Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.206.2.1
      1 /*	$NetBSD: subr_pool.c,v 1.206.2.1 2017/03/20 06:57:47 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.206.2.1 2017/03/20 06:57:47 pgoyette Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/sysctl.h>
     46 #include <sys/bitops.h>
     47 #include <sys/proc.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/vmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 #include <sys/debug.h>
     54 #include <sys/lockdebug.h>
     55 #include <sys/xcall.h>
     56 #include <sys/cpu.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Pool resource management utility.
     63  *
     64  * Memory is allocated in pages which are split into pieces according to
     65  * the pool item size. Each page is kept on one of three lists in the
     66  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67  * for empty, full and partially-full pages respectively. The individual
     68  * pool items are on a linked list headed by `ph_itemlist' in each page
     69  * header. The memory for building the page list is either taken from
     70  * the allocated pages themselves (for small pool items) or taken from
     71  * an internal pool of page headers (`phpool').
     72  */
     73 
     74 /* List of all pools. Non static as needed by 'vmstat -i' */
     75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     76 
     77 /* Private pool for page header structures */
     78 #define	PHPOOL_MAX	8
     79 static struct pool phpool[PHPOOL_MAX];
     80 #define	PHPOOL_FREELIST_NELEM(idx) \
     81 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     82 
     83 #ifdef POOL_SUBPAGE
     84 /* Pool of subpages for use by normal pools. */
     85 static struct pool psppool;
     86 #endif
     87 
     88 #ifdef POOL_REDZONE
     89 # define POOL_REDZONE_SIZE 2
     90 static void pool_redzone_init(struct pool *, size_t);
     91 static void pool_redzone_fill(struct pool *, void *);
     92 static void pool_redzone_check(struct pool *, void *);
     93 #else
     94 # define pool_redzone_init(pp, sz)	/* NOTHING */
     95 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     96 # define pool_redzone_check(pp, ptr)	/* NOTHING */
     97 #endif
     98 
     99 static void *pool_page_alloc_meta(struct pool *, int);
    100 static void pool_page_free_meta(struct pool *, void *);
    101 
    102 /* allocator for pool metadata */
    103 struct pool_allocator pool_allocator_meta = {
    104 	.pa_alloc = pool_page_alloc_meta,
    105 	.pa_free = pool_page_free_meta,
    106 	.pa_pagesz = 0
    107 };
    108 
    109 /* # of seconds to retain page after last use */
    110 int pool_inactive_time = 10;
    111 
    112 /* Next candidate for drainage (see pool_drain()) */
    113 static struct pool	*drainpp;
    114 
    115 /* This lock protects both pool_head and drainpp. */
    116 static kmutex_t pool_head_lock;
    117 static kcondvar_t pool_busy;
    118 
    119 /* This lock protects initialization of a potentially shared pool allocator */
    120 static kmutex_t pool_allocator_lock;
    121 
    122 typedef uint32_t pool_item_bitmap_t;
    123 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    124 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    125 
    126 struct pool_item_header {
    127 	/* Page headers */
    128 	LIST_ENTRY(pool_item_header)
    129 				ph_pagelist;	/* pool page list */
    130 	SPLAY_ENTRY(pool_item_header)
    131 				ph_node;	/* Off-page page headers */
    132 	void *			ph_page;	/* this page's address */
    133 	uint32_t		ph_time;	/* last referenced */
    134 	uint16_t		ph_nmissing;	/* # of chunks in use */
    135 	uint16_t		ph_off;		/* start offset in page */
    136 	union {
    137 		/* !PR_NOTOUCH */
    138 		struct {
    139 			LIST_HEAD(, pool_item)
    140 				phu_itemlist;	/* chunk list for this page */
    141 		} phu_normal;
    142 		/* PR_NOTOUCH */
    143 		struct {
    144 			pool_item_bitmap_t phu_bitmap[1];
    145 		} phu_notouch;
    146 	} ph_u;
    147 };
    148 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    149 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    150 
    151 struct pool_item {
    152 #ifdef DIAGNOSTIC
    153 	u_int pi_magic;
    154 #endif
    155 #define	PI_MAGIC 0xdeaddeadU
    156 	/* Other entries use only this list entry */
    157 	LIST_ENTRY(pool_item)	pi_list;
    158 };
    159 
    160 #define	POOL_NEEDS_CATCHUP(pp)						\
    161 	((pp)->pr_nitems < (pp)->pr_minitems)
    162 
    163 /*
    164  * Pool cache management.
    165  *
    166  * Pool caches provide a way for constructed objects to be cached by the
    167  * pool subsystem.  This can lead to performance improvements by avoiding
    168  * needless object construction/destruction; it is deferred until absolutely
    169  * necessary.
    170  *
    171  * Caches are grouped into cache groups.  Each cache group references up
    172  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    173  * object from the pool, it calls the object's constructor and places it
    174  * into a cache group.  When a cache group frees an object back to the
    175  * pool, it first calls the object's destructor.  This allows the object
    176  * to persist in constructed form while freed to the cache.
    177  *
    178  * The pool references each cache, so that when a pool is drained by the
    179  * pagedaemon, it can drain each individual cache as well.  Each time a
    180  * cache is drained, the most idle cache group is freed to the pool in
    181  * its entirety.
    182  *
    183  * Pool caches are layed on top of pools.  By layering them, we can avoid
    184  * the complexity of cache management for pools which would not benefit
    185  * from it.
    186  */
    187 
    188 static struct pool pcg_normal_pool;
    189 static struct pool pcg_large_pool;
    190 static struct pool cache_pool;
    191 static struct pool cache_cpu_pool;
    192 
    193 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    194 
    195 /* List of all caches. */
    196 TAILQ_HEAD(,pool_cache) pool_cache_head =
    197     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    198 
    199 int pool_cache_disable;		/* global disable for caching */
    200 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    201 
    202 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    203 				    void *);
    204 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    205 				    void **, paddr_t *, int);
    206 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    207 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    208 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    209 static void	pool_cache_transfer(pool_cache_t);
    210 
    211 static int	pool_catchup(struct pool *);
    212 static void	pool_prime_page(struct pool *, void *,
    213 		    struct pool_item_header *);
    214 static void	pool_update_curpage(struct pool *);
    215 
    216 static int	pool_grow(struct pool *, int);
    217 static void	*pool_allocator_alloc(struct pool *, int);
    218 static void	pool_allocator_free(struct pool *, void *);
    219 
    220 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    221 	void (*)(const char *, ...) __printflike(1, 2));
    222 static void pool_print1(struct pool *, const char *,
    223 	void (*)(const char *, ...) __printflike(1, 2));
    224 
    225 static int pool_chk_page(struct pool *, const char *,
    226 			 struct pool_item_header *);
    227 
    228 static inline unsigned int
    229 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    230     const void *v)
    231 {
    232 	const char *cp = v;
    233 	unsigned int idx;
    234 
    235 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    236 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    237 	KASSERT(idx < pp->pr_itemsperpage);
    238 	return idx;
    239 }
    240 
    241 static inline void
    242 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    243     void *obj)
    244 {
    245 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    246 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    247 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    248 
    249 	KASSERT((*bitmap & mask) == 0);
    250 	*bitmap |= mask;
    251 }
    252 
    253 static inline void *
    254 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    255 {
    256 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    257 	unsigned int idx;
    258 	int i;
    259 
    260 	for (i = 0; ; i++) {
    261 		int bit;
    262 
    263 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    264 		bit = ffs32(bitmap[i]);
    265 		if (bit) {
    266 			pool_item_bitmap_t mask;
    267 
    268 			bit--;
    269 			idx = (i * BITMAP_SIZE) + bit;
    270 			mask = 1 << bit;
    271 			KASSERT((bitmap[i] & mask) != 0);
    272 			bitmap[i] &= ~mask;
    273 			break;
    274 		}
    275 	}
    276 	KASSERT(idx < pp->pr_itemsperpage);
    277 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    278 }
    279 
    280 static inline void
    281 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    282 {
    283 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    284 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    285 	int i;
    286 
    287 	for (i = 0; i < n; i++) {
    288 		bitmap[i] = (pool_item_bitmap_t)-1;
    289 	}
    290 }
    291 
    292 static inline int
    293 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    294 {
    295 
    296 	/*
    297 	 * we consider pool_item_header with smaller ph_page bigger.
    298 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    299 	 */
    300 
    301 	if (a->ph_page < b->ph_page)
    302 		return (1);
    303 	else if (a->ph_page > b->ph_page)
    304 		return (-1);
    305 	else
    306 		return (0);
    307 }
    308 
    309 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    310 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    311 
    312 static inline struct pool_item_header *
    313 pr_find_pagehead_noalign(struct pool *pp, void *v)
    314 {
    315 	struct pool_item_header *ph, tmp;
    316 
    317 	tmp.ph_page = (void *)(uintptr_t)v;
    318 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    319 	if (ph == NULL) {
    320 		ph = SPLAY_ROOT(&pp->pr_phtree);
    321 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    322 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    323 		}
    324 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    325 	}
    326 
    327 	return ph;
    328 }
    329 
    330 /*
    331  * Return the pool page header based on item address.
    332  */
    333 static inline struct pool_item_header *
    334 pr_find_pagehead(struct pool *pp, void *v)
    335 {
    336 	struct pool_item_header *ph, tmp;
    337 
    338 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    339 		ph = pr_find_pagehead_noalign(pp, v);
    340 	} else {
    341 		void *page =
    342 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    343 
    344 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    345 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    346 		} else {
    347 			tmp.ph_page = page;
    348 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    349 		}
    350 	}
    351 
    352 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    353 	    ((char *)ph->ph_page <= (char *)v &&
    354 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    355 	return ph;
    356 }
    357 
    358 static void
    359 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    360 {
    361 	struct pool_item_header *ph;
    362 
    363 	while ((ph = LIST_FIRST(pq)) != NULL) {
    364 		LIST_REMOVE(ph, ph_pagelist);
    365 		pool_allocator_free(pp, ph->ph_page);
    366 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    367 			pool_put(pp->pr_phpool, ph);
    368 	}
    369 }
    370 
    371 /*
    372  * Remove a page from the pool.
    373  */
    374 static inline void
    375 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    376      struct pool_pagelist *pq)
    377 {
    378 
    379 	KASSERT(mutex_owned(&pp->pr_lock));
    380 
    381 	/*
    382 	 * If the page was idle, decrement the idle page count.
    383 	 */
    384 	if (ph->ph_nmissing == 0) {
    385 		KASSERT(pp->pr_nidle != 0);
    386 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    387 		    "nitems=%u < itemsperpage=%u",
    388 		    pp->pr_nitems, pp->pr_itemsperpage);
    389 		pp->pr_nidle--;
    390 	}
    391 
    392 	pp->pr_nitems -= pp->pr_itemsperpage;
    393 
    394 	/*
    395 	 * Unlink the page from the pool and queue it for release.
    396 	 */
    397 	LIST_REMOVE(ph, ph_pagelist);
    398 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    399 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    400 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    401 
    402 	pp->pr_npages--;
    403 	pp->pr_npagefree++;
    404 
    405 	pool_update_curpage(pp);
    406 }
    407 
    408 /*
    409  * Initialize all the pools listed in the "pools" link set.
    410  */
    411 void
    412 pool_subsystem_init(void)
    413 {
    414 	size_t size;
    415 	int idx;
    416 
    417 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    418 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    419 	cv_init(&pool_busy, "poolbusy");
    420 
    421 	/*
    422 	 * Initialize private page header pool and cache magazine pool if we
    423 	 * haven't done so yet.
    424 	 */
    425 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    426 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    427 		int nelem;
    428 		size_t sz;
    429 
    430 		nelem = PHPOOL_FREELIST_NELEM(idx);
    431 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    432 		    "phpool-%d", nelem);
    433 		sz = sizeof(struct pool_item_header);
    434 		if (nelem) {
    435 			sz = offsetof(struct pool_item_header,
    436 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    437 		}
    438 		pool_init(&phpool[idx], sz, 0, 0, 0,
    439 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    440 	}
    441 #ifdef POOL_SUBPAGE
    442 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    443 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    444 #endif
    445 
    446 	size = sizeof(pcg_t) +
    447 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    448 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    449 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    450 
    451 	size = sizeof(pcg_t) +
    452 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    453 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    454 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    455 
    456 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    457 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    458 
    459 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    460 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    461 }
    462 
    463 /*
    464  * Initialize the given pool resource structure.
    465  *
    466  * We export this routine to allow other kernel parts to declare
    467  * static pools that must be initialized before kmem(9) is available.
    468  */
    469 void
    470 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    471     const char *wchan, struct pool_allocator *palloc, int ipl)
    472 {
    473 	struct pool *pp1;
    474 	size_t trysize, phsize, prsize;
    475 	int off, slack;
    476 
    477 #ifdef DEBUG
    478 	if (__predict_true(!cold))
    479 		mutex_enter(&pool_head_lock);
    480 	/*
    481 	 * Check that the pool hasn't already been initialised and
    482 	 * added to the list of all pools.
    483 	 */
    484 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    485 		if (pp == pp1)
    486 			panic("pool_init: pool %s already initialised",
    487 			    wchan);
    488 	}
    489 	if (__predict_true(!cold))
    490 		mutex_exit(&pool_head_lock);
    491 #endif
    492 
    493 	if (palloc == NULL)
    494 		palloc = &pool_allocator_kmem;
    495 #ifdef POOL_SUBPAGE
    496 	if (size > palloc->pa_pagesz) {
    497 		if (palloc == &pool_allocator_kmem)
    498 			palloc = &pool_allocator_kmem_fullpage;
    499 		else if (palloc == &pool_allocator_nointr)
    500 			palloc = &pool_allocator_nointr_fullpage;
    501 	}
    502 #endif /* POOL_SUBPAGE */
    503 	if (!cold)
    504 		mutex_enter(&pool_allocator_lock);
    505 	if (palloc->pa_refcnt++ == 0) {
    506 		if (palloc->pa_pagesz == 0)
    507 			palloc->pa_pagesz = PAGE_SIZE;
    508 
    509 		TAILQ_INIT(&palloc->pa_list);
    510 
    511 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    512 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    513 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    514 	}
    515 	if (!cold)
    516 		mutex_exit(&pool_allocator_lock);
    517 
    518 	if (align == 0)
    519 		align = ALIGN(1);
    520 
    521 	prsize = size;
    522 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    523 		prsize = sizeof(struct pool_item);
    524 
    525 	prsize = roundup(prsize, align);
    526 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    527 	    "pool_init: pool item size (%zu) larger than page size (%u)",
    528 	    prsize, palloc->pa_pagesz);
    529 
    530 	/*
    531 	 * Initialize the pool structure.
    532 	 */
    533 	LIST_INIT(&pp->pr_emptypages);
    534 	LIST_INIT(&pp->pr_fullpages);
    535 	LIST_INIT(&pp->pr_partpages);
    536 	pp->pr_cache = NULL;
    537 	pp->pr_curpage = NULL;
    538 	pp->pr_npages = 0;
    539 	pp->pr_minitems = 0;
    540 	pp->pr_minpages = 0;
    541 	pp->pr_maxpages = UINT_MAX;
    542 	pp->pr_roflags = flags;
    543 	pp->pr_flags = 0;
    544 	pp->pr_size = prsize;
    545 	pp->pr_align = align;
    546 	pp->pr_wchan = wchan;
    547 	pp->pr_alloc = palloc;
    548 	pp->pr_nitems = 0;
    549 	pp->pr_nout = 0;
    550 	pp->pr_hardlimit = UINT_MAX;
    551 	pp->pr_hardlimit_warning = NULL;
    552 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    553 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    554 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    555 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    556 	pp->pr_drain_hook = NULL;
    557 	pp->pr_drain_hook_arg = NULL;
    558 	pp->pr_freecheck = NULL;
    559 	pool_redzone_init(pp, size);
    560 
    561 	/*
    562 	 * Decide whether to put the page header off page to avoid
    563 	 * wasting too large a part of the page or too big item.
    564 	 * Off-page page headers go on a hash table, so we can match
    565 	 * a returned item with its header based on the page address.
    566 	 * We use 1/16 of the page size and about 8 times of the item
    567 	 * size as the threshold (XXX: tune)
    568 	 *
    569 	 * However, we'll put the header into the page if we can put
    570 	 * it without wasting any items.
    571 	 *
    572 	 * Silently enforce `0 <= ioff < align'.
    573 	 */
    574 	pp->pr_itemoffset = ioff %= align;
    575 	/* See the comment below about reserved bytes. */
    576 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    577 	phsize = ALIGN(sizeof(struct pool_item_header));
    578 	if (pp->pr_roflags & PR_PHINPAGE ||
    579 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    580 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    581 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    582 		/* Use the end of the page for the page header */
    583 		pp->pr_roflags |= PR_PHINPAGE;
    584 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    585 	} else {
    586 		/* The page header will be taken from our page header pool */
    587 		pp->pr_phoffset = 0;
    588 		off = palloc->pa_pagesz;
    589 		SPLAY_INIT(&pp->pr_phtree);
    590 	}
    591 
    592 	/*
    593 	 * Alignment is to take place at `ioff' within the item. This means
    594 	 * we must reserve up to `align - 1' bytes on the page to allow
    595 	 * appropriate positioning of each item.
    596 	 */
    597 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    598 	KASSERT(pp->pr_itemsperpage != 0);
    599 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    600 		int idx;
    601 
    602 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    603 		    idx++) {
    604 			/* nothing */
    605 		}
    606 		if (idx >= PHPOOL_MAX) {
    607 			/*
    608 			 * if you see this panic, consider to tweak
    609 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    610 			 */
    611 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    612 			    pp->pr_wchan, pp->pr_itemsperpage);
    613 		}
    614 		pp->pr_phpool = &phpool[idx];
    615 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    616 		pp->pr_phpool = &phpool[0];
    617 	}
    618 #if defined(DIAGNOSTIC)
    619 	else {
    620 		pp->pr_phpool = NULL;
    621 	}
    622 #endif
    623 
    624 	/*
    625 	 * Use the slack between the chunks and the page header
    626 	 * for "cache coloring".
    627 	 */
    628 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    629 	pp->pr_maxcolor = (slack / align) * align;
    630 	pp->pr_curcolor = 0;
    631 
    632 	pp->pr_nget = 0;
    633 	pp->pr_nfail = 0;
    634 	pp->pr_nput = 0;
    635 	pp->pr_npagealloc = 0;
    636 	pp->pr_npagefree = 0;
    637 	pp->pr_hiwat = 0;
    638 	pp->pr_nidle = 0;
    639 	pp->pr_refcnt = 0;
    640 
    641 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    642 	cv_init(&pp->pr_cv, wchan);
    643 	pp->pr_ipl = ipl;
    644 
    645 	/* Insert into the list of all pools. */
    646 	if (!cold)
    647 		mutex_enter(&pool_head_lock);
    648 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    649 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    650 			break;
    651 	}
    652 	if (pp1 == NULL)
    653 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    654 	else
    655 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    656 	if (!cold)
    657 		mutex_exit(&pool_head_lock);
    658 
    659 	/* Insert this into the list of pools using this allocator. */
    660 	if (!cold)
    661 		mutex_enter(&palloc->pa_lock);
    662 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    663 	if (!cold)
    664 		mutex_exit(&palloc->pa_lock);
    665 }
    666 
    667 /*
    668  * De-commision a pool resource.
    669  */
    670 void
    671 pool_destroy(struct pool *pp)
    672 {
    673 	struct pool_pagelist pq;
    674 	struct pool_item_header *ph;
    675 
    676 	/* Remove from global pool list */
    677 	mutex_enter(&pool_head_lock);
    678 	while (pp->pr_refcnt != 0)
    679 		cv_wait(&pool_busy, &pool_head_lock);
    680 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    681 	if (drainpp == pp)
    682 		drainpp = NULL;
    683 	mutex_exit(&pool_head_lock);
    684 
    685 	/* Remove this pool from its allocator's list of pools. */
    686 	mutex_enter(&pp->pr_alloc->pa_lock);
    687 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    688 	mutex_exit(&pp->pr_alloc->pa_lock);
    689 
    690 	mutex_enter(&pool_allocator_lock);
    691 	if (--pp->pr_alloc->pa_refcnt == 0)
    692 		mutex_destroy(&pp->pr_alloc->pa_lock);
    693 	mutex_exit(&pool_allocator_lock);
    694 
    695 	mutex_enter(&pp->pr_lock);
    696 
    697 	KASSERT(pp->pr_cache == NULL);
    698 	KASSERTMSG((pp->pr_nout == 0),
    699 	    "pool_destroy: pool busy: still out: %u", pp->pr_nout);
    700 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    701 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    702 
    703 	/* Remove all pages */
    704 	LIST_INIT(&pq);
    705 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    706 		pr_rmpage(pp, ph, &pq);
    707 
    708 	mutex_exit(&pp->pr_lock);
    709 
    710 	pr_pagelist_free(pp, &pq);
    711 	cv_destroy(&pp->pr_cv);
    712 	mutex_destroy(&pp->pr_lock);
    713 }
    714 
    715 void
    716 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    717 {
    718 
    719 	/* XXX no locking -- must be used just after pool_init() */
    720 	KASSERTMSG((pp->pr_drain_hook == NULL),
    721 	    "pool_set_drain_hook(%s): already set", pp->pr_wchan);
    722 	pp->pr_drain_hook = fn;
    723 	pp->pr_drain_hook_arg = arg;
    724 }
    725 
    726 static struct pool_item_header *
    727 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    728 {
    729 	struct pool_item_header *ph;
    730 
    731 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    732 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    733 	else
    734 		ph = pool_get(pp->pr_phpool, flags);
    735 
    736 	return (ph);
    737 }
    738 
    739 /*
    740  * Grab an item from the pool.
    741  */
    742 void *
    743 pool_get(struct pool *pp, int flags)
    744 {
    745 	struct pool_item *pi;
    746 	struct pool_item_header *ph;
    747 	void *v;
    748 
    749 	KASSERTMSG((pp->pr_itemsperpage != 0),
    750 	    "pool_get: pool '%s': pr_itemsperpage is zero, "
    751 	    "pool not initialized?", pp->pr_wchan);
    752 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    753 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    754 	    "pool '%s' is IPL_NONE, but called from interrupt context",
    755 	    pp->pr_wchan);
    756 	if (flags & PR_WAITOK) {
    757 		ASSERT_SLEEPABLE();
    758 	}
    759 
    760 	mutex_enter(&pp->pr_lock);
    761  startover:
    762 	/*
    763 	 * Check to see if we've reached the hard limit.  If we have,
    764 	 * and we can wait, then wait until an item has been returned to
    765 	 * the pool.
    766 	 */
    767 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    768 	    "pool_get: %s: crossed hard limit", pp->pr_wchan);
    769 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    770 		if (pp->pr_drain_hook != NULL) {
    771 			/*
    772 			 * Since the drain hook is going to free things
    773 			 * back to the pool, unlock, call the hook, re-lock,
    774 			 * and check the hardlimit condition again.
    775 			 */
    776 			mutex_exit(&pp->pr_lock);
    777 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    778 			mutex_enter(&pp->pr_lock);
    779 			if (pp->pr_nout < pp->pr_hardlimit)
    780 				goto startover;
    781 		}
    782 
    783 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    784 			/*
    785 			 * XXX: A warning isn't logged in this case.  Should
    786 			 * it be?
    787 			 */
    788 			pp->pr_flags |= PR_WANTED;
    789 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    790 			goto startover;
    791 		}
    792 
    793 		/*
    794 		 * Log a message that the hard limit has been hit.
    795 		 */
    796 		if (pp->pr_hardlimit_warning != NULL &&
    797 		    ratecheck(&pp->pr_hardlimit_warning_last,
    798 			      &pp->pr_hardlimit_ratecap))
    799 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    800 
    801 		pp->pr_nfail++;
    802 
    803 		mutex_exit(&pp->pr_lock);
    804 		return (NULL);
    805 	}
    806 
    807 	/*
    808 	 * The convention we use is that if `curpage' is not NULL, then
    809 	 * it points at a non-empty bucket. In particular, `curpage'
    810 	 * never points at a page header which has PR_PHINPAGE set and
    811 	 * has no items in its bucket.
    812 	 */
    813 	if ((ph = pp->pr_curpage) == NULL) {
    814 		int error;
    815 
    816 		KASSERTMSG((pp->pr_nitems == 0),
    817 		    "pool_get: nitems inconsistent"
    818 		    ": %s: curpage NULL, nitems %u",
    819 		    pp->pr_wchan, pp->pr_nitems);
    820 
    821 		/*
    822 		 * Call the back-end page allocator for more memory.
    823 		 * Release the pool lock, as the back-end page allocator
    824 		 * may block.
    825 		 */
    826 		error = pool_grow(pp, flags);
    827 		if (error != 0) {
    828 			/*
    829 			 * We were unable to allocate a page or item
    830 			 * header, but we released the lock during
    831 			 * allocation, so perhaps items were freed
    832 			 * back to the pool.  Check for this case.
    833 			 */
    834 			if (pp->pr_curpage != NULL)
    835 				goto startover;
    836 
    837 			pp->pr_nfail++;
    838 			mutex_exit(&pp->pr_lock);
    839 			return (NULL);
    840 		}
    841 
    842 		/* Start the allocation process over. */
    843 		goto startover;
    844 	}
    845 	if (pp->pr_roflags & PR_NOTOUCH) {
    846 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    847 		    "pool_get: %s: page empty", pp->pr_wchan);
    848 		v = pr_item_notouch_get(pp, ph);
    849 	} else {
    850 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    851 		if (__predict_false(v == NULL)) {
    852 			mutex_exit(&pp->pr_lock);
    853 			panic("pool_get: %s: page empty", pp->pr_wchan);
    854 		}
    855 		KASSERTMSG((pp->pr_nitems > 0),
    856 		    "pool_get: nitems inconsistent"
    857 		    ": %s: items on itemlist, nitems %u",
    858 		    pp->pr_wchan, pp->pr_nitems);
    859 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    860 		    "pool_get(%s): free list modified: "
    861 		    "magic=%x; page %p; item addr %p",
    862 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    863 
    864 		/*
    865 		 * Remove from item list.
    866 		 */
    867 		LIST_REMOVE(pi, pi_list);
    868 	}
    869 	pp->pr_nitems--;
    870 	pp->pr_nout++;
    871 	if (ph->ph_nmissing == 0) {
    872 		KASSERT(pp->pr_nidle > 0);
    873 		pp->pr_nidle--;
    874 
    875 		/*
    876 		 * This page was previously empty.  Move it to the list of
    877 		 * partially-full pages.  This page is already curpage.
    878 		 */
    879 		LIST_REMOVE(ph, ph_pagelist);
    880 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    881 	}
    882 	ph->ph_nmissing++;
    883 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    884 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    885 			LIST_EMPTY(&ph->ph_itemlist)),
    886 		    "pool_get: %s: nmissing inconsistent", pp->pr_wchan);
    887 		/*
    888 		 * This page is now full.  Move it to the full list
    889 		 * and select a new current page.
    890 		 */
    891 		LIST_REMOVE(ph, ph_pagelist);
    892 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    893 		pool_update_curpage(pp);
    894 	}
    895 
    896 	pp->pr_nget++;
    897 
    898 	/*
    899 	 * If we have a low water mark and we are now below that low
    900 	 * water mark, add more items to the pool.
    901 	 */
    902 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    903 		/*
    904 		 * XXX: Should we log a warning?  Should we set up a timeout
    905 		 * to try again in a second or so?  The latter could break
    906 		 * a caller's assumptions about interrupt protection, etc.
    907 		 */
    908 	}
    909 
    910 	mutex_exit(&pp->pr_lock);
    911 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    912 	FREECHECK_OUT(&pp->pr_freecheck, v);
    913 	pool_redzone_fill(pp, v);
    914 	return (v);
    915 }
    916 
    917 /*
    918  * Internal version of pool_put().  Pool is already locked/entered.
    919  */
    920 static void
    921 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    922 {
    923 	struct pool_item *pi = v;
    924 	struct pool_item_header *ph;
    925 
    926 	KASSERT(mutex_owned(&pp->pr_lock));
    927 	pool_redzone_check(pp, v);
    928 	FREECHECK_IN(&pp->pr_freecheck, v);
    929 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    930 
    931 	KASSERTMSG((pp->pr_nout > 0),
    932 	    "pool_put: pool %s: putting with none out", pp->pr_wchan);
    933 
    934 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    935 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    936 	}
    937 
    938 	/*
    939 	 * Return to item list.
    940 	 */
    941 	if (pp->pr_roflags & PR_NOTOUCH) {
    942 		pr_item_notouch_put(pp, ph, v);
    943 	} else {
    944 #ifdef DIAGNOSTIC
    945 		pi->pi_magic = PI_MAGIC;
    946 #endif
    947 #ifdef DEBUG
    948 		{
    949 			int i, *ip = v;
    950 
    951 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    952 				*ip++ = PI_MAGIC;
    953 			}
    954 		}
    955 #endif
    956 
    957 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    958 	}
    959 	KDASSERT(ph->ph_nmissing != 0);
    960 	ph->ph_nmissing--;
    961 	pp->pr_nput++;
    962 	pp->pr_nitems++;
    963 	pp->pr_nout--;
    964 
    965 	/* Cancel "pool empty" condition if it exists */
    966 	if (pp->pr_curpage == NULL)
    967 		pp->pr_curpage = ph;
    968 
    969 	if (pp->pr_flags & PR_WANTED) {
    970 		pp->pr_flags &= ~PR_WANTED;
    971 		cv_broadcast(&pp->pr_cv);
    972 	}
    973 
    974 	/*
    975 	 * If this page is now empty, do one of two things:
    976 	 *
    977 	 *	(1) If we have more pages than the page high water mark,
    978 	 *	    free the page back to the system.  ONLY CONSIDER
    979 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
    980 	 *	    CLAIM.
    981 	 *
    982 	 *	(2) Otherwise, move the page to the empty page list.
    983 	 *
    984 	 * Either way, select a new current page (so we use a partially-full
    985 	 * page if one is available).
    986 	 */
    987 	if (ph->ph_nmissing == 0) {
    988 		pp->pr_nidle++;
    989 		if (pp->pr_npages > pp->pr_minpages &&
    990 		    pp->pr_npages > pp->pr_maxpages) {
    991 			pr_rmpage(pp, ph, pq);
    992 		} else {
    993 			LIST_REMOVE(ph, ph_pagelist);
    994 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
    995 
    996 			/*
    997 			 * Update the timestamp on the page.  A page must
    998 			 * be idle for some period of time before it can
    999 			 * be reclaimed by the pagedaemon.  This minimizes
   1000 			 * ping-pong'ing for memory.
   1001 			 *
   1002 			 * note for 64-bit time_t: truncating to 32-bit is not
   1003 			 * a problem for our usage.
   1004 			 */
   1005 			ph->ph_time = time_uptime;
   1006 		}
   1007 		pool_update_curpage(pp);
   1008 	}
   1009 
   1010 	/*
   1011 	 * If the page was previously completely full, move it to the
   1012 	 * partially-full list and make it the current page.  The next
   1013 	 * allocation will get the item from this page, instead of
   1014 	 * further fragmenting the pool.
   1015 	 */
   1016 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1017 		LIST_REMOVE(ph, ph_pagelist);
   1018 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1019 		pp->pr_curpage = ph;
   1020 	}
   1021 }
   1022 
   1023 void
   1024 pool_put(struct pool *pp, void *v)
   1025 {
   1026 	struct pool_pagelist pq;
   1027 
   1028 	LIST_INIT(&pq);
   1029 
   1030 	mutex_enter(&pp->pr_lock);
   1031 	pool_do_put(pp, v, &pq);
   1032 	mutex_exit(&pp->pr_lock);
   1033 
   1034 	pr_pagelist_free(pp, &pq);
   1035 }
   1036 
   1037 /*
   1038  * pool_grow: grow a pool by a page.
   1039  *
   1040  * => called with pool locked.
   1041  * => unlock and relock the pool.
   1042  * => return with pool locked.
   1043  */
   1044 
   1045 static int
   1046 pool_grow(struct pool *pp, int flags)
   1047 {
   1048 	struct pool_item_header *ph = NULL;
   1049 	char *cp;
   1050 
   1051 	mutex_exit(&pp->pr_lock);
   1052 	cp = pool_allocator_alloc(pp, flags);
   1053 	if (__predict_true(cp != NULL)) {
   1054 		ph = pool_alloc_item_header(pp, cp, flags);
   1055 	}
   1056 	if (__predict_false(cp == NULL || ph == NULL)) {
   1057 		if (cp != NULL) {
   1058 			pool_allocator_free(pp, cp);
   1059 		}
   1060 		mutex_enter(&pp->pr_lock);
   1061 		return ENOMEM;
   1062 	}
   1063 
   1064 	mutex_enter(&pp->pr_lock);
   1065 	pool_prime_page(pp, cp, ph);
   1066 	pp->pr_npagealloc++;
   1067 	return 0;
   1068 }
   1069 
   1070 /*
   1071  * Add N items to the pool.
   1072  */
   1073 int
   1074 pool_prime(struct pool *pp, int n)
   1075 {
   1076 	int newpages;
   1077 	int error = 0;
   1078 
   1079 	mutex_enter(&pp->pr_lock);
   1080 
   1081 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1082 
   1083 	while (newpages-- > 0) {
   1084 		error = pool_grow(pp, PR_NOWAIT);
   1085 		if (error) {
   1086 			break;
   1087 		}
   1088 		pp->pr_minpages++;
   1089 	}
   1090 
   1091 	if (pp->pr_minpages >= pp->pr_maxpages)
   1092 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1093 
   1094 	mutex_exit(&pp->pr_lock);
   1095 	return error;
   1096 }
   1097 
   1098 /*
   1099  * Add a page worth of items to the pool.
   1100  *
   1101  * Note, we must be called with the pool descriptor LOCKED.
   1102  */
   1103 static void
   1104 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1105 {
   1106 	struct pool_item *pi;
   1107 	void *cp = storage;
   1108 	const unsigned int align = pp->pr_align;
   1109 	const unsigned int ioff = pp->pr_itemoffset;
   1110 	int n;
   1111 
   1112 	KASSERT(mutex_owned(&pp->pr_lock));
   1113 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1114 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1115 	    "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp);
   1116 
   1117 	/*
   1118 	 * Insert page header.
   1119 	 */
   1120 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1121 	LIST_INIT(&ph->ph_itemlist);
   1122 	ph->ph_page = storage;
   1123 	ph->ph_nmissing = 0;
   1124 	ph->ph_time = time_uptime;
   1125 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1126 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1127 
   1128 	pp->pr_nidle++;
   1129 
   1130 	/*
   1131 	 * Color this page.
   1132 	 */
   1133 	ph->ph_off = pp->pr_curcolor;
   1134 	cp = (char *)cp + ph->ph_off;
   1135 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1136 		pp->pr_curcolor = 0;
   1137 
   1138 	/*
   1139 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1140 	 */
   1141 	if (ioff != 0)
   1142 		cp = (char *)cp + align - ioff;
   1143 
   1144 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1145 
   1146 	/*
   1147 	 * Insert remaining chunks on the bucket list.
   1148 	 */
   1149 	n = pp->pr_itemsperpage;
   1150 	pp->pr_nitems += n;
   1151 
   1152 	if (pp->pr_roflags & PR_NOTOUCH) {
   1153 		pr_item_notouch_init(pp, ph);
   1154 	} else {
   1155 		while (n--) {
   1156 			pi = (struct pool_item *)cp;
   1157 
   1158 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1159 
   1160 			/* Insert on page list */
   1161 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1162 #ifdef DIAGNOSTIC
   1163 			pi->pi_magic = PI_MAGIC;
   1164 #endif
   1165 			cp = (char *)cp + pp->pr_size;
   1166 
   1167 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1168 		}
   1169 	}
   1170 
   1171 	/*
   1172 	 * If the pool was depleted, point at the new page.
   1173 	 */
   1174 	if (pp->pr_curpage == NULL)
   1175 		pp->pr_curpage = ph;
   1176 
   1177 	if (++pp->pr_npages > pp->pr_hiwat)
   1178 		pp->pr_hiwat = pp->pr_npages;
   1179 }
   1180 
   1181 /*
   1182  * Used by pool_get() when nitems drops below the low water mark.  This
   1183  * is used to catch up pr_nitems with the low water mark.
   1184  *
   1185  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1186  *
   1187  * Note 2, we must be called with the pool already locked, and we return
   1188  * with it locked.
   1189  */
   1190 static int
   1191 pool_catchup(struct pool *pp)
   1192 {
   1193 	int error = 0;
   1194 
   1195 	while (POOL_NEEDS_CATCHUP(pp)) {
   1196 		error = pool_grow(pp, PR_NOWAIT);
   1197 		if (error) {
   1198 			break;
   1199 		}
   1200 	}
   1201 	return error;
   1202 }
   1203 
   1204 static void
   1205 pool_update_curpage(struct pool *pp)
   1206 {
   1207 
   1208 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1209 	if (pp->pr_curpage == NULL) {
   1210 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1211 	}
   1212 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1213 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1214 }
   1215 
   1216 void
   1217 pool_setlowat(struct pool *pp, int n)
   1218 {
   1219 
   1220 	mutex_enter(&pp->pr_lock);
   1221 
   1222 	pp->pr_minitems = n;
   1223 	pp->pr_minpages = (n == 0)
   1224 		? 0
   1225 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1226 
   1227 	/* Make sure we're caught up with the newly-set low water mark. */
   1228 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1229 		/*
   1230 		 * XXX: Should we log a warning?  Should we set up a timeout
   1231 		 * to try again in a second or so?  The latter could break
   1232 		 * a caller's assumptions about interrupt protection, etc.
   1233 		 */
   1234 	}
   1235 
   1236 	mutex_exit(&pp->pr_lock);
   1237 }
   1238 
   1239 void
   1240 pool_sethiwat(struct pool *pp, int n)
   1241 {
   1242 
   1243 	mutex_enter(&pp->pr_lock);
   1244 
   1245 	pp->pr_maxpages = (n == 0)
   1246 		? 0
   1247 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1248 
   1249 	mutex_exit(&pp->pr_lock);
   1250 }
   1251 
   1252 void
   1253 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1254 {
   1255 
   1256 	mutex_enter(&pp->pr_lock);
   1257 
   1258 	pp->pr_hardlimit = n;
   1259 	pp->pr_hardlimit_warning = warnmess;
   1260 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1261 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1262 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1263 
   1264 	/*
   1265 	 * In-line version of pool_sethiwat(), because we don't want to
   1266 	 * release the lock.
   1267 	 */
   1268 	pp->pr_maxpages = (n == 0)
   1269 		? 0
   1270 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1271 
   1272 	mutex_exit(&pp->pr_lock);
   1273 }
   1274 
   1275 /*
   1276  * Release all complete pages that have not been used recently.
   1277  *
   1278  * Must not be called from interrupt context.
   1279  */
   1280 int
   1281 pool_reclaim(struct pool *pp)
   1282 {
   1283 	struct pool_item_header *ph, *phnext;
   1284 	struct pool_pagelist pq;
   1285 	uint32_t curtime;
   1286 	bool klock;
   1287 	int rv;
   1288 
   1289 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1290 
   1291 	if (pp->pr_drain_hook != NULL) {
   1292 		/*
   1293 		 * The drain hook must be called with the pool unlocked.
   1294 		 */
   1295 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1296 	}
   1297 
   1298 	/*
   1299 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1300 	 * to block.
   1301 	 */
   1302 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1303 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1304 		KERNEL_LOCK(1, NULL);
   1305 		klock = true;
   1306 	} else
   1307 		klock = false;
   1308 
   1309 	/* Reclaim items from the pool's cache (if any). */
   1310 	if (pp->pr_cache != NULL)
   1311 		pool_cache_invalidate(pp->pr_cache);
   1312 
   1313 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1314 		if (klock) {
   1315 			KERNEL_UNLOCK_ONE(NULL);
   1316 		}
   1317 		return (0);
   1318 	}
   1319 
   1320 	LIST_INIT(&pq);
   1321 
   1322 	curtime = time_uptime;
   1323 
   1324 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1325 		phnext = LIST_NEXT(ph, ph_pagelist);
   1326 
   1327 		/* Check our minimum page claim */
   1328 		if (pp->pr_npages <= pp->pr_minpages)
   1329 			break;
   1330 
   1331 		KASSERT(ph->ph_nmissing == 0);
   1332 		if (curtime - ph->ph_time < pool_inactive_time)
   1333 			continue;
   1334 
   1335 		/*
   1336 		 * If freeing this page would put us below
   1337 		 * the low water mark, stop now.
   1338 		 */
   1339 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1340 		    pp->pr_minitems)
   1341 			break;
   1342 
   1343 		pr_rmpage(pp, ph, &pq);
   1344 	}
   1345 
   1346 	mutex_exit(&pp->pr_lock);
   1347 
   1348 	if (LIST_EMPTY(&pq))
   1349 		rv = 0;
   1350 	else {
   1351 		pr_pagelist_free(pp, &pq);
   1352 		rv = 1;
   1353 	}
   1354 
   1355 	if (klock) {
   1356 		KERNEL_UNLOCK_ONE(NULL);
   1357 	}
   1358 
   1359 	return (rv);
   1360 }
   1361 
   1362 /*
   1363  * Drain pools, one at a time. The drained pool is returned within ppp.
   1364  *
   1365  * Note, must never be called from interrupt context.
   1366  */
   1367 bool
   1368 pool_drain(struct pool **ppp)
   1369 {
   1370 	bool reclaimed;
   1371 	struct pool *pp;
   1372 
   1373 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1374 
   1375 	pp = NULL;
   1376 
   1377 	/* Find next pool to drain, and add a reference. */
   1378 	mutex_enter(&pool_head_lock);
   1379 	do {
   1380 		if (drainpp == NULL) {
   1381 			drainpp = TAILQ_FIRST(&pool_head);
   1382 		}
   1383 		if (drainpp != NULL) {
   1384 			pp = drainpp;
   1385 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1386 		}
   1387 		/*
   1388 		 * Skip completely idle pools.  We depend on at least
   1389 		 * one pool in the system being active.
   1390 		 */
   1391 	} while (pp == NULL || pp->pr_npages == 0);
   1392 	pp->pr_refcnt++;
   1393 	mutex_exit(&pool_head_lock);
   1394 
   1395 	/* Drain the cache (if any) and pool.. */
   1396 	reclaimed = pool_reclaim(pp);
   1397 
   1398 	/* Finally, unlock the pool. */
   1399 	mutex_enter(&pool_head_lock);
   1400 	pp->pr_refcnt--;
   1401 	cv_broadcast(&pool_busy);
   1402 	mutex_exit(&pool_head_lock);
   1403 
   1404 	if (ppp != NULL)
   1405 		*ppp = pp;
   1406 
   1407 	return reclaimed;
   1408 }
   1409 
   1410 /*
   1411  * Diagnostic helpers.
   1412  */
   1413 
   1414 void
   1415 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1416 {
   1417 	struct pool *pp;
   1418 
   1419 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1420 		pool_printit(pp, modif, pr);
   1421 	}
   1422 }
   1423 
   1424 void
   1425 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1426 {
   1427 
   1428 	if (pp == NULL) {
   1429 		(*pr)("Must specify a pool to print.\n");
   1430 		return;
   1431 	}
   1432 
   1433 	pool_print1(pp, modif, pr);
   1434 }
   1435 
   1436 static void
   1437 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1438     void (*pr)(const char *, ...))
   1439 {
   1440 	struct pool_item_header *ph;
   1441 	struct pool_item *pi __diagused;
   1442 
   1443 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1444 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1445 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1446 #ifdef DIAGNOSTIC
   1447 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1448 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1449 				if (pi->pi_magic != PI_MAGIC) {
   1450 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1451 					    pi, pi->pi_magic);
   1452 				}
   1453 			}
   1454 		}
   1455 #endif
   1456 	}
   1457 }
   1458 
   1459 static void
   1460 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1461 {
   1462 	struct pool_item_header *ph;
   1463 	pool_cache_t pc;
   1464 	pcg_t *pcg;
   1465 	pool_cache_cpu_t *cc;
   1466 	uint64_t cpuhit, cpumiss;
   1467 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1468 	char c;
   1469 
   1470 	while ((c = *modif++) != '\0') {
   1471 		if (c == 'l')
   1472 			print_log = 1;
   1473 		if (c == 'p')
   1474 			print_pagelist = 1;
   1475 		if (c == 'c')
   1476 			print_cache = 1;
   1477 	}
   1478 
   1479 	if ((pc = pp->pr_cache) != NULL) {
   1480 		(*pr)("POOL CACHE");
   1481 	} else {
   1482 		(*pr)("POOL");
   1483 	}
   1484 
   1485 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1486 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1487 	    pp->pr_roflags);
   1488 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1489 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1490 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1491 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1492 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1493 
   1494 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1495 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1496 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1497 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1498 
   1499 	if (print_pagelist == 0)
   1500 		goto skip_pagelist;
   1501 
   1502 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1503 		(*pr)("\n\tempty page list:\n");
   1504 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1505 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1506 		(*pr)("\n\tfull page list:\n");
   1507 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1508 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1509 		(*pr)("\n\tpartial-page list:\n");
   1510 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1511 
   1512 	if (pp->pr_curpage == NULL)
   1513 		(*pr)("\tno current page\n");
   1514 	else
   1515 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1516 
   1517  skip_pagelist:
   1518 	if (print_log == 0)
   1519 		goto skip_log;
   1520 
   1521 	(*pr)("\n");
   1522 
   1523  skip_log:
   1524 
   1525 #define PR_GROUPLIST(pcg)						\
   1526 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1527 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1528 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1529 		    POOL_PADDR_INVALID) {				\
   1530 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1531 			    pcg->pcg_objects[i].pcgo_va,		\
   1532 			    (unsigned long long)			\
   1533 			    pcg->pcg_objects[i].pcgo_pa);		\
   1534 		} else {						\
   1535 			(*pr)("\t\t\t%p\n",				\
   1536 			    pcg->pcg_objects[i].pcgo_va);		\
   1537 		}							\
   1538 	}
   1539 
   1540 	if (pc != NULL) {
   1541 		cpuhit = 0;
   1542 		cpumiss = 0;
   1543 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1544 			if ((cc = pc->pc_cpus[i]) == NULL)
   1545 				continue;
   1546 			cpuhit += cc->cc_hits;
   1547 			cpumiss += cc->cc_misses;
   1548 		}
   1549 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1550 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1551 		    pc->pc_hits, pc->pc_misses);
   1552 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1553 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1554 		    pc->pc_contended);
   1555 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1556 		    pc->pc_nempty, pc->pc_nfull);
   1557 		if (print_cache) {
   1558 			(*pr)("\tfull cache groups:\n");
   1559 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1560 			    pcg = pcg->pcg_next) {
   1561 				PR_GROUPLIST(pcg);
   1562 			}
   1563 			(*pr)("\tempty cache groups:\n");
   1564 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1565 			    pcg = pcg->pcg_next) {
   1566 				PR_GROUPLIST(pcg);
   1567 			}
   1568 		}
   1569 	}
   1570 #undef PR_GROUPLIST
   1571 }
   1572 
   1573 static int
   1574 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1575 {
   1576 	struct pool_item *pi;
   1577 	void *page;
   1578 	int n;
   1579 
   1580 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1581 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1582 		if (page != ph->ph_page &&
   1583 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1584 			if (label != NULL)
   1585 				printf("%s: ", label);
   1586 			printf("pool(%p:%s): page inconsistency: page %p;"
   1587 			       " at page head addr %p (p %p)\n", pp,
   1588 				pp->pr_wchan, ph->ph_page,
   1589 				ph, page);
   1590 			return 1;
   1591 		}
   1592 	}
   1593 
   1594 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1595 		return 0;
   1596 
   1597 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1598 	     pi != NULL;
   1599 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1600 
   1601 #ifdef DIAGNOSTIC
   1602 		if (pi->pi_magic != PI_MAGIC) {
   1603 			if (label != NULL)
   1604 				printf("%s: ", label);
   1605 			printf("pool(%s): free list modified: magic=%x;"
   1606 			       " page %p; item ordinal %d; addr %p\n",
   1607 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1608 				n, pi);
   1609 			panic("pool");
   1610 		}
   1611 #endif
   1612 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1613 			continue;
   1614 		}
   1615 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1616 		if (page == ph->ph_page)
   1617 			continue;
   1618 
   1619 		if (label != NULL)
   1620 			printf("%s: ", label);
   1621 		printf("pool(%p:%s): page inconsistency: page %p;"
   1622 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1623 			pp->pr_wchan, ph->ph_page,
   1624 			n, pi, page);
   1625 		return 1;
   1626 	}
   1627 	return 0;
   1628 }
   1629 
   1630 
   1631 int
   1632 pool_chk(struct pool *pp, const char *label)
   1633 {
   1634 	struct pool_item_header *ph;
   1635 	int r = 0;
   1636 
   1637 	mutex_enter(&pp->pr_lock);
   1638 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1639 		r = pool_chk_page(pp, label, ph);
   1640 		if (r) {
   1641 			goto out;
   1642 		}
   1643 	}
   1644 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1645 		r = pool_chk_page(pp, label, ph);
   1646 		if (r) {
   1647 			goto out;
   1648 		}
   1649 	}
   1650 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1651 		r = pool_chk_page(pp, label, ph);
   1652 		if (r) {
   1653 			goto out;
   1654 		}
   1655 	}
   1656 
   1657 out:
   1658 	mutex_exit(&pp->pr_lock);
   1659 	return (r);
   1660 }
   1661 
   1662 /*
   1663  * pool_cache_init:
   1664  *
   1665  *	Initialize a pool cache.
   1666  */
   1667 pool_cache_t
   1668 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1669     const char *wchan, struct pool_allocator *palloc, int ipl,
   1670     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1671 {
   1672 	pool_cache_t pc;
   1673 
   1674 	pc = pool_get(&cache_pool, PR_WAITOK);
   1675 	if (pc == NULL)
   1676 		return NULL;
   1677 
   1678 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1679 	   palloc, ipl, ctor, dtor, arg);
   1680 
   1681 	return pc;
   1682 }
   1683 
   1684 /*
   1685  * pool_cache_bootstrap:
   1686  *
   1687  *	Kernel-private version of pool_cache_init().  The caller
   1688  *	provides initial storage.
   1689  */
   1690 void
   1691 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1692     u_int align_offset, u_int flags, const char *wchan,
   1693     struct pool_allocator *palloc, int ipl,
   1694     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1695     void *arg)
   1696 {
   1697 	CPU_INFO_ITERATOR cii;
   1698 	pool_cache_t pc1;
   1699 	struct cpu_info *ci;
   1700 	struct pool *pp;
   1701 
   1702 	pp = &pc->pc_pool;
   1703 	if (palloc == NULL && ipl == IPL_NONE)
   1704 		palloc = &pool_allocator_nointr;
   1705 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1706 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1707 
   1708 	if (ctor == NULL) {
   1709 		ctor = (int (*)(void *, void *, int))nullop;
   1710 	}
   1711 	if (dtor == NULL) {
   1712 		dtor = (void (*)(void *, void *))nullop;
   1713 	}
   1714 
   1715 	pc->pc_emptygroups = NULL;
   1716 	pc->pc_fullgroups = NULL;
   1717 	pc->pc_partgroups = NULL;
   1718 	pc->pc_ctor = ctor;
   1719 	pc->pc_dtor = dtor;
   1720 	pc->pc_arg  = arg;
   1721 	pc->pc_hits  = 0;
   1722 	pc->pc_misses = 0;
   1723 	pc->pc_nempty = 0;
   1724 	pc->pc_npart = 0;
   1725 	pc->pc_nfull = 0;
   1726 	pc->pc_contended = 0;
   1727 	pc->pc_refcnt = 0;
   1728 	pc->pc_freecheck = NULL;
   1729 
   1730 	if ((flags & PR_LARGECACHE) != 0) {
   1731 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1732 		pc->pc_pcgpool = &pcg_large_pool;
   1733 	} else {
   1734 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1735 		pc->pc_pcgpool = &pcg_normal_pool;
   1736 	}
   1737 
   1738 	/* Allocate per-CPU caches. */
   1739 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1740 	pc->pc_ncpu = 0;
   1741 	if (ncpu < 2) {
   1742 		/* XXX For sparc: boot CPU is not attached yet. */
   1743 		pool_cache_cpu_init1(curcpu(), pc);
   1744 	} else {
   1745 		for (CPU_INFO_FOREACH(cii, ci)) {
   1746 			pool_cache_cpu_init1(ci, pc);
   1747 		}
   1748 	}
   1749 
   1750 	/* Add to list of all pools. */
   1751 	if (__predict_true(!cold))
   1752 		mutex_enter(&pool_head_lock);
   1753 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1754 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1755 			break;
   1756 	}
   1757 	if (pc1 == NULL)
   1758 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1759 	else
   1760 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1761 	if (__predict_true(!cold))
   1762 		mutex_exit(&pool_head_lock);
   1763 
   1764 	membar_sync();
   1765 	pp->pr_cache = pc;
   1766 }
   1767 
   1768 /*
   1769  * pool_cache_destroy:
   1770  *
   1771  *	Destroy a pool cache.
   1772  */
   1773 void
   1774 pool_cache_destroy(pool_cache_t pc)
   1775 {
   1776 
   1777 	pool_cache_bootstrap_destroy(pc);
   1778 	pool_put(&cache_pool, pc);
   1779 }
   1780 
   1781 /*
   1782  * pool_cache_bootstrap_destroy:
   1783  *
   1784  *	Destroy a pool cache.
   1785  */
   1786 void
   1787 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1788 {
   1789 	struct pool *pp = &pc->pc_pool;
   1790 	u_int i;
   1791 
   1792 	/* Remove it from the global list. */
   1793 	mutex_enter(&pool_head_lock);
   1794 	while (pc->pc_refcnt != 0)
   1795 		cv_wait(&pool_busy, &pool_head_lock);
   1796 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1797 	mutex_exit(&pool_head_lock);
   1798 
   1799 	/* First, invalidate the entire cache. */
   1800 	pool_cache_invalidate(pc);
   1801 
   1802 	/* Disassociate it from the pool. */
   1803 	mutex_enter(&pp->pr_lock);
   1804 	pp->pr_cache = NULL;
   1805 	mutex_exit(&pp->pr_lock);
   1806 
   1807 	/* Destroy per-CPU data */
   1808 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1809 		pool_cache_invalidate_cpu(pc, i);
   1810 
   1811 	/* Finally, destroy it. */
   1812 	mutex_destroy(&pc->pc_lock);
   1813 	pool_destroy(pp);
   1814 }
   1815 
   1816 /*
   1817  * pool_cache_cpu_init1:
   1818  *
   1819  *	Called for each pool_cache whenever a new CPU is attached.
   1820  */
   1821 static void
   1822 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1823 {
   1824 	pool_cache_cpu_t *cc;
   1825 	int index;
   1826 
   1827 	index = ci->ci_index;
   1828 
   1829 	KASSERT(index < __arraycount(pc->pc_cpus));
   1830 
   1831 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1832 		KASSERT(cc->cc_cpuindex == index);
   1833 		return;
   1834 	}
   1835 
   1836 	/*
   1837 	 * The first CPU is 'free'.  This needs to be the case for
   1838 	 * bootstrap - we may not be able to allocate yet.
   1839 	 */
   1840 	if (pc->pc_ncpu == 0) {
   1841 		cc = &pc->pc_cpu0;
   1842 		pc->pc_ncpu = 1;
   1843 	} else {
   1844 		mutex_enter(&pc->pc_lock);
   1845 		pc->pc_ncpu++;
   1846 		mutex_exit(&pc->pc_lock);
   1847 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1848 	}
   1849 
   1850 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1851 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1852 	cc->cc_cache = pc;
   1853 	cc->cc_cpuindex = index;
   1854 	cc->cc_hits = 0;
   1855 	cc->cc_misses = 0;
   1856 	cc->cc_current = __UNCONST(&pcg_dummy);
   1857 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1858 
   1859 	pc->pc_cpus[index] = cc;
   1860 }
   1861 
   1862 /*
   1863  * pool_cache_cpu_init:
   1864  *
   1865  *	Called whenever a new CPU is attached.
   1866  */
   1867 void
   1868 pool_cache_cpu_init(struct cpu_info *ci)
   1869 {
   1870 	pool_cache_t pc;
   1871 
   1872 	mutex_enter(&pool_head_lock);
   1873 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1874 		pc->pc_refcnt++;
   1875 		mutex_exit(&pool_head_lock);
   1876 
   1877 		pool_cache_cpu_init1(ci, pc);
   1878 
   1879 		mutex_enter(&pool_head_lock);
   1880 		pc->pc_refcnt--;
   1881 		cv_broadcast(&pool_busy);
   1882 	}
   1883 	mutex_exit(&pool_head_lock);
   1884 }
   1885 
   1886 /*
   1887  * pool_cache_reclaim:
   1888  *
   1889  *	Reclaim memory from a pool cache.
   1890  */
   1891 bool
   1892 pool_cache_reclaim(pool_cache_t pc)
   1893 {
   1894 
   1895 	return pool_reclaim(&pc->pc_pool);
   1896 }
   1897 
   1898 static void
   1899 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1900 {
   1901 
   1902 	(*pc->pc_dtor)(pc->pc_arg, object);
   1903 	pool_put(&pc->pc_pool, object);
   1904 }
   1905 
   1906 /*
   1907  * pool_cache_destruct_object:
   1908  *
   1909  *	Force destruction of an object and its release back into
   1910  *	the pool.
   1911  */
   1912 void
   1913 pool_cache_destruct_object(pool_cache_t pc, void *object)
   1914 {
   1915 
   1916 	FREECHECK_IN(&pc->pc_freecheck, object);
   1917 
   1918 	pool_cache_destruct_object1(pc, object);
   1919 }
   1920 
   1921 /*
   1922  * pool_cache_invalidate_groups:
   1923  *
   1924  *	Invalidate a chain of groups and destruct all objects.
   1925  */
   1926 static void
   1927 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1928 {
   1929 	void *object;
   1930 	pcg_t *next;
   1931 	int i;
   1932 
   1933 	for (; pcg != NULL; pcg = next) {
   1934 		next = pcg->pcg_next;
   1935 
   1936 		for (i = 0; i < pcg->pcg_avail; i++) {
   1937 			object = pcg->pcg_objects[i].pcgo_va;
   1938 			pool_cache_destruct_object1(pc, object);
   1939 		}
   1940 
   1941 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1942 			pool_put(&pcg_large_pool, pcg);
   1943 		} else {
   1944 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1945 			pool_put(&pcg_normal_pool, pcg);
   1946 		}
   1947 	}
   1948 }
   1949 
   1950 /*
   1951  * pool_cache_invalidate:
   1952  *
   1953  *	Invalidate a pool cache (destruct and release all of the
   1954  *	cached objects).  Does not reclaim objects from the pool.
   1955  *
   1956  *	Note: For pool caches that provide constructed objects, there
   1957  *	is an assumption that another level of synchronization is occurring
   1958  *	between the input to the constructor and the cache invalidation.
   1959  *
   1960  *	Invalidation is a costly process and should not be called from
   1961  *	interrupt context.
   1962  */
   1963 void
   1964 pool_cache_invalidate(pool_cache_t pc)
   1965 {
   1966 	uint64_t where;
   1967 	pcg_t *full, *empty, *part;
   1968 
   1969 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1970 
   1971 	if (ncpu < 2 || !mp_online) {
   1972 		/*
   1973 		 * We might be called early enough in the boot process
   1974 		 * for the CPU data structures to not be fully initialized.
   1975 		 * In this case, transfer the content of the local CPU's
   1976 		 * cache back into global cache as only this CPU is currently
   1977 		 * running.
   1978 		 */
   1979 		pool_cache_transfer(pc);
   1980 	} else {
   1981 		/*
   1982 		 * Signal all CPUs that they must transfer their local
   1983 		 * cache back to the global pool then wait for the xcall to
   1984 		 * complete.
   1985 		 */
   1986 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   1987 		    pc, NULL);
   1988 		xc_wait(where);
   1989 	}
   1990 
   1991 	/* Empty pool caches, then invalidate objects */
   1992 	mutex_enter(&pc->pc_lock);
   1993 	full = pc->pc_fullgroups;
   1994 	empty = pc->pc_emptygroups;
   1995 	part = pc->pc_partgroups;
   1996 	pc->pc_fullgroups = NULL;
   1997 	pc->pc_emptygroups = NULL;
   1998 	pc->pc_partgroups = NULL;
   1999 	pc->pc_nfull = 0;
   2000 	pc->pc_nempty = 0;
   2001 	pc->pc_npart = 0;
   2002 	mutex_exit(&pc->pc_lock);
   2003 
   2004 	pool_cache_invalidate_groups(pc, full);
   2005 	pool_cache_invalidate_groups(pc, empty);
   2006 	pool_cache_invalidate_groups(pc, part);
   2007 }
   2008 
   2009 /*
   2010  * pool_cache_invalidate_cpu:
   2011  *
   2012  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2013  *	identified by its associated index.
   2014  *	It is caller's responsibility to ensure that no operation is
   2015  *	taking place on this pool cache while doing this invalidation.
   2016  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2017  *	pool cached objects from a CPU different from the one currently running
   2018  *	may result in an undefined behaviour.
   2019  */
   2020 static void
   2021 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2022 {
   2023 	pool_cache_cpu_t *cc;
   2024 	pcg_t *pcg;
   2025 
   2026 	if ((cc = pc->pc_cpus[index]) == NULL)
   2027 		return;
   2028 
   2029 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2030 		pcg->pcg_next = NULL;
   2031 		pool_cache_invalidate_groups(pc, pcg);
   2032 	}
   2033 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2034 		pcg->pcg_next = NULL;
   2035 		pool_cache_invalidate_groups(pc, pcg);
   2036 	}
   2037 	if (cc != &pc->pc_cpu0)
   2038 		pool_put(&cache_cpu_pool, cc);
   2039 
   2040 }
   2041 
   2042 void
   2043 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2044 {
   2045 
   2046 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2047 }
   2048 
   2049 void
   2050 pool_cache_setlowat(pool_cache_t pc, int n)
   2051 {
   2052 
   2053 	pool_setlowat(&pc->pc_pool, n);
   2054 }
   2055 
   2056 void
   2057 pool_cache_sethiwat(pool_cache_t pc, int n)
   2058 {
   2059 
   2060 	pool_sethiwat(&pc->pc_pool, n);
   2061 }
   2062 
   2063 void
   2064 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2065 {
   2066 
   2067 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2068 }
   2069 
   2070 static bool __noinline
   2071 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2072 		    paddr_t *pap, int flags)
   2073 {
   2074 	pcg_t *pcg, *cur;
   2075 	uint64_t ncsw;
   2076 	pool_cache_t pc;
   2077 	void *object;
   2078 
   2079 	KASSERT(cc->cc_current->pcg_avail == 0);
   2080 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2081 
   2082 	pc = cc->cc_cache;
   2083 	cc->cc_misses++;
   2084 
   2085 	/*
   2086 	 * Nothing was available locally.  Try and grab a group
   2087 	 * from the cache.
   2088 	 */
   2089 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2090 		ncsw = curlwp->l_ncsw;
   2091 		mutex_enter(&pc->pc_lock);
   2092 		pc->pc_contended++;
   2093 
   2094 		/*
   2095 		 * If we context switched while locking, then
   2096 		 * our view of the per-CPU data is invalid:
   2097 		 * retry.
   2098 		 */
   2099 		if (curlwp->l_ncsw != ncsw) {
   2100 			mutex_exit(&pc->pc_lock);
   2101 			return true;
   2102 		}
   2103 	}
   2104 
   2105 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2106 		/*
   2107 		 * If there's a full group, release our empty
   2108 		 * group back to the cache.  Install the full
   2109 		 * group as cc_current and return.
   2110 		 */
   2111 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2112 			KASSERT(cur->pcg_avail == 0);
   2113 			cur->pcg_next = pc->pc_emptygroups;
   2114 			pc->pc_emptygroups = cur;
   2115 			pc->pc_nempty++;
   2116 		}
   2117 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2118 		cc->cc_current = pcg;
   2119 		pc->pc_fullgroups = pcg->pcg_next;
   2120 		pc->pc_hits++;
   2121 		pc->pc_nfull--;
   2122 		mutex_exit(&pc->pc_lock);
   2123 		return true;
   2124 	}
   2125 
   2126 	/*
   2127 	 * Nothing available locally or in cache.  Take the slow
   2128 	 * path: fetch a new object from the pool and construct
   2129 	 * it.
   2130 	 */
   2131 	pc->pc_misses++;
   2132 	mutex_exit(&pc->pc_lock);
   2133 	splx(s);
   2134 
   2135 	object = pool_get(&pc->pc_pool, flags);
   2136 	*objectp = object;
   2137 	if (__predict_false(object == NULL))
   2138 		return false;
   2139 
   2140 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2141 		pool_put(&pc->pc_pool, object);
   2142 		*objectp = NULL;
   2143 		return false;
   2144 	}
   2145 
   2146 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2147 	    (pc->pc_pool.pr_align - 1)) == 0);
   2148 
   2149 	if (pap != NULL) {
   2150 #ifdef POOL_VTOPHYS
   2151 		*pap = POOL_VTOPHYS(object);
   2152 #else
   2153 		*pap = POOL_PADDR_INVALID;
   2154 #endif
   2155 	}
   2156 
   2157 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2158 	pool_redzone_fill(&pc->pc_pool, object);
   2159 	return false;
   2160 }
   2161 
   2162 /*
   2163  * pool_cache_get{,_paddr}:
   2164  *
   2165  *	Get an object from a pool cache (optionally returning
   2166  *	the physical address of the object).
   2167  */
   2168 void *
   2169 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2170 {
   2171 	pool_cache_cpu_t *cc;
   2172 	pcg_t *pcg;
   2173 	void *object;
   2174 	int s;
   2175 
   2176 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2177 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2178 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2179 	    pc->pc_pool.pr_wchan);
   2180 
   2181 	if (flags & PR_WAITOK) {
   2182 		ASSERT_SLEEPABLE();
   2183 	}
   2184 
   2185 	/* Lock out interrupts and disable preemption. */
   2186 	s = splvm();
   2187 	while (/* CONSTCOND */ true) {
   2188 		/* Try and allocate an object from the current group. */
   2189 		cc = pc->pc_cpus[curcpu()->ci_index];
   2190 		KASSERT(cc->cc_cache == pc);
   2191 	 	pcg = cc->cc_current;
   2192 		if (__predict_true(pcg->pcg_avail > 0)) {
   2193 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2194 			if (__predict_false(pap != NULL))
   2195 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2196 #if defined(DIAGNOSTIC)
   2197 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2198 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2199 			KASSERT(object != NULL);
   2200 #endif
   2201 			cc->cc_hits++;
   2202 			splx(s);
   2203 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2204 			pool_redzone_fill(&pc->pc_pool, object);
   2205 			return object;
   2206 		}
   2207 
   2208 		/*
   2209 		 * That failed.  If the previous group isn't empty, swap
   2210 		 * it with the current group and allocate from there.
   2211 		 */
   2212 		pcg = cc->cc_previous;
   2213 		if (__predict_true(pcg->pcg_avail > 0)) {
   2214 			cc->cc_previous = cc->cc_current;
   2215 			cc->cc_current = pcg;
   2216 			continue;
   2217 		}
   2218 
   2219 		/*
   2220 		 * Can't allocate from either group: try the slow path.
   2221 		 * If get_slow() allocated an object for us, or if
   2222 		 * no more objects are available, it will return false.
   2223 		 * Otherwise, we need to retry.
   2224 		 */
   2225 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2226 			break;
   2227 	}
   2228 
   2229 	return object;
   2230 }
   2231 
   2232 static bool __noinline
   2233 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2234 {
   2235 	struct lwp *l = curlwp;
   2236 	pcg_t *pcg, *cur;
   2237 	uint64_t ncsw;
   2238 	pool_cache_t pc;
   2239 
   2240 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2241 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2242 
   2243 	pc = cc->cc_cache;
   2244 	pcg = NULL;
   2245 	cc->cc_misses++;
   2246 	ncsw = l->l_ncsw;
   2247 
   2248 	/*
   2249 	 * If there are no empty groups in the cache then allocate one
   2250 	 * while still unlocked.
   2251 	 */
   2252 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2253 		if (__predict_true(!pool_cache_disable)) {
   2254 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2255 		}
   2256 		/*
   2257 		 * If pool_get() blocked, then our view of
   2258 		 * the per-CPU data is invalid: retry.
   2259 		 */
   2260 		if (__predict_false(l->l_ncsw != ncsw)) {
   2261 			if (pcg != NULL) {
   2262 				pool_put(pc->pc_pcgpool, pcg);
   2263 			}
   2264 			return true;
   2265 		}
   2266 		if (__predict_true(pcg != NULL)) {
   2267 			pcg->pcg_avail = 0;
   2268 			pcg->pcg_size = pc->pc_pcgsize;
   2269 		}
   2270 	}
   2271 
   2272 	/* Lock the cache. */
   2273 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2274 		mutex_enter(&pc->pc_lock);
   2275 		pc->pc_contended++;
   2276 
   2277 		/*
   2278 		 * If we context switched while locking, then our view of
   2279 		 * the per-CPU data is invalid: retry.
   2280 		 */
   2281 		if (__predict_false(l->l_ncsw != ncsw)) {
   2282 			mutex_exit(&pc->pc_lock);
   2283 			if (pcg != NULL) {
   2284 				pool_put(pc->pc_pcgpool, pcg);
   2285 			}
   2286 			return true;
   2287 		}
   2288 	}
   2289 
   2290 	/* If there are no empty groups in the cache then allocate one. */
   2291 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2292 		pcg = pc->pc_emptygroups;
   2293 		pc->pc_emptygroups = pcg->pcg_next;
   2294 		pc->pc_nempty--;
   2295 	}
   2296 
   2297 	/*
   2298 	 * If there's a empty group, release our full group back
   2299 	 * to the cache.  Install the empty group to the local CPU
   2300 	 * and return.
   2301 	 */
   2302 	if (pcg != NULL) {
   2303 		KASSERT(pcg->pcg_avail == 0);
   2304 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2305 			cc->cc_previous = pcg;
   2306 		} else {
   2307 			cur = cc->cc_current;
   2308 			if (__predict_true(cur != &pcg_dummy)) {
   2309 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2310 				cur->pcg_next = pc->pc_fullgroups;
   2311 				pc->pc_fullgroups = cur;
   2312 				pc->pc_nfull++;
   2313 			}
   2314 			cc->cc_current = pcg;
   2315 		}
   2316 		pc->pc_hits++;
   2317 		mutex_exit(&pc->pc_lock);
   2318 		return true;
   2319 	}
   2320 
   2321 	/*
   2322 	 * Nothing available locally or in cache, and we didn't
   2323 	 * allocate an empty group.  Take the slow path and destroy
   2324 	 * the object here and now.
   2325 	 */
   2326 	pc->pc_misses++;
   2327 	mutex_exit(&pc->pc_lock);
   2328 	splx(s);
   2329 	pool_cache_destruct_object(pc, object);
   2330 
   2331 	return false;
   2332 }
   2333 
   2334 /*
   2335  * pool_cache_put{,_paddr}:
   2336  *
   2337  *	Put an object back to the pool cache (optionally caching the
   2338  *	physical address of the object).
   2339  */
   2340 void
   2341 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2342 {
   2343 	pool_cache_cpu_t *cc;
   2344 	pcg_t *pcg;
   2345 	int s;
   2346 
   2347 	KASSERT(object != NULL);
   2348 	pool_redzone_check(&pc->pc_pool, object);
   2349 	FREECHECK_IN(&pc->pc_freecheck, object);
   2350 
   2351 	/* Lock out interrupts and disable preemption. */
   2352 	s = splvm();
   2353 	while (/* CONSTCOND */ true) {
   2354 		/* If the current group isn't full, release it there. */
   2355 		cc = pc->pc_cpus[curcpu()->ci_index];
   2356 		KASSERT(cc->cc_cache == pc);
   2357 	 	pcg = cc->cc_current;
   2358 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2359 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2360 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2361 			pcg->pcg_avail++;
   2362 			cc->cc_hits++;
   2363 			splx(s);
   2364 			return;
   2365 		}
   2366 
   2367 		/*
   2368 		 * That failed.  If the previous group isn't full, swap
   2369 		 * it with the current group and try again.
   2370 		 */
   2371 		pcg = cc->cc_previous;
   2372 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2373 			cc->cc_previous = cc->cc_current;
   2374 			cc->cc_current = pcg;
   2375 			continue;
   2376 		}
   2377 
   2378 		/*
   2379 		 * Can't free to either group: try the slow path.
   2380 		 * If put_slow() releases the object for us, it
   2381 		 * will return false.  Otherwise we need to retry.
   2382 		 */
   2383 		if (!pool_cache_put_slow(cc, s, object))
   2384 			break;
   2385 	}
   2386 }
   2387 
   2388 /*
   2389  * pool_cache_transfer:
   2390  *
   2391  *	Transfer objects from the per-CPU cache to the global cache.
   2392  *	Run within a cross-call thread.
   2393  */
   2394 static void
   2395 pool_cache_transfer(pool_cache_t pc)
   2396 {
   2397 	pool_cache_cpu_t *cc;
   2398 	pcg_t *prev, *cur, **list;
   2399 	int s;
   2400 
   2401 	s = splvm();
   2402 	mutex_enter(&pc->pc_lock);
   2403 	cc = pc->pc_cpus[curcpu()->ci_index];
   2404 	cur = cc->cc_current;
   2405 	cc->cc_current = __UNCONST(&pcg_dummy);
   2406 	prev = cc->cc_previous;
   2407 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2408 	if (cur != &pcg_dummy) {
   2409 		if (cur->pcg_avail == cur->pcg_size) {
   2410 			list = &pc->pc_fullgroups;
   2411 			pc->pc_nfull++;
   2412 		} else if (cur->pcg_avail == 0) {
   2413 			list = &pc->pc_emptygroups;
   2414 			pc->pc_nempty++;
   2415 		} else {
   2416 			list = &pc->pc_partgroups;
   2417 			pc->pc_npart++;
   2418 		}
   2419 		cur->pcg_next = *list;
   2420 		*list = cur;
   2421 	}
   2422 	if (prev != &pcg_dummy) {
   2423 		if (prev->pcg_avail == prev->pcg_size) {
   2424 			list = &pc->pc_fullgroups;
   2425 			pc->pc_nfull++;
   2426 		} else if (prev->pcg_avail == 0) {
   2427 			list = &pc->pc_emptygroups;
   2428 			pc->pc_nempty++;
   2429 		} else {
   2430 			list = &pc->pc_partgroups;
   2431 			pc->pc_npart++;
   2432 		}
   2433 		prev->pcg_next = *list;
   2434 		*list = prev;
   2435 	}
   2436 	mutex_exit(&pc->pc_lock);
   2437 	splx(s);
   2438 }
   2439 
   2440 /*
   2441  * Pool backend allocators.
   2442  *
   2443  * Each pool has a backend allocator that handles allocation, deallocation,
   2444  * and any additional draining that might be needed.
   2445  *
   2446  * We provide two standard allocators:
   2447  *
   2448  *	pool_allocator_kmem - the default when no allocator is specified
   2449  *
   2450  *	pool_allocator_nointr - used for pools that will not be accessed
   2451  *	in interrupt context.
   2452  */
   2453 void	*pool_page_alloc(struct pool *, int);
   2454 void	pool_page_free(struct pool *, void *);
   2455 
   2456 #ifdef POOL_SUBPAGE
   2457 struct pool_allocator pool_allocator_kmem_fullpage = {
   2458 	.pa_alloc = pool_page_alloc,
   2459 	.pa_free = pool_page_free,
   2460 	.pa_pagesz = 0
   2461 };
   2462 #else
   2463 struct pool_allocator pool_allocator_kmem = {
   2464 	.pa_alloc = pool_page_alloc,
   2465 	.pa_free = pool_page_free,
   2466 	.pa_pagesz = 0
   2467 };
   2468 #endif
   2469 
   2470 #ifdef POOL_SUBPAGE
   2471 struct pool_allocator pool_allocator_nointr_fullpage = {
   2472 	.pa_alloc = pool_page_alloc,
   2473 	.pa_free = pool_page_free,
   2474 	.pa_pagesz = 0
   2475 };
   2476 #else
   2477 struct pool_allocator pool_allocator_nointr = {
   2478 	.pa_alloc = pool_page_alloc,
   2479 	.pa_free = pool_page_free,
   2480 	.pa_pagesz = 0
   2481 };
   2482 #endif
   2483 
   2484 #ifdef POOL_SUBPAGE
   2485 void	*pool_subpage_alloc(struct pool *, int);
   2486 void	pool_subpage_free(struct pool *, void *);
   2487 
   2488 struct pool_allocator pool_allocator_kmem = {
   2489 	.pa_alloc = pool_subpage_alloc,
   2490 	.pa_free = pool_subpage_free,
   2491 	.pa_pagesz = POOL_SUBPAGE
   2492 };
   2493 
   2494 struct pool_allocator pool_allocator_nointr = {
   2495 	.pa_alloc = pool_subpage_alloc,
   2496 	.pa_free = pool_subpage_free,
   2497 	.pa_pagesz = POOL_SUBPAGE
   2498 };
   2499 #endif /* POOL_SUBPAGE */
   2500 
   2501 static void *
   2502 pool_allocator_alloc(struct pool *pp, int flags)
   2503 {
   2504 	struct pool_allocator *pa = pp->pr_alloc;
   2505 	void *res;
   2506 
   2507 	res = (*pa->pa_alloc)(pp, flags);
   2508 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2509 		/*
   2510 		 * We only run the drain hook here if PR_NOWAIT.
   2511 		 * In other cases, the hook will be run in
   2512 		 * pool_reclaim().
   2513 		 */
   2514 		if (pp->pr_drain_hook != NULL) {
   2515 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2516 			res = (*pa->pa_alloc)(pp, flags);
   2517 		}
   2518 	}
   2519 	return res;
   2520 }
   2521 
   2522 static void
   2523 pool_allocator_free(struct pool *pp, void *v)
   2524 {
   2525 	struct pool_allocator *pa = pp->pr_alloc;
   2526 
   2527 	(*pa->pa_free)(pp, v);
   2528 }
   2529 
   2530 void *
   2531 pool_page_alloc(struct pool *pp, int flags)
   2532 {
   2533 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2534 	vmem_addr_t va;
   2535 	int ret;
   2536 
   2537 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2538 	    vflags | VM_INSTANTFIT, &va);
   2539 
   2540 	return ret ? NULL : (void *)va;
   2541 }
   2542 
   2543 void
   2544 pool_page_free(struct pool *pp, void *v)
   2545 {
   2546 
   2547 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2548 }
   2549 
   2550 static void *
   2551 pool_page_alloc_meta(struct pool *pp, int flags)
   2552 {
   2553 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2554 	vmem_addr_t va;
   2555 	int ret;
   2556 
   2557 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2558 	    vflags | VM_INSTANTFIT, &va);
   2559 
   2560 	return ret ? NULL : (void *)va;
   2561 }
   2562 
   2563 static void
   2564 pool_page_free_meta(struct pool *pp, void *v)
   2565 {
   2566 
   2567 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2568 }
   2569 
   2570 #ifdef POOL_REDZONE
   2571 #if defined(_LP64)
   2572 # define PRIME 0x9e37fffffffc0000UL
   2573 #else /* defined(_LP64) */
   2574 # define PRIME 0x9e3779b1
   2575 #endif /* defined(_LP64) */
   2576 #define STATIC_BYTE	0xFE
   2577 CTASSERT(POOL_REDZONE_SIZE > 1);
   2578 
   2579 static inline uint8_t
   2580 pool_pattern_generate(const void *p)
   2581 {
   2582 	return (uint8_t)(((uintptr_t)p) * PRIME
   2583 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2584 }
   2585 
   2586 static void
   2587 pool_redzone_init(struct pool *pp, size_t requested_size)
   2588 {
   2589 	size_t nsz;
   2590 
   2591 	if (pp->pr_roflags & PR_NOTOUCH) {
   2592 		pp->pr_reqsize = 0;
   2593 		pp->pr_redzone = false;
   2594 		return;
   2595 	}
   2596 
   2597 	/*
   2598 	 * We may have extended the requested size earlier; check if
   2599 	 * there's naturally space in the padding for a red zone.
   2600 	 */
   2601 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2602 		pp->pr_reqsize = requested_size;
   2603 		pp->pr_redzone = true;
   2604 		return;
   2605 	}
   2606 
   2607 	/*
   2608 	 * No space in the natural padding; check if we can extend a
   2609 	 * bit the size of the pool.
   2610 	 */
   2611 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2612 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2613 		/* Ok, we can */
   2614 		pp->pr_size = nsz;
   2615 		pp->pr_reqsize = requested_size;
   2616 		pp->pr_redzone = true;
   2617 	} else {
   2618 		/* No space for a red zone... snif :'( */
   2619 		pp->pr_reqsize = 0;
   2620 		pp->pr_redzone = false;
   2621 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2622 	}
   2623 }
   2624 
   2625 static void
   2626 pool_redzone_fill(struct pool *pp, void *p)
   2627 {
   2628 	uint8_t *cp, pat;
   2629 	const uint8_t *ep;
   2630 
   2631 	if (!pp->pr_redzone)
   2632 		return;
   2633 
   2634 	cp = (uint8_t *)p + pp->pr_reqsize;
   2635 	ep = cp + POOL_REDZONE_SIZE;
   2636 
   2637 	/*
   2638 	 * We really don't want the first byte of the red zone to be '\0';
   2639 	 * an off-by-one in a string may not be properly detected.
   2640 	 */
   2641 	pat = pool_pattern_generate(cp);
   2642 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2643 	cp++;
   2644 
   2645 	while (cp < ep) {
   2646 		*cp = pool_pattern_generate(cp);
   2647 		cp++;
   2648 	}
   2649 }
   2650 
   2651 static void
   2652 pool_redzone_check(struct pool *pp, void *p)
   2653 {
   2654 	uint8_t *cp, pat, expected;
   2655 	const uint8_t *ep;
   2656 
   2657 	if (!pp->pr_redzone)
   2658 		return;
   2659 
   2660 	cp = (uint8_t *)p + pp->pr_reqsize;
   2661 	ep = cp + POOL_REDZONE_SIZE;
   2662 
   2663 	pat = pool_pattern_generate(cp);
   2664 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2665 	if (expected != *cp) {
   2666 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2667 		   __func__, cp, *cp, expected);
   2668 	}
   2669 	cp++;
   2670 
   2671 	while (cp < ep) {
   2672 		expected = pool_pattern_generate(cp);
   2673 		if (*cp != expected) {
   2674 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2675 			   __func__, cp, *cp, expected);
   2676 		}
   2677 		cp++;
   2678 	}
   2679 }
   2680 
   2681 #endif /* POOL_REDZONE */
   2682 
   2683 
   2684 #ifdef POOL_SUBPAGE
   2685 /* Sub-page allocator, for machines with large hardware pages. */
   2686 void *
   2687 pool_subpage_alloc(struct pool *pp, int flags)
   2688 {
   2689 	return pool_get(&psppool, flags);
   2690 }
   2691 
   2692 void
   2693 pool_subpage_free(struct pool *pp, void *v)
   2694 {
   2695 	pool_put(&psppool, v);
   2696 }
   2697 
   2698 #endif /* POOL_SUBPAGE */
   2699 
   2700 #if defined(DDB)
   2701 static bool
   2702 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2703 {
   2704 
   2705 	return (uintptr_t)ph->ph_page <= addr &&
   2706 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2707 }
   2708 
   2709 static bool
   2710 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2711 {
   2712 
   2713 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2714 }
   2715 
   2716 static bool
   2717 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2718 {
   2719 	int i;
   2720 
   2721 	if (pcg == NULL) {
   2722 		return false;
   2723 	}
   2724 	for (i = 0; i < pcg->pcg_avail; i++) {
   2725 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2726 			return true;
   2727 		}
   2728 	}
   2729 	return false;
   2730 }
   2731 
   2732 static bool
   2733 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2734 {
   2735 
   2736 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2737 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2738 		pool_item_bitmap_t *bitmap =
   2739 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2740 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2741 
   2742 		return (*bitmap & mask) == 0;
   2743 	} else {
   2744 		struct pool_item *pi;
   2745 
   2746 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2747 			if (pool_in_item(pp, pi, addr)) {
   2748 				return false;
   2749 			}
   2750 		}
   2751 		return true;
   2752 	}
   2753 }
   2754 
   2755 void
   2756 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2757 {
   2758 	struct pool *pp;
   2759 
   2760 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2761 		struct pool_item_header *ph;
   2762 		uintptr_t item;
   2763 		bool allocated = true;
   2764 		bool incache = false;
   2765 		bool incpucache = false;
   2766 		char cpucachestr[32];
   2767 
   2768 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2769 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2770 				if (pool_in_page(pp, ph, addr)) {
   2771 					goto found;
   2772 				}
   2773 			}
   2774 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2775 				if (pool_in_page(pp, ph, addr)) {
   2776 					allocated =
   2777 					    pool_allocated(pp, ph, addr);
   2778 					goto found;
   2779 				}
   2780 			}
   2781 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2782 				if (pool_in_page(pp, ph, addr)) {
   2783 					allocated = false;
   2784 					goto found;
   2785 				}
   2786 			}
   2787 			continue;
   2788 		} else {
   2789 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2790 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2791 				continue;
   2792 			}
   2793 			allocated = pool_allocated(pp, ph, addr);
   2794 		}
   2795 found:
   2796 		if (allocated && pp->pr_cache) {
   2797 			pool_cache_t pc = pp->pr_cache;
   2798 			struct pool_cache_group *pcg;
   2799 			int i;
   2800 
   2801 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2802 			    pcg = pcg->pcg_next) {
   2803 				if (pool_in_cg(pp, pcg, addr)) {
   2804 					incache = true;
   2805 					goto print;
   2806 				}
   2807 			}
   2808 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2809 				pool_cache_cpu_t *cc;
   2810 
   2811 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2812 					continue;
   2813 				}
   2814 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2815 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2816 					struct cpu_info *ci =
   2817 					    cpu_lookup(i);
   2818 
   2819 					incpucache = true;
   2820 					snprintf(cpucachestr,
   2821 					    sizeof(cpucachestr),
   2822 					    "cached by CPU %u",
   2823 					    ci->ci_index);
   2824 					goto print;
   2825 				}
   2826 			}
   2827 		}
   2828 print:
   2829 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2830 		item = item + rounddown(addr - item, pp->pr_size);
   2831 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2832 		    (void *)addr, item, (size_t)(addr - item),
   2833 		    pp->pr_wchan,
   2834 		    incpucache ? cpucachestr :
   2835 		    incache ? "cached" : allocated ? "allocated" : "free");
   2836 	}
   2837 }
   2838 #endif /* defined(DDB) */
   2839 
   2840 static int
   2841 pool_sysctl(SYSCTLFN_ARGS)
   2842 {
   2843 	struct pool_sysctl data;
   2844 	struct pool *pp;
   2845 	struct pool_cache *pc;
   2846 	pool_cache_cpu_t *cc;
   2847 	int error;
   2848 	size_t i, written;
   2849 
   2850 	if (oldp == NULL) {
   2851 		*oldlenp = 0;
   2852 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   2853 			*oldlenp += sizeof(data);
   2854 		return 0;
   2855 	}
   2856 
   2857 	memset(&data, 0, sizeof(data));
   2858 	error = 0;
   2859 	written = 0;
   2860 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2861 		if (written + sizeof(data) > *oldlenp)
   2862 			break;
   2863 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   2864 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   2865 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   2866 #define COPY(field) data.field = pp->field
   2867 		COPY(pr_size);
   2868 
   2869 		COPY(pr_itemsperpage);
   2870 		COPY(pr_nitems);
   2871 		COPY(pr_nout);
   2872 		COPY(pr_hardlimit);
   2873 		COPY(pr_npages);
   2874 		COPY(pr_minpages);
   2875 		COPY(pr_maxpages);
   2876 
   2877 		COPY(pr_nget);
   2878 		COPY(pr_nfail);
   2879 		COPY(pr_nput);
   2880 		COPY(pr_npagealloc);
   2881 		COPY(pr_npagefree);
   2882 		COPY(pr_hiwat);
   2883 		COPY(pr_nidle);
   2884 #undef COPY
   2885 
   2886 		data.pr_cache_nmiss_pcpu = 0;
   2887 		data.pr_cache_nhit_pcpu = 0;
   2888 		if (pp->pr_cache) {
   2889 			pc = pp->pr_cache;
   2890 			data.pr_cache_meta_size = pc->pc_pcgsize;
   2891 			data.pr_cache_nfull = pc->pc_nfull;
   2892 			data.pr_cache_npartial = pc->pc_npart;
   2893 			data.pr_cache_nempty = pc->pc_nempty;
   2894 			data.pr_cache_ncontended = pc->pc_contended;
   2895 			data.pr_cache_nmiss_global = pc->pc_misses;
   2896 			data.pr_cache_nhit_global = pc->pc_hits;
   2897 			for (i = 0; i < pc->pc_ncpu; ++i) {
   2898 				cc = pc->pc_cpus[i];
   2899 				if (cc == NULL)
   2900 					continue;
   2901 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   2902 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   2903 			}
   2904 		} else {
   2905 			data.pr_cache_meta_size = 0;
   2906 			data.pr_cache_nfull = 0;
   2907 			data.pr_cache_npartial = 0;
   2908 			data.pr_cache_nempty = 0;
   2909 			data.pr_cache_ncontended = 0;
   2910 			data.pr_cache_nmiss_global = 0;
   2911 			data.pr_cache_nhit_global = 0;
   2912 		}
   2913 
   2914 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   2915 		if (error)
   2916 			break;
   2917 		written += sizeof(data);
   2918 		oldp = (char *)oldp + sizeof(data);
   2919 	}
   2920 
   2921 	*oldlenp = written;
   2922 	return error;
   2923 }
   2924 
   2925 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   2926 {
   2927 	const struct sysctlnode *rnode = NULL;
   2928 
   2929 	sysctl_createv(clog, 0, NULL, &rnode,
   2930 		       CTLFLAG_PERMANENT,
   2931 		       CTLTYPE_STRUCT, "pool",
   2932 		       SYSCTL_DESCR("Get pool statistics"),
   2933 		       pool_sysctl, 0, NULL, 0,
   2934 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2935 }
   2936