Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.21.2.2.2.1
      1 /*	$NetBSD: subr_pool.c,v 1.21.2.2.2.1 1999/06/21 01:24:03 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/proc.h>
     46 #include <sys/errno.h>
     47 #include <sys/kernel.h>
     48 #include <sys/malloc.h>
     49 #include <sys/lock.h>
     50 #include <sys/pool.h>
     51 #include <sys/syslog.h>
     52 
     53 #include <vm/vm.h>
     54 #include <vm/vm_kern.h>
     55 
     56 #include <uvm/uvm.h>
     57 
     58 /*
     59  * Pool resource management utility.
     60  *
     61  * Memory is allocated in pages which are split into pieces according
     62  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     63  * in the pool structure and the individual pool items are on a linked list
     64  * headed by `ph_itemlist' in each page header. The memory for building
     65  * the page list is either taken from the allocated pages themselves (for
     66  * small pool items) or taken from an internal pool of page headers (`phpool').
     67  */
     68 
     69 /* List of all pools */
     70 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     71 
     72 /* Private pool for page header structures */
     73 static struct pool phpool;
     74 
     75 /* # of seconds to retain page after last use */
     76 int pool_inactive_time = 10;
     77 
     78 /* Next candidate for drainage (see pool_drain()) */
     79 static struct pool	*drainpp;
     80 
     81 /* This spin lock protects both pool_head and drainpp. */
     82 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     83 
     84 struct pool_item_header {
     85 	/* Page headers */
     86 	TAILQ_ENTRY(pool_item_header)
     87 				ph_pagelist;	/* pool page list */
     88 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     89 	LIST_ENTRY(pool_item_header)
     90 				ph_hashlist;	/* Off-page page headers */
     91 	int			ph_nmissing;	/* # of chunks in use */
     92 	caddr_t			ph_page;	/* this page's address */
     93 	struct timeval		ph_time;	/* last referenced */
     94 };
     95 
     96 struct pool_item {
     97 #ifdef DIAGNOSTIC
     98 	int pi_magic;
     99 #define	PI_MAGIC 0xdeadbeef
    100 #endif
    101 	/* Other entries use only this list entry */
    102 	TAILQ_ENTRY(pool_item)	pi_list;
    103 };
    104 
    105 
    106 #define	PR_HASH_INDEX(pp,addr) \
    107 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    108 
    109 
    110 
    111 static struct pool_item_header
    112 		*pr_find_pagehead __P((struct pool *, caddr_t));
    113 static void	pr_rmpage __P((struct pool *, struct pool_item_header *));
    114 static int	pool_catchup __P((struct pool *));
    115 static void	pool_prime_page __P((struct pool *, caddr_t));
    116 static void	*pool_page_alloc __P((unsigned long, int, int));
    117 static void	pool_page_free __P((void *, unsigned long, int));
    118 
    119 static void pool_print1 __P((struct pool *, const char *,
    120 	void (*)(const char *, ...)));
    121 
    122 /*
    123  * Pool log entry. An array of these is allocated in pool_create().
    124  */
    125 struct pool_log {
    126 	const char	*pl_file;
    127 	long		pl_line;
    128 	int		pl_action;
    129 #define	PRLOG_GET	1
    130 #define	PRLOG_PUT	2
    131 	void		*pl_addr;
    132 };
    133 
    134 /* Number of entries in pool log buffers */
    135 #ifndef POOL_LOGSIZE
    136 #define	POOL_LOGSIZE	10
    137 #endif
    138 
    139 int pool_logsize = POOL_LOGSIZE;
    140 
    141 #ifdef DIAGNOSTIC
    142 static void	pr_log __P((struct pool *, void *, int, const char *, long));
    143 static void	pr_printlog __P((struct pool *, struct pool_item *,
    144 		    void (*)(const char *, ...)));
    145 static void	pr_enter __P((struct pool *, const char *, long));
    146 static void	pr_leave __P((struct pool *));
    147 static void	pr_enter_check __P((struct pool *,
    148 		    void (*)(const char *, ...)));
    149 
    150 static __inline__ void
    151 pr_log(pp, v, action, file, line)
    152 	struct pool	*pp;
    153 	void		*v;
    154 	int		action;
    155 	const char	*file;
    156 	long		line;
    157 {
    158 	int n = pp->pr_curlogentry;
    159 	struct pool_log *pl;
    160 
    161 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    162 		return;
    163 
    164 	/*
    165 	 * Fill in the current entry. Wrap around and overwrite
    166 	 * the oldest entry if necessary.
    167 	 */
    168 	pl = &pp->pr_log[n];
    169 	pl->pl_file = file;
    170 	pl->pl_line = line;
    171 	pl->pl_action = action;
    172 	pl->pl_addr = v;
    173 	if (++n >= pp->pr_logsize)
    174 		n = 0;
    175 	pp->pr_curlogentry = n;
    176 }
    177 
    178 static void
    179 pr_printlog(pp, pi, pr)
    180 	struct pool *pp;
    181 	struct pool_item *pi;
    182 	void (*pr) __P((const char *, ...));
    183 {
    184 	int i = pp->pr_logsize;
    185 	int n = pp->pr_curlogentry;
    186 
    187 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    188 		return;
    189 
    190 	/*
    191 	 * Print all entries in this pool's log.
    192 	 */
    193 	while (i-- > 0) {
    194 		struct pool_log *pl = &pp->pr_log[n];
    195 		if (pl->pl_action != 0) {
    196 			if (pi == NULL || pi == pl->pl_addr) {
    197 				(*pr)("\tlog entry %d:\n", i);
    198 				(*pr)("\t\taction = %s, addr = %p\n",
    199 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    200 				    pl->pl_addr);
    201 				(*pr)("\t\tfile: %s at line %lu\n",
    202 				    pl->pl_file, pl->pl_line);
    203 			}
    204 		}
    205 		if (++n >= pp->pr_logsize)
    206 			n = 0;
    207 	}
    208 }
    209 
    210 static __inline__ void
    211 pr_enter(pp, file, line)
    212 	struct pool *pp;
    213 	const char *file;
    214 	long line;
    215 {
    216 
    217 	if (pp->pr_entered_file != NULL) {
    218 		printf("pool %s: reentrancy at file %s line %ld\n",
    219 		    pp->pr_wchan, file, line);
    220 		printf("         previous entry at file %s line %ld\n",
    221 		    pp->pr_entered_file, pp->pr_entered_line);
    222 		panic("pr_enter");
    223 	}
    224 
    225 	pp->pr_entered_file = file;
    226 	pp->pr_entered_line = line;
    227 }
    228 
    229 static __inline__ void
    230 pr_leave(pp)
    231 	struct pool *pp;
    232 {
    233 
    234 	if (pp->pr_entered_file == NULL) {
    235 		printf("pool %s not entered?\n", pp->pr_wchan);
    236 		panic("pr_leave");
    237 	}
    238 
    239 	pp->pr_entered_file = NULL;
    240 	pp->pr_entered_line = 0;
    241 }
    242 
    243 static __inline__ void
    244 pr_enter_check(pp, pr)
    245 	struct pool *pp;
    246 	void (*pr) __P((const char *, ...));
    247 {
    248 
    249 	if (pp->pr_entered_file != NULL)
    250 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    251 		    pp->pr_entered_file, pp->pr_entered_line);
    252 }
    253 #else
    254 #define	pr_log(pp, v, action, file, line)
    255 #define	pr_printlog(pp, pi, pr)
    256 #define	pr_enter(pp, file, line)
    257 #define	pr_leave(pp)
    258 #define	pr_enter_check(pp, pr)
    259 #endif /* DIAGNOSTIC */
    260 
    261 /*
    262  * Return the pool page header based on page address.
    263  */
    264 static __inline__ struct pool_item_header *
    265 pr_find_pagehead(pp, page)
    266 	struct pool *pp;
    267 	caddr_t page;
    268 {
    269 	struct pool_item_header *ph;
    270 
    271 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    272 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    273 
    274 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    275 	     ph != NULL;
    276 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    277 		if (ph->ph_page == page)
    278 			return (ph);
    279 	}
    280 	return (NULL);
    281 }
    282 
    283 /*
    284  * Remove a page from the pool.
    285  */
    286 static __inline__ void
    287 pr_rmpage(pp, ph)
    288 	struct pool *pp;
    289 	struct pool_item_header *ph;
    290 {
    291 
    292 	/*
    293 	 * If the page was idle, decrement the idle page count.
    294 	 */
    295 	if (ph->ph_nmissing == 0) {
    296 #ifdef DIAGNOSTIC
    297 		if (pp->pr_nidle == 0)
    298 			panic("pr_rmpage: nidle inconsistent");
    299 		if (pp->pr_nitems < pp->pr_itemsperpage)
    300 			panic("pr_rmpage: nitems inconsistent");
    301 #endif
    302 		pp->pr_nidle--;
    303 	}
    304 
    305 	pp->pr_nitems -= pp->pr_itemsperpage;
    306 
    307 	/*
    308 	 * Unlink a page from the pool and release it.
    309 	 */
    310 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    311 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    312 	pp->pr_npages--;
    313 	pp->pr_npagefree++;
    314 
    315 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    316 		int s;
    317 		LIST_REMOVE(ph, ph_hashlist);
    318 		s = splhigh();
    319 		pool_put(&phpool, ph);
    320 		splx(s);
    321 	}
    322 
    323 	if (pp->pr_curpage == ph) {
    324 		/*
    325 		 * Find a new non-empty page header, if any.
    326 		 * Start search from the page head, to increase the
    327 		 * chance for "high water" pages to be freed.
    328 		 */
    329 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    330 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    331 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    332 				break;
    333 
    334 		pp->pr_curpage = ph;
    335 	}
    336 }
    337 
    338 /*
    339  * Allocate and initialize a pool.
    340  */
    341 struct pool *
    342 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
    343 	size_t	size;
    344 	u_int	align;
    345 	u_int	ioff;
    346 	int	nitems;
    347 	const char *wchan;
    348 	size_t	pagesz;
    349 	void	*(*alloc) __P((unsigned long, int, int));
    350 	void	(*release) __P((void *, unsigned long, int));
    351 	int	mtype;
    352 {
    353 	struct pool *pp;
    354 	int flags;
    355 
    356 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
    357 	if (pp == NULL)
    358 		return (NULL);
    359 
    360 	flags = PR_FREEHEADER;
    361 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
    362 		  alloc, release, mtype);
    363 
    364 	if (nitems != 0) {
    365 		if (pool_prime(pp, nitems, NULL) != 0) {
    366 			pool_destroy(pp);
    367 			return (NULL);
    368 		}
    369 	}
    370 
    371 	return (pp);
    372 }
    373 
    374 /*
    375  * Initialize the given pool resource structure.
    376  *
    377  * We export this routine to allow other kernel parts to declare
    378  * static pools that must be initialized before malloc() is available.
    379  */
    380 void
    381 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
    382 	struct pool	*pp;
    383 	size_t		size;
    384 	u_int		align;
    385 	u_int		ioff;
    386 	int		flags;
    387 	const char	*wchan;
    388 	size_t		pagesz;
    389 	void		*(*alloc) __P((unsigned long, int, int));
    390 	void		(*release) __P((void *, unsigned long, int));
    391 	int		mtype;
    392 {
    393 	int off, slack, i;
    394 
    395 #ifdef POOL_DIAGNOSTIC
    396 	/*
    397 	 * Always log if POOL_DIAGNOSTIC is defined.
    398 	 */
    399 	if (pool_logsize != 0)
    400 		flags |= PR_LOGGING;
    401 #endif
    402 
    403 	/*
    404 	 * Check arguments and construct default values.
    405 	 */
    406 	if (!powerof2(pagesz) || pagesz > PAGE_SIZE)
    407 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    408 
    409 	if (alloc == NULL && release == NULL) {
    410 		alloc = pool_page_alloc;
    411 		release = pool_page_free;
    412 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    413 	} else if ((alloc != NULL && release != NULL) == 0) {
    414 		/* If you specifiy one, must specify both. */
    415 		panic("pool_init: must specify alloc and release together");
    416 	}
    417 
    418 	if (pagesz == 0)
    419 		pagesz = PAGE_SIZE;
    420 
    421 	if (align == 0)
    422 		align = ALIGN(1);
    423 
    424 	if (size < sizeof(struct pool_item))
    425 		size = sizeof(struct pool_item);
    426 
    427 	/*
    428 	 * Initialize the pool structure.
    429 	 */
    430 	TAILQ_INIT(&pp->pr_pagelist);
    431 	pp->pr_curpage = NULL;
    432 	pp->pr_npages = 0;
    433 	pp->pr_minitems = 0;
    434 	pp->pr_minpages = 0;
    435 	pp->pr_maxpages = UINT_MAX;
    436 	pp->pr_roflags = flags;
    437 	pp->pr_flags = 0;
    438 	pp->pr_size = ALIGN(size);
    439 	pp->pr_align = align;
    440 	pp->pr_wchan = wchan;
    441 	pp->pr_mtype = mtype;
    442 	pp->pr_alloc = alloc;
    443 	pp->pr_free = release;
    444 	pp->pr_pagesz = pagesz;
    445 	pp->pr_pagemask = ~(pagesz - 1);
    446 	pp->pr_pageshift = ffs(pagesz) - 1;
    447 	pp->pr_nitems = 0;
    448 	pp->pr_nout = 0;
    449 	pp->pr_hardlimit = UINT_MAX;
    450 	pp->pr_hardlimit_warning = NULL;
    451 	pp->pr_hardlimit_ratecap = 0;
    452 	memset(&pp->pr_hardlimit_warning_last, 0,
    453 	    sizeof(pp->pr_hardlimit_warning_last));
    454 
    455 	/*
    456 	 * Decide whether to put the page header off page to avoid
    457 	 * wasting too large a part of the page. Off-page page headers
    458 	 * go on a hash table, so we can match a returned item
    459 	 * with its header based on the page address.
    460 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    461 	 */
    462 	if (pp->pr_size < pagesz/16) {
    463 		/* Use the end of the page for the page header */
    464 		pp->pr_roflags |= PR_PHINPAGE;
    465 		pp->pr_phoffset = off =
    466 			pagesz - ALIGN(sizeof(struct pool_item_header));
    467 	} else {
    468 		/* The page header will be taken from our page header pool */
    469 		pp->pr_phoffset = 0;
    470 		off = pagesz;
    471 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    472 			LIST_INIT(&pp->pr_hashtab[i]);
    473 		}
    474 	}
    475 
    476 	/*
    477 	 * Alignment is to take place at `ioff' within the item. This means
    478 	 * we must reserve up to `align - 1' bytes on the page to allow
    479 	 * appropriate positioning of each item.
    480 	 *
    481 	 * Silently enforce `0 <= ioff < align'.
    482 	 */
    483 	pp->pr_itemoffset = ioff = ioff % align;
    484 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    485 
    486 	/*
    487 	 * Use the slack between the chunks and the page header
    488 	 * for "cache coloring".
    489 	 */
    490 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    491 	pp->pr_maxcolor = (slack / align) * align;
    492 	pp->pr_curcolor = 0;
    493 
    494 	pp->pr_nget = 0;
    495 	pp->pr_nfail = 0;
    496 	pp->pr_nput = 0;
    497 	pp->pr_npagealloc = 0;
    498 	pp->pr_npagefree = 0;
    499 	pp->pr_hiwat = 0;
    500 	pp->pr_nidle = 0;
    501 
    502 	if (flags & PR_LOGGING) {
    503 		if (kmem_map == NULL ||
    504 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    505 		     M_TEMP, M_NOWAIT)) == NULL)
    506 			pp->pr_roflags &= ~PR_LOGGING;
    507 		pp->pr_curlogentry = 0;
    508 		pp->pr_logsize = pool_logsize;
    509 	}
    510 
    511 	pp->pr_entered_file = NULL;
    512 	pp->pr_entered_line = 0;
    513 
    514 	simple_lock_init(&pp->pr_slock);
    515 
    516 	/*
    517 	 * Initialize private page header pool if we haven't done so yet.
    518 	 * XXX LOCKING.
    519 	 */
    520 	if (phpool.pr_size == 0) {
    521 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    522 			  0, "phpool", 0, 0, 0, 0);
    523 	}
    524 
    525 	/* Insert into the list of all pools. */
    526 	simple_lock(&pool_head_slock);
    527 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    528 	simple_unlock(&pool_head_slock);
    529 }
    530 
    531 /*
    532  * De-commision a pool resource.
    533  */
    534 void
    535 pool_destroy(pp)
    536 	struct pool *pp;
    537 {
    538 	struct pool_item_header *ph;
    539 
    540 #ifdef DIAGNOSTIC
    541 	if (pp->pr_nout != 0) {
    542 		pr_printlog(pp, NULL, printf);
    543 		panic("pool_destroy: pool busy: still out: %u\n",
    544 		    pp->pr_nout);
    545 	}
    546 #endif
    547 
    548 	/* Remove all pages */
    549 	if ((pp->pr_roflags & PR_STATIC) == 0)
    550 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    551 			pr_rmpage(pp, ph);
    552 
    553 	/* Remove from global pool list */
    554 	simple_lock(&pool_head_slock);
    555 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    556 	/* XXX Only clear this if we were drainpp? */
    557 	drainpp = NULL;
    558 	simple_unlock(&pool_head_slock);
    559 
    560 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    561 		free(pp->pr_log, M_TEMP);
    562 
    563 	if (pp->pr_roflags & PR_FREEHEADER)
    564 		free(pp, M_POOL);
    565 }
    566 
    567 
    568 /*
    569  * Grab an item from the pool; must be called at appropriate spl level
    570  */
    571 void *
    572 _pool_get(pp, flags, file, line)
    573 	struct pool *pp;
    574 	int flags;
    575 	const char *file;
    576 	long line;
    577 {
    578 	void *v;
    579 	struct pool_item *pi;
    580 	struct pool_item_header *ph;
    581 
    582 #ifdef DIAGNOSTIC
    583 	if ((pp->pr_roflags & PR_STATIC) && (flags & PR_MALLOCOK)) {
    584 		pr_printlog(pp, NULL, printf);
    585 		panic("pool_get: static");
    586 	}
    587 #endif
    588 
    589 	if (curproc == NULL && (flags & PR_WAITOK) != 0)
    590 		panic("pool_get: must have NOWAIT");
    591 
    592 	simple_lock(&pp->pr_slock);
    593 	pr_enter(pp, file, line);
    594 
    595  startover:
    596 	/*
    597 	 * Check to see if we've reached the hard limit.  If we have,
    598 	 * and we can wait, then wait until an item has been returned to
    599 	 * the pool.
    600 	 */
    601 #ifdef DIAGNOSTIC
    602 	if (pp->pr_nout > pp->pr_hardlimit) {
    603 		pr_leave(pp);
    604 		simple_unlock(&pp->pr_slock);
    605 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    606 	}
    607 #endif
    608 	if (pp->pr_nout == pp->pr_hardlimit) {
    609 		if (flags & PR_WAITOK) {
    610 			/*
    611 			 * XXX: A warning isn't logged in this case.  Should
    612 			 * it be?
    613 			 */
    614 			pp->pr_flags |= PR_WANTED;
    615 			pr_leave(pp);
    616 			simple_unlock(&pp->pr_slock);
    617 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    618 			simple_lock(&pp->pr_slock);
    619 			pr_enter(pp, file, line);
    620 			goto startover;
    621 		}
    622 		if (pp->pr_hardlimit_warning != NULL) {
    623 			/*
    624 			 * Log a message that the hard limit has been hit.
    625 			 */
    626 			struct timeval curtime, logdiff;
    627 			int s = splclock();
    628 			curtime = mono_time;
    629 			splx(s);
    630 			timersub(&curtime, &pp->pr_hardlimit_warning_last,
    631 			    &logdiff);
    632 			if (logdiff.tv_sec >= pp->pr_hardlimit_ratecap) {
    633 				pp->pr_hardlimit_warning_last = curtime;
    634 				log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    635 			}
    636 		}
    637 
    638 		if (flags & PR_URGENT)
    639 			panic("pool_get: urgent");
    640 
    641 		pp->pr_nfail++;
    642 
    643 		pr_leave(pp);
    644 		simple_unlock(&pp->pr_slock);
    645 		return (NULL);
    646 	}
    647 
    648 	/*
    649 	 * The convention we use is that if `curpage' is not NULL, then
    650 	 * it points at a non-empty bucket. In particular, `curpage'
    651 	 * never points at a page header which has PR_PHINPAGE set and
    652 	 * has no items in its bucket.
    653 	 */
    654 	if ((ph = pp->pr_curpage) == NULL) {
    655 		void *v;
    656 
    657 #ifdef DIAGNOSTIC
    658 		if (pp->pr_nitems != 0) {
    659 			simple_unlock(&pp->pr_slock);
    660 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    661 			    pp->pr_wchan, pp->pr_nitems);
    662 			panic("pool_get: nitems inconsistent\n");
    663 		}
    664 #endif
    665 
    666 		/*
    667 		 * Call the back-end page allocator for more memory.
    668 		 * Release the pool lock, as the back-end page allocator
    669 		 * may block.
    670 		 */
    671 		pr_leave(pp);
    672 		simple_unlock(&pp->pr_slock);
    673 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    674 		simple_lock(&pp->pr_slock);
    675 		pr_enter(pp, file, line);
    676 
    677 		if (v == NULL) {
    678 			/*
    679 			 * We were unable to allocate a page, but
    680 			 * we released the lock during allocation,
    681 			 * so perhaps items were freed back to the
    682 			 * pool.  Check for this case.
    683 			 */
    684 			if (pp->pr_curpage != NULL)
    685 				goto startover;
    686 
    687 			if (flags & PR_URGENT)
    688 				panic("pool_get: urgent");
    689 
    690 			if ((flags & PR_WAITOK) == 0) {
    691 				pp->pr_nfail++;
    692 				pr_leave(pp);
    693 				simple_unlock(&pp->pr_slock);
    694 				return (NULL);
    695 			}
    696 
    697 			/*
    698 			 * Wait for items to be returned to this pool.
    699 			 *
    700 			 * XXX: we actually want to wait just until
    701 			 * the page allocator has memory again. Depending
    702 			 * on this pool's usage, we might get stuck here
    703 			 * for a long time.
    704 			 *
    705 			 * XXX: maybe we should wake up once a second and
    706 			 * try again?
    707 			 */
    708 			pp->pr_flags |= PR_WANTED;
    709 			pr_leave(pp);
    710 			simple_unlock(&pp->pr_slock);
    711 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    712 			simple_lock(&pp->pr_slock);
    713 			pr_enter(pp, file, line);
    714 			goto startover;
    715 		}
    716 
    717 		/* We have more memory; add it to the pool */
    718 		pp->pr_npagealloc++;
    719 		pool_prime_page(pp, v);
    720 
    721 		/* Start the allocation process over. */
    722 		goto startover;
    723 	}
    724 
    725 	if ((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL) {
    726 		pr_leave(pp);
    727 		simple_unlock(&pp->pr_slock);
    728 		panic("pool_get: %s: page empty", pp->pr_wchan);
    729 	}
    730 #ifdef DIAGNOSTIC
    731 	if (pp->pr_nitems == 0) {
    732 		pr_leave(pp);
    733 		simple_unlock(&pp->pr_slock);
    734 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    735 		    pp->pr_wchan, pp->pr_nitems);
    736 		panic("pool_get: nitems inconsistent\n");
    737 	}
    738 #endif
    739 	pr_log(pp, v, PRLOG_GET, file, line);
    740 
    741 #ifdef DIAGNOSTIC
    742 	if (pi->pi_magic != PI_MAGIC) {
    743 		pr_printlog(pp, pi, printf);
    744 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    745 		       " item addr %p\n",
    746 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    747 	}
    748 #endif
    749 
    750 	/*
    751 	 * Remove from item list.
    752 	 */
    753 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    754 	pp->pr_nitems--;
    755 	pp->pr_nout++;
    756 	if (ph->ph_nmissing == 0) {
    757 #ifdef DIAGNOSTIC
    758 		if (pp->pr_nidle == 0)
    759 			panic("pool_get: nidle inconsistent");
    760 #endif
    761 		pp->pr_nidle--;
    762 	}
    763 	ph->ph_nmissing++;
    764 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    765 #ifdef DIAGNOSTIC
    766 		if (ph->ph_nmissing != pp->pr_itemsperpage) {
    767 			pr_leave(pp);
    768 			simple_unlock(&pp->pr_slock);
    769 			panic("pool_get: %s: nmissing inconsistent",
    770 			    pp->pr_wchan);
    771 		}
    772 #endif
    773 		/*
    774 		 * Find a new non-empty page header, if any.
    775 		 * Start search from the page head, to increase
    776 		 * the chance for "high water" pages to be freed.
    777 		 *
    778 		 * Migrate empty pages to the end of the list.  This
    779 		 * will speed the update of curpage as pages become
    780 		 * idle.  Empty pages intermingled with idle pages
    781 		 * is no big deal.  As soon as a page becomes un-empty,
    782 		 * it will move back to the head of the list.
    783 		 */
    784 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    785 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    786 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    787 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    788 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    789 				break;
    790 
    791 		pp->pr_curpage = ph;
    792 	}
    793 
    794 	pp->pr_nget++;
    795 
    796 	/*
    797 	 * If we have a low water mark and we are now below that low
    798 	 * water mark, add more items to the pool.
    799 	 */
    800 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
    801 		/*
    802 		 * XXX: Should we log a warning?  Should we set up a timeout
    803 		 * to try again in a second or so?  The latter could break
    804 		 * a caller's assumptions about interrupt protection, etc.
    805 		 */
    806 	}
    807 
    808 	pr_leave(pp);
    809 	simple_unlock(&pp->pr_slock);
    810 	return (v);
    811 }
    812 
    813 /*
    814  * Return resource to the pool; must be called at appropriate spl level
    815  */
    816 void
    817 _pool_put(pp, v, file, line)
    818 	struct pool *pp;
    819 	void *v;
    820 	const char *file;
    821 	long line;
    822 {
    823 	struct pool_item *pi = v;
    824 	struct pool_item_header *ph;
    825 	caddr_t page;
    826 	int s;
    827 
    828 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    829 
    830 	simple_lock(&pp->pr_slock);
    831 	pr_enter(pp, file, line);
    832 
    833 	pr_log(pp, v, PRLOG_PUT, file, line);
    834 
    835 	if ((ph = pr_find_pagehead(pp, page)) == NULL) {
    836 		pr_printlog(pp, NULL, printf);
    837 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    838 	}
    839 
    840 	/*
    841 	 * Return to item list.
    842 	 */
    843 #ifdef DIAGNOSTIC
    844 	/* XXX Should fill the item. */
    845 	pi->pi_magic = PI_MAGIC;
    846 #endif
    847 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    848 	ph->ph_nmissing--;
    849 	pp->pr_nput++;
    850 	pp->pr_nitems++;
    851 	pp->pr_nout--;
    852 
    853 	/* Cancel "pool empty" condition if it exists */
    854 	if (pp->pr_curpage == NULL)
    855 		pp->pr_curpage = ph;
    856 
    857 	if (pp->pr_flags & PR_WANTED) {
    858 		pp->pr_flags &= ~PR_WANTED;
    859 		if (ph->ph_nmissing == 0)
    860 			pp->pr_nidle++;
    861 		pr_leave(pp);
    862 		simple_unlock(&pp->pr_slock);
    863 		wakeup((caddr_t)pp);
    864 		return;
    865 	}
    866 
    867 	/*
    868 	 * If this page is now complete, do one of two things:
    869 	 *
    870 	 *	(1) If we have more pages than the page high water
    871 	 *	    mark, free the page back to the system.
    872 	 *
    873 	 *	(2) Move it to the end of the page list, so that
    874 	 *	    we minimize our chances of fragmenting the
    875 	 *	    pool.  Idle pages migrate to the end (along with
    876 	 *	    completely empty pages, so that we find un-empty
    877 	 *	    pages more quickly when we update curpage) of the
    878 	 *	    list so they can be more easily swept up by
    879 	 *	    the pagedaemon when pages are scarce.
    880 	 */
    881 	if (ph->ph_nmissing == 0) {
    882 		pp->pr_nidle++;
    883 		if (pp->pr_npages > pp->pr_maxpages) {
    884 			pr_rmpage(pp, ph);
    885 		} else {
    886 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    887 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    888 
    889 			/*
    890 			 * Update the timestamp on the page.  A page must
    891 			 * be idle for some period of time before it can
    892 			 * be reclaimed by the pagedaemon.  This minimizes
    893 			 * ping-pong'ing for memory.
    894 			 */
    895 			s = splclock();
    896 			ph->ph_time = mono_time;
    897 			splx(s);
    898 
    899 			/*
    900 			 * Update the current page pointer.  Just look for
    901 			 * the first page with any free items.
    902 			 *
    903 			 * XXX: Maybe we want an option to look for the
    904 			 * page with the fewest available items, to minimize
    905 			 * fragmentation?
    906 			 */
    907 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    908 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    909 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    910 					break;
    911 
    912 			pp->pr_curpage = ph;
    913 		}
    914 	}
    915 	/*
    916 	 * If the page has just become un-empty, move it to the head of
    917 	 * the list, and make it the current page.  The next allocation
    918 	 * will get the item from this page, instead of further fragmenting
    919 	 * the pool.
    920 	 */
    921 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    922 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    923 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    924 		pp->pr_curpage = ph;
    925 	}
    926 
    927 	pr_leave(pp);
    928 	simple_unlock(&pp->pr_slock);
    929 
    930 }
    931 
    932 /*
    933  * Add N items to the pool.
    934  */
    935 int
    936 pool_prime(pp, n, storage)
    937 	struct pool *pp;
    938 	int n;
    939 	caddr_t storage;
    940 {
    941 	caddr_t cp;
    942 	int newnitems, newpages;
    943 
    944 #ifdef DIAGNOSTIC
    945 	if (storage && !(pp->pr_roflags & PR_STATIC))
    946 		panic("pool_prime: static");
    947 	/* !storage && static caught below */
    948 #endif
    949 
    950 	simple_lock(&pp->pr_slock);
    951 
    952 	newnitems = pp->pr_minitems + n;
    953 	newpages =
    954 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
    955 		- pp->pr_minpages;
    956 
    957 	while (newpages-- > 0) {
    958 		if (pp->pr_roflags & PR_STATIC) {
    959 			cp = storage;
    960 			storage += pp->pr_pagesz;
    961 		} else {
    962 			simple_unlock(&pp->pr_slock);
    963 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
    964 			simple_lock(&pp->pr_slock);
    965 		}
    966 
    967 		if (cp == NULL) {
    968 			simple_unlock(&pp->pr_slock);
    969 			return (ENOMEM);
    970 		}
    971 
    972 		pp->pr_npagealloc++;
    973 		pool_prime_page(pp, cp);
    974 		pp->pr_minpages++;
    975 	}
    976 
    977 	pp->pr_minitems = newnitems;
    978 
    979 	if (pp->pr_minpages >= pp->pr_maxpages)
    980 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
    981 
    982 	simple_unlock(&pp->pr_slock);
    983 	return (0);
    984 }
    985 
    986 /*
    987  * Add a page worth of items to the pool.
    988  *
    989  * Note, we must be called with the pool descriptor LOCKED.
    990  */
    991 static void
    992 pool_prime_page(pp, storage)
    993 	struct pool *pp;
    994 	caddr_t storage;
    995 {
    996 	struct pool_item *pi;
    997 	struct pool_item_header *ph;
    998 	caddr_t cp = storage;
    999 	unsigned int align = pp->pr_align;
   1000 	unsigned int ioff = pp->pr_itemoffset;
   1001 	int s, n;
   1002 
   1003 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   1004 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
   1005 	} else {
   1006 		s = splhigh();
   1007 		ph = pool_get(&phpool, PR_URGENT);
   1008 		splx(s);
   1009 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1010 				 ph, ph_hashlist);
   1011 	}
   1012 
   1013 	/*
   1014 	 * Insert page header.
   1015 	 */
   1016 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1017 	TAILQ_INIT(&ph->ph_itemlist);
   1018 	ph->ph_page = storage;
   1019 	ph->ph_nmissing = 0;
   1020 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1021 
   1022 	pp->pr_nidle++;
   1023 
   1024 	/*
   1025 	 * Color this page.
   1026 	 */
   1027 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1028 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1029 		pp->pr_curcolor = 0;
   1030 
   1031 	/*
   1032 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1033 	 */
   1034 	if (ioff != 0)
   1035 		cp = (caddr_t)(cp + (align - ioff));
   1036 
   1037 	/*
   1038 	 * Insert remaining chunks on the bucket list.
   1039 	 */
   1040 	n = pp->pr_itemsperpage;
   1041 	pp->pr_nitems += n;
   1042 
   1043 	while (n--) {
   1044 		pi = (struct pool_item *)cp;
   1045 
   1046 		/* Insert on page list */
   1047 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1048 #ifdef DIAGNOSTIC
   1049 		pi->pi_magic = PI_MAGIC;
   1050 #endif
   1051 		cp = (caddr_t)(cp + pp->pr_size);
   1052 	}
   1053 
   1054 	/*
   1055 	 * If the pool was depleted, point at the new page.
   1056 	 */
   1057 	if (pp->pr_curpage == NULL)
   1058 		pp->pr_curpage = ph;
   1059 
   1060 	if (++pp->pr_npages > pp->pr_hiwat)
   1061 		pp->pr_hiwat = pp->pr_npages;
   1062 }
   1063 
   1064 /*
   1065  * Like pool_prime(), except this is used by pool_get() when nitems
   1066  * drops below the low water mark.  This is used to catch up nitmes
   1067  * with the low water mark.
   1068  *
   1069  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1070  *
   1071  * Note 2, this doesn't work with static pools.
   1072  *
   1073  * Note 3, we must be called with the pool already locked, and we return
   1074  * with it locked.
   1075  */
   1076 static int
   1077 pool_catchup(pp)
   1078 	struct pool *pp;
   1079 {
   1080 	caddr_t cp;
   1081 	int error = 0;
   1082 
   1083 	if (pp->pr_roflags & PR_STATIC) {
   1084 		/*
   1085 		 * We dropped below the low water mark, and this is not a
   1086 		 * good thing.  Log a warning.
   1087 		 *
   1088 		 * XXX: rate-limit this?
   1089 		 */
   1090 		printf("WARNING: static pool `%s' dropped below low water "
   1091 		    "mark\n", pp->pr_wchan);
   1092 		return (0);
   1093 	}
   1094 
   1095 	while (pp->pr_nitems < pp->pr_minitems) {
   1096 		/*
   1097 		 * Call the page back-end allocator for more memory.
   1098 		 *
   1099 		 * XXX: We never wait, so should we bother unlocking
   1100 		 * the pool descriptor?
   1101 		 */
   1102 		simple_unlock(&pp->pr_slock);
   1103 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
   1104 		simple_lock(&pp->pr_slock);
   1105 		if (cp == NULL) {
   1106 			error = ENOMEM;
   1107 			break;
   1108 		}
   1109 		pp->pr_npagealloc++;
   1110 		pool_prime_page(pp, cp);
   1111 	}
   1112 
   1113 	return (error);
   1114 }
   1115 
   1116 void
   1117 pool_setlowat(pp, n)
   1118 	pool_handle_t	pp;
   1119 	int n;
   1120 {
   1121 	int error;
   1122 
   1123 	simple_lock(&pp->pr_slock);
   1124 
   1125 	pp->pr_minitems = n;
   1126 	pp->pr_minpages = (n == 0)
   1127 		? 0
   1128 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1129 
   1130 	/* Make sure we're caught up with the newly-set low water mark. */
   1131 	if ((error = pool_catchup(pp)) != 0) {
   1132 		/*
   1133 		 * XXX: Should we log a warning?  Should we set up a timeout
   1134 		 * to try again in a second or so?  The latter could break
   1135 		 * a caller's assumptions about interrupt protection, etc.
   1136 		 */
   1137 	}
   1138 
   1139 	simple_unlock(&pp->pr_slock);
   1140 }
   1141 
   1142 void
   1143 pool_sethiwat(pp, n)
   1144 	pool_handle_t	pp;
   1145 	int n;
   1146 {
   1147 
   1148 	simple_lock(&pp->pr_slock);
   1149 
   1150 	pp->pr_maxpages = (n == 0)
   1151 		? 0
   1152 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1153 
   1154 	simple_unlock(&pp->pr_slock);
   1155 }
   1156 
   1157 void
   1158 pool_sethardlimit(pp, n, warnmess, ratecap)
   1159 	pool_handle_t pp;
   1160 	int n;
   1161 	const char *warnmess;
   1162 	int ratecap;
   1163 {
   1164 
   1165 	simple_lock(&pp->pr_slock);
   1166 
   1167 	pp->pr_hardlimit = n;
   1168 	pp->pr_hardlimit_warning = warnmess;
   1169 	pp->pr_hardlimit_ratecap = ratecap;
   1170 	memset(&pp->pr_hardlimit_warning_last, 0,
   1171 	    sizeof(pp->pr_hardlimit_warning_last));
   1172 
   1173 	/*
   1174 	 * In-line version of pool_sethiwat(), because we don't want to
   1175 	 * release the lock.
   1176 	 */
   1177 	pp->pr_maxpages = (n == 0)
   1178 		? 0
   1179 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1180 
   1181 	simple_unlock(&pp->pr_slock);
   1182 }
   1183 
   1184 /*
   1185  * Default page allocator.
   1186  */
   1187 static void *
   1188 pool_page_alloc(sz, flags, mtype)
   1189 	unsigned long sz;
   1190 	int flags;
   1191 	int mtype;
   1192 {
   1193 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1194 
   1195 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1196 }
   1197 
   1198 static void
   1199 pool_page_free(v, sz, mtype)
   1200 	void *v;
   1201 	unsigned long sz;
   1202 	int mtype;
   1203 {
   1204 
   1205 	uvm_km_free_poolpage((vaddr_t)v);
   1206 }
   1207 
   1208 /*
   1209  * Alternate pool page allocator for pools that know they will
   1210  * never be accessed in interrupt context.
   1211  */
   1212 void *
   1213 pool_page_alloc_nointr(sz, flags, mtype)
   1214 	unsigned long sz;
   1215 	int flags;
   1216 	int mtype;
   1217 {
   1218 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1219 
   1220 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1221 	    waitok));
   1222 }
   1223 
   1224 void
   1225 pool_page_free_nointr(v, sz, mtype)
   1226 	void *v;
   1227 	unsigned long sz;
   1228 	int mtype;
   1229 {
   1230 
   1231 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1232 }
   1233 
   1234 
   1235 /*
   1236  * Release all complete pages that have not been used recently.
   1237  */
   1238 void
   1239 _pool_reclaim(pp, file, line)
   1240 	pool_handle_t pp;
   1241 	const char *file;
   1242 	long line;
   1243 {
   1244 	struct pool_item_header *ph, *phnext;
   1245 	struct timeval curtime;
   1246 	int s;
   1247 
   1248 	if (pp->pr_roflags & PR_STATIC)
   1249 		return;
   1250 
   1251 	if (simple_lock_try(&pp->pr_slock) == 0)
   1252 		return;
   1253 	pr_enter(pp, file, line);
   1254 
   1255 	s = splclock();
   1256 	curtime = mono_time;
   1257 	splx(s);
   1258 
   1259 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1260 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1261 
   1262 		/* Check our minimum page claim */
   1263 		if (pp->pr_npages <= pp->pr_minpages)
   1264 			break;
   1265 
   1266 		if (ph->ph_nmissing == 0) {
   1267 			struct timeval diff;
   1268 			timersub(&curtime, &ph->ph_time, &diff);
   1269 			if (diff.tv_sec < pool_inactive_time)
   1270 				continue;
   1271 
   1272 			/*
   1273 			 * If freeing this page would put us below
   1274 			 * the low water mark, stop now.
   1275 			 */
   1276 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1277 			    pp->pr_minitems)
   1278 				break;
   1279 
   1280 			pr_rmpage(pp, ph);
   1281 		}
   1282 	}
   1283 
   1284 	pr_leave(pp);
   1285 	simple_unlock(&pp->pr_slock);
   1286 }
   1287 
   1288 
   1289 /*
   1290  * Drain pools, one at a time.
   1291  *
   1292  * Note, we must never be called from an interrupt context.
   1293  */
   1294 void
   1295 pool_drain(arg)
   1296 	void *arg;
   1297 {
   1298 	struct pool *pp;
   1299 	int s;
   1300 
   1301 	s = splimp();
   1302 	simple_lock(&pool_head_slock);
   1303 
   1304 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1305 		goto out;
   1306 
   1307 	pp = drainpp;
   1308 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1309 
   1310 	pool_reclaim(pp);
   1311 
   1312  out:
   1313 	simple_unlock(&pool_head_slock);
   1314 	splx(s);
   1315 }
   1316 
   1317 
   1318 /*
   1319  * Diagnostic helpers.
   1320  */
   1321 void
   1322 pool_print(pp, modif)
   1323 	struct pool *pp;
   1324 	const char *modif;
   1325 {
   1326 	int s;
   1327 
   1328 	s = splimp();
   1329 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1330 		printf("pool %s is locked; try again later\n",
   1331 		    pp->pr_wchan);
   1332 		splx(s);
   1333 		return;
   1334 	}
   1335 	pool_print1(pp, modif, printf);
   1336 	simple_unlock(&pp->pr_slock);
   1337 	splx(s);
   1338 }
   1339 
   1340 void
   1341 pool_printit(pp, modif, pr)
   1342 	struct pool *pp;
   1343 	const char *modif;
   1344 	void (*pr) __P((const char *, ...));
   1345 {
   1346 	int didlock = 0;
   1347 
   1348 	if (pp == NULL) {
   1349 		(*pr)("Must specify a pool to print.\n");
   1350 		return;
   1351 	}
   1352 
   1353 	/*
   1354 	 * Called from DDB; interrupts should be blocked, and all
   1355 	 * other processors should be paused.  We can skip locking
   1356 	 * the pool in this case.
   1357 	 *
   1358 	 * We do a simple_lock_try() just to print the lock
   1359 	 * status, however.
   1360 	 */
   1361 
   1362 	if (simple_lock_try(&pp->pr_slock) == 0)
   1363 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1364 	else
   1365 		didlock = 1;
   1366 
   1367 	pool_print1(pp, modif, pr);
   1368 
   1369 	if (didlock)
   1370 		simple_unlock(&pp->pr_slock);
   1371 }
   1372 
   1373 static void
   1374 pool_print1(pp, modif, pr)
   1375 	struct pool *pp;
   1376 	const char *modif;
   1377 	void (*pr) __P((const char *, ...));
   1378 {
   1379 	struct pool_item_header *ph;
   1380 #ifdef DIAGNOSTIC
   1381 	struct pool_item *pi;
   1382 #endif
   1383 	int print_log = 0, print_pagelist = 0;
   1384 	char c;
   1385 
   1386 	while ((c = *modif++) != '\0') {
   1387 		if (c == 'l')
   1388 			print_log = 1;
   1389 		if (c == 'p')
   1390 			print_pagelist = 1;
   1391 		modif++;
   1392 	}
   1393 
   1394 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1395 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1396 	    pp->pr_roflags);
   1397 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1398 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1399 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1400 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1401 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1402 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1403 
   1404 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1405 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1406 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1407 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1408 
   1409 	if (print_pagelist == 0)
   1410 		goto skip_pagelist;
   1411 
   1412 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1413 		(*pr)("\n\tpage list:\n");
   1414 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1415 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1416 		    ph->ph_page, ph->ph_nmissing,
   1417 		    (u_long)ph->ph_time.tv_sec,
   1418 		    (u_long)ph->ph_time.tv_usec);
   1419 #ifdef DIAGNOSTIC
   1420 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
   1421 		     pi = TAILQ_NEXT(pi, pi_list)) {
   1422 			if (pi->pi_magic != PI_MAGIC) {
   1423 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1424 				    pi, pi->pi_magic);
   1425 			}
   1426 		}
   1427 #endif
   1428 	}
   1429 	if (pp->pr_curpage == NULL)
   1430 		(*pr)("\tno current page\n");
   1431 	else
   1432 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1433 
   1434  skip_pagelist:
   1435 
   1436 	if (print_log == 0)
   1437 		goto skip_log;
   1438 
   1439 	(*pr)("\n");
   1440 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1441 		(*pr)("\tno log\n");
   1442 	else
   1443 		pr_printlog(pp, NULL, pr);
   1444 
   1445  skip_log:
   1446 
   1447 	pr_enter_check(pp, pr);
   1448 }
   1449 
   1450 int
   1451 pool_chk(pp, label)
   1452 	struct pool *pp;
   1453 	char *label;
   1454 {
   1455 	struct pool_item_header *ph;
   1456 	int r = 0;
   1457 
   1458 	simple_lock(&pp->pr_slock);
   1459 
   1460 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1461 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1462 
   1463 		struct pool_item *pi;
   1464 		int n;
   1465 		caddr_t page;
   1466 
   1467 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1468 		if (page != ph->ph_page &&
   1469 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1470 			if (label != NULL)
   1471 				printf("%s: ", label);
   1472 			printf("pool(%p:%s): page inconsistency: page %p;"
   1473 			       " at page head addr %p (p %p)\n", pp,
   1474 				pp->pr_wchan, ph->ph_page,
   1475 				ph, page);
   1476 			r++;
   1477 			goto out;
   1478 		}
   1479 
   1480 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1481 		     pi != NULL;
   1482 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1483 
   1484 #ifdef DIAGNOSTIC
   1485 			if (pi->pi_magic != PI_MAGIC) {
   1486 				if (label != NULL)
   1487 					printf("%s: ", label);
   1488 				printf("pool(%s): free list modified: magic=%x;"
   1489 				       " page %p; item ordinal %d;"
   1490 				       " addr %p (p %p)\n",
   1491 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1492 					n, pi, page);
   1493 				panic("pool");
   1494 			}
   1495 #endif
   1496 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1497 			if (page == ph->ph_page)
   1498 				continue;
   1499 
   1500 			if (label != NULL)
   1501 				printf("%s: ", label);
   1502 			printf("pool(%p:%s): page inconsistency: page %p;"
   1503 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1504 				pp->pr_wchan, ph->ph_page,
   1505 				n, pi, page);
   1506 			r++;
   1507 			goto out;
   1508 		}
   1509 	}
   1510 out:
   1511 	simple_unlock(&pp->pr_slock);
   1512 	return (r);
   1513 }
   1514