Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.214
      1 /*	$NetBSD: subr_pool.c,v 1.214 2017/11/09 19:34:17 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.214 2017/11/09 19:34:17 christos Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/sysctl.h>
     46 #include <sys/bitops.h>
     47 #include <sys/proc.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/vmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 #include <sys/debug.h>
     54 #include <sys/lockdebug.h>
     55 #include <sys/xcall.h>
     56 #include <sys/cpu.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Pool resource management utility.
     63  *
     64  * Memory is allocated in pages which are split into pieces according to
     65  * the pool item size. Each page is kept on one of three lists in the
     66  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67  * for empty, full and partially-full pages respectively. The individual
     68  * pool items are on a linked list headed by `ph_itemlist' in each page
     69  * header. The memory for building the page list is either taken from
     70  * the allocated pages themselves (for small pool items) or taken from
     71  * an internal pool of page headers (`phpool').
     72  */
     73 
     74 /* List of all pools. Non static as needed by 'vmstat -i' */
     75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     76 
     77 /* Private pool for page header structures */
     78 #define	PHPOOL_MAX	8
     79 static struct pool phpool[PHPOOL_MAX];
     80 #define	PHPOOL_FREELIST_NELEM(idx) \
     81 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     82 
     83 #ifdef POOL_SUBPAGE
     84 /* Pool of subpages for use by normal pools. */
     85 static struct pool psppool;
     86 #endif
     87 
     88 #ifdef POOL_REDZONE
     89 # define POOL_REDZONE_SIZE 2
     90 static void pool_redzone_init(struct pool *, size_t);
     91 static void pool_redzone_fill(struct pool *, void *);
     92 static void pool_redzone_check(struct pool *, void *);
     93 #else
     94 # define pool_redzone_init(pp, sz)	/* NOTHING */
     95 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     96 # define pool_redzone_check(pp, ptr)	/* NOTHING */
     97 #endif
     98 
     99 static void *pool_page_alloc_meta(struct pool *, int);
    100 static void pool_page_free_meta(struct pool *, void *);
    101 
    102 /* allocator for pool metadata */
    103 struct pool_allocator pool_allocator_meta = {
    104 	.pa_alloc = pool_page_alloc_meta,
    105 	.pa_free = pool_page_free_meta,
    106 	.pa_pagesz = 0
    107 };
    108 
    109 #define POOL_ALLOCATOR_BIG_BASE 13
    110 extern struct pool_allocator pool_allocator_big[];
    111 static int pool_bigidx(size_t);
    112 
    113 /* # of seconds to retain page after last use */
    114 int pool_inactive_time = 10;
    115 
    116 /* Next candidate for drainage (see pool_drain()) */
    117 static struct pool	*drainpp;
    118 
    119 /* This lock protects both pool_head and drainpp. */
    120 static kmutex_t pool_head_lock;
    121 static kcondvar_t pool_busy;
    122 
    123 /* This lock protects initialization of a potentially shared pool allocator */
    124 static kmutex_t pool_allocator_lock;
    125 
    126 typedef uint32_t pool_item_bitmap_t;
    127 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    128 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    129 
    130 struct pool_item_header {
    131 	/* Page headers */
    132 	LIST_ENTRY(pool_item_header)
    133 				ph_pagelist;	/* pool page list */
    134 	SPLAY_ENTRY(pool_item_header)
    135 				ph_node;	/* Off-page page headers */
    136 	void *			ph_page;	/* this page's address */
    137 	uint32_t		ph_time;	/* last referenced */
    138 	uint16_t		ph_nmissing;	/* # of chunks in use */
    139 	uint16_t		ph_off;		/* start offset in page */
    140 	union {
    141 		/* !PR_NOTOUCH */
    142 		struct {
    143 			LIST_HEAD(, pool_item)
    144 				phu_itemlist;	/* chunk list for this page */
    145 		} phu_normal;
    146 		/* PR_NOTOUCH */
    147 		struct {
    148 			pool_item_bitmap_t phu_bitmap[1];
    149 		} phu_notouch;
    150 	} ph_u;
    151 };
    152 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    153 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    154 
    155 struct pool_item {
    156 #ifdef DIAGNOSTIC
    157 	u_int pi_magic;
    158 #endif
    159 #define	PI_MAGIC 0xdeaddeadU
    160 	/* Other entries use only this list entry */
    161 	LIST_ENTRY(pool_item)	pi_list;
    162 };
    163 
    164 #define	POOL_NEEDS_CATCHUP(pp)						\
    165 	((pp)->pr_nitems < (pp)->pr_minitems)
    166 
    167 /*
    168  * Pool cache management.
    169  *
    170  * Pool caches provide a way for constructed objects to be cached by the
    171  * pool subsystem.  This can lead to performance improvements by avoiding
    172  * needless object construction/destruction; it is deferred until absolutely
    173  * necessary.
    174  *
    175  * Caches are grouped into cache groups.  Each cache group references up
    176  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    177  * object from the pool, it calls the object's constructor and places it
    178  * into a cache group.  When a cache group frees an object back to the
    179  * pool, it first calls the object's destructor.  This allows the object
    180  * to persist in constructed form while freed to the cache.
    181  *
    182  * The pool references each cache, so that when a pool is drained by the
    183  * pagedaemon, it can drain each individual cache as well.  Each time a
    184  * cache is drained, the most idle cache group is freed to the pool in
    185  * its entirety.
    186  *
    187  * Pool caches are layed on top of pools.  By layering them, we can avoid
    188  * the complexity of cache management for pools which would not benefit
    189  * from it.
    190  */
    191 
    192 static struct pool pcg_normal_pool;
    193 static struct pool pcg_large_pool;
    194 static struct pool cache_pool;
    195 static struct pool cache_cpu_pool;
    196 
    197 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    198 
    199 /* List of all caches. */
    200 TAILQ_HEAD(,pool_cache) pool_cache_head =
    201     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    202 
    203 int pool_cache_disable;		/* global disable for caching */
    204 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    205 
    206 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    207 				    void *);
    208 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    209 				    void **, paddr_t *, int);
    210 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    211 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    212 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    213 static void	pool_cache_transfer(pool_cache_t);
    214 
    215 static int	pool_catchup(struct pool *);
    216 static void	pool_prime_page(struct pool *, void *,
    217 		    struct pool_item_header *);
    218 static void	pool_update_curpage(struct pool *);
    219 
    220 static int	pool_grow(struct pool *, int);
    221 static void	*pool_allocator_alloc(struct pool *, int);
    222 static void	pool_allocator_free(struct pool *, void *);
    223 
    224 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    225 	void (*)(const char *, ...) __printflike(1, 2));
    226 static void pool_print1(struct pool *, const char *,
    227 	void (*)(const char *, ...) __printflike(1, 2));
    228 
    229 static int pool_chk_page(struct pool *, const char *,
    230 			 struct pool_item_header *);
    231 
    232 static inline unsigned int
    233 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    234     const void *v)
    235 {
    236 	const char *cp = v;
    237 	unsigned int idx;
    238 
    239 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    240 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    241 	KASSERT(idx < pp->pr_itemsperpage);
    242 	return idx;
    243 }
    244 
    245 static inline void
    246 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    247     void *obj)
    248 {
    249 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    250 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    251 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    252 
    253 	KASSERT((*bitmap & mask) == 0);
    254 	*bitmap |= mask;
    255 }
    256 
    257 static inline void *
    258 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    259 {
    260 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    261 	unsigned int idx;
    262 	int i;
    263 
    264 	for (i = 0; ; i++) {
    265 		int bit;
    266 
    267 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    268 		bit = ffs32(bitmap[i]);
    269 		if (bit) {
    270 			pool_item_bitmap_t mask;
    271 
    272 			bit--;
    273 			idx = (i * BITMAP_SIZE) + bit;
    274 			mask = 1 << bit;
    275 			KASSERT((bitmap[i] & mask) != 0);
    276 			bitmap[i] &= ~mask;
    277 			break;
    278 		}
    279 	}
    280 	KASSERT(idx < pp->pr_itemsperpage);
    281 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    282 }
    283 
    284 static inline void
    285 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    286 {
    287 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    288 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    289 	int i;
    290 
    291 	for (i = 0; i < n; i++) {
    292 		bitmap[i] = (pool_item_bitmap_t)-1;
    293 	}
    294 }
    295 
    296 static inline int
    297 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    298 {
    299 
    300 	/*
    301 	 * we consider pool_item_header with smaller ph_page bigger.
    302 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    303 	 */
    304 
    305 	if (a->ph_page < b->ph_page)
    306 		return (1);
    307 	else if (a->ph_page > b->ph_page)
    308 		return (-1);
    309 	else
    310 		return (0);
    311 }
    312 
    313 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    314 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    315 
    316 static inline struct pool_item_header *
    317 pr_find_pagehead_noalign(struct pool *pp, void *v)
    318 {
    319 	struct pool_item_header *ph, tmp;
    320 
    321 	tmp.ph_page = (void *)(uintptr_t)v;
    322 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    323 	if (ph == NULL) {
    324 		ph = SPLAY_ROOT(&pp->pr_phtree);
    325 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    326 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    327 		}
    328 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    329 	}
    330 
    331 	return ph;
    332 }
    333 
    334 /*
    335  * Return the pool page header based on item address.
    336  */
    337 static inline struct pool_item_header *
    338 pr_find_pagehead(struct pool *pp, void *v)
    339 {
    340 	struct pool_item_header *ph, tmp;
    341 
    342 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    343 		ph = pr_find_pagehead_noalign(pp, v);
    344 	} else {
    345 		void *page =
    346 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    347 
    348 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    349 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    350 		} else {
    351 			tmp.ph_page = page;
    352 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    353 		}
    354 	}
    355 
    356 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    357 	    ((char *)ph->ph_page <= (char *)v &&
    358 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    359 	return ph;
    360 }
    361 
    362 static void
    363 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    364 {
    365 	struct pool_item_header *ph;
    366 
    367 	while ((ph = LIST_FIRST(pq)) != NULL) {
    368 		LIST_REMOVE(ph, ph_pagelist);
    369 		pool_allocator_free(pp, ph->ph_page);
    370 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    371 			pool_put(pp->pr_phpool, ph);
    372 	}
    373 }
    374 
    375 /*
    376  * Remove a page from the pool.
    377  */
    378 static inline void
    379 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    380      struct pool_pagelist *pq)
    381 {
    382 
    383 	KASSERT(mutex_owned(&pp->pr_lock));
    384 
    385 	/*
    386 	 * If the page was idle, decrement the idle page count.
    387 	 */
    388 	if (ph->ph_nmissing == 0) {
    389 		KASSERT(pp->pr_nidle != 0);
    390 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    391 		    "nitems=%u < itemsperpage=%u",
    392 		    pp->pr_nitems, pp->pr_itemsperpage);
    393 		pp->pr_nidle--;
    394 	}
    395 
    396 	pp->pr_nitems -= pp->pr_itemsperpage;
    397 
    398 	/*
    399 	 * Unlink the page from the pool and queue it for release.
    400 	 */
    401 	LIST_REMOVE(ph, ph_pagelist);
    402 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    403 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    404 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    405 
    406 	pp->pr_npages--;
    407 	pp->pr_npagefree++;
    408 
    409 	pool_update_curpage(pp);
    410 }
    411 
    412 /*
    413  * Initialize all the pools listed in the "pools" link set.
    414  */
    415 void
    416 pool_subsystem_init(void)
    417 {
    418 	size_t size;
    419 	int idx;
    420 
    421 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    422 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    423 	cv_init(&pool_busy, "poolbusy");
    424 
    425 	/*
    426 	 * Initialize private page header pool and cache magazine pool if we
    427 	 * haven't done so yet.
    428 	 */
    429 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    430 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    431 		int nelem;
    432 		size_t sz;
    433 
    434 		nelem = PHPOOL_FREELIST_NELEM(idx);
    435 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    436 		    "phpool-%d", nelem);
    437 		sz = sizeof(struct pool_item_header);
    438 		if (nelem) {
    439 			sz = offsetof(struct pool_item_header,
    440 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    441 		}
    442 		pool_init(&phpool[idx], sz, 0, 0, 0,
    443 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    444 	}
    445 #ifdef POOL_SUBPAGE
    446 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    447 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    448 #endif
    449 
    450 	size = sizeof(pcg_t) +
    451 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    452 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    453 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    454 
    455 	size = sizeof(pcg_t) +
    456 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    457 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    458 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    459 
    460 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    461 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    462 
    463 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    464 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    465 }
    466 
    467 /*
    468  * Initialize the given pool resource structure.
    469  *
    470  * We export this routine to allow other kernel parts to declare
    471  * static pools that must be initialized before kmem(9) is available.
    472  */
    473 void
    474 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    475     const char *wchan, struct pool_allocator *palloc, int ipl)
    476 {
    477 	struct pool *pp1;
    478 	size_t trysize, phsize, prsize;
    479 	int off, slack;
    480 
    481 #ifdef DEBUG
    482 	if (__predict_true(!cold))
    483 		mutex_enter(&pool_head_lock);
    484 	/*
    485 	 * Check that the pool hasn't already been initialised and
    486 	 * added to the list of all pools.
    487 	 */
    488 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    489 		if (pp == pp1)
    490 			panic("%s: [%s] already initialised", __func__,
    491 			    wchan);
    492 	}
    493 	if (__predict_true(!cold))
    494 		mutex_exit(&pool_head_lock);
    495 #endif
    496 
    497 	if (palloc == NULL)
    498 		palloc = &pool_allocator_kmem;
    499 #ifdef POOL_SUBPAGE
    500 	if (size > palloc->pa_pagesz) {
    501 		if (palloc == &pool_allocator_kmem)
    502 			palloc = &pool_allocator_kmem_fullpage;
    503 		else if (palloc == &pool_allocator_nointr)
    504 			palloc = &pool_allocator_nointr_fullpage;
    505 	}
    506 #endif /* POOL_SUBPAGE */
    507 	if (!cold)
    508 		mutex_enter(&pool_allocator_lock);
    509 	if (palloc->pa_refcnt++ == 0) {
    510 		if (palloc->pa_pagesz == 0)
    511 			palloc->pa_pagesz = PAGE_SIZE;
    512 
    513 		TAILQ_INIT(&palloc->pa_list);
    514 
    515 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    516 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    517 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    518 	}
    519 	if (!cold)
    520 		mutex_exit(&pool_allocator_lock);
    521 
    522 	if (align == 0)
    523 		align = ALIGN(1);
    524 
    525 	prsize = size;
    526 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    527 		prsize = sizeof(struct pool_item);
    528 
    529 	prsize = roundup(prsize, align);
    530 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    531 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    532 	    __func__, wchan, prsize, palloc->pa_pagesz);
    533 
    534 	/*
    535 	 * Initialize the pool structure.
    536 	 */
    537 	LIST_INIT(&pp->pr_emptypages);
    538 	LIST_INIT(&pp->pr_fullpages);
    539 	LIST_INIT(&pp->pr_partpages);
    540 	pp->pr_cache = NULL;
    541 	pp->pr_curpage = NULL;
    542 	pp->pr_npages = 0;
    543 	pp->pr_minitems = 0;
    544 	pp->pr_minpages = 0;
    545 	pp->pr_maxpages = UINT_MAX;
    546 	pp->pr_roflags = flags;
    547 	pp->pr_flags = 0;
    548 	pp->pr_size = prsize;
    549 	pp->pr_align = align;
    550 	pp->pr_wchan = wchan;
    551 	pp->pr_alloc = palloc;
    552 	pp->pr_nitems = 0;
    553 	pp->pr_nout = 0;
    554 	pp->pr_hardlimit = UINT_MAX;
    555 	pp->pr_hardlimit_warning = NULL;
    556 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    557 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    558 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    559 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    560 	pp->pr_drain_hook = NULL;
    561 	pp->pr_drain_hook_arg = NULL;
    562 	pp->pr_freecheck = NULL;
    563 	pool_redzone_init(pp, size);
    564 
    565 	/*
    566 	 * Decide whether to put the page header off page to avoid
    567 	 * wasting too large a part of the page or too big item.
    568 	 * Off-page page headers go on a hash table, so we can match
    569 	 * a returned item with its header based on the page address.
    570 	 * We use 1/16 of the page size and about 8 times of the item
    571 	 * size as the threshold (XXX: tune)
    572 	 *
    573 	 * However, we'll put the header into the page if we can put
    574 	 * it without wasting any items.
    575 	 *
    576 	 * Silently enforce `0 <= ioff < align'.
    577 	 */
    578 	pp->pr_itemoffset = ioff %= align;
    579 	/* See the comment below about reserved bytes. */
    580 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    581 	phsize = ALIGN(sizeof(struct pool_item_header));
    582 	if (pp->pr_roflags & PR_PHINPAGE ||
    583 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    584 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    585 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    586 		/* Use the end of the page for the page header */
    587 		pp->pr_roflags |= PR_PHINPAGE;
    588 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    589 	} else {
    590 		/* The page header will be taken from our page header pool */
    591 		pp->pr_phoffset = 0;
    592 		off = palloc->pa_pagesz;
    593 		SPLAY_INIT(&pp->pr_phtree);
    594 	}
    595 
    596 	/*
    597 	 * Alignment is to take place at `ioff' within the item. This means
    598 	 * we must reserve up to `align - 1' bytes on the page to allow
    599 	 * appropriate positioning of each item.
    600 	 */
    601 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    602 	KASSERT(pp->pr_itemsperpage != 0);
    603 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    604 		int idx;
    605 
    606 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    607 		    idx++) {
    608 			/* nothing */
    609 		}
    610 		if (idx >= PHPOOL_MAX) {
    611 			/*
    612 			 * if you see this panic, consider to tweak
    613 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    614 			 */
    615 			panic("%s: [%s] too large itemsperpage(%d) for "
    616 			    "PR_NOTOUCH", __func__,
    617 			    pp->pr_wchan, pp->pr_itemsperpage);
    618 		}
    619 		pp->pr_phpool = &phpool[idx];
    620 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    621 		pp->pr_phpool = &phpool[0];
    622 	}
    623 #if defined(DIAGNOSTIC)
    624 	else {
    625 		pp->pr_phpool = NULL;
    626 	}
    627 #endif
    628 
    629 	/*
    630 	 * Use the slack between the chunks and the page header
    631 	 * for "cache coloring".
    632 	 */
    633 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    634 	pp->pr_maxcolor = (slack / align) * align;
    635 	pp->pr_curcolor = 0;
    636 
    637 	pp->pr_nget = 0;
    638 	pp->pr_nfail = 0;
    639 	pp->pr_nput = 0;
    640 	pp->pr_npagealloc = 0;
    641 	pp->pr_npagefree = 0;
    642 	pp->pr_hiwat = 0;
    643 	pp->pr_nidle = 0;
    644 	pp->pr_refcnt = 0;
    645 
    646 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    647 	cv_init(&pp->pr_cv, wchan);
    648 	pp->pr_ipl = ipl;
    649 
    650 	/* Insert into the list of all pools. */
    651 	if (!cold)
    652 		mutex_enter(&pool_head_lock);
    653 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    654 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    655 			break;
    656 	}
    657 	if (pp1 == NULL)
    658 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    659 	else
    660 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    661 	if (!cold)
    662 		mutex_exit(&pool_head_lock);
    663 
    664 	/* Insert this into the list of pools using this allocator. */
    665 	if (!cold)
    666 		mutex_enter(&palloc->pa_lock);
    667 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    668 	if (!cold)
    669 		mutex_exit(&palloc->pa_lock);
    670 }
    671 
    672 /*
    673  * De-commision a pool resource.
    674  */
    675 void
    676 pool_destroy(struct pool *pp)
    677 {
    678 	struct pool_pagelist pq;
    679 	struct pool_item_header *ph;
    680 
    681 	/* Remove from global pool list */
    682 	mutex_enter(&pool_head_lock);
    683 	while (pp->pr_refcnt != 0)
    684 		cv_wait(&pool_busy, &pool_head_lock);
    685 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    686 	if (drainpp == pp)
    687 		drainpp = NULL;
    688 	mutex_exit(&pool_head_lock);
    689 
    690 	/* Remove this pool from its allocator's list of pools. */
    691 	mutex_enter(&pp->pr_alloc->pa_lock);
    692 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    693 	mutex_exit(&pp->pr_alloc->pa_lock);
    694 
    695 	mutex_enter(&pool_allocator_lock);
    696 	if (--pp->pr_alloc->pa_refcnt == 0)
    697 		mutex_destroy(&pp->pr_alloc->pa_lock);
    698 	mutex_exit(&pool_allocator_lock);
    699 
    700 	mutex_enter(&pp->pr_lock);
    701 
    702 	KASSERT(pp->pr_cache == NULL);
    703 	KASSERTMSG((pp->pr_nout == 0),
    704 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    705 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    706 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    707 
    708 	/* Remove all pages */
    709 	LIST_INIT(&pq);
    710 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    711 		pr_rmpage(pp, ph, &pq);
    712 
    713 	mutex_exit(&pp->pr_lock);
    714 
    715 	pr_pagelist_free(pp, &pq);
    716 	cv_destroy(&pp->pr_cv);
    717 	mutex_destroy(&pp->pr_lock);
    718 }
    719 
    720 void
    721 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    722 {
    723 
    724 	/* XXX no locking -- must be used just after pool_init() */
    725 	KASSERTMSG((pp->pr_drain_hook == NULL),
    726 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    727 	pp->pr_drain_hook = fn;
    728 	pp->pr_drain_hook_arg = arg;
    729 }
    730 
    731 static struct pool_item_header *
    732 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    733 {
    734 	struct pool_item_header *ph;
    735 
    736 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    737 		ph = (void *)((char *)storage + pp->pr_phoffset);
    738 	else
    739 		ph = pool_get(pp->pr_phpool, flags);
    740 
    741 	return (ph);
    742 }
    743 
    744 /*
    745  * Grab an item from the pool.
    746  */
    747 void *
    748 pool_get(struct pool *pp, int flags)
    749 {
    750 	struct pool_item *pi;
    751 	struct pool_item_header *ph;
    752 	void *v;
    753 
    754 	KASSERTMSG((pp->pr_itemsperpage != 0),
    755 	    "%s: [%s] pr_itemsperpage is zero, "
    756 	    "pool not initialized?", __func__, pp->pr_wchan);
    757 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    758 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    759 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    760 	    __func__, pp->pr_wchan);
    761 	if (flags & PR_WAITOK) {
    762 		ASSERT_SLEEPABLE();
    763 	}
    764 
    765 	mutex_enter(&pp->pr_lock);
    766  startover:
    767 	/*
    768 	 * Check to see if we've reached the hard limit.  If we have,
    769 	 * and we can wait, then wait until an item has been returned to
    770 	 * the pool.
    771 	 */
    772 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    773 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    774 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    775 		if (pp->pr_drain_hook != NULL) {
    776 			/*
    777 			 * Since the drain hook is going to free things
    778 			 * back to the pool, unlock, call the hook, re-lock,
    779 			 * and check the hardlimit condition again.
    780 			 */
    781 			mutex_exit(&pp->pr_lock);
    782 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    783 			mutex_enter(&pp->pr_lock);
    784 			if (pp->pr_nout < pp->pr_hardlimit)
    785 				goto startover;
    786 		}
    787 
    788 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    789 			/*
    790 			 * XXX: A warning isn't logged in this case.  Should
    791 			 * it be?
    792 			 */
    793 			pp->pr_flags |= PR_WANTED;
    794 			do {
    795 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    796 			} while (pp->pr_flags & PR_WANTED);
    797 			goto startover;
    798 		}
    799 
    800 		/*
    801 		 * Log a message that the hard limit has been hit.
    802 		 */
    803 		if (pp->pr_hardlimit_warning != NULL &&
    804 		    ratecheck(&pp->pr_hardlimit_warning_last,
    805 			      &pp->pr_hardlimit_ratecap))
    806 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    807 
    808 		pp->pr_nfail++;
    809 
    810 		mutex_exit(&pp->pr_lock);
    811 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    812 		return (NULL);
    813 	}
    814 
    815 	/*
    816 	 * The convention we use is that if `curpage' is not NULL, then
    817 	 * it points at a non-empty bucket. In particular, `curpage'
    818 	 * never points at a page header which has PR_PHINPAGE set and
    819 	 * has no items in its bucket.
    820 	 */
    821 	if ((ph = pp->pr_curpage) == NULL) {
    822 		int error;
    823 
    824 		KASSERTMSG((pp->pr_nitems == 0),
    825 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    826 		    __func__, pp->pr_wchan, pp->pr_nitems);
    827 
    828 		/*
    829 		 * Call the back-end page allocator for more memory.
    830 		 * Release the pool lock, as the back-end page allocator
    831 		 * may block.
    832 		 */
    833 		error = pool_grow(pp, flags);
    834 		if (error != 0) {
    835 			/*
    836 			 * pool_grow aborts when another thread
    837 			 * is allocating a new page. Retry if it
    838 			 * waited for it.
    839 			 */
    840 			if (error == ERESTART)
    841 				goto startover;
    842 
    843 			/*
    844 			 * We were unable to allocate a page or item
    845 			 * header, but we released the lock during
    846 			 * allocation, so perhaps items were freed
    847 			 * back to the pool.  Check for this case.
    848 			 */
    849 			if (pp->pr_curpage != NULL)
    850 				goto startover;
    851 
    852 			pp->pr_nfail++;
    853 			mutex_exit(&pp->pr_lock);
    854 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    855 			return (NULL);
    856 		}
    857 
    858 		/* Start the allocation process over. */
    859 		goto startover;
    860 	}
    861 	if (pp->pr_roflags & PR_NOTOUCH) {
    862 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    863 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    864 		v = pr_item_notouch_get(pp, ph);
    865 	} else {
    866 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    867 		if (__predict_false(v == NULL)) {
    868 			mutex_exit(&pp->pr_lock);
    869 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    870 		}
    871 		KASSERTMSG((pp->pr_nitems > 0),
    872 		    "%s: [%s] nitems %u inconsistent on itemlist",
    873 		    __func__, pp->pr_wchan, pp->pr_nitems);
    874 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    875 		    "%s: [%s] free list modified: "
    876 		    "magic=%x; page %p; item addr %p", __func__,
    877 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    878 
    879 		/*
    880 		 * Remove from item list.
    881 		 */
    882 		LIST_REMOVE(pi, pi_list);
    883 	}
    884 	pp->pr_nitems--;
    885 	pp->pr_nout++;
    886 	if (ph->ph_nmissing == 0) {
    887 		KASSERT(pp->pr_nidle > 0);
    888 		pp->pr_nidle--;
    889 
    890 		/*
    891 		 * This page was previously empty.  Move it to the list of
    892 		 * partially-full pages.  This page is already curpage.
    893 		 */
    894 		LIST_REMOVE(ph, ph_pagelist);
    895 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    896 	}
    897 	ph->ph_nmissing++;
    898 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    899 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    900 			LIST_EMPTY(&ph->ph_itemlist)),
    901 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    902 			pp->pr_wchan, ph->ph_nmissing);
    903 		/*
    904 		 * This page is now full.  Move it to the full list
    905 		 * and select a new current page.
    906 		 */
    907 		LIST_REMOVE(ph, ph_pagelist);
    908 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    909 		pool_update_curpage(pp);
    910 	}
    911 
    912 	pp->pr_nget++;
    913 
    914 	/*
    915 	 * If we have a low water mark and we are now below that low
    916 	 * water mark, add more items to the pool.
    917 	 */
    918 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    919 		/*
    920 		 * XXX: Should we log a warning?  Should we set up a timeout
    921 		 * to try again in a second or so?  The latter could break
    922 		 * a caller's assumptions about interrupt protection, etc.
    923 		 */
    924 	}
    925 
    926 	mutex_exit(&pp->pr_lock);
    927 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    928 	FREECHECK_OUT(&pp->pr_freecheck, v);
    929 	pool_redzone_fill(pp, v);
    930 	return (v);
    931 }
    932 
    933 /*
    934  * Internal version of pool_put().  Pool is already locked/entered.
    935  */
    936 static void
    937 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    938 {
    939 	struct pool_item *pi = v;
    940 	struct pool_item_header *ph;
    941 
    942 	KASSERT(mutex_owned(&pp->pr_lock));
    943 	pool_redzone_check(pp, v);
    944 	FREECHECK_IN(&pp->pr_freecheck, v);
    945 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    946 
    947 	KASSERTMSG((pp->pr_nout > 0),
    948 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
    949 
    950 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    951 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
    952 	}
    953 
    954 	/*
    955 	 * Return to item list.
    956 	 */
    957 	if (pp->pr_roflags & PR_NOTOUCH) {
    958 		pr_item_notouch_put(pp, ph, v);
    959 	} else {
    960 #ifdef DIAGNOSTIC
    961 		pi->pi_magic = PI_MAGIC;
    962 #endif
    963 #ifdef DEBUG
    964 		{
    965 			int i, *ip = v;
    966 
    967 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    968 				*ip++ = PI_MAGIC;
    969 			}
    970 		}
    971 #endif
    972 
    973 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    974 	}
    975 	KDASSERT(ph->ph_nmissing != 0);
    976 	ph->ph_nmissing--;
    977 	pp->pr_nput++;
    978 	pp->pr_nitems++;
    979 	pp->pr_nout--;
    980 
    981 	/* Cancel "pool empty" condition if it exists */
    982 	if (pp->pr_curpage == NULL)
    983 		pp->pr_curpage = ph;
    984 
    985 	if (pp->pr_flags & PR_WANTED) {
    986 		pp->pr_flags &= ~PR_WANTED;
    987 		cv_broadcast(&pp->pr_cv);
    988 	}
    989 
    990 	/*
    991 	 * If this page is now empty, do one of two things:
    992 	 *
    993 	 *	(1) If we have more pages than the page high water mark,
    994 	 *	    free the page back to the system.  ONLY CONSIDER
    995 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
    996 	 *	    CLAIM.
    997 	 *
    998 	 *	(2) Otherwise, move the page to the empty page list.
    999 	 *
   1000 	 * Either way, select a new current page (so we use a partially-full
   1001 	 * page if one is available).
   1002 	 */
   1003 	if (ph->ph_nmissing == 0) {
   1004 		pp->pr_nidle++;
   1005 		if (pp->pr_npages > pp->pr_minpages &&
   1006 		    pp->pr_npages > pp->pr_maxpages) {
   1007 			pr_rmpage(pp, ph, pq);
   1008 		} else {
   1009 			LIST_REMOVE(ph, ph_pagelist);
   1010 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1011 
   1012 			/*
   1013 			 * Update the timestamp on the page.  A page must
   1014 			 * be idle for some period of time before it can
   1015 			 * be reclaimed by the pagedaemon.  This minimizes
   1016 			 * ping-pong'ing for memory.
   1017 			 *
   1018 			 * note for 64-bit time_t: truncating to 32-bit is not
   1019 			 * a problem for our usage.
   1020 			 */
   1021 			ph->ph_time = time_uptime;
   1022 		}
   1023 		pool_update_curpage(pp);
   1024 	}
   1025 
   1026 	/*
   1027 	 * If the page was previously completely full, move it to the
   1028 	 * partially-full list and make it the current page.  The next
   1029 	 * allocation will get the item from this page, instead of
   1030 	 * further fragmenting the pool.
   1031 	 */
   1032 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1033 		LIST_REMOVE(ph, ph_pagelist);
   1034 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1035 		pp->pr_curpage = ph;
   1036 	}
   1037 }
   1038 
   1039 void
   1040 pool_put(struct pool *pp, void *v)
   1041 {
   1042 	struct pool_pagelist pq;
   1043 
   1044 	LIST_INIT(&pq);
   1045 
   1046 	mutex_enter(&pp->pr_lock);
   1047 	pool_do_put(pp, v, &pq);
   1048 	mutex_exit(&pp->pr_lock);
   1049 
   1050 	pr_pagelist_free(pp, &pq);
   1051 }
   1052 
   1053 /*
   1054  * pool_grow: grow a pool by a page.
   1055  *
   1056  * => called with pool locked.
   1057  * => unlock and relock the pool.
   1058  * => return with pool locked.
   1059  */
   1060 
   1061 static int
   1062 pool_grow(struct pool *pp, int flags)
   1063 {
   1064 	struct pool_item_header *ph = NULL;
   1065 	char *cp;
   1066 	int error;
   1067 
   1068 	/*
   1069 	 * If there's a pool_grow in progress, wait for it to complete
   1070 	 * and try again from the top.
   1071 	 */
   1072 	if (pp->pr_flags & PR_GROWING) {
   1073 		if (flags & PR_WAITOK) {
   1074 			do {
   1075 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1076 			} while (pp->pr_flags & PR_GROWING);
   1077 			return ERESTART;
   1078 		} else {
   1079 			return EWOULDBLOCK;
   1080 		}
   1081 	}
   1082 	pp->pr_flags |= PR_GROWING;
   1083 
   1084 	mutex_exit(&pp->pr_lock);
   1085 	cp = pool_allocator_alloc(pp, flags);
   1086 	if (__predict_true(cp != NULL)) {
   1087 		ph = pool_alloc_item_header(pp, cp, flags);
   1088 	}
   1089 	if (__predict_false(cp == NULL || ph == NULL)) {
   1090 		if (cp != NULL) {
   1091 			pool_allocator_free(pp, cp);
   1092 		}
   1093 		mutex_enter(&pp->pr_lock);
   1094 		error = ENOMEM;
   1095 		goto out;
   1096 	}
   1097 
   1098 	mutex_enter(&pp->pr_lock);
   1099 	pool_prime_page(pp, cp, ph);
   1100 	pp->pr_npagealloc++;
   1101 	error = 0;
   1102 
   1103 out:
   1104 	/*
   1105 	 * If anyone was waiting for pool_grow, notify them that we
   1106 	 * may have just done it.
   1107 	 */
   1108 	KASSERT(pp->pr_flags & PR_GROWING);
   1109 	pp->pr_flags &= ~PR_GROWING;
   1110 	cv_broadcast(&pp->pr_cv);
   1111 
   1112 	return error;
   1113 }
   1114 
   1115 /*
   1116  * Add N items to the pool.
   1117  */
   1118 int
   1119 pool_prime(struct pool *pp, int n)
   1120 {
   1121 	int newpages;
   1122 	int error = 0;
   1123 
   1124 	mutex_enter(&pp->pr_lock);
   1125 
   1126 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1127 
   1128 	while (newpages-- > 0) {
   1129 		error = pool_grow(pp, PR_NOWAIT);
   1130 		if (error) {
   1131 			if (error == ERESTART)
   1132 				continue;
   1133 			break;
   1134 		}
   1135 		pp->pr_minpages++;
   1136 	}
   1137 
   1138 	if (pp->pr_minpages >= pp->pr_maxpages)
   1139 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1140 
   1141 	mutex_exit(&pp->pr_lock);
   1142 	return error;
   1143 }
   1144 
   1145 /*
   1146  * Add a page worth of items to the pool.
   1147  *
   1148  * Note, we must be called with the pool descriptor LOCKED.
   1149  */
   1150 static void
   1151 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1152 {
   1153 	struct pool_item *pi;
   1154 	void *cp = storage;
   1155 	const unsigned int align = pp->pr_align;
   1156 	const unsigned int ioff = pp->pr_itemoffset;
   1157 	int n;
   1158 
   1159 	KASSERT(mutex_owned(&pp->pr_lock));
   1160 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1161 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1162 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1163 
   1164 	/*
   1165 	 * Insert page header.
   1166 	 */
   1167 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1168 	LIST_INIT(&ph->ph_itemlist);
   1169 	ph->ph_page = storage;
   1170 	ph->ph_nmissing = 0;
   1171 	ph->ph_time = time_uptime;
   1172 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1173 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1174 
   1175 	pp->pr_nidle++;
   1176 
   1177 	/*
   1178 	 * Color this page.
   1179 	 */
   1180 	ph->ph_off = pp->pr_curcolor;
   1181 	cp = (char *)cp + ph->ph_off;
   1182 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1183 		pp->pr_curcolor = 0;
   1184 
   1185 	/*
   1186 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1187 	 */
   1188 	if (ioff != 0)
   1189 		cp = (char *)cp + align - ioff;
   1190 
   1191 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1192 
   1193 	/*
   1194 	 * Insert remaining chunks on the bucket list.
   1195 	 */
   1196 	n = pp->pr_itemsperpage;
   1197 	pp->pr_nitems += n;
   1198 
   1199 	if (pp->pr_roflags & PR_NOTOUCH) {
   1200 		pr_item_notouch_init(pp, ph);
   1201 	} else {
   1202 		while (n--) {
   1203 			pi = (struct pool_item *)cp;
   1204 
   1205 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1206 
   1207 			/* Insert on page list */
   1208 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1209 #ifdef DIAGNOSTIC
   1210 			pi->pi_magic = PI_MAGIC;
   1211 #endif
   1212 			cp = (char *)cp + pp->pr_size;
   1213 
   1214 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1215 		}
   1216 	}
   1217 
   1218 	/*
   1219 	 * If the pool was depleted, point at the new page.
   1220 	 */
   1221 	if (pp->pr_curpage == NULL)
   1222 		pp->pr_curpage = ph;
   1223 
   1224 	if (++pp->pr_npages > pp->pr_hiwat)
   1225 		pp->pr_hiwat = pp->pr_npages;
   1226 }
   1227 
   1228 /*
   1229  * Used by pool_get() when nitems drops below the low water mark.  This
   1230  * is used to catch up pr_nitems with the low water mark.
   1231  *
   1232  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1233  *
   1234  * Note 2, we must be called with the pool already locked, and we return
   1235  * with it locked.
   1236  */
   1237 static int
   1238 pool_catchup(struct pool *pp)
   1239 {
   1240 	int error = 0;
   1241 
   1242 	while (POOL_NEEDS_CATCHUP(pp)) {
   1243 		error = pool_grow(pp, PR_NOWAIT);
   1244 		if (error) {
   1245 			if (error == ERESTART)
   1246 				continue;
   1247 			break;
   1248 		}
   1249 	}
   1250 	return error;
   1251 }
   1252 
   1253 static void
   1254 pool_update_curpage(struct pool *pp)
   1255 {
   1256 
   1257 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1258 	if (pp->pr_curpage == NULL) {
   1259 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1260 	}
   1261 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1262 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1263 }
   1264 
   1265 void
   1266 pool_setlowat(struct pool *pp, int n)
   1267 {
   1268 
   1269 	mutex_enter(&pp->pr_lock);
   1270 
   1271 	pp->pr_minitems = n;
   1272 	pp->pr_minpages = (n == 0)
   1273 		? 0
   1274 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1275 
   1276 	/* Make sure we're caught up with the newly-set low water mark. */
   1277 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1278 		/*
   1279 		 * XXX: Should we log a warning?  Should we set up a timeout
   1280 		 * to try again in a second or so?  The latter could break
   1281 		 * a caller's assumptions about interrupt protection, etc.
   1282 		 */
   1283 	}
   1284 
   1285 	mutex_exit(&pp->pr_lock);
   1286 }
   1287 
   1288 void
   1289 pool_sethiwat(struct pool *pp, int n)
   1290 {
   1291 
   1292 	mutex_enter(&pp->pr_lock);
   1293 
   1294 	pp->pr_maxpages = (n == 0)
   1295 		? 0
   1296 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1297 
   1298 	mutex_exit(&pp->pr_lock);
   1299 }
   1300 
   1301 void
   1302 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1303 {
   1304 
   1305 	mutex_enter(&pp->pr_lock);
   1306 
   1307 	pp->pr_hardlimit = n;
   1308 	pp->pr_hardlimit_warning = warnmess;
   1309 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1310 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1311 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1312 
   1313 	/*
   1314 	 * In-line version of pool_sethiwat(), because we don't want to
   1315 	 * release the lock.
   1316 	 */
   1317 	pp->pr_maxpages = (n == 0)
   1318 		? 0
   1319 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1320 
   1321 	mutex_exit(&pp->pr_lock);
   1322 }
   1323 
   1324 /*
   1325  * Release all complete pages that have not been used recently.
   1326  *
   1327  * Must not be called from interrupt context.
   1328  */
   1329 int
   1330 pool_reclaim(struct pool *pp)
   1331 {
   1332 	struct pool_item_header *ph, *phnext;
   1333 	struct pool_pagelist pq;
   1334 	uint32_t curtime;
   1335 	bool klock;
   1336 	int rv;
   1337 
   1338 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1339 
   1340 	if (pp->pr_drain_hook != NULL) {
   1341 		/*
   1342 		 * The drain hook must be called with the pool unlocked.
   1343 		 */
   1344 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1345 	}
   1346 
   1347 	/*
   1348 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1349 	 * to block.
   1350 	 */
   1351 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1352 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1353 		KERNEL_LOCK(1, NULL);
   1354 		klock = true;
   1355 	} else
   1356 		klock = false;
   1357 
   1358 	/* Reclaim items from the pool's cache (if any). */
   1359 	if (pp->pr_cache != NULL)
   1360 		pool_cache_invalidate(pp->pr_cache);
   1361 
   1362 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1363 		if (klock) {
   1364 			KERNEL_UNLOCK_ONE(NULL);
   1365 		}
   1366 		return (0);
   1367 	}
   1368 
   1369 	LIST_INIT(&pq);
   1370 
   1371 	curtime = time_uptime;
   1372 
   1373 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1374 		phnext = LIST_NEXT(ph, ph_pagelist);
   1375 
   1376 		/* Check our minimum page claim */
   1377 		if (pp->pr_npages <= pp->pr_minpages)
   1378 			break;
   1379 
   1380 		KASSERT(ph->ph_nmissing == 0);
   1381 		if (curtime - ph->ph_time < pool_inactive_time)
   1382 			continue;
   1383 
   1384 		/*
   1385 		 * If freeing this page would put us below
   1386 		 * the low water mark, stop now.
   1387 		 */
   1388 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1389 		    pp->pr_minitems)
   1390 			break;
   1391 
   1392 		pr_rmpage(pp, ph, &pq);
   1393 	}
   1394 
   1395 	mutex_exit(&pp->pr_lock);
   1396 
   1397 	if (LIST_EMPTY(&pq))
   1398 		rv = 0;
   1399 	else {
   1400 		pr_pagelist_free(pp, &pq);
   1401 		rv = 1;
   1402 	}
   1403 
   1404 	if (klock) {
   1405 		KERNEL_UNLOCK_ONE(NULL);
   1406 	}
   1407 
   1408 	return (rv);
   1409 }
   1410 
   1411 /*
   1412  * Drain pools, one at a time. The drained pool is returned within ppp.
   1413  *
   1414  * Note, must never be called from interrupt context.
   1415  */
   1416 bool
   1417 pool_drain(struct pool **ppp)
   1418 {
   1419 	bool reclaimed;
   1420 	struct pool *pp;
   1421 
   1422 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1423 
   1424 	pp = NULL;
   1425 
   1426 	/* Find next pool to drain, and add a reference. */
   1427 	mutex_enter(&pool_head_lock);
   1428 	do {
   1429 		if (drainpp == NULL) {
   1430 			drainpp = TAILQ_FIRST(&pool_head);
   1431 		}
   1432 		if (drainpp != NULL) {
   1433 			pp = drainpp;
   1434 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1435 		}
   1436 		/*
   1437 		 * Skip completely idle pools.  We depend on at least
   1438 		 * one pool in the system being active.
   1439 		 */
   1440 	} while (pp == NULL || pp->pr_npages == 0);
   1441 	pp->pr_refcnt++;
   1442 	mutex_exit(&pool_head_lock);
   1443 
   1444 	/* Drain the cache (if any) and pool.. */
   1445 	reclaimed = pool_reclaim(pp);
   1446 
   1447 	/* Finally, unlock the pool. */
   1448 	mutex_enter(&pool_head_lock);
   1449 	pp->pr_refcnt--;
   1450 	cv_broadcast(&pool_busy);
   1451 	mutex_exit(&pool_head_lock);
   1452 
   1453 	if (ppp != NULL)
   1454 		*ppp = pp;
   1455 
   1456 	return reclaimed;
   1457 }
   1458 
   1459 /*
   1460  * Diagnostic helpers.
   1461  */
   1462 
   1463 void
   1464 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1465 {
   1466 	struct pool *pp;
   1467 
   1468 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1469 		pool_printit(pp, modif, pr);
   1470 	}
   1471 }
   1472 
   1473 void
   1474 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1475 {
   1476 
   1477 	if (pp == NULL) {
   1478 		(*pr)("Must specify a pool to print.\n");
   1479 		return;
   1480 	}
   1481 
   1482 	pool_print1(pp, modif, pr);
   1483 }
   1484 
   1485 static void
   1486 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1487     void (*pr)(const char *, ...))
   1488 {
   1489 	struct pool_item_header *ph;
   1490 	struct pool_item *pi __diagused;
   1491 
   1492 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1493 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1494 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1495 #ifdef DIAGNOSTIC
   1496 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1497 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1498 				if (pi->pi_magic != PI_MAGIC) {
   1499 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1500 					    pi, pi->pi_magic);
   1501 				}
   1502 			}
   1503 		}
   1504 #endif
   1505 	}
   1506 }
   1507 
   1508 static void
   1509 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1510 {
   1511 	struct pool_item_header *ph;
   1512 	pool_cache_t pc;
   1513 	pcg_t *pcg;
   1514 	pool_cache_cpu_t *cc;
   1515 	uint64_t cpuhit, cpumiss;
   1516 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1517 	char c;
   1518 
   1519 	while ((c = *modif++) != '\0') {
   1520 		if (c == 'l')
   1521 			print_log = 1;
   1522 		if (c == 'p')
   1523 			print_pagelist = 1;
   1524 		if (c == 'c')
   1525 			print_cache = 1;
   1526 	}
   1527 
   1528 	if ((pc = pp->pr_cache) != NULL) {
   1529 		(*pr)("POOL CACHE");
   1530 	} else {
   1531 		(*pr)("POOL");
   1532 	}
   1533 
   1534 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1535 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1536 	    pp->pr_roflags);
   1537 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1538 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1539 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1540 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1541 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1542 
   1543 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1544 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1545 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1546 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1547 
   1548 	if (print_pagelist == 0)
   1549 		goto skip_pagelist;
   1550 
   1551 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1552 		(*pr)("\n\tempty page list:\n");
   1553 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1554 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1555 		(*pr)("\n\tfull page list:\n");
   1556 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1557 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1558 		(*pr)("\n\tpartial-page list:\n");
   1559 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1560 
   1561 	if (pp->pr_curpage == NULL)
   1562 		(*pr)("\tno current page\n");
   1563 	else
   1564 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1565 
   1566  skip_pagelist:
   1567 	if (print_log == 0)
   1568 		goto skip_log;
   1569 
   1570 	(*pr)("\n");
   1571 
   1572  skip_log:
   1573 
   1574 #define PR_GROUPLIST(pcg)						\
   1575 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1576 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1577 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1578 		    POOL_PADDR_INVALID) {				\
   1579 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1580 			    pcg->pcg_objects[i].pcgo_va,		\
   1581 			    (unsigned long long)			\
   1582 			    pcg->pcg_objects[i].pcgo_pa);		\
   1583 		} else {						\
   1584 			(*pr)("\t\t\t%p\n",				\
   1585 			    pcg->pcg_objects[i].pcgo_va);		\
   1586 		}							\
   1587 	}
   1588 
   1589 	if (pc != NULL) {
   1590 		cpuhit = 0;
   1591 		cpumiss = 0;
   1592 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1593 			if ((cc = pc->pc_cpus[i]) == NULL)
   1594 				continue;
   1595 			cpuhit += cc->cc_hits;
   1596 			cpumiss += cc->cc_misses;
   1597 		}
   1598 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1599 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1600 		    pc->pc_hits, pc->pc_misses);
   1601 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1602 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1603 		    pc->pc_contended);
   1604 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1605 		    pc->pc_nempty, pc->pc_nfull);
   1606 		if (print_cache) {
   1607 			(*pr)("\tfull cache groups:\n");
   1608 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1609 			    pcg = pcg->pcg_next) {
   1610 				PR_GROUPLIST(pcg);
   1611 			}
   1612 			(*pr)("\tempty cache groups:\n");
   1613 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1614 			    pcg = pcg->pcg_next) {
   1615 				PR_GROUPLIST(pcg);
   1616 			}
   1617 		}
   1618 	}
   1619 #undef PR_GROUPLIST
   1620 }
   1621 
   1622 static int
   1623 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1624 {
   1625 	struct pool_item *pi;
   1626 	void *page;
   1627 	int n;
   1628 
   1629 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1630 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1631 		if (page != ph->ph_page &&
   1632 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1633 			if (label != NULL)
   1634 				printf("%s: ", label);
   1635 			printf("pool(%p:%s): page inconsistency: page %p;"
   1636 			       " at page head addr %p (p %p)\n", pp,
   1637 				pp->pr_wchan, ph->ph_page,
   1638 				ph, page);
   1639 			return 1;
   1640 		}
   1641 	}
   1642 
   1643 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1644 		return 0;
   1645 
   1646 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1647 	     pi != NULL;
   1648 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1649 
   1650 #ifdef DIAGNOSTIC
   1651 		if (pi->pi_magic != PI_MAGIC) {
   1652 			if (label != NULL)
   1653 				printf("%s: ", label);
   1654 			printf("pool(%s): free list modified: magic=%x;"
   1655 			       " page %p; item ordinal %d; addr %p\n",
   1656 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1657 				n, pi);
   1658 			panic("pool");
   1659 		}
   1660 #endif
   1661 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1662 			continue;
   1663 		}
   1664 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1665 		if (page == ph->ph_page)
   1666 			continue;
   1667 
   1668 		if (label != NULL)
   1669 			printf("%s: ", label);
   1670 		printf("pool(%p:%s): page inconsistency: page %p;"
   1671 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1672 			pp->pr_wchan, ph->ph_page,
   1673 			n, pi, page);
   1674 		return 1;
   1675 	}
   1676 	return 0;
   1677 }
   1678 
   1679 
   1680 int
   1681 pool_chk(struct pool *pp, const char *label)
   1682 {
   1683 	struct pool_item_header *ph;
   1684 	int r = 0;
   1685 
   1686 	mutex_enter(&pp->pr_lock);
   1687 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1688 		r = pool_chk_page(pp, label, ph);
   1689 		if (r) {
   1690 			goto out;
   1691 		}
   1692 	}
   1693 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1694 		r = pool_chk_page(pp, label, ph);
   1695 		if (r) {
   1696 			goto out;
   1697 		}
   1698 	}
   1699 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1700 		r = pool_chk_page(pp, label, ph);
   1701 		if (r) {
   1702 			goto out;
   1703 		}
   1704 	}
   1705 
   1706 out:
   1707 	mutex_exit(&pp->pr_lock);
   1708 	return (r);
   1709 }
   1710 
   1711 /*
   1712  * pool_cache_init:
   1713  *
   1714  *	Initialize a pool cache.
   1715  */
   1716 pool_cache_t
   1717 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1718     const char *wchan, struct pool_allocator *palloc, int ipl,
   1719     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1720 {
   1721 	pool_cache_t pc;
   1722 
   1723 	pc = pool_get(&cache_pool, PR_WAITOK);
   1724 	if (pc == NULL)
   1725 		return NULL;
   1726 
   1727 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1728 	   palloc, ipl, ctor, dtor, arg);
   1729 
   1730 	return pc;
   1731 }
   1732 
   1733 /*
   1734  * pool_cache_bootstrap:
   1735  *
   1736  *	Kernel-private version of pool_cache_init().  The caller
   1737  *	provides initial storage.
   1738  */
   1739 void
   1740 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1741     u_int align_offset, u_int flags, const char *wchan,
   1742     struct pool_allocator *palloc, int ipl,
   1743     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1744     void *arg)
   1745 {
   1746 	CPU_INFO_ITERATOR cii;
   1747 	pool_cache_t pc1;
   1748 	struct cpu_info *ci;
   1749 	struct pool *pp;
   1750 
   1751 	pp = &pc->pc_pool;
   1752 	if (palloc == NULL && ipl == IPL_NONE) {
   1753 		if (size > PAGE_SIZE) {
   1754 			int bigidx = pool_bigidx(size);
   1755 
   1756 			palloc = &pool_allocator_big[bigidx];
   1757 		} else
   1758 			palloc = &pool_allocator_nointr;
   1759 	}
   1760 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1761 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1762 
   1763 	if (ctor == NULL) {
   1764 		ctor = (int (*)(void *, void *, int))nullop;
   1765 	}
   1766 	if (dtor == NULL) {
   1767 		dtor = (void (*)(void *, void *))nullop;
   1768 	}
   1769 
   1770 	pc->pc_emptygroups = NULL;
   1771 	pc->pc_fullgroups = NULL;
   1772 	pc->pc_partgroups = NULL;
   1773 	pc->pc_ctor = ctor;
   1774 	pc->pc_dtor = dtor;
   1775 	pc->pc_arg  = arg;
   1776 	pc->pc_hits  = 0;
   1777 	pc->pc_misses = 0;
   1778 	pc->pc_nempty = 0;
   1779 	pc->pc_npart = 0;
   1780 	pc->pc_nfull = 0;
   1781 	pc->pc_contended = 0;
   1782 	pc->pc_refcnt = 0;
   1783 	pc->pc_freecheck = NULL;
   1784 
   1785 	if ((flags & PR_LARGECACHE) != 0) {
   1786 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1787 		pc->pc_pcgpool = &pcg_large_pool;
   1788 	} else {
   1789 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1790 		pc->pc_pcgpool = &pcg_normal_pool;
   1791 	}
   1792 
   1793 	/* Allocate per-CPU caches. */
   1794 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1795 	pc->pc_ncpu = 0;
   1796 	if (ncpu < 2) {
   1797 		/* XXX For sparc: boot CPU is not attached yet. */
   1798 		pool_cache_cpu_init1(curcpu(), pc);
   1799 	} else {
   1800 		for (CPU_INFO_FOREACH(cii, ci)) {
   1801 			pool_cache_cpu_init1(ci, pc);
   1802 		}
   1803 	}
   1804 
   1805 	/* Add to list of all pools. */
   1806 	if (__predict_true(!cold))
   1807 		mutex_enter(&pool_head_lock);
   1808 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1809 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1810 			break;
   1811 	}
   1812 	if (pc1 == NULL)
   1813 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1814 	else
   1815 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1816 	if (__predict_true(!cold))
   1817 		mutex_exit(&pool_head_lock);
   1818 
   1819 	membar_sync();
   1820 	pp->pr_cache = pc;
   1821 }
   1822 
   1823 /*
   1824  * pool_cache_destroy:
   1825  *
   1826  *	Destroy a pool cache.
   1827  */
   1828 void
   1829 pool_cache_destroy(pool_cache_t pc)
   1830 {
   1831 
   1832 	pool_cache_bootstrap_destroy(pc);
   1833 	pool_put(&cache_pool, pc);
   1834 }
   1835 
   1836 /*
   1837  * pool_cache_bootstrap_destroy:
   1838  *
   1839  *	Destroy a pool cache.
   1840  */
   1841 void
   1842 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1843 {
   1844 	struct pool *pp = &pc->pc_pool;
   1845 	u_int i;
   1846 
   1847 	/* Remove it from the global list. */
   1848 	mutex_enter(&pool_head_lock);
   1849 	while (pc->pc_refcnt != 0)
   1850 		cv_wait(&pool_busy, &pool_head_lock);
   1851 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1852 	mutex_exit(&pool_head_lock);
   1853 
   1854 	/* First, invalidate the entire cache. */
   1855 	pool_cache_invalidate(pc);
   1856 
   1857 	/* Disassociate it from the pool. */
   1858 	mutex_enter(&pp->pr_lock);
   1859 	pp->pr_cache = NULL;
   1860 	mutex_exit(&pp->pr_lock);
   1861 
   1862 	/* Destroy per-CPU data */
   1863 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1864 		pool_cache_invalidate_cpu(pc, i);
   1865 
   1866 	/* Finally, destroy it. */
   1867 	mutex_destroy(&pc->pc_lock);
   1868 	pool_destroy(pp);
   1869 }
   1870 
   1871 /*
   1872  * pool_cache_cpu_init1:
   1873  *
   1874  *	Called for each pool_cache whenever a new CPU is attached.
   1875  */
   1876 static void
   1877 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1878 {
   1879 	pool_cache_cpu_t *cc;
   1880 	int index;
   1881 
   1882 	index = ci->ci_index;
   1883 
   1884 	KASSERT(index < __arraycount(pc->pc_cpus));
   1885 
   1886 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1887 		KASSERT(cc->cc_cpuindex == index);
   1888 		return;
   1889 	}
   1890 
   1891 	/*
   1892 	 * The first CPU is 'free'.  This needs to be the case for
   1893 	 * bootstrap - we may not be able to allocate yet.
   1894 	 */
   1895 	if (pc->pc_ncpu == 0) {
   1896 		cc = &pc->pc_cpu0;
   1897 		pc->pc_ncpu = 1;
   1898 	} else {
   1899 		mutex_enter(&pc->pc_lock);
   1900 		pc->pc_ncpu++;
   1901 		mutex_exit(&pc->pc_lock);
   1902 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1903 	}
   1904 
   1905 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1906 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1907 	cc->cc_cache = pc;
   1908 	cc->cc_cpuindex = index;
   1909 	cc->cc_hits = 0;
   1910 	cc->cc_misses = 0;
   1911 	cc->cc_current = __UNCONST(&pcg_dummy);
   1912 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1913 
   1914 	pc->pc_cpus[index] = cc;
   1915 }
   1916 
   1917 /*
   1918  * pool_cache_cpu_init:
   1919  *
   1920  *	Called whenever a new CPU is attached.
   1921  */
   1922 void
   1923 pool_cache_cpu_init(struct cpu_info *ci)
   1924 {
   1925 	pool_cache_t pc;
   1926 
   1927 	mutex_enter(&pool_head_lock);
   1928 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1929 		pc->pc_refcnt++;
   1930 		mutex_exit(&pool_head_lock);
   1931 
   1932 		pool_cache_cpu_init1(ci, pc);
   1933 
   1934 		mutex_enter(&pool_head_lock);
   1935 		pc->pc_refcnt--;
   1936 		cv_broadcast(&pool_busy);
   1937 	}
   1938 	mutex_exit(&pool_head_lock);
   1939 }
   1940 
   1941 /*
   1942  * pool_cache_reclaim:
   1943  *
   1944  *	Reclaim memory from a pool cache.
   1945  */
   1946 bool
   1947 pool_cache_reclaim(pool_cache_t pc)
   1948 {
   1949 
   1950 	return pool_reclaim(&pc->pc_pool);
   1951 }
   1952 
   1953 static void
   1954 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1955 {
   1956 
   1957 	(*pc->pc_dtor)(pc->pc_arg, object);
   1958 	pool_put(&pc->pc_pool, object);
   1959 }
   1960 
   1961 /*
   1962  * pool_cache_destruct_object:
   1963  *
   1964  *	Force destruction of an object and its release back into
   1965  *	the pool.
   1966  */
   1967 void
   1968 pool_cache_destruct_object(pool_cache_t pc, void *object)
   1969 {
   1970 
   1971 	FREECHECK_IN(&pc->pc_freecheck, object);
   1972 
   1973 	pool_cache_destruct_object1(pc, object);
   1974 }
   1975 
   1976 /*
   1977  * pool_cache_invalidate_groups:
   1978  *
   1979  *	Invalidate a chain of groups and destruct all objects.
   1980  */
   1981 static void
   1982 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1983 {
   1984 	void *object;
   1985 	pcg_t *next;
   1986 	int i;
   1987 
   1988 	for (; pcg != NULL; pcg = next) {
   1989 		next = pcg->pcg_next;
   1990 
   1991 		for (i = 0; i < pcg->pcg_avail; i++) {
   1992 			object = pcg->pcg_objects[i].pcgo_va;
   1993 			pool_cache_destruct_object1(pc, object);
   1994 		}
   1995 
   1996 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1997 			pool_put(&pcg_large_pool, pcg);
   1998 		} else {
   1999 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2000 			pool_put(&pcg_normal_pool, pcg);
   2001 		}
   2002 	}
   2003 }
   2004 
   2005 /*
   2006  * pool_cache_invalidate:
   2007  *
   2008  *	Invalidate a pool cache (destruct and release all of the
   2009  *	cached objects).  Does not reclaim objects from the pool.
   2010  *
   2011  *	Note: For pool caches that provide constructed objects, there
   2012  *	is an assumption that another level of synchronization is occurring
   2013  *	between the input to the constructor and the cache invalidation.
   2014  *
   2015  *	Invalidation is a costly process and should not be called from
   2016  *	interrupt context.
   2017  */
   2018 void
   2019 pool_cache_invalidate(pool_cache_t pc)
   2020 {
   2021 	uint64_t where;
   2022 	pcg_t *full, *empty, *part;
   2023 
   2024 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2025 
   2026 	if (ncpu < 2 || !mp_online) {
   2027 		/*
   2028 		 * We might be called early enough in the boot process
   2029 		 * for the CPU data structures to not be fully initialized.
   2030 		 * In this case, transfer the content of the local CPU's
   2031 		 * cache back into global cache as only this CPU is currently
   2032 		 * running.
   2033 		 */
   2034 		pool_cache_transfer(pc);
   2035 	} else {
   2036 		/*
   2037 		 * Signal all CPUs that they must transfer their local
   2038 		 * cache back to the global pool then wait for the xcall to
   2039 		 * complete.
   2040 		 */
   2041 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2042 		    pc, NULL);
   2043 		xc_wait(where);
   2044 	}
   2045 
   2046 	/* Empty pool caches, then invalidate objects */
   2047 	mutex_enter(&pc->pc_lock);
   2048 	full = pc->pc_fullgroups;
   2049 	empty = pc->pc_emptygroups;
   2050 	part = pc->pc_partgroups;
   2051 	pc->pc_fullgroups = NULL;
   2052 	pc->pc_emptygroups = NULL;
   2053 	pc->pc_partgroups = NULL;
   2054 	pc->pc_nfull = 0;
   2055 	pc->pc_nempty = 0;
   2056 	pc->pc_npart = 0;
   2057 	mutex_exit(&pc->pc_lock);
   2058 
   2059 	pool_cache_invalidate_groups(pc, full);
   2060 	pool_cache_invalidate_groups(pc, empty);
   2061 	pool_cache_invalidate_groups(pc, part);
   2062 }
   2063 
   2064 /*
   2065  * pool_cache_invalidate_cpu:
   2066  *
   2067  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2068  *	identified by its associated index.
   2069  *	It is caller's responsibility to ensure that no operation is
   2070  *	taking place on this pool cache while doing this invalidation.
   2071  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2072  *	pool cached objects from a CPU different from the one currently running
   2073  *	may result in an undefined behaviour.
   2074  */
   2075 static void
   2076 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2077 {
   2078 	pool_cache_cpu_t *cc;
   2079 	pcg_t *pcg;
   2080 
   2081 	if ((cc = pc->pc_cpus[index]) == NULL)
   2082 		return;
   2083 
   2084 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2085 		pcg->pcg_next = NULL;
   2086 		pool_cache_invalidate_groups(pc, pcg);
   2087 	}
   2088 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2089 		pcg->pcg_next = NULL;
   2090 		pool_cache_invalidate_groups(pc, pcg);
   2091 	}
   2092 	if (cc != &pc->pc_cpu0)
   2093 		pool_put(&cache_cpu_pool, cc);
   2094 
   2095 }
   2096 
   2097 void
   2098 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2099 {
   2100 
   2101 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2102 }
   2103 
   2104 void
   2105 pool_cache_setlowat(pool_cache_t pc, int n)
   2106 {
   2107 
   2108 	pool_setlowat(&pc->pc_pool, n);
   2109 }
   2110 
   2111 void
   2112 pool_cache_sethiwat(pool_cache_t pc, int n)
   2113 {
   2114 
   2115 	pool_sethiwat(&pc->pc_pool, n);
   2116 }
   2117 
   2118 void
   2119 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2120 {
   2121 
   2122 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2123 }
   2124 
   2125 static bool __noinline
   2126 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2127 		    paddr_t *pap, int flags)
   2128 {
   2129 	pcg_t *pcg, *cur;
   2130 	uint64_t ncsw;
   2131 	pool_cache_t pc;
   2132 	void *object;
   2133 
   2134 	KASSERT(cc->cc_current->pcg_avail == 0);
   2135 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2136 
   2137 	pc = cc->cc_cache;
   2138 	cc->cc_misses++;
   2139 
   2140 	/*
   2141 	 * Nothing was available locally.  Try and grab a group
   2142 	 * from the cache.
   2143 	 */
   2144 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2145 		ncsw = curlwp->l_ncsw;
   2146 		mutex_enter(&pc->pc_lock);
   2147 		pc->pc_contended++;
   2148 
   2149 		/*
   2150 		 * If we context switched while locking, then
   2151 		 * our view of the per-CPU data is invalid:
   2152 		 * retry.
   2153 		 */
   2154 		if (curlwp->l_ncsw != ncsw) {
   2155 			mutex_exit(&pc->pc_lock);
   2156 			return true;
   2157 		}
   2158 	}
   2159 
   2160 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2161 		/*
   2162 		 * If there's a full group, release our empty
   2163 		 * group back to the cache.  Install the full
   2164 		 * group as cc_current and return.
   2165 		 */
   2166 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2167 			KASSERT(cur->pcg_avail == 0);
   2168 			cur->pcg_next = pc->pc_emptygroups;
   2169 			pc->pc_emptygroups = cur;
   2170 			pc->pc_nempty++;
   2171 		}
   2172 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2173 		cc->cc_current = pcg;
   2174 		pc->pc_fullgroups = pcg->pcg_next;
   2175 		pc->pc_hits++;
   2176 		pc->pc_nfull--;
   2177 		mutex_exit(&pc->pc_lock);
   2178 		return true;
   2179 	}
   2180 
   2181 	/*
   2182 	 * Nothing available locally or in cache.  Take the slow
   2183 	 * path: fetch a new object from the pool and construct
   2184 	 * it.
   2185 	 */
   2186 	pc->pc_misses++;
   2187 	mutex_exit(&pc->pc_lock);
   2188 	splx(s);
   2189 
   2190 	object = pool_get(&pc->pc_pool, flags);
   2191 	*objectp = object;
   2192 	if (__predict_false(object == NULL)) {
   2193 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2194 		return false;
   2195 	}
   2196 
   2197 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2198 		pool_put(&pc->pc_pool, object);
   2199 		*objectp = NULL;
   2200 		return false;
   2201 	}
   2202 
   2203 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2204 	    (pc->pc_pool.pr_align - 1)) == 0);
   2205 
   2206 	if (pap != NULL) {
   2207 #ifdef POOL_VTOPHYS
   2208 		*pap = POOL_VTOPHYS(object);
   2209 #else
   2210 		*pap = POOL_PADDR_INVALID;
   2211 #endif
   2212 	}
   2213 
   2214 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2215 	pool_redzone_fill(&pc->pc_pool, object);
   2216 	return false;
   2217 }
   2218 
   2219 /*
   2220  * pool_cache_get{,_paddr}:
   2221  *
   2222  *	Get an object from a pool cache (optionally returning
   2223  *	the physical address of the object).
   2224  */
   2225 void *
   2226 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2227 {
   2228 	pool_cache_cpu_t *cc;
   2229 	pcg_t *pcg;
   2230 	void *object;
   2231 	int s;
   2232 
   2233 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2234 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2235 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2236 	    __func__, pc->pc_pool.pr_wchan);
   2237 
   2238 	if (flags & PR_WAITOK) {
   2239 		ASSERT_SLEEPABLE();
   2240 	}
   2241 
   2242 	/* Lock out interrupts and disable preemption. */
   2243 	s = splvm();
   2244 	while (/* CONSTCOND */ true) {
   2245 		/* Try and allocate an object from the current group. */
   2246 		cc = pc->pc_cpus[curcpu()->ci_index];
   2247 		KASSERT(cc->cc_cache == pc);
   2248 	 	pcg = cc->cc_current;
   2249 		if (__predict_true(pcg->pcg_avail > 0)) {
   2250 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2251 			if (__predict_false(pap != NULL))
   2252 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2253 #if defined(DIAGNOSTIC)
   2254 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2255 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2256 			KASSERT(object != NULL);
   2257 #endif
   2258 			cc->cc_hits++;
   2259 			splx(s);
   2260 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2261 			pool_redzone_fill(&pc->pc_pool, object);
   2262 			return object;
   2263 		}
   2264 
   2265 		/*
   2266 		 * That failed.  If the previous group isn't empty, swap
   2267 		 * it with the current group and allocate from there.
   2268 		 */
   2269 		pcg = cc->cc_previous;
   2270 		if (__predict_true(pcg->pcg_avail > 0)) {
   2271 			cc->cc_previous = cc->cc_current;
   2272 			cc->cc_current = pcg;
   2273 			continue;
   2274 		}
   2275 
   2276 		/*
   2277 		 * Can't allocate from either group: try the slow path.
   2278 		 * If get_slow() allocated an object for us, or if
   2279 		 * no more objects are available, it will return false.
   2280 		 * Otherwise, we need to retry.
   2281 		 */
   2282 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2283 			break;
   2284 	}
   2285 
   2286 	/*
   2287 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2288 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2289 	 * constructor fails.
   2290 	 */
   2291 	return object;
   2292 }
   2293 
   2294 static bool __noinline
   2295 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2296 {
   2297 	struct lwp *l = curlwp;
   2298 	pcg_t *pcg, *cur;
   2299 	uint64_t ncsw;
   2300 	pool_cache_t pc;
   2301 
   2302 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2303 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2304 
   2305 	pc = cc->cc_cache;
   2306 	pcg = NULL;
   2307 	cc->cc_misses++;
   2308 	ncsw = l->l_ncsw;
   2309 
   2310 	/*
   2311 	 * If there are no empty groups in the cache then allocate one
   2312 	 * while still unlocked.
   2313 	 */
   2314 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2315 		if (__predict_true(!pool_cache_disable)) {
   2316 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2317 		}
   2318 		/*
   2319 		 * If pool_get() blocked, then our view of
   2320 		 * the per-CPU data is invalid: retry.
   2321 		 */
   2322 		if (__predict_false(l->l_ncsw != ncsw)) {
   2323 			if (pcg != NULL) {
   2324 				pool_put(pc->pc_pcgpool, pcg);
   2325 			}
   2326 			return true;
   2327 		}
   2328 		if (__predict_true(pcg != NULL)) {
   2329 			pcg->pcg_avail = 0;
   2330 			pcg->pcg_size = pc->pc_pcgsize;
   2331 		}
   2332 	}
   2333 
   2334 	/* Lock the cache. */
   2335 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2336 		mutex_enter(&pc->pc_lock);
   2337 		pc->pc_contended++;
   2338 
   2339 		/*
   2340 		 * If we context switched while locking, then our view of
   2341 		 * the per-CPU data is invalid: retry.
   2342 		 */
   2343 		if (__predict_false(l->l_ncsw != ncsw)) {
   2344 			mutex_exit(&pc->pc_lock);
   2345 			if (pcg != NULL) {
   2346 				pool_put(pc->pc_pcgpool, pcg);
   2347 			}
   2348 			return true;
   2349 		}
   2350 	}
   2351 
   2352 	/* If there are no empty groups in the cache then allocate one. */
   2353 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2354 		pcg = pc->pc_emptygroups;
   2355 		pc->pc_emptygroups = pcg->pcg_next;
   2356 		pc->pc_nempty--;
   2357 	}
   2358 
   2359 	/*
   2360 	 * If there's a empty group, release our full group back
   2361 	 * to the cache.  Install the empty group to the local CPU
   2362 	 * and return.
   2363 	 */
   2364 	if (pcg != NULL) {
   2365 		KASSERT(pcg->pcg_avail == 0);
   2366 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2367 			cc->cc_previous = pcg;
   2368 		} else {
   2369 			cur = cc->cc_current;
   2370 			if (__predict_true(cur != &pcg_dummy)) {
   2371 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2372 				cur->pcg_next = pc->pc_fullgroups;
   2373 				pc->pc_fullgroups = cur;
   2374 				pc->pc_nfull++;
   2375 			}
   2376 			cc->cc_current = pcg;
   2377 		}
   2378 		pc->pc_hits++;
   2379 		mutex_exit(&pc->pc_lock);
   2380 		return true;
   2381 	}
   2382 
   2383 	/*
   2384 	 * Nothing available locally or in cache, and we didn't
   2385 	 * allocate an empty group.  Take the slow path and destroy
   2386 	 * the object here and now.
   2387 	 */
   2388 	pc->pc_misses++;
   2389 	mutex_exit(&pc->pc_lock);
   2390 	splx(s);
   2391 	pool_cache_destruct_object(pc, object);
   2392 
   2393 	return false;
   2394 }
   2395 
   2396 /*
   2397  * pool_cache_put{,_paddr}:
   2398  *
   2399  *	Put an object back to the pool cache (optionally caching the
   2400  *	physical address of the object).
   2401  */
   2402 void
   2403 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2404 {
   2405 	pool_cache_cpu_t *cc;
   2406 	pcg_t *pcg;
   2407 	int s;
   2408 
   2409 	KASSERT(object != NULL);
   2410 	pool_redzone_check(&pc->pc_pool, object);
   2411 	FREECHECK_IN(&pc->pc_freecheck, object);
   2412 
   2413 	/* Lock out interrupts and disable preemption. */
   2414 	s = splvm();
   2415 	while (/* CONSTCOND */ true) {
   2416 		/* If the current group isn't full, release it there. */
   2417 		cc = pc->pc_cpus[curcpu()->ci_index];
   2418 		KASSERT(cc->cc_cache == pc);
   2419 	 	pcg = cc->cc_current;
   2420 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2421 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2422 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2423 			pcg->pcg_avail++;
   2424 			cc->cc_hits++;
   2425 			splx(s);
   2426 			return;
   2427 		}
   2428 
   2429 		/*
   2430 		 * That failed.  If the previous group isn't full, swap
   2431 		 * it with the current group and try again.
   2432 		 */
   2433 		pcg = cc->cc_previous;
   2434 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2435 			cc->cc_previous = cc->cc_current;
   2436 			cc->cc_current = pcg;
   2437 			continue;
   2438 		}
   2439 
   2440 		/*
   2441 		 * Can't free to either group: try the slow path.
   2442 		 * If put_slow() releases the object for us, it
   2443 		 * will return false.  Otherwise we need to retry.
   2444 		 */
   2445 		if (!pool_cache_put_slow(cc, s, object))
   2446 			break;
   2447 	}
   2448 }
   2449 
   2450 /*
   2451  * pool_cache_transfer:
   2452  *
   2453  *	Transfer objects from the per-CPU cache to the global cache.
   2454  *	Run within a cross-call thread.
   2455  */
   2456 static void
   2457 pool_cache_transfer(pool_cache_t pc)
   2458 {
   2459 	pool_cache_cpu_t *cc;
   2460 	pcg_t *prev, *cur, **list;
   2461 	int s;
   2462 
   2463 	s = splvm();
   2464 	mutex_enter(&pc->pc_lock);
   2465 	cc = pc->pc_cpus[curcpu()->ci_index];
   2466 	cur = cc->cc_current;
   2467 	cc->cc_current = __UNCONST(&pcg_dummy);
   2468 	prev = cc->cc_previous;
   2469 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2470 	if (cur != &pcg_dummy) {
   2471 		if (cur->pcg_avail == cur->pcg_size) {
   2472 			list = &pc->pc_fullgroups;
   2473 			pc->pc_nfull++;
   2474 		} else if (cur->pcg_avail == 0) {
   2475 			list = &pc->pc_emptygroups;
   2476 			pc->pc_nempty++;
   2477 		} else {
   2478 			list = &pc->pc_partgroups;
   2479 			pc->pc_npart++;
   2480 		}
   2481 		cur->pcg_next = *list;
   2482 		*list = cur;
   2483 	}
   2484 	if (prev != &pcg_dummy) {
   2485 		if (prev->pcg_avail == prev->pcg_size) {
   2486 			list = &pc->pc_fullgroups;
   2487 			pc->pc_nfull++;
   2488 		} else if (prev->pcg_avail == 0) {
   2489 			list = &pc->pc_emptygroups;
   2490 			pc->pc_nempty++;
   2491 		} else {
   2492 			list = &pc->pc_partgroups;
   2493 			pc->pc_npart++;
   2494 		}
   2495 		prev->pcg_next = *list;
   2496 		*list = prev;
   2497 	}
   2498 	mutex_exit(&pc->pc_lock);
   2499 	splx(s);
   2500 }
   2501 
   2502 /*
   2503  * Pool backend allocators.
   2504  *
   2505  * Each pool has a backend allocator that handles allocation, deallocation,
   2506  * and any additional draining that might be needed.
   2507  *
   2508  * We provide two standard allocators:
   2509  *
   2510  *	pool_allocator_kmem - the default when no allocator is specified
   2511  *
   2512  *	pool_allocator_nointr - used for pools that will not be accessed
   2513  *	in interrupt context.
   2514  */
   2515 void	*pool_page_alloc(struct pool *, int);
   2516 void	pool_page_free(struct pool *, void *);
   2517 
   2518 #ifdef POOL_SUBPAGE
   2519 struct pool_allocator pool_allocator_kmem_fullpage = {
   2520 	.pa_alloc = pool_page_alloc,
   2521 	.pa_free = pool_page_free,
   2522 	.pa_pagesz = 0
   2523 };
   2524 #else
   2525 struct pool_allocator pool_allocator_kmem = {
   2526 	.pa_alloc = pool_page_alloc,
   2527 	.pa_free = pool_page_free,
   2528 	.pa_pagesz = 0
   2529 };
   2530 #endif
   2531 
   2532 #ifdef POOL_SUBPAGE
   2533 struct pool_allocator pool_allocator_nointr_fullpage = {
   2534 	.pa_alloc = pool_page_alloc,
   2535 	.pa_free = pool_page_free,
   2536 	.pa_pagesz = 0
   2537 };
   2538 #else
   2539 struct pool_allocator pool_allocator_nointr = {
   2540 	.pa_alloc = pool_page_alloc,
   2541 	.pa_free = pool_page_free,
   2542 	.pa_pagesz = 0
   2543 };
   2544 #endif
   2545 
   2546 #ifdef POOL_SUBPAGE
   2547 void	*pool_subpage_alloc(struct pool *, int);
   2548 void	pool_subpage_free(struct pool *, void *);
   2549 
   2550 struct pool_allocator pool_allocator_kmem = {
   2551 	.pa_alloc = pool_subpage_alloc,
   2552 	.pa_free = pool_subpage_free,
   2553 	.pa_pagesz = POOL_SUBPAGE
   2554 };
   2555 
   2556 struct pool_allocator pool_allocator_nointr = {
   2557 	.pa_alloc = pool_subpage_alloc,
   2558 	.pa_free = pool_subpage_free,
   2559 	.pa_pagesz = POOL_SUBPAGE
   2560 };
   2561 #endif /* POOL_SUBPAGE */
   2562 
   2563 struct pool_allocator pool_allocator_big[] = {
   2564 	{
   2565 		.pa_alloc = pool_page_alloc,
   2566 		.pa_free = pool_page_free,
   2567 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2568 	},
   2569 	{
   2570 		.pa_alloc = pool_page_alloc,
   2571 		.pa_free = pool_page_free,
   2572 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2573 	},
   2574 	{
   2575 		.pa_alloc = pool_page_alloc,
   2576 		.pa_free = pool_page_free,
   2577 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2578 	},
   2579 	{
   2580 		.pa_alloc = pool_page_alloc,
   2581 		.pa_free = pool_page_free,
   2582 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2583 	},
   2584 	{
   2585 		.pa_alloc = pool_page_alloc,
   2586 		.pa_free = pool_page_free,
   2587 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2588 	},
   2589 	{
   2590 		.pa_alloc = pool_page_alloc,
   2591 		.pa_free = pool_page_free,
   2592 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2593 	},
   2594 	{
   2595 		.pa_alloc = pool_page_alloc,
   2596 		.pa_free = pool_page_free,
   2597 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2598 	},
   2599 	{
   2600 		.pa_alloc = pool_page_alloc,
   2601 		.pa_free = pool_page_free,
   2602 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2603 	}
   2604 };
   2605 
   2606 static int
   2607 pool_bigidx(size_t size)
   2608 {
   2609 	int i;
   2610 
   2611 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2612 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2613 			return i;
   2614 	}
   2615 	panic("pool item size %zu too large, use a custom allocator", size);
   2616 }
   2617 
   2618 static void *
   2619 pool_allocator_alloc(struct pool *pp, int flags)
   2620 {
   2621 	struct pool_allocator *pa = pp->pr_alloc;
   2622 	void *res;
   2623 
   2624 	res = (*pa->pa_alloc)(pp, flags);
   2625 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2626 		/*
   2627 		 * We only run the drain hook here if PR_NOWAIT.
   2628 		 * In other cases, the hook will be run in
   2629 		 * pool_reclaim().
   2630 		 */
   2631 		if (pp->pr_drain_hook != NULL) {
   2632 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2633 			res = (*pa->pa_alloc)(pp, flags);
   2634 		}
   2635 	}
   2636 	return res;
   2637 }
   2638 
   2639 static void
   2640 pool_allocator_free(struct pool *pp, void *v)
   2641 {
   2642 	struct pool_allocator *pa = pp->pr_alloc;
   2643 
   2644 	(*pa->pa_free)(pp, v);
   2645 }
   2646 
   2647 void *
   2648 pool_page_alloc(struct pool *pp, int flags)
   2649 {
   2650 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2651 	vmem_addr_t va;
   2652 	int ret;
   2653 
   2654 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2655 	    vflags | VM_INSTANTFIT, &va);
   2656 
   2657 	return ret ? NULL : (void *)va;
   2658 }
   2659 
   2660 void
   2661 pool_page_free(struct pool *pp, void *v)
   2662 {
   2663 
   2664 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2665 }
   2666 
   2667 static void *
   2668 pool_page_alloc_meta(struct pool *pp, int flags)
   2669 {
   2670 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2671 	vmem_addr_t va;
   2672 	int ret;
   2673 
   2674 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2675 	    vflags | VM_INSTANTFIT, &va);
   2676 
   2677 	return ret ? NULL : (void *)va;
   2678 }
   2679 
   2680 static void
   2681 pool_page_free_meta(struct pool *pp, void *v)
   2682 {
   2683 
   2684 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2685 }
   2686 
   2687 #ifdef POOL_REDZONE
   2688 #if defined(_LP64)
   2689 # define PRIME 0x9e37fffffffc0000UL
   2690 #else /* defined(_LP64) */
   2691 # define PRIME 0x9e3779b1
   2692 #endif /* defined(_LP64) */
   2693 #define STATIC_BYTE	0xFE
   2694 CTASSERT(POOL_REDZONE_SIZE > 1);
   2695 
   2696 static inline uint8_t
   2697 pool_pattern_generate(const void *p)
   2698 {
   2699 	return (uint8_t)(((uintptr_t)p) * PRIME
   2700 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2701 }
   2702 
   2703 static void
   2704 pool_redzone_init(struct pool *pp, size_t requested_size)
   2705 {
   2706 	size_t nsz;
   2707 
   2708 	if (pp->pr_roflags & PR_NOTOUCH) {
   2709 		pp->pr_reqsize = 0;
   2710 		pp->pr_redzone = false;
   2711 		return;
   2712 	}
   2713 
   2714 	/*
   2715 	 * We may have extended the requested size earlier; check if
   2716 	 * there's naturally space in the padding for a red zone.
   2717 	 */
   2718 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2719 		pp->pr_reqsize = requested_size;
   2720 		pp->pr_redzone = true;
   2721 		return;
   2722 	}
   2723 
   2724 	/*
   2725 	 * No space in the natural padding; check if we can extend a
   2726 	 * bit the size of the pool.
   2727 	 */
   2728 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2729 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2730 		/* Ok, we can */
   2731 		pp->pr_size = nsz;
   2732 		pp->pr_reqsize = requested_size;
   2733 		pp->pr_redzone = true;
   2734 	} else {
   2735 		/* No space for a red zone... snif :'( */
   2736 		pp->pr_reqsize = 0;
   2737 		pp->pr_redzone = false;
   2738 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2739 	}
   2740 }
   2741 
   2742 static void
   2743 pool_redzone_fill(struct pool *pp, void *p)
   2744 {
   2745 	uint8_t *cp, pat;
   2746 	const uint8_t *ep;
   2747 
   2748 	if (!pp->pr_redzone)
   2749 		return;
   2750 
   2751 	cp = (uint8_t *)p + pp->pr_reqsize;
   2752 	ep = cp + POOL_REDZONE_SIZE;
   2753 
   2754 	/*
   2755 	 * We really don't want the first byte of the red zone to be '\0';
   2756 	 * an off-by-one in a string may not be properly detected.
   2757 	 */
   2758 	pat = pool_pattern_generate(cp);
   2759 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2760 	cp++;
   2761 
   2762 	while (cp < ep) {
   2763 		*cp = pool_pattern_generate(cp);
   2764 		cp++;
   2765 	}
   2766 }
   2767 
   2768 static void
   2769 pool_redzone_check(struct pool *pp, void *p)
   2770 {
   2771 	uint8_t *cp, pat, expected;
   2772 	const uint8_t *ep;
   2773 
   2774 	if (!pp->pr_redzone)
   2775 		return;
   2776 
   2777 	cp = (uint8_t *)p + pp->pr_reqsize;
   2778 	ep = cp + POOL_REDZONE_SIZE;
   2779 
   2780 	pat = pool_pattern_generate(cp);
   2781 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2782 	if (expected != *cp) {
   2783 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2784 		   __func__, cp, *cp, expected);
   2785 	}
   2786 	cp++;
   2787 
   2788 	while (cp < ep) {
   2789 		expected = pool_pattern_generate(cp);
   2790 		if (*cp != expected) {
   2791 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2792 			   __func__, cp, *cp, expected);
   2793 		}
   2794 		cp++;
   2795 	}
   2796 }
   2797 
   2798 #endif /* POOL_REDZONE */
   2799 
   2800 
   2801 #ifdef POOL_SUBPAGE
   2802 /* Sub-page allocator, for machines with large hardware pages. */
   2803 void *
   2804 pool_subpage_alloc(struct pool *pp, int flags)
   2805 {
   2806 	return pool_get(&psppool, flags);
   2807 }
   2808 
   2809 void
   2810 pool_subpage_free(struct pool *pp, void *v)
   2811 {
   2812 	pool_put(&psppool, v);
   2813 }
   2814 
   2815 #endif /* POOL_SUBPAGE */
   2816 
   2817 #if defined(DDB)
   2818 static bool
   2819 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2820 {
   2821 
   2822 	return (uintptr_t)ph->ph_page <= addr &&
   2823 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2824 }
   2825 
   2826 static bool
   2827 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2828 {
   2829 
   2830 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2831 }
   2832 
   2833 static bool
   2834 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2835 {
   2836 	int i;
   2837 
   2838 	if (pcg == NULL) {
   2839 		return false;
   2840 	}
   2841 	for (i = 0; i < pcg->pcg_avail; i++) {
   2842 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2843 			return true;
   2844 		}
   2845 	}
   2846 	return false;
   2847 }
   2848 
   2849 static bool
   2850 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2851 {
   2852 
   2853 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2854 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2855 		pool_item_bitmap_t *bitmap =
   2856 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2857 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2858 
   2859 		return (*bitmap & mask) == 0;
   2860 	} else {
   2861 		struct pool_item *pi;
   2862 
   2863 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2864 			if (pool_in_item(pp, pi, addr)) {
   2865 				return false;
   2866 			}
   2867 		}
   2868 		return true;
   2869 	}
   2870 }
   2871 
   2872 void
   2873 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2874 {
   2875 	struct pool *pp;
   2876 
   2877 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2878 		struct pool_item_header *ph;
   2879 		uintptr_t item;
   2880 		bool allocated = true;
   2881 		bool incache = false;
   2882 		bool incpucache = false;
   2883 		char cpucachestr[32];
   2884 
   2885 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2886 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2887 				if (pool_in_page(pp, ph, addr)) {
   2888 					goto found;
   2889 				}
   2890 			}
   2891 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2892 				if (pool_in_page(pp, ph, addr)) {
   2893 					allocated =
   2894 					    pool_allocated(pp, ph, addr);
   2895 					goto found;
   2896 				}
   2897 			}
   2898 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2899 				if (pool_in_page(pp, ph, addr)) {
   2900 					allocated = false;
   2901 					goto found;
   2902 				}
   2903 			}
   2904 			continue;
   2905 		} else {
   2906 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2907 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2908 				continue;
   2909 			}
   2910 			allocated = pool_allocated(pp, ph, addr);
   2911 		}
   2912 found:
   2913 		if (allocated && pp->pr_cache) {
   2914 			pool_cache_t pc = pp->pr_cache;
   2915 			struct pool_cache_group *pcg;
   2916 			int i;
   2917 
   2918 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2919 			    pcg = pcg->pcg_next) {
   2920 				if (pool_in_cg(pp, pcg, addr)) {
   2921 					incache = true;
   2922 					goto print;
   2923 				}
   2924 			}
   2925 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2926 				pool_cache_cpu_t *cc;
   2927 
   2928 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2929 					continue;
   2930 				}
   2931 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2932 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2933 					struct cpu_info *ci =
   2934 					    cpu_lookup(i);
   2935 
   2936 					incpucache = true;
   2937 					snprintf(cpucachestr,
   2938 					    sizeof(cpucachestr),
   2939 					    "cached by CPU %u",
   2940 					    ci->ci_index);
   2941 					goto print;
   2942 				}
   2943 			}
   2944 		}
   2945 print:
   2946 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2947 		item = item + rounddown(addr - item, pp->pr_size);
   2948 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2949 		    (void *)addr, item, (size_t)(addr - item),
   2950 		    pp->pr_wchan,
   2951 		    incpucache ? cpucachestr :
   2952 		    incache ? "cached" : allocated ? "allocated" : "free");
   2953 	}
   2954 }
   2955 #endif /* defined(DDB) */
   2956 
   2957 static int
   2958 pool_sysctl(SYSCTLFN_ARGS)
   2959 {
   2960 	struct pool_sysctl data;
   2961 	struct pool *pp;
   2962 	struct pool_cache *pc;
   2963 	pool_cache_cpu_t *cc;
   2964 	int error;
   2965 	size_t i, written;
   2966 
   2967 	if (oldp == NULL) {
   2968 		*oldlenp = 0;
   2969 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   2970 			*oldlenp += sizeof(data);
   2971 		return 0;
   2972 	}
   2973 
   2974 	memset(&data, 0, sizeof(data));
   2975 	error = 0;
   2976 	written = 0;
   2977 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2978 		if (written + sizeof(data) > *oldlenp)
   2979 			break;
   2980 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   2981 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   2982 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   2983 #define COPY(field) data.field = pp->field
   2984 		COPY(pr_size);
   2985 
   2986 		COPY(pr_itemsperpage);
   2987 		COPY(pr_nitems);
   2988 		COPY(pr_nout);
   2989 		COPY(pr_hardlimit);
   2990 		COPY(pr_npages);
   2991 		COPY(pr_minpages);
   2992 		COPY(pr_maxpages);
   2993 
   2994 		COPY(pr_nget);
   2995 		COPY(pr_nfail);
   2996 		COPY(pr_nput);
   2997 		COPY(pr_npagealloc);
   2998 		COPY(pr_npagefree);
   2999 		COPY(pr_hiwat);
   3000 		COPY(pr_nidle);
   3001 #undef COPY
   3002 
   3003 		data.pr_cache_nmiss_pcpu = 0;
   3004 		data.pr_cache_nhit_pcpu = 0;
   3005 		if (pp->pr_cache) {
   3006 			pc = pp->pr_cache;
   3007 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3008 			data.pr_cache_nfull = pc->pc_nfull;
   3009 			data.pr_cache_npartial = pc->pc_npart;
   3010 			data.pr_cache_nempty = pc->pc_nempty;
   3011 			data.pr_cache_ncontended = pc->pc_contended;
   3012 			data.pr_cache_nmiss_global = pc->pc_misses;
   3013 			data.pr_cache_nhit_global = pc->pc_hits;
   3014 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3015 				cc = pc->pc_cpus[i];
   3016 				if (cc == NULL)
   3017 					continue;
   3018 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3019 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3020 			}
   3021 		} else {
   3022 			data.pr_cache_meta_size = 0;
   3023 			data.pr_cache_nfull = 0;
   3024 			data.pr_cache_npartial = 0;
   3025 			data.pr_cache_nempty = 0;
   3026 			data.pr_cache_ncontended = 0;
   3027 			data.pr_cache_nmiss_global = 0;
   3028 			data.pr_cache_nhit_global = 0;
   3029 		}
   3030 
   3031 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3032 		if (error)
   3033 			break;
   3034 		written += sizeof(data);
   3035 		oldp = (char *)oldp + sizeof(data);
   3036 	}
   3037 
   3038 	*oldlenp = written;
   3039 	return error;
   3040 }
   3041 
   3042 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3043 {
   3044 	const struct sysctlnode *rnode = NULL;
   3045 
   3046 	sysctl_createv(clog, 0, NULL, &rnode,
   3047 		       CTLFLAG_PERMANENT,
   3048 		       CTLTYPE_STRUCT, "pool",
   3049 		       SYSCTL_DESCR("Get pool statistics"),
   3050 		       pool_sysctl, 0, NULL, 0,
   3051 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3052 }
   3053