Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.221.2.3
      1 /*	$NetBSD: subr_pool.c,v 1.221.2.3 2018/09/30 01:45:55 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.221.2.3 2018/09/30 01:45:55 pgoyette Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/sysctl.h>
     46 #include <sys/bitops.h>
     47 #include <sys/proc.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/vmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 #include <sys/debug.h>
     54 #include <sys/lockdebug.h>
     55 #include <sys/xcall.h>
     56 #include <sys/cpu.h>
     57 #include <sys/atomic.h>
     58 #include <sys/asan.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 /*
     63  * Pool resource management utility.
     64  *
     65  * Memory is allocated in pages which are split into pieces according to
     66  * the pool item size. Each page is kept on one of three lists in the
     67  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     68  * for empty, full and partially-full pages respectively. The individual
     69  * pool items are on a linked list headed by `ph_itemlist' in each page
     70  * header. The memory for building the page list is either taken from
     71  * the allocated pages themselves (for small pool items) or taken from
     72  * an internal pool of page headers (`phpool').
     73  */
     74 
     75 /* List of all pools. Non static as needed by 'vmstat -m' */
     76 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     77 
     78 /* Private pool for page header structures */
     79 #define	PHPOOL_MAX	8
     80 static struct pool phpool[PHPOOL_MAX];
     81 #define	PHPOOL_FREELIST_NELEM(idx) \
     82 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     83 
     84 #ifdef POOL_SUBPAGE
     85 /* Pool of subpages for use by normal pools. */
     86 static struct pool psppool;
     87 #endif
     88 
     89 #if defined(KASAN)
     90 #define POOL_REDZONE
     91 #endif
     92 
     93 #ifdef POOL_REDZONE
     94 # ifdef KASAN
     95 #  define POOL_REDZONE_SIZE 8
     96 # else
     97 #  define POOL_REDZONE_SIZE 2
     98 # endif
     99 static void pool_redzone_init(struct pool *, size_t);
    100 static void pool_redzone_fill(struct pool *, void *);
    101 static void pool_redzone_check(struct pool *, void *);
    102 #else
    103 # define pool_redzone_init(pp, sz)	/* NOTHING */
    104 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
    105 # define pool_redzone_check(pp, ptr)	/* NOTHING */
    106 #endif
    107 
    108 static void *pool_page_alloc_meta(struct pool *, int);
    109 static void pool_page_free_meta(struct pool *, void *);
    110 
    111 /* allocator for pool metadata */
    112 struct pool_allocator pool_allocator_meta = {
    113 	.pa_alloc = pool_page_alloc_meta,
    114 	.pa_free = pool_page_free_meta,
    115 	.pa_pagesz = 0
    116 };
    117 
    118 #define POOL_ALLOCATOR_BIG_BASE 13
    119 extern struct pool_allocator pool_allocator_big[];
    120 static int pool_bigidx(size_t);
    121 
    122 /* # of seconds to retain page after last use */
    123 int pool_inactive_time = 10;
    124 
    125 /* Next candidate for drainage (see pool_drain()) */
    126 static struct pool	*drainpp;
    127 
    128 /* This lock protects both pool_head and drainpp. */
    129 static kmutex_t pool_head_lock;
    130 static kcondvar_t pool_busy;
    131 
    132 /* This lock protects initialization of a potentially shared pool allocator */
    133 static kmutex_t pool_allocator_lock;
    134 
    135 typedef uint32_t pool_item_bitmap_t;
    136 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    137 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    138 
    139 struct pool_item_header {
    140 	/* Page headers */
    141 	LIST_ENTRY(pool_item_header)
    142 				ph_pagelist;	/* pool page list */
    143 	SPLAY_ENTRY(pool_item_header)
    144 				ph_node;	/* Off-page page headers */
    145 	void *			ph_page;	/* this page's address */
    146 	uint32_t		ph_time;	/* last referenced */
    147 	uint16_t		ph_nmissing;	/* # of chunks in use */
    148 	uint16_t		ph_off;		/* start offset in page */
    149 	union {
    150 		/* !PR_NOTOUCH */
    151 		struct {
    152 			LIST_HEAD(, pool_item)
    153 				phu_itemlist;	/* chunk list for this page */
    154 		} phu_normal;
    155 		/* PR_NOTOUCH */
    156 		struct {
    157 			pool_item_bitmap_t phu_bitmap[1];
    158 		} phu_notouch;
    159 	} ph_u;
    160 };
    161 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    162 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    163 
    164 struct pool_item {
    165 #ifdef DIAGNOSTIC
    166 	u_int pi_magic;
    167 #endif
    168 #define	PI_MAGIC 0xdeaddeadU
    169 	/* Other entries use only this list entry */
    170 	LIST_ENTRY(pool_item)	pi_list;
    171 };
    172 
    173 #define	POOL_NEEDS_CATCHUP(pp)						\
    174 	((pp)->pr_nitems < (pp)->pr_minitems)
    175 
    176 /*
    177  * Pool cache management.
    178  *
    179  * Pool caches provide a way for constructed objects to be cached by the
    180  * pool subsystem.  This can lead to performance improvements by avoiding
    181  * needless object construction/destruction; it is deferred until absolutely
    182  * necessary.
    183  *
    184  * Caches are grouped into cache groups.  Each cache group references up
    185  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    186  * object from the pool, it calls the object's constructor and places it
    187  * into a cache group.  When a cache group frees an object back to the
    188  * pool, it first calls the object's destructor.  This allows the object
    189  * to persist in constructed form while freed to the cache.
    190  *
    191  * The pool references each cache, so that when a pool is drained by the
    192  * pagedaemon, it can drain each individual cache as well.  Each time a
    193  * cache is drained, the most idle cache group is freed to the pool in
    194  * its entirety.
    195  *
    196  * Pool caches are layed on top of pools.  By layering them, we can avoid
    197  * the complexity of cache management for pools which would not benefit
    198  * from it.
    199  */
    200 
    201 static struct pool pcg_normal_pool;
    202 static struct pool pcg_large_pool;
    203 static struct pool cache_pool;
    204 static struct pool cache_cpu_pool;
    205 
    206 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    207 
    208 /* List of all caches. */
    209 TAILQ_HEAD(,pool_cache) pool_cache_head =
    210     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    211 
    212 int pool_cache_disable;		/* global disable for caching */
    213 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    214 
    215 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    216 				    void *);
    217 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    218 				    void **, paddr_t *, int);
    219 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    220 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    221 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    222 static void	pool_cache_transfer(pool_cache_t);
    223 
    224 static int	pool_catchup(struct pool *);
    225 static void	pool_prime_page(struct pool *, void *,
    226 		    struct pool_item_header *);
    227 static void	pool_update_curpage(struct pool *);
    228 
    229 static int	pool_grow(struct pool *, int);
    230 static void	*pool_allocator_alloc(struct pool *, int);
    231 static void	pool_allocator_free(struct pool *, void *);
    232 
    233 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    234 	void (*)(const char *, ...) __printflike(1, 2));
    235 static void pool_print1(struct pool *, const char *,
    236 	void (*)(const char *, ...) __printflike(1, 2));
    237 
    238 static int pool_chk_page(struct pool *, const char *,
    239 			 struct pool_item_header *);
    240 
    241 static inline unsigned int
    242 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    243     const void *v)
    244 {
    245 	const char *cp = v;
    246 	unsigned int idx;
    247 
    248 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    249 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    250 	KASSERT(idx < pp->pr_itemsperpage);
    251 	return idx;
    252 }
    253 
    254 static inline void
    255 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    256     void *obj)
    257 {
    258 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    259 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    260 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    261 
    262 	KASSERT((*bitmap & mask) == 0);
    263 	*bitmap |= mask;
    264 }
    265 
    266 static inline void *
    267 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    268 {
    269 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    270 	unsigned int idx;
    271 	int i;
    272 
    273 	for (i = 0; ; i++) {
    274 		int bit;
    275 
    276 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    277 		bit = ffs32(bitmap[i]);
    278 		if (bit) {
    279 			pool_item_bitmap_t mask;
    280 
    281 			bit--;
    282 			idx = (i * BITMAP_SIZE) + bit;
    283 			mask = 1U << bit;
    284 			KASSERT((bitmap[i] & mask) != 0);
    285 			bitmap[i] &= ~mask;
    286 			break;
    287 		}
    288 	}
    289 	KASSERT(idx < pp->pr_itemsperpage);
    290 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    291 }
    292 
    293 static inline void
    294 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    295 {
    296 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    297 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    298 	int i;
    299 
    300 	for (i = 0; i < n; i++) {
    301 		bitmap[i] = (pool_item_bitmap_t)-1;
    302 	}
    303 }
    304 
    305 static inline int
    306 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    307 {
    308 
    309 	/*
    310 	 * we consider pool_item_header with smaller ph_page bigger.
    311 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    312 	 */
    313 
    314 	if (a->ph_page < b->ph_page)
    315 		return (1);
    316 	else if (a->ph_page > b->ph_page)
    317 		return (-1);
    318 	else
    319 		return (0);
    320 }
    321 
    322 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    323 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    324 
    325 static inline struct pool_item_header *
    326 pr_find_pagehead_noalign(struct pool *pp, void *v)
    327 {
    328 	struct pool_item_header *ph, tmp;
    329 
    330 	tmp.ph_page = (void *)(uintptr_t)v;
    331 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    332 	if (ph == NULL) {
    333 		ph = SPLAY_ROOT(&pp->pr_phtree);
    334 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    335 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    336 		}
    337 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    338 	}
    339 
    340 	return ph;
    341 }
    342 
    343 /*
    344  * Return the pool page header based on item address.
    345  */
    346 static inline struct pool_item_header *
    347 pr_find_pagehead(struct pool *pp, void *v)
    348 {
    349 	struct pool_item_header *ph, tmp;
    350 
    351 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    352 		ph = pr_find_pagehead_noalign(pp, v);
    353 	} else {
    354 		void *page =
    355 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    356 
    357 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    358 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    359 		} else {
    360 			tmp.ph_page = page;
    361 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    362 		}
    363 	}
    364 
    365 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    366 	    ((char *)ph->ph_page <= (char *)v &&
    367 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    368 	return ph;
    369 }
    370 
    371 static void
    372 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    373 {
    374 	struct pool_item_header *ph;
    375 
    376 	while ((ph = LIST_FIRST(pq)) != NULL) {
    377 		LIST_REMOVE(ph, ph_pagelist);
    378 		pool_allocator_free(pp, ph->ph_page);
    379 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    380 			pool_put(pp->pr_phpool, ph);
    381 	}
    382 }
    383 
    384 /*
    385  * Remove a page from the pool.
    386  */
    387 static inline void
    388 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    389      struct pool_pagelist *pq)
    390 {
    391 
    392 	KASSERT(mutex_owned(&pp->pr_lock));
    393 
    394 	/*
    395 	 * If the page was idle, decrement the idle page count.
    396 	 */
    397 	if (ph->ph_nmissing == 0) {
    398 		KASSERT(pp->pr_nidle != 0);
    399 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    400 		    "nitems=%u < itemsperpage=%u",
    401 		    pp->pr_nitems, pp->pr_itemsperpage);
    402 		pp->pr_nidle--;
    403 	}
    404 
    405 	pp->pr_nitems -= pp->pr_itemsperpage;
    406 
    407 	/*
    408 	 * Unlink the page from the pool and queue it for release.
    409 	 */
    410 	LIST_REMOVE(ph, ph_pagelist);
    411 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    412 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    413 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    414 
    415 	pp->pr_npages--;
    416 	pp->pr_npagefree++;
    417 
    418 	pool_update_curpage(pp);
    419 }
    420 
    421 /*
    422  * Initialize all the pools listed in the "pools" link set.
    423  */
    424 void
    425 pool_subsystem_init(void)
    426 {
    427 	size_t size;
    428 	int idx;
    429 
    430 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    431 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    432 	cv_init(&pool_busy, "poolbusy");
    433 
    434 	/*
    435 	 * Initialize private page header pool and cache magazine pool if we
    436 	 * haven't done so yet.
    437 	 */
    438 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    439 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    440 		int nelem;
    441 		size_t sz;
    442 
    443 		nelem = PHPOOL_FREELIST_NELEM(idx);
    444 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    445 		    "phpool-%d", nelem);
    446 		sz = sizeof(struct pool_item_header);
    447 		if (nelem) {
    448 			sz = offsetof(struct pool_item_header,
    449 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    450 		}
    451 		pool_init(&phpool[idx], sz, 0, 0, 0,
    452 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    453 	}
    454 #ifdef POOL_SUBPAGE
    455 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    456 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    457 #endif
    458 
    459 	size = sizeof(pcg_t) +
    460 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    461 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    462 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    463 
    464 	size = sizeof(pcg_t) +
    465 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    466 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    467 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    468 
    469 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    470 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    471 
    472 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    473 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    474 }
    475 
    476 /*
    477  * Initialize the given pool resource structure.
    478  *
    479  * We export this routine to allow other kernel parts to declare
    480  * static pools that must be initialized before kmem(9) is available.
    481  */
    482 void
    483 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    484     const char *wchan, struct pool_allocator *palloc, int ipl)
    485 {
    486 	struct pool *pp1;
    487 	size_t trysize, phsize, prsize;
    488 	int off, slack;
    489 
    490 #ifdef DEBUG
    491 	if (__predict_true(!cold))
    492 		mutex_enter(&pool_head_lock);
    493 	/*
    494 	 * Check that the pool hasn't already been initialised and
    495 	 * added to the list of all pools.
    496 	 */
    497 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    498 		if (pp == pp1)
    499 			panic("%s: [%s] already initialised", __func__,
    500 			    wchan);
    501 	}
    502 	if (__predict_true(!cold))
    503 		mutex_exit(&pool_head_lock);
    504 #endif
    505 
    506 	if (palloc == NULL)
    507 		palloc = &pool_allocator_kmem;
    508 #ifdef POOL_SUBPAGE
    509 	if (size > palloc->pa_pagesz) {
    510 		if (palloc == &pool_allocator_kmem)
    511 			palloc = &pool_allocator_kmem_fullpage;
    512 		else if (palloc == &pool_allocator_nointr)
    513 			palloc = &pool_allocator_nointr_fullpage;
    514 	}
    515 #endif /* POOL_SUBPAGE */
    516 	if (!cold)
    517 		mutex_enter(&pool_allocator_lock);
    518 	if (palloc->pa_refcnt++ == 0) {
    519 		if (palloc->pa_pagesz == 0)
    520 			palloc->pa_pagesz = PAGE_SIZE;
    521 
    522 		TAILQ_INIT(&palloc->pa_list);
    523 
    524 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    525 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    526 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    527 	}
    528 	if (!cold)
    529 		mutex_exit(&pool_allocator_lock);
    530 
    531 	if (align == 0)
    532 		align = ALIGN(1);
    533 
    534 	prsize = size;
    535 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    536 		prsize = sizeof(struct pool_item);
    537 
    538 	prsize = roundup(prsize, align);
    539 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    540 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    541 	    __func__, wchan, prsize, palloc->pa_pagesz);
    542 
    543 	/*
    544 	 * Initialize the pool structure.
    545 	 */
    546 	LIST_INIT(&pp->pr_emptypages);
    547 	LIST_INIT(&pp->pr_fullpages);
    548 	LIST_INIT(&pp->pr_partpages);
    549 	pp->pr_cache = NULL;
    550 	pp->pr_curpage = NULL;
    551 	pp->pr_npages = 0;
    552 	pp->pr_minitems = 0;
    553 	pp->pr_minpages = 0;
    554 	pp->pr_maxpages = UINT_MAX;
    555 	pp->pr_roflags = flags;
    556 	pp->pr_flags = 0;
    557 	pp->pr_size = prsize;
    558 	pp->pr_align = align;
    559 	pp->pr_wchan = wchan;
    560 	pp->pr_alloc = palloc;
    561 	pp->pr_nitems = 0;
    562 	pp->pr_nout = 0;
    563 	pp->pr_hardlimit = UINT_MAX;
    564 	pp->pr_hardlimit_warning = NULL;
    565 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    566 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    567 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    568 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    569 	pp->pr_drain_hook = NULL;
    570 	pp->pr_drain_hook_arg = NULL;
    571 	pp->pr_freecheck = NULL;
    572 	pool_redzone_init(pp, size);
    573 
    574 	/*
    575 	 * Decide whether to put the page header off page to avoid
    576 	 * wasting too large a part of the page or too big item.
    577 	 * Off-page page headers go on a hash table, so we can match
    578 	 * a returned item with its header based on the page address.
    579 	 * We use 1/16 of the page size and about 8 times of the item
    580 	 * size as the threshold (XXX: tune)
    581 	 *
    582 	 * However, we'll put the header into the page if we can put
    583 	 * it without wasting any items.
    584 	 *
    585 	 * Silently enforce `0 <= ioff < align'.
    586 	 */
    587 	pp->pr_itemoffset = ioff %= align;
    588 	/* See the comment below about reserved bytes. */
    589 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    590 	phsize = ALIGN(sizeof(struct pool_item_header));
    591 	if (pp->pr_roflags & PR_PHINPAGE ||
    592 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    593 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    594 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    595 		/* Use the end of the page for the page header */
    596 		pp->pr_roflags |= PR_PHINPAGE;
    597 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    598 	} else {
    599 		/* The page header will be taken from our page header pool */
    600 		pp->pr_phoffset = 0;
    601 		off = palloc->pa_pagesz;
    602 		SPLAY_INIT(&pp->pr_phtree);
    603 	}
    604 
    605 	/*
    606 	 * Alignment is to take place at `ioff' within the item. This means
    607 	 * we must reserve up to `align - 1' bytes on the page to allow
    608 	 * appropriate positioning of each item.
    609 	 */
    610 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    611 	KASSERT(pp->pr_itemsperpage != 0);
    612 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    613 		int idx;
    614 
    615 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    616 		    idx++) {
    617 			/* nothing */
    618 		}
    619 		if (idx >= PHPOOL_MAX) {
    620 			/*
    621 			 * if you see this panic, consider to tweak
    622 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    623 			 */
    624 			panic("%s: [%s] too large itemsperpage(%d) for "
    625 			    "PR_NOTOUCH", __func__,
    626 			    pp->pr_wchan, pp->pr_itemsperpage);
    627 		}
    628 		pp->pr_phpool = &phpool[idx];
    629 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    630 		pp->pr_phpool = &phpool[0];
    631 	}
    632 #if defined(DIAGNOSTIC)
    633 	else {
    634 		pp->pr_phpool = NULL;
    635 	}
    636 #endif
    637 
    638 	/*
    639 	 * Use the slack between the chunks and the page header
    640 	 * for "cache coloring".
    641 	 */
    642 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    643 	pp->pr_maxcolor = (slack / align) * align;
    644 	pp->pr_curcolor = 0;
    645 
    646 	pp->pr_nget = 0;
    647 	pp->pr_nfail = 0;
    648 	pp->pr_nput = 0;
    649 	pp->pr_npagealloc = 0;
    650 	pp->pr_npagefree = 0;
    651 	pp->pr_hiwat = 0;
    652 	pp->pr_nidle = 0;
    653 	pp->pr_refcnt = 0;
    654 
    655 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    656 	cv_init(&pp->pr_cv, wchan);
    657 	pp->pr_ipl = ipl;
    658 
    659 	/* Insert into the list of all pools. */
    660 	if (!cold)
    661 		mutex_enter(&pool_head_lock);
    662 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    663 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    664 			break;
    665 	}
    666 	if (pp1 == NULL)
    667 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    668 	else
    669 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    670 	if (!cold)
    671 		mutex_exit(&pool_head_lock);
    672 
    673 	/* Insert this into the list of pools using this allocator. */
    674 	if (!cold)
    675 		mutex_enter(&palloc->pa_lock);
    676 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    677 	if (!cold)
    678 		mutex_exit(&palloc->pa_lock);
    679 }
    680 
    681 /*
    682  * De-commision a pool resource.
    683  */
    684 void
    685 pool_destroy(struct pool *pp)
    686 {
    687 	struct pool_pagelist pq;
    688 	struct pool_item_header *ph;
    689 
    690 	/* Remove from global pool list */
    691 	mutex_enter(&pool_head_lock);
    692 	while (pp->pr_refcnt != 0)
    693 		cv_wait(&pool_busy, &pool_head_lock);
    694 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    695 	if (drainpp == pp)
    696 		drainpp = NULL;
    697 	mutex_exit(&pool_head_lock);
    698 
    699 	/* Remove this pool from its allocator's list of pools. */
    700 	mutex_enter(&pp->pr_alloc->pa_lock);
    701 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    702 	mutex_exit(&pp->pr_alloc->pa_lock);
    703 
    704 	mutex_enter(&pool_allocator_lock);
    705 	if (--pp->pr_alloc->pa_refcnt == 0)
    706 		mutex_destroy(&pp->pr_alloc->pa_lock);
    707 	mutex_exit(&pool_allocator_lock);
    708 
    709 	mutex_enter(&pp->pr_lock);
    710 
    711 	KASSERT(pp->pr_cache == NULL);
    712 	KASSERTMSG((pp->pr_nout == 0),
    713 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    714 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    715 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    716 
    717 	/* Remove all pages */
    718 	LIST_INIT(&pq);
    719 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    720 		pr_rmpage(pp, ph, &pq);
    721 
    722 	mutex_exit(&pp->pr_lock);
    723 
    724 	pr_pagelist_free(pp, &pq);
    725 	cv_destroy(&pp->pr_cv);
    726 	mutex_destroy(&pp->pr_lock);
    727 }
    728 
    729 void
    730 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    731 {
    732 
    733 	/* XXX no locking -- must be used just after pool_init() */
    734 	KASSERTMSG((pp->pr_drain_hook == NULL),
    735 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    736 	pp->pr_drain_hook = fn;
    737 	pp->pr_drain_hook_arg = arg;
    738 }
    739 
    740 static struct pool_item_header *
    741 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    742 {
    743 	struct pool_item_header *ph;
    744 
    745 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    746 		ph = (void *)((char *)storage + pp->pr_phoffset);
    747 	else
    748 		ph = pool_get(pp->pr_phpool, flags);
    749 
    750 	return (ph);
    751 }
    752 
    753 /*
    754  * Grab an item from the pool.
    755  */
    756 void *
    757 pool_get(struct pool *pp, int flags)
    758 {
    759 	struct pool_item *pi;
    760 	struct pool_item_header *ph;
    761 	void *v;
    762 
    763 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    764 	KASSERTMSG((pp->pr_itemsperpage != 0),
    765 	    "%s: [%s] pr_itemsperpage is zero, "
    766 	    "pool not initialized?", __func__, pp->pr_wchan);
    767 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    768 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    769 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    770 	    __func__, pp->pr_wchan);
    771 	if (flags & PR_WAITOK) {
    772 		ASSERT_SLEEPABLE();
    773 	}
    774 
    775 	mutex_enter(&pp->pr_lock);
    776  startover:
    777 	/*
    778 	 * Check to see if we've reached the hard limit.  If we have,
    779 	 * and we can wait, then wait until an item has been returned to
    780 	 * the pool.
    781 	 */
    782 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    783 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    784 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    785 		if (pp->pr_drain_hook != NULL) {
    786 			/*
    787 			 * Since the drain hook is going to free things
    788 			 * back to the pool, unlock, call the hook, re-lock,
    789 			 * and check the hardlimit condition again.
    790 			 */
    791 			mutex_exit(&pp->pr_lock);
    792 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    793 			mutex_enter(&pp->pr_lock);
    794 			if (pp->pr_nout < pp->pr_hardlimit)
    795 				goto startover;
    796 		}
    797 
    798 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    799 			/*
    800 			 * XXX: A warning isn't logged in this case.  Should
    801 			 * it be?
    802 			 */
    803 			pp->pr_flags |= PR_WANTED;
    804 			do {
    805 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    806 			} while (pp->pr_flags & PR_WANTED);
    807 			goto startover;
    808 		}
    809 
    810 		/*
    811 		 * Log a message that the hard limit has been hit.
    812 		 */
    813 		if (pp->pr_hardlimit_warning != NULL &&
    814 		    ratecheck(&pp->pr_hardlimit_warning_last,
    815 			      &pp->pr_hardlimit_ratecap))
    816 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    817 
    818 		pp->pr_nfail++;
    819 
    820 		mutex_exit(&pp->pr_lock);
    821 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    822 		return (NULL);
    823 	}
    824 
    825 	/*
    826 	 * The convention we use is that if `curpage' is not NULL, then
    827 	 * it points at a non-empty bucket. In particular, `curpage'
    828 	 * never points at a page header which has PR_PHINPAGE set and
    829 	 * has no items in its bucket.
    830 	 */
    831 	if ((ph = pp->pr_curpage) == NULL) {
    832 		int error;
    833 
    834 		KASSERTMSG((pp->pr_nitems == 0),
    835 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    836 		    __func__, pp->pr_wchan, pp->pr_nitems);
    837 
    838 		/*
    839 		 * Call the back-end page allocator for more memory.
    840 		 * Release the pool lock, as the back-end page allocator
    841 		 * may block.
    842 		 */
    843 		error = pool_grow(pp, flags);
    844 		if (error != 0) {
    845 			/*
    846 			 * pool_grow aborts when another thread
    847 			 * is allocating a new page. Retry if it
    848 			 * waited for it.
    849 			 */
    850 			if (error == ERESTART)
    851 				goto startover;
    852 
    853 			/*
    854 			 * We were unable to allocate a page or item
    855 			 * header, but we released the lock during
    856 			 * allocation, so perhaps items were freed
    857 			 * back to the pool.  Check for this case.
    858 			 */
    859 			if (pp->pr_curpage != NULL)
    860 				goto startover;
    861 
    862 			pp->pr_nfail++;
    863 			mutex_exit(&pp->pr_lock);
    864 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    865 			return (NULL);
    866 		}
    867 
    868 		/* Start the allocation process over. */
    869 		goto startover;
    870 	}
    871 	if (pp->pr_roflags & PR_NOTOUCH) {
    872 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    873 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    874 		v = pr_item_notouch_get(pp, ph);
    875 	} else {
    876 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    877 		if (__predict_false(v == NULL)) {
    878 			mutex_exit(&pp->pr_lock);
    879 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    880 		}
    881 		KASSERTMSG((pp->pr_nitems > 0),
    882 		    "%s: [%s] nitems %u inconsistent on itemlist",
    883 		    __func__, pp->pr_wchan, pp->pr_nitems);
    884 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    885 		    "%s: [%s] free list modified: "
    886 		    "magic=%x; page %p; item addr %p", __func__,
    887 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    888 
    889 		/*
    890 		 * Remove from item list.
    891 		 */
    892 		LIST_REMOVE(pi, pi_list);
    893 	}
    894 	pp->pr_nitems--;
    895 	pp->pr_nout++;
    896 	if (ph->ph_nmissing == 0) {
    897 		KASSERT(pp->pr_nidle > 0);
    898 		pp->pr_nidle--;
    899 
    900 		/*
    901 		 * This page was previously empty.  Move it to the list of
    902 		 * partially-full pages.  This page is already curpage.
    903 		 */
    904 		LIST_REMOVE(ph, ph_pagelist);
    905 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    906 	}
    907 	ph->ph_nmissing++;
    908 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    909 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    910 			LIST_EMPTY(&ph->ph_itemlist)),
    911 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    912 			pp->pr_wchan, ph->ph_nmissing);
    913 		/*
    914 		 * This page is now full.  Move it to the full list
    915 		 * and select a new current page.
    916 		 */
    917 		LIST_REMOVE(ph, ph_pagelist);
    918 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    919 		pool_update_curpage(pp);
    920 	}
    921 
    922 	pp->pr_nget++;
    923 
    924 	/*
    925 	 * If we have a low water mark and we are now below that low
    926 	 * water mark, add more items to the pool.
    927 	 */
    928 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    929 		/*
    930 		 * XXX: Should we log a warning?  Should we set up a timeout
    931 		 * to try again in a second or so?  The latter could break
    932 		 * a caller's assumptions about interrupt protection, etc.
    933 		 */
    934 	}
    935 
    936 	mutex_exit(&pp->pr_lock);
    937 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    938 	FREECHECK_OUT(&pp->pr_freecheck, v);
    939 	pool_redzone_fill(pp, v);
    940 	return (v);
    941 }
    942 
    943 /*
    944  * Internal version of pool_put().  Pool is already locked/entered.
    945  */
    946 static void
    947 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    948 {
    949 	struct pool_item *pi = v;
    950 	struct pool_item_header *ph;
    951 
    952 	KASSERT(mutex_owned(&pp->pr_lock));
    953 	pool_redzone_check(pp, v);
    954 	FREECHECK_IN(&pp->pr_freecheck, v);
    955 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    956 
    957 	KASSERTMSG((pp->pr_nout > 0),
    958 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
    959 
    960 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    961 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
    962 	}
    963 
    964 	/*
    965 	 * Return to item list.
    966 	 */
    967 	if (pp->pr_roflags & PR_NOTOUCH) {
    968 		pr_item_notouch_put(pp, ph, v);
    969 	} else {
    970 #ifdef DIAGNOSTIC
    971 		pi->pi_magic = PI_MAGIC;
    972 #endif
    973 #ifdef DEBUG
    974 		{
    975 			int i, *ip = v;
    976 
    977 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    978 				*ip++ = PI_MAGIC;
    979 			}
    980 		}
    981 #endif
    982 
    983 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    984 	}
    985 	KDASSERT(ph->ph_nmissing != 0);
    986 	ph->ph_nmissing--;
    987 	pp->pr_nput++;
    988 	pp->pr_nitems++;
    989 	pp->pr_nout--;
    990 
    991 	/* Cancel "pool empty" condition if it exists */
    992 	if (pp->pr_curpage == NULL)
    993 		pp->pr_curpage = ph;
    994 
    995 	if (pp->pr_flags & PR_WANTED) {
    996 		pp->pr_flags &= ~PR_WANTED;
    997 		cv_broadcast(&pp->pr_cv);
    998 	}
    999 
   1000 	/*
   1001 	 * If this page is now empty, do one of two things:
   1002 	 *
   1003 	 *	(1) If we have more pages than the page high water mark,
   1004 	 *	    free the page back to the system.  ONLY CONSIDER
   1005 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1006 	 *	    CLAIM.
   1007 	 *
   1008 	 *	(2) Otherwise, move the page to the empty page list.
   1009 	 *
   1010 	 * Either way, select a new current page (so we use a partially-full
   1011 	 * page if one is available).
   1012 	 */
   1013 	if (ph->ph_nmissing == 0) {
   1014 		pp->pr_nidle++;
   1015 		if (pp->pr_npages > pp->pr_minpages &&
   1016 		    pp->pr_npages > pp->pr_maxpages) {
   1017 			pr_rmpage(pp, ph, pq);
   1018 		} else {
   1019 			LIST_REMOVE(ph, ph_pagelist);
   1020 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1021 
   1022 			/*
   1023 			 * Update the timestamp on the page.  A page must
   1024 			 * be idle for some period of time before it can
   1025 			 * be reclaimed by the pagedaemon.  This minimizes
   1026 			 * ping-pong'ing for memory.
   1027 			 *
   1028 			 * note for 64-bit time_t: truncating to 32-bit is not
   1029 			 * a problem for our usage.
   1030 			 */
   1031 			ph->ph_time = time_uptime;
   1032 		}
   1033 		pool_update_curpage(pp);
   1034 	}
   1035 
   1036 	/*
   1037 	 * If the page was previously completely full, move it to the
   1038 	 * partially-full list and make it the current page.  The next
   1039 	 * allocation will get the item from this page, instead of
   1040 	 * further fragmenting the pool.
   1041 	 */
   1042 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1043 		LIST_REMOVE(ph, ph_pagelist);
   1044 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1045 		pp->pr_curpage = ph;
   1046 	}
   1047 }
   1048 
   1049 void
   1050 pool_put(struct pool *pp, void *v)
   1051 {
   1052 	struct pool_pagelist pq;
   1053 
   1054 	LIST_INIT(&pq);
   1055 
   1056 	mutex_enter(&pp->pr_lock);
   1057 	pool_do_put(pp, v, &pq);
   1058 	mutex_exit(&pp->pr_lock);
   1059 
   1060 	pr_pagelist_free(pp, &pq);
   1061 }
   1062 
   1063 /*
   1064  * pool_grow: grow a pool by a page.
   1065  *
   1066  * => called with pool locked.
   1067  * => unlock and relock the pool.
   1068  * => return with pool locked.
   1069  */
   1070 
   1071 static int
   1072 pool_grow(struct pool *pp, int flags)
   1073 {
   1074 	/*
   1075 	 * If there's a pool_grow in progress, wait for it to complete
   1076 	 * and try again from the top.
   1077 	 */
   1078 	if (pp->pr_flags & PR_GROWING) {
   1079 		if (flags & PR_WAITOK) {
   1080 			do {
   1081 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1082 			} while (pp->pr_flags & PR_GROWING);
   1083 			return ERESTART;
   1084 		} else {
   1085 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1086 				/*
   1087 				 * This needs an unlock/relock dance so
   1088 				 * that the other caller has a chance to
   1089 				 * run and actually do the thing.  Note
   1090 				 * that this is effectively a busy-wait.
   1091 				 */
   1092 				mutex_exit(&pp->pr_lock);
   1093 				mutex_enter(&pp->pr_lock);
   1094 				return ERESTART;
   1095 			}
   1096 			return EWOULDBLOCK;
   1097 		}
   1098 	}
   1099 	pp->pr_flags |= PR_GROWING;
   1100 	if (flags & PR_WAITOK)
   1101 		mutex_exit(&pp->pr_lock);
   1102 	else
   1103 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1104 
   1105 	char *cp = pool_allocator_alloc(pp, flags);
   1106 	if (__predict_false(cp == NULL))
   1107 		goto out;
   1108 
   1109 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
   1110 	if (__predict_false(ph == NULL)) {
   1111 		pool_allocator_free(pp, cp);
   1112 		goto out;
   1113 	}
   1114 
   1115 	if (flags & PR_WAITOK)
   1116 		mutex_enter(&pp->pr_lock);
   1117 	pool_prime_page(pp, cp, ph);
   1118 	pp->pr_npagealloc++;
   1119 	KASSERT(pp->pr_flags & PR_GROWING);
   1120 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1121 	/*
   1122 	 * If anyone was waiting for pool_grow, notify them that we
   1123 	 * may have just done it.
   1124 	 */
   1125 	cv_broadcast(&pp->pr_cv);
   1126 	return 0;
   1127 out:
   1128 	if (flags & PR_WAITOK)
   1129 		mutex_enter(&pp->pr_lock);
   1130 	KASSERT(pp->pr_flags & PR_GROWING);
   1131 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1132 	return ENOMEM;
   1133 }
   1134 
   1135 /*
   1136  * Add N items to the pool.
   1137  */
   1138 int
   1139 pool_prime(struct pool *pp, int n)
   1140 {
   1141 	int newpages;
   1142 	int error = 0;
   1143 
   1144 	mutex_enter(&pp->pr_lock);
   1145 
   1146 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1147 
   1148 	while (newpages > 0) {
   1149 		error = pool_grow(pp, PR_NOWAIT);
   1150 		if (error) {
   1151 			if (error == ERESTART)
   1152 				continue;
   1153 			break;
   1154 		}
   1155 		pp->pr_minpages++;
   1156 		newpages--;
   1157 	}
   1158 
   1159 	if (pp->pr_minpages >= pp->pr_maxpages)
   1160 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1161 
   1162 	mutex_exit(&pp->pr_lock);
   1163 	return error;
   1164 }
   1165 
   1166 /*
   1167  * Add a page worth of items to the pool.
   1168  *
   1169  * Note, we must be called with the pool descriptor LOCKED.
   1170  */
   1171 static void
   1172 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1173 {
   1174 	struct pool_item *pi;
   1175 	void *cp = storage;
   1176 	const unsigned int align = pp->pr_align;
   1177 	const unsigned int ioff = pp->pr_itemoffset;
   1178 	int n;
   1179 
   1180 	KASSERT(mutex_owned(&pp->pr_lock));
   1181 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1182 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1183 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1184 
   1185 	/*
   1186 	 * Insert page header.
   1187 	 */
   1188 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1189 	LIST_INIT(&ph->ph_itemlist);
   1190 	ph->ph_page = storage;
   1191 	ph->ph_nmissing = 0;
   1192 	ph->ph_time = time_uptime;
   1193 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1194 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1195 
   1196 	pp->pr_nidle++;
   1197 
   1198 	/*
   1199 	 * Color this page.
   1200 	 */
   1201 	ph->ph_off = pp->pr_curcolor;
   1202 	cp = (char *)cp + ph->ph_off;
   1203 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1204 		pp->pr_curcolor = 0;
   1205 
   1206 	/*
   1207 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1208 	 */
   1209 	if (ioff != 0)
   1210 		cp = (char *)cp + align - ioff;
   1211 
   1212 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1213 
   1214 	/*
   1215 	 * Insert remaining chunks on the bucket list.
   1216 	 */
   1217 	n = pp->pr_itemsperpage;
   1218 	pp->pr_nitems += n;
   1219 
   1220 	if (pp->pr_roflags & PR_NOTOUCH) {
   1221 		pr_item_notouch_init(pp, ph);
   1222 	} else {
   1223 		while (n--) {
   1224 			pi = (struct pool_item *)cp;
   1225 
   1226 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1227 
   1228 			/* Insert on page list */
   1229 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1230 #ifdef DIAGNOSTIC
   1231 			pi->pi_magic = PI_MAGIC;
   1232 #endif
   1233 			cp = (char *)cp + pp->pr_size;
   1234 
   1235 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1236 		}
   1237 	}
   1238 
   1239 	/*
   1240 	 * If the pool was depleted, point at the new page.
   1241 	 */
   1242 	if (pp->pr_curpage == NULL)
   1243 		pp->pr_curpage = ph;
   1244 
   1245 	if (++pp->pr_npages > pp->pr_hiwat)
   1246 		pp->pr_hiwat = pp->pr_npages;
   1247 }
   1248 
   1249 /*
   1250  * Used by pool_get() when nitems drops below the low water mark.  This
   1251  * is used to catch up pr_nitems with the low water mark.
   1252  *
   1253  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1254  *
   1255  * Note 2, we must be called with the pool already locked, and we return
   1256  * with it locked.
   1257  */
   1258 static int
   1259 pool_catchup(struct pool *pp)
   1260 {
   1261 	int error = 0;
   1262 
   1263 	while (POOL_NEEDS_CATCHUP(pp)) {
   1264 		error = pool_grow(pp, PR_NOWAIT);
   1265 		if (error) {
   1266 			if (error == ERESTART)
   1267 				continue;
   1268 			break;
   1269 		}
   1270 	}
   1271 	return error;
   1272 }
   1273 
   1274 static void
   1275 pool_update_curpage(struct pool *pp)
   1276 {
   1277 
   1278 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1279 	if (pp->pr_curpage == NULL) {
   1280 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1281 	}
   1282 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1283 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1284 }
   1285 
   1286 void
   1287 pool_setlowat(struct pool *pp, int n)
   1288 {
   1289 
   1290 	mutex_enter(&pp->pr_lock);
   1291 
   1292 	pp->pr_minitems = n;
   1293 	pp->pr_minpages = (n == 0)
   1294 		? 0
   1295 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1296 
   1297 	/* Make sure we're caught up with the newly-set low water mark. */
   1298 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1299 		/*
   1300 		 * XXX: Should we log a warning?  Should we set up a timeout
   1301 		 * to try again in a second or so?  The latter could break
   1302 		 * a caller's assumptions about interrupt protection, etc.
   1303 		 */
   1304 	}
   1305 
   1306 	mutex_exit(&pp->pr_lock);
   1307 }
   1308 
   1309 void
   1310 pool_sethiwat(struct pool *pp, int n)
   1311 {
   1312 
   1313 	mutex_enter(&pp->pr_lock);
   1314 
   1315 	pp->pr_maxpages = (n == 0)
   1316 		? 0
   1317 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1318 
   1319 	mutex_exit(&pp->pr_lock);
   1320 }
   1321 
   1322 void
   1323 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1324 {
   1325 
   1326 	mutex_enter(&pp->pr_lock);
   1327 
   1328 	pp->pr_hardlimit = n;
   1329 	pp->pr_hardlimit_warning = warnmess;
   1330 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1331 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1332 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1333 
   1334 	/*
   1335 	 * In-line version of pool_sethiwat(), because we don't want to
   1336 	 * release the lock.
   1337 	 */
   1338 	pp->pr_maxpages = (n == 0)
   1339 		? 0
   1340 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1341 
   1342 	mutex_exit(&pp->pr_lock);
   1343 }
   1344 
   1345 /*
   1346  * Release all complete pages that have not been used recently.
   1347  *
   1348  * Must not be called from interrupt context.
   1349  */
   1350 int
   1351 pool_reclaim(struct pool *pp)
   1352 {
   1353 	struct pool_item_header *ph, *phnext;
   1354 	struct pool_pagelist pq;
   1355 	uint32_t curtime;
   1356 	bool klock;
   1357 	int rv;
   1358 
   1359 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1360 
   1361 	if (pp->pr_drain_hook != NULL) {
   1362 		/*
   1363 		 * The drain hook must be called with the pool unlocked.
   1364 		 */
   1365 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1366 	}
   1367 
   1368 	/*
   1369 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1370 	 * to block.
   1371 	 */
   1372 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1373 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1374 		KERNEL_LOCK(1, NULL);
   1375 		klock = true;
   1376 	} else
   1377 		klock = false;
   1378 
   1379 	/* Reclaim items from the pool's cache (if any). */
   1380 	if (pp->pr_cache != NULL)
   1381 		pool_cache_invalidate(pp->pr_cache);
   1382 
   1383 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1384 		if (klock) {
   1385 			KERNEL_UNLOCK_ONE(NULL);
   1386 		}
   1387 		return (0);
   1388 	}
   1389 
   1390 	LIST_INIT(&pq);
   1391 
   1392 	curtime = time_uptime;
   1393 
   1394 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1395 		phnext = LIST_NEXT(ph, ph_pagelist);
   1396 
   1397 		/* Check our minimum page claim */
   1398 		if (pp->pr_npages <= pp->pr_minpages)
   1399 			break;
   1400 
   1401 		KASSERT(ph->ph_nmissing == 0);
   1402 		if (curtime - ph->ph_time < pool_inactive_time)
   1403 			continue;
   1404 
   1405 		/*
   1406 		 * If freeing this page would put us below
   1407 		 * the low water mark, stop now.
   1408 		 */
   1409 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1410 		    pp->pr_minitems)
   1411 			break;
   1412 
   1413 		pr_rmpage(pp, ph, &pq);
   1414 	}
   1415 
   1416 	mutex_exit(&pp->pr_lock);
   1417 
   1418 	if (LIST_EMPTY(&pq))
   1419 		rv = 0;
   1420 	else {
   1421 		pr_pagelist_free(pp, &pq);
   1422 		rv = 1;
   1423 	}
   1424 
   1425 	if (klock) {
   1426 		KERNEL_UNLOCK_ONE(NULL);
   1427 	}
   1428 
   1429 	return (rv);
   1430 }
   1431 
   1432 /*
   1433  * Drain pools, one at a time. The drained pool is returned within ppp.
   1434  *
   1435  * Note, must never be called from interrupt context.
   1436  */
   1437 bool
   1438 pool_drain(struct pool **ppp)
   1439 {
   1440 	bool reclaimed;
   1441 	struct pool *pp;
   1442 
   1443 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1444 
   1445 	pp = NULL;
   1446 
   1447 	/* Find next pool to drain, and add a reference. */
   1448 	mutex_enter(&pool_head_lock);
   1449 	do {
   1450 		if (drainpp == NULL) {
   1451 			drainpp = TAILQ_FIRST(&pool_head);
   1452 		}
   1453 		if (drainpp != NULL) {
   1454 			pp = drainpp;
   1455 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1456 		}
   1457 		/*
   1458 		 * Skip completely idle pools.  We depend on at least
   1459 		 * one pool in the system being active.
   1460 		 */
   1461 	} while (pp == NULL || pp->pr_npages == 0);
   1462 	pp->pr_refcnt++;
   1463 	mutex_exit(&pool_head_lock);
   1464 
   1465 	/* Drain the cache (if any) and pool.. */
   1466 	reclaimed = pool_reclaim(pp);
   1467 
   1468 	/* Finally, unlock the pool. */
   1469 	mutex_enter(&pool_head_lock);
   1470 	pp->pr_refcnt--;
   1471 	cv_broadcast(&pool_busy);
   1472 	mutex_exit(&pool_head_lock);
   1473 
   1474 	if (ppp != NULL)
   1475 		*ppp = pp;
   1476 
   1477 	return reclaimed;
   1478 }
   1479 
   1480 /*
   1481  * Calculate the total number of pages consumed by pools.
   1482  */
   1483 int
   1484 pool_totalpages(void)
   1485 {
   1486 	struct pool *pp;
   1487 	uint64_t total = 0;
   1488 
   1489 	mutex_enter(&pool_head_lock);
   1490 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1491 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1492 
   1493 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1494 			bytes -= (pp->pr_nout * pp->pr_size);
   1495 		total += bytes;
   1496 	}
   1497 	mutex_exit(&pool_head_lock);
   1498 
   1499 	return atop(total);
   1500 }
   1501 
   1502 /*
   1503  * Diagnostic helpers.
   1504  */
   1505 
   1506 void
   1507 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1508 {
   1509 	struct pool *pp;
   1510 
   1511 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1512 		pool_printit(pp, modif, pr);
   1513 	}
   1514 }
   1515 
   1516 void
   1517 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1518 {
   1519 
   1520 	if (pp == NULL) {
   1521 		(*pr)("Must specify a pool to print.\n");
   1522 		return;
   1523 	}
   1524 
   1525 	pool_print1(pp, modif, pr);
   1526 }
   1527 
   1528 static void
   1529 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1530     void (*pr)(const char *, ...))
   1531 {
   1532 	struct pool_item_header *ph;
   1533 	struct pool_item *pi __diagused;
   1534 
   1535 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1536 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1537 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1538 #ifdef DIAGNOSTIC
   1539 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1540 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1541 				if (pi->pi_magic != PI_MAGIC) {
   1542 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1543 					    pi, pi->pi_magic);
   1544 				}
   1545 			}
   1546 		}
   1547 #endif
   1548 	}
   1549 }
   1550 
   1551 static void
   1552 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1553 {
   1554 	struct pool_item_header *ph;
   1555 	pool_cache_t pc;
   1556 	pcg_t *pcg;
   1557 	pool_cache_cpu_t *cc;
   1558 	uint64_t cpuhit, cpumiss;
   1559 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1560 	char c;
   1561 
   1562 	while ((c = *modif++) != '\0') {
   1563 		if (c == 'l')
   1564 			print_log = 1;
   1565 		if (c == 'p')
   1566 			print_pagelist = 1;
   1567 		if (c == 'c')
   1568 			print_cache = 1;
   1569 	}
   1570 
   1571 	if ((pc = pp->pr_cache) != NULL) {
   1572 		(*pr)("POOL CACHE");
   1573 	} else {
   1574 		(*pr)("POOL");
   1575 	}
   1576 
   1577 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1578 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1579 	    pp->pr_roflags);
   1580 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1581 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1582 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1583 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1584 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1585 
   1586 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1587 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1588 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1589 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1590 
   1591 	if (print_pagelist == 0)
   1592 		goto skip_pagelist;
   1593 
   1594 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1595 		(*pr)("\n\tempty page list:\n");
   1596 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1597 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1598 		(*pr)("\n\tfull page list:\n");
   1599 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1600 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1601 		(*pr)("\n\tpartial-page list:\n");
   1602 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1603 
   1604 	if (pp->pr_curpage == NULL)
   1605 		(*pr)("\tno current page\n");
   1606 	else
   1607 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1608 
   1609  skip_pagelist:
   1610 	if (print_log == 0)
   1611 		goto skip_log;
   1612 
   1613 	(*pr)("\n");
   1614 
   1615  skip_log:
   1616 
   1617 #define PR_GROUPLIST(pcg)						\
   1618 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1619 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1620 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1621 		    POOL_PADDR_INVALID) {				\
   1622 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1623 			    pcg->pcg_objects[i].pcgo_va,		\
   1624 			    (unsigned long long)			\
   1625 			    pcg->pcg_objects[i].pcgo_pa);		\
   1626 		} else {						\
   1627 			(*pr)("\t\t\t%p\n",				\
   1628 			    pcg->pcg_objects[i].pcgo_va);		\
   1629 		}							\
   1630 	}
   1631 
   1632 	if (pc != NULL) {
   1633 		cpuhit = 0;
   1634 		cpumiss = 0;
   1635 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1636 			if ((cc = pc->pc_cpus[i]) == NULL)
   1637 				continue;
   1638 			cpuhit += cc->cc_hits;
   1639 			cpumiss += cc->cc_misses;
   1640 		}
   1641 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1642 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1643 		    pc->pc_hits, pc->pc_misses);
   1644 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1645 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1646 		    pc->pc_contended);
   1647 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1648 		    pc->pc_nempty, pc->pc_nfull);
   1649 		if (print_cache) {
   1650 			(*pr)("\tfull cache groups:\n");
   1651 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1652 			    pcg = pcg->pcg_next) {
   1653 				PR_GROUPLIST(pcg);
   1654 			}
   1655 			(*pr)("\tempty cache groups:\n");
   1656 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1657 			    pcg = pcg->pcg_next) {
   1658 				PR_GROUPLIST(pcg);
   1659 			}
   1660 		}
   1661 	}
   1662 #undef PR_GROUPLIST
   1663 }
   1664 
   1665 static int
   1666 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1667 {
   1668 	struct pool_item *pi;
   1669 	void *page;
   1670 	int n;
   1671 
   1672 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1673 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1674 		if (page != ph->ph_page &&
   1675 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1676 			if (label != NULL)
   1677 				printf("%s: ", label);
   1678 			printf("pool(%p:%s): page inconsistency: page %p;"
   1679 			       " at page head addr %p (p %p)\n", pp,
   1680 				pp->pr_wchan, ph->ph_page,
   1681 				ph, page);
   1682 			return 1;
   1683 		}
   1684 	}
   1685 
   1686 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1687 		return 0;
   1688 
   1689 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1690 	     pi != NULL;
   1691 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1692 
   1693 #ifdef DIAGNOSTIC
   1694 		if (pi->pi_magic != PI_MAGIC) {
   1695 			if (label != NULL)
   1696 				printf("%s: ", label);
   1697 			printf("pool(%s): free list modified: magic=%x;"
   1698 			       " page %p; item ordinal %d; addr %p\n",
   1699 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1700 				n, pi);
   1701 			panic("pool");
   1702 		}
   1703 #endif
   1704 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1705 			continue;
   1706 		}
   1707 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1708 		if (page == ph->ph_page)
   1709 			continue;
   1710 
   1711 		if (label != NULL)
   1712 			printf("%s: ", label);
   1713 		printf("pool(%p:%s): page inconsistency: page %p;"
   1714 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1715 			pp->pr_wchan, ph->ph_page,
   1716 			n, pi, page);
   1717 		return 1;
   1718 	}
   1719 	return 0;
   1720 }
   1721 
   1722 
   1723 int
   1724 pool_chk(struct pool *pp, const char *label)
   1725 {
   1726 	struct pool_item_header *ph;
   1727 	int r = 0;
   1728 
   1729 	mutex_enter(&pp->pr_lock);
   1730 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1731 		r = pool_chk_page(pp, label, ph);
   1732 		if (r) {
   1733 			goto out;
   1734 		}
   1735 	}
   1736 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1737 		r = pool_chk_page(pp, label, ph);
   1738 		if (r) {
   1739 			goto out;
   1740 		}
   1741 	}
   1742 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1743 		r = pool_chk_page(pp, label, ph);
   1744 		if (r) {
   1745 			goto out;
   1746 		}
   1747 	}
   1748 
   1749 out:
   1750 	mutex_exit(&pp->pr_lock);
   1751 	return (r);
   1752 }
   1753 
   1754 /*
   1755  * pool_cache_init:
   1756  *
   1757  *	Initialize a pool cache.
   1758  */
   1759 pool_cache_t
   1760 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1761     const char *wchan, struct pool_allocator *palloc, int ipl,
   1762     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1763 {
   1764 	pool_cache_t pc;
   1765 
   1766 	pc = pool_get(&cache_pool, PR_WAITOK);
   1767 	if (pc == NULL)
   1768 		return NULL;
   1769 
   1770 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1771 	   palloc, ipl, ctor, dtor, arg);
   1772 
   1773 	return pc;
   1774 }
   1775 
   1776 /*
   1777  * pool_cache_bootstrap:
   1778  *
   1779  *	Kernel-private version of pool_cache_init().  The caller
   1780  *	provides initial storage.
   1781  */
   1782 void
   1783 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1784     u_int align_offset, u_int flags, const char *wchan,
   1785     struct pool_allocator *palloc, int ipl,
   1786     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1787     void *arg)
   1788 {
   1789 	CPU_INFO_ITERATOR cii;
   1790 	pool_cache_t pc1;
   1791 	struct cpu_info *ci;
   1792 	struct pool *pp;
   1793 
   1794 	pp = &pc->pc_pool;
   1795 	if (palloc == NULL && ipl == IPL_NONE) {
   1796 		if (size > PAGE_SIZE) {
   1797 			int bigidx = pool_bigidx(size);
   1798 
   1799 			palloc = &pool_allocator_big[bigidx];
   1800 		} else
   1801 			palloc = &pool_allocator_nointr;
   1802 	}
   1803 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1804 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1805 
   1806 	if (ctor == NULL) {
   1807 		ctor = (int (*)(void *, void *, int))nullop;
   1808 	}
   1809 	if (dtor == NULL) {
   1810 		dtor = (void (*)(void *, void *))nullop;
   1811 	}
   1812 
   1813 	pc->pc_emptygroups = NULL;
   1814 	pc->pc_fullgroups = NULL;
   1815 	pc->pc_partgroups = NULL;
   1816 	pc->pc_ctor = ctor;
   1817 	pc->pc_dtor = dtor;
   1818 	pc->pc_arg  = arg;
   1819 	pc->pc_hits  = 0;
   1820 	pc->pc_misses = 0;
   1821 	pc->pc_nempty = 0;
   1822 	pc->pc_npart = 0;
   1823 	pc->pc_nfull = 0;
   1824 	pc->pc_contended = 0;
   1825 	pc->pc_refcnt = 0;
   1826 	pc->pc_freecheck = NULL;
   1827 
   1828 	if ((flags & PR_LARGECACHE) != 0) {
   1829 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1830 		pc->pc_pcgpool = &pcg_large_pool;
   1831 	} else {
   1832 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1833 		pc->pc_pcgpool = &pcg_normal_pool;
   1834 	}
   1835 
   1836 	/* Allocate per-CPU caches. */
   1837 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1838 	pc->pc_ncpu = 0;
   1839 	if (ncpu < 2) {
   1840 		/* XXX For sparc: boot CPU is not attached yet. */
   1841 		pool_cache_cpu_init1(curcpu(), pc);
   1842 	} else {
   1843 		for (CPU_INFO_FOREACH(cii, ci)) {
   1844 			pool_cache_cpu_init1(ci, pc);
   1845 		}
   1846 	}
   1847 
   1848 	/* Add to list of all pools. */
   1849 	if (__predict_true(!cold))
   1850 		mutex_enter(&pool_head_lock);
   1851 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1852 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1853 			break;
   1854 	}
   1855 	if (pc1 == NULL)
   1856 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1857 	else
   1858 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1859 	if (__predict_true(!cold))
   1860 		mutex_exit(&pool_head_lock);
   1861 
   1862 	membar_sync();
   1863 	pp->pr_cache = pc;
   1864 }
   1865 
   1866 /*
   1867  * pool_cache_destroy:
   1868  *
   1869  *	Destroy a pool cache.
   1870  */
   1871 void
   1872 pool_cache_destroy(pool_cache_t pc)
   1873 {
   1874 
   1875 	pool_cache_bootstrap_destroy(pc);
   1876 	pool_put(&cache_pool, pc);
   1877 }
   1878 
   1879 /*
   1880  * pool_cache_bootstrap_destroy:
   1881  *
   1882  *	Destroy a pool cache.
   1883  */
   1884 void
   1885 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1886 {
   1887 	struct pool *pp = &pc->pc_pool;
   1888 	u_int i;
   1889 
   1890 	/* Remove it from the global list. */
   1891 	mutex_enter(&pool_head_lock);
   1892 	while (pc->pc_refcnt != 0)
   1893 		cv_wait(&pool_busy, &pool_head_lock);
   1894 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1895 	mutex_exit(&pool_head_lock);
   1896 
   1897 	/* First, invalidate the entire cache. */
   1898 	pool_cache_invalidate(pc);
   1899 
   1900 	/* Disassociate it from the pool. */
   1901 	mutex_enter(&pp->pr_lock);
   1902 	pp->pr_cache = NULL;
   1903 	mutex_exit(&pp->pr_lock);
   1904 
   1905 	/* Destroy per-CPU data */
   1906 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1907 		pool_cache_invalidate_cpu(pc, i);
   1908 
   1909 	/* Finally, destroy it. */
   1910 	mutex_destroy(&pc->pc_lock);
   1911 	pool_destroy(pp);
   1912 }
   1913 
   1914 /*
   1915  * pool_cache_cpu_init1:
   1916  *
   1917  *	Called for each pool_cache whenever a new CPU is attached.
   1918  */
   1919 static void
   1920 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1921 {
   1922 	pool_cache_cpu_t *cc;
   1923 	int index;
   1924 
   1925 	index = ci->ci_index;
   1926 
   1927 	KASSERT(index < __arraycount(pc->pc_cpus));
   1928 
   1929 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1930 		KASSERT(cc->cc_cpuindex == index);
   1931 		return;
   1932 	}
   1933 
   1934 	/*
   1935 	 * The first CPU is 'free'.  This needs to be the case for
   1936 	 * bootstrap - we may not be able to allocate yet.
   1937 	 */
   1938 	if (pc->pc_ncpu == 0) {
   1939 		cc = &pc->pc_cpu0;
   1940 		pc->pc_ncpu = 1;
   1941 	} else {
   1942 		mutex_enter(&pc->pc_lock);
   1943 		pc->pc_ncpu++;
   1944 		mutex_exit(&pc->pc_lock);
   1945 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1946 	}
   1947 
   1948 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1949 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1950 	cc->cc_cache = pc;
   1951 	cc->cc_cpuindex = index;
   1952 	cc->cc_hits = 0;
   1953 	cc->cc_misses = 0;
   1954 	cc->cc_current = __UNCONST(&pcg_dummy);
   1955 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1956 
   1957 	pc->pc_cpus[index] = cc;
   1958 }
   1959 
   1960 /*
   1961  * pool_cache_cpu_init:
   1962  *
   1963  *	Called whenever a new CPU is attached.
   1964  */
   1965 void
   1966 pool_cache_cpu_init(struct cpu_info *ci)
   1967 {
   1968 	pool_cache_t pc;
   1969 
   1970 	mutex_enter(&pool_head_lock);
   1971 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1972 		pc->pc_refcnt++;
   1973 		mutex_exit(&pool_head_lock);
   1974 
   1975 		pool_cache_cpu_init1(ci, pc);
   1976 
   1977 		mutex_enter(&pool_head_lock);
   1978 		pc->pc_refcnt--;
   1979 		cv_broadcast(&pool_busy);
   1980 	}
   1981 	mutex_exit(&pool_head_lock);
   1982 }
   1983 
   1984 /*
   1985  * pool_cache_reclaim:
   1986  *
   1987  *	Reclaim memory from a pool cache.
   1988  */
   1989 bool
   1990 pool_cache_reclaim(pool_cache_t pc)
   1991 {
   1992 
   1993 	return pool_reclaim(&pc->pc_pool);
   1994 }
   1995 
   1996 static void
   1997 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1998 {
   1999 
   2000 	(*pc->pc_dtor)(pc->pc_arg, object);
   2001 	pool_put(&pc->pc_pool, object);
   2002 }
   2003 
   2004 /*
   2005  * pool_cache_destruct_object:
   2006  *
   2007  *	Force destruction of an object and its release back into
   2008  *	the pool.
   2009  */
   2010 void
   2011 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2012 {
   2013 
   2014 	FREECHECK_IN(&pc->pc_freecheck, object);
   2015 
   2016 	pool_cache_destruct_object1(pc, object);
   2017 }
   2018 
   2019 /*
   2020  * pool_cache_invalidate_groups:
   2021  *
   2022  *	Invalidate a chain of groups and destruct all objects.
   2023  */
   2024 static void
   2025 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2026 {
   2027 	void *object;
   2028 	pcg_t *next;
   2029 	int i;
   2030 
   2031 	for (; pcg != NULL; pcg = next) {
   2032 		next = pcg->pcg_next;
   2033 
   2034 		for (i = 0; i < pcg->pcg_avail; i++) {
   2035 			object = pcg->pcg_objects[i].pcgo_va;
   2036 			pool_cache_destruct_object1(pc, object);
   2037 		}
   2038 
   2039 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2040 			pool_put(&pcg_large_pool, pcg);
   2041 		} else {
   2042 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2043 			pool_put(&pcg_normal_pool, pcg);
   2044 		}
   2045 	}
   2046 }
   2047 
   2048 /*
   2049  * pool_cache_invalidate:
   2050  *
   2051  *	Invalidate a pool cache (destruct and release all of the
   2052  *	cached objects).  Does not reclaim objects from the pool.
   2053  *
   2054  *	Note: For pool caches that provide constructed objects, there
   2055  *	is an assumption that another level of synchronization is occurring
   2056  *	between the input to the constructor and the cache invalidation.
   2057  *
   2058  *	Invalidation is a costly process and should not be called from
   2059  *	interrupt context.
   2060  */
   2061 void
   2062 pool_cache_invalidate(pool_cache_t pc)
   2063 {
   2064 	uint64_t where;
   2065 	pcg_t *full, *empty, *part;
   2066 
   2067 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2068 
   2069 	if (ncpu < 2 || !mp_online) {
   2070 		/*
   2071 		 * We might be called early enough in the boot process
   2072 		 * for the CPU data structures to not be fully initialized.
   2073 		 * In this case, transfer the content of the local CPU's
   2074 		 * cache back into global cache as only this CPU is currently
   2075 		 * running.
   2076 		 */
   2077 		pool_cache_transfer(pc);
   2078 	} else {
   2079 		/*
   2080 		 * Signal all CPUs that they must transfer their local
   2081 		 * cache back to the global pool then wait for the xcall to
   2082 		 * complete.
   2083 		 */
   2084 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2085 		    pc, NULL);
   2086 		xc_wait(where);
   2087 	}
   2088 
   2089 	/* Empty pool caches, then invalidate objects */
   2090 	mutex_enter(&pc->pc_lock);
   2091 	full = pc->pc_fullgroups;
   2092 	empty = pc->pc_emptygroups;
   2093 	part = pc->pc_partgroups;
   2094 	pc->pc_fullgroups = NULL;
   2095 	pc->pc_emptygroups = NULL;
   2096 	pc->pc_partgroups = NULL;
   2097 	pc->pc_nfull = 0;
   2098 	pc->pc_nempty = 0;
   2099 	pc->pc_npart = 0;
   2100 	mutex_exit(&pc->pc_lock);
   2101 
   2102 	pool_cache_invalidate_groups(pc, full);
   2103 	pool_cache_invalidate_groups(pc, empty);
   2104 	pool_cache_invalidate_groups(pc, part);
   2105 }
   2106 
   2107 /*
   2108  * pool_cache_invalidate_cpu:
   2109  *
   2110  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2111  *	identified by its associated index.
   2112  *	It is caller's responsibility to ensure that no operation is
   2113  *	taking place on this pool cache while doing this invalidation.
   2114  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2115  *	pool cached objects from a CPU different from the one currently running
   2116  *	may result in an undefined behaviour.
   2117  */
   2118 static void
   2119 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2120 {
   2121 	pool_cache_cpu_t *cc;
   2122 	pcg_t *pcg;
   2123 
   2124 	if ((cc = pc->pc_cpus[index]) == NULL)
   2125 		return;
   2126 
   2127 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2128 		pcg->pcg_next = NULL;
   2129 		pool_cache_invalidate_groups(pc, pcg);
   2130 	}
   2131 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2132 		pcg->pcg_next = NULL;
   2133 		pool_cache_invalidate_groups(pc, pcg);
   2134 	}
   2135 	if (cc != &pc->pc_cpu0)
   2136 		pool_put(&cache_cpu_pool, cc);
   2137 
   2138 }
   2139 
   2140 void
   2141 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2142 {
   2143 
   2144 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2145 }
   2146 
   2147 void
   2148 pool_cache_setlowat(pool_cache_t pc, int n)
   2149 {
   2150 
   2151 	pool_setlowat(&pc->pc_pool, n);
   2152 }
   2153 
   2154 void
   2155 pool_cache_sethiwat(pool_cache_t pc, int n)
   2156 {
   2157 
   2158 	pool_sethiwat(&pc->pc_pool, n);
   2159 }
   2160 
   2161 void
   2162 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2163 {
   2164 
   2165 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2166 }
   2167 
   2168 static bool __noinline
   2169 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2170 		    paddr_t *pap, int flags)
   2171 {
   2172 	pcg_t *pcg, *cur;
   2173 	uint64_t ncsw;
   2174 	pool_cache_t pc;
   2175 	void *object;
   2176 
   2177 	KASSERT(cc->cc_current->pcg_avail == 0);
   2178 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2179 
   2180 	pc = cc->cc_cache;
   2181 	cc->cc_misses++;
   2182 
   2183 	/*
   2184 	 * Nothing was available locally.  Try and grab a group
   2185 	 * from the cache.
   2186 	 */
   2187 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2188 		ncsw = curlwp->l_ncsw;
   2189 		mutex_enter(&pc->pc_lock);
   2190 		pc->pc_contended++;
   2191 
   2192 		/*
   2193 		 * If we context switched while locking, then
   2194 		 * our view of the per-CPU data is invalid:
   2195 		 * retry.
   2196 		 */
   2197 		if (curlwp->l_ncsw != ncsw) {
   2198 			mutex_exit(&pc->pc_lock);
   2199 			return true;
   2200 		}
   2201 	}
   2202 
   2203 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2204 		/*
   2205 		 * If there's a full group, release our empty
   2206 		 * group back to the cache.  Install the full
   2207 		 * group as cc_current and return.
   2208 		 */
   2209 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2210 			KASSERT(cur->pcg_avail == 0);
   2211 			cur->pcg_next = pc->pc_emptygroups;
   2212 			pc->pc_emptygroups = cur;
   2213 			pc->pc_nempty++;
   2214 		}
   2215 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2216 		cc->cc_current = pcg;
   2217 		pc->pc_fullgroups = pcg->pcg_next;
   2218 		pc->pc_hits++;
   2219 		pc->pc_nfull--;
   2220 		mutex_exit(&pc->pc_lock);
   2221 		return true;
   2222 	}
   2223 
   2224 	/*
   2225 	 * Nothing available locally or in cache.  Take the slow
   2226 	 * path: fetch a new object from the pool and construct
   2227 	 * it.
   2228 	 */
   2229 	pc->pc_misses++;
   2230 	mutex_exit(&pc->pc_lock);
   2231 	splx(s);
   2232 
   2233 	object = pool_get(&pc->pc_pool, flags);
   2234 	*objectp = object;
   2235 	if (__predict_false(object == NULL)) {
   2236 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2237 		return false;
   2238 	}
   2239 
   2240 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2241 		pool_put(&pc->pc_pool, object);
   2242 		*objectp = NULL;
   2243 		return false;
   2244 	}
   2245 
   2246 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2247 	    (pc->pc_pool.pr_align - 1)) == 0);
   2248 
   2249 	if (pap != NULL) {
   2250 #ifdef POOL_VTOPHYS
   2251 		*pap = POOL_VTOPHYS(object);
   2252 #else
   2253 		*pap = POOL_PADDR_INVALID;
   2254 #endif
   2255 	}
   2256 
   2257 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2258 	pool_redzone_fill(&pc->pc_pool, object);
   2259 	return false;
   2260 }
   2261 
   2262 /*
   2263  * pool_cache_get{,_paddr}:
   2264  *
   2265  *	Get an object from a pool cache (optionally returning
   2266  *	the physical address of the object).
   2267  */
   2268 void *
   2269 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2270 {
   2271 	pool_cache_cpu_t *cc;
   2272 	pcg_t *pcg;
   2273 	void *object;
   2274 	int s;
   2275 
   2276 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2277 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2278 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2279 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2280 	    __func__, pc->pc_pool.pr_wchan);
   2281 
   2282 	if (flags & PR_WAITOK) {
   2283 		ASSERT_SLEEPABLE();
   2284 	}
   2285 
   2286 	/* Lock out interrupts and disable preemption. */
   2287 	s = splvm();
   2288 	while (/* CONSTCOND */ true) {
   2289 		/* Try and allocate an object from the current group. */
   2290 		cc = pc->pc_cpus[curcpu()->ci_index];
   2291 		KASSERT(cc->cc_cache == pc);
   2292 	 	pcg = cc->cc_current;
   2293 		if (__predict_true(pcg->pcg_avail > 0)) {
   2294 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2295 			if (__predict_false(pap != NULL))
   2296 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2297 #if defined(DIAGNOSTIC)
   2298 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2299 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2300 			KASSERT(object != NULL);
   2301 #endif
   2302 			cc->cc_hits++;
   2303 			splx(s);
   2304 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2305 			pool_redzone_fill(&pc->pc_pool, object);
   2306 			return object;
   2307 		}
   2308 
   2309 		/*
   2310 		 * That failed.  If the previous group isn't empty, swap
   2311 		 * it with the current group and allocate from there.
   2312 		 */
   2313 		pcg = cc->cc_previous;
   2314 		if (__predict_true(pcg->pcg_avail > 0)) {
   2315 			cc->cc_previous = cc->cc_current;
   2316 			cc->cc_current = pcg;
   2317 			continue;
   2318 		}
   2319 
   2320 		/*
   2321 		 * Can't allocate from either group: try the slow path.
   2322 		 * If get_slow() allocated an object for us, or if
   2323 		 * no more objects are available, it will return false.
   2324 		 * Otherwise, we need to retry.
   2325 		 */
   2326 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2327 			break;
   2328 	}
   2329 
   2330 	/*
   2331 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2332 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2333 	 * constructor fails.
   2334 	 */
   2335 	return object;
   2336 }
   2337 
   2338 static bool __noinline
   2339 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2340 {
   2341 	struct lwp *l = curlwp;
   2342 	pcg_t *pcg, *cur;
   2343 	uint64_t ncsw;
   2344 	pool_cache_t pc;
   2345 
   2346 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2347 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2348 
   2349 	pc = cc->cc_cache;
   2350 	pcg = NULL;
   2351 	cc->cc_misses++;
   2352 	ncsw = l->l_ncsw;
   2353 
   2354 	/*
   2355 	 * If there are no empty groups in the cache then allocate one
   2356 	 * while still unlocked.
   2357 	 */
   2358 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2359 		if (__predict_true(!pool_cache_disable)) {
   2360 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2361 		}
   2362 		/*
   2363 		 * If pool_get() blocked, then our view of
   2364 		 * the per-CPU data is invalid: retry.
   2365 		 */
   2366 		if (__predict_false(l->l_ncsw != ncsw)) {
   2367 			if (pcg != NULL) {
   2368 				pool_put(pc->pc_pcgpool, pcg);
   2369 			}
   2370 			return true;
   2371 		}
   2372 		if (__predict_true(pcg != NULL)) {
   2373 			pcg->pcg_avail = 0;
   2374 			pcg->pcg_size = pc->pc_pcgsize;
   2375 		}
   2376 	}
   2377 
   2378 	/* Lock the cache. */
   2379 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2380 		mutex_enter(&pc->pc_lock);
   2381 		pc->pc_contended++;
   2382 
   2383 		/*
   2384 		 * If we context switched while locking, then our view of
   2385 		 * the per-CPU data is invalid: retry.
   2386 		 */
   2387 		if (__predict_false(l->l_ncsw != ncsw)) {
   2388 			mutex_exit(&pc->pc_lock);
   2389 			if (pcg != NULL) {
   2390 				pool_put(pc->pc_pcgpool, pcg);
   2391 			}
   2392 			return true;
   2393 		}
   2394 	}
   2395 
   2396 	/* If there are no empty groups in the cache then allocate one. */
   2397 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2398 		pcg = pc->pc_emptygroups;
   2399 		pc->pc_emptygroups = pcg->pcg_next;
   2400 		pc->pc_nempty--;
   2401 	}
   2402 
   2403 	/*
   2404 	 * If there's a empty group, release our full group back
   2405 	 * to the cache.  Install the empty group to the local CPU
   2406 	 * and return.
   2407 	 */
   2408 	if (pcg != NULL) {
   2409 		KASSERT(pcg->pcg_avail == 0);
   2410 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2411 			cc->cc_previous = pcg;
   2412 		} else {
   2413 			cur = cc->cc_current;
   2414 			if (__predict_true(cur != &pcg_dummy)) {
   2415 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2416 				cur->pcg_next = pc->pc_fullgroups;
   2417 				pc->pc_fullgroups = cur;
   2418 				pc->pc_nfull++;
   2419 			}
   2420 			cc->cc_current = pcg;
   2421 		}
   2422 		pc->pc_hits++;
   2423 		mutex_exit(&pc->pc_lock);
   2424 		return true;
   2425 	}
   2426 
   2427 	/*
   2428 	 * Nothing available locally or in cache, and we didn't
   2429 	 * allocate an empty group.  Take the slow path and destroy
   2430 	 * the object here and now.
   2431 	 */
   2432 	pc->pc_misses++;
   2433 	mutex_exit(&pc->pc_lock);
   2434 	splx(s);
   2435 	pool_cache_destruct_object(pc, object);
   2436 
   2437 	return false;
   2438 }
   2439 
   2440 /*
   2441  * pool_cache_put{,_paddr}:
   2442  *
   2443  *	Put an object back to the pool cache (optionally caching the
   2444  *	physical address of the object).
   2445  */
   2446 void
   2447 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2448 {
   2449 	pool_cache_cpu_t *cc;
   2450 	pcg_t *pcg;
   2451 	int s;
   2452 
   2453 	KASSERT(object != NULL);
   2454 	pool_redzone_check(&pc->pc_pool, object);
   2455 	FREECHECK_IN(&pc->pc_freecheck, object);
   2456 
   2457 	/* Lock out interrupts and disable preemption. */
   2458 	s = splvm();
   2459 	while (/* CONSTCOND */ true) {
   2460 		/* If the current group isn't full, release it there. */
   2461 		cc = pc->pc_cpus[curcpu()->ci_index];
   2462 		KASSERT(cc->cc_cache == pc);
   2463 	 	pcg = cc->cc_current;
   2464 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2465 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2466 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2467 			pcg->pcg_avail++;
   2468 			cc->cc_hits++;
   2469 			splx(s);
   2470 			return;
   2471 		}
   2472 
   2473 		/*
   2474 		 * That failed.  If the previous group isn't full, swap
   2475 		 * it with the current group and try again.
   2476 		 */
   2477 		pcg = cc->cc_previous;
   2478 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2479 			cc->cc_previous = cc->cc_current;
   2480 			cc->cc_current = pcg;
   2481 			continue;
   2482 		}
   2483 
   2484 		/*
   2485 		 * Can't free to either group: try the slow path.
   2486 		 * If put_slow() releases the object for us, it
   2487 		 * will return false.  Otherwise we need to retry.
   2488 		 */
   2489 		if (!pool_cache_put_slow(cc, s, object))
   2490 			break;
   2491 	}
   2492 }
   2493 
   2494 /*
   2495  * pool_cache_transfer:
   2496  *
   2497  *	Transfer objects from the per-CPU cache to the global cache.
   2498  *	Run within a cross-call thread.
   2499  */
   2500 static void
   2501 pool_cache_transfer(pool_cache_t pc)
   2502 {
   2503 	pool_cache_cpu_t *cc;
   2504 	pcg_t *prev, *cur, **list;
   2505 	int s;
   2506 
   2507 	s = splvm();
   2508 	mutex_enter(&pc->pc_lock);
   2509 	cc = pc->pc_cpus[curcpu()->ci_index];
   2510 	cur = cc->cc_current;
   2511 	cc->cc_current = __UNCONST(&pcg_dummy);
   2512 	prev = cc->cc_previous;
   2513 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2514 	if (cur != &pcg_dummy) {
   2515 		if (cur->pcg_avail == cur->pcg_size) {
   2516 			list = &pc->pc_fullgroups;
   2517 			pc->pc_nfull++;
   2518 		} else if (cur->pcg_avail == 0) {
   2519 			list = &pc->pc_emptygroups;
   2520 			pc->pc_nempty++;
   2521 		} else {
   2522 			list = &pc->pc_partgroups;
   2523 			pc->pc_npart++;
   2524 		}
   2525 		cur->pcg_next = *list;
   2526 		*list = cur;
   2527 	}
   2528 	if (prev != &pcg_dummy) {
   2529 		if (prev->pcg_avail == prev->pcg_size) {
   2530 			list = &pc->pc_fullgroups;
   2531 			pc->pc_nfull++;
   2532 		} else if (prev->pcg_avail == 0) {
   2533 			list = &pc->pc_emptygroups;
   2534 			pc->pc_nempty++;
   2535 		} else {
   2536 			list = &pc->pc_partgroups;
   2537 			pc->pc_npart++;
   2538 		}
   2539 		prev->pcg_next = *list;
   2540 		*list = prev;
   2541 	}
   2542 	mutex_exit(&pc->pc_lock);
   2543 	splx(s);
   2544 }
   2545 
   2546 /*
   2547  * Pool backend allocators.
   2548  *
   2549  * Each pool has a backend allocator that handles allocation, deallocation,
   2550  * and any additional draining that might be needed.
   2551  *
   2552  * We provide two standard allocators:
   2553  *
   2554  *	pool_allocator_kmem - the default when no allocator is specified
   2555  *
   2556  *	pool_allocator_nointr - used for pools that will not be accessed
   2557  *	in interrupt context.
   2558  */
   2559 void	*pool_page_alloc(struct pool *, int);
   2560 void	pool_page_free(struct pool *, void *);
   2561 
   2562 #ifdef POOL_SUBPAGE
   2563 struct pool_allocator pool_allocator_kmem_fullpage = {
   2564 	.pa_alloc = pool_page_alloc,
   2565 	.pa_free = pool_page_free,
   2566 	.pa_pagesz = 0
   2567 };
   2568 #else
   2569 struct pool_allocator pool_allocator_kmem = {
   2570 	.pa_alloc = pool_page_alloc,
   2571 	.pa_free = pool_page_free,
   2572 	.pa_pagesz = 0
   2573 };
   2574 #endif
   2575 
   2576 #ifdef POOL_SUBPAGE
   2577 struct pool_allocator pool_allocator_nointr_fullpage = {
   2578 	.pa_alloc = pool_page_alloc,
   2579 	.pa_free = pool_page_free,
   2580 	.pa_pagesz = 0
   2581 };
   2582 #else
   2583 struct pool_allocator pool_allocator_nointr = {
   2584 	.pa_alloc = pool_page_alloc,
   2585 	.pa_free = pool_page_free,
   2586 	.pa_pagesz = 0
   2587 };
   2588 #endif
   2589 
   2590 #ifdef POOL_SUBPAGE
   2591 void	*pool_subpage_alloc(struct pool *, int);
   2592 void	pool_subpage_free(struct pool *, void *);
   2593 
   2594 struct pool_allocator pool_allocator_kmem = {
   2595 	.pa_alloc = pool_subpage_alloc,
   2596 	.pa_free = pool_subpage_free,
   2597 	.pa_pagesz = POOL_SUBPAGE
   2598 };
   2599 
   2600 struct pool_allocator pool_allocator_nointr = {
   2601 	.pa_alloc = pool_subpage_alloc,
   2602 	.pa_free = pool_subpage_free,
   2603 	.pa_pagesz = POOL_SUBPAGE
   2604 };
   2605 #endif /* POOL_SUBPAGE */
   2606 
   2607 struct pool_allocator pool_allocator_big[] = {
   2608 	{
   2609 		.pa_alloc = pool_page_alloc,
   2610 		.pa_free = pool_page_free,
   2611 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2612 	},
   2613 	{
   2614 		.pa_alloc = pool_page_alloc,
   2615 		.pa_free = pool_page_free,
   2616 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2617 	},
   2618 	{
   2619 		.pa_alloc = pool_page_alloc,
   2620 		.pa_free = pool_page_free,
   2621 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2622 	},
   2623 	{
   2624 		.pa_alloc = pool_page_alloc,
   2625 		.pa_free = pool_page_free,
   2626 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2627 	},
   2628 	{
   2629 		.pa_alloc = pool_page_alloc,
   2630 		.pa_free = pool_page_free,
   2631 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2632 	},
   2633 	{
   2634 		.pa_alloc = pool_page_alloc,
   2635 		.pa_free = pool_page_free,
   2636 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2637 	},
   2638 	{
   2639 		.pa_alloc = pool_page_alloc,
   2640 		.pa_free = pool_page_free,
   2641 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2642 	},
   2643 	{
   2644 		.pa_alloc = pool_page_alloc,
   2645 		.pa_free = pool_page_free,
   2646 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2647 	}
   2648 };
   2649 
   2650 static int
   2651 pool_bigidx(size_t size)
   2652 {
   2653 	int i;
   2654 
   2655 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2656 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2657 			return i;
   2658 	}
   2659 	panic("pool item size %zu too large, use a custom allocator", size);
   2660 }
   2661 
   2662 static void *
   2663 pool_allocator_alloc(struct pool *pp, int flags)
   2664 {
   2665 	struct pool_allocator *pa = pp->pr_alloc;
   2666 	void *res;
   2667 
   2668 	res = (*pa->pa_alloc)(pp, flags);
   2669 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2670 		/*
   2671 		 * We only run the drain hook here if PR_NOWAIT.
   2672 		 * In other cases, the hook will be run in
   2673 		 * pool_reclaim().
   2674 		 */
   2675 		if (pp->pr_drain_hook != NULL) {
   2676 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2677 			res = (*pa->pa_alloc)(pp, flags);
   2678 		}
   2679 	}
   2680 	return res;
   2681 }
   2682 
   2683 static void
   2684 pool_allocator_free(struct pool *pp, void *v)
   2685 {
   2686 	struct pool_allocator *pa = pp->pr_alloc;
   2687 
   2688 	(*pa->pa_free)(pp, v);
   2689 }
   2690 
   2691 void *
   2692 pool_page_alloc(struct pool *pp, int flags)
   2693 {
   2694 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2695 	vmem_addr_t va;
   2696 	int ret;
   2697 
   2698 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2699 	    vflags | VM_INSTANTFIT, &va);
   2700 
   2701 	return ret ? NULL : (void *)va;
   2702 }
   2703 
   2704 void
   2705 pool_page_free(struct pool *pp, void *v)
   2706 {
   2707 
   2708 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2709 }
   2710 
   2711 static void *
   2712 pool_page_alloc_meta(struct pool *pp, int flags)
   2713 {
   2714 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2715 	vmem_addr_t va;
   2716 	int ret;
   2717 
   2718 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2719 	    vflags | VM_INSTANTFIT, &va);
   2720 
   2721 	return ret ? NULL : (void *)va;
   2722 }
   2723 
   2724 static void
   2725 pool_page_free_meta(struct pool *pp, void *v)
   2726 {
   2727 
   2728 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2729 }
   2730 
   2731 #ifdef POOL_REDZONE
   2732 #if defined(_LP64)
   2733 # define PRIME 0x9e37fffffffc0000UL
   2734 #else /* defined(_LP64) */
   2735 # define PRIME 0x9e3779b1
   2736 #endif /* defined(_LP64) */
   2737 #define STATIC_BYTE	0xFE
   2738 CTASSERT(POOL_REDZONE_SIZE > 1);
   2739 
   2740 #ifndef KASAN
   2741 static inline uint8_t
   2742 pool_pattern_generate(const void *p)
   2743 {
   2744 	return (uint8_t)(((uintptr_t)p) * PRIME
   2745 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2746 }
   2747 #endif
   2748 
   2749 static void
   2750 pool_redzone_init(struct pool *pp, size_t requested_size)
   2751 {
   2752 	size_t redzsz;
   2753 	size_t nsz;
   2754 
   2755 #ifdef KASAN
   2756 	redzsz = requested_size;
   2757 	kasan_add_redzone(&redzsz);
   2758 	redzsz -= requested_size;
   2759 #else
   2760 	redzsz = POOL_REDZONE_SIZE;
   2761 #endif
   2762 
   2763 	if (pp->pr_roflags & PR_NOTOUCH) {
   2764 		pp->pr_reqsize = 0;
   2765 		pp->pr_redzone = false;
   2766 		return;
   2767 	}
   2768 
   2769 	/*
   2770 	 * We may have extended the requested size earlier; check if
   2771 	 * there's naturally space in the padding for a red zone.
   2772 	 */
   2773 	if (pp->pr_size - requested_size >= redzsz) {
   2774 		pp->pr_reqsize = requested_size;
   2775 		pp->pr_redzone = true;
   2776 		return;
   2777 	}
   2778 
   2779 	/*
   2780 	 * No space in the natural padding; check if we can extend a
   2781 	 * bit the size of the pool.
   2782 	 */
   2783 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2784 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2785 		/* Ok, we can */
   2786 		pp->pr_size = nsz;
   2787 		pp->pr_reqsize = requested_size;
   2788 		pp->pr_redzone = true;
   2789 	} else {
   2790 		/* No space for a red zone... snif :'( */
   2791 		pp->pr_reqsize = 0;
   2792 		pp->pr_redzone = false;
   2793 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2794 	}
   2795 }
   2796 
   2797 static void
   2798 pool_redzone_fill(struct pool *pp, void *p)
   2799 {
   2800 	if (!pp->pr_redzone)
   2801 		return;
   2802 #ifdef KASAN
   2803 	size_t size_with_redzone = pp->pr_reqsize;
   2804 	kasan_add_redzone(&size_with_redzone);
   2805 	kasan_alloc(p, pp->pr_reqsize, size_with_redzone);
   2806 #else
   2807 	uint8_t *cp, pat;
   2808 	const uint8_t *ep;
   2809 
   2810 	cp = (uint8_t *)p + pp->pr_reqsize;
   2811 	ep = cp + POOL_REDZONE_SIZE;
   2812 
   2813 	/*
   2814 	 * We really don't want the first byte of the red zone to be '\0';
   2815 	 * an off-by-one in a string may not be properly detected.
   2816 	 */
   2817 	pat = pool_pattern_generate(cp);
   2818 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2819 	cp++;
   2820 
   2821 	while (cp < ep) {
   2822 		*cp = pool_pattern_generate(cp);
   2823 		cp++;
   2824 	}
   2825 #endif
   2826 }
   2827 
   2828 static void
   2829 pool_redzone_check(struct pool *pp, void *p)
   2830 {
   2831 	if (!pp->pr_redzone)
   2832 		return;
   2833 #ifdef KASAN
   2834 	size_t size_with_redzone = pp->pr_reqsize;
   2835 	kasan_add_redzone(&size_with_redzone);
   2836 	kasan_free(p, size_with_redzone);
   2837 #else
   2838 	uint8_t *cp, pat, expected;
   2839 	const uint8_t *ep;
   2840 
   2841 	cp = (uint8_t *)p + pp->pr_reqsize;
   2842 	ep = cp + POOL_REDZONE_SIZE;
   2843 
   2844 	pat = pool_pattern_generate(cp);
   2845 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2846 	if (__predict_false(expected != *cp)) {
   2847 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2848 		   __func__, cp, *cp, expected);
   2849 	}
   2850 	cp++;
   2851 
   2852 	while (cp < ep) {
   2853 		expected = pool_pattern_generate(cp);
   2854 		if (__predict_false(*cp != expected)) {
   2855 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2856 			   __func__, cp, *cp, expected);
   2857 		}
   2858 		cp++;
   2859 	}
   2860 #endif
   2861 }
   2862 
   2863 #endif /* POOL_REDZONE */
   2864 
   2865 
   2866 #ifdef POOL_SUBPAGE
   2867 /* Sub-page allocator, for machines with large hardware pages. */
   2868 void *
   2869 pool_subpage_alloc(struct pool *pp, int flags)
   2870 {
   2871 	return pool_get(&psppool, flags);
   2872 }
   2873 
   2874 void
   2875 pool_subpage_free(struct pool *pp, void *v)
   2876 {
   2877 	pool_put(&psppool, v);
   2878 }
   2879 
   2880 #endif /* POOL_SUBPAGE */
   2881 
   2882 #if defined(DDB)
   2883 static bool
   2884 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2885 {
   2886 
   2887 	return (uintptr_t)ph->ph_page <= addr &&
   2888 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2889 }
   2890 
   2891 static bool
   2892 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2893 {
   2894 
   2895 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2896 }
   2897 
   2898 static bool
   2899 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2900 {
   2901 	int i;
   2902 
   2903 	if (pcg == NULL) {
   2904 		return false;
   2905 	}
   2906 	for (i = 0; i < pcg->pcg_avail; i++) {
   2907 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2908 			return true;
   2909 		}
   2910 	}
   2911 	return false;
   2912 }
   2913 
   2914 static bool
   2915 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2916 {
   2917 
   2918 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2919 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2920 		pool_item_bitmap_t *bitmap =
   2921 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2922 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2923 
   2924 		return (*bitmap & mask) == 0;
   2925 	} else {
   2926 		struct pool_item *pi;
   2927 
   2928 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2929 			if (pool_in_item(pp, pi, addr)) {
   2930 				return false;
   2931 			}
   2932 		}
   2933 		return true;
   2934 	}
   2935 }
   2936 
   2937 void
   2938 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2939 {
   2940 	struct pool *pp;
   2941 
   2942 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2943 		struct pool_item_header *ph;
   2944 		uintptr_t item;
   2945 		bool allocated = true;
   2946 		bool incache = false;
   2947 		bool incpucache = false;
   2948 		char cpucachestr[32];
   2949 
   2950 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2951 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2952 				if (pool_in_page(pp, ph, addr)) {
   2953 					goto found;
   2954 				}
   2955 			}
   2956 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2957 				if (pool_in_page(pp, ph, addr)) {
   2958 					allocated =
   2959 					    pool_allocated(pp, ph, addr);
   2960 					goto found;
   2961 				}
   2962 			}
   2963 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2964 				if (pool_in_page(pp, ph, addr)) {
   2965 					allocated = false;
   2966 					goto found;
   2967 				}
   2968 			}
   2969 			continue;
   2970 		} else {
   2971 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2972 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2973 				continue;
   2974 			}
   2975 			allocated = pool_allocated(pp, ph, addr);
   2976 		}
   2977 found:
   2978 		if (allocated && pp->pr_cache) {
   2979 			pool_cache_t pc = pp->pr_cache;
   2980 			struct pool_cache_group *pcg;
   2981 			int i;
   2982 
   2983 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2984 			    pcg = pcg->pcg_next) {
   2985 				if (pool_in_cg(pp, pcg, addr)) {
   2986 					incache = true;
   2987 					goto print;
   2988 				}
   2989 			}
   2990 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2991 				pool_cache_cpu_t *cc;
   2992 
   2993 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2994 					continue;
   2995 				}
   2996 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2997 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2998 					struct cpu_info *ci =
   2999 					    cpu_lookup(i);
   3000 
   3001 					incpucache = true;
   3002 					snprintf(cpucachestr,
   3003 					    sizeof(cpucachestr),
   3004 					    "cached by CPU %u",
   3005 					    ci->ci_index);
   3006 					goto print;
   3007 				}
   3008 			}
   3009 		}
   3010 print:
   3011 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3012 		item = item + rounddown(addr - item, pp->pr_size);
   3013 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3014 		    (void *)addr, item, (size_t)(addr - item),
   3015 		    pp->pr_wchan,
   3016 		    incpucache ? cpucachestr :
   3017 		    incache ? "cached" : allocated ? "allocated" : "free");
   3018 	}
   3019 }
   3020 #endif /* defined(DDB) */
   3021 
   3022 static int
   3023 pool_sysctl(SYSCTLFN_ARGS)
   3024 {
   3025 	struct pool_sysctl data;
   3026 	struct pool *pp;
   3027 	struct pool_cache *pc;
   3028 	pool_cache_cpu_t *cc;
   3029 	int error;
   3030 	size_t i, written;
   3031 
   3032 	if (oldp == NULL) {
   3033 		*oldlenp = 0;
   3034 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3035 			*oldlenp += sizeof(data);
   3036 		return 0;
   3037 	}
   3038 
   3039 	memset(&data, 0, sizeof(data));
   3040 	error = 0;
   3041 	written = 0;
   3042 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3043 		if (written + sizeof(data) > *oldlenp)
   3044 			break;
   3045 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3046 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3047 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3048 #define COPY(field) data.field = pp->field
   3049 		COPY(pr_size);
   3050 
   3051 		COPY(pr_itemsperpage);
   3052 		COPY(pr_nitems);
   3053 		COPY(pr_nout);
   3054 		COPY(pr_hardlimit);
   3055 		COPY(pr_npages);
   3056 		COPY(pr_minpages);
   3057 		COPY(pr_maxpages);
   3058 
   3059 		COPY(pr_nget);
   3060 		COPY(pr_nfail);
   3061 		COPY(pr_nput);
   3062 		COPY(pr_npagealloc);
   3063 		COPY(pr_npagefree);
   3064 		COPY(pr_hiwat);
   3065 		COPY(pr_nidle);
   3066 #undef COPY
   3067 
   3068 		data.pr_cache_nmiss_pcpu = 0;
   3069 		data.pr_cache_nhit_pcpu = 0;
   3070 		if (pp->pr_cache) {
   3071 			pc = pp->pr_cache;
   3072 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3073 			data.pr_cache_nfull = pc->pc_nfull;
   3074 			data.pr_cache_npartial = pc->pc_npart;
   3075 			data.pr_cache_nempty = pc->pc_nempty;
   3076 			data.pr_cache_ncontended = pc->pc_contended;
   3077 			data.pr_cache_nmiss_global = pc->pc_misses;
   3078 			data.pr_cache_nhit_global = pc->pc_hits;
   3079 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3080 				cc = pc->pc_cpus[i];
   3081 				if (cc == NULL)
   3082 					continue;
   3083 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3084 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3085 			}
   3086 		} else {
   3087 			data.pr_cache_meta_size = 0;
   3088 			data.pr_cache_nfull = 0;
   3089 			data.pr_cache_npartial = 0;
   3090 			data.pr_cache_nempty = 0;
   3091 			data.pr_cache_ncontended = 0;
   3092 			data.pr_cache_nmiss_global = 0;
   3093 			data.pr_cache_nhit_global = 0;
   3094 		}
   3095 
   3096 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3097 		if (error)
   3098 			break;
   3099 		written += sizeof(data);
   3100 		oldp = (char *)oldp + sizeof(data);
   3101 	}
   3102 
   3103 	*oldlenp = written;
   3104 	return error;
   3105 }
   3106 
   3107 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3108 {
   3109 	const struct sysctlnode *rnode = NULL;
   3110 
   3111 	sysctl_createv(clog, 0, NULL, &rnode,
   3112 		       CTLFLAG_PERMANENT,
   3113 		       CTLTYPE_STRUCT, "pool",
   3114 		       SYSCTL_DESCR("Get pool statistics"),
   3115 		       pool_sysctl, 0, NULL, 0,
   3116 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3117 }
   3118