Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.203.4.1
      1 /*	$NetBSD: subr_pool.c,v 1.203.4.1 2015/09/22 12:06:07 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.203.4.1 2015/09/22 12:06:07 skrll Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/sysctl.h>
     46 #include <sys/bitops.h>
     47 #include <sys/proc.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/vmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 #include <sys/debug.h>
     54 #include <sys/lockdebug.h>
     55 #include <sys/xcall.h>
     56 #include <sys/cpu.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Pool resource management utility.
     63  *
     64  * Memory is allocated in pages which are split into pieces according to
     65  * the pool item size. Each page is kept on one of three lists in the
     66  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67  * for empty, full and partially-full pages respectively. The individual
     68  * pool items are on a linked list headed by `ph_itemlist' in each page
     69  * header. The memory for building the page list is either taken from
     70  * the allocated pages themselves (for small pool items) or taken from
     71  * an internal pool of page headers (`phpool').
     72  */
     73 
     74 /* List of all pools. Non static as needed by 'vmstat -i' */
     75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     76 
     77 /* Private pool for page header structures */
     78 #define	PHPOOL_MAX	8
     79 static struct pool phpool[PHPOOL_MAX];
     80 #define	PHPOOL_FREELIST_NELEM(idx) \
     81 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     82 
     83 #ifdef POOL_SUBPAGE
     84 /* Pool of subpages for use by normal pools. */
     85 static struct pool psppool;
     86 #endif
     87 
     88 #ifdef POOL_REDZONE
     89 # define POOL_REDZONE_SIZE 2
     90 static void pool_redzone_init(struct pool *, size_t);
     91 static void pool_redzone_fill(struct pool *, void *);
     92 static void pool_redzone_check(struct pool *, void *);
     93 #else
     94 # define pool_redzone_init(pp, sz)	/* NOTHING */
     95 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     96 # define pool_redzone_check(pp, ptr)	/* NOTHING */
     97 #endif
     98 
     99 static void *pool_page_alloc_meta(struct pool *, int);
    100 static void pool_page_free_meta(struct pool *, void *);
    101 
    102 /* allocator for pool metadata */
    103 struct pool_allocator pool_allocator_meta = {
    104 	.pa_alloc = pool_page_alloc_meta,
    105 	.pa_free = pool_page_free_meta,
    106 	.pa_pagesz = 0
    107 };
    108 
    109 /* # of seconds to retain page after last use */
    110 int pool_inactive_time = 10;
    111 
    112 /* Next candidate for drainage (see pool_drain()) */
    113 static struct pool	*drainpp;
    114 
    115 /* This lock protects both pool_head and drainpp. */
    116 static kmutex_t pool_head_lock;
    117 static kcondvar_t pool_busy;
    118 
    119 /* This lock protects initialization of a potentially shared pool allocator */
    120 static kmutex_t pool_allocator_lock;
    121 
    122 typedef uint32_t pool_item_bitmap_t;
    123 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    124 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    125 
    126 struct pool_item_header {
    127 	/* Page headers */
    128 	LIST_ENTRY(pool_item_header)
    129 				ph_pagelist;	/* pool page list */
    130 	SPLAY_ENTRY(pool_item_header)
    131 				ph_node;	/* Off-page page headers */
    132 	void *			ph_page;	/* this page's address */
    133 	uint32_t		ph_time;	/* last referenced */
    134 	uint16_t		ph_nmissing;	/* # of chunks in use */
    135 	uint16_t		ph_off;		/* start offset in page */
    136 	union {
    137 		/* !PR_NOTOUCH */
    138 		struct {
    139 			LIST_HEAD(, pool_item)
    140 				phu_itemlist;	/* chunk list for this page */
    141 		} phu_normal;
    142 		/* PR_NOTOUCH */
    143 		struct {
    144 			pool_item_bitmap_t phu_bitmap[1];
    145 		} phu_notouch;
    146 	} ph_u;
    147 };
    148 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    149 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    150 
    151 struct pool_item {
    152 #ifdef DIAGNOSTIC
    153 	u_int pi_magic;
    154 #endif
    155 #define	PI_MAGIC 0xdeaddeadU
    156 	/* Other entries use only this list entry */
    157 	LIST_ENTRY(pool_item)	pi_list;
    158 };
    159 
    160 #define	POOL_NEEDS_CATCHUP(pp)						\
    161 	((pp)->pr_nitems < (pp)->pr_minitems)
    162 
    163 /*
    164  * Pool cache management.
    165  *
    166  * Pool caches provide a way for constructed objects to be cached by the
    167  * pool subsystem.  This can lead to performance improvements by avoiding
    168  * needless object construction/destruction; it is deferred until absolutely
    169  * necessary.
    170  *
    171  * Caches are grouped into cache groups.  Each cache group references up
    172  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    173  * object from the pool, it calls the object's constructor and places it
    174  * into a cache group.  When a cache group frees an object back to the
    175  * pool, it first calls the object's destructor.  This allows the object
    176  * to persist in constructed form while freed to the cache.
    177  *
    178  * The pool references each cache, so that when a pool is drained by the
    179  * pagedaemon, it can drain each individual cache as well.  Each time a
    180  * cache is drained, the most idle cache group is freed to the pool in
    181  * its entirety.
    182  *
    183  * Pool caches are layed on top of pools.  By layering them, we can avoid
    184  * the complexity of cache management for pools which would not benefit
    185  * from it.
    186  */
    187 
    188 static struct pool pcg_normal_pool;
    189 static struct pool pcg_large_pool;
    190 static struct pool cache_pool;
    191 static struct pool cache_cpu_pool;
    192 
    193 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    194 
    195 /* List of all caches. */
    196 TAILQ_HEAD(,pool_cache) pool_cache_head =
    197     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    198 
    199 int pool_cache_disable;		/* global disable for caching */
    200 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    201 
    202 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    203 				    void *);
    204 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    205 				    void **, paddr_t *, int);
    206 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    207 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    208 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    209 static void	pool_cache_transfer(pool_cache_t);
    210 
    211 static int	pool_catchup(struct pool *);
    212 static void	pool_prime_page(struct pool *, void *,
    213 		    struct pool_item_header *);
    214 static void	pool_update_curpage(struct pool *);
    215 
    216 static int	pool_grow(struct pool *, int);
    217 static void	*pool_allocator_alloc(struct pool *, int);
    218 static void	pool_allocator_free(struct pool *, void *);
    219 
    220 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    221 	void (*)(const char *, ...) __printflike(1, 2));
    222 static void pool_print1(struct pool *, const char *,
    223 	void (*)(const char *, ...) __printflike(1, 2));
    224 
    225 static int pool_chk_page(struct pool *, const char *,
    226 			 struct pool_item_header *);
    227 
    228 static inline unsigned int
    229 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    230     const void *v)
    231 {
    232 	const char *cp = v;
    233 	unsigned int idx;
    234 
    235 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    236 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    237 	KASSERT(idx < pp->pr_itemsperpage);
    238 	return idx;
    239 }
    240 
    241 static inline void
    242 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    243     void *obj)
    244 {
    245 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    246 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    247 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    248 
    249 	KASSERT((*bitmap & mask) == 0);
    250 	*bitmap |= mask;
    251 }
    252 
    253 static inline void *
    254 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    255 {
    256 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    257 	unsigned int idx;
    258 	int i;
    259 
    260 	for (i = 0; ; i++) {
    261 		int bit;
    262 
    263 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    264 		bit = ffs32(bitmap[i]);
    265 		if (bit) {
    266 			pool_item_bitmap_t mask;
    267 
    268 			bit--;
    269 			idx = (i * BITMAP_SIZE) + bit;
    270 			mask = 1 << bit;
    271 			KASSERT((bitmap[i] & mask) != 0);
    272 			bitmap[i] &= ~mask;
    273 			break;
    274 		}
    275 	}
    276 	KASSERT(idx < pp->pr_itemsperpage);
    277 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    278 }
    279 
    280 static inline void
    281 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    282 {
    283 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    284 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    285 	int i;
    286 
    287 	for (i = 0; i < n; i++) {
    288 		bitmap[i] = (pool_item_bitmap_t)-1;
    289 	}
    290 }
    291 
    292 static inline int
    293 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    294 {
    295 
    296 	/*
    297 	 * we consider pool_item_header with smaller ph_page bigger.
    298 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    299 	 */
    300 
    301 	if (a->ph_page < b->ph_page)
    302 		return (1);
    303 	else if (a->ph_page > b->ph_page)
    304 		return (-1);
    305 	else
    306 		return (0);
    307 }
    308 
    309 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    310 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    311 
    312 static inline struct pool_item_header *
    313 pr_find_pagehead_noalign(struct pool *pp, void *v)
    314 {
    315 	struct pool_item_header *ph, tmp;
    316 
    317 	tmp.ph_page = (void *)(uintptr_t)v;
    318 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    319 	if (ph == NULL) {
    320 		ph = SPLAY_ROOT(&pp->pr_phtree);
    321 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    322 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    323 		}
    324 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    325 	}
    326 
    327 	return ph;
    328 }
    329 
    330 /*
    331  * Return the pool page header based on item address.
    332  */
    333 static inline struct pool_item_header *
    334 pr_find_pagehead(struct pool *pp, void *v)
    335 {
    336 	struct pool_item_header *ph, tmp;
    337 
    338 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    339 		ph = pr_find_pagehead_noalign(pp, v);
    340 	} else {
    341 		void *page =
    342 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    343 
    344 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    345 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    346 		} else {
    347 			tmp.ph_page = page;
    348 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    349 		}
    350 	}
    351 
    352 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    353 	    ((char *)ph->ph_page <= (char *)v &&
    354 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    355 	return ph;
    356 }
    357 
    358 static void
    359 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    360 {
    361 	struct pool_item_header *ph;
    362 
    363 	while ((ph = LIST_FIRST(pq)) != NULL) {
    364 		LIST_REMOVE(ph, ph_pagelist);
    365 		pool_allocator_free(pp, ph->ph_page);
    366 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    367 			pool_put(pp->pr_phpool, ph);
    368 	}
    369 }
    370 
    371 /*
    372  * Remove a page from the pool.
    373  */
    374 static inline void
    375 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    376      struct pool_pagelist *pq)
    377 {
    378 
    379 	KASSERT(mutex_owned(&pp->pr_lock));
    380 
    381 	/*
    382 	 * If the page was idle, decrement the idle page count.
    383 	 */
    384 	if (ph->ph_nmissing == 0) {
    385 #ifdef DIAGNOSTIC
    386 		if (pp->pr_nidle == 0)
    387 			panic("pr_rmpage: nidle inconsistent");
    388 		if (pp->pr_nitems < pp->pr_itemsperpage)
    389 			panic("pr_rmpage: nitems inconsistent");
    390 #endif
    391 		pp->pr_nidle--;
    392 	}
    393 
    394 	pp->pr_nitems -= pp->pr_itemsperpage;
    395 
    396 	/*
    397 	 * Unlink the page from the pool and queue it for release.
    398 	 */
    399 	LIST_REMOVE(ph, ph_pagelist);
    400 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    401 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    402 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    403 
    404 	pp->pr_npages--;
    405 	pp->pr_npagefree++;
    406 
    407 	pool_update_curpage(pp);
    408 }
    409 
    410 /*
    411  * Initialize all the pools listed in the "pools" link set.
    412  */
    413 void
    414 pool_subsystem_init(void)
    415 {
    416 	size_t size;
    417 	int idx;
    418 
    419 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    420 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    421 	cv_init(&pool_busy, "poolbusy");
    422 
    423 	/*
    424 	 * Initialize private page header pool and cache magazine pool if we
    425 	 * haven't done so yet.
    426 	 */
    427 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    428 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    429 		int nelem;
    430 		size_t sz;
    431 
    432 		nelem = PHPOOL_FREELIST_NELEM(idx);
    433 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    434 		    "phpool-%d", nelem);
    435 		sz = sizeof(struct pool_item_header);
    436 		if (nelem) {
    437 			sz = offsetof(struct pool_item_header,
    438 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    439 		}
    440 		pool_init(&phpool[idx], sz, 0, 0, 0,
    441 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    442 	}
    443 #ifdef POOL_SUBPAGE
    444 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    445 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    446 #endif
    447 
    448 	size = sizeof(pcg_t) +
    449 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    450 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    451 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    452 
    453 	size = sizeof(pcg_t) +
    454 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    455 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    456 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    457 
    458 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    459 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    460 
    461 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    462 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    463 }
    464 
    465 /*
    466  * Initialize the given pool resource structure.
    467  *
    468  * We export this routine to allow other kernel parts to declare
    469  * static pools that must be initialized before kmem(9) is available.
    470  */
    471 void
    472 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    473     const char *wchan, struct pool_allocator *palloc, int ipl)
    474 {
    475 	struct pool *pp1;
    476 	size_t trysize, phsize, prsize;
    477 	int off, slack;
    478 
    479 #ifdef DEBUG
    480 	if (__predict_true(!cold))
    481 		mutex_enter(&pool_head_lock);
    482 	/*
    483 	 * Check that the pool hasn't already been initialised and
    484 	 * added to the list of all pools.
    485 	 */
    486 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    487 		if (pp == pp1)
    488 			panic("pool_init: pool %s already initialised",
    489 			    wchan);
    490 	}
    491 	if (__predict_true(!cold))
    492 		mutex_exit(&pool_head_lock);
    493 #endif
    494 
    495 	if (palloc == NULL)
    496 		palloc = &pool_allocator_kmem;
    497 #ifdef POOL_SUBPAGE
    498 	if (size > palloc->pa_pagesz) {
    499 		if (palloc == &pool_allocator_kmem)
    500 			palloc = &pool_allocator_kmem_fullpage;
    501 		else if (palloc == &pool_allocator_nointr)
    502 			palloc = &pool_allocator_nointr_fullpage;
    503 	}
    504 #endif /* POOL_SUBPAGE */
    505 	if (!cold)
    506 		mutex_enter(&pool_allocator_lock);
    507 	if (palloc->pa_refcnt++ == 0) {
    508 		if (palloc->pa_pagesz == 0)
    509 			palloc->pa_pagesz = PAGE_SIZE;
    510 
    511 		TAILQ_INIT(&palloc->pa_list);
    512 
    513 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    514 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    515 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    516 	}
    517 	if (!cold)
    518 		mutex_exit(&pool_allocator_lock);
    519 
    520 	if (align == 0)
    521 		align = ALIGN(1);
    522 
    523 	prsize = size;
    524 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    525 		prsize = sizeof(struct pool_item);
    526 
    527 	prsize = roundup(prsize, align);
    528 #ifdef DIAGNOSTIC
    529 	if (prsize > palloc->pa_pagesz)
    530 		panic("pool_init: pool item size (%zu) too large", prsize);
    531 #endif
    532 
    533 	/*
    534 	 * Initialize the pool structure.
    535 	 */
    536 	LIST_INIT(&pp->pr_emptypages);
    537 	LIST_INIT(&pp->pr_fullpages);
    538 	LIST_INIT(&pp->pr_partpages);
    539 	pp->pr_cache = NULL;
    540 	pp->pr_curpage = NULL;
    541 	pp->pr_npages = 0;
    542 	pp->pr_minitems = 0;
    543 	pp->pr_minpages = 0;
    544 	pp->pr_maxpages = UINT_MAX;
    545 	pp->pr_roflags = flags;
    546 	pp->pr_flags = 0;
    547 	pp->pr_size = prsize;
    548 	pp->pr_align = align;
    549 	pp->pr_wchan = wchan;
    550 	pp->pr_alloc = palloc;
    551 	pp->pr_nitems = 0;
    552 	pp->pr_nout = 0;
    553 	pp->pr_hardlimit = UINT_MAX;
    554 	pp->pr_hardlimit_warning = NULL;
    555 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    556 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    557 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    558 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    559 	pp->pr_drain_hook = NULL;
    560 	pp->pr_drain_hook_arg = NULL;
    561 	pp->pr_freecheck = NULL;
    562 	pool_redzone_init(pp, size);
    563 
    564 	/*
    565 	 * Decide whether to put the page header off page to avoid
    566 	 * wasting too large a part of the page or too big item.
    567 	 * Off-page page headers go on a hash table, so we can match
    568 	 * a returned item with its header based on the page address.
    569 	 * We use 1/16 of the page size and about 8 times of the item
    570 	 * size as the threshold (XXX: tune)
    571 	 *
    572 	 * However, we'll put the header into the page if we can put
    573 	 * it without wasting any items.
    574 	 *
    575 	 * Silently enforce `0 <= ioff < align'.
    576 	 */
    577 	pp->pr_itemoffset = ioff %= align;
    578 	/* See the comment below about reserved bytes. */
    579 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    580 	phsize = ALIGN(sizeof(struct pool_item_header));
    581 	if (pp->pr_roflags & PR_PHINPAGE ||
    582 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    583 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    584 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    585 		/* Use the end of the page for the page header */
    586 		pp->pr_roflags |= PR_PHINPAGE;
    587 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    588 	} else {
    589 		/* The page header will be taken from our page header pool */
    590 		pp->pr_phoffset = 0;
    591 		off = palloc->pa_pagesz;
    592 		SPLAY_INIT(&pp->pr_phtree);
    593 	}
    594 
    595 	/*
    596 	 * Alignment is to take place at `ioff' within the item. This means
    597 	 * we must reserve up to `align - 1' bytes on the page to allow
    598 	 * appropriate positioning of each item.
    599 	 */
    600 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    601 	KASSERT(pp->pr_itemsperpage != 0);
    602 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    603 		int idx;
    604 
    605 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    606 		    idx++) {
    607 			/* nothing */
    608 		}
    609 		if (idx >= PHPOOL_MAX) {
    610 			/*
    611 			 * if you see this panic, consider to tweak
    612 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    613 			 */
    614 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    615 			    pp->pr_wchan, pp->pr_itemsperpage);
    616 		}
    617 		pp->pr_phpool = &phpool[idx];
    618 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    619 		pp->pr_phpool = &phpool[0];
    620 	}
    621 #if defined(DIAGNOSTIC)
    622 	else {
    623 		pp->pr_phpool = NULL;
    624 	}
    625 #endif
    626 
    627 	/*
    628 	 * Use the slack between the chunks and the page header
    629 	 * for "cache coloring".
    630 	 */
    631 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    632 	pp->pr_maxcolor = (slack / align) * align;
    633 	pp->pr_curcolor = 0;
    634 
    635 	pp->pr_nget = 0;
    636 	pp->pr_nfail = 0;
    637 	pp->pr_nput = 0;
    638 	pp->pr_npagealloc = 0;
    639 	pp->pr_npagefree = 0;
    640 	pp->pr_hiwat = 0;
    641 	pp->pr_nidle = 0;
    642 	pp->pr_refcnt = 0;
    643 
    644 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    645 	cv_init(&pp->pr_cv, wchan);
    646 	pp->pr_ipl = ipl;
    647 
    648 	/* Insert into the list of all pools. */
    649 	if (!cold)
    650 		mutex_enter(&pool_head_lock);
    651 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    652 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    653 			break;
    654 	}
    655 	if (pp1 == NULL)
    656 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    657 	else
    658 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    659 	if (!cold)
    660 		mutex_exit(&pool_head_lock);
    661 
    662 	/* Insert this into the list of pools using this allocator. */
    663 	if (!cold)
    664 		mutex_enter(&palloc->pa_lock);
    665 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    666 	if (!cold)
    667 		mutex_exit(&palloc->pa_lock);
    668 }
    669 
    670 /*
    671  * De-commision a pool resource.
    672  */
    673 void
    674 pool_destroy(struct pool *pp)
    675 {
    676 	struct pool_pagelist pq;
    677 	struct pool_item_header *ph;
    678 
    679 	/* Remove from global pool list */
    680 	mutex_enter(&pool_head_lock);
    681 	while (pp->pr_refcnt != 0)
    682 		cv_wait(&pool_busy, &pool_head_lock);
    683 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    684 	if (drainpp == pp)
    685 		drainpp = NULL;
    686 	mutex_exit(&pool_head_lock);
    687 
    688 	/* Remove this pool from its allocator's list of pools. */
    689 	mutex_enter(&pp->pr_alloc->pa_lock);
    690 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    691 	mutex_exit(&pp->pr_alloc->pa_lock);
    692 
    693 	mutex_enter(&pool_allocator_lock);
    694 	if (--pp->pr_alloc->pa_refcnt == 0)
    695 		mutex_destroy(&pp->pr_alloc->pa_lock);
    696 	mutex_exit(&pool_allocator_lock);
    697 
    698 	mutex_enter(&pp->pr_lock);
    699 
    700 	KASSERT(pp->pr_cache == NULL);
    701 
    702 #ifdef DIAGNOSTIC
    703 	if (pp->pr_nout != 0) {
    704 		panic("pool_destroy: pool busy: still out: %u",
    705 		    pp->pr_nout);
    706 	}
    707 #endif
    708 
    709 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    710 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    711 
    712 	/* Remove all pages */
    713 	LIST_INIT(&pq);
    714 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    715 		pr_rmpage(pp, ph, &pq);
    716 
    717 	mutex_exit(&pp->pr_lock);
    718 
    719 	pr_pagelist_free(pp, &pq);
    720 	cv_destroy(&pp->pr_cv);
    721 	mutex_destroy(&pp->pr_lock);
    722 }
    723 
    724 void
    725 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    726 {
    727 
    728 	/* XXX no locking -- must be used just after pool_init() */
    729 #ifdef DIAGNOSTIC
    730 	if (pp->pr_drain_hook != NULL)
    731 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    732 #endif
    733 	pp->pr_drain_hook = fn;
    734 	pp->pr_drain_hook_arg = arg;
    735 }
    736 
    737 static struct pool_item_header *
    738 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    739 {
    740 	struct pool_item_header *ph;
    741 
    742 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    743 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    744 	else
    745 		ph = pool_get(pp->pr_phpool, flags);
    746 
    747 	return (ph);
    748 }
    749 
    750 /*
    751  * Grab an item from the pool.
    752  */
    753 void *
    754 pool_get(struct pool *pp, int flags)
    755 {
    756 	struct pool_item *pi;
    757 	struct pool_item_header *ph;
    758 	void *v;
    759 
    760 #ifdef DIAGNOSTIC
    761 	if (pp->pr_itemsperpage == 0)
    762 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    763 		    "pool not initialized?", pp->pr_wchan);
    764 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    765 	    !cold && panicstr == NULL)
    766 		panic("pool '%s' is IPL_NONE, but called from "
    767 		    "interrupt context\n", pp->pr_wchan);
    768 #endif
    769 	if (flags & PR_WAITOK) {
    770 		ASSERT_SLEEPABLE();
    771 	}
    772 
    773 	mutex_enter(&pp->pr_lock);
    774  startover:
    775 	/*
    776 	 * Check to see if we've reached the hard limit.  If we have,
    777 	 * and we can wait, then wait until an item has been returned to
    778 	 * the pool.
    779 	 */
    780 #ifdef DIAGNOSTIC
    781 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    782 		mutex_exit(&pp->pr_lock);
    783 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    784 	}
    785 #endif
    786 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    787 		if (pp->pr_drain_hook != NULL) {
    788 			/*
    789 			 * Since the drain hook is going to free things
    790 			 * back to the pool, unlock, call the hook, re-lock,
    791 			 * and check the hardlimit condition again.
    792 			 */
    793 			mutex_exit(&pp->pr_lock);
    794 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    795 			mutex_enter(&pp->pr_lock);
    796 			if (pp->pr_nout < pp->pr_hardlimit)
    797 				goto startover;
    798 		}
    799 
    800 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    801 			/*
    802 			 * XXX: A warning isn't logged in this case.  Should
    803 			 * it be?
    804 			 */
    805 			pp->pr_flags |= PR_WANTED;
    806 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    807 			goto startover;
    808 		}
    809 
    810 		/*
    811 		 * Log a message that the hard limit has been hit.
    812 		 */
    813 		if (pp->pr_hardlimit_warning != NULL &&
    814 		    ratecheck(&pp->pr_hardlimit_warning_last,
    815 			      &pp->pr_hardlimit_ratecap))
    816 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    817 
    818 		pp->pr_nfail++;
    819 
    820 		mutex_exit(&pp->pr_lock);
    821 		return (NULL);
    822 	}
    823 
    824 	/*
    825 	 * The convention we use is that if `curpage' is not NULL, then
    826 	 * it points at a non-empty bucket. In particular, `curpage'
    827 	 * never points at a page header which has PR_PHINPAGE set and
    828 	 * has no items in its bucket.
    829 	 */
    830 	if ((ph = pp->pr_curpage) == NULL) {
    831 		int error;
    832 
    833 #ifdef DIAGNOSTIC
    834 		if (pp->pr_nitems != 0) {
    835 			mutex_exit(&pp->pr_lock);
    836 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    837 			    pp->pr_wchan, pp->pr_nitems);
    838 			panic("pool_get: nitems inconsistent");
    839 		}
    840 #endif
    841 
    842 		/*
    843 		 * Call the back-end page allocator for more memory.
    844 		 * Release the pool lock, as the back-end page allocator
    845 		 * may block.
    846 		 */
    847 		error = pool_grow(pp, flags);
    848 		if (error != 0) {
    849 			/*
    850 			 * We were unable to allocate a page or item
    851 			 * header, but we released the lock during
    852 			 * allocation, so perhaps items were freed
    853 			 * back to the pool.  Check for this case.
    854 			 */
    855 			if (pp->pr_curpage != NULL)
    856 				goto startover;
    857 
    858 			pp->pr_nfail++;
    859 			mutex_exit(&pp->pr_lock);
    860 			return (NULL);
    861 		}
    862 
    863 		/* Start the allocation process over. */
    864 		goto startover;
    865 	}
    866 	if (pp->pr_roflags & PR_NOTOUCH) {
    867 #ifdef DIAGNOSTIC
    868 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    869 			mutex_exit(&pp->pr_lock);
    870 			panic("pool_get: %s: page empty", pp->pr_wchan);
    871 		}
    872 #endif
    873 		v = pr_item_notouch_get(pp, ph);
    874 	} else {
    875 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    876 		if (__predict_false(v == NULL)) {
    877 			mutex_exit(&pp->pr_lock);
    878 			panic("pool_get: %s: page empty", pp->pr_wchan);
    879 		}
    880 #ifdef DIAGNOSTIC
    881 		if (__predict_false(pp->pr_nitems == 0)) {
    882 			mutex_exit(&pp->pr_lock);
    883 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    884 			    pp->pr_wchan, pp->pr_nitems);
    885 			panic("pool_get: nitems inconsistent");
    886 		}
    887 #endif
    888 
    889 #ifdef DIAGNOSTIC
    890 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    891 			panic("pool_get(%s): free list modified: "
    892 			    "magic=%x; page %p; item addr %p\n",
    893 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    894 		}
    895 #endif
    896 
    897 		/*
    898 		 * Remove from item list.
    899 		 */
    900 		LIST_REMOVE(pi, pi_list);
    901 	}
    902 	pp->pr_nitems--;
    903 	pp->pr_nout++;
    904 	if (ph->ph_nmissing == 0) {
    905 #ifdef DIAGNOSTIC
    906 		if (__predict_false(pp->pr_nidle == 0))
    907 			panic("pool_get: nidle inconsistent");
    908 #endif
    909 		pp->pr_nidle--;
    910 
    911 		/*
    912 		 * This page was previously empty.  Move it to the list of
    913 		 * partially-full pages.  This page is already curpage.
    914 		 */
    915 		LIST_REMOVE(ph, ph_pagelist);
    916 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    917 	}
    918 	ph->ph_nmissing++;
    919 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    920 #ifdef DIAGNOSTIC
    921 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    922 		    !LIST_EMPTY(&ph->ph_itemlist))) {
    923 			mutex_exit(&pp->pr_lock);
    924 			panic("pool_get: %s: nmissing inconsistent",
    925 			    pp->pr_wchan);
    926 		}
    927 #endif
    928 		/*
    929 		 * This page is now full.  Move it to the full list
    930 		 * and select a new current page.
    931 		 */
    932 		LIST_REMOVE(ph, ph_pagelist);
    933 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    934 		pool_update_curpage(pp);
    935 	}
    936 
    937 	pp->pr_nget++;
    938 
    939 	/*
    940 	 * If we have a low water mark and we are now below that low
    941 	 * water mark, add more items to the pool.
    942 	 */
    943 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    944 		/*
    945 		 * XXX: Should we log a warning?  Should we set up a timeout
    946 		 * to try again in a second or so?  The latter could break
    947 		 * a caller's assumptions about interrupt protection, etc.
    948 		 */
    949 	}
    950 
    951 	mutex_exit(&pp->pr_lock);
    952 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    953 	FREECHECK_OUT(&pp->pr_freecheck, v);
    954 	pool_redzone_fill(pp, v);
    955 	return (v);
    956 }
    957 
    958 /*
    959  * Internal version of pool_put().  Pool is already locked/entered.
    960  */
    961 static void
    962 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    963 {
    964 	struct pool_item *pi = v;
    965 	struct pool_item_header *ph;
    966 
    967 	KASSERT(mutex_owned(&pp->pr_lock));
    968 	pool_redzone_check(pp, v);
    969 	FREECHECK_IN(&pp->pr_freecheck, v);
    970 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    971 
    972 #ifdef DIAGNOSTIC
    973 	if (__predict_false(pp->pr_nout == 0)) {
    974 		printf("pool %s: putting with none out\n",
    975 		    pp->pr_wchan);
    976 		panic("pool_put");
    977 	}
    978 #endif
    979 
    980 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    981 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    982 	}
    983 
    984 	/*
    985 	 * Return to item list.
    986 	 */
    987 	if (pp->pr_roflags & PR_NOTOUCH) {
    988 		pr_item_notouch_put(pp, ph, v);
    989 	} else {
    990 #ifdef DIAGNOSTIC
    991 		pi->pi_magic = PI_MAGIC;
    992 #endif
    993 #ifdef DEBUG
    994 		{
    995 			int i, *ip = v;
    996 
    997 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    998 				*ip++ = PI_MAGIC;
    999 			}
   1000 		}
   1001 #endif
   1002 
   1003 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1004 	}
   1005 	KDASSERT(ph->ph_nmissing != 0);
   1006 	ph->ph_nmissing--;
   1007 	pp->pr_nput++;
   1008 	pp->pr_nitems++;
   1009 	pp->pr_nout--;
   1010 
   1011 	/* Cancel "pool empty" condition if it exists */
   1012 	if (pp->pr_curpage == NULL)
   1013 		pp->pr_curpage = ph;
   1014 
   1015 	if (pp->pr_flags & PR_WANTED) {
   1016 		pp->pr_flags &= ~PR_WANTED;
   1017 		cv_broadcast(&pp->pr_cv);
   1018 	}
   1019 
   1020 	/*
   1021 	 * If this page is now empty, do one of two things:
   1022 	 *
   1023 	 *	(1) If we have more pages than the page high water mark,
   1024 	 *	    free the page back to the system.  ONLY CONSIDER
   1025 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1026 	 *	    CLAIM.
   1027 	 *
   1028 	 *	(2) Otherwise, move the page to the empty page list.
   1029 	 *
   1030 	 * Either way, select a new current page (so we use a partially-full
   1031 	 * page if one is available).
   1032 	 */
   1033 	if (ph->ph_nmissing == 0) {
   1034 		pp->pr_nidle++;
   1035 		if (pp->pr_npages > pp->pr_minpages &&
   1036 		    pp->pr_npages > pp->pr_maxpages) {
   1037 			pr_rmpage(pp, ph, pq);
   1038 		} else {
   1039 			LIST_REMOVE(ph, ph_pagelist);
   1040 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1041 
   1042 			/*
   1043 			 * Update the timestamp on the page.  A page must
   1044 			 * be idle for some period of time before it can
   1045 			 * be reclaimed by the pagedaemon.  This minimizes
   1046 			 * ping-pong'ing for memory.
   1047 			 *
   1048 			 * note for 64-bit time_t: truncating to 32-bit is not
   1049 			 * a problem for our usage.
   1050 			 */
   1051 			ph->ph_time = time_uptime;
   1052 		}
   1053 		pool_update_curpage(pp);
   1054 	}
   1055 
   1056 	/*
   1057 	 * If the page was previously completely full, move it to the
   1058 	 * partially-full list and make it the current page.  The next
   1059 	 * allocation will get the item from this page, instead of
   1060 	 * further fragmenting the pool.
   1061 	 */
   1062 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1063 		LIST_REMOVE(ph, ph_pagelist);
   1064 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1065 		pp->pr_curpage = ph;
   1066 	}
   1067 }
   1068 
   1069 void
   1070 pool_put(struct pool *pp, void *v)
   1071 {
   1072 	struct pool_pagelist pq;
   1073 
   1074 	LIST_INIT(&pq);
   1075 
   1076 	mutex_enter(&pp->pr_lock);
   1077 	pool_do_put(pp, v, &pq);
   1078 	mutex_exit(&pp->pr_lock);
   1079 
   1080 	pr_pagelist_free(pp, &pq);
   1081 }
   1082 
   1083 /*
   1084  * pool_grow: grow a pool by a page.
   1085  *
   1086  * => called with pool locked.
   1087  * => unlock and relock the pool.
   1088  * => return with pool locked.
   1089  */
   1090 
   1091 static int
   1092 pool_grow(struct pool *pp, int flags)
   1093 {
   1094 	struct pool_item_header *ph = NULL;
   1095 	char *cp;
   1096 
   1097 	mutex_exit(&pp->pr_lock);
   1098 	cp = pool_allocator_alloc(pp, flags);
   1099 	if (__predict_true(cp != NULL)) {
   1100 		ph = pool_alloc_item_header(pp, cp, flags);
   1101 	}
   1102 	if (__predict_false(cp == NULL || ph == NULL)) {
   1103 		if (cp != NULL) {
   1104 			pool_allocator_free(pp, cp);
   1105 		}
   1106 		mutex_enter(&pp->pr_lock);
   1107 		return ENOMEM;
   1108 	}
   1109 
   1110 	mutex_enter(&pp->pr_lock);
   1111 	pool_prime_page(pp, cp, ph);
   1112 	pp->pr_npagealloc++;
   1113 	return 0;
   1114 }
   1115 
   1116 /*
   1117  * Add N items to the pool.
   1118  */
   1119 int
   1120 pool_prime(struct pool *pp, int n)
   1121 {
   1122 	int newpages;
   1123 	int error = 0;
   1124 
   1125 	mutex_enter(&pp->pr_lock);
   1126 
   1127 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1128 
   1129 	while (newpages-- > 0) {
   1130 		error = pool_grow(pp, PR_NOWAIT);
   1131 		if (error) {
   1132 			break;
   1133 		}
   1134 		pp->pr_minpages++;
   1135 	}
   1136 
   1137 	if (pp->pr_minpages >= pp->pr_maxpages)
   1138 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1139 
   1140 	mutex_exit(&pp->pr_lock);
   1141 	return error;
   1142 }
   1143 
   1144 /*
   1145  * Add a page worth of items to the pool.
   1146  *
   1147  * Note, we must be called with the pool descriptor LOCKED.
   1148  */
   1149 static void
   1150 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1151 {
   1152 	struct pool_item *pi;
   1153 	void *cp = storage;
   1154 	const unsigned int align = pp->pr_align;
   1155 	const unsigned int ioff = pp->pr_itemoffset;
   1156 	int n;
   1157 
   1158 	KASSERT(mutex_owned(&pp->pr_lock));
   1159 
   1160 #ifdef DIAGNOSTIC
   1161 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1162 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1163 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1164 #endif
   1165 
   1166 	/*
   1167 	 * Insert page header.
   1168 	 */
   1169 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1170 	LIST_INIT(&ph->ph_itemlist);
   1171 	ph->ph_page = storage;
   1172 	ph->ph_nmissing = 0;
   1173 	ph->ph_time = time_uptime;
   1174 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1175 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1176 
   1177 	pp->pr_nidle++;
   1178 
   1179 	/*
   1180 	 * Color this page.
   1181 	 */
   1182 	ph->ph_off = pp->pr_curcolor;
   1183 	cp = (char *)cp + ph->ph_off;
   1184 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1185 		pp->pr_curcolor = 0;
   1186 
   1187 	/*
   1188 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1189 	 */
   1190 	if (ioff != 0)
   1191 		cp = (char *)cp + align - ioff;
   1192 
   1193 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1194 
   1195 	/*
   1196 	 * Insert remaining chunks on the bucket list.
   1197 	 */
   1198 	n = pp->pr_itemsperpage;
   1199 	pp->pr_nitems += n;
   1200 
   1201 	if (pp->pr_roflags & PR_NOTOUCH) {
   1202 		pr_item_notouch_init(pp, ph);
   1203 	} else {
   1204 		while (n--) {
   1205 			pi = (struct pool_item *)cp;
   1206 
   1207 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1208 
   1209 			/* Insert on page list */
   1210 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1211 #ifdef DIAGNOSTIC
   1212 			pi->pi_magic = PI_MAGIC;
   1213 #endif
   1214 			cp = (char *)cp + pp->pr_size;
   1215 
   1216 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1217 		}
   1218 	}
   1219 
   1220 	/*
   1221 	 * If the pool was depleted, point at the new page.
   1222 	 */
   1223 	if (pp->pr_curpage == NULL)
   1224 		pp->pr_curpage = ph;
   1225 
   1226 	if (++pp->pr_npages > pp->pr_hiwat)
   1227 		pp->pr_hiwat = pp->pr_npages;
   1228 }
   1229 
   1230 /*
   1231  * Used by pool_get() when nitems drops below the low water mark.  This
   1232  * is used to catch up pr_nitems with the low water mark.
   1233  *
   1234  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1235  *
   1236  * Note 2, we must be called with the pool already locked, and we return
   1237  * with it locked.
   1238  */
   1239 static int
   1240 pool_catchup(struct pool *pp)
   1241 {
   1242 	int error = 0;
   1243 
   1244 	while (POOL_NEEDS_CATCHUP(pp)) {
   1245 		error = pool_grow(pp, PR_NOWAIT);
   1246 		if (error) {
   1247 			break;
   1248 		}
   1249 	}
   1250 	return error;
   1251 }
   1252 
   1253 static void
   1254 pool_update_curpage(struct pool *pp)
   1255 {
   1256 
   1257 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1258 	if (pp->pr_curpage == NULL) {
   1259 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1260 	}
   1261 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1262 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1263 }
   1264 
   1265 void
   1266 pool_setlowat(struct pool *pp, int n)
   1267 {
   1268 
   1269 	mutex_enter(&pp->pr_lock);
   1270 
   1271 	pp->pr_minitems = n;
   1272 	pp->pr_minpages = (n == 0)
   1273 		? 0
   1274 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1275 
   1276 	/* Make sure we're caught up with the newly-set low water mark. */
   1277 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1278 		/*
   1279 		 * XXX: Should we log a warning?  Should we set up a timeout
   1280 		 * to try again in a second or so?  The latter could break
   1281 		 * a caller's assumptions about interrupt protection, etc.
   1282 		 */
   1283 	}
   1284 
   1285 	mutex_exit(&pp->pr_lock);
   1286 }
   1287 
   1288 void
   1289 pool_sethiwat(struct pool *pp, int n)
   1290 {
   1291 
   1292 	mutex_enter(&pp->pr_lock);
   1293 
   1294 	pp->pr_maxpages = (n == 0)
   1295 		? 0
   1296 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1297 
   1298 	mutex_exit(&pp->pr_lock);
   1299 }
   1300 
   1301 void
   1302 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1303 {
   1304 
   1305 	mutex_enter(&pp->pr_lock);
   1306 
   1307 	pp->pr_hardlimit = n;
   1308 	pp->pr_hardlimit_warning = warnmess;
   1309 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1310 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1311 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1312 
   1313 	/*
   1314 	 * In-line version of pool_sethiwat(), because we don't want to
   1315 	 * release the lock.
   1316 	 */
   1317 	pp->pr_maxpages = (n == 0)
   1318 		? 0
   1319 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1320 
   1321 	mutex_exit(&pp->pr_lock);
   1322 }
   1323 
   1324 /*
   1325  * Release all complete pages that have not been used recently.
   1326  *
   1327  * Must not be called from interrupt context.
   1328  */
   1329 int
   1330 pool_reclaim(struct pool *pp)
   1331 {
   1332 	struct pool_item_header *ph, *phnext;
   1333 	struct pool_pagelist pq;
   1334 	uint32_t curtime;
   1335 	bool klock;
   1336 	int rv;
   1337 
   1338 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1339 
   1340 	if (pp->pr_drain_hook != NULL) {
   1341 		/*
   1342 		 * The drain hook must be called with the pool unlocked.
   1343 		 */
   1344 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1345 	}
   1346 
   1347 	/*
   1348 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1349 	 * to block.
   1350 	 */
   1351 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1352 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1353 		KERNEL_LOCK(1, NULL);
   1354 		klock = true;
   1355 	} else
   1356 		klock = false;
   1357 
   1358 	/* Reclaim items from the pool's cache (if any). */
   1359 	if (pp->pr_cache != NULL)
   1360 		pool_cache_invalidate(pp->pr_cache);
   1361 
   1362 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1363 		if (klock) {
   1364 			KERNEL_UNLOCK_ONE(NULL);
   1365 		}
   1366 		return (0);
   1367 	}
   1368 
   1369 	LIST_INIT(&pq);
   1370 
   1371 	curtime = time_uptime;
   1372 
   1373 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1374 		phnext = LIST_NEXT(ph, ph_pagelist);
   1375 
   1376 		/* Check our minimum page claim */
   1377 		if (pp->pr_npages <= pp->pr_minpages)
   1378 			break;
   1379 
   1380 		KASSERT(ph->ph_nmissing == 0);
   1381 		if (curtime - ph->ph_time < pool_inactive_time)
   1382 			continue;
   1383 
   1384 		/*
   1385 		 * If freeing this page would put us below
   1386 		 * the low water mark, stop now.
   1387 		 */
   1388 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1389 		    pp->pr_minitems)
   1390 			break;
   1391 
   1392 		pr_rmpage(pp, ph, &pq);
   1393 	}
   1394 
   1395 	mutex_exit(&pp->pr_lock);
   1396 
   1397 	if (LIST_EMPTY(&pq))
   1398 		rv = 0;
   1399 	else {
   1400 		pr_pagelist_free(pp, &pq);
   1401 		rv = 1;
   1402 	}
   1403 
   1404 	if (klock) {
   1405 		KERNEL_UNLOCK_ONE(NULL);
   1406 	}
   1407 
   1408 	return (rv);
   1409 }
   1410 
   1411 /*
   1412  * Drain pools, one at a time. The drained pool is returned within ppp.
   1413  *
   1414  * Note, must never be called from interrupt context.
   1415  */
   1416 bool
   1417 pool_drain(struct pool **ppp)
   1418 {
   1419 	bool reclaimed;
   1420 	struct pool *pp;
   1421 
   1422 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1423 
   1424 	pp = NULL;
   1425 
   1426 	/* Find next pool to drain, and add a reference. */
   1427 	mutex_enter(&pool_head_lock);
   1428 	do {
   1429 		if (drainpp == NULL) {
   1430 			drainpp = TAILQ_FIRST(&pool_head);
   1431 		}
   1432 		if (drainpp != NULL) {
   1433 			pp = drainpp;
   1434 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1435 		}
   1436 		/*
   1437 		 * Skip completely idle pools.  We depend on at least
   1438 		 * one pool in the system being active.
   1439 		 */
   1440 	} while (pp == NULL || pp->pr_npages == 0);
   1441 	pp->pr_refcnt++;
   1442 	mutex_exit(&pool_head_lock);
   1443 
   1444 	/* Drain the cache (if any) and pool.. */
   1445 	reclaimed = pool_reclaim(pp);
   1446 
   1447 	/* Finally, unlock the pool. */
   1448 	mutex_enter(&pool_head_lock);
   1449 	pp->pr_refcnt--;
   1450 	cv_broadcast(&pool_busy);
   1451 	mutex_exit(&pool_head_lock);
   1452 
   1453 	if (ppp != NULL)
   1454 		*ppp = pp;
   1455 
   1456 	return reclaimed;
   1457 }
   1458 
   1459 /*
   1460  * Diagnostic helpers.
   1461  */
   1462 
   1463 void
   1464 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1465 {
   1466 	struct pool *pp;
   1467 
   1468 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1469 		pool_printit(pp, modif, pr);
   1470 	}
   1471 }
   1472 
   1473 void
   1474 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1475 {
   1476 
   1477 	if (pp == NULL) {
   1478 		(*pr)("Must specify a pool to print.\n");
   1479 		return;
   1480 	}
   1481 
   1482 	pool_print1(pp, modif, pr);
   1483 }
   1484 
   1485 static void
   1486 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1487     void (*pr)(const char *, ...))
   1488 {
   1489 	struct pool_item_header *ph;
   1490 #ifdef DIAGNOSTIC
   1491 	struct pool_item *pi;
   1492 #endif
   1493 
   1494 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1495 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1496 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1497 #ifdef DIAGNOSTIC
   1498 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1499 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1500 				if (pi->pi_magic != PI_MAGIC) {
   1501 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1502 					    pi, pi->pi_magic);
   1503 				}
   1504 			}
   1505 		}
   1506 #endif
   1507 	}
   1508 }
   1509 
   1510 static void
   1511 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1512 {
   1513 	struct pool_item_header *ph;
   1514 	pool_cache_t pc;
   1515 	pcg_t *pcg;
   1516 	pool_cache_cpu_t *cc;
   1517 	uint64_t cpuhit, cpumiss;
   1518 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1519 	char c;
   1520 
   1521 	while ((c = *modif++) != '\0') {
   1522 		if (c == 'l')
   1523 			print_log = 1;
   1524 		if (c == 'p')
   1525 			print_pagelist = 1;
   1526 		if (c == 'c')
   1527 			print_cache = 1;
   1528 	}
   1529 
   1530 	if ((pc = pp->pr_cache) != NULL) {
   1531 		(*pr)("POOL CACHE");
   1532 	} else {
   1533 		(*pr)("POOL");
   1534 	}
   1535 
   1536 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1537 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1538 	    pp->pr_roflags);
   1539 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1540 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1541 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1542 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1543 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1544 
   1545 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1546 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1547 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1548 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1549 
   1550 	if (print_pagelist == 0)
   1551 		goto skip_pagelist;
   1552 
   1553 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1554 		(*pr)("\n\tempty page list:\n");
   1555 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1556 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1557 		(*pr)("\n\tfull page list:\n");
   1558 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1559 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1560 		(*pr)("\n\tpartial-page list:\n");
   1561 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1562 
   1563 	if (pp->pr_curpage == NULL)
   1564 		(*pr)("\tno current page\n");
   1565 	else
   1566 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1567 
   1568  skip_pagelist:
   1569 	if (print_log == 0)
   1570 		goto skip_log;
   1571 
   1572 	(*pr)("\n");
   1573 
   1574  skip_log:
   1575 
   1576 #define PR_GROUPLIST(pcg)						\
   1577 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1578 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1579 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1580 		    POOL_PADDR_INVALID) {				\
   1581 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1582 			    pcg->pcg_objects[i].pcgo_va,		\
   1583 			    (unsigned long long)			\
   1584 			    pcg->pcg_objects[i].pcgo_pa);		\
   1585 		} else {						\
   1586 			(*pr)("\t\t\t%p\n",				\
   1587 			    pcg->pcg_objects[i].pcgo_va);		\
   1588 		}							\
   1589 	}
   1590 
   1591 	if (pc != NULL) {
   1592 		cpuhit = 0;
   1593 		cpumiss = 0;
   1594 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1595 			if ((cc = pc->pc_cpus[i]) == NULL)
   1596 				continue;
   1597 			cpuhit += cc->cc_hits;
   1598 			cpumiss += cc->cc_misses;
   1599 		}
   1600 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1601 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1602 		    pc->pc_hits, pc->pc_misses);
   1603 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1604 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1605 		    pc->pc_contended);
   1606 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1607 		    pc->pc_nempty, pc->pc_nfull);
   1608 		if (print_cache) {
   1609 			(*pr)("\tfull cache groups:\n");
   1610 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1611 			    pcg = pcg->pcg_next) {
   1612 				PR_GROUPLIST(pcg);
   1613 			}
   1614 			(*pr)("\tempty cache groups:\n");
   1615 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1616 			    pcg = pcg->pcg_next) {
   1617 				PR_GROUPLIST(pcg);
   1618 			}
   1619 		}
   1620 	}
   1621 #undef PR_GROUPLIST
   1622 }
   1623 
   1624 static int
   1625 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1626 {
   1627 	struct pool_item *pi;
   1628 	void *page;
   1629 	int n;
   1630 
   1631 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1632 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1633 		if (page != ph->ph_page &&
   1634 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1635 			if (label != NULL)
   1636 				printf("%s: ", label);
   1637 			printf("pool(%p:%s): page inconsistency: page %p;"
   1638 			       " at page head addr %p (p %p)\n", pp,
   1639 				pp->pr_wchan, ph->ph_page,
   1640 				ph, page);
   1641 			return 1;
   1642 		}
   1643 	}
   1644 
   1645 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1646 		return 0;
   1647 
   1648 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1649 	     pi != NULL;
   1650 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1651 
   1652 #ifdef DIAGNOSTIC
   1653 		if (pi->pi_magic != PI_MAGIC) {
   1654 			if (label != NULL)
   1655 				printf("%s: ", label);
   1656 			printf("pool(%s): free list modified: magic=%x;"
   1657 			       " page %p; item ordinal %d; addr %p\n",
   1658 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1659 				n, pi);
   1660 			panic("pool");
   1661 		}
   1662 #endif
   1663 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1664 			continue;
   1665 		}
   1666 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1667 		if (page == ph->ph_page)
   1668 			continue;
   1669 
   1670 		if (label != NULL)
   1671 			printf("%s: ", label);
   1672 		printf("pool(%p:%s): page inconsistency: page %p;"
   1673 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1674 			pp->pr_wchan, ph->ph_page,
   1675 			n, pi, page);
   1676 		return 1;
   1677 	}
   1678 	return 0;
   1679 }
   1680 
   1681 
   1682 int
   1683 pool_chk(struct pool *pp, const char *label)
   1684 {
   1685 	struct pool_item_header *ph;
   1686 	int r = 0;
   1687 
   1688 	mutex_enter(&pp->pr_lock);
   1689 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1690 		r = pool_chk_page(pp, label, ph);
   1691 		if (r) {
   1692 			goto out;
   1693 		}
   1694 	}
   1695 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1696 		r = pool_chk_page(pp, label, ph);
   1697 		if (r) {
   1698 			goto out;
   1699 		}
   1700 	}
   1701 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1702 		r = pool_chk_page(pp, label, ph);
   1703 		if (r) {
   1704 			goto out;
   1705 		}
   1706 	}
   1707 
   1708 out:
   1709 	mutex_exit(&pp->pr_lock);
   1710 	return (r);
   1711 }
   1712 
   1713 /*
   1714  * pool_cache_init:
   1715  *
   1716  *	Initialize a pool cache.
   1717  */
   1718 pool_cache_t
   1719 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1720     const char *wchan, struct pool_allocator *palloc, int ipl,
   1721     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1722 {
   1723 	pool_cache_t pc;
   1724 
   1725 	pc = pool_get(&cache_pool, PR_WAITOK);
   1726 	if (pc == NULL)
   1727 		return NULL;
   1728 
   1729 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1730 	   palloc, ipl, ctor, dtor, arg);
   1731 
   1732 	return pc;
   1733 }
   1734 
   1735 /*
   1736  * pool_cache_bootstrap:
   1737  *
   1738  *	Kernel-private version of pool_cache_init().  The caller
   1739  *	provides initial storage.
   1740  */
   1741 void
   1742 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1743     u_int align_offset, u_int flags, const char *wchan,
   1744     struct pool_allocator *palloc, int ipl,
   1745     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1746     void *arg)
   1747 {
   1748 	CPU_INFO_ITERATOR cii;
   1749 	pool_cache_t pc1;
   1750 	struct cpu_info *ci;
   1751 	struct pool *pp;
   1752 
   1753 	pp = &pc->pc_pool;
   1754 	if (palloc == NULL && ipl == IPL_NONE)
   1755 		palloc = &pool_allocator_nointr;
   1756 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1757 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1758 
   1759 	if (ctor == NULL) {
   1760 		ctor = (int (*)(void *, void *, int))nullop;
   1761 	}
   1762 	if (dtor == NULL) {
   1763 		dtor = (void (*)(void *, void *))nullop;
   1764 	}
   1765 
   1766 	pc->pc_emptygroups = NULL;
   1767 	pc->pc_fullgroups = NULL;
   1768 	pc->pc_partgroups = NULL;
   1769 	pc->pc_ctor = ctor;
   1770 	pc->pc_dtor = dtor;
   1771 	pc->pc_arg  = arg;
   1772 	pc->pc_hits  = 0;
   1773 	pc->pc_misses = 0;
   1774 	pc->pc_nempty = 0;
   1775 	pc->pc_npart = 0;
   1776 	pc->pc_nfull = 0;
   1777 	pc->pc_contended = 0;
   1778 	pc->pc_refcnt = 0;
   1779 	pc->pc_freecheck = NULL;
   1780 
   1781 	if ((flags & PR_LARGECACHE) != 0) {
   1782 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1783 		pc->pc_pcgpool = &pcg_large_pool;
   1784 	} else {
   1785 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1786 		pc->pc_pcgpool = &pcg_normal_pool;
   1787 	}
   1788 
   1789 	/* Allocate per-CPU caches. */
   1790 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1791 	pc->pc_ncpu = 0;
   1792 	if (ncpu < 2) {
   1793 		/* XXX For sparc: boot CPU is not attached yet. */
   1794 		pool_cache_cpu_init1(curcpu(), pc);
   1795 	} else {
   1796 		for (CPU_INFO_FOREACH(cii, ci)) {
   1797 			pool_cache_cpu_init1(ci, pc);
   1798 		}
   1799 	}
   1800 
   1801 	/* Add to list of all pools. */
   1802 	if (__predict_true(!cold))
   1803 		mutex_enter(&pool_head_lock);
   1804 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1805 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1806 			break;
   1807 	}
   1808 	if (pc1 == NULL)
   1809 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1810 	else
   1811 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1812 	if (__predict_true(!cold))
   1813 		mutex_exit(&pool_head_lock);
   1814 
   1815 	membar_sync();
   1816 	pp->pr_cache = pc;
   1817 }
   1818 
   1819 /*
   1820  * pool_cache_destroy:
   1821  *
   1822  *	Destroy a pool cache.
   1823  */
   1824 void
   1825 pool_cache_destroy(pool_cache_t pc)
   1826 {
   1827 
   1828 	pool_cache_bootstrap_destroy(pc);
   1829 	pool_put(&cache_pool, pc);
   1830 }
   1831 
   1832 /*
   1833  * pool_cache_bootstrap_destroy:
   1834  *
   1835  *	Destroy a pool cache.
   1836  */
   1837 void
   1838 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1839 {
   1840 	struct pool *pp = &pc->pc_pool;
   1841 	u_int i;
   1842 
   1843 	/* Remove it from the global list. */
   1844 	mutex_enter(&pool_head_lock);
   1845 	while (pc->pc_refcnt != 0)
   1846 		cv_wait(&pool_busy, &pool_head_lock);
   1847 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1848 	mutex_exit(&pool_head_lock);
   1849 
   1850 	/* First, invalidate the entire cache. */
   1851 	pool_cache_invalidate(pc);
   1852 
   1853 	/* Disassociate it from the pool. */
   1854 	mutex_enter(&pp->pr_lock);
   1855 	pp->pr_cache = NULL;
   1856 	mutex_exit(&pp->pr_lock);
   1857 
   1858 	/* Destroy per-CPU data */
   1859 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1860 		pool_cache_invalidate_cpu(pc, i);
   1861 
   1862 	/* Finally, destroy it. */
   1863 	mutex_destroy(&pc->pc_lock);
   1864 	pool_destroy(pp);
   1865 }
   1866 
   1867 /*
   1868  * pool_cache_cpu_init1:
   1869  *
   1870  *	Called for each pool_cache whenever a new CPU is attached.
   1871  */
   1872 static void
   1873 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1874 {
   1875 	pool_cache_cpu_t *cc;
   1876 	int index;
   1877 
   1878 	index = ci->ci_index;
   1879 
   1880 	KASSERT(index < __arraycount(pc->pc_cpus));
   1881 
   1882 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1883 		KASSERT(cc->cc_cpuindex == index);
   1884 		return;
   1885 	}
   1886 
   1887 	/*
   1888 	 * The first CPU is 'free'.  This needs to be the case for
   1889 	 * bootstrap - we may not be able to allocate yet.
   1890 	 */
   1891 	if (pc->pc_ncpu == 0) {
   1892 		cc = &pc->pc_cpu0;
   1893 		pc->pc_ncpu = 1;
   1894 	} else {
   1895 		mutex_enter(&pc->pc_lock);
   1896 		pc->pc_ncpu++;
   1897 		mutex_exit(&pc->pc_lock);
   1898 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1899 	}
   1900 
   1901 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1902 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1903 	cc->cc_cache = pc;
   1904 	cc->cc_cpuindex = index;
   1905 	cc->cc_hits = 0;
   1906 	cc->cc_misses = 0;
   1907 	cc->cc_current = __UNCONST(&pcg_dummy);
   1908 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1909 
   1910 	pc->pc_cpus[index] = cc;
   1911 }
   1912 
   1913 /*
   1914  * pool_cache_cpu_init:
   1915  *
   1916  *	Called whenever a new CPU is attached.
   1917  */
   1918 void
   1919 pool_cache_cpu_init(struct cpu_info *ci)
   1920 {
   1921 	pool_cache_t pc;
   1922 
   1923 	mutex_enter(&pool_head_lock);
   1924 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1925 		pc->pc_refcnt++;
   1926 		mutex_exit(&pool_head_lock);
   1927 
   1928 		pool_cache_cpu_init1(ci, pc);
   1929 
   1930 		mutex_enter(&pool_head_lock);
   1931 		pc->pc_refcnt--;
   1932 		cv_broadcast(&pool_busy);
   1933 	}
   1934 	mutex_exit(&pool_head_lock);
   1935 }
   1936 
   1937 /*
   1938  * pool_cache_reclaim:
   1939  *
   1940  *	Reclaim memory from a pool cache.
   1941  */
   1942 bool
   1943 pool_cache_reclaim(pool_cache_t pc)
   1944 {
   1945 
   1946 	return pool_reclaim(&pc->pc_pool);
   1947 }
   1948 
   1949 static void
   1950 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1951 {
   1952 
   1953 	(*pc->pc_dtor)(pc->pc_arg, object);
   1954 	pool_put(&pc->pc_pool, object);
   1955 }
   1956 
   1957 /*
   1958  * pool_cache_destruct_object:
   1959  *
   1960  *	Force destruction of an object and its release back into
   1961  *	the pool.
   1962  */
   1963 void
   1964 pool_cache_destruct_object(pool_cache_t pc, void *object)
   1965 {
   1966 
   1967 	FREECHECK_IN(&pc->pc_freecheck, object);
   1968 
   1969 	pool_cache_destruct_object1(pc, object);
   1970 }
   1971 
   1972 /*
   1973  * pool_cache_invalidate_groups:
   1974  *
   1975  *	Invalidate a chain of groups and destruct all objects.
   1976  */
   1977 static void
   1978 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1979 {
   1980 	void *object;
   1981 	pcg_t *next;
   1982 	int i;
   1983 
   1984 	for (; pcg != NULL; pcg = next) {
   1985 		next = pcg->pcg_next;
   1986 
   1987 		for (i = 0; i < pcg->pcg_avail; i++) {
   1988 			object = pcg->pcg_objects[i].pcgo_va;
   1989 			pool_cache_destruct_object1(pc, object);
   1990 		}
   1991 
   1992 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1993 			pool_put(&pcg_large_pool, pcg);
   1994 		} else {
   1995 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1996 			pool_put(&pcg_normal_pool, pcg);
   1997 		}
   1998 	}
   1999 }
   2000 
   2001 /*
   2002  * pool_cache_invalidate:
   2003  *
   2004  *	Invalidate a pool cache (destruct and release all of the
   2005  *	cached objects).  Does not reclaim objects from the pool.
   2006  *
   2007  *	Note: For pool caches that provide constructed objects, there
   2008  *	is an assumption that another level of synchronization is occurring
   2009  *	between the input to the constructor and the cache invalidation.
   2010  *
   2011  *	Invalidation is a costly process and should not be called from
   2012  *	interrupt context.
   2013  */
   2014 void
   2015 pool_cache_invalidate(pool_cache_t pc)
   2016 {
   2017 	uint64_t where;
   2018 	pcg_t *full, *empty, *part;
   2019 
   2020 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2021 
   2022 	if (ncpu < 2 || !mp_online) {
   2023 		/*
   2024 		 * We might be called early enough in the boot process
   2025 		 * for the CPU data structures to not be fully initialized.
   2026 		 * In this case, transfer the content of the local CPU's
   2027 		 * cache back into global cache as only this CPU is currently
   2028 		 * running.
   2029 		 */
   2030 		pool_cache_transfer(pc);
   2031 	} else {
   2032 		/*
   2033 		 * Signal all CPUs that they must transfer their local
   2034 		 * cache back to the global pool then wait for the xcall to
   2035 		 * complete.
   2036 		 */
   2037 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2038 		    pc, NULL);
   2039 		xc_wait(where);
   2040 	}
   2041 
   2042 	/* Empty pool caches, then invalidate objects */
   2043 	mutex_enter(&pc->pc_lock);
   2044 	full = pc->pc_fullgroups;
   2045 	empty = pc->pc_emptygroups;
   2046 	part = pc->pc_partgroups;
   2047 	pc->pc_fullgroups = NULL;
   2048 	pc->pc_emptygroups = NULL;
   2049 	pc->pc_partgroups = NULL;
   2050 	pc->pc_nfull = 0;
   2051 	pc->pc_nempty = 0;
   2052 	pc->pc_npart = 0;
   2053 	mutex_exit(&pc->pc_lock);
   2054 
   2055 	pool_cache_invalidate_groups(pc, full);
   2056 	pool_cache_invalidate_groups(pc, empty);
   2057 	pool_cache_invalidate_groups(pc, part);
   2058 }
   2059 
   2060 /*
   2061  * pool_cache_invalidate_cpu:
   2062  *
   2063  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2064  *	identified by its associated index.
   2065  *	It is caller's responsibility to ensure that no operation is
   2066  *	taking place on this pool cache while doing this invalidation.
   2067  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2068  *	pool cached objects from a CPU different from the one currently running
   2069  *	may result in an undefined behaviour.
   2070  */
   2071 static void
   2072 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2073 {
   2074 	pool_cache_cpu_t *cc;
   2075 	pcg_t *pcg;
   2076 
   2077 	if ((cc = pc->pc_cpus[index]) == NULL)
   2078 		return;
   2079 
   2080 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2081 		pcg->pcg_next = NULL;
   2082 		pool_cache_invalidate_groups(pc, pcg);
   2083 	}
   2084 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2085 		pcg->pcg_next = NULL;
   2086 		pool_cache_invalidate_groups(pc, pcg);
   2087 	}
   2088 	if (cc != &pc->pc_cpu0)
   2089 		pool_put(&cache_cpu_pool, cc);
   2090 
   2091 }
   2092 
   2093 void
   2094 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2095 {
   2096 
   2097 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2098 }
   2099 
   2100 void
   2101 pool_cache_setlowat(pool_cache_t pc, int n)
   2102 {
   2103 
   2104 	pool_setlowat(&pc->pc_pool, n);
   2105 }
   2106 
   2107 void
   2108 pool_cache_sethiwat(pool_cache_t pc, int n)
   2109 {
   2110 
   2111 	pool_sethiwat(&pc->pc_pool, n);
   2112 }
   2113 
   2114 void
   2115 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2116 {
   2117 
   2118 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2119 }
   2120 
   2121 static bool __noinline
   2122 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2123 		    paddr_t *pap, int flags)
   2124 {
   2125 	pcg_t *pcg, *cur;
   2126 	uint64_t ncsw;
   2127 	pool_cache_t pc;
   2128 	void *object;
   2129 
   2130 	KASSERT(cc->cc_current->pcg_avail == 0);
   2131 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2132 
   2133 	pc = cc->cc_cache;
   2134 	cc->cc_misses++;
   2135 
   2136 	/*
   2137 	 * Nothing was available locally.  Try and grab a group
   2138 	 * from the cache.
   2139 	 */
   2140 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2141 		ncsw = curlwp->l_ncsw;
   2142 		mutex_enter(&pc->pc_lock);
   2143 		pc->pc_contended++;
   2144 
   2145 		/*
   2146 		 * If we context switched while locking, then
   2147 		 * our view of the per-CPU data is invalid:
   2148 		 * retry.
   2149 		 */
   2150 		if (curlwp->l_ncsw != ncsw) {
   2151 			mutex_exit(&pc->pc_lock);
   2152 			return true;
   2153 		}
   2154 	}
   2155 
   2156 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2157 		/*
   2158 		 * If there's a full group, release our empty
   2159 		 * group back to the cache.  Install the full
   2160 		 * group as cc_current and return.
   2161 		 */
   2162 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2163 			KASSERT(cur->pcg_avail == 0);
   2164 			cur->pcg_next = pc->pc_emptygroups;
   2165 			pc->pc_emptygroups = cur;
   2166 			pc->pc_nempty++;
   2167 		}
   2168 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2169 		cc->cc_current = pcg;
   2170 		pc->pc_fullgroups = pcg->pcg_next;
   2171 		pc->pc_hits++;
   2172 		pc->pc_nfull--;
   2173 		mutex_exit(&pc->pc_lock);
   2174 		return true;
   2175 	}
   2176 
   2177 	/*
   2178 	 * Nothing available locally or in cache.  Take the slow
   2179 	 * path: fetch a new object from the pool and construct
   2180 	 * it.
   2181 	 */
   2182 	pc->pc_misses++;
   2183 	mutex_exit(&pc->pc_lock);
   2184 	splx(s);
   2185 
   2186 	object = pool_get(&pc->pc_pool, flags);
   2187 	*objectp = object;
   2188 	if (__predict_false(object == NULL))
   2189 		return false;
   2190 
   2191 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2192 		pool_put(&pc->pc_pool, object);
   2193 		*objectp = NULL;
   2194 		return false;
   2195 	}
   2196 
   2197 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2198 	    (pc->pc_pool.pr_align - 1)) == 0);
   2199 
   2200 	if (pap != NULL) {
   2201 #ifdef POOL_VTOPHYS
   2202 		*pap = POOL_VTOPHYS(object);
   2203 #else
   2204 		*pap = POOL_PADDR_INVALID;
   2205 #endif
   2206 	}
   2207 
   2208 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2209 	pool_redzone_fill(&pc->pc_pool, object);
   2210 	return false;
   2211 }
   2212 
   2213 /*
   2214  * pool_cache_get{,_paddr}:
   2215  *
   2216  *	Get an object from a pool cache (optionally returning
   2217  *	the physical address of the object).
   2218  */
   2219 void *
   2220 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2221 {
   2222 	pool_cache_cpu_t *cc;
   2223 	pcg_t *pcg;
   2224 	void *object;
   2225 	int s;
   2226 
   2227 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2228 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2229 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2230 	    pc->pc_pool.pr_wchan);
   2231 
   2232 	if (flags & PR_WAITOK) {
   2233 		ASSERT_SLEEPABLE();
   2234 	}
   2235 
   2236 	/* Lock out interrupts and disable preemption. */
   2237 	s = splvm();
   2238 	while (/* CONSTCOND */ true) {
   2239 		/* Try and allocate an object from the current group. */
   2240 		cc = pc->pc_cpus[curcpu()->ci_index];
   2241 		KASSERT(cc->cc_cache == pc);
   2242 	 	pcg = cc->cc_current;
   2243 		if (__predict_true(pcg->pcg_avail > 0)) {
   2244 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2245 			if (__predict_false(pap != NULL))
   2246 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2247 #if defined(DIAGNOSTIC)
   2248 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2249 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2250 			KASSERT(object != NULL);
   2251 #endif
   2252 			cc->cc_hits++;
   2253 			splx(s);
   2254 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2255 			pool_redzone_fill(&pc->pc_pool, object);
   2256 			return object;
   2257 		}
   2258 
   2259 		/*
   2260 		 * That failed.  If the previous group isn't empty, swap
   2261 		 * it with the current group and allocate from there.
   2262 		 */
   2263 		pcg = cc->cc_previous;
   2264 		if (__predict_true(pcg->pcg_avail > 0)) {
   2265 			cc->cc_previous = cc->cc_current;
   2266 			cc->cc_current = pcg;
   2267 			continue;
   2268 		}
   2269 
   2270 		/*
   2271 		 * Can't allocate from either group: try the slow path.
   2272 		 * If get_slow() allocated an object for us, or if
   2273 		 * no more objects are available, it will return false.
   2274 		 * Otherwise, we need to retry.
   2275 		 */
   2276 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2277 			break;
   2278 	}
   2279 
   2280 	return object;
   2281 }
   2282 
   2283 static bool __noinline
   2284 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2285 {
   2286 	struct lwp *l = curlwp;
   2287 	pcg_t *pcg, *cur;
   2288 	uint64_t ncsw;
   2289 	pool_cache_t pc;
   2290 
   2291 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2292 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2293 
   2294 	pc = cc->cc_cache;
   2295 	pcg = NULL;
   2296 	cc->cc_misses++;
   2297 	ncsw = l->l_ncsw;
   2298 
   2299 	/*
   2300 	 * If there are no empty groups in the cache then allocate one
   2301 	 * while still unlocked.
   2302 	 */
   2303 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2304 		if (__predict_true(!pool_cache_disable)) {
   2305 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2306 		}
   2307 		/*
   2308 		 * If pool_get() blocked, then our view of
   2309 		 * the per-CPU data is invalid: retry.
   2310 		 */
   2311 		if (__predict_false(l->l_ncsw != ncsw)) {
   2312 			if (pcg != NULL) {
   2313 				pool_put(pc->pc_pcgpool, pcg);
   2314 			}
   2315 			return true;
   2316 		}
   2317 		if (__predict_true(pcg != NULL)) {
   2318 			pcg->pcg_avail = 0;
   2319 			pcg->pcg_size = pc->pc_pcgsize;
   2320 		}
   2321 	}
   2322 
   2323 	/* Lock the cache. */
   2324 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2325 		mutex_enter(&pc->pc_lock);
   2326 		pc->pc_contended++;
   2327 
   2328 		/*
   2329 		 * If we context switched while locking, then our view of
   2330 		 * the per-CPU data is invalid: retry.
   2331 		 */
   2332 		if (__predict_false(l->l_ncsw != ncsw)) {
   2333 			mutex_exit(&pc->pc_lock);
   2334 			if (pcg != NULL) {
   2335 				pool_put(pc->pc_pcgpool, pcg);
   2336 			}
   2337 			return true;
   2338 		}
   2339 	}
   2340 
   2341 	/* If there are no empty groups in the cache then allocate one. */
   2342 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2343 		pcg = pc->pc_emptygroups;
   2344 		pc->pc_emptygroups = pcg->pcg_next;
   2345 		pc->pc_nempty--;
   2346 	}
   2347 
   2348 	/*
   2349 	 * If there's a empty group, release our full group back
   2350 	 * to the cache.  Install the empty group to the local CPU
   2351 	 * and return.
   2352 	 */
   2353 	if (pcg != NULL) {
   2354 		KASSERT(pcg->pcg_avail == 0);
   2355 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2356 			cc->cc_previous = pcg;
   2357 		} else {
   2358 			cur = cc->cc_current;
   2359 			if (__predict_true(cur != &pcg_dummy)) {
   2360 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2361 				cur->pcg_next = pc->pc_fullgroups;
   2362 				pc->pc_fullgroups = cur;
   2363 				pc->pc_nfull++;
   2364 			}
   2365 			cc->cc_current = pcg;
   2366 		}
   2367 		pc->pc_hits++;
   2368 		mutex_exit(&pc->pc_lock);
   2369 		return true;
   2370 	}
   2371 
   2372 	/*
   2373 	 * Nothing available locally or in cache, and we didn't
   2374 	 * allocate an empty group.  Take the slow path and destroy
   2375 	 * the object here and now.
   2376 	 */
   2377 	pc->pc_misses++;
   2378 	mutex_exit(&pc->pc_lock);
   2379 	splx(s);
   2380 	pool_cache_destruct_object(pc, object);
   2381 
   2382 	return false;
   2383 }
   2384 
   2385 /*
   2386  * pool_cache_put{,_paddr}:
   2387  *
   2388  *	Put an object back to the pool cache (optionally caching the
   2389  *	physical address of the object).
   2390  */
   2391 void
   2392 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2393 {
   2394 	pool_cache_cpu_t *cc;
   2395 	pcg_t *pcg;
   2396 	int s;
   2397 
   2398 	KASSERT(object != NULL);
   2399 	pool_redzone_check(&pc->pc_pool, object);
   2400 	FREECHECK_IN(&pc->pc_freecheck, object);
   2401 
   2402 	/* Lock out interrupts and disable preemption. */
   2403 	s = splvm();
   2404 	while (/* CONSTCOND */ true) {
   2405 		/* If the current group isn't full, release it there. */
   2406 		cc = pc->pc_cpus[curcpu()->ci_index];
   2407 		KASSERT(cc->cc_cache == pc);
   2408 	 	pcg = cc->cc_current;
   2409 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2410 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2411 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2412 			pcg->pcg_avail++;
   2413 			cc->cc_hits++;
   2414 			splx(s);
   2415 			return;
   2416 		}
   2417 
   2418 		/*
   2419 		 * That failed.  If the previous group isn't full, swap
   2420 		 * it with the current group and try again.
   2421 		 */
   2422 		pcg = cc->cc_previous;
   2423 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2424 			cc->cc_previous = cc->cc_current;
   2425 			cc->cc_current = pcg;
   2426 			continue;
   2427 		}
   2428 
   2429 		/*
   2430 		 * Can't free to either group: try the slow path.
   2431 		 * If put_slow() releases the object for us, it
   2432 		 * will return false.  Otherwise we need to retry.
   2433 		 */
   2434 		if (!pool_cache_put_slow(cc, s, object))
   2435 			break;
   2436 	}
   2437 }
   2438 
   2439 /*
   2440  * pool_cache_transfer:
   2441  *
   2442  *	Transfer objects from the per-CPU cache to the global cache.
   2443  *	Run within a cross-call thread.
   2444  */
   2445 static void
   2446 pool_cache_transfer(pool_cache_t pc)
   2447 {
   2448 	pool_cache_cpu_t *cc;
   2449 	pcg_t *prev, *cur, **list;
   2450 	int s;
   2451 
   2452 	s = splvm();
   2453 	mutex_enter(&pc->pc_lock);
   2454 	cc = pc->pc_cpus[curcpu()->ci_index];
   2455 	cur = cc->cc_current;
   2456 	cc->cc_current = __UNCONST(&pcg_dummy);
   2457 	prev = cc->cc_previous;
   2458 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2459 	if (cur != &pcg_dummy) {
   2460 		if (cur->pcg_avail == cur->pcg_size) {
   2461 			list = &pc->pc_fullgroups;
   2462 			pc->pc_nfull++;
   2463 		} else if (cur->pcg_avail == 0) {
   2464 			list = &pc->pc_emptygroups;
   2465 			pc->pc_nempty++;
   2466 		} else {
   2467 			list = &pc->pc_partgroups;
   2468 			pc->pc_npart++;
   2469 		}
   2470 		cur->pcg_next = *list;
   2471 		*list = cur;
   2472 	}
   2473 	if (prev != &pcg_dummy) {
   2474 		if (prev->pcg_avail == prev->pcg_size) {
   2475 			list = &pc->pc_fullgroups;
   2476 			pc->pc_nfull++;
   2477 		} else if (prev->pcg_avail == 0) {
   2478 			list = &pc->pc_emptygroups;
   2479 			pc->pc_nempty++;
   2480 		} else {
   2481 			list = &pc->pc_partgroups;
   2482 			pc->pc_npart++;
   2483 		}
   2484 		prev->pcg_next = *list;
   2485 		*list = prev;
   2486 	}
   2487 	mutex_exit(&pc->pc_lock);
   2488 	splx(s);
   2489 }
   2490 
   2491 /*
   2492  * Pool backend allocators.
   2493  *
   2494  * Each pool has a backend allocator that handles allocation, deallocation,
   2495  * and any additional draining that might be needed.
   2496  *
   2497  * We provide two standard allocators:
   2498  *
   2499  *	pool_allocator_kmem - the default when no allocator is specified
   2500  *
   2501  *	pool_allocator_nointr - used for pools that will not be accessed
   2502  *	in interrupt context.
   2503  */
   2504 void	*pool_page_alloc(struct pool *, int);
   2505 void	pool_page_free(struct pool *, void *);
   2506 
   2507 #ifdef POOL_SUBPAGE
   2508 struct pool_allocator pool_allocator_kmem_fullpage = {
   2509 	.pa_alloc = pool_page_alloc,
   2510 	.pa_free = pool_page_free,
   2511 	.pa_pagesz = 0
   2512 };
   2513 #else
   2514 struct pool_allocator pool_allocator_kmem = {
   2515 	.pa_alloc = pool_page_alloc,
   2516 	.pa_free = pool_page_free,
   2517 	.pa_pagesz = 0
   2518 };
   2519 #endif
   2520 
   2521 #ifdef POOL_SUBPAGE
   2522 struct pool_allocator pool_allocator_nointr_fullpage = {
   2523 	.pa_alloc = pool_page_alloc,
   2524 	.pa_free = pool_page_free,
   2525 	.pa_pagesz = 0
   2526 };
   2527 #else
   2528 struct pool_allocator pool_allocator_nointr = {
   2529 	.pa_alloc = pool_page_alloc,
   2530 	.pa_free = pool_page_free,
   2531 	.pa_pagesz = 0
   2532 };
   2533 #endif
   2534 
   2535 #ifdef POOL_SUBPAGE
   2536 void	*pool_subpage_alloc(struct pool *, int);
   2537 void	pool_subpage_free(struct pool *, void *);
   2538 
   2539 struct pool_allocator pool_allocator_kmem = {
   2540 	.pa_alloc = pool_subpage_alloc,
   2541 	.pa_free = pool_subpage_free,
   2542 	.pa_pagesz = POOL_SUBPAGE
   2543 };
   2544 
   2545 struct pool_allocator pool_allocator_nointr = {
   2546 	.pa_alloc = pool_subpage_alloc,
   2547 	.pa_free = pool_subpage_free,
   2548 	.pa_pagesz = POOL_SUBPAGE
   2549 };
   2550 #endif /* POOL_SUBPAGE */
   2551 
   2552 static void *
   2553 pool_allocator_alloc(struct pool *pp, int flags)
   2554 {
   2555 	struct pool_allocator *pa = pp->pr_alloc;
   2556 	void *res;
   2557 
   2558 	res = (*pa->pa_alloc)(pp, flags);
   2559 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2560 		/*
   2561 		 * We only run the drain hook here if PR_NOWAIT.
   2562 		 * In other cases, the hook will be run in
   2563 		 * pool_reclaim().
   2564 		 */
   2565 		if (pp->pr_drain_hook != NULL) {
   2566 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2567 			res = (*pa->pa_alloc)(pp, flags);
   2568 		}
   2569 	}
   2570 	return res;
   2571 }
   2572 
   2573 static void
   2574 pool_allocator_free(struct pool *pp, void *v)
   2575 {
   2576 	struct pool_allocator *pa = pp->pr_alloc;
   2577 
   2578 	(*pa->pa_free)(pp, v);
   2579 }
   2580 
   2581 void *
   2582 pool_page_alloc(struct pool *pp, int flags)
   2583 {
   2584 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2585 	vmem_addr_t va;
   2586 	int ret;
   2587 
   2588 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2589 	    vflags | VM_INSTANTFIT, &va);
   2590 
   2591 	return ret ? NULL : (void *)va;
   2592 }
   2593 
   2594 void
   2595 pool_page_free(struct pool *pp, void *v)
   2596 {
   2597 
   2598 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2599 }
   2600 
   2601 static void *
   2602 pool_page_alloc_meta(struct pool *pp, int flags)
   2603 {
   2604 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2605 	vmem_addr_t va;
   2606 	int ret;
   2607 
   2608 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2609 	    vflags | VM_INSTANTFIT, &va);
   2610 
   2611 	return ret ? NULL : (void *)va;
   2612 }
   2613 
   2614 static void
   2615 pool_page_free_meta(struct pool *pp, void *v)
   2616 {
   2617 
   2618 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2619 }
   2620 
   2621 #ifdef POOL_REDZONE
   2622 #if defined(_LP64)
   2623 # define PRIME 0x9e37fffffffc0000UL
   2624 #else /* defined(_LP64) */
   2625 # define PRIME 0x9e3779b1
   2626 #endif /* defined(_LP64) */
   2627 #define STATIC_BYTE	0xFE
   2628 CTASSERT(POOL_REDZONE_SIZE > 1);
   2629 
   2630 static inline uint8_t
   2631 pool_pattern_generate(const void *p)
   2632 {
   2633 	return (uint8_t)(((uintptr_t)p) * PRIME
   2634 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2635 }
   2636 
   2637 static void
   2638 pool_redzone_init(struct pool *pp, size_t requested_size)
   2639 {
   2640 	size_t nsz;
   2641 
   2642 	if (pp->pr_roflags & PR_NOTOUCH) {
   2643 		pp->pr_reqsize = 0;
   2644 		pp->pr_redzone = false;
   2645 		return;
   2646 	}
   2647 
   2648 	/*
   2649 	 * We may have extended the requested size earlier; check if
   2650 	 * there's naturally space in the padding for a red zone.
   2651 	 */
   2652 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2653 		pp->pr_reqsize = requested_size;
   2654 		pp->pr_redzone = true;
   2655 		return;
   2656 	}
   2657 
   2658 	/*
   2659 	 * No space in the natural padding; check if we can extend a
   2660 	 * bit the size of the pool.
   2661 	 */
   2662 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2663 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2664 		/* Ok, we can */
   2665 		pp->pr_size = nsz;
   2666 		pp->pr_reqsize = requested_size;
   2667 		pp->pr_redzone = true;
   2668 	} else {
   2669 		/* No space for a red zone... snif :'( */
   2670 		pp->pr_reqsize = 0;
   2671 		pp->pr_redzone = false;
   2672 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2673 	}
   2674 }
   2675 
   2676 static void
   2677 pool_redzone_fill(struct pool *pp, void *p)
   2678 {
   2679 	uint8_t *cp, pat;
   2680 	const uint8_t *ep;
   2681 
   2682 	if (!pp->pr_redzone)
   2683 		return;
   2684 
   2685 	cp = (uint8_t *)p + pp->pr_reqsize;
   2686 	ep = cp + POOL_REDZONE_SIZE;
   2687 
   2688 	/*
   2689 	 * We really don't want the first byte of the red zone to be '\0';
   2690 	 * an off-by-one in a string may not be properly detected.
   2691 	 */
   2692 	pat = pool_pattern_generate(cp);
   2693 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2694 	cp++;
   2695 
   2696 	while (cp < ep) {
   2697 		*cp = pool_pattern_generate(cp);
   2698 		cp++;
   2699 	}
   2700 }
   2701 
   2702 static void
   2703 pool_redzone_check(struct pool *pp, void *p)
   2704 {
   2705 	uint8_t *cp, pat, expected;
   2706 	const uint8_t *ep;
   2707 
   2708 	if (!pp->pr_redzone)
   2709 		return;
   2710 
   2711 	cp = (uint8_t *)p + pp->pr_reqsize;
   2712 	ep = cp + POOL_REDZONE_SIZE;
   2713 
   2714 	pat = pool_pattern_generate(cp);
   2715 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2716 	if (expected != *cp) {
   2717 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2718 		   __func__, cp, *cp, expected);
   2719 	}
   2720 	cp++;
   2721 
   2722 	while (cp < ep) {
   2723 		expected = pool_pattern_generate(cp);
   2724 		if (*cp != expected) {
   2725 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2726 			   __func__, cp, *cp, expected);
   2727 		}
   2728 		cp++;
   2729 	}
   2730 }
   2731 
   2732 #endif /* POOL_REDZONE */
   2733 
   2734 
   2735 #ifdef POOL_SUBPAGE
   2736 /* Sub-page allocator, for machines with large hardware pages. */
   2737 void *
   2738 pool_subpage_alloc(struct pool *pp, int flags)
   2739 {
   2740 	return pool_get(&psppool, flags);
   2741 }
   2742 
   2743 void
   2744 pool_subpage_free(struct pool *pp, void *v)
   2745 {
   2746 	pool_put(&psppool, v);
   2747 }
   2748 
   2749 #endif /* POOL_SUBPAGE */
   2750 
   2751 #if defined(DDB)
   2752 static bool
   2753 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2754 {
   2755 
   2756 	return (uintptr_t)ph->ph_page <= addr &&
   2757 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2758 }
   2759 
   2760 static bool
   2761 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2762 {
   2763 
   2764 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2765 }
   2766 
   2767 static bool
   2768 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2769 {
   2770 	int i;
   2771 
   2772 	if (pcg == NULL) {
   2773 		return false;
   2774 	}
   2775 	for (i = 0; i < pcg->pcg_avail; i++) {
   2776 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2777 			return true;
   2778 		}
   2779 	}
   2780 	return false;
   2781 }
   2782 
   2783 static bool
   2784 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2785 {
   2786 
   2787 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2788 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2789 		pool_item_bitmap_t *bitmap =
   2790 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2791 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2792 
   2793 		return (*bitmap & mask) == 0;
   2794 	} else {
   2795 		struct pool_item *pi;
   2796 
   2797 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2798 			if (pool_in_item(pp, pi, addr)) {
   2799 				return false;
   2800 			}
   2801 		}
   2802 		return true;
   2803 	}
   2804 }
   2805 
   2806 void
   2807 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2808 {
   2809 	struct pool *pp;
   2810 
   2811 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2812 		struct pool_item_header *ph;
   2813 		uintptr_t item;
   2814 		bool allocated = true;
   2815 		bool incache = false;
   2816 		bool incpucache = false;
   2817 		char cpucachestr[32];
   2818 
   2819 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2820 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2821 				if (pool_in_page(pp, ph, addr)) {
   2822 					goto found;
   2823 				}
   2824 			}
   2825 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2826 				if (pool_in_page(pp, ph, addr)) {
   2827 					allocated =
   2828 					    pool_allocated(pp, ph, addr);
   2829 					goto found;
   2830 				}
   2831 			}
   2832 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2833 				if (pool_in_page(pp, ph, addr)) {
   2834 					allocated = false;
   2835 					goto found;
   2836 				}
   2837 			}
   2838 			continue;
   2839 		} else {
   2840 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2841 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2842 				continue;
   2843 			}
   2844 			allocated = pool_allocated(pp, ph, addr);
   2845 		}
   2846 found:
   2847 		if (allocated && pp->pr_cache) {
   2848 			pool_cache_t pc = pp->pr_cache;
   2849 			struct pool_cache_group *pcg;
   2850 			int i;
   2851 
   2852 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2853 			    pcg = pcg->pcg_next) {
   2854 				if (pool_in_cg(pp, pcg, addr)) {
   2855 					incache = true;
   2856 					goto print;
   2857 				}
   2858 			}
   2859 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2860 				pool_cache_cpu_t *cc;
   2861 
   2862 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2863 					continue;
   2864 				}
   2865 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2866 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2867 					struct cpu_info *ci =
   2868 					    cpu_lookup(i);
   2869 
   2870 					incpucache = true;
   2871 					snprintf(cpucachestr,
   2872 					    sizeof(cpucachestr),
   2873 					    "cached by CPU %u",
   2874 					    ci->ci_index);
   2875 					goto print;
   2876 				}
   2877 			}
   2878 		}
   2879 print:
   2880 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2881 		item = item + rounddown(addr - item, pp->pr_size);
   2882 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2883 		    (void *)addr, item, (size_t)(addr - item),
   2884 		    pp->pr_wchan,
   2885 		    incpucache ? cpucachestr :
   2886 		    incache ? "cached" : allocated ? "allocated" : "free");
   2887 	}
   2888 }
   2889 #endif /* defined(DDB) */
   2890 
   2891 static int
   2892 pool_sysctl(SYSCTLFN_ARGS)
   2893 {
   2894 	struct pool_sysctl data;
   2895 	struct pool *pp;
   2896 	struct pool_cache *pc;
   2897 	pool_cache_cpu_t *cc;
   2898 	int error;
   2899 	size_t i, written;
   2900 
   2901 	if (oldp == NULL) {
   2902 		*oldlenp = 0;
   2903 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   2904 			*oldlenp += sizeof(data);
   2905 		return 0;
   2906 	}
   2907 
   2908 	memset(&data, 0, sizeof(data));
   2909 	error = 0;
   2910 	written = 0;
   2911 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2912 		if (written + sizeof(data) > *oldlenp)
   2913 			break;
   2914 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   2915 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   2916 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   2917 #define COPY(field) data.field = pp->field
   2918 		COPY(pr_size);
   2919 
   2920 		COPY(pr_itemsperpage);
   2921 		COPY(pr_nitems);
   2922 		COPY(pr_nout);
   2923 		COPY(pr_hardlimit);
   2924 		COPY(pr_npages);
   2925 		COPY(pr_minpages);
   2926 		COPY(pr_maxpages);
   2927 
   2928 		COPY(pr_nget);
   2929 		COPY(pr_nfail);
   2930 		COPY(pr_nput);
   2931 		COPY(pr_npagealloc);
   2932 		COPY(pr_npagefree);
   2933 		COPY(pr_hiwat);
   2934 		COPY(pr_nidle);
   2935 #undef COPY
   2936 
   2937 		data.pr_cache_nmiss_pcpu = 0;
   2938 		data.pr_cache_nhit_pcpu = 0;
   2939 		if (pp->pr_cache) {
   2940 			pc = pp->pr_cache;
   2941 			data.pr_cache_meta_size = pc->pc_pcgsize;
   2942 			data.pr_cache_nfull = pc->pc_nfull;
   2943 			data.pr_cache_npartial = pc->pc_npart;
   2944 			data.pr_cache_nempty = pc->pc_nempty;
   2945 			data.pr_cache_ncontended = pc->pc_contended;
   2946 			data.pr_cache_nmiss_global = pc->pc_misses;
   2947 			data.pr_cache_nhit_global = pc->pc_hits;
   2948 			for (i = 0; i < pc->pc_ncpu; ++i) {
   2949 				cc = pc->pc_cpus[i];
   2950 				if (cc == NULL)
   2951 					continue;
   2952 				data.pr_cache_nmiss_pcpu = cc->cc_misses;
   2953 				data.pr_cache_nhit_pcpu = cc->cc_hits;
   2954 			}
   2955 		} else {
   2956 			data.pr_cache_meta_size = 0;
   2957 			data.pr_cache_nfull = 0;
   2958 			data.pr_cache_npartial = 0;
   2959 			data.pr_cache_nempty = 0;
   2960 			data.pr_cache_ncontended = 0;
   2961 			data.pr_cache_nmiss_global = 0;
   2962 			data.pr_cache_nhit_global = 0;
   2963 		}
   2964 
   2965 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   2966 		if (error)
   2967 			break;
   2968 		written += sizeof(data);
   2969 		oldp = (char *)oldp + sizeof(data);
   2970 	}
   2971 
   2972 	*oldlenp = written;
   2973 	return error;
   2974 }
   2975 
   2976 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   2977 {
   2978 	const struct sysctlnode *rnode = NULL;
   2979 
   2980 	sysctl_createv(clog, 0, NULL, &rnode,
   2981 		       CTLFLAG_PERMANENT,
   2982 		       CTLTYPE_STRUCT, "pool",
   2983 		       SYSCTL_DESCR("Get pool statistics"),
   2984 		       pool_sysctl, 0, NULL, 0,
   2985 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2986 }
   2987