Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.207.6.1
      1 /*	$NetBSD: subr_pool.c,v 1.207.6.1 2018/02/27 09:07:32 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.207.6.1 2018/02/27 09:07:32 martin Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/sysctl.h>
     46 #include <sys/bitops.h>
     47 #include <sys/proc.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/vmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 #include <sys/debug.h>
     54 #include <sys/lockdebug.h>
     55 #include <sys/xcall.h>
     56 #include <sys/cpu.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Pool resource management utility.
     63  *
     64  * Memory is allocated in pages which are split into pieces according to
     65  * the pool item size. Each page is kept on one of three lists in the
     66  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67  * for empty, full and partially-full pages respectively. The individual
     68  * pool items are on a linked list headed by `ph_itemlist' in each page
     69  * header. The memory for building the page list is either taken from
     70  * the allocated pages themselves (for small pool items) or taken from
     71  * an internal pool of page headers (`phpool').
     72  */
     73 
     74 /* List of all pools. Non static as needed by 'vmstat -i' */
     75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     76 
     77 /* Private pool for page header structures */
     78 #define	PHPOOL_MAX	8
     79 static struct pool phpool[PHPOOL_MAX];
     80 #define	PHPOOL_FREELIST_NELEM(idx) \
     81 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     82 
     83 #ifdef POOL_SUBPAGE
     84 /* Pool of subpages for use by normal pools. */
     85 static struct pool psppool;
     86 #endif
     87 
     88 #ifdef POOL_REDZONE
     89 # define POOL_REDZONE_SIZE 2
     90 static void pool_redzone_init(struct pool *, size_t);
     91 static void pool_redzone_fill(struct pool *, void *);
     92 static void pool_redzone_check(struct pool *, void *);
     93 #else
     94 # define pool_redzone_init(pp, sz)	/* NOTHING */
     95 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     96 # define pool_redzone_check(pp, ptr)	/* NOTHING */
     97 #endif
     98 
     99 static void *pool_page_alloc_meta(struct pool *, int);
    100 static void pool_page_free_meta(struct pool *, void *);
    101 
    102 /* allocator for pool metadata */
    103 struct pool_allocator pool_allocator_meta = {
    104 	.pa_alloc = pool_page_alloc_meta,
    105 	.pa_free = pool_page_free_meta,
    106 	.pa_pagesz = 0
    107 };
    108 
    109 /* # of seconds to retain page after last use */
    110 int pool_inactive_time = 10;
    111 
    112 /* Next candidate for drainage (see pool_drain()) */
    113 static struct pool	*drainpp;
    114 
    115 /* This lock protects both pool_head and drainpp. */
    116 static kmutex_t pool_head_lock;
    117 static kcondvar_t pool_busy;
    118 
    119 /* This lock protects initialization of a potentially shared pool allocator */
    120 static kmutex_t pool_allocator_lock;
    121 
    122 typedef uint32_t pool_item_bitmap_t;
    123 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    124 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    125 
    126 struct pool_item_header {
    127 	/* Page headers */
    128 	LIST_ENTRY(pool_item_header)
    129 				ph_pagelist;	/* pool page list */
    130 	SPLAY_ENTRY(pool_item_header)
    131 				ph_node;	/* Off-page page headers */
    132 	void *			ph_page;	/* this page's address */
    133 	uint32_t		ph_time;	/* last referenced */
    134 	uint16_t		ph_nmissing;	/* # of chunks in use */
    135 	uint16_t		ph_off;		/* start offset in page */
    136 	union {
    137 		/* !PR_NOTOUCH */
    138 		struct {
    139 			LIST_HEAD(, pool_item)
    140 				phu_itemlist;	/* chunk list for this page */
    141 		} phu_normal;
    142 		/* PR_NOTOUCH */
    143 		struct {
    144 			pool_item_bitmap_t phu_bitmap[1];
    145 		} phu_notouch;
    146 	} ph_u;
    147 };
    148 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    149 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    150 
    151 struct pool_item {
    152 #ifdef DIAGNOSTIC
    153 	u_int pi_magic;
    154 #endif
    155 #define	PI_MAGIC 0xdeaddeadU
    156 	/* Other entries use only this list entry */
    157 	LIST_ENTRY(pool_item)	pi_list;
    158 };
    159 
    160 #define	POOL_NEEDS_CATCHUP(pp)						\
    161 	((pp)->pr_nitems < (pp)->pr_minitems)
    162 
    163 /*
    164  * Pool cache management.
    165  *
    166  * Pool caches provide a way for constructed objects to be cached by the
    167  * pool subsystem.  This can lead to performance improvements by avoiding
    168  * needless object construction/destruction; it is deferred until absolutely
    169  * necessary.
    170  *
    171  * Caches are grouped into cache groups.  Each cache group references up
    172  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    173  * object from the pool, it calls the object's constructor and places it
    174  * into a cache group.  When a cache group frees an object back to the
    175  * pool, it first calls the object's destructor.  This allows the object
    176  * to persist in constructed form while freed to the cache.
    177  *
    178  * The pool references each cache, so that when a pool is drained by the
    179  * pagedaemon, it can drain each individual cache as well.  Each time a
    180  * cache is drained, the most idle cache group is freed to the pool in
    181  * its entirety.
    182  *
    183  * Pool caches are layed on top of pools.  By layering them, we can avoid
    184  * the complexity of cache management for pools which would not benefit
    185  * from it.
    186  */
    187 
    188 static struct pool pcg_normal_pool;
    189 static struct pool pcg_large_pool;
    190 static struct pool cache_pool;
    191 static struct pool cache_cpu_pool;
    192 
    193 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    194 
    195 /* List of all caches. */
    196 TAILQ_HEAD(,pool_cache) pool_cache_head =
    197     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    198 
    199 int pool_cache_disable;		/* global disable for caching */
    200 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    201 
    202 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    203 				    void *);
    204 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    205 				    void **, paddr_t *, int);
    206 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    207 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    208 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    209 static void	pool_cache_transfer(pool_cache_t);
    210 
    211 static int	pool_catchup(struct pool *);
    212 static void	pool_prime_page(struct pool *, void *,
    213 		    struct pool_item_header *);
    214 static void	pool_update_curpage(struct pool *);
    215 
    216 static int	pool_grow(struct pool *, int);
    217 static void	*pool_allocator_alloc(struct pool *, int);
    218 static void	pool_allocator_free(struct pool *, void *);
    219 
    220 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    221 	void (*)(const char *, ...) __printflike(1, 2));
    222 static void pool_print1(struct pool *, const char *,
    223 	void (*)(const char *, ...) __printflike(1, 2));
    224 
    225 static int pool_chk_page(struct pool *, const char *,
    226 			 struct pool_item_header *);
    227 
    228 static inline unsigned int
    229 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    230     const void *v)
    231 {
    232 	const char *cp = v;
    233 	unsigned int idx;
    234 
    235 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    236 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    237 	KASSERT(idx < pp->pr_itemsperpage);
    238 	return idx;
    239 }
    240 
    241 static inline void
    242 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    243     void *obj)
    244 {
    245 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    246 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    247 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    248 
    249 	KASSERT((*bitmap & mask) == 0);
    250 	*bitmap |= mask;
    251 }
    252 
    253 static inline void *
    254 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    255 {
    256 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    257 	unsigned int idx;
    258 	int i;
    259 
    260 	for (i = 0; ; i++) {
    261 		int bit;
    262 
    263 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    264 		bit = ffs32(bitmap[i]);
    265 		if (bit) {
    266 			pool_item_bitmap_t mask;
    267 
    268 			bit--;
    269 			idx = (i * BITMAP_SIZE) + bit;
    270 			mask = 1 << bit;
    271 			KASSERT((bitmap[i] & mask) != 0);
    272 			bitmap[i] &= ~mask;
    273 			break;
    274 		}
    275 	}
    276 	KASSERT(idx < pp->pr_itemsperpage);
    277 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    278 }
    279 
    280 static inline void
    281 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    282 {
    283 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    284 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    285 	int i;
    286 
    287 	for (i = 0; i < n; i++) {
    288 		bitmap[i] = (pool_item_bitmap_t)-1;
    289 	}
    290 }
    291 
    292 static inline int
    293 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    294 {
    295 
    296 	/*
    297 	 * we consider pool_item_header with smaller ph_page bigger.
    298 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    299 	 */
    300 
    301 	if (a->ph_page < b->ph_page)
    302 		return (1);
    303 	else if (a->ph_page > b->ph_page)
    304 		return (-1);
    305 	else
    306 		return (0);
    307 }
    308 
    309 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    310 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    311 
    312 static inline struct pool_item_header *
    313 pr_find_pagehead_noalign(struct pool *pp, void *v)
    314 {
    315 	struct pool_item_header *ph, tmp;
    316 
    317 	tmp.ph_page = (void *)(uintptr_t)v;
    318 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    319 	if (ph == NULL) {
    320 		ph = SPLAY_ROOT(&pp->pr_phtree);
    321 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    322 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    323 		}
    324 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    325 	}
    326 
    327 	return ph;
    328 }
    329 
    330 /*
    331  * Return the pool page header based on item address.
    332  */
    333 static inline struct pool_item_header *
    334 pr_find_pagehead(struct pool *pp, void *v)
    335 {
    336 	struct pool_item_header *ph, tmp;
    337 
    338 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    339 		ph = pr_find_pagehead_noalign(pp, v);
    340 	} else {
    341 		void *page =
    342 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    343 
    344 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    345 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    346 		} else {
    347 			tmp.ph_page = page;
    348 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    349 		}
    350 	}
    351 
    352 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    353 	    ((char *)ph->ph_page <= (char *)v &&
    354 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    355 	return ph;
    356 }
    357 
    358 static void
    359 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    360 {
    361 	struct pool_item_header *ph;
    362 
    363 	while ((ph = LIST_FIRST(pq)) != NULL) {
    364 		LIST_REMOVE(ph, ph_pagelist);
    365 		pool_allocator_free(pp, ph->ph_page);
    366 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    367 			pool_put(pp->pr_phpool, ph);
    368 	}
    369 }
    370 
    371 /*
    372  * Remove a page from the pool.
    373  */
    374 static inline void
    375 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    376      struct pool_pagelist *pq)
    377 {
    378 
    379 	KASSERT(mutex_owned(&pp->pr_lock));
    380 
    381 	/*
    382 	 * If the page was idle, decrement the idle page count.
    383 	 */
    384 	if (ph->ph_nmissing == 0) {
    385 		KASSERT(pp->pr_nidle != 0);
    386 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    387 		    "nitems=%u < itemsperpage=%u",
    388 		    pp->pr_nitems, pp->pr_itemsperpage);
    389 		pp->pr_nidle--;
    390 	}
    391 
    392 	pp->pr_nitems -= pp->pr_itemsperpage;
    393 
    394 	/*
    395 	 * Unlink the page from the pool and queue it for release.
    396 	 */
    397 	LIST_REMOVE(ph, ph_pagelist);
    398 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    399 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    400 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    401 
    402 	pp->pr_npages--;
    403 	pp->pr_npagefree++;
    404 
    405 	pool_update_curpage(pp);
    406 }
    407 
    408 /*
    409  * Initialize all the pools listed in the "pools" link set.
    410  */
    411 void
    412 pool_subsystem_init(void)
    413 {
    414 	size_t size;
    415 	int idx;
    416 
    417 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    418 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    419 	cv_init(&pool_busy, "poolbusy");
    420 
    421 	/*
    422 	 * Initialize private page header pool and cache magazine pool if we
    423 	 * haven't done so yet.
    424 	 */
    425 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    426 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    427 		int nelem;
    428 		size_t sz;
    429 
    430 		nelem = PHPOOL_FREELIST_NELEM(idx);
    431 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    432 		    "phpool-%d", nelem);
    433 		sz = sizeof(struct pool_item_header);
    434 		if (nelem) {
    435 			sz = offsetof(struct pool_item_header,
    436 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    437 		}
    438 		pool_init(&phpool[idx], sz, 0, 0, 0,
    439 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    440 	}
    441 #ifdef POOL_SUBPAGE
    442 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    443 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    444 #endif
    445 
    446 	size = sizeof(pcg_t) +
    447 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    448 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    449 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    450 
    451 	size = sizeof(pcg_t) +
    452 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    453 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    454 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    455 
    456 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    457 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    458 
    459 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    460 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    461 }
    462 
    463 /*
    464  * Initialize the given pool resource structure.
    465  *
    466  * We export this routine to allow other kernel parts to declare
    467  * static pools that must be initialized before kmem(9) is available.
    468  */
    469 void
    470 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    471     const char *wchan, struct pool_allocator *palloc, int ipl)
    472 {
    473 	struct pool *pp1;
    474 	size_t trysize, phsize, prsize;
    475 	int off, slack;
    476 
    477 #ifdef DEBUG
    478 	if (__predict_true(!cold))
    479 		mutex_enter(&pool_head_lock);
    480 	/*
    481 	 * Check that the pool hasn't already been initialised and
    482 	 * added to the list of all pools.
    483 	 */
    484 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    485 		if (pp == pp1)
    486 			panic("%s: [%s] already initialised", __func__,
    487 			    wchan);
    488 	}
    489 	if (__predict_true(!cold))
    490 		mutex_exit(&pool_head_lock);
    491 #endif
    492 
    493 	if (palloc == NULL)
    494 		palloc = &pool_allocator_kmem;
    495 #ifdef POOL_SUBPAGE
    496 	if (size > palloc->pa_pagesz) {
    497 		if (palloc == &pool_allocator_kmem)
    498 			palloc = &pool_allocator_kmem_fullpage;
    499 		else if (palloc == &pool_allocator_nointr)
    500 			palloc = &pool_allocator_nointr_fullpage;
    501 	}
    502 #endif /* POOL_SUBPAGE */
    503 	if (!cold)
    504 		mutex_enter(&pool_allocator_lock);
    505 	if (palloc->pa_refcnt++ == 0) {
    506 		if (palloc->pa_pagesz == 0)
    507 			palloc->pa_pagesz = PAGE_SIZE;
    508 
    509 		TAILQ_INIT(&palloc->pa_list);
    510 
    511 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    512 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    513 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    514 	}
    515 	if (!cold)
    516 		mutex_exit(&pool_allocator_lock);
    517 
    518 	if (align == 0)
    519 		align = ALIGN(1);
    520 
    521 	prsize = size;
    522 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    523 		prsize = sizeof(struct pool_item);
    524 
    525 	prsize = roundup(prsize, align);
    526 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    527 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    528 	    __func__, wchan, prsize, palloc->pa_pagesz);
    529 
    530 	/*
    531 	 * Initialize the pool structure.
    532 	 */
    533 	LIST_INIT(&pp->pr_emptypages);
    534 	LIST_INIT(&pp->pr_fullpages);
    535 	LIST_INIT(&pp->pr_partpages);
    536 	pp->pr_cache = NULL;
    537 	pp->pr_curpage = NULL;
    538 	pp->pr_npages = 0;
    539 	pp->pr_minitems = 0;
    540 	pp->pr_minpages = 0;
    541 	pp->pr_maxpages = UINT_MAX;
    542 	pp->pr_roflags = flags;
    543 	pp->pr_flags = 0;
    544 	pp->pr_size = prsize;
    545 	pp->pr_align = align;
    546 	pp->pr_wchan = wchan;
    547 	pp->pr_alloc = palloc;
    548 	pp->pr_nitems = 0;
    549 	pp->pr_nout = 0;
    550 	pp->pr_hardlimit = UINT_MAX;
    551 	pp->pr_hardlimit_warning = NULL;
    552 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    553 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    554 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    555 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    556 	pp->pr_drain_hook = NULL;
    557 	pp->pr_drain_hook_arg = NULL;
    558 	pp->pr_freecheck = NULL;
    559 	pool_redzone_init(pp, size);
    560 
    561 	/*
    562 	 * Decide whether to put the page header off page to avoid
    563 	 * wasting too large a part of the page or too big item.
    564 	 * Off-page page headers go on a hash table, so we can match
    565 	 * a returned item with its header based on the page address.
    566 	 * We use 1/16 of the page size and about 8 times of the item
    567 	 * size as the threshold (XXX: tune)
    568 	 *
    569 	 * However, we'll put the header into the page if we can put
    570 	 * it without wasting any items.
    571 	 *
    572 	 * Silently enforce `0 <= ioff < align'.
    573 	 */
    574 	pp->pr_itemoffset = ioff %= align;
    575 	/* See the comment below about reserved bytes. */
    576 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    577 	phsize = ALIGN(sizeof(struct pool_item_header));
    578 	if (pp->pr_roflags & PR_PHINPAGE ||
    579 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    580 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    581 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    582 		/* Use the end of the page for the page header */
    583 		pp->pr_roflags |= PR_PHINPAGE;
    584 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    585 	} else {
    586 		/* The page header will be taken from our page header pool */
    587 		pp->pr_phoffset = 0;
    588 		off = palloc->pa_pagesz;
    589 		SPLAY_INIT(&pp->pr_phtree);
    590 	}
    591 
    592 	/*
    593 	 * Alignment is to take place at `ioff' within the item. This means
    594 	 * we must reserve up to `align - 1' bytes on the page to allow
    595 	 * appropriate positioning of each item.
    596 	 */
    597 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    598 	KASSERT(pp->pr_itemsperpage != 0);
    599 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    600 		int idx;
    601 
    602 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    603 		    idx++) {
    604 			/* nothing */
    605 		}
    606 		if (idx >= PHPOOL_MAX) {
    607 			/*
    608 			 * if you see this panic, consider to tweak
    609 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    610 			 */
    611 			panic("%s: [%s] too large itemsperpage(%d) for "
    612 			    "PR_NOTOUCH", __func__,
    613 			    pp->pr_wchan, pp->pr_itemsperpage);
    614 		}
    615 		pp->pr_phpool = &phpool[idx];
    616 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    617 		pp->pr_phpool = &phpool[0];
    618 	}
    619 #if defined(DIAGNOSTIC)
    620 	else {
    621 		pp->pr_phpool = NULL;
    622 	}
    623 #endif
    624 
    625 	/*
    626 	 * Use the slack between the chunks and the page header
    627 	 * for "cache coloring".
    628 	 */
    629 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    630 	pp->pr_maxcolor = (slack / align) * align;
    631 	pp->pr_curcolor = 0;
    632 
    633 	pp->pr_nget = 0;
    634 	pp->pr_nfail = 0;
    635 	pp->pr_nput = 0;
    636 	pp->pr_npagealloc = 0;
    637 	pp->pr_npagefree = 0;
    638 	pp->pr_hiwat = 0;
    639 	pp->pr_nidle = 0;
    640 	pp->pr_refcnt = 0;
    641 
    642 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    643 	cv_init(&pp->pr_cv, wchan);
    644 	pp->pr_ipl = ipl;
    645 
    646 	/* Insert into the list of all pools. */
    647 	if (!cold)
    648 		mutex_enter(&pool_head_lock);
    649 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    650 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    651 			break;
    652 	}
    653 	if (pp1 == NULL)
    654 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    655 	else
    656 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    657 	if (!cold)
    658 		mutex_exit(&pool_head_lock);
    659 
    660 	/* Insert this into the list of pools using this allocator. */
    661 	if (!cold)
    662 		mutex_enter(&palloc->pa_lock);
    663 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    664 	if (!cold)
    665 		mutex_exit(&palloc->pa_lock);
    666 }
    667 
    668 /*
    669  * De-commision a pool resource.
    670  */
    671 void
    672 pool_destroy(struct pool *pp)
    673 {
    674 	struct pool_pagelist pq;
    675 	struct pool_item_header *ph;
    676 
    677 	/* Remove from global pool list */
    678 	mutex_enter(&pool_head_lock);
    679 	while (pp->pr_refcnt != 0)
    680 		cv_wait(&pool_busy, &pool_head_lock);
    681 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    682 	if (drainpp == pp)
    683 		drainpp = NULL;
    684 	mutex_exit(&pool_head_lock);
    685 
    686 	/* Remove this pool from its allocator's list of pools. */
    687 	mutex_enter(&pp->pr_alloc->pa_lock);
    688 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    689 	mutex_exit(&pp->pr_alloc->pa_lock);
    690 
    691 	mutex_enter(&pool_allocator_lock);
    692 	if (--pp->pr_alloc->pa_refcnt == 0)
    693 		mutex_destroy(&pp->pr_alloc->pa_lock);
    694 	mutex_exit(&pool_allocator_lock);
    695 
    696 	mutex_enter(&pp->pr_lock);
    697 
    698 	KASSERT(pp->pr_cache == NULL);
    699 	KASSERTMSG((pp->pr_nout == 0),
    700 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    701 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    702 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    703 
    704 	/* Remove all pages */
    705 	LIST_INIT(&pq);
    706 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    707 		pr_rmpage(pp, ph, &pq);
    708 
    709 	mutex_exit(&pp->pr_lock);
    710 
    711 	pr_pagelist_free(pp, &pq);
    712 	cv_destroy(&pp->pr_cv);
    713 	mutex_destroy(&pp->pr_lock);
    714 }
    715 
    716 void
    717 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    718 {
    719 
    720 	/* XXX no locking -- must be used just after pool_init() */
    721 	KASSERTMSG((pp->pr_drain_hook == NULL),
    722 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    723 	pp->pr_drain_hook = fn;
    724 	pp->pr_drain_hook_arg = arg;
    725 }
    726 
    727 static struct pool_item_header *
    728 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    729 {
    730 	struct pool_item_header *ph;
    731 
    732 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    733 		ph = (void *)((char *)storage + pp->pr_phoffset);
    734 	else
    735 		ph = pool_get(pp->pr_phpool, flags);
    736 
    737 	return (ph);
    738 }
    739 
    740 /*
    741  * Grab an item from the pool.
    742  */
    743 void *
    744 pool_get(struct pool *pp, int flags)
    745 {
    746 	struct pool_item *pi;
    747 	struct pool_item_header *ph;
    748 	void *v;
    749 
    750 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    751 	KASSERTMSG((pp->pr_itemsperpage != 0),
    752 	    "%s: [%s] pr_itemsperpage is zero, "
    753 	    "pool not initialized?", __func__, pp->pr_wchan);
    754 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    755 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    756 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    757 	    __func__, pp->pr_wchan);
    758 	if (flags & PR_WAITOK) {
    759 		ASSERT_SLEEPABLE();
    760 	}
    761 
    762 	mutex_enter(&pp->pr_lock);
    763  startover:
    764 	/*
    765 	 * Check to see if we've reached the hard limit.  If we have,
    766 	 * and we can wait, then wait until an item has been returned to
    767 	 * the pool.
    768 	 */
    769 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    770 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    771 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    772 		if (pp->pr_drain_hook != NULL) {
    773 			/*
    774 			 * Since the drain hook is going to free things
    775 			 * back to the pool, unlock, call the hook, re-lock,
    776 			 * and check the hardlimit condition again.
    777 			 */
    778 			mutex_exit(&pp->pr_lock);
    779 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    780 			mutex_enter(&pp->pr_lock);
    781 			if (pp->pr_nout < pp->pr_hardlimit)
    782 				goto startover;
    783 		}
    784 
    785 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    786 			/*
    787 			 * XXX: A warning isn't logged in this case.  Should
    788 			 * it be?
    789 			 */
    790 			pp->pr_flags |= PR_WANTED;
    791 			do {
    792 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    793 			} while (pp->pr_flags & PR_WANTED);
    794 			goto startover;
    795 		}
    796 
    797 		/*
    798 		 * Log a message that the hard limit has been hit.
    799 		 */
    800 		if (pp->pr_hardlimit_warning != NULL &&
    801 		    ratecheck(&pp->pr_hardlimit_warning_last,
    802 			      &pp->pr_hardlimit_ratecap))
    803 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    804 
    805 		pp->pr_nfail++;
    806 
    807 		mutex_exit(&pp->pr_lock);
    808 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    809 		return (NULL);
    810 	}
    811 
    812 	/*
    813 	 * The convention we use is that if `curpage' is not NULL, then
    814 	 * it points at a non-empty bucket. In particular, `curpage'
    815 	 * never points at a page header which has PR_PHINPAGE set and
    816 	 * has no items in its bucket.
    817 	 */
    818 	if ((ph = pp->pr_curpage) == NULL) {
    819 		int error;
    820 
    821 		KASSERTMSG((pp->pr_nitems == 0),
    822 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    823 		    __func__, pp->pr_wchan, pp->pr_nitems);
    824 
    825 		/*
    826 		 * Call the back-end page allocator for more memory.
    827 		 * Release the pool lock, as the back-end page allocator
    828 		 * may block.
    829 		 */
    830 		error = pool_grow(pp, flags);
    831 		if (error != 0) {
    832 			/*
    833 			 * pool_grow aborts when another thread
    834 			 * is allocating a new page. Retry if it
    835 			 * waited for it.
    836 			 */
    837 			if (error == ERESTART)
    838 				goto startover;
    839 
    840 			/*
    841 			 * We were unable to allocate a page or item
    842 			 * header, but we released the lock during
    843 			 * allocation, so perhaps items were freed
    844 			 * back to the pool.  Check for this case.
    845 			 */
    846 			if (pp->pr_curpage != NULL)
    847 				goto startover;
    848 
    849 			pp->pr_nfail++;
    850 			mutex_exit(&pp->pr_lock);
    851 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    852 			return (NULL);
    853 		}
    854 
    855 		/* Start the allocation process over. */
    856 		goto startover;
    857 	}
    858 	if (pp->pr_roflags & PR_NOTOUCH) {
    859 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    860 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    861 		v = pr_item_notouch_get(pp, ph);
    862 	} else {
    863 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    864 		if (__predict_false(v == NULL)) {
    865 			mutex_exit(&pp->pr_lock);
    866 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    867 		}
    868 		KASSERTMSG((pp->pr_nitems > 0),
    869 		    "%s: [%s] nitems %u inconsistent on itemlist",
    870 		    __func__, pp->pr_wchan, pp->pr_nitems);
    871 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    872 		    "%s: [%s] free list modified: "
    873 		    "magic=%x; page %p; item addr %p", __func__,
    874 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    875 
    876 		/*
    877 		 * Remove from item list.
    878 		 */
    879 		LIST_REMOVE(pi, pi_list);
    880 	}
    881 	pp->pr_nitems--;
    882 	pp->pr_nout++;
    883 	if (ph->ph_nmissing == 0) {
    884 		KASSERT(pp->pr_nidle > 0);
    885 		pp->pr_nidle--;
    886 
    887 		/*
    888 		 * This page was previously empty.  Move it to the list of
    889 		 * partially-full pages.  This page is already curpage.
    890 		 */
    891 		LIST_REMOVE(ph, ph_pagelist);
    892 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    893 	}
    894 	ph->ph_nmissing++;
    895 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    896 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    897 			LIST_EMPTY(&ph->ph_itemlist)),
    898 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    899 			pp->pr_wchan, ph->ph_nmissing);
    900 		/*
    901 		 * This page is now full.  Move it to the full list
    902 		 * and select a new current page.
    903 		 */
    904 		LIST_REMOVE(ph, ph_pagelist);
    905 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    906 		pool_update_curpage(pp);
    907 	}
    908 
    909 	pp->pr_nget++;
    910 
    911 	/*
    912 	 * If we have a low water mark and we are now below that low
    913 	 * water mark, add more items to the pool.
    914 	 */
    915 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    916 		/*
    917 		 * XXX: Should we log a warning?  Should we set up a timeout
    918 		 * to try again in a second or so?  The latter could break
    919 		 * a caller's assumptions about interrupt protection, etc.
    920 		 */
    921 	}
    922 
    923 	mutex_exit(&pp->pr_lock);
    924 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    925 	FREECHECK_OUT(&pp->pr_freecheck, v);
    926 	pool_redzone_fill(pp, v);
    927 	return (v);
    928 }
    929 
    930 /*
    931  * Internal version of pool_put().  Pool is already locked/entered.
    932  */
    933 static void
    934 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    935 {
    936 	struct pool_item *pi = v;
    937 	struct pool_item_header *ph;
    938 
    939 	KASSERT(mutex_owned(&pp->pr_lock));
    940 	pool_redzone_check(pp, v);
    941 	FREECHECK_IN(&pp->pr_freecheck, v);
    942 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    943 
    944 	KASSERTMSG((pp->pr_nout > 0),
    945 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
    946 
    947 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    948 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
    949 	}
    950 
    951 	/*
    952 	 * Return to item list.
    953 	 */
    954 	if (pp->pr_roflags & PR_NOTOUCH) {
    955 		pr_item_notouch_put(pp, ph, v);
    956 	} else {
    957 #ifdef DIAGNOSTIC
    958 		pi->pi_magic = PI_MAGIC;
    959 #endif
    960 #ifdef DEBUG
    961 		{
    962 			int i, *ip = v;
    963 
    964 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    965 				*ip++ = PI_MAGIC;
    966 			}
    967 		}
    968 #endif
    969 
    970 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    971 	}
    972 	KDASSERT(ph->ph_nmissing != 0);
    973 	ph->ph_nmissing--;
    974 	pp->pr_nput++;
    975 	pp->pr_nitems++;
    976 	pp->pr_nout--;
    977 
    978 	/* Cancel "pool empty" condition if it exists */
    979 	if (pp->pr_curpage == NULL)
    980 		pp->pr_curpage = ph;
    981 
    982 	if (pp->pr_flags & PR_WANTED) {
    983 		pp->pr_flags &= ~PR_WANTED;
    984 		cv_broadcast(&pp->pr_cv);
    985 	}
    986 
    987 	/*
    988 	 * If this page is now empty, do one of two things:
    989 	 *
    990 	 *	(1) If we have more pages than the page high water mark,
    991 	 *	    free the page back to the system.  ONLY CONSIDER
    992 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
    993 	 *	    CLAIM.
    994 	 *
    995 	 *	(2) Otherwise, move the page to the empty page list.
    996 	 *
    997 	 * Either way, select a new current page (so we use a partially-full
    998 	 * page if one is available).
    999 	 */
   1000 	if (ph->ph_nmissing == 0) {
   1001 		pp->pr_nidle++;
   1002 		if (pp->pr_npages > pp->pr_minpages &&
   1003 		    pp->pr_npages > pp->pr_maxpages) {
   1004 			pr_rmpage(pp, ph, pq);
   1005 		} else {
   1006 			LIST_REMOVE(ph, ph_pagelist);
   1007 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1008 
   1009 			/*
   1010 			 * Update the timestamp on the page.  A page must
   1011 			 * be idle for some period of time before it can
   1012 			 * be reclaimed by the pagedaemon.  This minimizes
   1013 			 * ping-pong'ing for memory.
   1014 			 *
   1015 			 * note for 64-bit time_t: truncating to 32-bit is not
   1016 			 * a problem for our usage.
   1017 			 */
   1018 			ph->ph_time = time_uptime;
   1019 		}
   1020 		pool_update_curpage(pp);
   1021 	}
   1022 
   1023 	/*
   1024 	 * If the page was previously completely full, move it to the
   1025 	 * partially-full list and make it the current page.  The next
   1026 	 * allocation will get the item from this page, instead of
   1027 	 * further fragmenting the pool.
   1028 	 */
   1029 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1030 		LIST_REMOVE(ph, ph_pagelist);
   1031 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1032 		pp->pr_curpage = ph;
   1033 	}
   1034 }
   1035 
   1036 void
   1037 pool_put(struct pool *pp, void *v)
   1038 {
   1039 	struct pool_pagelist pq;
   1040 
   1041 	LIST_INIT(&pq);
   1042 
   1043 	mutex_enter(&pp->pr_lock);
   1044 	pool_do_put(pp, v, &pq);
   1045 	mutex_exit(&pp->pr_lock);
   1046 
   1047 	pr_pagelist_free(pp, &pq);
   1048 }
   1049 
   1050 /*
   1051  * pool_grow: grow a pool by a page.
   1052  *
   1053  * => called with pool locked.
   1054  * => unlock and relock the pool.
   1055  * => return with pool locked.
   1056  */
   1057 
   1058 static int
   1059 pool_grow(struct pool *pp, int flags)
   1060 {
   1061 	/*
   1062 	 * If there's a pool_grow in progress, wait for it to complete
   1063 	 * and try again from the top.
   1064 	 */
   1065 	if (pp->pr_flags & PR_GROWING) {
   1066 		if (flags & PR_WAITOK) {
   1067 			do {
   1068 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1069 			} while (pp->pr_flags & PR_GROWING);
   1070 			return ERESTART;
   1071 		} else {
   1072 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1073 				/*
   1074 				 * This needs an unlock/relock dance so
   1075 				 * that the other caller has a chance to
   1076 				 * run and actually do the thing.  Note
   1077 				 * that this is effectively a busy-wait.
   1078 				 */
   1079 				mutex_exit(&pp->pr_lock);
   1080 				mutex_enter(&pp->pr_lock);
   1081 				return ERESTART;
   1082 			}
   1083 			return EWOULDBLOCK;
   1084 		}
   1085 	}
   1086 	pp->pr_flags |= PR_GROWING;
   1087 	if (flags & PR_WAITOK)
   1088 		mutex_exit(&pp->pr_lock);
   1089 	else
   1090 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1091 
   1092 	char *cp = pool_allocator_alloc(pp, flags);
   1093 	if (__predict_false(cp == NULL))
   1094 		goto out;
   1095 
   1096 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
   1097 	if (__predict_false(ph == NULL)) {
   1098 		pool_allocator_free(pp, cp);
   1099 		goto out;
   1100 	}
   1101 
   1102 	if (flags & PR_WAITOK)
   1103 		mutex_enter(&pp->pr_lock);
   1104 	pool_prime_page(pp, cp, ph);
   1105 	pp->pr_npagealloc++;
   1106 	KASSERT(pp->pr_flags & PR_GROWING);
   1107 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1108 	/*
   1109 	 * If anyone was waiting for pool_grow, notify them that we
   1110 	 * may have just done it.
   1111 	 */
   1112 	cv_broadcast(&pp->pr_cv);
   1113 	return 0;
   1114 out:
   1115 	if (flags & PR_WAITOK)
   1116 		mutex_enter(&pp->pr_lock);
   1117 	KASSERT(pp->pr_flags & PR_GROWING);
   1118 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1119 	return ENOMEM;
   1120 }
   1121 
   1122 /*
   1123  * Add N items to the pool.
   1124  */
   1125 int
   1126 pool_prime(struct pool *pp, int n)
   1127 {
   1128 	int newpages;
   1129 	int error = 0;
   1130 
   1131 	mutex_enter(&pp->pr_lock);
   1132 
   1133 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1134 
   1135 	while (newpages > 0) {
   1136 		error = pool_grow(pp, PR_NOWAIT);
   1137 		if (error) {
   1138 			if (error == ERESTART)
   1139 				continue;
   1140 			break;
   1141 		}
   1142 		pp->pr_minpages++;
   1143 		newpages--;
   1144 	}
   1145 
   1146 	if (pp->pr_minpages >= pp->pr_maxpages)
   1147 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1148 
   1149 	mutex_exit(&pp->pr_lock);
   1150 	return error;
   1151 }
   1152 
   1153 /*
   1154  * Add a page worth of items to the pool.
   1155  *
   1156  * Note, we must be called with the pool descriptor LOCKED.
   1157  */
   1158 static void
   1159 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1160 {
   1161 	struct pool_item *pi;
   1162 	void *cp = storage;
   1163 	const unsigned int align = pp->pr_align;
   1164 	const unsigned int ioff = pp->pr_itemoffset;
   1165 	int n;
   1166 
   1167 	KASSERT(mutex_owned(&pp->pr_lock));
   1168 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1169 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1170 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1171 
   1172 	/*
   1173 	 * Insert page header.
   1174 	 */
   1175 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1176 	LIST_INIT(&ph->ph_itemlist);
   1177 	ph->ph_page = storage;
   1178 	ph->ph_nmissing = 0;
   1179 	ph->ph_time = time_uptime;
   1180 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1181 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1182 
   1183 	pp->pr_nidle++;
   1184 
   1185 	/*
   1186 	 * Color this page.
   1187 	 */
   1188 	ph->ph_off = pp->pr_curcolor;
   1189 	cp = (char *)cp + ph->ph_off;
   1190 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1191 		pp->pr_curcolor = 0;
   1192 
   1193 	/*
   1194 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1195 	 */
   1196 	if (ioff != 0)
   1197 		cp = (char *)cp + align - ioff;
   1198 
   1199 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1200 
   1201 	/*
   1202 	 * Insert remaining chunks on the bucket list.
   1203 	 */
   1204 	n = pp->pr_itemsperpage;
   1205 	pp->pr_nitems += n;
   1206 
   1207 	if (pp->pr_roflags & PR_NOTOUCH) {
   1208 		pr_item_notouch_init(pp, ph);
   1209 	} else {
   1210 		while (n--) {
   1211 			pi = (struct pool_item *)cp;
   1212 
   1213 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1214 
   1215 			/* Insert on page list */
   1216 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1217 #ifdef DIAGNOSTIC
   1218 			pi->pi_magic = PI_MAGIC;
   1219 #endif
   1220 			cp = (char *)cp + pp->pr_size;
   1221 
   1222 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1223 		}
   1224 	}
   1225 
   1226 	/*
   1227 	 * If the pool was depleted, point at the new page.
   1228 	 */
   1229 	if (pp->pr_curpage == NULL)
   1230 		pp->pr_curpage = ph;
   1231 
   1232 	if (++pp->pr_npages > pp->pr_hiwat)
   1233 		pp->pr_hiwat = pp->pr_npages;
   1234 }
   1235 
   1236 /*
   1237  * Used by pool_get() when nitems drops below the low water mark.  This
   1238  * is used to catch up pr_nitems with the low water mark.
   1239  *
   1240  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1241  *
   1242  * Note 2, we must be called with the pool already locked, and we return
   1243  * with it locked.
   1244  */
   1245 static int
   1246 pool_catchup(struct pool *pp)
   1247 {
   1248 	int error = 0;
   1249 
   1250 	while (POOL_NEEDS_CATCHUP(pp)) {
   1251 		error = pool_grow(pp, PR_NOWAIT);
   1252 		if (error) {
   1253 			if (error == ERESTART)
   1254 				continue;
   1255 			break;
   1256 		}
   1257 	}
   1258 	return error;
   1259 }
   1260 
   1261 static void
   1262 pool_update_curpage(struct pool *pp)
   1263 {
   1264 
   1265 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1266 	if (pp->pr_curpage == NULL) {
   1267 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1268 	}
   1269 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1270 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1271 }
   1272 
   1273 void
   1274 pool_setlowat(struct pool *pp, int n)
   1275 {
   1276 
   1277 	mutex_enter(&pp->pr_lock);
   1278 
   1279 	pp->pr_minitems = n;
   1280 	pp->pr_minpages = (n == 0)
   1281 		? 0
   1282 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1283 
   1284 	/* Make sure we're caught up with the newly-set low water mark. */
   1285 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1286 		/*
   1287 		 * XXX: Should we log a warning?  Should we set up a timeout
   1288 		 * to try again in a second or so?  The latter could break
   1289 		 * a caller's assumptions about interrupt protection, etc.
   1290 		 */
   1291 	}
   1292 
   1293 	mutex_exit(&pp->pr_lock);
   1294 }
   1295 
   1296 void
   1297 pool_sethiwat(struct pool *pp, int n)
   1298 {
   1299 
   1300 	mutex_enter(&pp->pr_lock);
   1301 
   1302 	pp->pr_maxpages = (n == 0)
   1303 		? 0
   1304 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1305 
   1306 	mutex_exit(&pp->pr_lock);
   1307 }
   1308 
   1309 void
   1310 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1311 {
   1312 
   1313 	mutex_enter(&pp->pr_lock);
   1314 
   1315 	pp->pr_hardlimit = n;
   1316 	pp->pr_hardlimit_warning = warnmess;
   1317 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1318 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1319 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1320 
   1321 	/*
   1322 	 * In-line version of pool_sethiwat(), because we don't want to
   1323 	 * release the lock.
   1324 	 */
   1325 	pp->pr_maxpages = (n == 0)
   1326 		? 0
   1327 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1328 
   1329 	mutex_exit(&pp->pr_lock);
   1330 }
   1331 
   1332 /*
   1333  * Release all complete pages that have not been used recently.
   1334  *
   1335  * Must not be called from interrupt context.
   1336  */
   1337 int
   1338 pool_reclaim(struct pool *pp)
   1339 {
   1340 	struct pool_item_header *ph, *phnext;
   1341 	struct pool_pagelist pq;
   1342 	uint32_t curtime;
   1343 	bool klock;
   1344 	int rv;
   1345 
   1346 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1347 
   1348 	if (pp->pr_drain_hook != NULL) {
   1349 		/*
   1350 		 * The drain hook must be called with the pool unlocked.
   1351 		 */
   1352 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1353 	}
   1354 
   1355 	/*
   1356 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1357 	 * to block.
   1358 	 */
   1359 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1360 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1361 		KERNEL_LOCK(1, NULL);
   1362 		klock = true;
   1363 	} else
   1364 		klock = false;
   1365 
   1366 	/* Reclaim items from the pool's cache (if any). */
   1367 	if (pp->pr_cache != NULL)
   1368 		pool_cache_invalidate(pp->pr_cache);
   1369 
   1370 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1371 		if (klock) {
   1372 			KERNEL_UNLOCK_ONE(NULL);
   1373 		}
   1374 		return (0);
   1375 	}
   1376 
   1377 	LIST_INIT(&pq);
   1378 
   1379 	curtime = time_uptime;
   1380 
   1381 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1382 		phnext = LIST_NEXT(ph, ph_pagelist);
   1383 
   1384 		/* Check our minimum page claim */
   1385 		if (pp->pr_npages <= pp->pr_minpages)
   1386 			break;
   1387 
   1388 		KASSERT(ph->ph_nmissing == 0);
   1389 		if (curtime - ph->ph_time < pool_inactive_time)
   1390 			continue;
   1391 
   1392 		/*
   1393 		 * If freeing this page would put us below
   1394 		 * the low water mark, stop now.
   1395 		 */
   1396 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1397 		    pp->pr_minitems)
   1398 			break;
   1399 
   1400 		pr_rmpage(pp, ph, &pq);
   1401 	}
   1402 
   1403 	mutex_exit(&pp->pr_lock);
   1404 
   1405 	if (LIST_EMPTY(&pq))
   1406 		rv = 0;
   1407 	else {
   1408 		pr_pagelist_free(pp, &pq);
   1409 		rv = 1;
   1410 	}
   1411 
   1412 	if (klock) {
   1413 		KERNEL_UNLOCK_ONE(NULL);
   1414 	}
   1415 
   1416 	return (rv);
   1417 }
   1418 
   1419 /*
   1420  * Drain pools, one at a time. The drained pool is returned within ppp.
   1421  *
   1422  * Note, must never be called from interrupt context.
   1423  */
   1424 bool
   1425 pool_drain(struct pool **ppp)
   1426 {
   1427 	bool reclaimed;
   1428 	struct pool *pp;
   1429 
   1430 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1431 
   1432 	pp = NULL;
   1433 
   1434 	/* Find next pool to drain, and add a reference. */
   1435 	mutex_enter(&pool_head_lock);
   1436 	do {
   1437 		if (drainpp == NULL) {
   1438 			drainpp = TAILQ_FIRST(&pool_head);
   1439 		}
   1440 		if (drainpp != NULL) {
   1441 			pp = drainpp;
   1442 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1443 		}
   1444 		/*
   1445 		 * Skip completely idle pools.  We depend on at least
   1446 		 * one pool in the system being active.
   1447 		 */
   1448 	} while (pp == NULL || pp->pr_npages == 0);
   1449 	pp->pr_refcnt++;
   1450 	mutex_exit(&pool_head_lock);
   1451 
   1452 	/* Drain the cache (if any) and pool.. */
   1453 	reclaimed = pool_reclaim(pp);
   1454 
   1455 	/* Finally, unlock the pool. */
   1456 	mutex_enter(&pool_head_lock);
   1457 	pp->pr_refcnt--;
   1458 	cv_broadcast(&pool_busy);
   1459 	mutex_exit(&pool_head_lock);
   1460 
   1461 	if (ppp != NULL)
   1462 		*ppp = pp;
   1463 
   1464 	return reclaimed;
   1465 }
   1466 
   1467 /*
   1468  * Diagnostic helpers.
   1469  */
   1470 
   1471 void
   1472 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1473 {
   1474 	struct pool *pp;
   1475 
   1476 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1477 		pool_printit(pp, modif, pr);
   1478 	}
   1479 }
   1480 
   1481 void
   1482 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1483 {
   1484 
   1485 	if (pp == NULL) {
   1486 		(*pr)("Must specify a pool to print.\n");
   1487 		return;
   1488 	}
   1489 
   1490 	pool_print1(pp, modif, pr);
   1491 }
   1492 
   1493 static void
   1494 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1495     void (*pr)(const char *, ...))
   1496 {
   1497 	struct pool_item_header *ph;
   1498 	struct pool_item *pi __diagused;
   1499 
   1500 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1501 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1502 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1503 #ifdef DIAGNOSTIC
   1504 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1505 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1506 				if (pi->pi_magic != PI_MAGIC) {
   1507 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1508 					    pi, pi->pi_magic);
   1509 				}
   1510 			}
   1511 		}
   1512 #endif
   1513 	}
   1514 }
   1515 
   1516 static void
   1517 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1518 {
   1519 	struct pool_item_header *ph;
   1520 	pool_cache_t pc;
   1521 	pcg_t *pcg;
   1522 	pool_cache_cpu_t *cc;
   1523 	uint64_t cpuhit, cpumiss;
   1524 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1525 	char c;
   1526 
   1527 	while ((c = *modif++) != '\0') {
   1528 		if (c == 'l')
   1529 			print_log = 1;
   1530 		if (c == 'p')
   1531 			print_pagelist = 1;
   1532 		if (c == 'c')
   1533 			print_cache = 1;
   1534 	}
   1535 
   1536 	if ((pc = pp->pr_cache) != NULL) {
   1537 		(*pr)("POOL CACHE");
   1538 	} else {
   1539 		(*pr)("POOL");
   1540 	}
   1541 
   1542 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1543 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1544 	    pp->pr_roflags);
   1545 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1546 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1547 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1548 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1549 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1550 
   1551 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1552 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1553 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1554 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1555 
   1556 	if (print_pagelist == 0)
   1557 		goto skip_pagelist;
   1558 
   1559 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1560 		(*pr)("\n\tempty page list:\n");
   1561 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1562 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1563 		(*pr)("\n\tfull page list:\n");
   1564 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1565 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1566 		(*pr)("\n\tpartial-page list:\n");
   1567 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1568 
   1569 	if (pp->pr_curpage == NULL)
   1570 		(*pr)("\tno current page\n");
   1571 	else
   1572 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1573 
   1574  skip_pagelist:
   1575 	if (print_log == 0)
   1576 		goto skip_log;
   1577 
   1578 	(*pr)("\n");
   1579 
   1580  skip_log:
   1581 
   1582 #define PR_GROUPLIST(pcg)						\
   1583 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1584 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1585 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1586 		    POOL_PADDR_INVALID) {				\
   1587 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1588 			    pcg->pcg_objects[i].pcgo_va,		\
   1589 			    (unsigned long long)			\
   1590 			    pcg->pcg_objects[i].pcgo_pa);		\
   1591 		} else {						\
   1592 			(*pr)("\t\t\t%p\n",				\
   1593 			    pcg->pcg_objects[i].pcgo_va);		\
   1594 		}							\
   1595 	}
   1596 
   1597 	if (pc != NULL) {
   1598 		cpuhit = 0;
   1599 		cpumiss = 0;
   1600 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1601 			if ((cc = pc->pc_cpus[i]) == NULL)
   1602 				continue;
   1603 			cpuhit += cc->cc_hits;
   1604 			cpumiss += cc->cc_misses;
   1605 		}
   1606 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1607 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1608 		    pc->pc_hits, pc->pc_misses);
   1609 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1610 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1611 		    pc->pc_contended);
   1612 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1613 		    pc->pc_nempty, pc->pc_nfull);
   1614 		if (print_cache) {
   1615 			(*pr)("\tfull cache groups:\n");
   1616 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1617 			    pcg = pcg->pcg_next) {
   1618 				PR_GROUPLIST(pcg);
   1619 			}
   1620 			(*pr)("\tempty cache groups:\n");
   1621 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1622 			    pcg = pcg->pcg_next) {
   1623 				PR_GROUPLIST(pcg);
   1624 			}
   1625 		}
   1626 	}
   1627 #undef PR_GROUPLIST
   1628 }
   1629 
   1630 static int
   1631 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1632 {
   1633 	struct pool_item *pi;
   1634 	void *page;
   1635 	int n;
   1636 
   1637 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1638 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1639 		if (page != ph->ph_page &&
   1640 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1641 			if (label != NULL)
   1642 				printf("%s: ", label);
   1643 			printf("pool(%p:%s): page inconsistency: page %p;"
   1644 			       " at page head addr %p (p %p)\n", pp,
   1645 				pp->pr_wchan, ph->ph_page,
   1646 				ph, page);
   1647 			return 1;
   1648 		}
   1649 	}
   1650 
   1651 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1652 		return 0;
   1653 
   1654 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1655 	     pi != NULL;
   1656 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1657 
   1658 #ifdef DIAGNOSTIC
   1659 		if (pi->pi_magic != PI_MAGIC) {
   1660 			if (label != NULL)
   1661 				printf("%s: ", label);
   1662 			printf("pool(%s): free list modified: magic=%x;"
   1663 			       " page %p; item ordinal %d; addr %p\n",
   1664 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1665 				n, pi);
   1666 			panic("pool");
   1667 		}
   1668 #endif
   1669 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1670 			continue;
   1671 		}
   1672 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1673 		if (page == ph->ph_page)
   1674 			continue;
   1675 
   1676 		if (label != NULL)
   1677 			printf("%s: ", label);
   1678 		printf("pool(%p:%s): page inconsistency: page %p;"
   1679 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1680 			pp->pr_wchan, ph->ph_page,
   1681 			n, pi, page);
   1682 		return 1;
   1683 	}
   1684 	return 0;
   1685 }
   1686 
   1687 
   1688 int
   1689 pool_chk(struct pool *pp, const char *label)
   1690 {
   1691 	struct pool_item_header *ph;
   1692 	int r = 0;
   1693 
   1694 	mutex_enter(&pp->pr_lock);
   1695 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1696 		r = pool_chk_page(pp, label, ph);
   1697 		if (r) {
   1698 			goto out;
   1699 		}
   1700 	}
   1701 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1702 		r = pool_chk_page(pp, label, ph);
   1703 		if (r) {
   1704 			goto out;
   1705 		}
   1706 	}
   1707 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1708 		r = pool_chk_page(pp, label, ph);
   1709 		if (r) {
   1710 			goto out;
   1711 		}
   1712 	}
   1713 
   1714 out:
   1715 	mutex_exit(&pp->pr_lock);
   1716 	return (r);
   1717 }
   1718 
   1719 /*
   1720  * pool_cache_init:
   1721  *
   1722  *	Initialize a pool cache.
   1723  */
   1724 pool_cache_t
   1725 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1726     const char *wchan, struct pool_allocator *palloc, int ipl,
   1727     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1728 {
   1729 	pool_cache_t pc;
   1730 
   1731 	pc = pool_get(&cache_pool, PR_WAITOK);
   1732 	if (pc == NULL)
   1733 		return NULL;
   1734 
   1735 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1736 	   palloc, ipl, ctor, dtor, arg);
   1737 
   1738 	return pc;
   1739 }
   1740 
   1741 /*
   1742  * pool_cache_bootstrap:
   1743  *
   1744  *	Kernel-private version of pool_cache_init().  The caller
   1745  *	provides initial storage.
   1746  */
   1747 void
   1748 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1749     u_int align_offset, u_int flags, const char *wchan,
   1750     struct pool_allocator *palloc, int ipl,
   1751     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1752     void *arg)
   1753 {
   1754 	CPU_INFO_ITERATOR cii;
   1755 	pool_cache_t pc1;
   1756 	struct cpu_info *ci;
   1757 	struct pool *pp;
   1758 
   1759 	pp = &pc->pc_pool;
   1760 	if (palloc == NULL && ipl == IPL_NONE)
   1761 		palloc = &pool_allocator_nointr;
   1762 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1763 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1764 
   1765 	if (ctor == NULL) {
   1766 		ctor = (int (*)(void *, void *, int))nullop;
   1767 	}
   1768 	if (dtor == NULL) {
   1769 		dtor = (void (*)(void *, void *))nullop;
   1770 	}
   1771 
   1772 	pc->pc_emptygroups = NULL;
   1773 	pc->pc_fullgroups = NULL;
   1774 	pc->pc_partgroups = NULL;
   1775 	pc->pc_ctor = ctor;
   1776 	pc->pc_dtor = dtor;
   1777 	pc->pc_arg  = arg;
   1778 	pc->pc_hits  = 0;
   1779 	pc->pc_misses = 0;
   1780 	pc->pc_nempty = 0;
   1781 	pc->pc_npart = 0;
   1782 	pc->pc_nfull = 0;
   1783 	pc->pc_contended = 0;
   1784 	pc->pc_refcnt = 0;
   1785 	pc->pc_freecheck = NULL;
   1786 
   1787 	if ((flags & PR_LARGECACHE) != 0) {
   1788 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1789 		pc->pc_pcgpool = &pcg_large_pool;
   1790 	} else {
   1791 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1792 		pc->pc_pcgpool = &pcg_normal_pool;
   1793 	}
   1794 
   1795 	/* Allocate per-CPU caches. */
   1796 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1797 	pc->pc_ncpu = 0;
   1798 	if (ncpu < 2) {
   1799 		/* XXX For sparc: boot CPU is not attached yet. */
   1800 		pool_cache_cpu_init1(curcpu(), pc);
   1801 	} else {
   1802 		for (CPU_INFO_FOREACH(cii, ci)) {
   1803 			pool_cache_cpu_init1(ci, pc);
   1804 		}
   1805 	}
   1806 
   1807 	/* Add to list of all pools. */
   1808 	if (__predict_true(!cold))
   1809 		mutex_enter(&pool_head_lock);
   1810 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1811 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1812 			break;
   1813 	}
   1814 	if (pc1 == NULL)
   1815 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1816 	else
   1817 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1818 	if (__predict_true(!cold))
   1819 		mutex_exit(&pool_head_lock);
   1820 
   1821 	membar_sync();
   1822 	pp->pr_cache = pc;
   1823 }
   1824 
   1825 /*
   1826  * pool_cache_destroy:
   1827  *
   1828  *	Destroy a pool cache.
   1829  */
   1830 void
   1831 pool_cache_destroy(pool_cache_t pc)
   1832 {
   1833 
   1834 	pool_cache_bootstrap_destroy(pc);
   1835 	pool_put(&cache_pool, pc);
   1836 }
   1837 
   1838 /*
   1839  * pool_cache_bootstrap_destroy:
   1840  *
   1841  *	Destroy a pool cache.
   1842  */
   1843 void
   1844 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1845 {
   1846 	struct pool *pp = &pc->pc_pool;
   1847 	u_int i;
   1848 
   1849 	/* Remove it from the global list. */
   1850 	mutex_enter(&pool_head_lock);
   1851 	while (pc->pc_refcnt != 0)
   1852 		cv_wait(&pool_busy, &pool_head_lock);
   1853 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1854 	mutex_exit(&pool_head_lock);
   1855 
   1856 	/* First, invalidate the entire cache. */
   1857 	pool_cache_invalidate(pc);
   1858 
   1859 	/* Disassociate it from the pool. */
   1860 	mutex_enter(&pp->pr_lock);
   1861 	pp->pr_cache = NULL;
   1862 	mutex_exit(&pp->pr_lock);
   1863 
   1864 	/* Destroy per-CPU data */
   1865 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1866 		pool_cache_invalidate_cpu(pc, i);
   1867 
   1868 	/* Finally, destroy it. */
   1869 	mutex_destroy(&pc->pc_lock);
   1870 	pool_destroy(pp);
   1871 }
   1872 
   1873 /*
   1874  * pool_cache_cpu_init1:
   1875  *
   1876  *	Called for each pool_cache whenever a new CPU is attached.
   1877  */
   1878 static void
   1879 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1880 {
   1881 	pool_cache_cpu_t *cc;
   1882 	int index;
   1883 
   1884 	index = ci->ci_index;
   1885 
   1886 	KASSERT(index < __arraycount(pc->pc_cpus));
   1887 
   1888 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1889 		KASSERT(cc->cc_cpuindex == index);
   1890 		return;
   1891 	}
   1892 
   1893 	/*
   1894 	 * The first CPU is 'free'.  This needs to be the case for
   1895 	 * bootstrap - we may not be able to allocate yet.
   1896 	 */
   1897 	if (pc->pc_ncpu == 0) {
   1898 		cc = &pc->pc_cpu0;
   1899 		pc->pc_ncpu = 1;
   1900 	} else {
   1901 		mutex_enter(&pc->pc_lock);
   1902 		pc->pc_ncpu++;
   1903 		mutex_exit(&pc->pc_lock);
   1904 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1905 	}
   1906 
   1907 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1908 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1909 	cc->cc_cache = pc;
   1910 	cc->cc_cpuindex = index;
   1911 	cc->cc_hits = 0;
   1912 	cc->cc_misses = 0;
   1913 	cc->cc_current = __UNCONST(&pcg_dummy);
   1914 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1915 
   1916 	pc->pc_cpus[index] = cc;
   1917 }
   1918 
   1919 /*
   1920  * pool_cache_cpu_init:
   1921  *
   1922  *	Called whenever a new CPU is attached.
   1923  */
   1924 void
   1925 pool_cache_cpu_init(struct cpu_info *ci)
   1926 {
   1927 	pool_cache_t pc;
   1928 
   1929 	mutex_enter(&pool_head_lock);
   1930 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1931 		pc->pc_refcnt++;
   1932 		mutex_exit(&pool_head_lock);
   1933 
   1934 		pool_cache_cpu_init1(ci, pc);
   1935 
   1936 		mutex_enter(&pool_head_lock);
   1937 		pc->pc_refcnt--;
   1938 		cv_broadcast(&pool_busy);
   1939 	}
   1940 	mutex_exit(&pool_head_lock);
   1941 }
   1942 
   1943 /*
   1944  * pool_cache_reclaim:
   1945  *
   1946  *	Reclaim memory from a pool cache.
   1947  */
   1948 bool
   1949 pool_cache_reclaim(pool_cache_t pc)
   1950 {
   1951 
   1952 	return pool_reclaim(&pc->pc_pool);
   1953 }
   1954 
   1955 static void
   1956 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1957 {
   1958 
   1959 	(*pc->pc_dtor)(pc->pc_arg, object);
   1960 	pool_put(&pc->pc_pool, object);
   1961 }
   1962 
   1963 /*
   1964  * pool_cache_destruct_object:
   1965  *
   1966  *	Force destruction of an object and its release back into
   1967  *	the pool.
   1968  */
   1969 void
   1970 pool_cache_destruct_object(pool_cache_t pc, void *object)
   1971 {
   1972 
   1973 	FREECHECK_IN(&pc->pc_freecheck, object);
   1974 
   1975 	pool_cache_destruct_object1(pc, object);
   1976 }
   1977 
   1978 /*
   1979  * pool_cache_invalidate_groups:
   1980  *
   1981  *	Invalidate a chain of groups and destruct all objects.
   1982  */
   1983 static void
   1984 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1985 {
   1986 	void *object;
   1987 	pcg_t *next;
   1988 	int i;
   1989 
   1990 	for (; pcg != NULL; pcg = next) {
   1991 		next = pcg->pcg_next;
   1992 
   1993 		for (i = 0; i < pcg->pcg_avail; i++) {
   1994 			object = pcg->pcg_objects[i].pcgo_va;
   1995 			pool_cache_destruct_object1(pc, object);
   1996 		}
   1997 
   1998 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1999 			pool_put(&pcg_large_pool, pcg);
   2000 		} else {
   2001 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2002 			pool_put(&pcg_normal_pool, pcg);
   2003 		}
   2004 	}
   2005 }
   2006 
   2007 /*
   2008  * pool_cache_invalidate:
   2009  *
   2010  *	Invalidate a pool cache (destruct and release all of the
   2011  *	cached objects).  Does not reclaim objects from the pool.
   2012  *
   2013  *	Note: For pool caches that provide constructed objects, there
   2014  *	is an assumption that another level of synchronization is occurring
   2015  *	between the input to the constructor and the cache invalidation.
   2016  *
   2017  *	Invalidation is a costly process and should not be called from
   2018  *	interrupt context.
   2019  */
   2020 void
   2021 pool_cache_invalidate(pool_cache_t pc)
   2022 {
   2023 	uint64_t where;
   2024 	pcg_t *full, *empty, *part;
   2025 
   2026 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2027 
   2028 	if (ncpu < 2 || !mp_online) {
   2029 		/*
   2030 		 * We might be called early enough in the boot process
   2031 		 * for the CPU data structures to not be fully initialized.
   2032 		 * In this case, transfer the content of the local CPU's
   2033 		 * cache back into global cache as only this CPU is currently
   2034 		 * running.
   2035 		 */
   2036 		pool_cache_transfer(pc);
   2037 	} else {
   2038 		/*
   2039 		 * Signal all CPUs that they must transfer their local
   2040 		 * cache back to the global pool then wait for the xcall to
   2041 		 * complete.
   2042 		 */
   2043 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2044 		    pc, NULL);
   2045 		xc_wait(where);
   2046 	}
   2047 
   2048 	/* Empty pool caches, then invalidate objects */
   2049 	mutex_enter(&pc->pc_lock);
   2050 	full = pc->pc_fullgroups;
   2051 	empty = pc->pc_emptygroups;
   2052 	part = pc->pc_partgroups;
   2053 	pc->pc_fullgroups = NULL;
   2054 	pc->pc_emptygroups = NULL;
   2055 	pc->pc_partgroups = NULL;
   2056 	pc->pc_nfull = 0;
   2057 	pc->pc_nempty = 0;
   2058 	pc->pc_npart = 0;
   2059 	mutex_exit(&pc->pc_lock);
   2060 
   2061 	pool_cache_invalidate_groups(pc, full);
   2062 	pool_cache_invalidate_groups(pc, empty);
   2063 	pool_cache_invalidate_groups(pc, part);
   2064 }
   2065 
   2066 /*
   2067  * pool_cache_invalidate_cpu:
   2068  *
   2069  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2070  *	identified by its associated index.
   2071  *	It is caller's responsibility to ensure that no operation is
   2072  *	taking place on this pool cache while doing this invalidation.
   2073  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2074  *	pool cached objects from a CPU different from the one currently running
   2075  *	may result in an undefined behaviour.
   2076  */
   2077 static void
   2078 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2079 {
   2080 	pool_cache_cpu_t *cc;
   2081 	pcg_t *pcg;
   2082 
   2083 	if ((cc = pc->pc_cpus[index]) == NULL)
   2084 		return;
   2085 
   2086 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2087 		pcg->pcg_next = NULL;
   2088 		pool_cache_invalidate_groups(pc, pcg);
   2089 	}
   2090 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2091 		pcg->pcg_next = NULL;
   2092 		pool_cache_invalidate_groups(pc, pcg);
   2093 	}
   2094 	if (cc != &pc->pc_cpu0)
   2095 		pool_put(&cache_cpu_pool, cc);
   2096 
   2097 }
   2098 
   2099 void
   2100 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2101 {
   2102 
   2103 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2104 }
   2105 
   2106 void
   2107 pool_cache_setlowat(pool_cache_t pc, int n)
   2108 {
   2109 
   2110 	pool_setlowat(&pc->pc_pool, n);
   2111 }
   2112 
   2113 void
   2114 pool_cache_sethiwat(pool_cache_t pc, int n)
   2115 {
   2116 
   2117 	pool_sethiwat(&pc->pc_pool, n);
   2118 }
   2119 
   2120 void
   2121 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2122 {
   2123 
   2124 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2125 }
   2126 
   2127 static bool __noinline
   2128 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2129 		    paddr_t *pap, int flags)
   2130 {
   2131 	pcg_t *pcg, *cur;
   2132 	uint64_t ncsw;
   2133 	pool_cache_t pc;
   2134 	void *object;
   2135 
   2136 	KASSERT(cc->cc_current->pcg_avail == 0);
   2137 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2138 
   2139 	pc = cc->cc_cache;
   2140 	cc->cc_misses++;
   2141 
   2142 	/*
   2143 	 * Nothing was available locally.  Try and grab a group
   2144 	 * from the cache.
   2145 	 */
   2146 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2147 		ncsw = curlwp->l_ncsw;
   2148 		mutex_enter(&pc->pc_lock);
   2149 		pc->pc_contended++;
   2150 
   2151 		/*
   2152 		 * If we context switched while locking, then
   2153 		 * our view of the per-CPU data is invalid:
   2154 		 * retry.
   2155 		 */
   2156 		if (curlwp->l_ncsw != ncsw) {
   2157 			mutex_exit(&pc->pc_lock);
   2158 			return true;
   2159 		}
   2160 	}
   2161 
   2162 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2163 		/*
   2164 		 * If there's a full group, release our empty
   2165 		 * group back to the cache.  Install the full
   2166 		 * group as cc_current and return.
   2167 		 */
   2168 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2169 			KASSERT(cur->pcg_avail == 0);
   2170 			cur->pcg_next = pc->pc_emptygroups;
   2171 			pc->pc_emptygroups = cur;
   2172 			pc->pc_nempty++;
   2173 		}
   2174 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2175 		cc->cc_current = pcg;
   2176 		pc->pc_fullgroups = pcg->pcg_next;
   2177 		pc->pc_hits++;
   2178 		pc->pc_nfull--;
   2179 		mutex_exit(&pc->pc_lock);
   2180 		return true;
   2181 	}
   2182 
   2183 	/*
   2184 	 * Nothing available locally or in cache.  Take the slow
   2185 	 * path: fetch a new object from the pool and construct
   2186 	 * it.
   2187 	 */
   2188 	pc->pc_misses++;
   2189 	mutex_exit(&pc->pc_lock);
   2190 	splx(s);
   2191 
   2192 	object = pool_get(&pc->pc_pool, flags);
   2193 	*objectp = object;
   2194 	if (__predict_false(object == NULL)) {
   2195 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2196 		return false;
   2197 	}
   2198 
   2199 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2200 		pool_put(&pc->pc_pool, object);
   2201 		*objectp = NULL;
   2202 		return false;
   2203 	}
   2204 
   2205 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2206 	    (pc->pc_pool.pr_align - 1)) == 0);
   2207 
   2208 	if (pap != NULL) {
   2209 #ifdef POOL_VTOPHYS
   2210 		*pap = POOL_VTOPHYS(object);
   2211 #else
   2212 		*pap = POOL_PADDR_INVALID;
   2213 #endif
   2214 	}
   2215 
   2216 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2217 	pool_redzone_fill(&pc->pc_pool, object);
   2218 	return false;
   2219 }
   2220 
   2221 /*
   2222  * pool_cache_get{,_paddr}:
   2223  *
   2224  *	Get an object from a pool cache (optionally returning
   2225  *	the physical address of the object).
   2226  */
   2227 void *
   2228 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2229 {
   2230 	pool_cache_cpu_t *cc;
   2231 	pcg_t *pcg;
   2232 	void *object;
   2233 	int s;
   2234 
   2235 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2236 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2237 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2238 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2239 	    __func__, pc->pc_pool.pr_wchan);
   2240 
   2241 	if (flags & PR_WAITOK) {
   2242 		ASSERT_SLEEPABLE();
   2243 	}
   2244 
   2245 	/* Lock out interrupts and disable preemption. */
   2246 	s = splvm();
   2247 	while (/* CONSTCOND */ true) {
   2248 		/* Try and allocate an object from the current group. */
   2249 		cc = pc->pc_cpus[curcpu()->ci_index];
   2250 		KASSERT(cc->cc_cache == pc);
   2251 	 	pcg = cc->cc_current;
   2252 		if (__predict_true(pcg->pcg_avail > 0)) {
   2253 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2254 			if (__predict_false(pap != NULL))
   2255 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2256 #if defined(DIAGNOSTIC)
   2257 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2258 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2259 			KASSERT(object != NULL);
   2260 #endif
   2261 			cc->cc_hits++;
   2262 			splx(s);
   2263 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2264 			pool_redzone_fill(&pc->pc_pool, object);
   2265 			return object;
   2266 		}
   2267 
   2268 		/*
   2269 		 * That failed.  If the previous group isn't empty, swap
   2270 		 * it with the current group and allocate from there.
   2271 		 */
   2272 		pcg = cc->cc_previous;
   2273 		if (__predict_true(pcg->pcg_avail > 0)) {
   2274 			cc->cc_previous = cc->cc_current;
   2275 			cc->cc_current = pcg;
   2276 			continue;
   2277 		}
   2278 
   2279 		/*
   2280 		 * Can't allocate from either group: try the slow path.
   2281 		 * If get_slow() allocated an object for us, or if
   2282 		 * no more objects are available, it will return false.
   2283 		 * Otherwise, we need to retry.
   2284 		 */
   2285 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2286 			break;
   2287 	}
   2288 
   2289 	/*
   2290 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2291 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2292 	 * constructor fails.
   2293 	 */
   2294 	return object;
   2295 }
   2296 
   2297 static bool __noinline
   2298 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2299 {
   2300 	struct lwp *l = curlwp;
   2301 	pcg_t *pcg, *cur;
   2302 	uint64_t ncsw;
   2303 	pool_cache_t pc;
   2304 
   2305 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2306 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2307 
   2308 	pc = cc->cc_cache;
   2309 	pcg = NULL;
   2310 	cc->cc_misses++;
   2311 	ncsw = l->l_ncsw;
   2312 
   2313 	/*
   2314 	 * If there are no empty groups in the cache then allocate one
   2315 	 * while still unlocked.
   2316 	 */
   2317 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2318 		if (__predict_true(!pool_cache_disable)) {
   2319 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2320 		}
   2321 		/*
   2322 		 * If pool_get() blocked, then our view of
   2323 		 * the per-CPU data is invalid: retry.
   2324 		 */
   2325 		if (__predict_false(l->l_ncsw != ncsw)) {
   2326 			if (pcg != NULL) {
   2327 				pool_put(pc->pc_pcgpool, pcg);
   2328 			}
   2329 			return true;
   2330 		}
   2331 		if (__predict_true(pcg != NULL)) {
   2332 			pcg->pcg_avail = 0;
   2333 			pcg->pcg_size = pc->pc_pcgsize;
   2334 		}
   2335 	}
   2336 
   2337 	/* Lock the cache. */
   2338 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2339 		mutex_enter(&pc->pc_lock);
   2340 		pc->pc_contended++;
   2341 
   2342 		/*
   2343 		 * If we context switched while locking, then our view of
   2344 		 * the per-CPU data is invalid: retry.
   2345 		 */
   2346 		if (__predict_false(l->l_ncsw != ncsw)) {
   2347 			mutex_exit(&pc->pc_lock);
   2348 			if (pcg != NULL) {
   2349 				pool_put(pc->pc_pcgpool, pcg);
   2350 			}
   2351 			return true;
   2352 		}
   2353 	}
   2354 
   2355 	/* If there are no empty groups in the cache then allocate one. */
   2356 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2357 		pcg = pc->pc_emptygroups;
   2358 		pc->pc_emptygroups = pcg->pcg_next;
   2359 		pc->pc_nempty--;
   2360 	}
   2361 
   2362 	/*
   2363 	 * If there's a empty group, release our full group back
   2364 	 * to the cache.  Install the empty group to the local CPU
   2365 	 * and return.
   2366 	 */
   2367 	if (pcg != NULL) {
   2368 		KASSERT(pcg->pcg_avail == 0);
   2369 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2370 			cc->cc_previous = pcg;
   2371 		} else {
   2372 			cur = cc->cc_current;
   2373 			if (__predict_true(cur != &pcg_dummy)) {
   2374 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2375 				cur->pcg_next = pc->pc_fullgroups;
   2376 				pc->pc_fullgroups = cur;
   2377 				pc->pc_nfull++;
   2378 			}
   2379 			cc->cc_current = pcg;
   2380 		}
   2381 		pc->pc_hits++;
   2382 		mutex_exit(&pc->pc_lock);
   2383 		return true;
   2384 	}
   2385 
   2386 	/*
   2387 	 * Nothing available locally or in cache, and we didn't
   2388 	 * allocate an empty group.  Take the slow path and destroy
   2389 	 * the object here and now.
   2390 	 */
   2391 	pc->pc_misses++;
   2392 	mutex_exit(&pc->pc_lock);
   2393 	splx(s);
   2394 	pool_cache_destruct_object(pc, object);
   2395 
   2396 	return false;
   2397 }
   2398 
   2399 /*
   2400  * pool_cache_put{,_paddr}:
   2401  *
   2402  *	Put an object back to the pool cache (optionally caching the
   2403  *	physical address of the object).
   2404  */
   2405 void
   2406 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2407 {
   2408 	pool_cache_cpu_t *cc;
   2409 	pcg_t *pcg;
   2410 	int s;
   2411 
   2412 	KASSERT(object != NULL);
   2413 	pool_redzone_check(&pc->pc_pool, object);
   2414 	FREECHECK_IN(&pc->pc_freecheck, object);
   2415 
   2416 	/* Lock out interrupts and disable preemption. */
   2417 	s = splvm();
   2418 	while (/* CONSTCOND */ true) {
   2419 		/* If the current group isn't full, release it there. */
   2420 		cc = pc->pc_cpus[curcpu()->ci_index];
   2421 		KASSERT(cc->cc_cache == pc);
   2422 	 	pcg = cc->cc_current;
   2423 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2424 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2425 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2426 			pcg->pcg_avail++;
   2427 			cc->cc_hits++;
   2428 			splx(s);
   2429 			return;
   2430 		}
   2431 
   2432 		/*
   2433 		 * That failed.  If the previous group isn't full, swap
   2434 		 * it with the current group and try again.
   2435 		 */
   2436 		pcg = cc->cc_previous;
   2437 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2438 			cc->cc_previous = cc->cc_current;
   2439 			cc->cc_current = pcg;
   2440 			continue;
   2441 		}
   2442 
   2443 		/*
   2444 		 * Can't free to either group: try the slow path.
   2445 		 * If put_slow() releases the object for us, it
   2446 		 * will return false.  Otherwise we need to retry.
   2447 		 */
   2448 		if (!pool_cache_put_slow(cc, s, object))
   2449 			break;
   2450 	}
   2451 }
   2452 
   2453 /*
   2454  * pool_cache_transfer:
   2455  *
   2456  *	Transfer objects from the per-CPU cache to the global cache.
   2457  *	Run within a cross-call thread.
   2458  */
   2459 static void
   2460 pool_cache_transfer(pool_cache_t pc)
   2461 {
   2462 	pool_cache_cpu_t *cc;
   2463 	pcg_t *prev, *cur, **list;
   2464 	int s;
   2465 
   2466 	s = splvm();
   2467 	mutex_enter(&pc->pc_lock);
   2468 	cc = pc->pc_cpus[curcpu()->ci_index];
   2469 	cur = cc->cc_current;
   2470 	cc->cc_current = __UNCONST(&pcg_dummy);
   2471 	prev = cc->cc_previous;
   2472 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2473 	if (cur != &pcg_dummy) {
   2474 		if (cur->pcg_avail == cur->pcg_size) {
   2475 			list = &pc->pc_fullgroups;
   2476 			pc->pc_nfull++;
   2477 		} else if (cur->pcg_avail == 0) {
   2478 			list = &pc->pc_emptygroups;
   2479 			pc->pc_nempty++;
   2480 		} else {
   2481 			list = &pc->pc_partgroups;
   2482 			pc->pc_npart++;
   2483 		}
   2484 		cur->pcg_next = *list;
   2485 		*list = cur;
   2486 	}
   2487 	if (prev != &pcg_dummy) {
   2488 		if (prev->pcg_avail == prev->pcg_size) {
   2489 			list = &pc->pc_fullgroups;
   2490 			pc->pc_nfull++;
   2491 		} else if (prev->pcg_avail == 0) {
   2492 			list = &pc->pc_emptygroups;
   2493 			pc->pc_nempty++;
   2494 		} else {
   2495 			list = &pc->pc_partgroups;
   2496 			pc->pc_npart++;
   2497 		}
   2498 		prev->pcg_next = *list;
   2499 		*list = prev;
   2500 	}
   2501 	mutex_exit(&pc->pc_lock);
   2502 	splx(s);
   2503 }
   2504 
   2505 /*
   2506  * Pool backend allocators.
   2507  *
   2508  * Each pool has a backend allocator that handles allocation, deallocation,
   2509  * and any additional draining that might be needed.
   2510  *
   2511  * We provide two standard allocators:
   2512  *
   2513  *	pool_allocator_kmem - the default when no allocator is specified
   2514  *
   2515  *	pool_allocator_nointr - used for pools that will not be accessed
   2516  *	in interrupt context.
   2517  */
   2518 void	*pool_page_alloc(struct pool *, int);
   2519 void	pool_page_free(struct pool *, void *);
   2520 
   2521 #ifdef POOL_SUBPAGE
   2522 struct pool_allocator pool_allocator_kmem_fullpage = {
   2523 	.pa_alloc = pool_page_alloc,
   2524 	.pa_free = pool_page_free,
   2525 	.pa_pagesz = 0
   2526 };
   2527 #else
   2528 struct pool_allocator pool_allocator_kmem = {
   2529 	.pa_alloc = pool_page_alloc,
   2530 	.pa_free = pool_page_free,
   2531 	.pa_pagesz = 0
   2532 };
   2533 #endif
   2534 
   2535 #ifdef POOL_SUBPAGE
   2536 struct pool_allocator pool_allocator_nointr_fullpage = {
   2537 	.pa_alloc = pool_page_alloc,
   2538 	.pa_free = pool_page_free,
   2539 	.pa_pagesz = 0
   2540 };
   2541 #else
   2542 struct pool_allocator pool_allocator_nointr = {
   2543 	.pa_alloc = pool_page_alloc,
   2544 	.pa_free = pool_page_free,
   2545 	.pa_pagesz = 0
   2546 };
   2547 #endif
   2548 
   2549 #ifdef POOL_SUBPAGE
   2550 void	*pool_subpage_alloc(struct pool *, int);
   2551 void	pool_subpage_free(struct pool *, void *);
   2552 
   2553 struct pool_allocator pool_allocator_kmem = {
   2554 	.pa_alloc = pool_subpage_alloc,
   2555 	.pa_free = pool_subpage_free,
   2556 	.pa_pagesz = POOL_SUBPAGE
   2557 };
   2558 
   2559 struct pool_allocator pool_allocator_nointr = {
   2560 	.pa_alloc = pool_subpage_alloc,
   2561 	.pa_free = pool_subpage_free,
   2562 	.pa_pagesz = POOL_SUBPAGE
   2563 };
   2564 #endif /* POOL_SUBPAGE */
   2565 
   2566 static void *
   2567 pool_allocator_alloc(struct pool *pp, int flags)
   2568 {
   2569 	struct pool_allocator *pa = pp->pr_alloc;
   2570 	void *res;
   2571 
   2572 	res = (*pa->pa_alloc)(pp, flags);
   2573 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2574 		/*
   2575 		 * We only run the drain hook here if PR_NOWAIT.
   2576 		 * In other cases, the hook will be run in
   2577 		 * pool_reclaim().
   2578 		 */
   2579 		if (pp->pr_drain_hook != NULL) {
   2580 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2581 			res = (*pa->pa_alloc)(pp, flags);
   2582 		}
   2583 	}
   2584 	return res;
   2585 }
   2586 
   2587 static void
   2588 pool_allocator_free(struct pool *pp, void *v)
   2589 {
   2590 	struct pool_allocator *pa = pp->pr_alloc;
   2591 
   2592 	(*pa->pa_free)(pp, v);
   2593 }
   2594 
   2595 void *
   2596 pool_page_alloc(struct pool *pp, int flags)
   2597 {
   2598 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2599 	vmem_addr_t va;
   2600 	int ret;
   2601 
   2602 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2603 	    vflags | VM_INSTANTFIT, &va);
   2604 
   2605 	return ret ? NULL : (void *)va;
   2606 }
   2607 
   2608 void
   2609 pool_page_free(struct pool *pp, void *v)
   2610 {
   2611 
   2612 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2613 }
   2614 
   2615 static void *
   2616 pool_page_alloc_meta(struct pool *pp, int flags)
   2617 {
   2618 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2619 	vmem_addr_t va;
   2620 	int ret;
   2621 
   2622 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2623 	    vflags | VM_INSTANTFIT, &va);
   2624 
   2625 	return ret ? NULL : (void *)va;
   2626 }
   2627 
   2628 static void
   2629 pool_page_free_meta(struct pool *pp, void *v)
   2630 {
   2631 
   2632 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2633 }
   2634 
   2635 #ifdef POOL_REDZONE
   2636 #if defined(_LP64)
   2637 # define PRIME 0x9e37fffffffc0000UL
   2638 #else /* defined(_LP64) */
   2639 # define PRIME 0x9e3779b1
   2640 #endif /* defined(_LP64) */
   2641 #define STATIC_BYTE	0xFE
   2642 CTASSERT(POOL_REDZONE_SIZE > 1);
   2643 
   2644 static inline uint8_t
   2645 pool_pattern_generate(const void *p)
   2646 {
   2647 	return (uint8_t)(((uintptr_t)p) * PRIME
   2648 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2649 }
   2650 
   2651 static void
   2652 pool_redzone_init(struct pool *pp, size_t requested_size)
   2653 {
   2654 	size_t nsz;
   2655 
   2656 	if (pp->pr_roflags & PR_NOTOUCH) {
   2657 		pp->pr_reqsize = 0;
   2658 		pp->pr_redzone = false;
   2659 		return;
   2660 	}
   2661 
   2662 	/*
   2663 	 * We may have extended the requested size earlier; check if
   2664 	 * there's naturally space in the padding for a red zone.
   2665 	 */
   2666 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2667 		pp->pr_reqsize = requested_size;
   2668 		pp->pr_redzone = true;
   2669 		return;
   2670 	}
   2671 
   2672 	/*
   2673 	 * No space in the natural padding; check if we can extend a
   2674 	 * bit the size of the pool.
   2675 	 */
   2676 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2677 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2678 		/* Ok, we can */
   2679 		pp->pr_size = nsz;
   2680 		pp->pr_reqsize = requested_size;
   2681 		pp->pr_redzone = true;
   2682 	} else {
   2683 		/* No space for a red zone... snif :'( */
   2684 		pp->pr_reqsize = 0;
   2685 		pp->pr_redzone = false;
   2686 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2687 	}
   2688 }
   2689 
   2690 static void
   2691 pool_redzone_fill(struct pool *pp, void *p)
   2692 {
   2693 	uint8_t *cp, pat;
   2694 	const uint8_t *ep;
   2695 
   2696 	if (!pp->pr_redzone)
   2697 		return;
   2698 
   2699 	cp = (uint8_t *)p + pp->pr_reqsize;
   2700 	ep = cp + POOL_REDZONE_SIZE;
   2701 
   2702 	/*
   2703 	 * We really don't want the first byte of the red zone to be '\0';
   2704 	 * an off-by-one in a string may not be properly detected.
   2705 	 */
   2706 	pat = pool_pattern_generate(cp);
   2707 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2708 	cp++;
   2709 
   2710 	while (cp < ep) {
   2711 		*cp = pool_pattern_generate(cp);
   2712 		cp++;
   2713 	}
   2714 }
   2715 
   2716 static void
   2717 pool_redzone_check(struct pool *pp, void *p)
   2718 {
   2719 	uint8_t *cp, pat, expected;
   2720 	const uint8_t *ep;
   2721 
   2722 	if (!pp->pr_redzone)
   2723 		return;
   2724 
   2725 	cp = (uint8_t *)p + pp->pr_reqsize;
   2726 	ep = cp + POOL_REDZONE_SIZE;
   2727 
   2728 	pat = pool_pattern_generate(cp);
   2729 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2730 	if (expected != *cp) {
   2731 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2732 		   __func__, cp, *cp, expected);
   2733 	}
   2734 	cp++;
   2735 
   2736 	while (cp < ep) {
   2737 		expected = pool_pattern_generate(cp);
   2738 		if (*cp != expected) {
   2739 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2740 			   __func__, cp, *cp, expected);
   2741 		}
   2742 		cp++;
   2743 	}
   2744 }
   2745 
   2746 #endif /* POOL_REDZONE */
   2747 
   2748 
   2749 #ifdef POOL_SUBPAGE
   2750 /* Sub-page allocator, for machines with large hardware pages. */
   2751 void *
   2752 pool_subpage_alloc(struct pool *pp, int flags)
   2753 {
   2754 	return pool_get(&psppool, flags);
   2755 }
   2756 
   2757 void
   2758 pool_subpage_free(struct pool *pp, void *v)
   2759 {
   2760 	pool_put(&psppool, v);
   2761 }
   2762 
   2763 #endif /* POOL_SUBPAGE */
   2764 
   2765 #if defined(DDB)
   2766 static bool
   2767 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2768 {
   2769 
   2770 	return (uintptr_t)ph->ph_page <= addr &&
   2771 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2772 }
   2773 
   2774 static bool
   2775 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2776 {
   2777 
   2778 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2779 }
   2780 
   2781 static bool
   2782 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2783 {
   2784 	int i;
   2785 
   2786 	if (pcg == NULL) {
   2787 		return false;
   2788 	}
   2789 	for (i = 0; i < pcg->pcg_avail; i++) {
   2790 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2791 			return true;
   2792 		}
   2793 	}
   2794 	return false;
   2795 }
   2796 
   2797 static bool
   2798 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2799 {
   2800 
   2801 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2802 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2803 		pool_item_bitmap_t *bitmap =
   2804 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2805 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2806 
   2807 		return (*bitmap & mask) == 0;
   2808 	} else {
   2809 		struct pool_item *pi;
   2810 
   2811 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2812 			if (pool_in_item(pp, pi, addr)) {
   2813 				return false;
   2814 			}
   2815 		}
   2816 		return true;
   2817 	}
   2818 }
   2819 
   2820 void
   2821 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2822 {
   2823 	struct pool *pp;
   2824 
   2825 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2826 		struct pool_item_header *ph;
   2827 		uintptr_t item;
   2828 		bool allocated = true;
   2829 		bool incache = false;
   2830 		bool incpucache = false;
   2831 		char cpucachestr[32];
   2832 
   2833 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2834 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2835 				if (pool_in_page(pp, ph, addr)) {
   2836 					goto found;
   2837 				}
   2838 			}
   2839 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2840 				if (pool_in_page(pp, ph, addr)) {
   2841 					allocated =
   2842 					    pool_allocated(pp, ph, addr);
   2843 					goto found;
   2844 				}
   2845 			}
   2846 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2847 				if (pool_in_page(pp, ph, addr)) {
   2848 					allocated = false;
   2849 					goto found;
   2850 				}
   2851 			}
   2852 			continue;
   2853 		} else {
   2854 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2855 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2856 				continue;
   2857 			}
   2858 			allocated = pool_allocated(pp, ph, addr);
   2859 		}
   2860 found:
   2861 		if (allocated && pp->pr_cache) {
   2862 			pool_cache_t pc = pp->pr_cache;
   2863 			struct pool_cache_group *pcg;
   2864 			int i;
   2865 
   2866 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2867 			    pcg = pcg->pcg_next) {
   2868 				if (pool_in_cg(pp, pcg, addr)) {
   2869 					incache = true;
   2870 					goto print;
   2871 				}
   2872 			}
   2873 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2874 				pool_cache_cpu_t *cc;
   2875 
   2876 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2877 					continue;
   2878 				}
   2879 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2880 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2881 					struct cpu_info *ci =
   2882 					    cpu_lookup(i);
   2883 
   2884 					incpucache = true;
   2885 					snprintf(cpucachestr,
   2886 					    sizeof(cpucachestr),
   2887 					    "cached by CPU %u",
   2888 					    ci->ci_index);
   2889 					goto print;
   2890 				}
   2891 			}
   2892 		}
   2893 print:
   2894 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2895 		item = item + rounddown(addr - item, pp->pr_size);
   2896 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2897 		    (void *)addr, item, (size_t)(addr - item),
   2898 		    pp->pr_wchan,
   2899 		    incpucache ? cpucachestr :
   2900 		    incache ? "cached" : allocated ? "allocated" : "free");
   2901 	}
   2902 }
   2903 #endif /* defined(DDB) */
   2904 
   2905 static int
   2906 pool_sysctl(SYSCTLFN_ARGS)
   2907 {
   2908 	struct pool_sysctl data;
   2909 	struct pool *pp;
   2910 	struct pool_cache *pc;
   2911 	pool_cache_cpu_t *cc;
   2912 	int error;
   2913 	size_t i, written;
   2914 
   2915 	if (oldp == NULL) {
   2916 		*oldlenp = 0;
   2917 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   2918 			*oldlenp += sizeof(data);
   2919 		return 0;
   2920 	}
   2921 
   2922 	memset(&data, 0, sizeof(data));
   2923 	error = 0;
   2924 	written = 0;
   2925 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2926 		if (written + sizeof(data) > *oldlenp)
   2927 			break;
   2928 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   2929 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   2930 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   2931 #define COPY(field) data.field = pp->field
   2932 		COPY(pr_size);
   2933 
   2934 		COPY(pr_itemsperpage);
   2935 		COPY(pr_nitems);
   2936 		COPY(pr_nout);
   2937 		COPY(pr_hardlimit);
   2938 		COPY(pr_npages);
   2939 		COPY(pr_minpages);
   2940 		COPY(pr_maxpages);
   2941 
   2942 		COPY(pr_nget);
   2943 		COPY(pr_nfail);
   2944 		COPY(pr_nput);
   2945 		COPY(pr_npagealloc);
   2946 		COPY(pr_npagefree);
   2947 		COPY(pr_hiwat);
   2948 		COPY(pr_nidle);
   2949 #undef COPY
   2950 
   2951 		data.pr_cache_nmiss_pcpu = 0;
   2952 		data.pr_cache_nhit_pcpu = 0;
   2953 		if (pp->pr_cache) {
   2954 			pc = pp->pr_cache;
   2955 			data.pr_cache_meta_size = pc->pc_pcgsize;
   2956 			data.pr_cache_nfull = pc->pc_nfull;
   2957 			data.pr_cache_npartial = pc->pc_npart;
   2958 			data.pr_cache_nempty = pc->pc_nempty;
   2959 			data.pr_cache_ncontended = pc->pc_contended;
   2960 			data.pr_cache_nmiss_global = pc->pc_misses;
   2961 			data.pr_cache_nhit_global = pc->pc_hits;
   2962 			for (i = 0; i < pc->pc_ncpu; ++i) {
   2963 				cc = pc->pc_cpus[i];
   2964 				if (cc == NULL)
   2965 					continue;
   2966 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   2967 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   2968 			}
   2969 		} else {
   2970 			data.pr_cache_meta_size = 0;
   2971 			data.pr_cache_nfull = 0;
   2972 			data.pr_cache_npartial = 0;
   2973 			data.pr_cache_nempty = 0;
   2974 			data.pr_cache_ncontended = 0;
   2975 			data.pr_cache_nmiss_global = 0;
   2976 			data.pr_cache_nhit_global = 0;
   2977 		}
   2978 
   2979 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   2980 		if (error)
   2981 			break;
   2982 		written += sizeof(data);
   2983 		oldp = (char *)oldp + sizeof(data);
   2984 	}
   2985 
   2986 	*oldlenp = written;
   2987 	return error;
   2988 }
   2989 
   2990 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   2991 {
   2992 	const struct sysctlnode *rnode = NULL;
   2993 
   2994 	sysctl_createv(clog, 0, NULL, &rnode,
   2995 		       CTLFLAG_PERMANENT,
   2996 		       CTLTYPE_STRUCT, "pool",
   2997 		       SYSCTL_DESCR("Get pool statistics"),
   2998 		       pool_sysctl, 0, NULL, 0,
   2999 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3000 }
   3001