subr_pool.c revision 1.210 1 /* $NetBSD: subr_pool.c,v 1.210 2017/11/05 07:49:45 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.210 2017/11/05 07:49:45 mlelstv Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/bitops.h>
47 #include <sys/proc.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/vmem.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 #include <sys/debug.h>
54 #include <sys/lockdebug.h>
55 #include <sys/xcall.h>
56 #include <sys/cpu.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Pool resource management utility.
63 *
64 * Memory is allocated in pages which are split into pieces according to
65 * the pool item size. Each page is kept on one of three lists in the
66 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67 * for empty, full and partially-full pages respectively. The individual
68 * pool items are on a linked list headed by `ph_itemlist' in each page
69 * header. The memory for building the page list is either taken from
70 * the allocated pages themselves (for small pool items) or taken from
71 * an internal pool of page headers (`phpool').
72 */
73
74 /* List of all pools. Non static as needed by 'vmstat -i' */
75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
76
77 /* Private pool for page header structures */
78 #define PHPOOL_MAX 8
79 static struct pool phpool[PHPOOL_MAX];
80 #define PHPOOL_FREELIST_NELEM(idx) \
81 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
82
83 #ifdef POOL_SUBPAGE
84 /* Pool of subpages for use by normal pools. */
85 static struct pool psppool;
86 #endif
87
88 #ifdef POOL_REDZONE
89 # define POOL_REDZONE_SIZE 2
90 static void pool_redzone_init(struct pool *, size_t);
91 static void pool_redzone_fill(struct pool *, void *);
92 static void pool_redzone_check(struct pool *, void *);
93 #else
94 # define pool_redzone_init(pp, sz) /* NOTHING */
95 # define pool_redzone_fill(pp, ptr) /* NOTHING */
96 # define pool_redzone_check(pp, ptr) /* NOTHING */
97 #endif
98
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 .pa_alloc = pool_page_alloc_meta,
105 .pa_free = pool_page_free_meta,
106 .pa_pagesz = 0
107 };
108
109 #define POOL_ALLOCATOR_BIG_BASE 13
110 extern struct pool_allocator pool_allocator_big[];
111 static int pool_bigidx(size_t);
112
113 /* # of seconds to retain page after last use */
114 int pool_inactive_time = 10;
115
116 /* Next candidate for drainage (see pool_drain()) */
117 static struct pool *drainpp;
118
119 /* This lock protects both pool_head and drainpp. */
120 static kmutex_t pool_head_lock;
121 static kcondvar_t pool_busy;
122
123 /* This lock protects initialization of a potentially shared pool allocator */
124 static kmutex_t pool_allocator_lock;
125
126 typedef uint32_t pool_item_bitmap_t;
127 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
128 #define BITMAP_MASK (BITMAP_SIZE - 1)
129
130 struct pool_item_header {
131 /* Page headers */
132 LIST_ENTRY(pool_item_header)
133 ph_pagelist; /* pool page list */
134 SPLAY_ENTRY(pool_item_header)
135 ph_node; /* Off-page page headers */
136 void * ph_page; /* this page's address */
137 uint32_t ph_time; /* last referenced */
138 uint16_t ph_nmissing; /* # of chunks in use */
139 uint16_t ph_off; /* start offset in page */
140 union {
141 /* !PR_NOTOUCH */
142 struct {
143 LIST_HEAD(, pool_item)
144 phu_itemlist; /* chunk list for this page */
145 } phu_normal;
146 /* PR_NOTOUCH */
147 struct {
148 pool_item_bitmap_t phu_bitmap[1];
149 } phu_notouch;
150 } ph_u;
151 };
152 #define ph_itemlist ph_u.phu_normal.phu_itemlist
153 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
154
155 struct pool_item {
156 #ifdef DIAGNOSTIC
157 u_int pi_magic;
158 #endif
159 #define PI_MAGIC 0xdeaddeadU
160 /* Other entries use only this list entry */
161 LIST_ENTRY(pool_item) pi_list;
162 };
163
164 #define POOL_NEEDS_CATCHUP(pp) \
165 ((pp)->pr_nitems < (pp)->pr_minitems)
166
167 /*
168 * Pool cache management.
169 *
170 * Pool caches provide a way for constructed objects to be cached by the
171 * pool subsystem. This can lead to performance improvements by avoiding
172 * needless object construction/destruction; it is deferred until absolutely
173 * necessary.
174 *
175 * Caches are grouped into cache groups. Each cache group references up
176 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
177 * object from the pool, it calls the object's constructor and places it
178 * into a cache group. When a cache group frees an object back to the
179 * pool, it first calls the object's destructor. This allows the object
180 * to persist in constructed form while freed to the cache.
181 *
182 * The pool references each cache, so that when a pool is drained by the
183 * pagedaemon, it can drain each individual cache as well. Each time a
184 * cache is drained, the most idle cache group is freed to the pool in
185 * its entirety.
186 *
187 * Pool caches are layed on top of pools. By layering them, we can avoid
188 * the complexity of cache management for pools which would not benefit
189 * from it.
190 */
191
192 static struct pool pcg_normal_pool;
193 static struct pool pcg_large_pool;
194 static struct pool cache_pool;
195 static struct pool cache_cpu_pool;
196
197 pool_cache_t pnbuf_cache; /* pathname buffer cache */
198
199 /* List of all caches. */
200 TAILQ_HEAD(,pool_cache) pool_cache_head =
201 TAILQ_HEAD_INITIALIZER(pool_cache_head);
202
203 int pool_cache_disable; /* global disable for caching */
204 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
205
206 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
207 void *);
208 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
209 void **, paddr_t *, int);
210 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
211 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
212 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
213 static void pool_cache_transfer(pool_cache_t);
214
215 static int pool_catchup(struct pool *);
216 static void pool_prime_page(struct pool *, void *,
217 struct pool_item_header *);
218 static void pool_update_curpage(struct pool *);
219
220 static int pool_grow(struct pool *, int);
221 static void *pool_allocator_alloc(struct pool *, int);
222 static void pool_allocator_free(struct pool *, void *);
223
224 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
225 void (*)(const char *, ...) __printflike(1, 2));
226 static void pool_print1(struct pool *, const char *,
227 void (*)(const char *, ...) __printflike(1, 2));
228
229 static int pool_chk_page(struct pool *, const char *,
230 struct pool_item_header *);
231
232 static inline unsigned int
233 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
234 const void *v)
235 {
236 const char *cp = v;
237 unsigned int idx;
238
239 KASSERT(pp->pr_roflags & PR_NOTOUCH);
240 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
241 KASSERT(idx < pp->pr_itemsperpage);
242 return idx;
243 }
244
245 static inline void
246 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
247 void *obj)
248 {
249 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
250 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
251 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
252
253 KASSERT((*bitmap & mask) == 0);
254 *bitmap |= mask;
255 }
256
257 static inline void *
258 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
259 {
260 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
261 unsigned int idx;
262 int i;
263
264 for (i = 0; ; i++) {
265 int bit;
266
267 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
268 bit = ffs32(bitmap[i]);
269 if (bit) {
270 pool_item_bitmap_t mask;
271
272 bit--;
273 idx = (i * BITMAP_SIZE) + bit;
274 mask = 1 << bit;
275 KASSERT((bitmap[i] & mask) != 0);
276 bitmap[i] &= ~mask;
277 break;
278 }
279 }
280 KASSERT(idx < pp->pr_itemsperpage);
281 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
282 }
283
284 static inline void
285 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
286 {
287 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
288 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
289 int i;
290
291 for (i = 0; i < n; i++) {
292 bitmap[i] = (pool_item_bitmap_t)-1;
293 }
294 }
295
296 static inline int
297 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
298 {
299
300 /*
301 * we consider pool_item_header with smaller ph_page bigger.
302 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
303 */
304
305 if (a->ph_page < b->ph_page)
306 return (1);
307 else if (a->ph_page > b->ph_page)
308 return (-1);
309 else
310 return (0);
311 }
312
313 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
314 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
315
316 static inline struct pool_item_header *
317 pr_find_pagehead_noalign(struct pool *pp, void *v)
318 {
319 struct pool_item_header *ph, tmp;
320
321 tmp.ph_page = (void *)(uintptr_t)v;
322 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
323 if (ph == NULL) {
324 ph = SPLAY_ROOT(&pp->pr_phtree);
325 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
326 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
327 }
328 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
329 }
330
331 return ph;
332 }
333
334 /*
335 * Return the pool page header based on item address.
336 */
337 static inline struct pool_item_header *
338 pr_find_pagehead(struct pool *pp, void *v)
339 {
340 struct pool_item_header *ph, tmp;
341
342 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
343 ph = pr_find_pagehead_noalign(pp, v);
344 } else {
345 void *page =
346 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
347
348 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
349 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
350 } else {
351 tmp.ph_page = page;
352 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
353 }
354 }
355
356 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
357 ((char *)ph->ph_page <= (char *)v &&
358 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
359 return ph;
360 }
361
362 static void
363 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
364 {
365 struct pool_item_header *ph;
366
367 while ((ph = LIST_FIRST(pq)) != NULL) {
368 LIST_REMOVE(ph, ph_pagelist);
369 pool_allocator_free(pp, ph->ph_page);
370 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
371 pool_put(pp->pr_phpool, ph);
372 }
373 }
374
375 /*
376 * Remove a page from the pool.
377 */
378 static inline void
379 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
380 struct pool_pagelist *pq)
381 {
382
383 KASSERT(mutex_owned(&pp->pr_lock));
384
385 /*
386 * If the page was idle, decrement the idle page count.
387 */
388 if (ph->ph_nmissing == 0) {
389 KASSERT(pp->pr_nidle != 0);
390 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
391 "nitems=%u < itemsperpage=%u",
392 pp->pr_nitems, pp->pr_itemsperpage);
393 pp->pr_nidle--;
394 }
395
396 pp->pr_nitems -= pp->pr_itemsperpage;
397
398 /*
399 * Unlink the page from the pool and queue it for release.
400 */
401 LIST_REMOVE(ph, ph_pagelist);
402 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
403 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
404 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
405
406 pp->pr_npages--;
407 pp->pr_npagefree++;
408
409 pool_update_curpage(pp);
410 }
411
412 /*
413 * Initialize all the pools listed in the "pools" link set.
414 */
415 void
416 pool_subsystem_init(void)
417 {
418 size_t size;
419 int idx;
420
421 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
422 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
423 cv_init(&pool_busy, "poolbusy");
424
425 /*
426 * Initialize private page header pool and cache magazine pool if we
427 * haven't done so yet.
428 */
429 for (idx = 0; idx < PHPOOL_MAX; idx++) {
430 static char phpool_names[PHPOOL_MAX][6+1+6+1];
431 int nelem;
432 size_t sz;
433
434 nelem = PHPOOL_FREELIST_NELEM(idx);
435 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
436 "phpool-%d", nelem);
437 sz = sizeof(struct pool_item_header);
438 if (nelem) {
439 sz = offsetof(struct pool_item_header,
440 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
441 }
442 pool_init(&phpool[idx], sz, 0, 0, 0,
443 phpool_names[idx], &pool_allocator_meta, IPL_VM);
444 }
445 #ifdef POOL_SUBPAGE
446 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
447 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
448 #endif
449
450 size = sizeof(pcg_t) +
451 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
452 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
453 "pcgnormal", &pool_allocator_meta, IPL_VM);
454
455 size = sizeof(pcg_t) +
456 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
457 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
458 "pcglarge", &pool_allocator_meta, IPL_VM);
459
460 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
461 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
462
463 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
464 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
465 }
466
467 /*
468 * Initialize the given pool resource structure.
469 *
470 * We export this routine to allow other kernel parts to declare
471 * static pools that must be initialized before kmem(9) is available.
472 */
473 void
474 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
475 const char *wchan, struct pool_allocator *palloc, int ipl)
476 {
477 struct pool *pp1;
478 size_t trysize, phsize, prsize;
479 int off, slack;
480
481 #ifdef DEBUG
482 if (__predict_true(!cold))
483 mutex_enter(&pool_head_lock);
484 /*
485 * Check that the pool hasn't already been initialised and
486 * added to the list of all pools.
487 */
488 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
489 if (pp == pp1)
490 panic("pool_init: pool %s already initialised",
491 wchan);
492 }
493 if (__predict_true(!cold))
494 mutex_exit(&pool_head_lock);
495 #endif
496
497 if (palloc == NULL)
498 palloc = &pool_allocator_kmem;
499 #ifdef POOL_SUBPAGE
500 if (size > palloc->pa_pagesz) {
501 if (palloc == &pool_allocator_kmem)
502 palloc = &pool_allocator_kmem_fullpage;
503 else if (palloc == &pool_allocator_nointr)
504 palloc = &pool_allocator_nointr_fullpage;
505 }
506 #endif /* POOL_SUBPAGE */
507 if (!cold)
508 mutex_enter(&pool_allocator_lock);
509 if (palloc->pa_refcnt++ == 0) {
510 if (palloc->pa_pagesz == 0)
511 palloc->pa_pagesz = PAGE_SIZE;
512
513 TAILQ_INIT(&palloc->pa_list);
514
515 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
516 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
517 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
518 }
519 if (!cold)
520 mutex_exit(&pool_allocator_lock);
521
522 if (align == 0)
523 align = ALIGN(1);
524
525 prsize = size;
526 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
527 prsize = sizeof(struct pool_item);
528
529 prsize = roundup(prsize, align);
530 KASSERTMSG((prsize <= palloc->pa_pagesz),
531 "pool_init: pool item size (%zu) larger than page size (%u)",
532 prsize, palloc->pa_pagesz);
533
534 /*
535 * Initialize the pool structure.
536 */
537 LIST_INIT(&pp->pr_emptypages);
538 LIST_INIT(&pp->pr_fullpages);
539 LIST_INIT(&pp->pr_partpages);
540 pp->pr_cache = NULL;
541 pp->pr_curpage = NULL;
542 pp->pr_npages = 0;
543 pp->pr_minitems = 0;
544 pp->pr_minpages = 0;
545 pp->pr_maxpages = UINT_MAX;
546 pp->pr_roflags = flags;
547 pp->pr_flags = 0;
548 pp->pr_size = prsize;
549 pp->pr_align = align;
550 pp->pr_wchan = wchan;
551 pp->pr_alloc = palloc;
552 pp->pr_nitems = 0;
553 pp->pr_nout = 0;
554 pp->pr_hardlimit = UINT_MAX;
555 pp->pr_hardlimit_warning = NULL;
556 pp->pr_hardlimit_ratecap.tv_sec = 0;
557 pp->pr_hardlimit_ratecap.tv_usec = 0;
558 pp->pr_hardlimit_warning_last.tv_sec = 0;
559 pp->pr_hardlimit_warning_last.tv_usec = 0;
560 pp->pr_drain_hook = NULL;
561 pp->pr_drain_hook_arg = NULL;
562 pp->pr_freecheck = NULL;
563 pool_redzone_init(pp, size);
564
565 /*
566 * Decide whether to put the page header off page to avoid
567 * wasting too large a part of the page or too big item.
568 * Off-page page headers go on a hash table, so we can match
569 * a returned item with its header based on the page address.
570 * We use 1/16 of the page size and about 8 times of the item
571 * size as the threshold (XXX: tune)
572 *
573 * However, we'll put the header into the page if we can put
574 * it without wasting any items.
575 *
576 * Silently enforce `0 <= ioff < align'.
577 */
578 pp->pr_itemoffset = ioff %= align;
579 /* See the comment below about reserved bytes. */
580 trysize = palloc->pa_pagesz - ((align - ioff) % align);
581 phsize = ALIGN(sizeof(struct pool_item_header));
582 if (pp->pr_roflags & PR_PHINPAGE ||
583 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
584 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
585 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
586 /* Use the end of the page for the page header */
587 pp->pr_roflags |= PR_PHINPAGE;
588 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
589 } else {
590 /* The page header will be taken from our page header pool */
591 pp->pr_phoffset = 0;
592 off = palloc->pa_pagesz;
593 SPLAY_INIT(&pp->pr_phtree);
594 }
595
596 /*
597 * Alignment is to take place at `ioff' within the item. This means
598 * we must reserve up to `align - 1' bytes on the page to allow
599 * appropriate positioning of each item.
600 */
601 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
602 KASSERT(pp->pr_itemsperpage != 0);
603 if ((pp->pr_roflags & PR_NOTOUCH)) {
604 int idx;
605
606 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
607 idx++) {
608 /* nothing */
609 }
610 if (idx >= PHPOOL_MAX) {
611 /*
612 * if you see this panic, consider to tweak
613 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
614 */
615 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
616 pp->pr_wchan, pp->pr_itemsperpage);
617 }
618 pp->pr_phpool = &phpool[idx];
619 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
620 pp->pr_phpool = &phpool[0];
621 }
622 #if defined(DIAGNOSTIC)
623 else {
624 pp->pr_phpool = NULL;
625 }
626 #endif
627
628 /*
629 * Use the slack between the chunks and the page header
630 * for "cache coloring".
631 */
632 slack = off - pp->pr_itemsperpage * pp->pr_size;
633 pp->pr_maxcolor = (slack / align) * align;
634 pp->pr_curcolor = 0;
635
636 pp->pr_nget = 0;
637 pp->pr_nfail = 0;
638 pp->pr_nput = 0;
639 pp->pr_npagealloc = 0;
640 pp->pr_npagefree = 0;
641 pp->pr_hiwat = 0;
642 pp->pr_nidle = 0;
643 pp->pr_refcnt = 0;
644
645 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
646 cv_init(&pp->pr_cv, wchan);
647 pp->pr_ipl = ipl;
648
649 /* Insert into the list of all pools. */
650 if (!cold)
651 mutex_enter(&pool_head_lock);
652 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
653 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
654 break;
655 }
656 if (pp1 == NULL)
657 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
658 else
659 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
660 if (!cold)
661 mutex_exit(&pool_head_lock);
662
663 /* Insert this into the list of pools using this allocator. */
664 if (!cold)
665 mutex_enter(&palloc->pa_lock);
666 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
667 if (!cold)
668 mutex_exit(&palloc->pa_lock);
669 }
670
671 /*
672 * De-commision a pool resource.
673 */
674 void
675 pool_destroy(struct pool *pp)
676 {
677 struct pool_pagelist pq;
678 struct pool_item_header *ph;
679
680 /* Remove from global pool list */
681 mutex_enter(&pool_head_lock);
682 while (pp->pr_refcnt != 0)
683 cv_wait(&pool_busy, &pool_head_lock);
684 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
685 if (drainpp == pp)
686 drainpp = NULL;
687 mutex_exit(&pool_head_lock);
688
689 /* Remove this pool from its allocator's list of pools. */
690 mutex_enter(&pp->pr_alloc->pa_lock);
691 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
692 mutex_exit(&pp->pr_alloc->pa_lock);
693
694 mutex_enter(&pool_allocator_lock);
695 if (--pp->pr_alloc->pa_refcnt == 0)
696 mutex_destroy(&pp->pr_alloc->pa_lock);
697 mutex_exit(&pool_allocator_lock);
698
699 mutex_enter(&pp->pr_lock);
700
701 KASSERT(pp->pr_cache == NULL);
702 KASSERTMSG((pp->pr_nout == 0),
703 "pool_destroy: pool busy: still out: %u", pp->pr_nout);
704 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
705 KASSERT(LIST_EMPTY(&pp->pr_partpages));
706
707 /* Remove all pages */
708 LIST_INIT(&pq);
709 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
710 pr_rmpage(pp, ph, &pq);
711
712 mutex_exit(&pp->pr_lock);
713
714 pr_pagelist_free(pp, &pq);
715 cv_destroy(&pp->pr_cv);
716 mutex_destroy(&pp->pr_lock);
717 }
718
719 void
720 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
721 {
722
723 /* XXX no locking -- must be used just after pool_init() */
724 KASSERTMSG((pp->pr_drain_hook == NULL),
725 "pool_set_drain_hook(%s): already set", pp->pr_wchan);
726 pp->pr_drain_hook = fn;
727 pp->pr_drain_hook_arg = arg;
728 }
729
730 static struct pool_item_header *
731 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
732 {
733 struct pool_item_header *ph;
734
735 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
736 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
737 else
738 ph = pool_get(pp->pr_phpool, flags);
739
740 return (ph);
741 }
742
743 /*
744 * Grab an item from the pool.
745 */
746 void *
747 pool_get(struct pool *pp, int flags)
748 {
749 struct pool_item *pi;
750 struct pool_item_header *ph;
751 void *v;
752
753 KASSERTMSG((pp->pr_itemsperpage != 0),
754 "pool_get: pool '%s': pr_itemsperpage is zero, "
755 "pool not initialized?", pp->pr_wchan);
756 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
757 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
758 "pool '%s' is IPL_NONE, but called from interrupt context",
759 pp->pr_wchan);
760 if (flags & PR_WAITOK) {
761 ASSERT_SLEEPABLE();
762 }
763
764 mutex_enter(&pp->pr_lock);
765 startover:
766 /*
767 * Check to see if we've reached the hard limit. If we have,
768 * and we can wait, then wait until an item has been returned to
769 * the pool.
770 */
771 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
772 "pool_get: %s: crossed hard limit", pp->pr_wchan);
773 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
774 if (pp->pr_drain_hook != NULL) {
775 /*
776 * Since the drain hook is going to free things
777 * back to the pool, unlock, call the hook, re-lock,
778 * and check the hardlimit condition again.
779 */
780 mutex_exit(&pp->pr_lock);
781 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
782 mutex_enter(&pp->pr_lock);
783 if (pp->pr_nout < pp->pr_hardlimit)
784 goto startover;
785 }
786
787 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
788 /*
789 * XXX: A warning isn't logged in this case. Should
790 * it be?
791 */
792 pp->pr_flags |= PR_WANTED;
793 cv_wait(&pp->pr_cv, &pp->pr_lock);
794 goto startover;
795 }
796
797 /*
798 * Log a message that the hard limit has been hit.
799 */
800 if (pp->pr_hardlimit_warning != NULL &&
801 ratecheck(&pp->pr_hardlimit_warning_last,
802 &pp->pr_hardlimit_ratecap))
803 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
804
805 pp->pr_nfail++;
806
807 mutex_exit(&pp->pr_lock);
808 return (NULL);
809 }
810
811 /*
812 * The convention we use is that if `curpage' is not NULL, then
813 * it points at a non-empty bucket. In particular, `curpage'
814 * never points at a page header which has PR_PHINPAGE set and
815 * has no items in its bucket.
816 */
817 if ((ph = pp->pr_curpage) == NULL) {
818 int error;
819
820 KASSERTMSG((pp->pr_nitems == 0),
821 "pool_get: nitems inconsistent"
822 ": %s: curpage NULL, nitems %u",
823 pp->pr_wchan, pp->pr_nitems);
824
825 /*
826 * Call the back-end page allocator for more memory.
827 * Release the pool lock, as the back-end page allocator
828 * may block.
829 */
830 error = pool_grow(pp, flags);
831 if (error != 0) {
832 /*
833 * pool_grow aborts when another thread
834 * is allocating a new page. Retry if it
835 * waited for it.
836 */
837 if (error == ERESTART)
838 goto startover;
839
840 /*
841 * We were unable to allocate a page or item
842 * header, but we released the lock during
843 * allocation, so perhaps items were freed
844 * back to the pool. Check for this case.
845 */
846 if (pp->pr_curpage != NULL)
847 goto startover;
848
849 pp->pr_nfail++;
850 mutex_exit(&pp->pr_lock);
851 return (NULL);
852 }
853
854 /* Start the allocation process over. */
855 goto startover;
856 }
857 if (pp->pr_roflags & PR_NOTOUCH) {
858 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
859 "pool_get: %s: page empty", pp->pr_wchan);
860 v = pr_item_notouch_get(pp, ph);
861 } else {
862 v = pi = LIST_FIRST(&ph->ph_itemlist);
863 if (__predict_false(v == NULL)) {
864 mutex_exit(&pp->pr_lock);
865 panic("pool_get: %s: page empty", pp->pr_wchan);
866 }
867 KASSERTMSG((pp->pr_nitems > 0),
868 "pool_get: nitems inconsistent"
869 ": %s: items on itemlist, nitems %u",
870 pp->pr_wchan, pp->pr_nitems);
871 KASSERTMSG((pi->pi_magic == PI_MAGIC),
872 "pool_get(%s): free list modified: "
873 "magic=%x; page %p; item addr %p",
874 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
875
876 /*
877 * Remove from item list.
878 */
879 LIST_REMOVE(pi, pi_list);
880 }
881 pp->pr_nitems--;
882 pp->pr_nout++;
883 if (ph->ph_nmissing == 0) {
884 KASSERT(pp->pr_nidle > 0);
885 pp->pr_nidle--;
886
887 /*
888 * This page was previously empty. Move it to the list of
889 * partially-full pages. This page is already curpage.
890 */
891 LIST_REMOVE(ph, ph_pagelist);
892 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
893 }
894 ph->ph_nmissing++;
895 if (ph->ph_nmissing == pp->pr_itemsperpage) {
896 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
897 LIST_EMPTY(&ph->ph_itemlist)),
898 "pool_get: %s: nmissing inconsistent", pp->pr_wchan);
899 /*
900 * This page is now full. Move it to the full list
901 * and select a new current page.
902 */
903 LIST_REMOVE(ph, ph_pagelist);
904 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
905 pool_update_curpage(pp);
906 }
907
908 pp->pr_nget++;
909
910 /*
911 * If we have a low water mark and we are now below that low
912 * water mark, add more items to the pool.
913 */
914 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
915 /*
916 * XXX: Should we log a warning? Should we set up a timeout
917 * to try again in a second or so? The latter could break
918 * a caller's assumptions about interrupt protection, etc.
919 */
920 }
921
922 mutex_exit(&pp->pr_lock);
923 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
924 FREECHECK_OUT(&pp->pr_freecheck, v);
925 pool_redzone_fill(pp, v);
926 return (v);
927 }
928
929 /*
930 * Internal version of pool_put(). Pool is already locked/entered.
931 */
932 static void
933 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
934 {
935 struct pool_item *pi = v;
936 struct pool_item_header *ph;
937
938 KASSERT(mutex_owned(&pp->pr_lock));
939 pool_redzone_check(pp, v);
940 FREECHECK_IN(&pp->pr_freecheck, v);
941 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
942
943 KASSERTMSG((pp->pr_nout > 0),
944 "pool_put: pool %s: putting with none out", pp->pr_wchan);
945
946 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
947 panic("pool_put: %s: page header missing", pp->pr_wchan);
948 }
949
950 /*
951 * Return to item list.
952 */
953 if (pp->pr_roflags & PR_NOTOUCH) {
954 pr_item_notouch_put(pp, ph, v);
955 } else {
956 #ifdef DIAGNOSTIC
957 pi->pi_magic = PI_MAGIC;
958 #endif
959 #ifdef DEBUG
960 {
961 int i, *ip = v;
962
963 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
964 *ip++ = PI_MAGIC;
965 }
966 }
967 #endif
968
969 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
970 }
971 KDASSERT(ph->ph_nmissing != 0);
972 ph->ph_nmissing--;
973 pp->pr_nput++;
974 pp->pr_nitems++;
975 pp->pr_nout--;
976
977 /* Cancel "pool empty" condition if it exists */
978 if (pp->pr_curpage == NULL)
979 pp->pr_curpage = ph;
980
981 if (pp->pr_flags & PR_WANTED) {
982 pp->pr_flags &= ~PR_WANTED;
983 cv_broadcast(&pp->pr_cv);
984 }
985
986 /*
987 * If this page is now empty, do one of two things:
988 *
989 * (1) If we have more pages than the page high water mark,
990 * free the page back to the system. ONLY CONSIDER
991 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
992 * CLAIM.
993 *
994 * (2) Otherwise, move the page to the empty page list.
995 *
996 * Either way, select a new current page (so we use a partially-full
997 * page if one is available).
998 */
999 if (ph->ph_nmissing == 0) {
1000 pp->pr_nidle++;
1001 if (pp->pr_npages > pp->pr_minpages &&
1002 pp->pr_npages > pp->pr_maxpages) {
1003 pr_rmpage(pp, ph, pq);
1004 } else {
1005 LIST_REMOVE(ph, ph_pagelist);
1006 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1007
1008 /*
1009 * Update the timestamp on the page. A page must
1010 * be idle for some period of time before it can
1011 * be reclaimed by the pagedaemon. This minimizes
1012 * ping-pong'ing for memory.
1013 *
1014 * note for 64-bit time_t: truncating to 32-bit is not
1015 * a problem for our usage.
1016 */
1017 ph->ph_time = time_uptime;
1018 }
1019 pool_update_curpage(pp);
1020 }
1021
1022 /*
1023 * If the page was previously completely full, move it to the
1024 * partially-full list and make it the current page. The next
1025 * allocation will get the item from this page, instead of
1026 * further fragmenting the pool.
1027 */
1028 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1029 LIST_REMOVE(ph, ph_pagelist);
1030 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1031 pp->pr_curpage = ph;
1032 }
1033 }
1034
1035 void
1036 pool_put(struct pool *pp, void *v)
1037 {
1038 struct pool_pagelist pq;
1039
1040 LIST_INIT(&pq);
1041
1042 mutex_enter(&pp->pr_lock);
1043 pool_do_put(pp, v, &pq);
1044 mutex_exit(&pp->pr_lock);
1045
1046 pr_pagelist_free(pp, &pq);
1047 }
1048
1049 /*
1050 * pool_grow: grow a pool by a page.
1051 *
1052 * => called with pool locked.
1053 * => unlock and relock the pool.
1054 * => return with pool locked.
1055 */
1056
1057 static int
1058 pool_grow(struct pool *pp, int flags)
1059 {
1060 struct pool_item_header *ph = NULL;
1061 char *cp;
1062 int error;
1063
1064 /*
1065 * If there's a pool_grow in progress, wait for it to complete
1066 * and try again from the top.
1067 */
1068 if (pp->pr_flags & PR_GROWING) {
1069 if (flags & PR_WAITOK) {
1070 do {
1071 cv_wait(&pp->pr_cv, &pp->pr_lock);
1072 } while (pp->pr_flags & PR_GROWING);
1073 return ERESTART;
1074 } else {
1075 return EWOULDBLOCK;
1076 }
1077 }
1078 pp->pr_flags |= PR_GROWING;
1079
1080 mutex_exit(&pp->pr_lock);
1081 cp = pool_allocator_alloc(pp, flags);
1082 if (__predict_true(cp != NULL)) {
1083 ph = pool_alloc_item_header(pp, cp, flags);
1084 }
1085 if (__predict_false(cp == NULL || ph == NULL)) {
1086 if (cp != NULL) {
1087 pool_allocator_free(pp, cp);
1088 }
1089 mutex_enter(&pp->pr_lock);
1090 error = ENOMEM;
1091 goto out;
1092 }
1093
1094 mutex_enter(&pp->pr_lock);
1095 pool_prime_page(pp, cp, ph);
1096 pp->pr_npagealloc++;
1097 error = 0;
1098
1099 out:
1100 /*
1101 * If anyone was waiting for pool_grow, notify them that we
1102 * may have just done it.
1103 */
1104 KASSERT(pp->pr_flags & PR_GROWING);
1105 pp->pr_flags &= ~PR_GROWING;
1106 cv_broadcast(&pp->pr_cv);
1107
1108 return error;
1109 }
1110
1111 /*
1112 * Add N items to the pool.
1113 */
1114 int
1115 pool_prime(struct pool *pp, int n)
1116 {
1117 int newpages;
1118 int error = 0;
1119
1120 mutex_enter(&pp->pr_lock);
1121
1122 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1123
1124 while (newpages-- > 0) {
1125 error = pool_grow(pp, PR_NOWAIT);
1126 if (error) {
1127 break;
1128 }
1129 pp->pr_minpages++;
1130 }
1131
1132 if (pp->pr_minpages >= pp->pr_maxpages)
1133 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1134
1135 mutex_exit(&pp->pr_lock);
1136 return error;
1137 }
1138
1139 /*
1140 * Add a page worth of items to the pool.
1141 *
1142 * Note, we must be called with the pool descriptor LOCKED.
1143 */
1144 static void
1145 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1146 {
1147 struct pool_item *pi;
1148 void *cp = storage;
1149 const unsigned int align = pp->pr_align;
1150 const unsigned int ioff = pp->pr_itemoffset;
1151 int n;
1152
1153 KASSERT(mutex_owned(&pp->pr_lock));
1154 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1155 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1156 "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp);
1157
1158 /*
1159 * Insert page header.
1160 */
1161 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1162 LIST_INIT(&ph->ph_itemlist);
1163 ph->ph_page = storage;
1164 ph->ph_nmissing = 0;
1165 ph->ph_time = time_uptime;
1166 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1167 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1168
1169 pp->pr_nidle++;
1170
1171 /*
1172 * Color this page.
1173 */
1174 ph->ph_off = pp->pr_curcolor;
1175 cp = (char *)cp + ph->ph_off;
1176 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1177 pp->pr_curcolor = 0;
1178
1179 /*
1180 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1181 */
1182 if (ioff != 0)
1183 cp = (char *)cp + align - ioff;
1184
1185 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1186
1187 /*
1188 * Insert remaining chunks on the bucket list.
1189 */
1190 n = pp->pr_itemsperpage;
1191 pp->pr_nitems += n;
1192
1193 if (pp->pr_roflags & PR_NOTOUCH) {
1194 pr_item_notouch_init(pp, ph);
1195 } else {
1196 while (n--) {
1197 pi = (struct pool_item *)cp;
1198
1199 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1200
1201 /* Insert on page list */
1202 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1203 #ifdef DIAGNOSTIC
1204 pi->pi_magic = PI_MAGIC;
1205 #endif
1206 cp = (char *)cp + pp->pr_size;
1207
1208 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1209 }
1210 }
1211
1212 /*
1213 * If the pool was depleted, point at the new page.
1214 */
1215 if (pp->pr_curpage == NULL)
1216 pp->pr_curpage = ph;
1217
1218 if (++pp->pr_npages > pp->pr_hiwat)
1219 pp->pr_hiwat = pp->pr_npages;
1220 }
1221
1222 /*
1223 * Used by pool_get() when nitems drops below the low water mark. This
1224 * is used to catch up pr_nitems with the low water mark.
1225 *
1226 * Note 1, we never wait for memory here, we let the caller decide what to do.
1227 *
1228 * Note 2, we must be called with the pool already locked, and we return
1229 * with it locked.
1230 */
1231 static int
1232 pool_catchup(struct pool *pp)
1233 {
1234 int error = 0;
1235
1236 while (POOL_NEEDS_CATCHUP(pp)) {
1237 error = pool_grow(pp, PR_NOWAIT);
1238 if (error) {
1239 break;
1240 }
1241 }
1242 return error;
1243 }
1244
1245 static void
1246 pool_update_curpage(struct pool *pp)
1247 {
1248
1249 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1250 if (pp->pr_curpage == NULL) {
1251 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1252 }
1253 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1254 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1255 }
1256
1257 void
1258 pool_setlowat(struct pool *pp, int n)
1259 {
1260
1261 mutex_enter(&pp->pr_lock);
1262
1263 pp->pr_minitems = n;
1264 pp->pr_minpages = (n == 0)
1265 ? 0
1266 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1267
1268 /* Make sure we're caught up with the newly-set low water mark. */
1269 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1270 /*
1271 * XXX: Should we log a warning? Should we set up a timeout
1272 * to try again in a second or so? The latter could break
1273 * a caller's assumptions about interrupt protection, etc.
1274 */
1275 }
1276
1277 mutex_exit(&pp->pr_lock);
1278 }
1279
1280 void
1281 pool_sethiwat(struct pool *pp, int n)
1282 {
1283
1284 mutex_enter(&pp->pr_lock);
1285
1286 pp->pr_maxpages = (n == 0)
1287 ? 0
1288 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1289
1290 mutex_exit(&pp->pr_lock);
1291 }
1292
1293 void
1294 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1295 {
1296
1297 mutex_enter(&pp->pr_lock);
1298
1299 pp->pr_hardlimit = n;
1300 pp->pr_hardlimit_warning = warnmess;
1301 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1302 pp->pr_hardlimit_warning_last.tv_sec = 0;
1303 pp->pr_hardlimit_warning_last.tv_usec = 0;
1304
1305 /*
1306 * In-line version of pool_sethiwat(), because we don't want to
1307 * release the lock.
1308 */
1309 pp->pr_maxpages = (n == 0)
1310 ? 0
1311 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1312
1313 mutex_exit(&pp->pr_lock);
1314 }
1315
1316 /*
1317 * Release all complete pages that have not been used recently.
1318 *
1319 * Must not be called from interrupt context.
1320 */
1321 int
1322 pool_reclaim(struct pool *pp)
1323 {
1324 struct pool_item_header *ph, *phnext;
1325 struct pool_pagelist pq;
1326 uint32_t curtime;
1327 bool klock;
1328 int rv;
1329
1330 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1331
1332 if (pp->pr_drain_hook != NULL) {
1333 /*
1334 * The drain hook must be called with the pool unlocked.
1335 */
1336 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1337 }
1338
1339 /*
1340 * XXXSMP Because we do not want to cause non-MPSAFE code
1341 * to block.
1342 */
1343 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1344 pp->pr_ipl == IPL_SOFTSERIAL) {
1345 KERNEL_LOCK(1, NULL);
1346 klock = true;
1347 } else
1348 klock = false;
1349
1350 /* Reclaim items from the pool's cache (if any). */
1351 if (pp->pr_cache != NULL)
1352 pool_cache_invalidate(pp->pr_cache);
1353
1354 if (mutex_tryenter(&pp->pr_lock) == 0) {
1355 if (klock) {
1356 KERNEL_UNLOCK_ONE(NULL);
1357 }
1358 return (0);
1359 }
1360
1361 LIST_INIT(&pq);
1362
1363 curtime = time_uptime;
1364
1365 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1366 phnext = LIST_NEXT(ph, ph_pagelist);
1367
1368 /* Check our minimum page claim */
1369 if (pp->pr_npages <= pp->pr_minpages)
1370 break;
1371
1372 KASSERT(ph->ph_nmissing == 0);
1373 if (curtime - ph->ph_time < pool_inactive_time)
1374 continue;
1375
1376 /*
1377 * If freeing this page would put us below
1378 * the low water mark, stop now.
1379 */
1380 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1381 pp->pr_minitems)
1382 break;
1383
1384 pr_rmpage(pp, ph, &pq);
1385 }
1386
1387 mutex_exit(&pp->pr_lock);
1388
1389 if (LIST_EMPTY(&pq))
1390 rv = 0;
1391 else {
1392 pr_pagelist_free(pp, &pq);
1393 rv = 1;
1394 }
1395
1396 if (klock) {
1397 KERNEL_UNLOCK_ONE(NULL);
1398 }
1399
1400 return (rv);
1401 }
1402
1403 /*
1404 * Drain pools, one at a time. The drained pool is returned within ppp.
1405 *
1406 * Note, must never be called from interrupt context.
1407 */
1408 bool
1409 pool_drain(struct pool **ppp)
1410 {
1411 bool reclaimed;
1412 struct pool *pp;
1413
1414 KASSERT(!TAILQ_EMPTY(&pool_head));
1415
1416 pp = NULL;
1417
1418 /* Find next pool to drain, and add a reference. */
1419 mutex_enter(&pool_head_lock);
1420 do {
1421 if (drainpp == NULL) {
1422 drainpp = TAILQ_FIRST(&pool_head);
1423 }
1424 if (drainpp != NULL) {
1425 pp = drainpp;
1426 drainpp = TAILQ_NEXT(pp, pr_poollist);
1427 }
1428 /*
1429 * Skip completely idle pools. We depend on at least
1430 * one pool in the system being active.
1431 */
1432 } while (pp == NULL || pp->pr_npages == 0);
1433 pp->pr_refcnt++;
1434 mutex_exit(&pool_head_lock);
1435
1436 /* Drain the cache (if any) and pool.. */
1437 reclaimed = pool_reclaim(pp);
1438
1439 /* Finally, unlock the pool. */
1440 mutex_enter(&pool_head_lock);
1441 pp->pr_refcnt--;
1442 cv_broadcast(&pool_busy);
1443 mutex_exit(&pool_head_lock);
1444
1445 if (ppp != NULL)
1446 *ppp = pp;
1447
1448 return reclaimed;
1449 }
1450
1451 /*
1452 * Diagnostic helpers.
1453 */
1454
1455 void
1456 pool_printall(const char *modif, void (*pr)(const char *, ...))
1457 {
1458 struct pool *pp;
1459
1460 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1461 pool_printit(pp, modif, pr);
1462 }
1463 }
1464
1465 void
1466 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1467 {
1468
1469 if (pp == NULL) {
1470 (*pr)("Must specify a pool to print.\n");
1471 return;
1472 }
1473
1474 pool_print1(pp, modif, pr);
1475 }
1476
1477 static void
1478 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1479 void (*pr)(const char *, ...))
1480 {
1481 struct pool_item_header *ph;
1482 struct pool_item *pi __diagused;
1483
1484 LIST_FOREACH(ph, pl, ph_pagelist) {
1485 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1486 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1487 #ifdef DIAGNOSTIC
1488 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1489 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1490 if (pi->pi_magic != PI_MAGIC) {
1491 (*pr)("\t\t\titem %p, magic 0x%x\n",
1492 pi, pi->pi_magic);
1493 }
1494 }
1495 }
1496 #endif
1497 }
1498 }
1499
1500 static void
1501 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1502 {
1503 struct pool_item_header *ph;
1504 pool_cache_t pc;
1505 pcg_t *pcg;
1506 pool_cache_cpu_t *cc;
1507 uint64_t cpuhit, cpumiss;
1508 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1509 char c;
1510
1511 while ((c = *modif++) != '\0') {
1512 if (c == 'l')
1513 print_log = 1;
1514 if (c == 'p')
1515 print_pagelist = 1;
1516 if (c == 'c')
1517 print_cache = 1;
1518 }
1519
1520 if ((pc = pp->pr_cache) != NULL) {
1521 (*pr)("POOL CACHE");
1522 } else {
1523 (*pr)("POOL");
1524 }
1525
1526 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1527 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1528 pp->pr_roflags);
1529 (*pr)("\talloc %p\n", pp->pr_alloc);
1530 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1531 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1532 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1533 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1534
1535 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1536 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1537 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1538 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1539
1540 if (print_pagelist == 0)
1541 goto skip_pagelist;
1542
1543 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1544 (*pr)("\n\tempty page list:\n");
1545 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1546 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1547 (*pr)("\n\tfull page list:\n");
1548 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1549 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1550 (*pr)("\n\tpartial-page list:\n");
1551 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1552
1553 if (pp->pr_curpage == NULL)
1554 (*pr)("\tno current page\n");
1555 else
1556 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1557
1558 skip_pagelist:
1559 if (print_log == 0)
1560 goto skip_log;
1561
1562 (*pr)("\n");
1563
1564 skip_log:
1565
1566 #define PR_GROUPLIST(pcg) \
1567 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1568 for (i = 0; i < pcg->pcg_size; i++) { \
1569 if (pcg->pcg_objects[i].pcgo_pa != \
1570 POOL_PADDR_INVALID) { \
1571 (*pr)("\t\t\t%p, 0x%llx\n", \
1572 pcg->pcg_objects[i].pcgo_va, \
1573 (unsigned long long) \
1574 pcg->pcg_objects[i].pcgo_pa); \
1575 } else { \
1576 (*pr)("\t\t\t%p\n", \
1577 pcg->pcg_objects[i].pcgo_va); \
1578 } \
1579 }
1580
1581 if (pc != NULL) {
1582 cpuhit = 0;
1583 cpumiss = 0;
1584 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1585 if ((cc = pc->pc_cpus[i]) == NULL)
1586 continue;
1587 cpuhit += cc->cc_hits;
1588 cpumiss += cc->cc_misses;
1589 }
1590 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1591 (*pr)("\tcache layer hits %llu misses %llu\n",
1592 pc->pc_hits, pc->pc_misses);
1593 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1594 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1595 pc->pc_contended);
1596 (*pr)("\tcache layer empty groups %u full groups %u\n",
1597 pc->pc_nempty, pc->pc_nfull);
1598 if (print_cache) {
1599 (*pr)("\tfull cache groups:\n");
1600 for (pcg = pc->pc_fullgroups; pcg != NULL;
1601 pcg = pcg->pcg_next) {
1602 PR_GROUPLIST(pcg);
1603 }
1604 (*pr)("\tempty cache groups:\n");
1605 for (pcg = pc->pc_emptygroups; pcg != NULL;
1606 pcg = pcg->pcg_next) {
1607 PR_GROUPLIST(pcg);
1608 }
1609 }
1610 }
1611 #undef PR_GROUPLIST
1612 }
1613
1614 static int
1615 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1616 {
1617 struct pool_item *pi;
1618 void *page;
1619 int n;
1620
1621 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1622 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1623 if (page != ph->ph_page &&
1624 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1625 if (label != NULL)
1626 printf("%s: ", label);
1627 printf("pool(%p:%s): page inconsistency: page %p;"
1628 " at page head addr %p (p %p)\n", pp,
1629 pp->pr_wchan, ph->ph_page,
1630 ph, page);
1631 return 1;
1632 }
1633 }
1634
1635 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1636 return 0;
1637
1638 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1639 pi != NULL;
1640 pi = LIST_NEXT(pi,pi_list), n++) {
1641
1642 #ifdef DIAGNOSTIC
1643 if (pi->pi_magic != PI_MAGIC) {
1644 if (label != NULL)
1645 printf("%s: ", label);
1646 printf("pool(%s): free list modified: magic=%x;"
1647 " page %p; item ordinal %d; addr %p\n",
1648 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1649 n, pi);
1650 panic("pool");
1651 }
1652 #endif
1653 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1654 continue;
1655 }
1656 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1657 if (page == ph->ph_page)
1658 continue;
1659
1660 if (label != NULL)
1661 printf("%s: ", label);
1662 printf("pool(%p:%s): page inconsistency: page %p;"
1663 " item ordinal %d; addr %p (p %p)\n", pp,
1664 pp->pr_wchan, ph->ph_page,
1665 n, pi, page);
1666 return 1;
1667 }
1668 return 0;
1669 }
1670
1671
1672 int
1673 pool_chk(struct pool *pp, const char *label)
1674 {
1675 struct pool_item_header *ph;
1676 int r = 0;
1677
1678 mutex_enter(&pp->pr_lock);
1679 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1680 r = pool_chk_page(pp, label, ph);
1681 if (r) {
1682 goto out;
1683 }
1684 }
1685 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1686 r = pool_chk_page(pp, label, ph);
1687 if (r) {
1688 goto out;
1689 }
1690 }
1691 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1692 r = pool_chk_page(pp, label, ph);
1693 if (r) {
1694 goto out;
1695 }
1696 }
1697
1698 out:
1699 mutex_exit(&pp->pr_lock);
1700 return (r);
1701 }
1702
1703 /*
1704 * pool_cache_init:
1705 *
1706 * Initialize a pool cache.
1707 */
1708 pool_cache_t
1709 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1710 const char *wchan, struct pool_allocator *palloc, int ipl,
1711 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1712 {
1713 pool_cache_t pc;
1714
1715 pc = pool_get(&cache_pool, PR_WAITOK);
1716 if (pc == NULL)
1717 return NULL;
1718
1719 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1720 palloc, ipl, ctor, dtor, arg);
1721
1722 return pc;
1723 }
1724
1725 /*
1726 * pool_cache_bootstrap:
1727 *
1728 * Kernel-private version of pool_cache_init(). The caller
1729 * provides initial storage.
1730 */
1731 void
1732 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1733 u_int align_offset, u_int flags, const char *wchan,
1734 struct pool_allocator *palloc, int ipl,
1735 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1736 void *arg)
1737 {
1738 CPU_INFO_ITERATOR cii;
1739 pool_cache_t pc1;
1740 struct cpu_info *ci;
1741 struct pool *pp;
1742
1743 pp = &pc->pc_pool;
1744 if (palloc == NULL && ipl == IPL_NONE) {
1745 if (size > PAGE_SIZE) {
1746 int bigidx = pool_bigidx(size);
1747
1748 palloc = &pool_allocator_big[bigidx];
1749 } else
1750 palloc = &pool_allocator_nointr;
1751 }
1752 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1753 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1754
1755 if (ctor == NULL) {
1756 ctor = (int (*)(void *, void *, int))nullop;
1757 }
1758 if (dtor == NULL) {
1759 dtor = (void (*)(void *, void *))nullop;
1760 }
1761
1762 pc->pc_emptygroups = NULL;
1763 pc->pc_fullgroups = NULL;
1764 pc->pc_partgroups = NULL;
1765 pc->pc_ctor = ctor;
1766 pc->pc_dtor = dtor;
1767 pc->pc_arg = arg;
1768 pc->pc_hits = 0;
1769 pc->pc_misses = 0;
1770 pc->pc_nempty = 0;
1771 pc->pc_npart = 0;
1772 pc->pc_nfull = 0;
1773 pc->pc_contended = 0;
1774 pc->pc_refcnt = 0;
1775 pc->pc_freecheck = NULL;
1776
1777 if ((flags & PR_LARGECACHE) != 0) {
1778 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1779 pc->pc_pcgpool = &pcg_large_pool;
1780 } else {
1781 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1782 pc->pc_pcgpool = &pcg_normal_pool;
1783 }
1784
1785 /* Allocate per-CPU caches. */
1786 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1787 pc->pc_ncpu = 0;
1788 if (ncpu < 2) {
1789 /* XXX For sparc: boot CPU is not attached yet. */
1790 pool_cache_cpu_init1(curcpu(), pc);
1791 } else {
1792 for (CPU_INFO_FOREACH(cii, ci)) {
1793 pool_cache_cpu_init1(ci, pc);
1794 }
1795 }
1796
1797 /* Add to list of all pools. */
1798 if (__predict_true(!cold))
1799 mutex_enter(&pool_head_lock);
1800 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1801 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1802 break;
1803 }
1804 if (pc1 == NULL)
1805 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1806 else
1807 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1808 if (__predict_true(!cold))
1809 mutex_exit(&pool_head_lock);
1810
1811 membar_sync();
1812 pp->pr_cache = pc;
1813 }
1814
1815 /*
1816 * pool_cache_destroy:
1817 *
1818 * Destroy a pool cache.
1819 */
1820 void
1821 pool_cache_destroy(pool_cache_t pc)
1822 {
1823
1824 pool_cache_bootstrap_destroy(pc);
1825 pool_put(&cache_pool, pc);
1826 }
1827
1828 /*
1829 * pool_cache_bootstrap_destroy:
1830 *
1831 * Destroy a pool cache.
1832 */
1833 void
1834 pool_cache_bootstrap_destroy(pool_cache_t pc)
1835 {
1836 struct pool *pp = &pc->pc_pool;
1837 u_int i;
1838
1839 /* Remove it from the global list. */
1840 mutex_enter(&pool_head_lock);
1841 while (pc->pc_refcnt != 0)
1842 cv_wait(&pool_busy, &pool_head_lock);
1843 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1844 mutex_exit(&pool_head_lock);
1845
1846 /* First, invalidate the entire cache. */
1847 pool_cache_invalidate(pc);
1848
1849 /* Disassociate it from the pool. */
1850 mutex_enter(&pp->pr_lock);
1851 pp->pr_cache = NULL;
1852 mutex_exit(&pp->pr_lock);
1853
1854 /* Destroy per-CPU data */
1855 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1856 pool_cache_invalidate_cpu(pc, i);
1857
1858 /* Finally, destroy it. */
1859 mutex_destroy(&pc->pc_lock);
1860 pool_destroy(pp);
1861 }
1862
1863 /*
1864 * pool_cache_cpu_init1:
1865 *
1866 * Called for each pool_cache whenever a new CPU is attached.
1867 */
1868 static void
1869 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1870 {
1871 pool_cache_cpu_t *cc;
1872 int index;
1873
1874 index = ci->ci_index;
1875
1876 KASSERT(index < __arraycount(pc->pc_cpus));
1877
1878 if ((cc = pc->pc_cpus[index]) != NULL) {
1879 KASSERT(cc->cc_cpuindex == index);
1880 return;
1881 }
1882
1883 /*
1884 * The first CPU is 'free'. This needs to be the case for
1885 * bootstrap - we may not be able to allocate yet.
1886 */
1887 if (pc->pc_ncpu == 0) {
1888 cc = &pc->pc_cpu0;
1889 pc->pc_ncpu = 1;
1890 } else {
1891 mutex_enter(&pc->pc_lock);
1892 pc->pc_ncpu++;
1893 mutex_exit(&pc->pc_lock);
1894 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1895 }
1896
1897 cc->cc_ipl = pc->pc_pool.pr_ipl;
1898 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1899 cc->cc_cache = pc;
1900 cc->cc_cpuindex = index;
1901 cc->cc_hits = 0;
1902 cc->cc_misses = 0;
1903 cc->cc_current = __UNCONST(&pcg_dummy);
1904 cc->cc_previous = __UNCONST(&pcg_dummy);
1905
1906 pc->pc_cpus[index] = cc;
1907 }
1908
1909 /*
1910 * pool_cache_cpu_init:
1911 *
1912 * Called whenever a new CPU is attached.
1913 */
1914 void
1915 pool_cache_cpu_init(struct cpu_info *ci)
1916 {
1917 pool_cache_t pc;
1918
1919 mutex_enter(&pool_head_lock);
1920 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1921 pc->pc_refcnt++;
1922 mutex_exit(&pool_head_lock);
1923
1924 pool_cache_cpu_init1(ci, pc);
1925
1926 mutex_enter(&pool_head_lock);
1927 pc->pc_refcnt--;
1928 cv_broadcast(&pool_busy);
1929 }
1930 mutex_exit(&pool_head_lock);
1931 }
1932
1933 /*
1934 * pool_cache_reclaim:
1935 *
1936 * Reclaim memory from a pool cache.
1937 */
1938 bool
1939 pool_cache_reclaim(pool_cache_t pc)
1940 {
1941
1942 return pool_reclaim(&pc->pc_pool);
1943 }
1944
1945 static void
1946 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1947 {
1948
1949 (*pc->pc_dtor)(pc->pc_arg, object);
1950 pool_put(&pc->pc_pool, object);
1951 }
1952
1953 /*
1954 * pool_cache_destruct_object:
1955 *
1956 * Force destruction of an object and its release back into
1957 * the pool.
1958 */
1959 void
1960 pool_cache_destruct_object(pool_cache_t pc, void *object)
1961 {
1962
1963 FREECHECK_IN(&pc->pc_freecheck, object);
1964
1965 pool_cache_destruct_object1(pc, object);
1966 }
1967
1968 /*
1969 * pool_cache_invalidate_groups:
1970 *
1971 * Invalidate a chain of groups and destruct all objects.
1972 */
1973 static void
1974 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
1975 {
1976 void *object;
1977 pcg_t *next;
1978 int i;
1979
1980 for (; pcg != NULL; pcg = next) {
1981 next = pcg->pcg_next;
1982
1983 for (i = 0; i < pcg->pcg_avail; i++) {
1984 object = pcg->pcg_objects[i].pcgo_va;
1985 pool_cache_destruct_object1(pc, object);
1986 }
1987
1988 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
1989 pool_put(&pcg_large_pool, pcg);
1990 } else {
1991 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
1992 pool_put(&pcg_normal_pool, pcg);
1993 }
1994 }
1995 }
1996
1997 /*
1998 * pool_cache_invalidate:
1999 *
2000 * Invalidate a pool cache (destruct and release all of the
2001 * cached objects). Does not reclaim objects from the pool.
2002 *
2003 * Note: For pool caches that provide constructed objects, there
2004 * is an assumption that another level of synchronization is occurring
2005 * between the input to the constructor and the cache invalidation.
2006 *
2007 * Invalidation is a costly process and should not be called from
2008 * interrupt context.
2009 */
2010 void
2011 pool_cache_invalidate(pool_cache_t pc)
2012 {
2013 uint64_t where;
2014 pcg_t *full, *empty, *part;
2015
2016 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2017
2018 if (ncpu < 2 || !mp_online) {
2019 /*
2020 * We might be called early enough in the boot process
2021 * for the CPU data structures to not be fully initialized.
2022 * In this case, transfer the content of the local CPU's
2023 * cache back into global cache as only this CPU is currently
2024 * running.
2025 */
2026 pool_cache_transfer(pc);
2027 } else {
2028 /*
2029 * Signal all CPUs that they must transfer their local
2030 * cache back to the global pool then wait for the xcall to
2031 * complete.
2032 */
2033 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2034 pc, NULL);
2035 xc_wait(where);
2036 }
2037
2038 /* Empty pool caches, then invalidate objects */
2039 mutex_enter(&pc->pc_lock);
2040 full = pc->pc_fullgroups;
2041 empty = pc->pc_emptygroups;
2042 part = pc->pc_partgroups;
2043 pc->pc_fullgroups = NULL;
2044 pc->pc_emptygroups = NULL;
2045 pc->pc_partgroups = NULL;
2046 pc->pc_nfull = 0;
2047 pc->pc_nempty = 0;
2048 pc->pc_npart = 0;
2049 mutex_exit(&pc->pc_lock);
2050
2051 pool_cache_invalidate_groups(pc, full);
2052 pool_cache_invalidate_groups(pc, empty);
2053 pool_cache_invalidate_groups(pc, part);
2054 }
2055
2056 /*
2057 * pool_cache_invalidate_cpu:
2058 *
2059 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2060 * identified by its associated index.
2061 * It is caller's responsibility to ensure that no operation is
2062 * taking place on this pool cache while doing this invalidation.
2063 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2064 * pool cached objects from a CPU different from the one currently running
2065 * may result in an undefined behaviour.
2066 */
2067 static void
2068 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2069 {
2070 pool_cache_cpu_t *cc;
2071 pcg_t *pcg;
2072
2073 if ((cc = pc->pc_cpus[index]) == NULL)
2074 return;
2075
2076 if ((pcg = cc->cc_current) != &pcg_dummy) {
2077 pcg->pcg_next = NULL;
2078 pool_cache_invalidate_groups(pc, pcg);
2079 }
2080 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2081 pcg->pcg_next = NULL;
2082 pool_cache_invalidate_groups(pc, pcg);
2083 }
2084 if (cc != &pc->pc_cpu0)
2085 pool_put(&cache_cpu_pool, cc);
2086
2087 }
2088
2089 void
2090 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2091 {
2092
2093 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2094 }
2095
2096 void
2097 pool_cache_setlowat(pool_cache_t pc, int n)
2098 {
2099
2100 pool_setlowat(&pc->pc_pool, n);
2101 }
2102
2103 void
2104 pool_cache_sethiwat(pool_cache_t pc, int n)
2105 {
2106
2107 pool_sethiwat(&pc->pc_pool, n);
2108 }
2109
2110 void
2111 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2112 {
2113
2114 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2115 }
2116
2117 static bool __noinline
2118 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2119 paddr_t *pap, int flags)
2120 {
2121 pcg_t *pcg, *cur;
2122 uint64_t ncsw;
2123 pool_cache_t pc;
2124 void *object;
2125
2126 KASSERT(cc->cc_current->pcg_avail == 0);
2127 KASSERT(cc->cc_previous->pcg_avail == 0);
2128
2129 pc = cc->cc_cache;
2130 cc->cc_misses++;
2131
2132 /*
2133 * Nothing was available locally. Try and grab a group
2134 * from the cache.
2135 */
2136 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2137 ncsw = curlwp->l_ncsw;
2138 mutex_enter(&pc->pc_lock);
2139 pc->pc_contended++;
2140
2141 /*
2142 * If we context switched while locking, then
2143 * our view of the per-CPU data is invalid:
2144 * retry.
2145 */
2146 if (curlwp->l_ncsw != ncsw) {
2147 mutex_exit(&pc->pc_lock);
2148 return true;
2149 }
2150 }
2151
2152 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2153 /*
2154 * If there's a full group, release our empty
2155 * group back to the cache. Install the full
2156 * group as cc_current and return.
2157 */
2158 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2159 KASSERT(cur->pcg_avail == 0);
2160 cur->pcg_next = pc->pc_emptygroups;
2161 pc->pc_emptygroups = cur;
2162 pc->pc_nempty++;
2163 }
2164 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2165 cc->cc_current = pcg;
2166 pc->pc_fullgroups = pcg->pcg_next;
2167 pc->pc_hits++;
2168 pc->pc_nfull--;
2169 mutex_exit(&pc->pc_lock);
2170 return true;
2171 }
2172
2173 /*
2174 * Nothing available locally or in cache. Take the slow
2175 * path: fetch a new object from the pool and construct
2176 * it.
2177 */
2178 pc->pc_misses++;
2179 mutex_exit(&pc->pc_lock);
2180 splx(s);
2181
2182 object = pool_get(&pc->pc_pool, flags);
2183 *objectp = object;
2184 if (__predict_false(object == NULL))
2185 return false;
2186
2187 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2188 pool_put(&pc->pc_pool, object);
2189 *objectp = NULL;
2190 return false;
2191 }
2192
2193 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2194 (pc->pc_pool.pr_align - 1)) == 0);
2195
2196 if (pap != NULL) {
2197 #ifdef POOL_VTOPHYS
2198 *pap = POOL_VTOPHYS(object);
2199 #else
2200 *pap = POOL_PADDR_INVALID;
2201 #endif
2202 }
2203
2204 FREECHECK_OUT(&pc->pc_freecheck, object);
2205 pool_redzone_fill(&pc->pc_pool, object);
2206 return false;
2207 }
2208
2209 /*
2210 * pool_cache_get{,_paddr}:
2211 *
2212 * Get an object from a pool cache (optionally returning
2213 * the physical address of the object).
2214 */
2215 void *
2216 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2217 {
2218 pool_cache_cpu_t *cc;
2219 pcg_t *pcg;
2220 void *object;
2221 int s;
2222
2223 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2224 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2225 "pool '%s' is IPL_NONE, but called from interrupt context\n",
2226 pc->pc_pool.pr_wchan);
2227
2228 if (flags & PR_WAITOK) {
2229 ASSERT_SLEEPABLE();
2230 }
2231
2232 /* Lock out interrupts and disable preemption. */
2233 s = splvm();
2234 while (/* CONSTCOND */ true) {
2235 /* Try and allocate an object from the current group. */
2236 cc = pc->pc_cpus[curcpu()->ci_index];
2237 KASSERT(cc->cc_cache == pc);
2238 pcg = cc->cc_current;
2239 if (__predict_true(pcg->pcg_avail > 0)) {
2240 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2241 if (__predict_false(pap != NULL))
2242 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2243 #if defined(DIAGNOSTIC)
2244 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2245 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2246 KASSERT(object != NULL);
2247 #endif
2248 cc->cc_hits++;
2249 splx(s);
2250 FREECHECK_OUT(&pc->pc_freecheck, object);
2251 pool_redzone_fill(&pc->pc_pool, object);
2252 return object;
2253 }
2254
2255 /*
2256 * That failed. If the previous group isn't empty, swap
2257 * it with the current group and allocate from there.
2258 */
2259 pcg = cc->cc_previous;
2260 if (__predict_true(pcg->pcg_avail > 0)) {
2261 cc->cc_previous = cc->cc_current;
2262 cc->cc_current = pcg;
2263 continue;
2264 }
2265
2266 /*
2267 * Can't allocate from either group: try the slow path.
2268 * If get_slow() allocated an object for us, or if
2269 * no more objects are available, it will return false.
2270 * Otherwise, we need to retry.
2271 */
2272 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2273 break;
2274 }
2275
2276 return object;
2277 }
2278
2279 static bool __noinline
2280 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2281 {
2282 struct lwp *l = curlwp;
2283 pcg_t *pcg, *cur;
2284 uint64_t ncsw;
2285 pool_cache_t pc;
2286
2287 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2288 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2289
2290 pc = cc->cc_cache;
2291 pcg = NULL;
2292 cc->cc_misses++;
2293 ncsw = l->l_ncsw;
2294
2295 /*
2296 * If there are no empty groups in the cache then allocate one
2297 * while still unlocked.
2298 */
2299 if (__predict_false(pc->pc_emptygroups == NULL)) {
2300 if (__predict_true(!pool_cache_disable)) {
2301 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2302 }
2303 /*
2304 * If pool_get() blocked, then our view of
2305 * the per-CPU data is invalid: retry.
2306 */
2307 if (__predict_false(l->l_ncsw != ncsw)) {
2308 if (pcg != NULL) {
2309 pool_put(pc->pc_pcgpool, pcg);
2310 }
2311 return true;
2312 }
2313 if (__predict_true(pcg != NULL)) {
2314 pcg->pcg_avail = 0;
2315 pcg->pcg_size = pc->pc_pcgsize;
2316 }
2317 }
2318
2319 /* Lock the cache. */
2320 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2321 mutex_enter(&pc->pc_lock);
2322 pc->pc_contended++;
2323
2324 /*
2325 * If we context switched while locking, then our view of
2326 * the per-CPU data is invalid: retry.
2327 */
2328 if (__predict_false(l->l_ncsw != ncsw)) {
2329 mutex_exit(&pc->pc_lock);
2330 if (pcg != NULL) {
2331 pool_put(pc->pc_pcgpool, pcg);
2332 }
2333 return true;
2334 }
2335 }
2336
2337 /* If there are no empty groups in the cache then allocate one. */
2338 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2339 pcg = pc->pc_emptygroups;
2340 pc->pc_emptygroups = pcg->pcg_next;
2341 pc->pc_nempty--;
2342 }
2343
2344 /*
2345 * If there's a empty group, release our full group back
2346 * to the cache. Install the empty group to the local CPU
2347 * and return.
2348 */
2349 if (pcg != NULL) {
2350 KASSERT(pcg->pcg_avail == 0);
2351 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2352 cc->cc_previous = pcg;
2353 } else {
2354 cur = cc->cc_current;
2355 if (__predict_true(cur != &pcg_dummy)) {
2356 KASSERT(cur->pcg_avail == cur->pcg_size);
2357 cur->pcg_next = pc->pc_fullgroups;
2358 pc->pc_fullgroups = cur;
2359 pc->pc_nfull++;
2360 }
2361 cc->cc_current = pcg;
2362 }
2363 pc->pc_hits++;
2364 mutex_exit(&pc->pc_lock);
2365 return true;
2366 }
2367
2368 /*
2369 * Nothing available locally or in cache, and we didn't
2370 * allocate an empty group. Take the slow path and destroy
2371 * the object here and now.
2372 */
2373 pc->pc_misses++;
2374 mutex_exit(&pc->pc_lock);
2375 splx(s);
2376 pool_cache_destruct_object(pc, object);
2377
2378 return false;
2379 }
2380
2381 /*
2382 * pool_cache_put{,_paddr}:
2383 *
2384 * Put an object back to the pool cache (optionally caching the
2385 * physical address of the object).
2386 */
2387 void
2388 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2389 {
2390 pool_cache_cpu_t *cc;
2391 pcg_t *pcg;
2392 int s;
2393
2394 KASSERT(object != NULL);
2395 pool_redzone_check(&pc->pc_pool, object);
2396 FREECHECK_IN(&pc->pc_freecheck, object);
2397
2398 /* Lock out interrupts and disable preemption. */
2399 s = splvm();
2400 while (/* CONSTCOND */ true) {
2401 /* If the current group isn't full, release it there. */
2402 cc = pc->pc_cpus[curcpu()->ci_index];
2403 KASSERT(cc->cc_cache == pc);
2404 pcg = cc->cc_current;
2405 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2406 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2407 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2408 pcg->pcg_avail++;
2409 cc->cc_hits++;
2410 splx(s);
2411 return;
2412 }
2413
2414 /*
2415 * That failed. If the previous group isn't full, swap
2416 * it with the current group and try again.
2417 */
2418 pcg = cc->cc_previous;
2419 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2420 cc->cc_previous = cc->cc_current;
2421 cc->cc_current = pcg;
2422 continue;
2423 }
2424
2425 /*
2426 * Can't free to either group: try the slow path.
2427 * If put_slow() releases the object for us, it
2428 * will return false. Otherwise we need to retry.
2429 */
2430 if (!pool_cache_put_slow(cc, s, object))
2431 break;
2432 }
2433 }
2434
2435 /*
2436 * pool_cache_transfer:
2437 *
2438 * Transfer objects from the per-CPU cache to the global cache.
2439 * Run within a cross-call thread.
2440 */
2441 static void
2442 pool_cache_transfer(pool_cache_t pc)
2443 {
2444 pool_cache_cpu_t *cc;
2445 pcg_t *prev, *cur, **list;
2446 int s;
2447
2448 s = splvm();
2449 mutex_enter(&pc->pc_lock);
2450 cc = pc->pc_cpus[curcpu()->ci_index];
2451 cur = cc->cc_current;
2452 cc->cc_current = __UNCONST(&pcg_dummy);
2453 prev = cc->cc_previous;
2454 cc->cc_previous = __UNCONST(&pcg_dummy);
2455 if (cur != &pcg_dummy) {
2456 if (cur->pcg_avail == cur->pcg_size) {
2457 list = &pc->pc_fullgroups;
2458 pc->pc_nfull++;
2459 } else if (cur->pcg_avail == 0) {
2460 list = &pc->pc_emptygroups;
2461 pc->pc_nempty++;
2462 } else {
2463 list = &pc->pc_partgroups;
2464 pc->pc_npart++;
2465 }
2466 cur->pcg_next = *list;
2467 *list = cur;
2468 }
2469 if (prev != &pcg_dummy) {
2470 if (prev->pcg_avail == prev->pcg_size) {
2471 list = &pc->pc_fullgroups;
2472 pc->pc_nfull++;
2473 } else if (prev->pcg_avail == 0) {
2474 list = &pc->pc_emptygroups;
2475 pc->pc_nempty++;
2476 } else {
2477 list = &pc->pc_partgroups;
2478 pc->pc_npart++;
2479 }
2480 prev->pcg_next = *list;
2481 *list = prev;
2482 }
2483 mutex_exit(&pc->pc_lock);
2484 splx(s);
2485 }
2486
2487 /*
2488 * Pool backend allocators.
2489 *
2490 * Each pool has a backend allocator that handles allocation, deallocation,
2491 * and any additional draining that might be needed.
2492 *
2493 * We provide two standard allocators:
2494 *
2495 * pool_allocator_kmem - the default when no allocator is specified
2496 *
2497 * pool_allocator_nointr - used for pools that will not be accessed
2498 * in interrupt context.
2499 */
2500 void *pool_page_alloc(struct pool *, int);
2501 void pool_page_free(struct pool *, void *);
2502
2503 #ifdef POOL_SUBPAGE
2504 struct pool_allocator pool_allocator_kmem_fullpage = {
2505 .pa_alloc = pool_page_alloc,
2506 .pa_free = pool_page_free,
2507 .pa_pagesz = 0
2508 };
2509 #else
2510 struct pool_allocator pool_allocator_kmem = {
2511 .pa_alloc = pool_page_alloc,
2512 .pa_free = pool_page_free,
2513 .pa_pagesz = 0
2514 };
2515 #endif
2516
2517 #ifdef POOL_SUBPAGE
2518 struct pool_allocator pool_allocator_nointr_fullpage = {
2519 .pa_alloc = pool_page_alloc,
2520 .pa_free = pool_page_free,
2521 .pa_pagesz = 0
2522 };
2523 #else
2524 struct pool_allocator pool_allocator_nointr = {
2525 .pa_alloc = pool_page_alloc,
2526 .pa_free = pool_page_free,
2527 .pa_pagesz = 0
2528 };
2529 #endif
2530
2531 #ifdef POOL_SUBPAGE
2532 void *pool_subpage_alloc(struct pool *, int);
2533 void pool_subpage_free(struct pool *, void *);
2534
2535 struct pool_allocator pool_allocator_kmem = {
2536 .pa_alloc = pool_subpage_alloc,
2537 .pa_free = pool_subpage_free,
2538 .pa_pagesz = POOL_SUBPAGE
2539 };
2540
2541 struct pool_allocator pool_allocator_nointr = {
2542 .pa_alloc = pool_subpage_alloc,
2543 .pa_free = pool_subpage_free,
2544 .pa_pagesz = POOL_SUBPAGE
2545 };
2546 #endif /* POOL_SUBPAGE */
2547
2548 struct pool_allocator pool_allocator_big[] = {
2549 {
2550 .pa_alloc = pool_page_alloc,
2551 .pa_free = pool_page_free,
2552 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2553 },
2554 {
2555 .pa_alloc = pool_page_alloc,
2556 .pa_free = pool_page_free,
2557 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2558 },
2559 {
2560 .pa_alloc = pool_page_alloc,
2561 .pa_free = pool_page_free,
2562 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2563 },
2564 {
2565 .pa_alloc = pool_page_alloc,
2566 .pa_free = pool_page_free,
2567 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2568 },
2569 {
2570 .pa_alloc = pool_page_alloc,
2571 .pa_free = pool_page_free,
2572 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2573 },
2574 {
2575 .pa_alloc = pool_page_alloc,
2576 .pa_free = pool_page_free,
2577 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2578 },
2579 {
2580 .pa_alloc = pool_page_alloc,
2581 .pa_free = pool_page_free,
2582 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2583 },
2584 {
2585 .pa_alloc = pool_page_alloc,
2586 .pa_free = pool_page_free,
2587 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2588 }
2589 };
2590
2591 static int
2592 pool_bigidx(size_t size)
2593 {
2594 int i;
2595
2596 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2597 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2598 return i;
2599 }
2600 panic("pool item size %zu too large, use a custom allocator", size);
2601 }
2602
2603 static void *
2604 pool_allocator_alloc(struct pool *pp, int flags)
2605 {
2606 struct pool_allocator *pa = pp->pr_alloc;
2607 void *res;
2608
2609 res = (*pa->pa_alloc)(pp, flags);
2610 if (res == NULL && (flags & PR_WAITOK) == 0) {
2611 /*
2612 * We only run the drain hook here if PR_NOWAIT.
2613 * In other cases, the hook will be run in
2614 * pool_reclaim().
2615 */
2616 if (pp->pr_drain_hook != NULL) {
2617 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2618 res = (*pa->pa_alloc)(pp, flags);
2619 }
2620 }
2621 return res;
2622 }
2623
2624 static void
2625 pool_allocator_free(struct pool *pp, void *v)
2626 {
2627 struct pool_allocator *pa = pp->pr_alloc;
2628
2629 (*pa->pa_free)(pp, v);
2630 }
2631
2632 void *
2633 pool_page_alloc(struct pool *pp, int flags)
2634 {
2635 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2636 vmem_addr_t va;
2637 int ret;
2638
2639 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2640 vflags | VM_INSTANTFIT, &va);
2641
2642 return ret ? NULL : (void *)va;
2643 }
2644
2645 void
2646 pool_page_free(struct pool *pp, void *v)
2647 {
2648
2649 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2650 }
2651
2652 static void *
2653 pool_page_alloc_meta(struct pool *pp, int flags)
2654 {
2655 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2656 vmem_addr_t va;
2657 int ret;
2658
2659 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2660 vflags | VM_INSTANTFIT, &va);
2661
2662 return ret ? NULL : (void *)va;
2663 }
2664
2665 static void
2666 pool_page_free_meta(struct pool *pp, void *v)
2667 {
2668
2669 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2670 }
2671
2672 #ifdef POOL_REDZONE
2673 #if defined(_LP64)
2674 # define PRIME 0x9e37fffffffc0000UL
2675 #else /* defined(_LP64) */
2676 # define PRIME 0x9e3779b1
2677 #endif /* defined(_LP64) */
2678 #define STATIC_BYTE 0xFE
2679 CTASSERT(POOL_REDZONE_SIZE > 1);
2680
2681 static inline uint8_t
2682 pool_pattern_generate(const void *p)
2683 {
2684 return (uint8_t)(((uintptr_t)p) * PRIME
2685 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2686 }
2687
2688 static void
2689 pool_redzone_init(struct pool *pp, size_t requested_size)
2690 {
2691 size_t nsz;
2692
2693 if (pp->pr_roflags & PR_NOTOUCH) {
2694 pp->pr_reqsize = 0;
2695 pp->pr_redzone = false;
2696 return;
2697 }
2698
2699 /*
2700 * We may have extended the requested size earlier; check if
2701 * there's naturally space in the padding for a red zone.
2702 */
2703 if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
2704 pp->pr_reqsize = requested_size;
2705 pp->pr_redzone = true;
2706 return;
2707 }
2708
2709 /*
2710 * No space in the natural padding; check if we can extend a
2711 * bit the size of the pool.
2712 */
2713 nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
2714 if (nsz <= pp->pr_alloc->pa_pagesz) {
2715 /* Ok, we can */
2716 pp->pr_size = nsz;
2717 pp->pr_reqsize = requested_size;
2718 pp->pr_redzone = true;
2719 } else {
2720 /* No space for a red zone... snif :'( */
2721 pp->pr_reqsize = 0;
2722 pp->pr_redzone = false;
2723 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2724 }
2725 }
2726
2727 static void
2728 pool_redzone_fill(struct pool *pp, void *p)
2729 {
2730 uint8_t *cp, pat;
2731 const uint8_t *ep;
2732
2733 if (!pp->pr_redzone)
2734 return;
2735
2736 cp = (uint8_t *)p + pp->pr_reqsize;
2737 ep = cp + POOL_REDZONE_SIZE;
2738
2739 /*
2740 * We really don't want the first byte of the red zone to be '\0';
2741 * an off-by-one in a string may not be properly detected.
2742 */
2743 pat = pool_pattern_generate(cp);
2744 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2745 cp++;
2746
2747 while (cp < ep) {
2748 *cp = pool_pattern_generate(cp);
2749 cp++;
2750 }
2751 }
2752
2753 static void
2754 pool_redzone_check(struct pool *pp, void *p)
2755 {
2756 uint8_t *cp, pat, expected;
2757 const uint8_t *ep;
2758
2759 if (!pp->pr_redzone)
2760 return;
2761
2762 cp = (uint8_t *)p + pp->pr_reqsize;
2763 ep = cp + POOL_REDZONE_SIZE;
2764
2765 pat = pool_pattern_generate(cp);
2766 expected = (pat == '\0') ? STATIC_BYTE: pat;
2767 if (expected != *cp) {
2768 panic("%s: %p: 0x%02x != 0x%02x\n",
2769 __func__, cp, *cp, expected);
2770 }
2771 cp++;
2772
2773 while (cp < ep) {
2774 expected = pool_pattern_generate(cp);
2775 if (*cp != expected) {
2776 panic("%s: %p: 0x%02x != 0x%02x\n",
2777 __func__, cp, *cp, expected);
2778 }
2779 cp++;
2780 }
2781 }
2782
2783 #endif /* POOL_REDZONE */
2784
2785
2786 #ifdef POOL_SUBPAGE
2787 /* Sub-page allocator, for machines with large hardware pages. */
2788 void *
2789 pool_subpage_alloc(struct pool *pp, int flags)
2790 {
2791 return pool_get(&psppool, flags);
2792 }
2793
2794 void
2795 pool_subpage_free(struct pool *pp, void *v)
2796 {
2797 pool_put(&psppool, v);
2798 }
2799
2800 #endif /* POOL_SUBPAGE */
2801
2802 #if defined(DDB)
2803 static bool
2804 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2805 {
2806
2807 return (uintptr_t)ph->ph_page <= addr &&
2808 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2809 }
2810
2811 static bool
2812 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2813 {
2814
2815 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2816 }
2817
2818 static bool
2819 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2820 {
2821 int i;
2822
2823 if (pcg == NULL) {
2824 return false;
2825 }
2826 for (i = 0; i < pcg->pcg_avail; i++) {
2827 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2828 return true;
2829 }
2830 }
2831 return false;
2832 }
2833
2834 static bool
2835 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2836 {
2837
2838 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2839 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2840 pool_item_bitmap_t *bitmap =
2841 ph->ph_bitmap + (idx / BITMAP_SIZE);
2842 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2843
2844 return (*bitmap & mask) == 0;
2845 } else {
2846 struct pool_item *pi;
2847
2848 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2849 if (pool_in_item(pp, pi, addr)) {
2850 return false;
2851 }
2852 }
2853 return true;
2854 }
2855 }
2856
2857 void
2858 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2859 {
2860 struct pool *pp;
2861
2862 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2863 struct pool_item_header *ph;
2864 uintptr_t item;
2865 bool allocated = true;
2866 bool incache = false;
2867 bool incpucache = false;
2868 char cpucachestr[32];
2869
2870 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2871 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2872 if (pool_in_page(pp, ph, addr)) {
2873 goto found;
2874 }
2875 }
2876 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2877 if (pool_in_page(pp, ph, addr)) {
2878 allocated =
2879 pool_allocated(pp, ph, addr);
2880 goto found;
2881 }
2882 }
2883 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2884 if (pool_in_page(pp, ph, addr)) {
2885 allocated = false;
2886 goto found;
2887 }
2888 }
2889 continue;
2890 } else {
2891 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2892 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2893 continue;
2894 }
2895 allocated = pool_allocated(pp, ph, addr);
2896 }
2897 found:
2898 if (allocated && pp->pr_cache) {
2899 pool_cache_t pc = pp->pr_cache;
2900 struct pool_cache_group *pcg;
2901 int i;
2902
2903 for (pcg = pc->pc_fullgroups; pcg != NULL;
2904 pcg = pcg->pcg_next) {
2905 if (pool_in_cg(pp, pcg, addr)) {
2906 incache = true;
2907 goto print;
2908 }
2909 }
2910 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2911 pool_cache_cpu_t *cc;
2912
2913 if ((cc = pc->pc_cpus[i]) == NULL) {
2914 continue;
2915 }
2916 if (pool_in_cg(pp, cc->cc_current, addr) ||
2917 pool_in_cg(pp, cc->cc_previous, addr)) {
2918 struct cpu_info *ci =
2919 cpu_lookup(i);
2920
2921 incpucache = true;
2922 snprintf(cpucachestr,
2923 sizeof(cpucachestr),
2924 "cached by CPU %u",
2925 ci->ci_index);
2926 goto print;
2927 }
2928 }
2929 }
2930 print:
2931 item = (uintptr_t)ph->ph_page + ph->ph_off;
2932 item = item + rounddown(addr - item, pp->pr_size);
2933 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2934 (void *)addr, item, (size_t)(addr - item),
2935 pp->pr_wchan,
2936 incpucache ? cpucachestr :
2937 incache ? "cached" : allocated ? "allocated" : "free");
2938 }
2939 }
2940 #endif /* defined(DDB) */
2941
2942 static int
2943 pool_sysctl(SYSCTLFN_ARGS)
2944 {
2945 struct pool_sysctl data;
2946 struct pool *pp;
2947 struct pool_cache *pc;
2948 pool_cache_cpu_t *cc;
2949 int error;
2950 size_t i, written;
2951
2952 if (oldp == NULL) {
2953 *oldlenp = 0;
2954 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
2955 *oldlenp += sizeof(data);
2956 return 0;
2957 }
2958
2959 memset(&data, 0, sizeof(data));
2960 error = 0;
2961 written = 0;
2962 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2963 if (written + sizeof(data) > *oldlenp)
2964 break;
2965 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
2966 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
2967 data.pr_flags = pp->pr_roflags | pp->pr_flags;
2968 #define COPY(field) data.field = pp->field
2969 COPY(pr_size);
2970
2971 COPY(pr_itemsperpage);
2972 COPY(pr_nitems);
2973 COPY(pr_nout);
2974 COPY(pr_hardlimit);
2975 COPY(pr_npages);
2976 COPY(pr_minpages);
2977 COPY(pr_maxpages);
2978
2979 COPY(pr_nget);
2980 COPY(pr_nfail);
2981 COPY(pr_nput);
2982 COPY(pr_npagealloc);
2983 COPY(pr_npagefree);
2984 COPY(pr_hiwat);
2985 COPY(pr_nidle);
2986 #undef COPY
2987
2988 data.pr_cache_nmiss_pcpu = 0;
2989 data.pr_cache_nhit_pcpu = 0;
2990 if (pp->pr_cache) {
2991 pc = pp->pr_cache;
2992 data.pr_cache_meta_size = pc->pc_pcgsize;
2993 data.pr_cache_nfull = pc->pc_nfull;
2994 data.pr_cache_npartial = pc->pc_npart;
2995 data.pr_cache_nempty = pc->pc_nempty;
2996 data.pr_cache_ncontended = pc->pc_contended;
2997 data.pr_cache_nmiss_global = pc->pc_misses;
2998 data.pr_cache_nhit_global = pc->pc_hits;
2999 for (i = 0; i < pc->pc_ncpu; ++i) {
3000 cc = pc->pc_cpus[i];
3001 if (cc == NULL)
3002 continue;
3003 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3004 data.pr_cache_nhit_pcpu += cc->cc_hits;
3005 }
3006 } else {
3007 data.pr_cache_meta_size = 0;
3008 data.pr_cache_nfull = 0;
3009 data.pr_cache_npartial = 0;
3010 data.pr_cache_nempty = 0;
3011 data.pr_cache_ncontended = 0;
3012 data.pr_cache_nmiss_global = 0;
3013 data.pr_cache_nhit_global = 0;
3014 }
3015
3016 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3017 if (error)
3018 break;
3019 written += sizeof(data);
3020 oldp = (char *)oldp + sizeof(data);
3021 }
3022
3023 *oldlenp = written;
3024 return error;
3025 }
3026
3027 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3028 {
3029 const struct sysctlnode *rnode = NULL;
3030
3031 sysctl_createv(clog, 0, NULL, &rnode,
3032 CTLFLAG_PERMANENT,
3033 CTLTYPE_STRUCT, "pool",
3034 SYSCTL_DESCR("Get pool statistics"),
3035 pool_sysctl, 0, NULL, 0,
3036 CTL_KERN, CTL_CREATE, CTL_EOL);
3037 }
3038