subr_pool.c revision 1.206.4.1 1 /* $NetBSD: subr_pool.c,v 1.206.4.1 2017/04/21 16:54:02 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.206.4.1 2017/04/21 16:54:02 bouyer Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/bitops.h>
47 #include <sys/proc.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/vmem.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 #include <sys/debug.h>
54 #include <sys/lockdebug.h>
55 #include <sys/xcall.h>
56 #include <sys/cpu.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Pool resource management utility.
63 *
64 * Memory is allocated in pages which are split into pieces according to
65 * the pool item size. Each page is kept on one of three lists in the
66 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67 * for empty, full and partially-full pages respectively. The individual
68 * pool items are on a linked list headed by `ph_itemlist' in each page
69 * header. The memory for building the page list is either taken from
70 * the allocated pages themselves (for small pool items) or taken from
71 * an internal pool of page headers (`phpool').
72 */
73
74 /* List of all pools. Non static as needed by 'vmstat -i' */
75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
76
77 /* Private pool for page header structures */
78 #define PHPOOL_MAX 8
79 static struct pool phpool[PHPOOL_MAX];
80 #define PHPOOL_FREELIST_NELEM(idx) \
81 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
82
83 #ifdef POOL_SUBPAGE
84 /* Pool of subpages for use by normal pools. */
85 static struct pool psppool;
86 #endif
87
88 #ifdef POOL_REDZONE
89 # define POOL_REDZONE_SIZE 2
90 static void pool_redzone_init(struct pool *, size_t);
91 static void pool_redzone_fill(struct pool *, void *);
92 static void pool_redzone_check(struct pool *, void *);
93 #else
94 # define pool_redzone_init(pp, sz) /* NOTHING */
95 # define pool_redzone_fill(pp, ptr) /* NOTHING */
96 # define pool_redzone_check(pp, ptr) /* NOTHING */
97 #endif
98
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 .pa_alloc = pool_page_alloc_meta,
105 .pa_free = pool_page_free_meta,
106 .pa_pagesz = 0
107 };
108
109 /* # of seconds to retain page after last use */
110 int pool_inactive_time = 10;
111
112 /* Next candidate for drainage (see pool_drain()) */
113 static struct pool *drainpp;
114
115 /* This lock protects both pool_head and drainpp. */
116 static kmutex_t pool_head_lock;
117 static kcondvar_t pool_busy;
118
119 /* This lock protects initialization of a potentially shared pool allocator */
120 static kmutex_t pool_allocator_lock;
121
122 typedef uint32_t pool_item_bitmap_t;
123 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
124 #define BITMAP_MASK (BITMAP_SIZE - 1)
125
126 struct pool_item_header {
127 /* Page headers */
128 LIST_ENTRY(pool_item_header)
129 ph_pagelist; /* pool page list */
130 SPLAY_ENTRY(pool_item_header)
131 ph_node; /* Off-page page headers */
132 void * ph_page; /* this page's address */
133 uint32_t ph_time; /* last referenced */
134 uint16_t ph_nmissing; /* # of chunks in use */
135 uint16_t ph_off; /* start offset in page */
136 union {
137 /* !PR_NOTOUCH */
138 struct {
139 LIST_HEAD(, pool_item)
140 phu_itemlist; /* chunk list for this page */
141 } phu_normal;
142 /* PR_NOTOUCH */
143 struct {
144 pool_item_bitmap_t phu_bitmap[1];
145 } phu_notouch;
146 } ph_u;
147 };
148 #define ph_itemlist ph_u.phu_normal.phu_itemlist
149 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
150
151 struct pool_item {
152 #ifdef DIAGNOSTIC
153 u_int pi_magic;
154 #endif
155 #define PI_MAGIC 0xdeaddeadU
156 /* Other entries use only this list entry */
157 LIST_ENTRY(pool_item) pi_list;
158 };
159
160 #define POOL_NEEDS_CATCHUP(pp) \
161 ((pp)->pr_nitems < (pp)->pr_minitems)
162
163 /*
164 * Pool cache management.
165 *
166 * Pool caches provide a way for constructed objects to be cached by the
167 * pool subsystem. This can lead to performance improvements by avoiding
168 * needless object construction/destruction; it is deferred until absolutely
169 * necessary.
170 *
171 * Caches are grouped into cache groups. Each cache group references up
172 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
173 * object from the pool, it calls the object's constructor and places it
174 * into a cache group. When a cache group frees an object back to the
175 * pool, it first calls the object's destructor. This allows the object
176 * to persist in constructed form while freed to the cache.
177 *
178 * The pool references each cache, so that when a pool is drained by the
179 * pagedaemon, it can drain each individual cache as well. Each time a
180 * cache is drained, the most idle cache group is freed to the pool in
181 * its entirety.
182 *
183 * Pool caches are layed on top of pools. By layering them, we can avoid
184 * the complexity of cache management for pools which would not benefit
185 * from it.
186 */
187
188 static struct pool pcg_normal_pool;
189 static struct pool pcg_large_pool;
190 static struct pool cache_pool;
191 static struct pool cache_cpu_pool;
192
193 pool_cache_t pnbuf_cache; /* pathname buffer cache */
194
195 /* List of all caches. */
196 TAILQ_HEAD(,pool_cache) pool_cache_head =
197 TAILQ_HEAD_INITIALIZER(pool_cache_head);
198
199 int pool_cache_disable; /* global disable for caching */
200 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
201
202 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
203 void *);
204 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
205 void **, paddr_t *, int);
206 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
207 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
208 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
209 static void pool_cache_transfer(pool_cache_t);
210
211 static int pool_catchup(struct pool *);
212 static void pool_prime_page(struct pool *, void *,
213 struct pool_item_header *);
214 static void pool_update_curpage(struct pool *);
215
216 static int pool_grow(struct pool *, int);
217 static void *pool_allocator_alloc(struct pool *, int);
218 static void pool_allocator_free(struct pool *, void *);
219
220 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
221 void (*)(const char *, ...) __printflike(1, 2));
222 static void pool_print1(struct pool *, const char *,
223 void (*)(const char *, ...) __printflike(1, 2));
224
225 static int pool_chk_page(struct pool *, const char *,
226 struct pool_item_header *);
227
228 static inline unsigned int
229 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
230 const void *v)
231 {
232 const char *cp = v;
233 unsigned int idx;
234
235 KASSERT(pp->pr_roflags & PR_NOTOUCH);
236 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
237 KASSERT(idx < pp->pr_itemsperpage);
238 return idx;
239 }
240
241 static inline void
242 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
243 void *obj)
244 {
245 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
246 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
247 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
248
249 KASSERT((*bitmap & mask) == 0);
250 *bitmap |= mask;
251 }
252
253 static inline void *
254 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
255 {
256 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
257 unsigned int idx;
258 int i;
259
260 for (i = 0; ; i++) {
261 int bit;
262
263 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
264 bit = ffs32(bitmap[i]);
265 if (bit) {
266 pool_item_bitmap_t mask;
267
268 bit--;
269 idx = (i * BITMAP_SIZE) + bit;
270 mask = 1 << bit;
271 KASSERT((bitmap[i] & mask) != 0);
272 bitmap[i] &= ~mask;
273 break;
274 }
275 }
276 KASSERT(idx < pp->pr_itemsperpage);
277 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
278 }
279
280 static inline void
281 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
282 {
283 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
284 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
285 int i;
286
287 for (i = 0; i < n; i++) {
288 bitmap[i] = (pool_item_bitmap_t)-1;
289 }
290 }
291
292 static inline int
293 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
294 {
295
296 /*
297 * we consider pool_item_header with smaller ph_page bigger.
298 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
299 */
300
301 if (a->ph_page < b->ph_page)
302 return (1);
303 else if (a->ph_page > b->ph_page)
304 return (-1);
305 else
306 return (0);
307 }
308
309 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
310 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
311
312 static inline struct pool_item_header *
313 pr_find_pagehead_noalign(struct pool *pp, void *v)
314 {
315 struct pool_item_header *ph, tmp;
316
317 tmp.ph_page = (void *)(uintptr_t)v;
318 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
319 if (ph == NULL) {
320 ph = SPLAY_ROOT(&pp->pr_phtree);
321 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
322 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
323 }
324 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
325 }
326
327 return ph;
328 }
329
330 /*
331 * Return the pool page header based on item address.
332 */
333 static inline struct pool_item_header *
334 pr_find_pagehead(struct pool *pp, void *v)
335 {
336 struct pool_item_header *ph, tmp;
337
338 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
339 ph = pr_find_pagehead_noalign(pp, v);
340 } else {
341 void *page =
342 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
343
344 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
345 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
346 } else {
347 tmp.ph_page = page;
348 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
349 }
350 }
351
352 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
353 ((char *)ph->ph_page <= (char *)v &&
354 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
355 return ph;
356 }
357
358 static void
359 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
360 {
361 struct pool_item_header *ph;
362
363 while ((ph = LIST_FIRST(pq)) != NULL) {
364 LIST_REMOVE(ph, ph_pagelist);
365 pool_allocator_free(pp, ph->ph_page);
366 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
367 pool_put(pp->pr_phpool, ph);
368 }
369 }
370
371 /*
372 * Remove a page from the pool.
373 */
374 static inline void
375 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
376 struct pool_pagelist *pq)
377 {
378
379 KASSERT(mutex_owned(&pp->pr_lock));
380
381 /*
382 * If the page was idle, decrement the idle page count.
383 */
384 if (ph->ph_nmissing == 0) {
385 KASSERT(pp->pr_nidle != 0);
386 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
387 "nitems=%u < itemsperpage=%u",
388 pp->pr_nitems, pp->pr_itemsperpage);
389 pp->pr_nidle--;
390 }
391
392 pp->pr_nitems -= pp->pr_itemsperpage;
393
394 /*
395 * Unlink the page from the pool and queue it for release.
396 */
397 LIST_REMOVE(ph, ph_pagelist);
398 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
399 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
400 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
401
402 pp->pr_npages--;
403 pp->pr_npagefree++;
404
405 pool_update_curpage(pp);
406 }
407
408 /*
409 * Initialize all the pools listed in the "pools" link set.
410 */
411 void
412 pool_subsystem_init(void)
413 {
414 size_t size;
415 int idx;
416
417 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
418 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
419 cv_init(&pool_busy, "poolbusy");
420
421 /*
422 * Initialize private page header pool and cache magazine pool if we
423 * haven't done so yet.
424 */
425 for (idx = 0; idx < PHPOOL_MAX; idx++) {
426 static char phpool_names[PHPOOL_MAX][6+1+6+1];
427 int nelem;
428 size_t sz;
429
430 nelem = PHPOOL_FREELIST_NELEM(idx);
431 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
432 "phpool-%d", nelem);
433 sz = sizeof(struct pool_item_header);
434 if (nelem) {
435 sz = offsetof(struct pool_item_header,
436 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
437 }
438 pool_init(&phpool[idx], sz, 0, 0, 0,
439 phpool_names[idx], &pool_allocator_meta, IPL_VM);
440 }
441 #ifdef POOL_SUBPAGE
442 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
443 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
444 #endif
445
446 size = sizeof(pcg_t) +
447 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
448 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
449 "pcgnormal", &pool_allocator_meta, IPL_VM);
450
451 size = sizeof(pcg_t) +
452 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
453 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
454 "pcglarge", &pool_allocator_meta, IPL_VM);
455
456 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
457 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
458
459 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
460 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
461 }
462
463 /*
464 * Initialize the given pool resource structure.
465 *
466 * We export this routine to allow other kernel parts to declare
467 * static pools that must be initialized before kmem(9) is available.
468 */
469 void
470 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
471 const char *wchan, struct pool_allocator *palloc, int ipl)
472 {
473 struct pool *pp1;
474 size_t trysize, phsize, prsize;
475 int off, slack;
476
477 #ifdef DEBUG
478 if (__predict_true(!cold))
479 mutex_enter(&pool_head_lock);
480 /*
481 * Check that the pool hasn't already been initialised and
482 * added to the list of all pools.
483 */
484 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
485 if (pp == pp1)
486 panic("pool_init: pool %s already initialised",
487 wchan);
488 }
489 if (__predict_true(!cold))
490 mutex_exit(&pool_head_lock);
491 #endif
492
493 if (palloc == NULL)
494 palloc = &pool_allocator_kmem;
495 #ifdef POOL_SUBPAGE
496 if (size > palloc->pa_pagesz) {
497 if (palloc == &pool_allocator_kmem)
498 palloc = &pool_allocator_kmem_fullpage;
499 else if (palloc == &pool_allocator_nointr)
500 palloc = &pool_allocator_nointr_fullpage;
501 }
502 #endif /* POOL_SUBPAGE */
503 if (!cold)
504 mutex_enter(&pool_allocator_lock);
505 if (palloc->pa_refcnt++ == 0) {
506 if (palloc->pa_pagesz == 0)
507 palloc->pa_pagesz = PAGE_SIZE;
508
509 TAILQ_INIT(&palloc->pa_list);
510
511 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
512 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
513 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
514 }
515 if (!cold)
516 mutex_exit(&pool_allocator_lock);
517
518 if (align == 0)
519 align = ALIGN(1);
520
521 prsize = size;
522 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
523 prsize = sizeof(struct pool_item);
524
525 prsize = roundup(prsize, align);
526 KASSERTMSG((prsize <= palloc->pa_pagesz),
527 "pool_init: pool item size (%zu) larger than page size (%u)",
528 prsize, palloc->pa_pagesz);
529
530 /*
531 * Initialize the pool structure.
532 */
533 LIST_INIT(&pp->pr_emptypages);
534 LIST_INIT(&pp->pr_fullpages);
535 LIST_INIT(&pp->pr_partpages);
536 pp->pr_cache = NULL;
537 pp->pr_curpage = NULL;
538 pp->pr_npages = 0;
539 pp->pr_minitems = 0;
540 pp->pr_minpages = 0;
541 pp->pr_maxpages = UINT_MAX;
542 pp->pr_roflags = flags;
543 pp->pr_flags = 0;
544 pp->pr_size = prsize;
545 pp->pr_align = align;
546 pp->pr_wchan = wchan;
547 pp->pr_alloc = palloc;
548 pp->pr_nitems = 0;
549 pp->pr_nout = 0;
550 pp->pr_hardlimit = UINT_MAX;
551 pp->pr_hardlimit_warning = NULL;
552 pp->pr_hardlimit_ratecap.tv_sec = 0;
553 pp->pr_hardlimit_ratecap.tv_usec = 0;
554 pp->pr_hardlimit_warning_last.tv_sec = 0;
555 pp->pr_hardlimit_warning_last.tv_usec = 0;
556 pp->pr_drain_hook = NULL;
557 pp->pr_drain_hook_arg = NULL;
558 pp->pr_freecheck = NULL;
559 pool_redzone_init(pp, size);
560
561 /*
562 * Decide whether to put the page header off page to avoid
563 * wasting too large a part of the page or too big item.
564 * Off-page page headers go on a hash table, so we can match
565 * a returned item with its header based on the page address.
566 * We use 1/16 of the page size and about 8 times of the item
567 * size as the threshold (XXX: tune)
568 *
569 * However, we'll put the header into the page if we can put
570 * it without wasting any items.
571 *
572 * Silently enforce `0 <= ioff < align'.
573 */
574 pp->pr_itemoffset = ioff %= align;
575 /* See the comment below about reserved bytes. */
576 trysize = palloc->pa_pagesz - ((align - ioff) % align);
577 phsize = ALIGN(sizeof(struct pool_item_header));
578 if (pp->pr_roflags & PR_PHINPAGE ||
579 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
580 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
581 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
582 /* Use the end of the page for the page header */
583 pp->pr_roflags |= PR_PHINPAGE;
584 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
585 } else {
586 /* The page header will be taken from our page header pool */
587 pp->pr_phoffset = 0;
588 off = palloc->pa_pagesz;
589 SPLAY_INIT(&pp->pr_phtree);
590 }
591
592 /*
593 * Alignment is to take place at `ioff' within the item. This means
594 * we must reserve up to `align - 1' bytes on the page to allow
595 * appropriate positioning of each item.
596 */
597 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
598 KASSERT(pp->pr_itemsperpage != 0);
599 if ((pp->pr_roflags & PR_NOTOUCH)) {
600 int idx;
601
602 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
603 idx++) {
604 /* nothing */
605 }
606 if (idx >= PHPOOL_MAX) {
607 /*
608 * if you see this panic, consider to tweak
609 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
610 */
611 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
612 pp->pr_wchan, pp->pr_itemsperpage);
613 }
614 pp->pr_phpool = &phpool[idx];
615 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
616 pp->pr_phpool = &phpool[0];
617 }
618 #if defined(DIAGNOSTIC)
619 else {
620 pp->pr_phpool = NULL;
621 }
622 #endif
623
624 /*
625 * Use the slack between the chunks and the page header
626 * for "cache coloring".
627 */
628 slack = off - pp->pr_itemsperpage * pp->pr_size;
629 pp->pr_maxcolor = (slack / align) * align;
630 pp->pr_curcolor = 0;
631
632 pp->pr_nget = 0;
633 pp->pr_nfail = 0;
634 pp->pr_nput = 0;
635 pp->pr_npagealloc = 0;
636 pp->pr_npagefree = 0;
637 pp->pr_hiwat = 0;
638 pp->pr_nidle = 0;
639 pp->pr_refcnt = 0;
640
641 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
642 cv_init(&pp->pr_cv, wchan);
643 pp->pr_ipl = ipl;
644
645 /* Insert into the list of all pools. */
646 if (!cold)
647 mutex_enter(&pool_head_lock);
648 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
649 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
650 break;
651 }
652 if (pp1 == NULL)
653 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
654 else
655 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
656 if (!cold)
657 mutex_exit(&pool_head_lock);
658
659 /* Insert this into the list of pools using this allocator. */
660 if (!cold)
661 mutex_enter(&palloc->pa_lock);
662 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
663 if (!cold)
664 mutex_exit(&palloc->pa_lock);
665 }
666
667 /*
668 * De-commision a pool resource.
669 */
670 void
671 pool_destroy(struct pool *pp)
672 {
673 struct pool_pagelist pq;
674 struct pool_item_header *ph;
675
676 /* Remove from global pool list */
677 mutex_enter(&pool_head_lock);
678 while (pp->pr_refcnt != 0)
679 cv_wait(&pool_busy, &pool_head_lock);
680 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
681 if (drainpp == pp)
682 drainpp = NULL;
683 mutex_exit(&pool_head_lock);
684
685 /* Remove this pool from its allocator's list of pools. */
686 mutex_enter(&pp->pr_alloc->pa_lock);
687 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
688 mutex_exit(&pp->pr_alloc->pa_lock);
689
690 mutex_enter(&pool_allocator_lock);
691 if (--pp->pr_alloc->pa_refcnt == 0)
692 mutex_destroy(&pp->pr_alloc->pa_lock);
693 mutex_exit(&pool_allocator_lock);
694
695 mutex_enter(&pp->pr_lock);
696
697 KASSERT(pp->pr_cache == NULL);
698 KASSERTMSG((pp->pr_nout == 0),
699 "pool_destroy: pool busy: still out: %u", pp->pr_nout);
700 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
701 KASSERT(LIST_EMPTY(&pp->pr_partpages));
702
703 /* Remove all pages */
704 LIST_INIT(&pq);
705 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
706 pr_rmpage(pp, ph, &pq);
707
708 mutex_exit(&pp->pr_lock);
709
710 pr_pagelist_free(pp, &pq);
711 cv_destroy(&pp->pr_cv);
712 mutex_destroy(&pp->pr_lock);
713 }
714
715 void
716 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
717 {
718
719 /* XXX no locking -- must be used just after pool_init() */
720 KASSERTMSG((pp->pr_drain_hook == NULL),
721 "pool_set_drain_hook(%s): already set", pp->pr_wchan);
722 pp->pr_drain_hook = fn;
723 pp->pr_drain_hook_arg = arg;
724 }
725
726 static struct pool_item_header *
727 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
728 {
729 struct pool_item_header *ph;
730
731 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
732 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
733 else
734 ph = pool_get(pp->pr_phpool, flags);
735
736 return (ph);
737 }
738
739 /*
740 * Grab an item from the pool.
741 */
742 void *
743 pool_get(struct pool *pp, int flags)
744 {
745 struct pool_item *pi;
746 struct pool_item_header *ph;
747 void *v;
748
749 KASSERTMSG((pp->pr_itemsperpage != 0),
750 "pool_get: pool '%s': pr_itemsperpage is zero, "
751 "pool not initialized?", pp->pr_wchan);
752 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
753 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
754 "pool '%s' is IPL_NONE, but called from interrupt context",
755 pp->pr_wchan);
756 if (flags & PR_WAITOK) {
757 ASSERT_SLEEPABLE();
758 }
759
760 mutex_enter(&pp->pr_lock);
761 startover:
762 /*
763 * Check to see if we've reached the hard limit. If we have,
764 * and we can wait, then wait until an item has been returned to
765 * the pool.
766 */
767 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
768 "pool_get: %s: crossed hard limit", pp->pr_wchan);
769 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
770 if (pp->pr_drain_hook != NULL) {
771 /*
772 * Since the drain hook is going to free things
773 * back to the pool, unlock, call the hook, re-lock,
774 * and check the hardlimit condition again.
775 */
776 mutex_exit(&pp->pr_lock);
777 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
778 mutex_enter(&pp->pr_lock);
779 if (pp->pr_nout < pp->pr_hardlimit)
780 goto startover;
781 }
782
783 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
784 /*
785 * XXX: A warning isn't logged in this case. Should
786 * it be?
787 */
788 pp->pr_flags |= PR_WANTED;
789 cv_wait(&pp->pr_cv, &pp->pr_lock);
790 goto startover;
791 }
792
793 /*
794 * Log a message that the hard limit has been hit.
795 */
796 if (pp->pr_hardlimit_warning != NULL &&
797 ratecheck(&pp->pr_hardlimit_warning_last,
798 &pp->pr_hardlimit_ratecap))
799 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
800
801 pp->pr_nfail++;
802
803 mutex_exit(&pp->pr_lock);
804 return (NULL);
805 }
806
807 /*
808 * The convention we use is that if `curpage' is not NULL, then
809 * it points at a non-empty bucket. In particular, `curpage'
810 * never points at a page header which has PR_PHINPAGE set and
811 * has no items in its bucket.
812 */
813 if ((ph = pp->pr_curpage) == NULL) {
814 int error;
815
816 KASSERTMSG((pp->pr_nitems == 0),
817 "pool_get: nitems inconsistent"
818 ": %s: curpage NULL, nitems %u",
819 pp->pr_wchan, pp->pr_nitems);
820
821 /*
822 * Call the back-end page allocator for more memory.
823 * Release the pool lock, as the back-end page allocator
824 * may block.
825 */
826 error = pool_grow(pp, flags);
827 if (error != 0) {
828 /*
829 * We were unable to allocate a page or item
830 * header, but we released the lock during
831 * allocation, so perhaps items were freed
832 * back to the pool. Check for this case.
833 */
834 if (pp->pr_curpage != NULL)
835 goto startover;
836
837 pp->pr_nfail++;
838 mutex_exit(&pp->pr_lock);
839 return (NULL);
840 }
841
842 /* Start the allocation process over. */
843 goto startover;
844 }
845 if (pp->pr_roflags & PR_NOTOUCH) {
846 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
847 "pool_get: %s: page empty", pp->pr_wchan);
848 v = pr_item_notouch_get(pp, ph);
849 } else {
850 v = pi = LIST_FIRST(&ph->ph_itemlist);
851 if (__predict_false(v == NULL)) {
852 mutex_exit(&pp->pr_lock);
853 panic("pool_get: %s: page empty", pp->pr_wchan);
854 }
855 KASSERTMSG((pp->pr_nitems > 0),
856 "pool_get: nitems inconsistent"
857 ": %s: items on itemlist, nitems %u",
858 pp->pr_wchan, pp->pr_nitems);
859 KASSERTMSG((pi->pi_magic == PI_MAGIC),
860 "pool_get(%s): free list modified: "
861 "magic=%x; page %p; item addr %p",
862 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
863
864 /*
865 * Remove from item list.
866 */
867 LIST_REMOVE(pi, pi_list);
868 }
869 pp->pr_nitems--;
870 pp->pr_nout++;
871 if (ph->ph_nmissing == 0) {
872 KASSERT(pp->pr_nidle > 0);
873 pp->pr_nidle--;
874
875 /*
876 * This page was previously empty. Move it to the list of
877 * partially-full pages. This page is already curpage.
878 */
879 LIST_REMOVE(ph, ph_pagelist);
880 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
881 }
882 ph->ph_nmissing++;
883 if (ph->ph_nmissing == pp->pr_itemsperpage) {
884 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
885 LIST_EMPTY(&ph->ph_itemlist)),
886 "pool_get: %s: nmissing inconsistent", pp->pr_wchan);
887 /*
888 * This page is now full. Move it to the full list
889 * and select a new current page.
890 */
891 LIST_REMOVE(ph, ph_pagelist);
892 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
893 pool_update_curpage(pp);
894 }
895
896 pp->pr_nget++;
897
898 /*
899 * If we have a low water mark and we are now below that low
900 * water mark, add more items to the pool.
901 */
902 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
903 /*
904 * XXX: Should we log a warning? Should we set up a timeout
905 * to try again in a second or so? The latter could break
906 * a caller's assumptions about interrupt protection, etc.
907 */
908 }
909
910 mutex_exit(&pp->pr_lock);
911 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
912 FREECHECK_OUT(&pp->pr_freecheck, v);
913 pool_redzone_fill(pp, v);
914 return (v);
915 }
916
917 /*
918 * Internal version of pool_put(). Pool is already locked/entered.
919 */
920 static void
921 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
922 {
923 struct pool_item *pi = v;
924 struct pool_item_header *ph;
925
926 KASSERT(mutex_owned(&pp->pr_lock));
927 pool_redzone_check(pp, v);
928 FREECHECK_IN(&pp->pr_freecheck, v);
929 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
930
931 KASSERTMSG((pp->pr_nout > 0),
932 "pool_put: pool %s: putting with none out", pp->pr_wchan);
933
934 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
935 panic("pool_put: %s: page header missing", pp->pr_wchan);
936 }
937
938 /*
939 * Return to item list.
940 */
941 if (pp->pr_roflags & PR_NOTOUCH) {
942 pr_item_notouch_put(pp, ph, v);
943 } else {
944 #ifdef DIAGNOSTIC
945 pi->pi_magic = PI_MAGIC;
946 #endif
947 #ifdef DEBUG
948 {
949 int i, *ip = v;
950
951 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
952 *ip++ = PI_MAGIC;
953 }
954 }
955 #endif
956
957 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
958 }
959 KDASSERT(ph->ph_nmissing != 0);
960 ph->ph_nmissing--;
961 pp->pr_nput++;
962 pp->pr_nitems++;
963 pp->pr_nout--;
964
965 /* Cancel "pool empty" condition if it exists */
966 if (pp->pr_curpage == NULL)
967 pp->pr_curpage = ph;
968
969 if (pp->pr_flags & PR_WANTED) {
970 pp->pr_flags &= ~PR_WANTED;
971 cv_broadcast(&pp->pr_cv);
972 }
973
974 /*
975 * If this page is now empty, do one of two things:
976 *
977 * (1) If we have more pages than the page high water mark,
978 * free the page back to the system. ONLY CONSIDER
979 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
980 * CLAIM.
981 *
982 * (2) Otherwise, move the page to the empty page list.
983 *
984 * Either way, select a new current page (so we use a partially-full
985 * page if one is available).
986 */
987 if (ph->ph_nmissing == 0) {
988 pp->pr_nidle++;
989 if (pp->pr_npages > pp->pr_minpages &&
990 pp->pr_npages > pp->pr_maxpages) {
991 pr_rmpage(pp, ph, pq);
992 } else {
993 LIST_REMOVE(ph, ph_pagelist);
994 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
995
996 /*
997 * Update the timestamp on the page. A page must
998 * be idle for some period of time before it can
999 * be reclaimed by the pagedaemon. This minimizes
1000 * ping-pong'ing for memory.
1001 *
1002 * note for 64-bit time_t: truncating to 32-bit is not
1003 * a problem for our usage.
1004 */
1005 ph->ph_time = time_uptime;
1006 }
1007 pool_update_curpage(pp);
1008 }
1009
1010 /*
1011 * If the page was previously completely full, move it to the
1012 * partially-full list and make it the current page. The next
1013 * allocation will get the item from this page, instead of
1014 * further fragmenting the pool.
1015 */
1016 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1017 LIST_REMOVE(ph, ph_pagelist);
1018 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1019 pp->pr_curpage = ph;
1020 }
1021 }
1022
1023 void
1024 pool_put(struct pool *pp, void *v)
1025 {
1026 struct pool_pagelist pq;
1027
1028 LIST_INIT(&pq);
1029
1030 mutex_enter(&pp->pr_lock);
1031 pool_do_put(pp, v, &pq);
1032 mutex_exit(&pp->pr_lock);
1033
1034 pr_pagelist_free(pp, &pq);
1035 }
1036
1037 /*
1038 * pool_grow: grow a pool by a page.
1039 *
1040 * => called with pool locked.
1041 * => unlock and relock the pool.
1042 * => return with pool locked.
1043 */
1044
1045 static int
1046 pool_grow(struct pool *pp, int flags)
1047 {
1048 struct pool_item_header *ph = NULL;
1049 char *cp;
1050
1051 mutex_exit(&pp->pr_lock);
1052 cp = pool_allocator_alloc(pp, flags);
1053 if (__predict_true(cp != NULL)) {
1054 ph = pool_alloc_item_header(pp, cp, flags);
1055 }
1056 if (__predict_false(cp == NULL || ph == NULL)) {
1057 if (cp != NULL) {
1058 pool_allocator_free(pp, cp);
1059 }
1060 mutex_enter(&pp->pr_lock);
1061 return ENOMEM;
1062 }
1063
1064 mutex_enter(&pp->pr_lock);
1065 pool_prime_page(pp, cp, ph);
1066 pp->pr_npagealloc++;
1067 return 0;
1068 }
1069
1070 /*
1071 * Add N items to the pool.
1072 */
1073 int
1074 pool_prime(struct pool *pp, int n)
1075 {
1076 int newpages;
1077 int error = 0;
1078
1079 mutex_enter(&pp->pr_lock);
1080
1081 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1082
1083 while (newpages-- > 0) {
1084 error = pool_grow(pp, PR_NOWAIT);
1085 if (error) {
1086 break;
1087 }
1088 pp->pr_minpages++;
1089 }
1090
1091 if (pp->pr_minpages >= pp->pr_maxpages)
1092 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1093
1094 mutex_exit(&pp->pr_lock);
1095 return error;
1096 }
1097
1098 /*
1099 * Add a page worth of items to the pool.
1100 *
1101 * Note, we must be called with the pool descriptor LOCKED.
1102 */
1103 static void
1104 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1105 {
1106 struct pool_item *pi;
1107 void *cp = storage;
1108 const unsigned int align = pp->pr_align;
1109 const unsigned int ioff = pp->pr_itemoffset;
1110 int n;
1111
1112 KASSERT(mutex_owned(&pp->pr_lock));
1113 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1114 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1115 "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp);
1116
1117 /*
1118 * Insert page header.
1119 */
1120 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1121 LIST_INIT(&ph->ph_itemlist);
1122 ph->ph_page = storage;
1123 ph->ph_nmissing = 0;
1124 ph->ph_time = time_uptime;
1125 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1126 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1127
1128 pp->pr_nidle++;
1129
1130 /*
1131 * Color this page.
1132 */
1133 ph->ph_off = pp->pr_curcolor;
1134 cp = (char *)cp + ph->ph_off;
1135 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1136 pp->pr_curcolor = 0;
1137
1138 /*
1139 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1140 */
1141 if (ioff != 0)
1142 cp = (char *)cp + align - ioff;
1143
1144 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1145
1146 /*
1147 * Insert remaining chunks on the bucket list.
1148 */
1149 n = pp->pr_itemsperpage;
1150 pp->pr_nitems += n;
1151
1152 if (pp->pr_roflags & PR_NOTOUCH) {
1153 pr_item_notouch_init(pp, ph);
1154 } else {
1155 while (n--) {
1156 pi = (struct pool_item *)cp;
1157
1158 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1159
1160 /* Insert on page list */
1161 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1162 #ifdef DIAGNOSTIC
1163 pi->pi_magic = PI_MAGIC;
1164 #endif
1165 cp = (char *)cp + pp->pr_size;
1166
1167 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1168 }
1169 }
1170
1171 /*
1172 * If the pool was depleted, point at the new page.
1173 */
1174 if (pp->pr_curpage == NULL)
1175 pp->pr_curpage = ph;
1176
1177 if (++pp->pr_npages > pp->pr_hiwat)
1178 pp->pr_hiwat = pp->pr_npages;
1179 }
1180
1181 /*
1182 * Used by pool_get() when nitems drops below the low water mark. This
1183 * is used to catch up pr_nitems with the low water mark.
1184 *
1185 * Note 1, we never wait for memory here, we let the caller decide what to do.
1186 *
1187 * Note 2, we must be called with the pool already locked, and we return
1188 * with it locked.
1189 */
1190 static int
1191 pool_catchup(struct pool *pp)
1192 {
1193 int error = 0;
1194
1195 while (POOL_NEEDS_CATCHUP(pp)) {
1196 error = pool_grow(pp, PR_NOWAIT);
1197 if (error) {
1198 break;
1199 }
1200 }
1201 return error;
1202 }
1203
1204 static void
1205 pool_update_curpage(struct pool *pp)
1206 {
1207
1208 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1209 if (pp->pr_curpage == NULL) {
1210 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1211 }
1212 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1213 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1214 }
1215
1216 void
1217 pool_setlowat(struct pool *pp, int n)
1218 {
1219
1220 mutex_enter(&pp->pr_lock);
1221
1222 pp->pr_minitems = n;
1223 pp->pr_minpages = (n == 0)
1224 ? 0
1225 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1226
1227 /* Make sure we're caught up with the newly-set low water mark. */
1228 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1229 /*
1230 * XXX: Should we log a warning? Should we set up a timeout
1231 * to try again in a second or so? The latter could break
1232 * a caller's assumptions about interrupt protection, etc.
1233 */
1234 }
1235
1236 mutex_exit(&pp->pr_lock);
1237 }
1238
1239 void
1240 pool_sethiwat(struct pool *pp, int n)
1241 {
1242
1243 mutex_enter(&pp->pr_lock);
1244
1245 pp->pr_maxpages = (n == 0)
1246 ? 0
1247 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1248
1249 mutex_exit(&pp->pr_lock);
1250 }
1251
1252 void
1253 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1254 {
1255
1256 mutex_enter(&pp->pr_lock);
1257
1258 pp->pr_hardlimit = n;
1259 pp->pr_hardlimit_warning = warnmess;
1260 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1261 pp->pr_hardlimit_warning_last.tv_sec = 0;
1262 pp->pr_hardlimit_warning_last.tv_usec = 0;
1263
1264 /*
1265 * In-line version of pool_sethiwat(), because we don't want to
1266 * release the lock.
1267 */
1268 pp->pr_maxpages = (n == 0)
1269 ? 0
1270 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1271
1272 mutex_exit(&pp->pr_lock);
1273 }
1274
1275 /*
1276 * Release all complete pages that have not been used recently.
1277 *
1278 * Must not be called from interrupt context.
1279 */
1280 int
1281 pool_reclaim(struct pool *pp)
1282 {
1283 struct pool_item_header *ph, *phnext;
1284 struct pool_pagelist pq;
1285 uint32_t curtime;
1286 bool klock;
1287 int rv;
1288
1289 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1290
1291 if (pp->pr_drain_hook != NULL) {
1292 /*
1293 * The drain hook must be called with the pool unlocked.
1294 */
1295 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1296 }
1297
1298 /*
1299 * XXXSMP Because we do not want to cause non-MPSAFE code
1300 * to block.
1301 */
1302 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1303 pp->pr_ipl == IPL_SOFTSERIAL) {
1304 KERNEL_LOCK(1, NULL);
1305 klock = true;
1306 } else
1307 klock = false;
1308
1309 /* Reclaim items from the pool's cache (if any). */
1310 if (pp->pr_cache != NULL)
1311 pool_cache_invalidate(pp->pr_cache);
1312
1313 if (mutex_tryenter(&pp->pr_lock) == 0) {
1314 if (klock) {
1315 KERNEL_UNLOCK_ONE(NULL);
1316 }
1317 return (0);
1318 }
1319
1320 LIST_INIT(&pq);
1321
1322 curtime = time_uptime;
1323
1324 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1325 phnext = LIST_NEXT(ph, ph_pagelist);
1326
1327 /* Check our minimum page claim */
1328 if (pp->pr_npages <= pp->pr_minpages)
1329 break;
1330
1331 KASSERT(ph->ph_nmissing == 0);
1332 if (curtime - ph->ph_time < pool_inactive_time)
1333 continue;
1334
1335 /*
1336 * If freeing this page would put us below
1337 * the low water mark, stop now.
1338 */
1339 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1340 pp->pr_minitems)
1341 break;
1342
1343 pr_rmpage(pp, ph, &pq);
1344 }
1345
1346 mutex_exit(&pp->pr_lock);
1347
1348 if (LIST_EMPTY(&pq))
1349 rv = 0;
1350 else {
1351 pr_pagelist_free(pp, &pq);
1352 rv = 1;
1353 }
1354
1355 if (klock) {
1356 KERNEL_UNLOCK_ONE(NULL);
1357 }
1358
1359 return (rv);
1360 }
1361
1362 /*
1363 * Drain pools, one at a time. The drained pool is returned within ppp.
1364 *
1365 * Note, must never be called from interrupt context.
1366 */
1367 bool
1368 pool_drain(struct pool **ppp)
1369 {
1370 bool reclaimed;
1371 struct pool *pp;
1372
1373 KASSERT(!TAILQ_EMPTY(&pool_head));
1374
1375 pp = NULL;
1376
1377 /* Find next pool to drain, and add a reference. */
1378 mutex_enter(&pool_head_lock);
1379 do {
1380 if (drainpp == NULL) {
1381 drainpp = TAILQ_FIRST(&pool_head);
1382 }
1383 if (drainpp != NULL) {
1384 pp = drainpp;
1385 drainpp = TAILQ_NEXT(pp, pr_poollist);
1386 }
1387 /*
1388 * Skip completely idle pools. We depend on at least
1389 * one pool in the system being active.
1390 */
1391 } while (pp == NULL || pp->pr_npages == 0);
1392 pp->pr_refcnt++;
1393 mutex_exit(&pool_head_lock);
1394
1395 /* Drain the cache (if any) and pool.. */
1396 reclaimed = pool_reclaim(pp);
1397
1398 /* Finally, unlock the pool. */
1399 mutex_enter(&pool_head_lock);
1400 pp->pr_refcnt--;
1401 cv_broadcast(&pool_busy);
1402 mutex_exit(&pool_head_lock);
1403
1404 if (ppp != NULL)
1405 *ppp = pp;
1406
1407 return reclaimed;
1408 }
1409
1410 /*
1411 * Diagnostic helpers.
1412 */
1413
1414 void
1415 pool_printall(const char *modif, void (*pr)(const char *, ...))
1416 {
1417 struct pool *pp;
1418
1419 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1420 pool_printit(pp, modif, pr);
1421 }
1422 }
1423
1424 void
1425 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1426 {
1427
1428 if (pp == NULL) {
1429 (*pr)("Must specify a pool to print.\n");
1430 return;
1431 }
1432
1433 pool_print1(pp, modif, pr);
1434 }
1435
1436 static void
1437 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1438 void (*pr)(const char *, ...))
1439 {
1440 struct pool_item_header *ph;
1441 struct pool_item *pi __diagused;
1442
1443 LIST_FOREACH(ph, pl, ph_pagelist) {
1444 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1445 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1446 #ifdef DIAGNOSTIC
1447 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1448 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1449 if (pi->pi_magic != PI_MAGIC) {
1450 (*pr)("\t\t\titem %p, magic 0x%x\n",
1451 pi, pi->pi_magic);
1452 }
1453 }
1454 }
1455 #endif
1456 }
1457 }
1458
1459 static void
1460 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1461 {
1462 struct pool_item_header *ph;
1463 pool_cache_t pc;
1464 pcg_t *pcg;
1465 pool_cache_cpu_t *cc;
1466 uint64_t cpuhit, cpumiss;
1467 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1468 char c;
1469
1470 while ((c = *modif++) != '\0') {
1471 if (c == 'l')
1472 print_log = 1;
1473 if (c == 'p')
1474 print_pagelist = 1;
1475 if (c == 'c')
1476 print_cache = 1;
1477 }
1478
1479 if ((pc = pp->pr_cache) != NULL) {
1480 (*pr)("POOL CACHE");
1481 } else {
1482 (*pr)("POOL");
1483 }
1484
1485 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1486 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1487 pp->pr_roflags);
1488 (*pr)("\talloc %p\n", pp->pr_alloc);
1489 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1490 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1491 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1492 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1493
1494 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1495 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1496 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1497 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1498
1499 if (print_pagelist == 0)
1500 goto skip_pagelist;
1501
1502 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1503 (*pr)("\n\tempty page list:\n");
1504 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1505 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1506 (*pr)("\n\tfull page list:\n");
1507 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1508 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1509 (*pr)("\n\tpartial-page list:\n");
1510 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1511
1512 if (pp->pr_curpage == NULL)
1513 (*pr)("\tno current page\n");
1514 else
1515 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1516
1517 skip_pagelist:
1518 if (print_log == 0)
1519 goto skip_log;
1520
1521 (*pr)("\n");
1522
1523 skip_log:
1524
1525 #define PR_GROUPLIST(pcg) \
1526 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1527 for (i = 0; i < pcg->pcg_size; i++) { \
1528 if (pcg->pcg_objects[i].pcgo_pa != \
1529 POOL_PADDR_INVALID) { \
1530 (*pr)("\t\t\t%p, 0x%llx\n", \
1531 pcg->pcg_objects[i].pcgo_va, \
1532 (unsigned long long) \
1533 pcg->pcg_objects[i].pcgo_pa); \
1534 } else { \
1535 (*pr)("\t\t\t%p\n", \
1536 pcg->pcg_objects[i].pcgo_va); \
1537 } \
1538 }
1539
1540 if (pc != NULL) {
1541 cpuhit = 0;
1542 cpumiss = 0;
1543 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1544 if ((cc = pc->pc_cpus[i]) == NULL)
1545 continue;
1546 cpuhit += cc->cc_hits;
1547 cpumiss += cc->cc_misses;
1548 }
1549 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1550 (*pr)("\tcache layer hits %llu misses %llu\n",
1551 pc->pc_hits, pc->pc_misses);
1552 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1553 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1554 pc->pc_contended);
1555 (*pr)("\tcache layer empty groups %u full groups %u\n",
1556 pc->pc_nempty, pc->pc_nfull);
1557 if (print_cache) {
1558 (*pr)("\tfull cache groups:\n");
1559 for (pcg = pc->pc_fullgroups; pcg != NULL;
1560 pcg = pcg->pcg_next) {
1561 PR_GROUPLIST(pcg);
1562 }
1563 (*pr)("\tempty cache groups:\n");
1564 for (pcg = pc->pc_emptygroups; pcg != NULL;
1565 pcg = pcg->pcg_next) {
1566 PR_GROUPLIST(pcg);
1567 }
1568 }
1569 }
1570 #undef PR_GROUPLIST
1571 }
1572
1573 static int
1574 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1575 {
1576 struct pool_item *pi;
1577 void *page;
1578 int n;
1579
1580 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1581 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1582 if (page != ph->ph_page &&
1583 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1584 if (label != NULL)
1585 printf("%s: ", label);
1586 printf("pool(%p:%s): page inconsistency: page %p;"
1587 " at page head addr %p (p %p)\n", pp,
1588 pp->pr_wchan, ph->ph_page,
1589 ph, page);
1590 return 1;
1591 }
1592 }
1593
1594 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1595 return 0;
1596
1597 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1598 pi != NULL;
1599 pi = LIST_NEXT(pi,pi_list), n++) {
1600
1601 #ifdef DIAGNOSTIC
1602 if (pi->pi_magic != PI_MAGIC) {
1603 if (label != NULL)
1604 printf("%s: ", label);
1605 printf("pool(%s): free list modified: magic=%x;"
1606 " page %p; item ordinal %d; addr %p\n",
1607 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1608 n, pi);
1609 panic("pool");
1610 }
1611 #endif
1612 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1613 continue;
1614 }
1615 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1616 if (page == ph->ph_page)
1617 continue;
1618
1619 if (label != NULL)
1620 printf("%s: ", label);
1621 printf("pool(%p:%s): page inconsistency: page %p;"
1622 " item ordinal %d; addr %p (p %p)\n", pp,
1623 pp->pr_wchan, ph->ph_page,
1624 n, pi, page);
1625 return 1;
1626 }
1627 return 0;
1628 }
1629
1630
1631 int
1632 pool_chk(struct pool *pp, const char *label)
1633 {
1634 struct pool_item_header *ph;
1635 int r = 0;
1636
1637 mutex_enter(&pp->pr_lock);
1638 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1639 r = pool_chk_page(pp, label, ph);
1640 if (r) {
1641 goto out;
1642 }
1643 }
1644 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1645 r = pool_chk_page(pp, label, ph);
1646 if (r) {
1647 goto out;
1648 }
1649 }
1650 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1651 r = pool_chk_page(pp, label, ph);
1652 if (r) {
1653 goto out;
1654 }
1655 }
1656
1657 out:
1658 mutex_exit(&pp->pr_lock);
1659 return (r);
1660 }
1661
1662 /*
1663 * pool_cache_init:
1664 *
1665 * Initialize a pool cache.
1666 */
1667 pool_cache_t
1668 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1669 const char *wchan, struct pool_allocator *palloc, int ipl,
1670 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1671 {
1672 pool_cache_t pc;
1673
1674 pc = pool_get(&cache_pool, PR_WAITOK);
1675 if (pc == NULL)
1676 return NULL;
1677
1678 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1679 palloc, ipl, ctor, dtor, arg);
1680
1681 return pc;
1682 }
1683
1684 /*
1685 * pool_cache_bootstrap:
1686 *
1687 * Kernel-private version of pool_cache_init(). The caller
1688 * provides initial storage.
1689 */
1690 void
1691 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1692 u_int align_offset, u_int flags, const char *wchan,
1693 struct pool_allocator *palloc, int ipl,
1694 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1695 void *arg)
1696 {
1697 CPU_INFO_ITERATOR cii;
1698 pool_cache_t pc1;
1699 struct cpu_info *ci;
1700 struct pool *pp;
1701
1702 pp = &pc->pc_pool;
1703 if (palloc == NULL && ipl == IPL_NONE)
1704 palloc = &pool_allocator_nointr;
1705 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1706 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1707
1708 if (ctor == NULL) {
1709 ctor = (int (*)(void *, void *, int))nullop;
1710 }
1711 if (dtor == NULL) {
1712 dtor = (void (*)(void *, void *))nullop;
1713 }
1714
1715 pc->pc_emptygroups = NULL;
1716 pc->pc_fullgroups = NULL;
1717 pc->pc_partgroups = NULL;
1718 pc->pc_ctor = ctor;
1719 pc->pc_dtor = dtor;
1720 pc->pc_arg = arg;
1721 pc->pc_hits = 0;
1722 pc->pc_misses = 0;
1723 pc->pc_nempty = 0;
1724 pc->pc_npart = 0;
1725 pc->pc_nfull = 0;
1726 pc->pc_contended = 0;
1727 pc->pc_refcnt = 0;
1728 pc->pc_freecheck = NULL;
1729
1730 if ((flags & PR_LARGECACHE) != 0) {
1731 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1732 pc->pc_pcgpool = &pcg_large_pool;
1733 } else {
1734 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1735 pc->pc_pcgpool = &pcg_normal_pool;
1736 }
1737
1738 /* Allocate per-CPU caches. */
1739 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1740 pc->pc_ncpu = 0;
1741 if (ncpu < 2) {
1742 /* XXX For sparc: boot CPU is not attached yet. */
1743 pool_cache_cpu_init1(curcpu(), pc);
1744 } else {
1745 for (CPU_INFO_FOREACH(cii, ci)) {
1746 pool_cache_cpu_init1(ci, pc);
1747 }
1748 }
1749
1750 /* Add to list of all pools. */
1751 if (__predict_true(!cold))
1752 mutex_enter(&pool_head_lock);
1753 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1754 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1755 break;
1756 }
1757 if (pc1 == NULL)
1758 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1759 else
1760 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1761 if (__predict_true(!cold))
1762 mutex_exit(&pool_head_lock);
1763
1764 membar_sync();
1765 pp->pr_cache = pc;
1766 }
1767
1768 /*
1769 * pool_cache_destroy:
1770 *
1771 * Destroy a pool cache.
1772 */
1773 void
1774 pool_cache_destroy(pool_cache_t pc)
1775 {
1776
1777 pool_cache_bootstrap_destroy(pc);
1778 pool_put(&cache_pool, pc);
1779 }
1780
1781 /*
1782 * pool_cache_bootstrap_destroy:
1783 *
1784 * Destroy a pool cache.
1785 */
1786 void
1787 pool_cache_bootstrap_destroy(pool_cache_t pc)
1788 {
1789 struct pool *pp = &pc->pc_pool;
1790 u_int i;
1791
1792 /* Remove it from the global list. */
1793 mutex_enter(&pool_head_lock);
1794 while (pc->pc_refcnt != 0)
1795 cv_wait(&pool_busy, &pool_head_lock);
1796 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1797 mutex_exit(&pool_head_lock);
1798
1799 /* First, invalidate the entire cache. */
1800 pool_cache_invalidate(pc);
1801
1802 /* Disassociate it from the pool. */
1803 mutex_enter(&pp->pr_lock);
1804 pp->pr_cache = NULL;
1805 mutex_exit(&pp->pr_lock);
1806
1807 /* Destroy per-CPU data */
1808 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1809 pool_cache_invalidate_cpu(pc, i);
1810
1811 /* Finally, destroy it. */
1812 mutex_destroy(&pc->pc_lock);
1813 pool_destroy(pp);
1814 }
1815
1816 /*
1817 * pool_cache_cpu_init1:
1818 *
1819 * Called for each pool_cache whenever a new CPU is attached.
1820 */
1821 static void
1822 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1823 {
1824 pool_cache_cpu_t *cc;
1825 int index;
1826
1827 index = ci->ci_index;
1828
1829 KASSERT(index < __arraycount(pc->pc_cpus));
1830
1831 if ((cc = pc->pc_cpus[index]) != NULL) {
1832 KASSERT(cc->cc_cpuindex == index);
1833 return;
1834 }
1835
1836 /*
1837 * The first CPU is 'free'. This needs to be the case for
1838 * bootstrap - we may not be able to allocate yet.
1839 */
1840 if (pc->pc_ncpu == 0) {
1841 cc = &pc->pc_cpu0;
1842 pc->pc_ncpu = 1;
1843 } else {
1844 mutex_enter(&pc->pc_lock);
1845 pc->pc_ncpu++;
1846 mutex_exit(&pc->pc_lock);
1847 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1848 }
1849
1850 cc->cc_ipl = pc->pc_pool.pr_ipl;
1851 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1852 cc->cc_cache = pc;
1853 cc->cc_cpuindex = index;
1854 cc->cc_hits = 0;
1855 cc->cc_misses = 0;
1856 cc->cc_current = __UNCONST(&pcg_dummy);
1857 cc->cc_previous = __UNCONST(&pcg_dummy);
1858
1859 pc->pc_cpus[index] = cc;
1860 }
1861
1862 /*
1863 * pool_cache_cpu_init:
1864 *
1865 * Called whenever a new CPU is attached.
1866 */
1867 void
1868 pool_cache_cpu_init(struct cpu_info *ci)
1869 {
1870 pool_cache_t pc;
1871
1872 mutex_enter(&pool_head_lock);
1873 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1874 pc->pc_refcnt++;
1875 mutex_exit(&pool_head_lock);
1876
1877 pool_cache_cpu_init1(ci, pc);
1878
1879 mutex_enter(&pool_head_lock);
1880 pc->pc_refcnt--;
1881 cv_broadcast(&pool_busy);
1882 }
1883 mutex_exit(&pool_head_lock);
1884 }
1885
1886 /*
1887 * pool_cache_reclaim:
1888 *
1889 * Reclaim memory from a pool cache.
1890 */
1891 bool
1892 pool_cache_reclaim(pool_cache_t pc)
1893 {
1894
1895 return pool_reclaim(&pc->pc_pool);
1896 }
1897
1898 static void
1899 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1900 {
1901
1902 (*pc->pc_dtor)(pc->pc_arg, object);
1903 pool_put(&pc->pc_pool, object);
1904 }
1905
1906 /*
1907 * pool_cache_destruct_object:
1908 *
1909 * Force destruction of an object and its release back into
1910 * the pool.
1911 */
1912 void
1913 pool_cache_destruct_object(pool_cache_t pc, void *object)
1914 {
1915
1916 FREECHECK_IN(&pc->pc_freecheck, object);
1917
1918 pool_cache_destruct_object1(pc, object);
1919 }
1920
1921 /*
1922 * pool_cache_invalidate_groups:
1923 *
1924 * Invalidate a chain of groups and destruct all objects.
1925 */
1926 static void
1927 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1928 {
1929 void *object;
1930 pcg_t *next;
1931 int i;
1932
1933 for (; pcg != NULL; pcg = next) {
1934 next = pcg->pcg_next;
1935
1936 for (i = 0; i < pcg->pcg_avail; i++) {
1937 object = pcg->pcg_objects[i].pcgo_va;
1938 pool_cache_destruct_object1(pc, object);
1939 }
1940
1941 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
1942 pool_put(&pcg_large_pool, pcg);
1943 } else {
1944 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
1945 pool_put(&pcg_normal_pool, pcg);
1946 }
1947 }
1948 }
1949
1950 /*
1951 * pool_cache_invalidate:
1952 *
1953 * Invalidate a pool cache (destruct and release all of the
1954 * cached objects). Does not reclaim objects from the pool.
1955 *
1956 * Note: For pool caches that provide constructed objects, there
1957 * is an assumption that another level of synchronization is occurring
1958 * between the input to the constructor and the cache invalidation.
1959 *
1960 * Invalidation is a costly process and should not be called from
1961 * interrupt context.
1962 */
1963 void
1964 pool_cache_invalidate(pool_cache_t pc)
1965 {
1966 uint64_t where;
1967 pcg_t *full, *empty, *part;
1968
1969 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1970
1971 if (ncpu < 2 || !mp_online) {
1972 /*
1973 * We might be called early enough in the boot process
1974 * for the CPU data structures to not be fully initialized.
1975 * In this case, transfer the content of the local CPU's
1976 * cache back into global cache as only this CPU is currently
1977 * running.
1978 */
1979 pool_cache_transfer(pc);
1980 } else {
1981 /*
1982 * Signal all CPUs that they must transfer their local
1983 * cache back to the global pool then wait for the xcall to
1984 * complete.
1985 */
1986 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
1987 pc, NULL);
1988 xc_wait(where);
1989 }
1990
1991 /* Empty pool caches, then invalidate objects */
1992 mutex_enter(&pc->pc_lock);
1993 full = pc->pc_fullgroups;
1994 empty = pc->pc_emptygroups;
1995 part = pc->pc_partgroups;
1996 pc->pc_fullgroups = NULL;
1997 pc->pc_emptygroups = NULL;
1998 pc->pc_partgroups = NULL;
1999 pc->pc_nfull = 0;
2000 pc->pc_nempty = 0;
2001 pc->pc_npart = 0;
2002 mutex_exit(&pc->pc_lock);
2003
2004 pool_cache_invalidate_groups(pc, full);
2005 pool_cache_invalidate_groups(pc, empty);
2006 pool_cache_invalidate_groups(pc, part);
2007 }
2008
2009 /*
2010 * pool_cache_invalidate_cpu:
2011 *
2012 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2013 * identified by its associated index.
2014 * It is caller's responsibility to ensure that no operation is
2015 * taking place on this pool cache while doing this invalidation.
2016 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2017 * pool cached objects from a CPU different from the one currently running
2018 * may result in an undefined behaviour.
2019 */
2020 static void
2021 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2022 {
2023 pool_cache_cpu_t *cc;
2024 pcg_t *pcg;
2025
2026 if ((cc = pc->pc_cpus[index]) == NULL)
2027 return;
2028
2029 if ((pcg = cc->cc_current) != &pcg_dummy) {
2030 pcg->pcg_next = NULL;
2031 pool_cache_invalidate_groups(pc, pcg);
2032 }
2033 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2034 pcg->pcg_next = NULL;
2035 pool_cache_invalidate_groups(pc, pcg);
2036 }
2037 if (cc != &pc->pc_cpu0)
2038 pool_put(&cache_cpu_pool, cc);
2039
2040 }
2041
2042 void
2043 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2044 {
2045
2046 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2047 }
2048
2049 void
2050 pool_cache_setlowat(pool_cache_t pc, int n)
2051 {
2052
2053 pool_setlowat(&pc->pc_pool, n);
2054 }
2055
2056 void
2057 pool_cache_sethiwat(pool_cache_t pc, int n)
2058 {
2059
2060 pool_sethiwat(&pc->pc_pool, n);
2061 }
2062
2063 void
2064 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2065 {
2066
2067 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2068 }
2069
2070 static bool __noinline
2071 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2072 paddr_t *pap, int flags)
2073 {
2074 pcg_t *pcg, *cur;
2075 uint64_t ncsw;
2076 pool_cache_t pc;
2077 void *object;
2078
2079 KASSERT(cc->cc_current->pcg_avail == 0);
2080 KASSERT(cc->cc_previous->pcg_avail == 0);
2081
2082 pc = cc->cc_cache;
2083 cc->cc_misses++;
2084
2085 /*
2086 * Nothing was available locally. Try and grab a group
2087 * from the cache.
2088 */
2089 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2090 ncsw = curlwp->l_ncsw;
2091 mutex_enter(&pc->pc_lock);
2092 pc->pc_contended++;
2093
2094 /*
2095 * If we context switched while locking, then
2096 * our view of the per-CPU data is invalid:
2097 * retry.
2098 */
2099 if (curlwp->l_ncsw != ncsw) {
2100 mutex_exit(&pc->pc_lock);
2101 return true;
2102 }
2103 }
2104
2105 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2106 /*
2107 * If there's a full group, release our empty
2108 * group back to the cache. Install the full
2109 * group as cc_current and return.
2110 */
2111 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2112 KASSERT(cur->pcg_avail == 0);
2113 cur->pcg_next = pc->pc_emptygroups;
2114 pc->pc_emptygroups = cur;
2115 pc->pc_nempty++;
2116 }
2117 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2118 cc->cc_current = pcg;
2119 pc->pc_fullgroups = pcg->pcg_next;
2120 pc->pc_hits++;
2121 pc->pc_nfull--;
2122 mutex_exit(&pc->pc_lock);
2123 return true;
2124 }
2125
2126 /*
2127 * Nothing available locally or in cache. Take the slow
2128 * path: fetch a new object from the pool and construct
2129 * it.
2130 */
2131 pc->pc_misses++;
2132 mutex_exit(&pc->pc_lock);
2133 splx(s);
2134
2135 object = pool_get(&pc->pc_pool, flags);
2136 *objectp = object;
2137 if (__predict_false(object == NULL))
2138 return false;
2139
2140 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2141 pool_put(&pc->pc_pool, object);
2142 *objectp = NULL;
2143 return false;
2144 }
2145
2146 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2147 (pc->pc_pool.pr_align - 1)) == 0);
2148
2149 if (pap != NULL) {
2150 #ifdef POOL_VTOPHYS
2151 *pap = POOL_VTOPHYS(object);
2152 #else
2153 *pap = POOL_PADDR_INVALID;
2154 #endif
2155 }
2156
2157 FREECHECK_OUT(&pc->pc_freecheck, object);
2158 pool_redzone_fill(&pc->pc_pool, object);
2159 return false;
2160 }
2161
2162 /*
2163 * pool_cache_get{,_paddr}:
2164 *
2165 * Get an object from a pool cache (optionally returning
2166 * the physical address of the object).
2167 */
2168 void *
2169 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2170 {
2171 pool_cache_cpu_t *cc;
2172 pcg_t *pcg;
2173 void *object;
2174 int s;
2175
2176 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2177 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2178 "pool '%s' is IPL_NONE, but called from interrupt context\n",
2179 pc->pc_pool.pr_wchan);
2180
2181 if (flags & PR_WAITOK) {
2182 ASSERT_SLEEPABLE();
2183 }
2184
2185 /* Lock out interrupts and disable preemption. */
2186 s = splvm();
2187 while (/* CONSTCOND */ true) {
2188 /* Try and allocate an object from the current group. */
2189 cc = pc->pc_cpus[curcpu()->ci_index];
2190 KASSERT(cc->cc_cache == pc);
2191 pcg = cc->cc_current;
2192 if (__predict_true(pcg->pcg_avail > 0)) {
2193 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2194 if (__predict_false(pap != NULL))
2195 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2196 #if defined(DIAGNOSTIC)
2197 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2198 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2199 KASSERT(object != NULL);
2200 #endif
2201 cc->cc_hits++;
2202 splx(s);
2203 FREECHECK_OUT(&pc->pc_freecheck, object);
2204 pool_redzone_fill(&pc->pc_pool, object);
2205 return object;
2206 }
2207
2208 /*
2209 * That failed. If the previous group isn't empty, swap
2210 * it with the current group and allocate from there.
2211 */
2212 pcg = cc->cc_previous;
2213 if (__predict_true(pcg->pcg_avail > 0)) {
2214 cc->cc_previous = cc->cc_current;
2215 cc->cc_current = pcg;
2216 continue;
2217 }
2218
2219 /*
2220 * Can't allocate from either group: try the slow path.
2221 * If get_slow() allocated an object for us, or if
2222 * no more objects are available, it will return false.
2223 * Otherwise, we need to retry.
2224 */
2225 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2226 break;
2227 }
2228
2229 return object;
2230 }
2231
2232 static bool __noinline
2233 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2234 {
2235 struct lwp *l = curlwp;
2236 pcg_t *pcg, *cur;
2237 uint64_t ncsw;
2238 pool_cache_t pc;
2239
2240 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2241 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2242
2243 pc = cc->cc_cache;
2244 pcg = NULL;
2245 cc->cc_misses++;
2246 ncsw = l->l_ncsw;
2247
2248 /*
2249 * If there are no empty groups in the cache then allocate one
2250 * while still unlocked.
2251 */
2252 if (__predict_false(pc->pc_emptygroups == NULL)) {
2253 if (__predict_true(!pool_cache_disable)) {
2254 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2255 }
2256 /*
2257 * If pool_get() blocked, then our view of
2258 * the per-CPU data is invalid: retry.
2259 */
2260 if (__predict_false(l->l_ncsw != ncsw)) {
2261 if (pcg != NULL) {
2262 pool_put(pc->pc_pcgpool, pcg);
2263 }
2264 return true;
2265 }
2266 if (__predict_true(pcg != NULL)) {
2267 pcg->pcg_avail = 0;
2268 pcg->pcg_size = pc->pc_pcgsize;
2269 }
2270 }
2271
2272 /* Lock the cache. */
2273 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2274 mutex_enter(&pc->pc_lock);
2275 pc->pc_contended++;
2276
2277 /*
2278 * If we context switched while locking, then our view of
2279 * the per-CPU data is invalid: retry.
2280 */
2281 if (__predict_false(l->l_ncsw != ncsw)) {
2282 mutex_exit(&pc->pc_lock);
2283 if (pcg != NULL) {
2284 pool_put(pc->pc_pcgpool, pcg);
2285 }
2286 return true;
2287 }
2288 }
2289
2290 /* If there are no empty groups in the cache then allocate one. */
2291 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2292 pcg = pc->pc_emptygroups;
2293 pc->pc_emptygroups = pcg->pcg_next;
2294 pc->pc_nempty--;
2295 }
2296
2297 /*
2298 * If there's a empty group, release our full group back
2299 * to the cache. Install the empty group to the local CPU
2300 * and return.
2301 */
2302 if (pcg != NULL) {
2303 KASSERT(pcg->pcg_avail == 0);
2304 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2305 cc->cc_previous = pcg;
2306 } else {
2307 cur = cc->cc_current;
2308 if (__predict_true(cur != &pcg_dummy)) {
2309 KASSERT(cur->pcg_avail == cur->pcg_size);
2310 cur->pcg_next = pc->pc_fullgroups;
2311 pc->pc_fullgroups = cur;
2312 pc->pc_nfull++;
2313 }
2314 cc->cc_current = pcg;
2315 }
2316 pc->pc_hits++;
2317 mutex_exit(&pc->pc_lock);
2318 return true;
2319 }
2320
2321 /*
2322 * Nothing available locally or in cache, and we didn't
2323 * allocate an empty group. Take the slow path and destroy
2324 * the object here and now.
2325 */
2326 pc->pc_misses++;
2327 mutex_exit(&pc->pc_lock);
2328 splx(s);
2329 pool_cache_destruct_object(pc, object);
2330
2331 return false;
2332 }
2333
2334 /*
2335 * pool_cache_put{,_paddr}:
2336 *
2337 * Put an object back to the pool cache (optionally caching the
2338 * physical address of the object).
2339 */
2340 void
2341 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2342 {
2343 pool_cache_cpu_t *cc;
2344 pcg_t *pcg;
2345 int s;
2346
2347 KASSERT(object != NULL);
2348 pool_redzone_check(&pc->pc_pool, object);
2349 FREECHECK_IN(&pc->pc_freecheck, object);
2350
2351 /* Lock out interrupts and disable preemption. */
2352 s = splvm();
2353 while (/* CONSTCOND */ true) {
2354 /* If the current group isn't full, release it there. */
2355 cc = pc->pc_cpus[curcpu()->ci_index];
2356 KASSERT(cc->cc_cache == pc);
2357 pcg = cc->cc_current;
2358 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2359 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2360 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2361 pcg->pcg_avail++;
2362 cc->cc_hits++;
2363 splx(s);
2364 return;
2365 }
2366
2367 /*
2368 * That failed. If the previous group isn't full, swap
2369 * it with the current group and try again.
2370 */
2371 pcg = cc->cc_previous;
2372 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2373 cc->cc_previous = cc->cc_current;
2374 cc->cc_current = pcg;
2375 continue;
2376 }
2377
2378 /*
2379 * Can't free to either group: try the slow path.
2380 * If put_slow() releases the object for us, it
2381 * will return false. Otherwise we need to retry.
2382 */
2383 if (!pool_cache_put_slow(cc, s, object))
2384 break;
2385 }
2386 }
2387
2388 /*
2389 * pool_cache_transfer:
2390 *
2391 * Transfer objects from the per-CPU cache to the global cache.
2392 * Run within a cross-call thread.
2393 */
2394 static void
2395 pool_cache_transfer(pool_cache_t pc)
2396 {
2397 pool_cache_cpu_t *cc;
2398 pcg_t *prev, *cur, **list;
2399 int s;
2400
2401 s = splvm();
2402 mutex_enter(&pc->pc_lock);
2403 cc = pc->pc_cpus[curcpu()->ci_index];
2404 cur = cc->cc_current;
2405 cc->cc_current = __UNCONST(&pcg_dummy);
2406 prev = cc->cc_previous;
2407 cc->cc_previous = __UNCONST(&pcg_dummy);
2408 if (cur != &pcg_dummy) {
2409 if (cur->pcg_avail == cur->pcg_size) {
2410 list = &pc->pc_fullgroups;
2411 pc->pc_nfull++;
2412 } else if (cur->pcg_avail == 0) {
2413 list = &pc->pc_emptygroups;
2414 pc->pc_nempty++;
2415 } else {
2416 list = &pc->pc_partgroups;
2417 pc->pc_npart++;
2418 }
2419 cur->pcg_next = *list;
2420 *list = cur;
2421 }
2422 if (prev != &pcg_dummy) {
2423 if (prev->pcg_avail == prev->pcg_size) {
2424 list = &pc->pc_fullgroups;
2425 pc->pc_nfull++;
2426 } else if (prev->pcg_avail == 0) {
2427 list = &pc->pc_emptygroups;
2428 pc->pc_nempty++;
2429 } else {
2430 list = &pc->pc_partgroups;
2431 pc->pc_npart++;
2432 }
2433 prev->pcg_next = *list;
2434 *list = prev;
2435 }
2436 mutex_exit(&pc->pc_lock);
2437 splx(s);
2438 }
2439
2440 /*
2441 * Pool backend allocators.
2442 *
2443 * Each pool has a backend allocator that handles allocation, deallocation,
2444 * and any additional draining that might be needed.
2445 *
2446 * We provide two standard allocators:
2447 *
2448 * pool_allocator_kmem - the default when no allocator is specified
2449 *
2450 * pool_allocator_nointr - used for pools that will not be accessed
2451 * in interrupt context.
2452 */
2453 void *pool_page_alloc(struct pool *, int);
2454 void pool_page_free(struct pool *, void *);
2455
2456 #ifdef POOL_SUBPAGE
2457 struct pool_allocator pool_allocator_kmem_fullpage = {
2458 .pa_alloc = pool_page_alloc,
2459 .pa_free = pool_page_free,
2460 .pa_pagesz = 0
2461 };
2462 #else
2463 struct pool_allocator pool_allocator_kmem = {
2464 .pa_alloc = pool_page_alloc,
2465 .pa_free = pool_page_free,
2466 .pa_pagesz = 0
2467 };
2468 #endif
2469
2470 #ifdef POOL_SUBPAGE
2471 struct pool_allocator pool_allocator_nointr_fullpage = {
2472 .pa_alloc = pool_page_alloc,
2473 .pa_free = pool_page_free,
2474 .pa_pagesz = 0
2475 };
2476 #else
2477 struct pool_allocator pool_allocator_nointr = {
2478 .pa_alloc = pool_page_alloc,
2479 .pa_free = pool_page_free,
2480 .pa_pagesz = 0
2481 };
2482 #endif
2483
2484 #ifdef POOL_SUBPAGE
2485 void *pool_subpage_alloc(struct pool *, int);
2486 void pool_subpage_free(struct pool *, void *);
2487
2488 struct pool_allocator pool_allocator_kmem = {
2489 .pa_alloc = pool_subpage_alloc,
2490 .pa_free = pool_subpage_free,
2491 .pa_pagesz = POOL_SUBPAGE
2492 };
2493
2494 struct pool_allocator pool_allocator_nointr = {
2495 .pa_alloc = pool_subpage_alloc,
2496 .pa_free = pool_subpage_free,
2497 .pa_pagesz = POOL_SUBPAGE
2498 };
2499 #endif /* POOL_SUBPAGE */
2500
2501 static void *
2502 pool_allocator_alloc(struct pool *pp, int flags)
2503 {
2504 struct pool_allocator *pa = pp->pr_alloc;
2505 void *res;
2506
2507 res = (*pa->pa_alloc)(pp, flags);
2508 if (res == NULL && (flags & PR_WAITOK) == 0) {
2509 /*
2510 * We only run the drain hook here if PR_NOWAIT.
2511 * In other cases, the hook will be run in
2512 * pool_reclaim().
2513 */
2514 if (pp->pr_drain_hook != NULL) {
2515 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2516 res = (*pa->pa_alloc)(pp, flags);
2517 }
2518 }
2519 return res;
2520 }
2521
2522 static void
2523 pool_allocator_free(struct pool *pp, void *v)
2524 {
2525 struct pool_allocator *pa = pp->pr_alloc;
2526
2527 (*pa->pa_free)(pp, v);
2528 }
2529
2530 void *
2531 pool_page_alloc(struct pool *pp, int flags)
2532 {
2533 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2534 vmem_addr_t va;
2535 int ret;
2536
2537 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2538 vflags | VM_INSTANTFIT, &va);
2539
2540 return ret ? NULL : (void *)va;
2541 }
2542
2543 void
2544 pool_page_free(struct pool *pp, void *v)
2545 {
2546
2547 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2548 }
2549
2550 static void *
2551 pool_page_alloc_meta(struct pool *pp, int flags)
2552 {
2553 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2554 vmem_addr_t va;
2555 int ret;
2556
2557 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2558 vflags | VM_INSTANTFIT, &va);
2559
2560 return ret ? NULL : (void *)va;
2561 }
2562
2563 static void
2564 pool_page_free_meta(struct pool *pp, void *v)
2565 {
2566
2567 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2568 }
2569
2570 #ifdef POOL_REDZONE
2571 #if defined(_LP64)
2572 # define PRIME 0x9e37fffffffc0000UL
2573 #else /* defined(_LP64) */
2574 # define PRIME 0x9e3779b1
2575 #endif /* defined(_LP64) */
2576 #define STATIC_BYTE 0xFE
2577 CTASSERT(POOL_REDZONE_SIZE > 1);
2578
2579 static inline uint8_t
2580 pool_pattern_generate(const void *p)
2581 {
2582 return (uint8_t)(((uintptr_t)p) * PRIME
2583 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2584 }
2585
2586 static void
2587 pool_redzone_init(struct pool *pp, size_t requested_size)
2588 {
2589 size_t nsz;
2590
2591 if (pp->pr_roflags & PR_NOTOUCH) {
2592 pp->pr_reqsize = 0;
2593 pp->pr_redzone = false;
2594 return;
2595 }
2596
2597 /*
2598 * We may have extended the requested size earlier; check if
2599 * there's naturally space in the padding for a red zone.
2600 */
2601 if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
2602 pp->pr_reqsize = requested_size;
2603 pp->pr_redzone = true;
2604 return;
2605 }
2606
2607 /*
2608 * No space in the natural padding; check if we can extend a
2609 * bit the size of the pool.
2610 */
2611 nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
2612 if (nsz <= pp->pr_alloc->pa_pagesz) {
2613 /* Ok, we can */
2614 pp->pr_size = nsz;
2615 pp->pr_reqsize = requested_size;
2616 pp->pr_redzone = true;
2617 } else {
2618 /* No space for a red zone... snif :'( */
2619 pp->pr_reqsize = 0;
2620 pp->pr_redzone = false;
2621 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2622 }
2623 }
2624
2625 static void
2626 pool_redzone_fill(struct pool *pp, void *p)
2627 {
2628 uint8_t *cp, pat;
2629 const uint8_t *ep;
2630
2631 if (!pp->pr_redzone)
2632 return;
2633
2634 cp = (uint8_t *)p + pp->pr_reqsize;
2635 ep = cp + POOL_REDZONE_SIZE;
2636
2637 /*
2638 * We really don't want the first byte of the red zone to be '\0';
2639 * an off-by-one in a string may not be properly detected.
2640 */
2641 pat = pool_pattern_generate(cp);
2642 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2643 cp++;
2644
2645 while (cp < ep) {
2646 *cp = pool_pattern_generate(cp);
2647 cp++;
2648 }
2649 }
2650
2651 static void
2652 pool_redzone_check(struct pool *pp, void *p)
2653 {
2654 uint8_t *cp, pat, expected;
2655 const uint8_t *ep;
2656
2657 if (!pp->pr_redzone)
2658 return;
2659
2660 cp = (uint8_t *)p + pp->pr_reqsize;
2661 ep = cp + POOL_REDZONE_SIZE;
2662
2663 pat = pool_pattern_generate(cp);
2664 expected = (pat == '\0') ? STATIC_BYTE: pat;
2665 if (expected != *cp) {
2666 panic("%s: %p: 0x%02x != 0x%02x\n",
2667 __func__, cp, *cp, expected);
2668 }
2669 cp++;
2670
2671 while (cp < ep) {
2672 expected = pool_pattern_generate(cp);
2673 if (*cp != expected) {
2674 panic("%s: %p: 0x%02x != 0x%02x\n",
2675 __func__, cp, *cp, expected);
2676 }
2677 cp++;
2678 }
2679 }
2680
2681 #endif /* POOL_REDZONE */
2682
2683
2684 #ifdef POOL_SUBPAGE
2685 /* Sub-page allocator, for machines with large hardware pages. */
2686 void *
2687 pool_subpage_alloc(struct pool *pp, int flags)
2688 {
2689 return pool_get(&psppool, flags);
2690 }
2691
2692 void
2693 pool_subpage_free(struct pool *pp, void *v)
2694 {
2695 pool_put(&psppool, v);
2696 }
2697
2698 #endif /* POOL_SUBPAGE */
2699
2700 #if defined(DDB)
2701 static bool
2702 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2703 {
2704
2705 return (uintptr_t)ph->ph_page <= addr &&
2706 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2707 }
2708
2709 static bool
2710 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2711 {
2712
2713 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2714 }
2715
2716 static bool
2717 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2718 {
2719 int i;
2720
2721 if (pcg == NULL) {
2722 return false;
2723 }
2724 for (i = 0; i < pcg->pcg_avail; i++) {
2725 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2726 return true;
2727 }
2728 }
2729 return false;
2730 }
2731
2732 static bool
2733 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2734 {
2735
2736 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2737 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2738 pool_item_bitmap_t *bitmap =
2739 ph->ph_bitmap + (idx / BITMAP_SIZE);
2740 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2741
2742 return (*bitmap & mask) == 0;
2743 } else {
2744 struct pool_item *pi;
2745
2746 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2747 if (pool_in_item(pp, pi, addr)) {
2748 return false;
2749 }
2750 }
2751 return true;
2752 }
2753 }
2754
2755 void
2756 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2757 {
2758 struct pool *pp;
2759
2760 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2761 struct pool_item_header *ph;
2762 uintptr_t item;
2763 bool allocated = true;
2764 bool incache = false;
2765 bool incpucache = false;
2766 char cpucachestr[32];
2767
2768 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2769 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2770 if (pool_in_page(pp, ph, addr)) {
2771 goto found;
2772 }
2773 }
2774 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2775 if (pool_in_page(pp, ph, addr)) {
2776 allocated =
2777 pool_allocated(pp, ph, addr);
2778 goto found;
2779 }
2780 }
2781 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2782 if (pool_in_page(pp, ph, addr)) {
2783 allocated = false;
2784 goto found;
2785 }
2786 }
2787 continue;
2788 } else {
2789 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2790 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2791 continue;
2792 }
2793 allocated = pool_allocated(pp, ph, addr);
2794 }
2795 found:
2796 if (allocated && pp->pr_cache) {
2797 pool_cache_t pc = pp->pr_cache;
2798 struct pool_cache_group *pcg;
2799 int i;
2800
2801 for (pcg = pc->pc_fullgroups; pcg != NULL;
2802 pcg = pcg->pcg_next) {
2803 if (pool_in_cg(pp, pcg, addr)) {
2804 incache = true;
2805 goto print;
2806 }
2807 }
2808 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2809 pool_cache_cpu_t *cc;
2810
2811 if ((cc = pc->pc_cpus[i]) == NULL) {
2812 continue;
2813 }
2814 if (pool_in_cg(pp, cc->cc_current, addr) ||
2815 pool_in_cg(pp, cc->cc_previous, addr)) {
2816 struct cpu_info *ci =
2817 cpu_lookup(i);
2818
2819 incpucache = true;
2820 snprintf(cpucachestr,
2821 sizeof(cpucachestr),
2822 "cached by CPU %u",
2823 ci->ci_index);
2824 goto print;
2825 }
2826 }
2827 }
2828 print:
2829 item = (uintptr_t)ph->ph_page + ph->ph_off;
2830 item = item + rounddown(addr - item, pp->pr_size);
2831 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2832 (void *)addr, item, (size_t)(addr - item),
2833 pp->pr_wchan,
2834 incpucache ? cpucachestr :
2835 incache ? "cached" : allocated ? "allocated" : "free");
2836 }
2837 }
2838 #endif /* defined(DDB) */
2839
2840 static int
2841 pool_sysctl(SYSCTLFN_ARGS)
2842 {
2843 struct pool_sysctl data;
2844 struct pool *pp;
2845 struct pool_cache *pc;
2846 pool_cache_cpu_t *cc;
2847 int error;
2848 size_t i, written;
2849
2850 if (oldp == NULL) {
2851 *oldlenp = 0;
2852 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
2853 *oldlenp += sizeof(data);
2854 return 0;
2855 }
2856
2857 memset(&data, 0, sizeof(data));
2858 error = 0;
2859 written = 0;
2860 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2861 if (written + sizeof(data) > *oldlenp)
2862 break;
2863 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
2864 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
2865 data.pr_flags = pp->pr_roflags | pp->pr_flags;
2866 #define COPY(field) data.field = pp->field
2867 COPY(pr_size);
2868
2869 COPY(pr_itemsperpage);
2870 COPY(pr_nitems);
2871 COPY(pr_nout);
2872 COPY(pr_hardlimit);
2873 COPY(pr_npages);
2874 COPY(pr_minpages);
2875 COPY(pr_maxpages);
2876
2877 COPY(pr_nget);
2878 COPY(pr_nfail);
2879 COPY(pr_nput);
2880 COPY(pr_npagealloc);
2881 COPY(pr_npagefree);
2882 COPY(pr_hiwat);
2883 COPY(pr_nidle);
2884 #undef COPY
2885
2886 data.pr_cache_nmiss_pcpu = 0;
2887 data.pr_cache_nhit_pcpu = 0;
2888 if (pp->pr_cache) {
2889 pc = pp->pr_cache;
2890 data.pr_cache_meta_size = pc->pc_pcgsize;
2891 data.pr_cache_nfull = pc->pc_nfull;
2892 data.pr_cache_npartial = pc->pc_npart;
2893 data.pr_cache_nempty = pc->pc_nempty;
2894 data.pr_cache_ncontended = pc->pc_contended;
2895 data.pr_cache_nmiss_global = pc->pc_misses;
2896 data.pr_cache_nhit_global = pc->pc_hits;
2897 for (i = 0; i < pc->pc_ncpu; ++i) {
2898 cc = pc->pc_cpus[i];
2899 if (cc == NULL)
2900 continue;
2901 data.pr_cache_nmiss_pcpu += cc->cc_misses;
2902 data.pr_cache_nhit_pcpu += cc->cc_hits;
2903 }
2904 } else {
2905 data.pr_cache_meta_size = 0;
2906 data.pr_cache_nfull = 0;
2907 data.pr_cache_npartial = 0;
2908 data.pr_cache_nempty = 0;
2909 data.pr_cache_ncontended = 0;
2910 data.pr_cache_nmiss_global = 0;
2911 data.pr_cache_nhit_global = 0;
2912 }
2913
2914 error = sysctl_copyout(l, &data, oldp, sizeof(data));
2915 if (error)
2916 break;
2917 written += sizeof(data);
2918 oldp = (char *)oldp + sizeof(data);
2919 }
2920
2921 *oldlenp = written;
2922 return error;
2923 }
2924
2925 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
2926 {
2927 const struct sysctlnode *rnode = NULL;
2928
2929 sysctl_createv(clog, 0, NULL, &rnode,
2930 CTLFLAG_PERMANENT,
2931 CTLTYPE_STRUCT, "pool",
2932 SYSCTL_DESCR("Get pool statistics"),
2933 pool_sysctl, 0, NULL, 0,
2934 CTL_KERN, CTL_CREATE, CTL_EOL);
2935 }
2936