Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.204
      1 /*	$NetBSD: subr_pool.c,v 1.204 2015/07/28 12:32:44 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.204 2015/07/28 12:32:44 maxv Exp $");
     37 
     38 #include "opt_ddb.h"
     39 #include "opt_lockdebug.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sysctl.h>
     44 #include <sys/bitops.h>
     45 #include <sys/proc.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/vmem.h>
     49 #include <sys/pool.h>
     50 #include <sys/syslog.h>
     51 #include <sys/debug.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/xcall.h>
     54 #include <sys/cpu.h>
     55 #include <sys/atomic.h>
     56 
     57 #include <uvm/uvm_extern.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools. Non static as needed by 'vmstat -i' */
     73 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx) \
     79 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     80 
     81 #ifdef POOL_SUBPAGE
     82 /* Pool of subpages for use by normal pools. */
     83 static struct pool psppool;
     84 #endif
     85 
     86 #ifdef POOL_REDZONE
     87 # define POOL_REDZONE_SIZE 2
     88 static void pool_redzone_init(struct pool *, size_t);
     89 static void pool_redzone_fill(struct pool *, void *);
     90 static void pool_redzone_check(struct pool *, void *);
     91 #else
     92 # define pool_redzone_init(pp, sz)	/* NOTHING */
     93 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     94 # define pool_redzone_check(pp, ptr)	/* NOTHING */
     95 #endif
     96 
     97 static void *pool_page_alloc_meta(struct pool *, int);
     98 static void pool_page_free_meta(struct pool *, void *);
     99 
    100 /* allocator for pool metadata */
    101 struct pool_allocator pool_allocator_meta = {
    102 	.pa_alloc = pool_page_alloc_meta,
    103 	.pa_free = pool_page_free_meta,
    104 	.pa_pagesz = 0
    105 };
    106 
    107 /* # of seconds to retain page after last use */
    108 int pool_inactive_time = 10;
    109 
    110 /* Next candidate for drainage (see pool_drain()) */
    111 static struct pool	*drainpp;
    112 
    113 /* This lock protects both pool_head and drainpp. */
    114 static kmutex_t pool_head_lock;
    115 static kcondvar_t pool_busy;
    116 
    117 /* This lock protects initialization of a potentially shared pool allocator */
    118 static kmutex_t pool_allocator_lock;
    119 
    120 typedef uint32_t pool_item_bitmap_t;
    121 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    122 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    123 
    124 struct pool_item_header {
    125 	/* Page headers */
    126 	LIST_ENTRY(pool_item_header)
    127 				ph_pagelist;	/* pool page list */
    128 	SPLAY_ENTRY(pool_item_header)
    129 				ph_node;	/* Off-page page headers */
    130 	void *			ph_page;	/* this page's address */
    131 	uint32_t		ph_time;	/* last referenced */
    132 	uint16_t		ph_nmissing;	/* # of chunks in use */
    133 	uint16_t		ph_off;		/* start offset in page */
    134 	union {
    135 		/* !PR_NOTOUCH */
    136 		struct {
    137 			LIST_HEAD(, pool_item)
    138 				phu_itemlist;	/* chunk list for this page */
    139 		} phu_normal;
    140 		/* PR_NOTOUCH */
    141 		struct {
    142 			pool_item_bitmap_t phu_bitmap[1];
    143 		} phu_notouch;
    144 	} ph_u;
    145 };
    146 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    147 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    148 
    149 struct pool_item {
    150 #ifdef DIAGNOSTIC
    151 	u_int pi_magic;
    152 #endif
    153 #define	PI_MAGIC 0xdeaddeadU
    154 	/* Other entries use only this list entry */
    155 	LIST_ENTRY(pool_item)	pi_list;
    156 };
    157 
    158 #define	POOL_NEEDS_CATCHUP(pp)						\
    159 	((pp)->pr_nitems < (pp)->pr_minitems)
    160 
    161 /*
    162  * Pool cache management.
    163  *
    164  * Pool caches provide a way for constructed objects to be cached by the
    165  * pool subsystem.  This can lead to performance improvements by avoiding
    166  * needless object construction/destruction; it is deferred until absolutely
    167  * necessary.
    168  *
    169  * Caches are grouped into cache groups.  Each cache group references up
    170  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    171  * object from the pool, it calls the object's constructor and places it
    172  * into a cache group.  When a cache group frees an object back to the
    173  * pool, it first calls the object's destructor.  This allows the object
    174  * to persist in constructed form while freed to the cache.
    175  *
    176  * The pool references each cache, so that when a pool is drained by the
    177  * pagedaemon, it can drain each individual cache as well.  Each time a
    178  * cache is drained, the most idle cache group is freed to the pool in
    179  * its entirety.
    180  *
    181  * Pool caches are layed on top of pools.  By layering them, we can avoid
    182  * the complexity of cache management for pools which would not benefit
    183  * from it.
    184  */
    185 
    186 static struct pool pcg_normal_pool;
    187 static struct pool pcg_large_pool;
    188 static struct pool cache_pool;
    189 static struct pool cache_cpu_pool;
    190 
    191 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    192 
    193 /* List of all caches. */
    194 TAILQ_HEAD(,pool_cache) pool_cache_head =
    195     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    196 
    197 int pool_cache_disable;		/* global disable for caching */
    198 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    199 
    200 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    201 				    void *);
    202 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    203 				    void **, paddr_t *, int);
    204 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    205 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    206 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    207 static void	pool_cache_transfer(pool_cache_t);
    208 
    209 static int	pool_catchup(struct pool *);
    210 static void	pool_prime_page(struct pool *, void *,
    211 		    struct pool_item_header *);
    212 static void	pool_update_curpage(struct pool *);
    213 
    214 static int	pool_grow(struct pool *, int);
    215 static void	*pool_allocator_alloc(struct pool *, int);
    216 static void	pool_allocator_free(struct pool *, void *);
    217 
    218 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    219 	void (*)(const char *, ...) __printflike(1, 2));
    220 static void pool_print1(struct pool *, const char *,
    221 	void (*)(const char *, ...) __printflike(1, 2));
    222 
    223 static int pool_chk_page(struct pool *, const char *,
    224 			 struct pool_item_header *);
    225 
    226 static inline unsigned int
    227 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    228     const void *v)
    229 {
    230 	const char *cp = v;
    231 	unsigned int idx;
    232 
    233 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    234 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    235 	KASSERT(idx < pp->pr_itemsperpage);
    236 	return idx;
    237 }
    238 
    239 static inline void
    240 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    241     void *obj)
    242 {
    243 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    244 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    245 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    246 
    247 	KASSERT((*bitmap & mask) == 0);
    248 	*bitmap |= mask;
    249 }
    250 
    251 static inline void *
    252 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    253 {
    254 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    255 	unsigned int idx;
    256 	int i;
    257 
    258 	for (i = 0; ; i++) {
    259 		int bit;
    260 
    261 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    262 		bit = ffs32(bitmap[i]);
    263 		if (bit) {
    264 			pool_item_bitmap_t mask;
    265 
    266 			bit--;
    267 			idx = (i * BITMAP_SIZE) + bit;
    268 			mask = 1 << bit;
    269 			KASSERT((bitmap[i] & mask) != 0);
    270 			bitmap[i] &= ~mask;
    271 			break;
    272 		}
    273 	}
    274 	KASSERT(idx < pp->pr_itemsperpage);
    275 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    276 }
    277 
    278 static inline void
    279 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    280 {
    281 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    282 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    283 	int i;
    284 
    285 	for (i = 0; i < n; i++) {
    286 		bitmap[i] = (pool_item_bitmap_t)-1;
    287 	}
    288 }
    289 
    290 static inline int
    291 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    292 {
    293 
    294 	/*
    295 	 * we consider pool_item_header with smaller ph_page bigger.
    296 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    297 	 */
    298 
    299 	if (a->ph_page < b->ph_page)
    300 		return (1);
    301 	else if (a->ph_page > b->ph_page)
    302 		return (-1);
    303 	else
    304 		return (0);
    305 }
    306 
    307 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    308 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    309 
    310 static inline struct pool_item_header *
    311 pr_find_pagehead_noalign(struct pool *pp, void *v)
    312 {
    313 	struct pool_item_header *ph, tmp;
    314 
    315 	tmp.ph_page = (void *)(uintptr_t)v;
    316 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    317 	if (ph == NULL) {
    318 		ph = SPLAY_ROOT(&pp->pr_phtree);
    319 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    320 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    321 		}
    322 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    323 	}
    324 
    325 	return ph;
    326 }
    327 
    328 /*
    329  * Return the pool page header based on item address.
    330  */
    331 static inline struct pool_item_header *
    332 pr_find_pagehead(struct pool *pp, void *v)
    333 {
    334 	struct pool_item_header *ph, tmp;
    335 
    336 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    337 		ph = pr_find_pagehead_noalign(pp, v);
    338 	} else {
    339 		void *page =
    340 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    341 
    342 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    343 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    344 		} else {
    345 			tmp.ph_page = page;
    346 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    347 		}
    348 	}
    349 
    350 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    351 	    ((char *)ph->ph_page <= (char *)v &&
    352 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    353 	return ph;
    354 }
    355 
    356 static void
    357 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    358 {
    359 	struct pool_item_header *ph;
    360 
    361 	while ((ph = LIST_FIRST(pq)) != NULL) {
    362 		LIST_REMOVE(ph, ph_pagelist);
    363 		pool_allocator_free(pp, ph->ph_page);
    364 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    365 			pool_put(pp->pr_phpool, ph);
    366 	}
    367 }
    368 
    369 /*
    370  * Remove a page from the pool.
    371  */
    372 static inline void
    373 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    374      struct pool_pagelist *pq)
    375 {
    376 
    377 	KASSERT(mutex_owned(&pp->pr_lock));
    378 
    379 	/*
    380 	 * If the page was idle, decrement the idle page count.
    381 	 */
    382 	if (ph->ph_nmissing == 0) {
    383 #ifdef DIAGNOSTIC
    384 		if (pp->pr_nidle == 0)
    385 			panic("pr_rmpage: nidle inconsistent");
    386 		if (pp->pr_nitems < pp->pr_itemsperpage)
    387 			panic("pr_rmpage: nitems inconsistent");
    388 #endif
    389 		pp->pr_nidle--;
    390 	}
    391 
    392 	pp->pr_nitems -= pp->pr_itemsperpage;
    393 
    394 	/*
    395 	 * Unlink the page from the pool and queue it for release.
    396 	 */
    397 	LIST_REMOVE(ph, ph_pagelist);
    398 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    399 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    400 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    401 
    402 	pp->pr_npages--;
    403 	pp->pr_npagefree++;
    404 
    405 	pool_update_curpage(pp);
    406 }
    407 
    408 /*
    409  * Initialize all the pools listed in the "pools" link set.
    410  */
    411 void
    412 pool_subsystem_init(void)
    413 {
    414 	size_t size;
    415 	int idx;
    416 
    417 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    418 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    419 	cv_init(&pool_busy, "poolbusy");
    420 
    421 	/*
    422 	 * Initialize private page header pool and cache magazine pool if we
    423 	 * haven't done so yet.
    424 	 */
    425 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    426 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    427 		int nelem;
    428 		size_t sz;
    429 
    430 		nelem = PHPOOL_FREELIST_NELEM(idx);
    431 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    432 		    "phpool-%d", nelem);
    433 		sz = sizeof(struct pool_item_header);
    434 		if (nelem) {
    435 			sz = offsetof(struct pool_item_header,
    436 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    437 		}
    438 		pool_init(&phpool[idx], sz, 0, 0, 0,
    439 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    440 	}
    441 #ifdef POOL_SUBPAGE
    442 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    443 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    444 #endif
    445 
    446 	size = sizeof(pcg_t) +
    447 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    448 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    449 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    450 
    451 	size = sizeof(pcg_t) +
    452 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    453 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    454 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    455 
    456 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    457 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    458 
    459 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    460 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    461 }
    462 
    463 /*
    464  * Initialize the given pool resource structure.
    465  *
    466  * We export this routine to allow other kernel parts to declare
    467  * static pools that must be initialized before kmem(9) is available.
    468  */
    469 void
    470 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    471     const char *wchan, struct pool_allocator *palloc, int ipl)
    472 {
    473 	struct pool *pp1;
    474 	size_t trysize, phsize, prsize;
    475 	int off, slack;
    476 
    477 #ifdef DEBUG
    478 	if (__predict_true(!cold))
    479 		mutex_enter(&pool_head_lock);
    480 	/*
    481 	 * Check that the pool hasn't already been initialised and
    482 	 * added to the list of all pools.
    483 	 */
    484 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    485 		if (pp == pp1)
    486 			panic("pool_init: pool %s already initialised",
    487 			    wchan);
    488 	}
    489 	if (__predict_true(!cold))
    490 		mutex_exit(&pool_head_lock);
    491 #endif
    492 
    493 	if (palloc == NULL)
    494 		palloc = &pool_allocator_kmem;
    495 #ifdef POOL_SUBPAGE
    496 	if (size > palloc->pa_pagesz) {
    497 		if (palloc == &pool_allocator_kmem)
    498 			palloc = &pool_allocator_kmem_fullpage;
    499 		else if (palloc == &pool_allocator_nointr)
    500 			palloc = &pool_allocator_nointr_fullpage;
    501 	}
    502 #endif /* POOL_SUBPAGE */
    503 	if (!cold)
    504 		mutex_enter(&pool_allocator_lock);
    505 	if (palloc->pa_refcnt++ == 0) {
    506 		if (palloc->pa_pagesz == 0)
    507 			palloc->pa_pagesz = PAGE_SIZE;
    508 
    509 		TAILQ_INIT(&palloc->pa_list);
    510 
    511 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    512 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    513 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    514 	}
    515 	if (!cold)
    516 		mutex_exit(&pool_allocator_lock);
    517 
    518 	if (align == 0)
    519 		align = ALIGN(1);
    520 
    521 	prsize = size;
    522 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    523 		prsize = sizeof(struct pool_item);
    524 
    525 	prsize = roundup(prsize, align);
    526 #ifdef DIAGNOSTIC
    527 	if (prsize > palloc->pa_pagesz)
    528 		panic("pool_init: pool item size (%zu) too large", prsize);
    529 #endif
    530 
    531 	/*
    532 	 * Initialize the pool structure.
    533 	 */
    534 	LIST_INIT(&pp->pr_emptypages);
    535 	LIST_INIT(&pp->pr_fullpages);
    536 	LIST_INIT(&pp->pr_partpages);
    537 	pp->pr_cache = NULL;
    538 	pp->pr_curpage = NULL;
    539 	pp->pr_npages = 0;
    540 	pp->pr_minitems = 0;
    541 	pp->pr_minpages = 0;
    542 	pp->pr_maxpages = UINT_MAX;
    543 	pp->pr_roflags = flags;
    544 	pp->pr_flags = 0;
    545 	pp->pr_size = prsize;
    546 	pp->pr_align = align;
    547 	pp->pr_wchan = wchan;
    548 	pp->pr_alloc = palloc;
    549 	pp->pr_nitems = 0;
    550 	pp->pr_nout = 0;
    551 	pp->pr_hardlimit = UINT_MAX;
    552 	pp->pr_hardlimit_warning = NULL;
    553 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    554 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    555 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    556 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    557 	pp->pr_drain_hook = NULL;
    558 	pp->pr_drain_hook_arg = NULL;
    559 	pp->pr_freecheck = NULL;
    560 	pool_redzone_init(pp, size);
    561 
    562 	/*
    563 	 * Decide whether to put the page header off page to avoid
    564 	 * wasting too large a part of the page or too big item.
    565 	 * Off-page page headers go on a hash table, so we can match
    566 	 * a returned item with its header based on the page address.
    567 	 * We use 1/16 of the page size and about 8 times of the item
    568 	 * size as the threshold (XXX: tune)
    569 	 *
    570 	 * However, we'll put the header into the page if we can put
    571 	 * it without wasting any items.
    572 	 *
    573 	 * Silently enforce `0 <= ioff < align'.
    574 	 */
    575 	pp->pr_itemoffset = ioff %= align;
    576 	/* See the comment below about reserved bytes. */
    577 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    578 	phsize = ALIGN(sizeof(struct pool_item_header));
    579 	if (pp->pr_roflags & PR_PHINPAGE ||
    580 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    581 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    582 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    583 		/* Use the end of the page for the page header */
    584 		pp->pr_roflags |= PR_PHINPAGE;
    585 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    586 	} else {
    587 		/* The page header will be taken from our page header pool */
    588 		pp->pr_phoffset = 0;
    589 		off = palloc->pa_pagesz;
    590 		SPLAY_INIT(&pp->pr_phtree);
    591 	}
    592 
    593 	/*
    594 	 * Alignment is to take place at `ioff' within the item. This means
    595 	 * we must reserve up to `align - 1' bytes on the page to allow
    596 	 * appropriate positioning of each item.
    597 	 */
    598 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    599 	KASSERT(pp->pr_itemsperpage != 0);
    600 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    601 		int idx;
    602 
    603 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    604 		    idx++) {
    605 			/* nothing */
    606 		}
    607 		if (idx >= PHPOOL_MAX) {
    608 			/*
    609 			 * if you see this panic, consider to tweak
    610 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    611 			 */
    612 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    613 			    pp->pr_wchan, pp->pr_itemsperpage);
    614 		}
    615 		pp->pr_phpool = &phpool[idx];
    616 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    617 		pp->pr_phpool = &phpool[0];
    618 	}
    619 #if defined(DIAGNOSTIC)
    620 	else {
    621 		pp->pr_phpool = NULL;
    622 	}
    623 #endif
    624 
    625 	/*
    626 	 * Use the slack between the chunks and the page header
    627 	 * for "cache coloring".
    628 	 */
    629 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    630 	pp->pr_maxcolor = (slack / align) * align;
    631 	pp->pr_curcolor = 0;
    632 
    633 	pp->pr_nget = 0;
    634 	pp->pr_nfail = 0;
    635 	pp->pr_nput = 0;
    636 	pp->pr_npagealloc = 0;
    637 	pp->pr_npagefree = 0;
    638 	pp->pr_hiwat = 0;
    639 	pp->pr_nidle = 0;
    640 	pp->pr_refcnt = 0;
    641 
    642 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    643 	cv_init(&pp->pr_cv, wchan);
    644 	pp->pr_ipl = ipl;
    645 
    646 	/* Insert into the list of all pools. */
    647 	if (!cold)
    648 		mutex_enter(&pool_head_lock);
    649 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    650 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    651 			break;
    652 	}
    653 	if (pp1 == NULL)
    654 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    655 	else
    656 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    657 	if (!cold)
    658 		mutex_exit(&pool_head_lock);
    659 
    660 	/* Insert this into the list of pools using this allocator. */
    661 	if (!cold)
    662 		mutex_enter(&palloc->pa_lock);
    663 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    664 	if (!cold)
    665 		mutex_exit(&palloc->pa_lock);
    666 }
    667 
    668 /*
    669  * De-commision a pool resource.
    670  */
    671 void
    672 pool_destroy(struct pool *pp)
    673 {
    674 	struct pool_pagelist pq;
    675 	struct pool_item_header *ph;
    676 
    677 	/* Remove from global pool list */
    678 	mutex_enter(&pool_head_lock);
    679 	while (pp->pr_refcnt != 0)
    680 		cv_wait(&pool_busy, &pool_head_lock);
    681 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    682 	if (drainpp == pp)
    683 		drainpp = NULL;
    684 	mutex_exit(&pool_head_lock);
    685 
    686 	/* Remove this pool from its allocator's list of pools. */
    687 	mutex_enter(&pp->pr_alloc->pa_lock);
    688 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    689 	mutex_exit(&pp->pr_alloc->pa_lock);
    690 
    691 	mutex_enter(&pool_allocator_lock);
    692 	if (--pp->pr_alloc->pa_refcnt == 0)
    693 		mutex_destroy(&pp->pr_alloc->pa_lock);
    694 	mutex_exit(&pool_allocator_lock);
    695 
    696 	mutex_enter(&pp->pr_lock);
    697 
    698 	KASSERT(pp->pr_cache == NULL);
    699 
    700 #ifdef DIAGNOSTIC
    701 	if (pp->pr_nout != 0) {
    702 		panic("pool_destroy: pool busy: still out: %u",
    703 		    pp->pr_nout);
    704 	}
    705 #endif
    706 
    707 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    708 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    709 
    710 	/* Remove all pages */
    711 	LIST_INIT(&pq);
    712 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    713 		pr_rmpage(pp, ph, &pq);
    714 
    715 	mutex_exit(&pp->pr_lock);
    716 
    717 	pr_pagelist_free(pp, &pq);
    718 	cv_destroy(&pp->pr_cv);
    719 	mutex_destroy(&pp->pr_lock);
    720 }
    721 
    722 void
    723 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    724 {
    725 
    726 	/* XXX no locking -- must be used just after pool_init() */
    727 #ifdef DIAGNOSTIC
    728 	if (pp->pr_drain_hook != NULL)
    729 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    730 #endif
    731 	pp->pr_drain_hook = fn;
    732 	pp->pr_drain_hook_arg = arg;
    733 }
    734 
    735 static struct pool_item_header *
    736 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    737 {
    738 	struct pool_item_header *ph;
    739 
    740 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    741 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    742 	else
    743 		ph = pool_get(pp->pr_phpool, flags);
    744 
    745 	return (ph);
    746 }
    747 
    748 /*
    749  * Grab an item from the pool.
    750  */
    751 void *
    752 pool_get(struct pool *pp, int flags)
    753 {
    754 	struct pool_item *pi;
    755 	struct pool_item_header *ph;
    756 	void *v;
    757 
    758 #ifdef DIAGNOSTIC
    759 	if (pp->pr_itemsperpage == 0)
    760 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    761 		    "pool not initialized?", pp->pr_wchan);
    762 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    763 	    !cold && panicstr == NULL)
    764 		panic("pool '%s' is IPL_NONE, but called from "
    765 		    "interrupt context\n", pp->pr_wchan);
    766 #endif
    767 	if (flags & PR_WAITOK) {
    768 		ASSERT_SLEEPABLE();
    769 	}
    770 
    771 	mutex_enter(&pp->pr_lock);
    772  startover:
    773 	/*
    774 	 * Check to see if we've reached the hard limit.  If we have,
    775 	 * and we can wait, then wait until an item has been returned to
    776 	 * the pool.
    777 	 */
    778 #ifdef DIAGNOSTIC
    779 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    780 		mutex_exit(&pp->pr_lock);
    781 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    782 	}
    783 #endif
    784 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    785 		if (pp->pr_drain_hook != NULL) {
    786 			/*
    787 			 * Since the drain hook is going to free things
    788 			 * back to the pool, unlock, call the hook, re-lock,
    789 			 * and check the hardlimit condition again.
    790 			 */
    791 			mutex_exit(&pp->pr_lock);
    792 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    793 			mutex_enter(&pp->pr_lock);
    794 			if (pp->pr_nout < pp->pr_hardlimit)
    795 				goto startover;
    796 		}
    797 
    798 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    799 			/*
    800 			 * XXX: A warning isn't logged in this case.  Should
    801 			 * it be?
    802 			 */
    803 			pp->pr_flags |= PR_WANTED;
    804 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    805 			goto startover;
    806 		}
    807 
    808 		/*
    809 		 * Log a message that the hard limit has been hit.
    810 		 */
    811 		if (pp->pr_hardlimit_warning != NULL &&
    812 		    ratecheck(&pp->pr_hardlimit_warning_last,
    813 			      &pp->pr_hardlimit_ratecap))
    814 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    815 
    816 		pp->pr_nfail++;
    817 
    818 		mutex_exit(&pp->pr_lock);
    819 		return (NULL);
    820 	}
    821 
    822 	/*
    823 	 * The convention we use is that if `curpage' is not NULL, then
    824 	 * it points at a non-empty bucket. In particular, `curpage'
    825 	 * never points at a page header which has PR_PHINPAGE set and
    826 	 * has no items in its bucket.
    827 	 */
    828 	if ((ph = pp->pr_curpage) == NULL) {
    829 		int error;
    830 
    831 #ifdef DIAGNOSTIC
    832 		if (pp->pr_nitems != 0) {
    833 			mutex_exit(&pp->pr_lock);
    834 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    835 			    pp->pr_wchan, pp->pr_nitems);
    836 			panic("pool_get: nitems inconsistent");
    837 		}
    838 #endif
    839 
    840 		/*
    841 		 * Call the back-end page allocator for more memory.
    842 		 * Release the pool lock, as the back-end page allocator
    843 		 * may block.
    844 		 */
    845 		error = pool_grow(pp, flags);
    846 		if (error != 0) {
    847 			/*
    848 			 * We were unable to allocate a page or item
    849 			 * header, but we released the lock during
    850 			 * allocation, so perhaps items were freed
    851 			 * back to the pool.  Check for this case.
    852 			 */
    853 			if (pp->pr_curpage != NULL)
    854 				goto startover;
    855 
    856 			pp->pr_nfail++;
    857 			mutex_exit(&pp->pr_lock);
    858 			return (NULL);
    859 		}
    860 
    861 		/* Start the allocation process over. */
    862 		goto startover;
    863 	}
    864 	if (pp->pr_roflags & PR_NOTOUCH) {
    865 #ifdef DIAGNOSTIC
    866 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    867 			mutex_exit(&pp->pr_lock);
    868 			panic("pool_get: %s: page empty", pp->pr_wchan);
    869 		}
    870 #endif
    871 		v = pr_item_notouch_get(pp, ph);
    872 	} else {
    873 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    874 		if (__predict_false(v == NULL)) {
    875 			mutex_exit(&pp->pr_lock);
    876 			panic("pool_get: %s: page empty", pp->pr_wchan);
    877 		}
    878 #ifdef DIAGNOSTIC
    879 		if (__predict_false(pp->pr_nitems == 0)) {
    880 			mutex_exit(&pp->pr_lock);
    881 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    882 			    pp->pr_wchan, pp->pr_nitems);
    883 			panic("pool_get: nitems inconsistent");
    884 		}
    885 #endif
    886 
    887 #ifdef DIAGNOSTIC
    888 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    889 			panic("pool_get(%s): free list modified: "
    890 			    "magic=%x; page %p; item addr %p\n",
    891 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    892 		}
    893 #endif
    894 
    895 		/*
    896 		 * Remove from item list.
    897 		 */
    898 		LIST_REMOVE(pi, pi_list);
    899 	}
    900 	pp->pr_nitems--;
    901 	pp->pr_nout++;
    902 	if (ph->ph_nmissing == 0) {
    903 #ifdef DIAGNOSTIC
    904 		if (__predict_false(pp->pr_nidle == 0))
    905 			panic("pool_get: nidle inconsistent");
    906 #endif
    907 		pp->pr_nidle--;
    908 
    909 		/*
    910 		 * This page was previously empty.  Move it to the list of
    911 		 * partially-full pages.  This page is already curpage.
    912 		 */
    913 		LIST_REMOVE(ph, ph_pagelist);
    914 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    915 	}
    916 	ph->ph_nmissing++;
    917 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    918 #ifdef DIAGNOSTIC
    919 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    920 		    !LIST_EMPTY(&ph->ph_itemlist))) {
    921 			mutex_exit(&pp->pr_lock);
    922 			panic("pool_get: %s: nmissing inconsistent",
    923 			    pp->pr_wchan);
    924 		}
    925 #endif
    926 		/*
    927 		 * This page is now full.  Move it to the full list
    928 		 * and select a new current page.
    929 		 */
    930 		LIST_REMOVE(ph, ph_pagelist);
    931 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    932 		pool_update_curpage(pp);
    933 	}
    934 
    935 	pp->pr_nget++;
    936 
    937 	/*
    938 	 * If we have a low water mark and we are now below that low
    939 	 * water mark, add more items to the pool.
    940 	 */
    941 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    942 		/*
    943 		 * XXX: Should we log a warning?  Should we set up a timeout
    944 		 * to try again in a second or so?  The latter could break
    945 		 * a caller's assumptions about interrupt protection, etc.
    946 		 */
    947 	}
    948 
    949 	mutex_exit(&pp->pr_lock);
    950 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    951 	FREECHECK_OUT(&pp->pr_freecheck, v);
    952 	pool_redzone_fill(pp, v);
    953 	return (v);
    954 }
    955 
    956 /*
    957  * Internal version of pool_put().  Pool is already locked/entered.
    958  */
    959 static void
    960 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    961 {
    962 	struct pool_item *pi = v;
    963 	struct pool_item_header *ph;
    964 
    965 	KASSERT(mutex_owned(&pp->pr_lock));
    966 	pool_redzone_check(pp, v);
    967 	FREECHECK_IN(&pp->pr_freecheck, v);
    968 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    969 
    970 #ifdef DIAGNOSTIC
    971 	if (__predict_false(pp->pr_nout == 0)) {
    972 		printf("pool %s: putting with none out\n",
    973 		    pp->pr_wchan);
    974 		panic("pool_put");
    975 	}
    976 #endif
    977 
    978 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    979 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    980 	}
    981 
    982 	/*
    983 	 * Return to item list.
    984 	 */
    985 	if (pp->pr_roflags & PR_NOTOUCH) {
    986 		pr_item_notouch_put(pp, ph, v);
    987 	} else {
    988 #ifdef DIAGNOSTIC
    989 		pi->pi_magic = PI_MAGIC;
    990 #endif
    991 #ifdef DEBUG
    992 		{
    993 			int i, *ip = v;
    994 
    995 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    996 				*ip++ = PI_MAGIC;
    997 			}
    998 		}
    999 #endif
   1000 
   1001 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1002 	}
   1003 	KDASSERT(ph->ph_nmissing != 0);
   1004 	ph->ph_nmissing--;
   1005 	pp->pr_nput++;
   1006 	pp->pr_nitems++;
   1007 	pp->pr_nout--;
   1008 
   1009 	/* Cancel "pool empty" condition if it exists */
   1010 	if (pp->pr_curpage == NULL)
   1011 		pp->pr_curpage = ph;
   1012 
   1013 	if (pp->pr_flags & PR_WANTED) {
   1014 		pp->pr_flags &= ~PR_WANTED;
   1015 		cv_broadcast(&pp->pr_cv);
   1016 	}
   1017 
   1018 	/*
   1019 	 * If this page is now empty, do one of two things:
   1020 	 *
   1021 	 *	(1) If we have more pages than the page high water mark,
   1022 	 *	    free the page back to the system.  ONLY CONSIDER
   1023 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1024 	 *	    CLAIM.
   1025 	 *
   1026 	 *	(2) Otherwise, move the page to the empty page list.
   1027 	 *
   1028 	 * Either way, select a new current page (so we use a partially-full
   1029 	 * page if one is available).
   1030 	 */
   1031 	if (ph->ph_nmissing == 0) {
   1032 		pp->pr_nidle++;
   1033 		if (pp->pr_npages > pp->pr_minpages &&
   1034 		    pp->pr_npages > pp->pr_maxpages) {
   1035 			pr_rmpage(pp, ph, pq);
   1036 		} else {
   1037 			LIST_REMOVE(ph, ph_pagelist);
   1038 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1039 
   1040 			/*
   1041 			 * Update the timestamp on the page.  A page must
   1042 			 * be idle for some period of time before it can
   1043 			 * be reclaimed by the pagedaemon.  This minimizes
   1044 			 * ping-pong'ing for memory.
   1045 			 *
   1046 			 * note for 64-bit time_t: truncating to 32-bit is not
   1047 			 * a problem for our usage.
   1048 			 */
   1049 			ph->ph_time = time_uptime;
   1050 		}
   1051 		pool_update_curpage(pp);
   1052 	}
   1053 
   1054 	/*
   1055 	 * If the page was previously completely full, move it to the
   1056 	 * partially-full list and make it the current page.  The next
   1057 	 * allocation will get the item from this page, instead of
   1058 	 * further fragmenting the pool.
   1059 	 */
   1060 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1061 		LIST_REMOVE(ph, ph_pagelist);
   1062 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1063 		pp->pr_curpage = ph;
   1064 	}
   1065 }
   1066 
   1067 void
   1068 pool_put(struct pool *pp, void *v)
   1069 {
   1070 	struct pool_pagelist pq;
   1071 
   1072 	LIST_INIT(&pq);
   1073 
   1074 	mutex_enter(&pp->pr_lock);
   1075 	pool_do_put(pp, v, &pq);
   1076 	mutex_exit(&pp->pr_lock);
   1077 
   1078 	pr_pagelist_free(pp, &pq);
   1079 }
   1080 
   1081 /*
   1082  * pool_grow: grow a pool by a page.
   1083  *
   1084  * => called with pool locked.
   1085  * => unlock and relock the pool.
   1086  * => return with pool locked.
   1087  */
   1088 
   1089 static int
   1090 pool_grow(struct pool *pp, int flags)
   1091 {
   1092 	struct pool_item_header *ph = NULL;
   1093 	char *cp;
   1094 
   1095 	mutex_exit(&pp->pr_lock);
   1096 	cp = pool_allocator_alloc(pp, flags);
   1097 	if (__predict_true(cp != NULL)) {
   1098 		ph = pool_alloc_item_header(pp, cp, flags);
   1099 	}
   1100 	if (__predict_false(cp == NULL || ph == NULL)) {
   1101 		if (cp != NULL) {
   1102 			pool_allocator_free(pp, cp);
   1103 		}
   1104 		mutex_enter(&pp->pr_lock);
   1105 		return ENOMEM;
   1106 	}
   1107 
   1108 	mutex_enter(&pp->pr_lock);
   1109 	pool_prime_page(pp, cp, ph);
   1110 	pp->pr_npagealloc++;
   1111 	return 0;
   1112 }
   1113 
   1114 /*
   1115  * Add N items to the pool.
   1116  */
   1117 int
   1118 pool_prime(struct pool *pp, int n)
   1119 {
   1120 	int newpages;
   1121 	int error = 0;
   1122 
   1123 	mutex_enter(&pp->pr_lock);
   1124 
   1125 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1126 
   1127 	while (newpages-- > 0) {
   1128 		error = pool_grow(pp, PR_NOWAIT);
   1129 		if (error) {
   1130 			break;
   1131 		}
   1132 		pp->pr_minpages++;
   1133 	}
   1134 
   1135 	if (pp->pr_minpages >= pp->pr_maxpages)
   1136 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1137 
   1138 	mutex_exit(&pp->pr_lock);
   1139 	return error;
   1140 }
   1141 
   1142 /*
   1143  * Add a page worth of items to the pool.
   1144  *
   1145  * Note, we must be called with the pool descriptor LOCKED.
   1146  */
   1147 static void
   1148 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1149 {
   1150 	struct pool_item *pi;
   1151 	void *cp = storage;
   1152 	const unsigned int align = pp->pr_align;
   1153 	const unsigned int ioff = pp->pr_itemoffset;
   1154 	int n;
   1155 
   1156 	KASSERT(mutex_owned(&pp->pr_lock));
   1157 
   1158 #ifdef DIAGNOSTIC
   1159 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1160 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1161 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1162 #endif
   1163 
   1164 	/*
   1165 	 * Insert page header.
   1166 	 */
   1167 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1168 	LIST_INIT(&ph->ph_itemlist);
   1169 	ph->ph_page = storage;
   1170 	ph->ph_nmissing = 0;
   1171 	ph->ph_time = time_uptime;
   1172 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1173 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1174 
   1175 	pp->pr_nidle++;
   1176 
   1177 	/*
   1178 	 * Color this page.
   1179 	 */
   1180 	ph->ph_off = pp->pr_curcolor;
   1181 	cp = (char *)cp + ph->ph_off;
   1182 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1183 		pp->pr_curcolor = 0;
   1184 
   1185 	/*
   1186 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1187 	 */
   1188 	if (ioff != 0)
   1189 		cp = (char *)cp + align - ioff;
   1190 
   1191 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1192 
   1193 	/*
   1194 	 * Insert remaining chunks on the bucket list.
   1195 	 */
   1196 	n = pp->pr_itemsperpage;
   1197 	pp->pr_nitems += n;
   1198 
   1199 	if (pp->pr_roflags & PR_NOTOUCH) {
   1200 		pr_item_notouch_init(pp, ph);
   1201 	} else {
   1202 		while (n--) {
   1203 			pi = (struct pool_item *)cp;
   1204 
   1205 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1206 
   1207 			/* Insert on page list */
   1208 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1209 #ifdef DIAGNOSTIC
   1210 			pi->pi_magic = PI_MAGIC;
   1211 #endif
   1212 			cp = (char *)cp + pp->pr_size;
   1213 
   1214 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1215 		}
   1216 	}
   1217 
   1218 	/*
   1219 	 * If the pool was depleted, point at the new page.
   1220 	 */
   1221 	if (pp->pr_curpage == NULL)
   1222 		pp->pr_curpage = ph;
   1223 
   1224 	if (++pp->pr_npages > pp->pr_hiwat)
   1225 		pp->pr_hiwat = pp->pr_npages;
   1226 }
   1227 
   1228 /*
   1229  * Used by pool_get() when nitems drops below the low water mark.  This
   1230  * is used to catch up pr_nitems with the low water mark.
   1231  *
   1232  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1233  *
   1234  * Note 2, we must be called with the pool already locked, and we return
   1235  * with it locked.
   1236  */
   1237 static int
   1238 pool_catchup(struct pool *pp)
   1239 {
   1240 	int error = 0;
   1241 
   1242 	while (POOL_NEEDS_CATCHUP(pp)) {
   1243 		error = pool_grow(pp, PR_NOWAIT);
   1244 		if (error) {
   1245 			break;
   1246 		}
   1247 	}
   1248 	return error;
   1249 }
   1250 
   1251 static void
   1252 pool_update_curpage(struct pool *pp)
   1253 {
   1254 
   1255 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1256 	if (pp->pr_curpage == NULL) {
   1257 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1258 	}
   1259 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1260 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1261 }
   1262 
   1263 void
   1264 pool_setlowat(struct pool *pp, int n)
   1265 {
   1266 
   1267 	mutex_enter(&pp->pr_lock);
   1268 
   1269 	pp->pr_minitems = n;
   1270 	pp->pr_minpages = (n == 0)
   1271 		? 0
   1272 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1273 
   1274 	/* Make sure we're caught up with the newly-set low water mark. */
   1275 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1276 		/*
   1277 		 * XXX: Should we log a warning?  Should we set up a timeout
   1278 		 * to try again in a second or so?  The latter could break
   1279 		 * a caller's assumptions about interrupt protection, etc.
   1280 		 */
   1281 	}
   1282 
   1283 	mutex_exit(&pp->pr_lock);
   1284 }
   1285 
   1286 void
   1287 pool_sethiwat(struct pool *pp, int n)
   1288 {
   1289 
   1290 	mutex_enter(&pp->pr_lock);
   1291 
   1292 	pp->pr_maxpages = (n == 0)
   1293 		? 0
   1294 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1295 
   1296 	mutex_exit(&pp->pr_lock);
   1297 }
   1298 
   1299 void
   1300 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1301 {
   1302 
   1303 	mutex_enter(&pp->pr_lock);
   1304 
   1305 	pp->pr_hardlimit = n;
   1306 	pp->pr_hardlimit_warning = warnmess;
   1307 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1308 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1309 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1310 
   1311 	/*
   1312 	 * In-line version of pool_sethiwat(), because we don't want to
   1313 	 * release the lock.
   1314 	 */
   1315 	pp->pr_maxpages = (n == 0)
   1316 		? 0
   1317 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1318 
   1319 	mutex_exit(&pp->pr_lock);
   1320 }
   1321 
   1322 /*
   1323  * Release all complete pages that have not been used recently.
   1324  *
   1325  * Must not be called from interrupt context.
   1326  */
   1327 int
   1328 pool_reclaim(struct pool *pp)
   1329 {
   1330 	struct pool_item_header *ph, *phnext;
   1331 	struct pool_pagelist pq;
   1332 	uint32_t curtime;
   1333 	bool klock;
   1334 	int rv;
   1335 
   1336 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1337 
   1338 	if (pp->pr_drain_hook != NULL) {
   1339 		/*
   1340 		 * The drain hook must be called with the pool unlocked.
   1341 		 */
   1342 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1343 	}
   1344 
   1345 	/*
   1346 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1347 	 * to block.
   1348 	 */
   1349 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1350 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1351 		KERNEL_LOCK(1, NULL);
   1352 		klock = true;
   1353 	} else
   1354 		klock = false;
   1355 
   1356 	/* Reclaim items from the pool's cache (if any). */
   1357 	if (pp->pr_cache != NULL)
   1358 		pool_cache_invalidate(pp->pr_cache);
   1359 
   1360 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1361 		if (klock) {
   1362 			KERNEL_UNLOCK_ONE(NULL);
   1363 		}
   1364 		return (0);
   1365 	}
   1366 
   1367 	LIST_INIT(&pq);
   1368 
   1369 	curtime = time_uptime;
   1370 
   1371 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1372 		phnext = LIST_NEXT(ph, ph_pagelist);
   1373 
   1374 		/* Check our minimum page claim */
   1375 		if (pp->pr_npages <= pp->pr_minpages)
   1376 			break;
   1377 
   1378 		KASSERT(ph->ph_nmissing == 0);
   1379 		if (curtime - ph->ph_time < pool_inactive_time)
   1380 			continue;
   1381 
   1382 		/*
   1383 		 * If freeing this page would put us below
   1384 		 * the low water mark, stop now.
   1385 		 */
   1386 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1387 		    pp->pr_minitems)
   1388 			break;
   1389 
   1390 		pr_rmpage(pp, ph, &pq);
   1391 	}
   1392 
   1393 	mutex_exit(&pp->pr_lock);
   1394 
   1395 	if (LIST_EMPTY(&pq))
   1396 		rv = 0;
   1397 	else {
   1398 		pr_pagelist_free(pp, &pq);
   1399 		rv = 1;
   1400 	}
   1401 
   1402 	if (klock) {
   1403 		KERNEL_UNLOCK_ONE(NULL);
   1404 	}
   1405 
   1406 	return (rv);
   1407 }
   1408 
   1409 /*
   1410  * Drain pools, one at a time. The drained pool is returned within ppp.
   1411  *
   1412  * Note, must never be called from interrupt context.
   1413  */
   1414 bool
   1415 pool_drain(struct pool **ppp)
   1416 {
   1417 	bool reclaimed;
   1418 	struct pool *pp;
   1419 
   1420 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1421 
   1422 	pp = NULL;
   1423 
   1424 	/* Find next pool to drain, and add a reference. */
   1425 	mutex_enter(&pool_head_lock);
   1426 	do {
   1427 		if (drainpp == NULL) {
   1428 			drainpp = TAILQ_FIRST(&pool_head);
   1429 		}
   1430 		if (drainpp != NULL) {
   1431 			pp = drainpp;
   1432 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1433 		}
   1434 		/*
   1435 		 * Skip completely idle pools.  We depend on at least
   1436 		 * one pool in the system being active.
   1437 		 */
   1438 	} while (pp == NULL || pp->pr_npages == 0);
   1439 	pp->pr_refcnt++;
   1440 	mutex_exit(&pool_head_lock);
   1441 
   1442 	/* Drain the cache (if any) and pool.. */
   1443 	reclaimed = pool_reclaim(pp);
   1444 
   1445 	/* Finally, unlock the pool. */
   1446 	mutex_enter(&pool_head_lock);
   1447 	pp->pr_refcnt--;
   1448 	cv_broadcast(&pool_busy);
   1449 	mutex_exit(&pool_head_lock);
   1450 
   1451 	if (ppp != NULL)
   1452 		*ppp = pp;
   1453 
   1454 	return reclaimed;
   1455 }
   1456 
   1457 /*
   1458  * Diagnostic helpers.
   1459  */
   1460 
   1461 void
   1462 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1463 {
   1464 	struct pool *pp;
   1465 
   1466 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1467 		pool_printit(pp, modif, pr);
   1468 	}
   1469 }
   1470 
   1471 void
   1472 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1473 {
   1474 
   1475 	if (pp == NULL) {
   1476 		(*pr)("Must specify a pool to print.\n");
   1477 		return;
   1478 	}
   1479 
   1480 	pool_print1(pp, modif, pr);
   1481 }
   1482 
   1483 static void
   1484 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1485     void (*pr)(const char *, ...))
   1486 {
   1487 	struct pool_item_header *ph;
   1488 #ifdef DIAGNOSTIC
   1489 	struct pool_item *pi;
   1490 #endif
   1491 
   1492 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1493 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1494 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1495 #ifdef DIAGNOSTIC
   1496 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1497 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1498 				if (pi->pi_magic != PI_MAGIC) {
   1499 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1500 					    pi, pi->pi_magic);
   1501 				}
   1502 			}
   1503 		}
   1504 #endif
   1505 	}
   1506 }
   1507 
   1508 static void
   1509 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1510 {
   1511 	struct pool_item_header *ph;
   1512 	pool_cache_t pc;
   1513 	pcg_t *pcg;
   1514 	pool_cache_cpu_t *cc;
   1515 	uint64_t cpuhit, cpumiss;
   1516 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1517 	char c;
   1518 
   1519 	while ((c = *modif++) != '\0') {
   1520 		if (c == 'l')
   1521 			print_log = 1;
   1522 		if (c == 'p')
   1523 			print_pagelist = 1;
   1524 		if (c == 'c')
   1525 			print_cache = 1;
   1526 	}
   1527 
   1528 	if ((pc = pp->pr_cache) != NULL) {
   1529 		(*pr)("POOL CACHE");
   1530 	} else {
   1531 		(*pr)("POOL");
   1532 	}
   1533 
   1534 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1535 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1536 	    pp->pr_roflags);
   1537 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1538 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1539 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1540 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1541 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1542 
   1543 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1544 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1545 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1546 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1547 
   1548 	if (print_pagelist == 0)
   1549 		goto skip_pagelist;
   1550 
   1551 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1552 		(*pr)("\n\tempty page list:\n");
   1553 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1554 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1555 		(*pr)("\n\tfull page list:\n");
   1556 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1557 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1558 		(*pr)("\n\tpartial-page list:\n");
   1559 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1560 
   1561 	if (pp->pr_curpage == NULL)
   1562 		(*pr)("\tno current page\n");
   1563 	else
   1564 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1565 
   1566  skip_pagelist:
   1567 	if (print_log == 0)
   1568 		goto skip_log;
   1569 
   1570 	(*pr)("\n");
   1571 
   1572  skip_log:
   1573 
   1574 #define PR_GROUPLIST(pcg)						\
   1575 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1576 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1577 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1578 		    POOL_PADDR_INVALID) {				\
   1579 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1580 			    pcg->pcg_objects[i].pcgo_va,		\
   1581 			    (unsigned long long)			\
   1582 			    pcg->pcg_objects[i].pcgo_pa);		\
   1583 		} else {						\
   1584 			(*pr)("\t\t\t%p\n",				\
   1585 			    pcg->pcg_objects[i].pcgo_va);		\
   1586 		}							\
   1587 	}
   1588 
   1589 	if (pc != NULL) {
   1590 		cpuhit = 0;
   1591 		cpumiss = 0;
   1592 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1593 			if ((cc = pc->pc_cpus[i]) == NULL)
   1594 				continue;
   1595 			cpuhit += cc->cc_hits;
   1596 			cpumiss += cc->cc_misses;
   1597 		}
   1598 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1599 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1600 		    pc->pc_hits, pc->pc_misses);
   1601 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1602 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1603 		    pc->pc_contended);
   1604 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1605 		    pc->pc_nempty, pc->pc_nfull);
   1606 		if (print_cache) {
   1607 			(*pr)("\tfull cache groups:\n");
   1608 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1609 			    pcg = pcg->pcg_next) {
   1610 				PR_GROUPLIST(pcg);
   1611 			}
   1612 			(*pr)("\tempty cache groups:\n");
   1613 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1614 			    pcg = pcg->pcg_next) {
   1615 				PR_GROUPLIST(pcg);
   1616 			}
   1617 		}
   1618 	}
   1619 #undef PR_GROUPLIST
   1620 }
   1621 
   1622 static int
   1623 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1624 {
   1625 	struct pool_item *pi;
   1626 	void *page;
   1627 	int n;
   1628 
   1629 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1630 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1631 		if (page != ph->ph_page &&
   1632 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1633 			if (label != NULL)
   1634 				printf("%s: ", label);
   1635 			printf("pool(%p:%s): page inconsistency: page %p;"
   1636 			       " at page head addr %p (p %p)\n", pp,
   1637 				pp->pr_wchan, ph->ph_page,
   1638 				ph, page);
   1639 			return 1;
   1640 		}
   1641 	}
   1642 
   1643 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1644 		return 0;
   1645 
   1646 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1647 	     pi != NULL;
   1648 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1649 
   1650 #ifdef DIAGNOSTIC
   1651 		if (pi->pi_magic != PI_MAGIC) {
   1652 			if (label != NULL)
   1653 				printf("%s: ", label);
   1654 			printf("pool(%s): free list modified: magic=%x;"
   1655 			       " page %p; item ordinal %d; addr %p\n",
   1656 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1657 				n, pi);
   1658 			panic("pool");
   1659 		}
   1660 #endif
   1661 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1662 			continue;
   1663 		}
   1664 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1665 		if (page == ph->ph_page)
   1666 			continue;
   1667 
   1668 		if (label != NULL)
   1669 			printf("%s: ", label);
   1670 		printf("pool(%p:%s): page inconsistency: page %p;"
   1671 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1672 			pp->pr_wchan, ph->ph_page,
   1673 			n, pi, page);
   1674 		return 1;
   1675 	}
   1676 	return 0;
   1677 }
   1678 
   1679 
   1680 int
   1681 pool_chk(struct pool *pp, const char *label)
   1682 {
   1683 	struct pool_item_header *ph;
   1684 	int r = 0;
   1685 
   1686 	mutex_enter(&pp->pr_lock);
   1687 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1688 		r = pool_chk_page(pp, label, ph);
   1689 		if (r) {
   1690 			goto out;
   1691 		}
   1692 	}
   1693 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1694 		r = pool_chk_page(pp, label, ph);
   1695 		if (r) {
   1696 			goto out;
   1697 		}
   1698 	}
   1699 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1700 		r = pool_chk_page(pp, label, ph);
   1701 		if (r) {
   1702 			goto out;
   1703 		}
   1704 	}
   1705 
   1706 out:
   1707 	mutex_exit(&pp->pr_lock);
   1708 	return (r);
   1709 }
   1710 
   1711 /*
   1712  * pool_cache_init:
   1713  *
   1714  *	Initialize a pool cache.
   1715  */
   1716 pool_cache_t
   1717 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1718     const char *wchan, struct pool_allocator *palloc, int ipl,
   1719     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1720 {
   1721 	pool_cache_t pc;
   1722 
   1723 	pc = pool_get(&cache_pool, PR_WAITOK);
   1724 	if (pc == NULL)
   1725 		return NULL;
   1726 
   1727 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1728 	   palloc, ipl, ctor, dtor, arg);
   1729 
   1730 	return pc;
   1731 }
   1732 
   1733 /*
   1734  * pool_cache_bootstrap:
   1735  *
   1736  *	Kernel-private version of pool_cache_init().  The caller
   1737  *	provides initial storage.
   1738  */
   1739 void
   1740 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1741     u_int align_offset, u_int flags, const char *wchan,
   1742     struct pool_allocator *palloc, int ipl,
   1743     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1744     void *arg)
   1745 {
   1746 	CPU_INFO_ITERATOR cii;
   1747 	pool_cache_t pc1;
   1748 	struct cpu_info *ci;
   1749 	struct pool *pp;
   1750 
   1751 	pp = &pc->pc_pool;
   1752 	if (palloc == NULL && ipl == IPL_NONE)
   1753 		palloc = &pool_allocator_nointr;
   1754 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1755 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1756 
   1757 	if (ctor == NULL) {
   1758 		ctor = (int (*)(void *, void *, int))nullop;
   1759 	}
   1760 	if (dtor == NULL) {
   1761 		dtor = (void (*)(void *, void *))nullop;
   1762 	}
   1763 
   1764 	pc->pc_emptygroups = NULL;
   1765 	pc->pc_fullgroups = NULL;
   1766 	pc->pc_partgroups = NULL;
   1767 	pc->pc_ctor = ctor;
   1768 	pc->pc_dtor = dtor;
   1769 	pc->pc_arg  = arg;
   1770 	pc->pc_hits  = 0;
   1771 	pc->pc_misses = 0;
   1772 	pc->pc_nempty = 0;
   1773 	pc->pc_npart = 0;
   1774 	pc->pc_nfull = 0;
   1775 	pc->pc_contended = 0;
   1776 	pc->pc_refcnt = 0;
   1777 	pc->pc_freecheck = NULL;
   1778 
   1779 	if ((flags & PR_LARGECACHE) != 0) {
   1780 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1781 		pc->pc_pcgpool = &pcg_large_pool;
   1782 	} else {
   1783 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1784 		pc->pc_pcgpool = &pcg_normal_pool;
   1785 	}
   1786 
   1787 	/* Allocate per-CPU caches. */
   1788 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1789 	pc->pc_ncpu = 0;
   1790 	if (ncpu < 2) {
   1791 		/* XXX For sparc: boot CPU is not attached yet. */
   1792 		pool_cache_cpu_init1(curcpu(), pc);
   1793 	} else {
   1794 		for (CPU_INFO_FOREACH(cii, ci)) {
   1795 			pool_cache_cpu_init1(ci, pc);
   1796 		}
   1797 	}
   1798 
   1799 	/* Add to list of all pools. */
   1800 	if (__predict_true(!cold))
   1801 		mutex_enter(&pool_head_lock);
   1802 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1803 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1804 			break;
   1805 	}
   1806 	if (pc1 == NULL)
   1807 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1808 	else
   1809 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1810 	if (__predict_true(!cold))
   1811 		mutex_exit(&pool_head_lock);
   1812 
   1813 	membar_sync();
   1814 	pp->pr_cache = pc;
   1815 }
   1816 
   1817 /*
   1818  * pool_cache_destroy:
   1819  *
   1820  *	Destroy a pool cache.
   1821  */
   1822 void
   1823 pool_cache_destroy(pool_cache_t pc)
   1824 {
   1825 
   1826 	pool_cache_bootstrap_destroy(pc);
   1827 	pool_put(&cache_pool, pc);
   1828 }
   1829 
   1830 /*
   1831  * pool_cache_bootstrap_destroy:
   1832  *
   1833  *	Destroy a pool cache.
   1834  */
   1835 void
   1836 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1837 {
   1838 	struct pool *pp = &pc->pc_pool;
   1839 	u_int i;
   1840 
   1841 	/* Remove it from the global list. */
   1842 	mutex_enter(&pool_head_lock);
   1843 	while (pc->pc_refcnt != 0)
   1844 		cv_wait(&pool_busy, &pool_head_lock);
   1845 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1846 	mutex_exit(&pool_head_lock);
   1847 
   1848 	/* First, invalidate the entire cache. */
   1849 	pool_cache_invalidate(pc);
   1850 
   1851 	/* Disassociate it from the pool. */
   1852 	mutex_enter(&pp->pr_lock);
   1853 	pp->pr_cache = NULL;
   1854 	mutex_exit(&pp->pr_lock);
   1855 
   1856 	/* Destroy per-CPU data */
   1857 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1858 		pool_cache_invalidate_cpu(pc, i);
   1859 
   1860 	/* Finally, destroy it. */
   1861 	mutex_destroy(&pc->pc_lock);
   1862 	pool_destroy(pp);
   1863 }
   1864 
   1865 /*
   1866  * pool_cache_cpu_init1:
   1867  *
   1868  *	Called for each pool_cache whenever a new CPU is attached.
   1869  */
   1870 static void
   1871 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1872 {
   1873 	pool_cache_cpu_t *cc;
   1874 	int index;
   1875 
   1876 	index = ci->ci_index;
   1877 
   1878 	KASSERT(index < __arraycount(pc->pc_cpus));
   1879 
   1880 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1881 		KASSERT(cc->cc_cpuindex == index);
   1882 		return;
   1883 	}
   1884 
   1885 	/*
   1886 	 * The first CPU is 'free'.  This needs to be the case for
   1887 	 * bootstrap - we may not be able to allocate yet.
   1888 	 */
   1889 	if (pc->pc_ncpu == 0) {
   1890 		cc = &pc->pc_cpu0;
   1891 		pc->pc_ncpu = 1;
   1892 	} else {
   1893 		mutex_enter(&pc->pc_lock);
   1894 		pc->pc_ncpu++;
   1895 		mutex_exit(&pc->pc_lock);
   1896 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1897 	}
   1898 
   1899 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1900 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1901 	cc->cc_cache = pc;
   1902 	cc->cc_cpuindex = index;
   1903 	cc->cc_hits = 0;
   1904 	cc->cc_misses = 0;
   1905 	cc->cc_current = __UNCONST(&pcg_dummy);
   1906 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1907 
   1908 	pc->pc_cpus[index] = cc;
   1909 }
   1910 
   1911 /*
   1912  * pool_cache_cpu_init:
   1913  *
   1914  *	Called whenever a new CPU is attached.
   1915  */
   1916 void
   1917 pool_cache_cpu_init(struct cpu_info *ci)
   1918 {
   1919 	pool_cache_t pc;
   1920 
   1921 	mutex_enter(&pool_head_lock);
   1922 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1923 		pc->pc_refcnt++;
   1924 		mutex_exit(&pool_head_lock);
   1925 
   1926 		pool_cache_cpu_init1(ci, pc);
   1927 
   1928 		mutex_enter(&pool_head_lock);
   1929 		pc->pc_refcnt--;
   1930 		cv_broadcast(&pool_busy);
   1931 	}
   1932 	mutex_exit(&pool_head_lock);
   1933 }
   1934 
   1935 /*
   1936  * pool_cache_reclaim:
   1937  *
   1938  *	Reclaim memory from a pool cache.
   1939  */
   1940 bool
   1941 pool_cache_reclaim(pool_cache_t pc)
   1942 {
   1943 
   1944 	return pool_reclaim(&pc->pc_pool);
   1945 }
   1946 
   1947 static void
   1948 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1949 {
   1950 
   1951 	(*pc->pc_dtor)(pc->pc_arg, object);
   1952 	pool_put(&pc->pc_pool, object);
   1953 }
   1954 
   1955 /*
   1956  * pool_cache_destruct_object:
   1957  *
   1958  *	Force destruction of an object and its release back into
   1959  *	the pool.
   1960  */
   1961 void
   1962 pool_cache_destruct_object(pool_cache_t pc, void *object)
   1963 {
   1964 
   1965 	FREECHECK_IN(&pc->pc_freecheck, object);
   1966 
   1967 	pool_cache_destruct_object1(pc, object);
   1968 }
   1969 
   1970 /*
   1971  * pool_cache_invalidate_groups:
   1972  *
   1973  *	Invalidate a chain of groups and destruct all objects.
   1974  */
   1975 static void
   1976 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1977 {
   1978 	void *object;
   1979 	pcg_t *next;
   1980 	int i;
   1981 
   1982 	for (; pcg != NULL; pcg = next) {
   1983 		next = pcg->pcg_next;
   1984 
   1985 		for (i = 0; i < pcg->pcg_avail; i++) {
   1986 			object = pcg->pcg_objects[i].pcgo_va;
   1987 			pool_cache_destruct_object1(pc, object);
   1988 		}
   1989 
   1990 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1991 			pool_put(&pcg_large_pool, pcg);
   1992 		} else {
   1993 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1994 			pool_put(&pcg_normal_pool, pcg);
   1995 		}
   1996 	}
   1997 }
   1998 
   1999 /*
   2000  * pool_cache_invalidate:
   2001  *
   2002  *	Invalidate a pool cache (destruct and release all of the
   2003  *	cached objects).  Does not reclaim objects from the pool.
   2004  *
   2005  *	Note: For pool caches that provide constructed objects, there
   2006  *	is an assumption that another level of synchronization is occurring
   2007  *	between the input to the constructor and the cache invalidation.
   2008  *
   2009  *	Invalidation is a costly process and should not be called from
   2010  *	interrupt context.
   2011  */
   2012 void
   2013 pool_cache_invalidate(pool_cache_t pc)
   2014 {
   2015 	uint64_t where;
   2016 	pcg_t *full, *empty, *part;
   2017 
   2018 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2019 
   2020 	if (ncpu < 2 || !mp_online) {
   2021 		/*
   2022 		 * We might be called early enough in the boot process
   2023 		 * for the CPU data structures to not be fully initialized.
   2024 		 * In this case, transfer the content of the local CPU's
   2025 		 * cache back into global cache as only this CPU is currently
   2026 		 * running.
   2027 		 */
   2028 		pool_cache_transfer(pc);
   2029 	} else {
   2030 		/*
   2031 		 * Signal all CPUs that they must transfer their local
   2032 		 * cache back to the global pool then wait for the xcall to
   2033 		 * complete.
   2034 		 */
   2035 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2036 		    pc, NULL);
   2037 		xc_wait(where);
   2038 	}
   2039 
   2040 	/* Empty pool caches, then invalidate objects */
   2041 	mutex_enter(&pc->pc_lock);
   2042 	full = pc->pc_fullgroups;
   2043 	empty = pc->pc_emptygroups;
   2044 	part = pc->pc_partgroups;
   2045 	pc->pc_fullgroups = NULL;
   2046 	pc->pc_emptygroups = NULL;
   2047 	pc->pc_partgroups = NULL;
   2048 	pc->pc_nfull = 0;
   2049 	pc->pc_nempty = 0;
   2050 	pc->pc_npart = 0;
   2051 	mutex_exit(&pc->pc_lock);
   2052 
   2053 	pool_cache_invalidate_groups(pc, full);
   2054 	pool_cache_invalidate_groups(pc, empty);
   2055 	pool_cache_invalidate_groups(pc, part);
   2056 }
   2057 
   2058 /*
   2059  * pool_cache_invalidate_cpu:
   2060  *
   2061  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2062  *	identified by its associated index.
   2063  *	It is caller's responsibility to ensure that no operation is
   2064  *	taking place on this pool cache while doing this invalidation.
   2065  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2066  *	pool cached objects from a CPU different from the one currently running
   2067  *	may result in an undefined behaviour.
   2068  */
   2069 static void
   2070 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2071 {
   2072 	pool_cache_cpu_t *cc;
   2073 	pcg_t *pcg;
   2074 
   2075 	if ((cc = pc->pc_cpus[index]) == NULL)
   2076 		return;
   2077 
   2078 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2079 		pcg->pcg_next = NULL;
   2080 		pool_cache_invalidate_groups(pc, pcg);
   2081 	}
   2082 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2083 		pcg->pcg_next = NULL;
   2084 		pool_cache_invalidate_groups(pc, pcg);
   2085 	}
   2086 	if (cc != &pc->pc_cpu0)
   2087 		pool_put(&cache_cpu_pool, cc);
   2088 
   2089 }
   2090 
   2091 void
   2092 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2093 {
   2094 
   2095 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2096 }
   2097 
   2098 void
   2099 pool_cache_setlowat(pool_cache_t pc, int n)
   2100 {
   2101 
   2102 	pool_setlowat(&pc->pc_pool, n);
   2103 }
   2104 
   2105 void
   2106 pool_cache_sethiwat(pool_cache_t pc, int n)
   2107 {
   2108 
   2109 	pool_sethiwat(&pc->pc_pool, n);
   2110 }
   2111 
   2112 void
   2113 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2114 {
   2115 
   2116 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2117 }
   2118 
   2119 static bool __noinline
   2120 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2121 		    paddr_t *pap, int flags)
   2122 {
   2123 	pcg_t *pcg, *cur;
   2124 	uint64_t ncsw;
   2125 	pool_cache_t pc;
   2126 	void *object;
   2127 
   2128 	KASSERT(cc->cc_current->pcg_avail == 0);
   2129 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2130 
   2131 	pc = cc->cc_cache;
   2132 	cc->cc_misses++;
   2133 
   2134 	/*
   2135 	 * Nothing was available locally.  Try and grab a group
   2136 	 * from the cache.
   2137 	 */
   2138 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2139 		ncsw = curlwp->l_ncsw;
   2140 		mutex_enter(&pc->pc_lock);
   2141 		pc->pc_contended++;
   2142 
   2143 		/*
   2144 		 * If we context switched while locking, then
   2145 		 * our view of the per-CPU data is invalid:
   2146 		 * retry.
   2147 		 */
   2148 		if (curlwp->l_ncsw != ncsw) {
   2149 			mutex_exit(&pc->pc_lock);
   2150 			return true;
   2151 		}
   2152 	}
   2153 
   2154 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2155 		/*
   2156 		 * If there's a full group, release our empty
   2157 		 * group back to the cache.  Install the full
   2158 		 * group as cc_current and return.
   2159 		 */
   2160 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2161 			KASSERT(cur->pcg_avail == 0);
   2162 			cur->pcg_next = pc->pc_emptygroups;
   2163 			pc->pc_emptygroups = cur;
   2164 			pc->pc_nempty++;
   2165 		}
   2166 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2167 		cc->cc_current = pcg;
   2168 		pc->pc_fullgroups = pcg->pcg_next;
   2169 		pc->pc_hits++;
   2170 		pc->pc_nfull--;
   2171 		mutex_exit(&pc->pc_lock);
   2172 		return true;
   2173 	}
   2174 
   2175 	/*
   2176 	 * Nothing available locally or in cache.  Take the slow
   2177 	 * path: fetch a new object from the pool and construct
   2178 	 * it.
   2179 	 */
   2180 	pc->pc_misses++;
   2181 	mutex_exit(&pc->pc_lock);
   2182 	splx(s);
   2183 
   2184 	object = pool_get(&pc->pc_pool, flags);
   2185 	*objectp = object;
   2186 	if (__predict_false(object == NULL))
   2187 		return false;
   2188 
   2189 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2190 		pool_put(&pc->pc_pool, object);
   2191 		*objectp = NULL;
   2192 		return false;
   2193 	}
   2194 
   2195 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2196 	    (pc->pc_pool.pr_align - 1)) == 0);
   2197 
   2198 	if (pap != NULL) {
   2199 #ifdef POOL_VTOPHYS
   2200 		*pap = POOL_VTOPHYS(object);
   2201 #else
   2202 		*pap = POOL_PADDR_INVALID;
   2203 #endif
   2204 	}
   2205 
   2206 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2207 	pool_redzone_fill(&pc->pc_pool, object);
   2208 	return false;
   2209 }
   2210 
   2211 /*
   2212  * pool_cache_get{,_paddr}:
   2213  *
   2214  *	Get an object from a pool cache (optionally returning
   2215  *	the physical address of the object).
   2216  */
   2217 void *
   2218 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2219 {
   2220 	pool_cache_cpu_t *cc;
   2221 	pcg_t *pcg;
   2222 	void *object;
   2223 	int s;
   2224 
   2225 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2226 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2227 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2228 	    pc->pc_pool.pr_wchan);
   2229 
   2230 	if (flags & PR_WAITOK) {
   2231 		ASSERT_SLEEPABLE();
   2232 	}
   2233 
   2234 	/* Lock out interrupts and disable preemption. */
   2235 	s = splvm();
   2236 	while (/* CONSTCOND */ true) {
   2237 		/* Try and allocate an object from the current group. */
   2238 		cc = pc->pc_cpus[curcpu()->ci_index];
   2239 		KASSERT(cc->cc_cache == pc);
   2240 	 	pcg = cc->cc_current;
   2241 		if (__predict_true(pcg->pcg_avail > 0)) {
   2242 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2243 			if (__predict_false(pap != NULL))
   2244 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2245 #if defined(DIAGNOSTIC)
   2246 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2247 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2248 			KASSERT(object != NULL);
   2249 #endif
   2250 			cc->cc_hits++;
   2251 			splx(s);
   2252 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2253 			pool_redzone_fill(&pc->pc_pool, object);
   2254 			return object;
   2255 		}
   2256 
   2257 		/*
   2258 		 * That failed.  If the previous group isn't empty, swap
   2259 		 * it with the current group and allocate from there.
   2260 		 */
   2261 		pcg = cc->cc_previous;
   2262 		if (__predict_true(pcg->pcg_avail > 0)) {
   2263 			cc->cc_previous = cc->cc_current;
   2264 			cc->cc_current = pcg;
   2265 			continue;
   2266 		}
   2267 
   2268 		/*
   2269 		 * Can't allocate from either group: try the slow path.
   2270 		 * If get_slow() allocated an object for us, or if
   2271 		 * no more objects are available, it will return false.
   2272 		 * Otherwise, we need to retry.
   2273 		 */
   2274 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2275 			break;
   2276 	}
   2277 
   2278 	return object;
   2279 }
   2280 
   2281 static bool __noinline
   2282 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2283 {
   2284 	struct lwp *l = curlwp;
   2285 	pcg_t *pcg, *cur;
   2286 	uint64_t ncsw;
   2287 	pool_cache_t pc;
   2288 
   2289 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2290 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2291 
   2292 	pc = cc->cc_cache;
   2293 	pcg = NULL;
   2294 	cc->cc_misses++;
   2295 	ncsw = l->l_ncsw;
   2296 
   2297 	/*
   2298 	 * If there are no empty groups in the cache then allocate one
   2299 	 * while still unlocked.
   2300 	 */
   2301 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2302 		if (__predict_true(!pool_cache_disable)) {
   2303 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2304 		}
   2305 		/*
   2306 		 * If pool_get() blocked, then our view of
   2307 		 * the per-CPU data is invalid: retry.
   2308 		 */
   2309 		if (__predict_false(l->l_ncsw != ncsw)) {
   2310 			if (pcg != NULL) {
   2311 				pool_put(pc->pc_pcgpool, pcg);
   2312 			}
   2313 			return true;
   2314 		}
   2315 		if (__predict_true(pcg != NULL)) {
   2316 			pcg->pcg_avail = 0;
   2317 			pcg->pcg_size = pc->pc_pcgsize;
   2318 		}
   2319 	}
   2320 
   2321 	/* Lock the cache. */
   2322 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2323 		mutex_enter(&pc->pc_lock);
   2324 		pc->pc_contended++;
   2325 
   2326 		/*
   2327 		 * If we context switched while locking, then our view of
   2328 		 * the per-CPU data is invalid: retry.
   2329 		 */
   2330 		if (__predict_false(l->l_ncsw != ncsw)) {
   2331 			mutex_exit(&pc->pc_lock);
   2332 			if (pcg != NULL) {
   2333 				pool_put(pc->pc_pcgpool, pcg);
   2334 			}
   2335 			return true;
   2336 		}
   2337 	}
   2338 
   2339 	/* If there are no empty groups in the cache then allocate one. */
   2340 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2341 		pcg = pc->pc_emptygroups;
   2342 		pc->pc_emptygroups = pcg->pcg_next;
   2343 		pc->pc_nempty--;
   2344 	}
   2345 
   2346 	/*
   2347 	 * If there's a empty group, release our full group back
   2348 	 * to the cache.  Install the empty group to the local CPU
   2349 	 * and return.
   2350 	 */
   2351 	if (pcg != NULL) {
   2352 		KASSERT(pcg->pcg_avail == 0);
   2353 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2354 			cc->cc_previous = pcg;
   2355 		} else {
   2356 			cur = cc->cc_current;
   2357 			if (__predict_true(cur != &pcg_dummy)) {
   2358 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2359 				cur->pcg_next = pc->pc_fullgroups;
   2360 				pc->pc_fullgroups = cur;
   2361 				pc->pc_nfull++;
   2362 			}
   2363 			cc->cc_current = pcg;
   2364 		}
   2365 		pc->pc_hits++;
   2366 		mutex_exit(&pc->pc_lock);
   2367 		return true;
   2368 	}
   2369 
   2370 	/*
   2371 	 * Nothing available locally or in cache, and we didn't
   2372 	 * allocate an empty group.  Take the slow path and destroy
   2373 	 * the object here and now.
   2374 	 */
   2375 	pc->pc_misses++;
   2376 	mutex_exit(&pc->pc_lock);
   2377 	splx(s);
   2378 	pool_cache_destruct_object(pc, object);
   2379 
   2380 	return false;
   2381 }
   2382 
   2383 /*
   2384  * pool_cache_put{,_paddr}:
   2385  *
   2386  *	Put an object back to the pool cache (optionally caching the
   2387  *	physical address of the object).
   2388  */
   2389 void
   2390 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2391 {
   2392 	pool_cache_cpu_t *cc;
   2393 	pcg_t *pcg;
   2394 	int s;
   2395 
   2396 	KASSERT(object != NULL);
   2397 	pool_redzone_check(&pc->pc_pool, object);
   2398 	FREECHECK_IN(&pc->pc_freecheck, object);
   2399 
   2400 	/* Lock out interrupts and disable preemption. */
   2401 	s = splvm();
   2402 	while (/* CONSTCOND */ true) {
   2403 		/* If the current group isn't full, release it there. */
   2404 		cc = pc->pc_cpus[curcpu()->ci_index];
   2405 		KASSERT(cc->cc_cache == pc);
   2406 	 	pcg = cc->cc_current;
   2407 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2408 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2409 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2410 			pcg->pcg_avail++;
   2411 			cc->cc_hits++;
   2412 			splx(s);
   2413 			return;
   2414 		}
   2415 
   2416 		/*
   2417 		 * That failed.  If the previous group isn't full, swap
   2418 		 * it with the current group and try again.
   2419 		 */
   2420 		pcg = cc->cc_previous;
   2421 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2422 			cc->cc_previous = cc->cc_current;
   2423 			cc->cc_current = pcg;
   2424 			continue;
   2425 		}
   2426 
   2427 		/*
   2428 		 * Can't free to either group: try the slow path.
   2429 		 * If put_slow() releases the object for us, it
   2430 		 * will return false.  Otherwise we need to retry.
   2431 		 */
   2432 		if (!pool_cache_put_slow(cc, s, object))
   2433 			break;
   2434 	}
   2435 }
   2436 
   2437 /*
   2438  * pool_cache_transfer:
   2439  *
   2440  *	Transfer objects from the per-CPU cache to the global cache.
   2441  *	Run within a cross-call thread.
   2442  */
   2443 static void
   2444 pool_cache_transfer(pool_cache_t pc)
   2445 {
   2446 	pool_cache_cpu_t *cc;
   2447 	pcg_t *prev, *cur, **list;
   2448 	int s;
   2449 
   2450 	s = splvm();
   2451 	mutex_enter(&pc->pc_lock);
   2452 	cc = pc->pc_cpus[curcpu()->ci_index];
   2453 	cur = cc->cc_current;
   2454 	cc->cc_current = __UNCONST(&pcg_dummy);
   2455 	prev = cc->cc_previous;
   2456 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2457 	if (cur != &pcg_dummy) {
   2458 		if (cur->pcg_avail == cur->pcg_size) {
   2459 			list = &pc->pc_fullgroups;
   2460 			pc->pc_nfull++;
   2461 		} else if (cur->pcg_avail == 0) {
   2462 			list = &pc->pc_emptygroups;
   2463 			pc->pc_nempty++;
   2464 		} else {
   2465 			list = &pc->pc_partgroups;
   2466 			pc->pc_npart++;
   2467 		}
   2468 		cur->pcg_next = *list;
   2469 		*list = cur;
   2470 	}
   2471 	if (prev != &pcg_dummy) {
   2472 		if (prev->pcg_avail == prev->pcg_size) {
   2473 			list = &pc->pc_fullgroups;
   2474 			pc->pc_nfull++;
   2475 		} else if (prev->pcg_avail == 0) {
   2476 			list = &pc->pc_emptygroups;
   2477 			pc->pc_nempty++;
   2478 		} else {
   2479 			list = &pc->pc_partgroups;
   2480 			pc->pc_npart++;
   2481 		}
   2482 		prev->pcg_next = *list;
   2483 		*list = prev;
   2484 	}
   2485 	mutex_exit(&pc->pc_lock);
   2486 	splx(s);
   2487 }
   2488 
   2489 /*
   2490  * Pool backend allocators.
   2491  *
   2492  * Each pool has a backend allocator that handles allocation, deallocation,
   2493  * and any additional draining that might be needed.
   2494  *
   2495  * We provide two standard allocators:
   2496  *
   2497  *	pool_allocator_kmem - the default when no allocator is specified
   2498  *
   2499  *	pool_allocator_nointr - used for pools that will not be accessed
   2500  *	in interrupt context.
   2501  */
   2502 void	*pool_page_alloc(struct pool *, int);
   2503 void	pool_page_free(struct pool *, void *);
   2504 
   2505 #ifdef POOL_SUBPAGE
   2506 struct pool_allocator pool_allocator_kmem_fullpage = {
   2507 	.pa_alloc = pool_page_alloc,
   2508 	.pa_free = pool_page_free,
   2509 	.pa_pagesz = 0
   2510 };
   2511 #else
   2512 struct pool_allocator pool_allocator_kmem = {
   2513 	.pa_alloc = pool_page_alloc,
   2514 	.pa_free = pool_page_free,
   2515 	.pa_pagesz = 0
   2516 };
   2517 #endif
   2518 
   2519 #ifdef POOL_SUBPAGE
   2520 struct pool_allocator pool_allocator_nointr_fullpage = {
   2521 	.pa_alloc = pool_page_alloc,
   2522 	.pa_free = pool_page_free,
   2523 	.pa_pagesz = 0
   2524 };
   2525 #else
   2526 struct pool_allocator pool_allocator_nointr = {
   2527 	.pa_alloc = pool_page_alloc,
   2528 	.pa_free = pool_page_free,
   2529 	.pa_pagesz = 0
   2530 };
   2531 #endif
   2532 
   2533 #ifdef POOL_SUBPAGE
   2534 void	*pool_subpage_alloc(struct pool *, int);
   2535 void	pool_subpage_free(struct pool *, void *);
   2536 
   2537 struct pool_allocator pool_allocator_kmem = {
   2538 	.pa_alloc = pool_subpage_alloc,
   2539 	.pa_free = pool_subpage_free,
   2540 	.pa_pagesz = POOL_SUBPAGE
   2541 };
   2542 
   2543 struct pool_allocator pool_allocator_nointr = {
   2544 	.pa_alloc = pool_subpage_alloc,
   2545 	.pa_free = pool_subpage_free,
   2546 	.pa_pagesz = POOL_SUBPAGE
   2547 };
   2548 #endif /* POOL_SUBPAGE */
   2549 
   2550 static void *
   2551 pool_allocator_alloc(struct pool *pp, int flags)
   2552 {
   2553 	struct pool_allocator *pa = pp->pr_alloc;
   2554 	void *res;
   2555 
   2556 	res = (*pa->pa_alloc)(pp, flags);
   2557 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2558 		/*
   2559 		 * We only run the drain hook here if PR_NOWAIT.
   2560 		 * In other cases, the hook will be run in
   2561 		 * pool_reclaim().
   2562 		 */
   2563 		if (pp->pr_drain_hook != NULL) {
   2564 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2565 			res = (*pa->pa_alloc)(pp, flags);
   2566 		}
   2567 	}
   2568 	return res;
   2569 }
   2570 
   2571 static void
   2572 pool_allocator_free(struct pool *pp, void *v)
   2573 {
   2574 	struct pool_allocator *pa = pp->pr_alloc;
   2575 
   2576 	(*pa->pa_free)(pp, v);
   2577 }
   2578 
   2579 void *
   2580 pool_page_alloc(struct pool *pp, int flags)
   2581 {
   2582 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2583 	vmem_addr_t va;
   2584 	int ret;
   2585 
   2586 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2587 	    vflags | VM_INSTANTFIT, &va);
   2588 
   2589 	return ret ? NULL : (void *)va;
   2590 }
   2591 
   2592 void
   2593 pool_page_free(struct pool *pp, void *v)
   2594 {
   2595 
   2596 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2597 }
   2598 
   2599 static void *
   2600 pool_page_alloc_meta(struct pool *pp, int flags)
   2601 {
   2602 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2603 	vmem_addr_t va;
   2604 	int ret;
   2605 
   2606 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2607 	    vflags | VM_INSTANTFIT, &va);
   2608 
   2609 	return ret ? NULL : (void *)va;
   2610 }
   2611 
   2612 static void
   2613 pool_page_free_meta(struct pool *pp, void *v)
   2614 {
   2615 
   2616 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2617 }
   2618 
   2619 #ifdef POOL_REDZONE
   2620 #if defined(_LP64)
   2621 # define PRIME 0x9e37fffffffc0000UL
   2622 #else /* defined(_LP64) */
   2623 # define PRIME 0x9e3779b1
   2624 #endif /* defined(_LP64) */
   2625 #define STATIC_BYTE	0xFE
   2626 CTASSERT(POOL_REDZONE_SIZE > 1);
   2627 
   2628 static inline uint8_t
   2629 pool_pattern_generate(const void *p)
   2630 {
   2631 	return (uint8_t)(((uintptr_t)p) * PRIME
   2632 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2633 }
   2634 
   2635 static void
   2636 pool_redzone_init(struct pool *pp, size_t requested_size)
   2637 {
   2638 	size_t nsz;
   2639 
   2640 	if (pp->pr_roflags & PR_NOTOUCH) {
   2641 		pp->pr_reqsize = 0;
   2642 		pp->pr_redzone = false;
   2643 		return;
   2644 	}
   2645 
   2646 	/*
   2647 	 * We may have extended the requested size earlier; check if
   2648 	 * there's naturally space in the padding for a red zone.
   2649 	 */
   2650 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2651 		pp->pr_reqsize = requested_size;
   2652 		pp->pr_redzone = true;
   2653 		return;
   2654 	}
   2655 
   2656 	/*
   2657 	 * No space in the natural padding; check if we can extend a
   2658 	 * bit the size of the pool.
   2659 	 */
   2660 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2661 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2662 		/* Ok, we can */
   2663 		pp->pr_size = nsz;
   2664 		pp->pr_reqsize = requested_size;
   2665 		pp->pr_redzone = true;
   2666 	} else {
   2667 		/* No space for a red zone... snif :'( */
   2668 		pp->pr_reqsize = 0;
   2669 		pp->pr_redzone = false;
   2670 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2671 	}
   2672 }
   2673 
   2674 static void
   2675 pool_redzone_fill(struct pool *pp, void *p)
   2676 {
   2677 	uint8_t *cp, pat;
   2678 	const uint8_t *ep;
   2679 
   2680 	if (!pp->pr_redzone)
   2681 		return;
   2682 
   2683 	cp = (uint8_t *)p + pp->pr_reqsize;
   2684 	ep = cp + POOL_REDZONE_SIZE;
   2685 
   2686 	/*
   2687 	 * We really don't want the first byte of the red zone to be '\0';
   2688 	 * an off-by-one in a string may not be properly detected.
   2689 	 */
   2690 	pat = pool_pattern_generate(cp);
   2691 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2692 	cp++;
   2693 
   2694 	while (cp < ep) {
   2695 		*cp = pool_pattern_generate(cp);
   2696 		cp++;
   2697 	}
   2698 }
   2699 
   2700 static void
   2701 pool_redzone_check(struct pool *pp, void *p)
   2702 {
   2703 	uint8_t *cp, pat, expected;
   2704 	const uint8_t *ep;
   2705 
   2706 	if (!pp->pr_redzone)
   2707 		return;
   2708 
   2709 	cp = (uint8_t *)p + pp->pr_reqsize;
   2710 	ep = cp + POOL_REDZONE_SIZE;
   2711 
   2712 	pat = pool_pattern_generate(cp);
   2713 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2714 	if (expected != *cp) {
   2715 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2716 		   __func__, cp, *cp, expected);
   2717 	}
   2718 	cp++;
   2719 
   2720 	while (cp < ep) {
   2721 		expected = pool_pattern_generate(cp);
   2722 		if (*cp != expected) {
   2723 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2724 			   __func__, cp, *cp, expected);
   2725 		}
   2726 		cp++;
   2727 	}
   2728 }
   2729 
   2730 #endif /* POOL_REDZONE */
   2731 
   2732 
   2733 #ifdef POOL_SUBPAGE
   2734 /* Sub-page allocator, for machines with large hardware pages. */
   2735 void *
   2736 pool_subpage_alloc(struct pool *pp, int flags)
   2737 {
   2738 	return pool_get(&psppool, flags);
   2739 }
   2740 
   2741 void
   2742 pool_subpage_free(struct pool *pp, void *v)
   2743 {
   2744 	pool_put(&psppool, v);
   2745 }
   2746 
   2747 #endif /* POOL_SUBPAGE */
   2748 
   2749 #if defined(DDB)
   2750 static bool
   2751 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2752 {
   2753 
   2754 	return (uintptr_t)ph->ph_page <= addr &&
   2755 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2756 }
   2757 
   2758 static bool
   2759 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2760 {
   2761 
   2762 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2763 }
   2764 
   2765 static bool
   2766 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2767 {
   2768 	int i;
   2769 
   2770 	if (pcg == NULL) {
   2771 		return false;
   2772 	}
   2773 	for (i = 0; i < pcg->pcg_avail; i++) {
   2774 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2775 			return true;
   2776 		}
   2777 	}
   2778 	return false;
   2779 }
   2780 
   2781 static bool
   2782 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2783 {
   2784 
   2785 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2786 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2787 		pool_item_bitmap_t *bitmap =
   2788 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2789 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2790 
   2791 		return (*bitmap & mask) == 0;
   2792 	} else {
   2793 		struct pool_item *pi;
   2794 
   2795 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2796 			if (pool_in_item(pp, pi, addr)) {
   2797 				return false;
   2798 			}
   2799 		}
   2800 		return true;
   2801 	}
   2802 }
   2803 
   2804 void
   2805 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2806 {
   2807 	struct pool *pp;
   2808 
   2809 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2810 		struct pool_item_header *ph;
   2811 		uintptr_t item;
   2812 		bool allocated = true;
   2813 		bool incache = false;
   2814 		bool incpucache = false;
   2815 		char cpucachestr[32];
   2816 
   2817 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2818 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2819 				if (pool_in_page(pp, ph, addr)) {
   2820 					goto found;
   2821 				}
   2822 			}
   2823 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2824 				if (pool_in_page(pp, ph, addr)) {
   2825 					allocated =
   2826 					    pool_allocated(pp, ph, addr);
   2827 					goto found;
   2828 				}
   2829 			}
   2830 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2831 				if (pool_in_page(pp, ph, addr)) {
   2832 					allocated = false;
   2833 					goto found;
   2834 				}
   2835 			}
   2836 			continue;
   2837 		} else {
   2838 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2839 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2840 				continue;
   2841 			}
   2842 			allocated = pool_allocated(pp, ph, addr);
   2843 		}
   2844 found:
   2845 		if (allocated && pp->pr_cache) {
   2846 			pool_cache_t pc = pp->pr_cache;
   2847 			struct pool_cache_group *pcg;
   2848 			int i;
   2849 
   2850 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2851 			    pcg = pcg->pcg_next) {
   2852 				if (pool_in_cg(pp, pcg, addr)) {
   2853 					incache = true;
   2854 					goto print;
   2855 				}
   2856 			}
   2857 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2858 				pool_cache_cpu_t *cc;
   2859 
   2860 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2861 					continue;
   2862 				}
   2863 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2864 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2865 					struct cpu_info *ci =
   2866 					    cpu_lookup(i);
   2867 
   2868 					incpucache = true;
   2869 					snprintf(cpucachestr,
   2870 					    sizeof(cpucachestr),
   2871 					    "cached by CPU %u",
   2872 					    ci->ci_index);
   2873 					goto print;
   2874 				}
   2875 			}
   2876 		}
   2877 print:
   2878 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2879 		item = item + rounddown(addr - item, pp->pr_size);
   2880 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2881 		    (void *)addr, item, (size_t)(addr - item),
   2882 		    pp->pr_wchan,
   2883 		    incpucache ? cpucachestr :
   2884 		    incache ? "cached" : allocated ? "allocated" : "free");
   2885 	}
   2886 }
   2887 #endif /* defined(DDB) */
   2888 
   2889 static int
   2890 pool_sysctl(SYSCTLFN_ARGS)
   2891 {
   2892 	struct pool_sysctl data;
   2893 	struct pool *pp;
   2894 	struct pool_cache *pc;
   2895 	pool_cache_cpu_t *cc;
   2896 	int error;
   2897 	size_t i, written;
   2898 
   2899 	if (oldp == NULL) {
   2900 		*oldlenp = 0;
   2901 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   2902 			*oldlenp += sizeof(data);
   2903 		return 0;
   2904 	}
   2905 
   2906 	memset(&data, 0, sizeof(data));
   2907 	error = 0;
   2908 	written = 0;
   2909 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2910 		if (written + sizeof(data) > *oldlenp)
   2911 			break;
   2912 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   2913 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   2914 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   2915 #define COPY(field) data.field = pp->field
   2916 		COPY(pr_size);
   2917 
   2918 		COPY(pr_itemsperpage);
   2919 		COPY(pr_nitems);
   2920 		COPY(pr_nout);
   2921 		COPY(pr_hardlimit);
   2922 		COPY(pr_npages);
   2923 		COPY(pr_minpages);
   2924 		COPY(pr_maxpages);
   2925 
   2926 		COPY(pr_nget);
   2927 		COPY(pr_nfail);
   2928 		COPY(pr_nput);
   2929 		COPY(pr_npagealloc);
   2930 		COPY(pr_npagefree);
   2931 		COPY(pr_hiwat);
   2932 		COPY(pr_nidle);
   2933 #undef COPY
   2934 
   2935 		data.pr_cache_nmiss_pcpu = 0;
   2936 		data.pr_cache_nhit_pcpu = 0;
   2937 		if (pp->pr_cache) {
   2938 			pc = pp->pr_cache;
   2939 			data.pr_cache_meta_size = pc->pc_pcgsize;
   2940 			data.pr_cache_nfull = pc->pc_nfull;
   2941 			data.pr_cache_npartial = pc->pc_npart;
   2942 			data.pr_cache_nempty = pc->pc_nempty;
   2943 			data.pr_cache_ncontended = pc->pc_contended;
   2944 			data.pr_cache_nmiss_global = pc->pc_misses;
   2945 			data.pr_cache_nhit_global = pc->pc_hits;
   2946 			for (i = 0; i < pc->pc_ncpu; ++i) {
   2947 				cc = pc->pc_cpus[i];
   2948 				if (cc == NULL)
   2949 					continue;
   2950 				data.pr_cache_nmiss_pcpu = cc->cc_misses;
   2951 				data.pr_cache_nhit_pcpu = cc->cc_hits;
   2952 			}
   2953 		} else {
   2954 			data.pr_cache_meta_size = 0;
   2955 			data.pr_cache_nfull = 0;
   2956 			data.pr_cache_npartial = 0;
   2957 			data.pr_cache_nempty = 0;
   2958 			data.pr_cache_ncontended = 0;
   2959 			data.pr_cache_nmiss_global = 0;
   2960 			data.pr_cache_nhit_global = 0;
   2961 		}
   2962 
   2963 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   2964 		if (error)
   2965 			break;
   2966 		written += sizeof(data);
   2967 		oldp = (char *)oldp + sizeof(data);
   2968 	}
   2969 
   2970 	*oldlenp = written;
   2971 	return error;
   2972 }
   2973 
   2974 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   2975 {
   2976 	const struct sysctlnode *rnode = NULL;
   2977 
   2978 	sysctl_createv(clog, 0, NULL, &rnode,
   2979 		       CTLFLAG_PERMANENT,
   2980 		       CTLTYPE_STRUCT, "pool",
   2981 		       SYSCTL_DESCR("Get pool statistics"),
   2982 		       pool_sysctl, 0, NULL, 0,
   2983 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2984 }
   2985