 /* Finally, destroy it. */
1845 mutex_destroy(&pc->pc_lock);
1846 pool_destroy(pp);
1847 }
1848
1849 /*
1850 * pool_cache_cpu_init1:
1851 *
1852 * Called for each pool_cache whenever a new CPU is attached.
1853 */
1854 static void
1855 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1856 {
1857 pool_cache_cpu_t *cc;
1858 int index;
1859
1860 index = ci->ci_index;
1861
1862 KASSERT(index < __arraycount(pc->pc_cpus));
1863
1864 if ((cc = pc->pc_cpus[index]) != NULL) {
1865 KASSERT(cc->cc_cpuindex == index);
1866 return;
1867 }
1868
1869 /*
1870 * The first CPU is 'free'. This needs to be the case for
1871 * bootstrap - we may not be able to allocate yet.
1872 */
1873 if (pc->pc_ncpu == 0) {
1874 cc = &pc->pc_cpu0;
1875 pc->pc_ncpu = 1;
1876 } else {
1877 mutex_enter(&pc->pc_lock);
1878 pc->pc_ncpu++;
1879 mutex_exit(&pc->pc_lock);
1880 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1881 }
1882
1883 cc->cc_ipl = pc->pc_pool.pr_ipl;
1884 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1885 cc->cc_cache = pc;
1886 cc->cc_cpuindex = index;
1887 cc->cc_hits = 0;
1888 cc->cc_misses = 0;
1889 cc->cc_current = __UNCONST(&pcg_dummy);
1890 cc->cc_previous = __UNCONST(&pcg_dummy);
1891
1892 pc->pc_cpus[index] = cc;
1893 }
1894
1895 /*
1896 * pool_cache_cpu_init:
1897 *
1898 * Called whenever a new CPU is attached.
1899 */
1900 void
1901 pool_cache_cpu_init(struct cpu_info *ci)
1902 {
1903 pool_cache_t pc;
1904
1905 mutex_enter(&pool_head_lock);
1906 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1907 pc->pc_refcnt++;
1908 mutex_exit(&pool_head_lock);
1909
1910 pool_cache_cpu_init1(ci, pc);
1911
1912 mutex_enter(&pool_head_lock);
1913 pc->pc_refcnt--;
1914 cv_broadcast(&pool_busy);
1915 }
1916 mutex_exit(&pool_head_lock);
1917 }
1918
1919 /*
1920 * pool_cache_reclaim:
1921 *
1922 * Reclaim memory from a pool cache.
1923 */
1924 bool
1925 pool_cache_reclaim(pool_cache_t pc)
1926 {
1927
1928 return pool_reclaim(&pc->pc_pool);
1929 }
1930
1931 static void
1932 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1933 {
1934
1935 (*pc->pc_dtor)(pc->pc_arg, object);
1936 pool_put(&pc->pc_pool, object);
1937 }
1938
1939 /*
1940 * pool_cache_destruct_object:
1941 *
1942 * Force destruction of an object and its release back into
1943 * the pool.
1944 */
1945 void
1946 pool_cache_destruct_object(pool_cache_t pc, void *object)
1947 {
1948
1949 FREECHECK_IN(&pc->pc_freecheck, object);
1950
1951 pool_cache_destruct_object1(pc, object);
1952 }
1953
1954 /*
1955 * pool_cache_invalidate_groups:
1956 *
1957 * Invalidate a chain of groups and destruct all objects.
1958 */
1959 static void
1960 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1961 {
1962 void *object;
1963 pcg_t *next;
1964 int i;
1965
1966 for (; pcg != NULL; pcg = next) {
1967 next = pcg->pcg_next;
1968
1969 for (i = 0; i < pcg->pcg_avail; i++) {
1970 object = pcg->pcg_objects[i].pcgo_va;
1971 pool_cache_destruct_object1(pc, object);
1972 }
1973
1974 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
1975 pool_put(&pcg_large_pool, pcg);
1976 } else {
1977 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
1978 pool_put(&pcg_normal_pool, pcg);
1979 }
1980 }
1981 }
1982
1983 /*
1984 * pool_cache_invalidate:
1985 *
1986 * Invalidate a pool cache (destruct and release all of the
1987 * cached objects). Does not reclaim objects from the pool.
1988 *
1989 * Note: For pool caches that provide constructed objects, there
1990 * is an assumption that another level of synchronization is occurring
1991 * between the input to the constructor and the cache invalidation.
1992 *
1993 * Invalidation is a costly process and should not be called from
1994 * interrupt context.
1995 */
1996 void
1997 pool_cache_invalidate(pool_cache_t pc)
1998 {
1999 uint64_t where;
2000 pcg_t *full, *empty, *part;
2001
2002 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2003
2004 if (ncpu < 2 || !mp_online) {
2005 /*
2006 * We might be called early enough in the boot process
2007 * for the CPU data structures to not be fully initialized.
2008 * In this case, transfer the content of the local CPU's
2009 * cache back into global cache as only this CPU is currently
2010 * running.
2011 */
2012 pool_cache_transfer(pc);
2013 } else {
2014 /*
2015 * Signal all CPUs that they must transfer their local
2016 * cache back to the global pool then wait for the xcall to
2017 * complete.
2018 */
2019 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2020 pc, NULL);
2021 xc_wait(where);
2022 }
2023
2024 /* Empty pool caches, then invalidate objects */
2025 mutex_enter(&pc->pc_lock);
2026 full = pc->pc_fullgroups;
2027 empty = pc->pc_emptygroups;
2028 part = pc->pc_partgroups;
2029 pc->pc_fullgroups = NULL;
2030 pc->pc_emptygroups = NULL;
2031 pc->pc_partgroups = NULL;
2032 pc->pc_nfull = 0;
2033 pc->pc_nempty = 0;
2034 pc->pc_npart = 0;
2035 mutex_exit(&pc->pc_lock);
2036
2037 pool_cache_invalidate_groups(pc, full);
2038 pool_cache_invalidate_groups(pc, empty);
2039 pool_cache_invalidate_groups(pc, part);
2040 }
2041
2042 /*
2043 * pool_cache_invalidate_cpu:
2044 *
2045 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2046 * identified by its associated index.
2047 * It is caller's responsibility to ensure that no operation is
2048 * taking place on this pool cache while doing this invalidation.
2049 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2050 * pool cached objects from a CPU different from the one currently running
2051 * may result in an undefined behaviour.
2052 */
2053 static void
2054 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2055 {
2056 pool_cache_cpu_t *cc;
2057 pcg_t *pcg;
2058
2059 if ((cc = pc->pc_cpus[index]) == NULL)
2060 return;
2061
2062 if ((pcg = cc->cc_current) != &pcg_dummy) {
2063 pcg->pcg_next = NULL;
2064 pool_cache_invalidate_groups(pc, pcg);
2065 }
2066 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2067 pcg->pcg_next = NULL;
2068 pool_cache_invalidate_groups(pc, pcg);
2069 }
2070 if (cc != &pc->pc_cpu0)
2071 pool_put(&cache_cpu_pool, cc);
2072
2073 }
2074
2075 void
2076 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2077 {
2078
2079 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2080 }
2081
2082 void
2083 pool_cache_setlowat(pool_cache_t pc, int n)
2084 {
2085
2086 pool_setlowat(&pc->pc_pool, n);
2087 }
2088
2089 void
2090 pool_cache_sethiwat(pool_cache_t pc, int n)
2091 {
2092
2093 pool_sethiwat(&pc->pc_pool, n);
2094 }
2095
2096 void
2097 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2098 {
2099
2100 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2101 }
2102
2103 static bool __noinline
2104 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2105 paddr_t *pap, int flags)
2106 {
2107 pcg_t *pcg, *cur;
2108 uint64_t ncsw;
2109 pool_cache_t pc;
2110 void *object;
2111
2112 KASSERT(cc->cc_current->pcg_avail == 0);
2113 KASSERT(cc->cc_previous->pcg_avail == 0);
2114
2115 pc = cc->cc_cache;
2116 cc->cc_misses++;
2117
2118 /*
2119 * Nothing was available locally. Try and grab a group
2120 * from the cache.
2121 */
2122 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2123 ncsw = curlwp->l_ncsw;
2124 mutex_enter(&pc->pc_lock);
2125 pc->pc_contended++;
2126
2127 /*
2128 * If we context switched while locking, then
2129 * our view of the per-CPU data is invalid:
2130 * retry.
2131 */
2132 if (curlwp->l_ncsw != ncsw) {
2133 mutex_exit(&pc->pc_lock);
2134 return true;
2135 }
2136 }
2137
2138 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2139 /*
2140 * If there's a full group, release our empty
2141 * group back to the cache. Install the full
2142 * group as cc_current and return.
2143 */
2144 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2145 KASSERT(cur->pcg_avail == 0);
2146 cur->pcg_next = pc->pc_emptygroups;
2147 pc->pc_emptygroups = cur;
2148 pc->pc_nempty++;
2149 }
2150 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2151 cc->cc_current = pcg;
2152 pc->pc_fullgroups = pcg->pcg_next;
2153 pc->pc_hits++;
2154 pc->pc_nfull--;
2155 mutex_exit(&pc->pc_lock);
2156 return true;
2157 }
2158
2159 /*
2160 * Nothing available locally or in cache. Take the slow
2161 * path: fetch a new object from the pool and construct
2162 * it.
2163 */
2164 pc->pc_misses++;
2165 mutex_exit(&pc->pc_lock);
2166 splx(s);
2167
2168 object = pool_get(&pc->pc_pool, flags);
2169 *objectp = object;
2170 if (__predict_false(object == NULL))
2171 return false;
2172
2173 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2174 pool_put(&pc->pc_pool, object);
2175 *objectp = NULL;
2176 return false;
2177 }
2178
2179 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2180 (pc->pc_pool.pr_align - 1)) == 0);
2181
2182 if (pap != NULL) {
2183 #ifdef POOL_VTOPHYS
2184 *pap = POOL_VTOPHYS(object);
2185 #else
2186 *pap = POOL_PADDR_INVALID;
2187 #endif
2188 }
2189
2190 FREECHECK_OUT(&pc->pc_freecheck, object);
2191 return false;
2192 }
2193
2194 /*
2195 * pool_cache_get{,_paddr}:
2196 *
2197 * Get an object from a pool cache (optionally returning
2198 * the physical address of the object).
2199 */
2200 void *
2201 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2202 {
2203 pool_cache_cpu_t *cc;
2204 pcg_t *pcg;
2205 void *object;
2206 int s;
2207
2208 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2209 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2210 "pool '%s' is IPL_NONE, but called from interrupt context\n",
2211 pc->pc_pool.pr_wchan);
2212
2213 if (flags & PR_WAITOK) {
2214 ASSERT_SLEEPABLE();
2215 }
2216
2217 /* Lock out interrupts and disable preemption. */
2218 s = splvm();
2219 while (/* CONSTCOND */ true) {
2220 /* Try and allocate an object from the current group. */
2221 cc = pc->pc_cpus[curcpu()->ci_index];
2222 KASSERT(cc->cc_cache == pc);
2223 pcg = cc->cc_current;
2224 if (__predict_true(pcg->pcg_avail > 0)) {
2225 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2226 if (__predict_false(pap != NULL))
2227 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2228 #if defined(DIAGNOSTIC)
2229 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2230 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2231 KASSERT(object != NULL);
2232 #endif
2233 cc->cc_hits++;
2234 splx(s);
2235 FREECHECK_OUT(&pc->pc_freecheck, object);
2236 return object;
2237 }
2238
2239 /*
2240 * That failed. If the previous group isn't empty, swap
2241 * it with the current group and allocate from there.
2242 */
2243 pcg = cc->cc_previous;
2244 if (__predict_true(pcg->pcg_avail > 0)) {
2245 cc->cc_previous = cc->cc_current;
2246 cc->cc_current = pcg;
2247 continue;
2248 }
2249
2250 /*
2251 * Can't allocate from either group: try the slow path.
2252 * If get_slow() allocated an object for us, or if
2253 * no more objects are available, it will return false.
2254 * Otherwise, we need to retry.
2255 */
2256 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2257 break;
2258 }
2259
2260 return object;
2261 }
2262
2263 static bool __noinline
2264 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2265 {
2266 struct lwp *l = curlwp;
2267 pcg_t *pcg, *cur;
2268 uint64_t ncsw;
2269 pool_cache_t pc;
2270
2271 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2272 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2273
2274 pc = cc->cc_cache;
2275 pcg = NULL;
2276 cc->cc_misses++;
2277 ncsw = l->l_ncsw;
2278
2279 /*
2280 * If there are no empty groups in the cache then allocate one
2281 * while still unlocked.
2282 */
2283 if (__predict_false(pc->pc_emptygroups == NULL)) {
2284 if (__predict_true(!pool_cache_disable)) {
2285 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2286 }
2287 /*
2288 * If pool_get() blocked, then our view of
2289 * the per-CPU data is invalid: retry.
2290 */
2291 if (__predict_false(l->l_ncsw != ncsw)) {
2292 if (pcg != NULL) {
2293 pool_put(pc->pc_pcgpool, pcg);
2294 }
2295 return true;
2296 }
2297 if (__predict_true(pcg != NULL)) {
2298 pcg->pcg_avail = 0;
2299 pcg->pcg_size = pc->pc_pcgsize;
2300 }
2301 }
2302
2303 /* Lock the cache. */
2304 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2305 mutex_enter(&pc->pc_lock);
2306 pc->pc_contended++;
2307
2308 /*
2309 * If we context switched while locking, then our view of
2310 * the per-CPU data is invalid: retry.
2311 */
2312 if (__predict_false(l->l_ncsw != ncsw)) {
2313 mutex_exit(&pc->pc_lock);
2314 if (pcg != NULL) {
2315 pool_put(pc->pc_pcgpool, pcg);
2316 }
2317 return true;
2318 }
2319 }
2320
2321 /* If there are no empty groups in the cache then allocate one. */
2322 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2323 pcg = pc->pc_emptygroups;
2324 pc->pc_emptygroups = pcg->pcg_next;
2325 pc->pc_nempty--;
2326 }
2327
2328 /*
2329 * If there's a empty group, release our full group back
2330 * to the cache. Install the empty group to the local CPU
2331 * and return.
2332 */
2333 if (pcg != NULL) {
2334 KASSERT(pcg->pcg_avail == 0);
2335 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2336 cc->cc_previous = pcg;
2337 } else {
2338 cur = cc->cc_current;
2339 if (__predict_true(cur != &pcg_dummy)) {
2340 KASSERT(cur->pcg_avail == cur->pcg_size);
2341 cur->pcg_next = pc->pc_fullgroups;
2342 pc->pc_fullgroups = cur;
2343 pc->pc_nfull++;
2344 }
2345 cc->cc_current = pcg;
2346 }
2347 pc->pc_hits++;
2348 mutex_exit(&pc->pc_lock);
2349 return true;
2350 }
2351
2352 /*
2353 * Nothing available locally or in cache, and we didn't
2354 * allocate an empty group. Take the slow path and destroy
2355 * the object here and now.
2356 */
2357 pc->pc_misses++;
2358 mutex_exit(&pc->pc_lock);
2359 splx(s);
2360 pool_cache_destruct_object(pc, object);
2361
2362 return false;
2363 }
2364
2365 /*
2366 * pool_cache_put{,_paddr}:
2367 *
2368 * Put an object back to the pool cache (optionally caching the
2369 * physical address of the object).
2370 */
2371 void
2372 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2373 {
2374 pool_cache_cpu_t *cc;
2375 pcg_t *pcg;
2376 int s;
2377
2378 KASSERT(object != NULL);
2379 FREECHECK_IN(&pc->pc_freecheck, object);
2380
2381 /* Lock out interrupts and disable preemption. */
2382 s = splvm();
2383 while (/* CONSTCOND */ true) {
2384 /* If the current group isn't full, release it there. */
2385 cc = pc->pc_cpus[curcpu()->ci_index];
2386 KASSERT(cc->cc_cache == pc);
2387 pcg = cc->cc_current;
2388 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2389 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2390 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2391 pcg->pcg_avail++;
2392 cc->cc_hits++;
2393 splx(s);
2394 return;
2395 }
2396
2397 /*
2398 * That failed. If the previous group isn't full, swap
2399 * it with the current group and try again.
2400 */
2401 pcg = cc->cc_previous;
2402 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2403 cc->cc_previous = cc->cc_current;
2404 cc->cc_current = pcg;
2405 continue;
2406 }
2407
2408 /*
2409 * Can't free to either group: try the slow path.
2410 * If put_slow() releases the object for us, it
2411 * will return false. Otherwise we need to retry.
2412 */
2413 if (!pool_cache_put_slow(cc, s, object))
2414 break;
2415 }
2416 }
2417
2418 /*
2419 * pool_cache_transfer:
2420 *
2421 * Transfer objects from the per-CPU cache to the global cache.
2422 * Run within a cross-call thread.
2423 */
2424 static void
2425 pool_cache_transfer(pool_cache_t pc)
2426 {
2427 pool_cache_cpu_t *cc;
2428 pcg_t *prev, *cur, **list;
2429 int s;
2430
2431 s = splvm();
2432 mutex_enter(&pc->pc_lock);
2433 cc = pc->pc_cpus[curcpu()->ci_index];
2434 cur = cc->cc_current;
2435 cc->cc_current = __UNCONST(&pcg_dummy);
2436 prev = cc->cc_previous;
2437 cc->cc_previous = __UNCONST(&pcg_dummy);
2438 if (cur != &pcg_dummy) {
2439 if (cur->pcg_avail == cur->pcg_size) {
2440 list = &pc->pc_fullgroups;
2441 pc->pc_nfull++;
2442 } else if (cur->pcg_avail == 0) {
2443 list = &pc->pc_emptygroups;
2444 pc->pc_nempty++;
2445 } else {
2446 list = &pc->pc_partgroups;
2447 pc->pc_npart++;
2448 }
2449 cur->pcg_next = *list;
2450 *list = cur;
2451 }
2452 if (prev != &pcg_dummy) {
2453 if (prev->pcg_avail == prev->pcg_size) {
2454 list = &pc->pc_fullgroups;
2455 pc->pc_nfull++;
2456 } else if (prev->pcg_avail == 0) {
2457 list = &pc->pc_emptygroups;
2458 pc->pc_nempty++;
2459 } else {
2460 list = &pc->pc_partgroups;
2461 pc->pc_npart++;
2462 }
2463 prev->pcg_next = *list;
2464 *list = prev;
2465 }
2466 mutex_exit(&pc->pc_lock);
2467 splx(s);
2468 }
2469
2470 /*
2471 * Pool backend allocators.
2472 *
2473 * Each pool has a backend allocator that handles allocation, deallocation,
2474 * and any additional draining that might be needed.
2475 *
2476 * We provide two standard allocators:
2477 *
2478 * pool_allocator_kmem - the default when no allocator is specified
2479 *
2480 * pool_allocator_nointr - used for pools that will not be accessed
2481 * in interrupt context.
2482 */
2483 void *pool_page_alloc(struct pool *, int);
2484 void pool_page_free(struct pool *, void *);
2485
2486 #ifdef POOL_SUBPAGE
2487 struct pool_allocator pool_allocator_kmem_fullpage = {
2488 .pa_alloc = pool_page_alloc,
2489 .pa_free = pool_page_free,
2490 .pa_pagesz = 0
2491 };
2492 #else
2493 struct pool_allocator pool_allocator_kmem = {
2494 .pa_alloc = pool_page_alloc,
2495 .pa_free = pool_page_free,
2496 .pa_pagesz = 0
2497 };
2498 #endif
2499
2500 #ifdef POOL_SUBPAGE
2501 struct pool_allocator pool_allocator_nointr_fullpage = {
2502 .pa_alloc = pool_page_alloc,
2503 .pa_free = pool_page_free,
2504 .pa_pagesz = 0
2505 };
2506 #else
2507 struct pool_allocator pool_allocator_nointr = {
2508 .pa_alloc = pool_page_alloc,
2509 .pa_free = pool_page_free,
2510 .pa_pagesz = 0
2511 };
2512 #endif
2513
2514 #ifdef POOL_SUBPAGE
2515 void *pool_subpage_alloc(struct pool *, int);
2516 void pool_subpage_free(struct pool *, void *);
2517
2518 struct pool_allocator pool_allocator_kmem = {
2519 .pa_alloc = pool_subpage_alloc,
2520 .pa_free = pool_subpage_free,
2521 .pa_pagesz = POOL_SUBPAGE
2522 };
2523
2524 struct pool_allocator pool_allocator_nointr = {
2525 .pa_alloc = pool_subpage_alloc,
2526 .pa_free = pool_subpage_free,
2527 .pa_pagesz = POOL_SUBPAGE
2528 };
2529 #endif /* POOL_SUBPAGE */
2530
2531 static void *
2532 pool_allocator_alloc(struct pool *pp, int flags)
2533 {
2534 struct pool_allocator *pa = pp->pr_alloc;
2535 void *res;
2536
2537 res = (*pa->pa_alloc)(pp, flags);
2538 if (res == NULL && (flags & PR_WAITOK) == 0) {
2539 /*
2540 * We only run the drain hook here if PR_NOWAIT.
2541 * In other cases, the hook will be run in
2542 * pool_reclaim().
2543 */
2544 if (pp->pr_drain_hook != NULL) {
2545 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2546 res = (*pa->pa_alloc)(pp, flags);
2547 }
2548 }
2549 return res;
2550 }
2551
2552 static void
2553 pool_allocator_free(struct pool *pp, void *v)
2554 {
2555 struct pool_allocator *pa = pp->pr_alloc;
2556
2557 (*pa->pa_free)(pp, v);
2558 }
2559
2560 void *
2561 pool_page_alloc(struct pool *pp, int flags)
2562 {
2563 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2564 vmem_addr_t va;
2565 int ret;
2566
2567 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2568 vflags | VM_INSTANTFIT, &va);
2569
2570 return ret ? NULL : (void *)va;
2571 }
2572
2573 void
2574 pool_page_free(struct pool *pp, void *v)
2575 {
2576
2577 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2578 }
2579
2580 static void *
2581 pool_page_alloc_meta(struct pool *pp, int flags)
2582 {
2583 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2584 vmem_addr_t va;
2585 int ret;
2586
2587 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2588 vflags | VM_INSTANTFIT, &va);
2589
2590 return ret ? NULL : (void *)va;
2591 }
2592
2593 static void
2594 pool_page_free_meta(struct pool *pp, void *v)
2595 {
2596
2597 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2598 }
2599
2600 #ifdef POOL_SUBPAGE
2601 /* Sub-page allocator, for machines with large hardware pages. */
2602 void *
2603 pool_subpage_alloc(struct pool *pp, int flags)
2604 {
2605 return pool_get(&psppool, flags);
2606 }
2607
2608 void
2609 pool_subpage_free(struct pool *pp, void *v)
2610 {
2611 pool_put(&psppool, v);
2612 }
2613
2614 #endif /* POOL_SUBPAGE */
2615
2616 #if defined(DDB)
2617 static bool
2618 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2619 {
2620
2621 return (uintptr_t)ph->ph_page <= addr &&
2622 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2623 }
2624
2625 static bool
2626 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2627 {
2628
2629 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2630 }
2631
2632 static bool
2633 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2634 {
2635 int i;
2636
2637 if (pcg == NULL) {
2638 return false;
2639 }
2640 for (i = 0; i < pcg->pcg_avail; i++) {
2641 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2642 return true;
2643 }
2644 }
2645 return false;
2646 }
2647
2648 static bool
2649 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2650 {
2651
2652 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2653 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2654 pool_item_bitmap_t *bitmap =
2655 ph->ph_bitmap + (idx / BITMAP_SIZE);
2656 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2657
2658 return (*bitmap & mask) == 0;
2659 } else {
2660 struct pool_item *pi;
2661
2662 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2663 if (pool_in_item(pp, pi, addr)) {
2664 return false;
2665 }
2666 }
2667 return true;
2668 }
2669 }
2670
2671 void
2672 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2673 {
2674 struct pool *pp;
2675
2676 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2677 struct pool_item_header *ph;
2678 uintptr_t item;
2679 bool allocated = true;
2680 bool incache = false;
2681 bool incpucache = false;
2682 char cpucachestr[32];
2683
2684 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2685 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2686 if (pool_in_page(pp, ph, addr)) {
2687 goto found;
2688 }
2689 }
2690 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2691 if (pool_in_page(pp, ph, addr)) {
2692 allocated =
2693 pool_allocated(pp, ph, addr);
2694 goto found;
2695 }
2696 }
2697 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2698 if (pool_in_page(pp, ph, addr)) {
2699 allocated = false;
2700 goto found;
2701 }
2702 }
2703 continue;
2704 } else {
2705 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2706 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2707 continue;
2708 }
2709 allocated = pool_allocated(pp, ph, addr);
2710 }
2711 found:
2712 if (allocated && pp->pr_cache) {
2713 pool_cache_t pc = pp->pr_cache;
2714 struct pool_cache_group *pcg;
2715 int i;
2716
2717 for (pcg = pc->pc_fullgroups; pcg != NULL;
2718 pcg = pcg->pcg_next) {
2719 if (pool_in_cg(pp, pcg, addr)) {
2720 incache = true;
2721 goto print;
2722 }
2723 }
2724 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2725 pool_cache_cpu_t *cc;
2726
2727 if ((cc = pc->pc_cpus[i]) == NULL) {
2728 continue;
2729 }
2730 if (pool_in_cg(pp, cc->cc_current, addr) ||
2731 pool_in_cg(pp, cc->cc_previous, addr)) {
2732 struct cpu_info *ci =
2733 cpu_lookup(i);
2734
2735 incpucache = true;
2736 snprintf(cpucachestr,
2737 sizeof(cpucachestr),
2738 "cached by CPU %u",
2739 ci->ci_index);
2740 goto print;
2741 }
2742 }
2743 }
2744 print:
2745 item = (uintptr_t)ph->ph_page + ph->ph_off;
2746 item = item + rounddown(addr - item, pp->pr_size);
2747 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2748 (void *)addr, item, (size_t)(addr - item),
2749 pp->pr_wchan,
2750 incpucache ? cpucachestr :
2751 incache ? "cached" : allocated ? "allocated" : "free");
2752 }
2753 }
2754 #endif /* defined(DDB) */
2755
2756 static int
2757 pool_sysctl(SYSCTLFN_ARGS)
2758 {
2759 struct pool_sysctl data;
2760 struct pool *pp;
2761 struct pool_cache *pc;
2762 pool_cache_cpu_t *cc;
2763 int error;
2764 size_t i, written;
2765
2766 if (oldp == NULL) {
2767 *oldlenp = 0;
2768 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
2769 *oldlenp += sizeof(data);
2770 return 0;
2771 }
2772
2773 memset(&data, 0, sizeof(data));
2774 error = 0;
2775 written = 0;
2776 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2777 if (written + sizeof(data) > *oldlenp)
2778 break;
2779 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
2780 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
2781 data.pr_flags = pp->pr_roflags | pp->pr_flags;
2782 #define COPY(field) data.field = pp->field
2783 COPY(pr_size);
2784
2785 COPY(pr_itemsperpage);
2786 COPY(pr_nitems);
2787 COPY(pr_nout);
2788 COPY(pr_hardlimit);
2789 COPY(pr_npages);
2790 COPY(pr_minpages);
2791 COPY(pr_maxpages);
2792
2793 COPY(pr_nget);
2794 COPY(pr_nfail);
2795 COPY(pr_nput);
2796 COPY(pr_npagealloc);
2797 COPY(pr_npagefree);
2798 COPY(pr_hiwat);
2799 COPY(pr_nidle);
2800 #undef COPY
2801
2802 data.pr_cache_nmiss_pcpu = 0;
2803 data.pr_cache_nhit_pcpu = 0;
2804 if (pp->pr_cache) {
2805 pc = pp->pr_cache;
2806 data.pr_cache_meta_size = pc->pc_pcgsize;
2807 data.pr_cache_nfull = pc->pc_nfull;
2808 data.pr_cache_npartial = pc->pc_npart;
2809 data.pr_cache_nempty = pc->pc_nempty;
2810 data.pr_cache_ncontended = pc->pc_contended;
2811 data.pr_cache_nmiss_global = pc->pc_misses;
2812 data.pr_cache_nhit_global = pc->pc_hits;
2813 for (i = 0; i < pc->pc_ncpu; ++i) {
2814 cc = pc->pc_cpus[i];
2815 if (cc == NULL)
2816 continue;
2817 data.pr_cache_nmiss_pcpu = cc->cc_misses;
2818 data.pr_cache_nhit_pcpu = cc->cc_hits;
2819 }
2820 } else {
2821 data.pr_cache_meta_size = 0;
2822 data.pr_cache_nfull = 0;
2823 data.pr_cache_npartial = 0;
2824 data.pr_cache_nempty = 0;
2825 data.pr_cache_ncontended = 0;
2826 data.pr_cache_nmiss_global = 0;
2827 data.pr_cache_nhit_global = 0;
2828 }
2829
2830 error = sysctl_copyout(l, &data, oldp, sizeof(data));
2831 if (error)
2832 break;
2833 written += sizeof(data);
2834 oldp = (char *)oldp + sizeof(data);
2835 }
2836
2837 *oldlenp = written;
2838 return error;
2839 }
2840
2841 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
2842 {
2843 const struct sysctlnode *rnode = NULL;
2844
2845 sysctl_createv(clog, 0, NULL, &rnode,
2846 CTLFLAG_PERMANENT,
2847 CTLTYPE_STRUCT, "pool",
2848 SYSCTL_DESCR("Get pool statistics"),
2849 pool_sysctl, 0, NULL, 0,
2850 CTL_KERN, CTL_CREATE, CTL_EOL);
2851 }
2852