subr_pool.c revision 1.223 1 /* $NetBSD: subr_pool.c,v 1.223 2018/07/04 02:19:02 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.223 2018/07/04 02:19:02 kamil Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/bitops.h>
47 #include <sys/proc.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/vmem.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53 #include <sys/debug.h>
54 #include <sys/lockdebug.h>
55 #include <sys/xcall.h>
56 #include <sys/cpu.h>
57 #include <sys/atomic.h>
58
59 #include <uvm/uvm_extern.h>
60
61 /*
62 * Pool resource management utility.
63 *
64 * Memory is allocated in pages which are split into pieces according to
65 * the pool item size. Each page is kept on one of three lists in the
66 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67 * for empty, full and partially-full pages respectively. The individual
68 * pool items are on a linked list headed by `ph_itemlist' in each page
69 * header. The memory for building the page list is either taken from
70 * the allocated pages themselves (for small pool items) or taken from
71 * an internal pool of page headers (`phpool').
72 */
73
74 /* List of all pools. Non static as needed by 'vmstat -m' */
75 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
76
77 /* Private pool for page header structures */
78 #define PHPOOL_MAX 8
79 static struct pool phpool[PHPOOL_MAX];
80 #define PHPOOL_FREELIST_NELEM(idx) \
81 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
82
83 #ifdef POOL_SUBPAGE
84 /* Pool of subpages for use by normal pools. */
85 static struct pool psppool;
86 #endif
87
88 #ifdef POOL_REDZONE
89 # define POOL_REDZONE_SIZE 2
90 static void pool_redzone_init(struct pool *, size_t);
91 static void pool_redzone_fill(struct pool *, void *);
92 static void pool_redzone_check(struct pool *, void *);
93 #else
94 # define pool_redzone_init(pp, sz) /* NOTHING */
95 # define pool_redzone_fill(pp, ptr) /* NOTHING */
96 # define pool_redzone_check(pp, ptr) /* NOTHING */
97 #endif
98
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 .pa_alloc = pool_page_alloc_meta,
105 .pa_free = pool_page_free_meta,
106 .pa_pagesz = 0
107 };
108
109 #define POOL_ALLOCATOR_BIG_BASE 13
110 extern struct pool_allocator pool_allocator_big[];
111 static int pool_bigidx(size_t);
112
113 /* # of seconds to retain page after last use */
114 int pool_inactive_time = 10;
115
116 /* Next candidate for drainage (see pool_drain()) */
117 static struct pool *drainpp;
118
119 /* This lock protects both pool_head and drainpp. */
120 static kmutex_t pool_head_lock;
121 static kcondvar_t pool_busy;
122
123 /* This lock protects initialization of a potentially shared pool allocator */
124 static kmutex_t pool_allocator_lock;
125
126 typedef uint32_t pool_item_bitmap_t;
127 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
128 #define BITMAP_MASK (BITMAP_SIZE - 1)
129
130 struct pool_item_header {
131 /* Page headers */
132 LIST_ENTRY(pool_item_header)
133 ph_pagelist; /* pool page list */
134 SPLAY_ENTRY(pool_item_header)
135 ph_node; /* Off-page page headers */
136 void * ph_page; /* this page's address */
137 uint32_t ph_time; /* last referenced */
138 uint16_t ph_nmissing; /* # of chunks in use */
139 uint16_t ph_off; /* start offset in page */
140 union {
141 /* !PR_NOTOUCH */
142 struct {
143 LIST_HEAD(, pool_item)
144 phu_itemlist; /* chunk list for this page */
145 } phu_normal;
146 /* PR_NOTOUCH */
147 struct {
148 pool_item_bitmap_t phu_bitmap[1];
149 } phu_notouch;
150 } ph_u;
151 };
152 #define ph_itemlist ph_u.phu_normal.phu_itemlist
153 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
154
155 struct pool_item {
156 #ifdef DIAGNOSTIC
157 u_int pi_magic;
158 #endif
159 #define PI_MAGIC 0xdeaddeadU
160 /* Other entries use only this list entry */
161 LIST_ENTRY(pool_item) pi_list;
162 };
163
164 #define POOL_NEEDS_CATCHUP(pp) \
165 ((pp)->pr_nitems < (pp)->pr_minitems)
166
167 /*
168 * Pool cache management.
169 *
170 * Pool caches provide a way for constructed objects to be cached by the
171 * pool subsystem. This can lead to performance improvements by avoiding
172 * needless object construction/destruction; it is deferred until absolutely
173 * necessary.
174 *
175 * Caches are grouped into cache groups. Each cache group references up
176 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
177 * object from the pool, it calls the object's constructor and places it
178 * into a cache group. When a cache group frees an object back to the
179 * pool, it first calls the object's destructor. This allows the object
180 * to persist in constructed form while freed to the cache.
181 *
182 * The pool references each cache, so that when a pool is drained by the
183 * pagedaemon, it can drain each individual cache as well. Each time a
184 * cache is drained, the most idle cache group is freed to the pool in
185 * its entirety.
186 *
187 * Pool caches are layed on top of pools. By layering them, we can avoid
188 * the complexity of cache management for pools which would not benefit
189 * from it.
190 */
191
192 static struct pool pcg_normal_pool;
193 static struct pool pcg_large_pool;
194 static struct pool cache_pool;
195 static struct pool cache_cpu_pool;
196
197 pool_cache_t pnbuf_cache; /* pathname buffer cache */
198
199 /* List of all caches. */
200 TAILQ_HEAD(,pool_cache) pool_cache_head =
201 TAILQ_HEAD_INITIALIZER(pool_cache_head);
202
203 int pool_cache_disable; /* global disable for caching */
204 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
205
206 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
207 void *);
208 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
209 void **, paddr_t *, int);
210 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
211 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
212 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
213 static void pool_cache_transfer(pool_cache_t);
214
215 static int pool_catchup(struct pool *);
216 static void pool_prime_page(struct pool *, void *,
217 struct pool_item_header *);
218 static void pool_update_curpage(struct pool *);
219
220 static int pool_grow(struct pool *, int);
221 static void *pool_allocator_alloc(struct pool *, int);
222 static void pool_allocator_free(struct pool *, void *);
223
224 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
225 void (*)(const char *, ...) __printflike(1, 2));
226 static void pool_print1(struct pool *, const char *,
227 void (*)(const char *, ...) __printflike(1, 2));
228
229 static int pool_chk_page(struct pool *, const char *,
230 struct pool_item_header *);
231
232 static inline unsigned int
233 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
234 const void *v)
235 {
236 const char *cp = v;
237 unsigned int idx;
238
239 KASSERT(pp->pr_roflags & PR_NOTOUCH);
240 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
241 KASSERT(idx < pp->pr_itemsperpage);
242 return idx;
243 }
244
245 static inline void
246 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
247 void *obj)
248 {
249 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
250 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
251 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
252
253 KASSERT((*bitmap & mask) == 0);
254 *bitmap |= mask;
255 }
256
257 static inline void *
258 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
259 {
260 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
261 unsigned int idx;
262 int i;
263
264 for (i = 0; ; i++) {
265 int bit;
266
267 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
268 bit = ffs32(bitmap[i]);
269 if (bit) {
270 pool_item_bitmap_t mask;
271
272 bit--;
273 idx = (i * BITMAP_SIZE) + bit;
274 mask = 1U << bit;
275 KASSERT((bitmap[i] & mask) != 0);
276 bitmap[i] &= ~mask;
277 break;
278 }
279 }
280 KASSERT(idx < pp->pr_itemsperpage);
281 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
282 }
283
284 static inline void
285 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
286 {
287 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
288 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
289 int i;
290
291 for (i = 0; i < n; i++) {
292 bitmap[i] = (pool_item_bitmap_t)-1;
293 }
294 }
295
296 static inline int
297 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
298 {
299
300 /*
301 * we consider pool_item_header with smaller ph_page bigger.
302 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
303 */
304
305 if (a->ph_page < b->ph_page)
306 return (1);
307 else if (a->ph_page > b->ph_page)
308 return (-1);
309 else
310 return (0);
311 }
312
313 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
314 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
315
316 static inline struct pool_item_header *
317 pr_find_pagehead_noalign(struct pool *pp, void *v)
318 {
319 struct pool_item_header *ph, tmp;
320
321 tmp.ph_page = (void *)(uintptr_t)v;
322 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
323 if (ph == NULL) {
324 ph = SPLAY_ROOT(&pp->pr_phtree);
325 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
326 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
327 }
328 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
329 }
330
331 return ph;
332 }
333
334 /*
335 * Return the pool page header based on item address.
336 */
337 static inline struct pool_item_header *
338 pr_find_pagehead(struct pool *pp, void *v)
339 {
340 struct pool_item_header *ph, tmp;
341
342 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
343 ph = pr_find_pagehead_noalign(pp, v);
344 } else {
345 void *page =
346 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
347
348 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
349 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
350 } else {
351 tmp.ph_page = page;
352 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
353 }
354 }
355
356 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
357 ((char *)ph->ph_page <= (char *)v &&
358 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
359 return ph;
360 }
361
362 static void
363 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
364 {
365 struct pool_item_header *ph;
366
367 while ((ph = LIST_FIRST(pq)) != NULL) {
368 LIST_REMOVE(ph, ph_pagelist);
369 pool_allocator_free(pp, ph->ph_page);
370 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
371 pool_put(pp->pr_phpool, ph);
372 }
373 }
374
375 /*
376 * Remove a page from the pool.
377 */
378 static inline void
379 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
380 struct pool_pagelist *pq)
381 {
382
383 KASSERT(mutex_owned(&pp->pr_lock));
384
385 /*
386 * If the page was idle, decrement the idle page count.
387 */
388 if (ph->ph_nmissing == 0) {
389 KASSERT(pp->pr_nidle != 0);
390 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
391 "nitems=%u < itemsperpage=%u",
392 pp->pr_nitems, pp->pr_itemsperpage);
393 pp->pr_nidle--;
394 }
395
396 pp->pr_nitems -= pp->pr_itemsperpage;
397
398 /*
399 * Unlink the page from the pool and queue it for release.
400 */
401 LIST_REMOVE(ph, ph_pagelist);
402 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
403 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
404 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
405
406 pp->pr_npages--;
407 pp->pr_npagefree++;
408
409 pool_update_curpage(pp);
410 }
411
412 /*
413 * Initialize all the pools listed in the "pools" link set.
414 */
415 void
416 pool_subsystem_init(void)
417 {
418 size_t size;
419 int idx;
420
421 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
422 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
423 cv_init(&pool_busy, "poolbusy");
424
425 /*
426 * Initialize private page header pool and cache magazine pool if we
427 * haven't done so yet.
428 */
429 for (idx = 0; idx < PHPOOL_MAX; idx++) {
430 static char phpool_names[PHPOOL_MAX][6+1+6+1];
431 int nelem;
432 size_t sz;
433
434 nelem = PHPOOL_FREELIST_NELEM(idx);
435 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
436 "phpool-%d", nelem);
437 sz = sizeof(struct pool_item_header);
438 if (nelem) {
439 sz = offsetof(struct pool_item_header,
440 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
441 }
442 pool_init(&phpool[idx], sz, 0, 0, 0,
443 phpool_names[idx], &pool_allocator_meta, IPL_VM);
444 }
445 #ifdef POOL_SUBPAGE
446 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
447 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
448 #endif
449
450 size = sizeof(pcg_t) +
451 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
452 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
453 "pcgnormal", &pool_allocator_meta, IPL_VM);
454
455 size = sizeof(pcg_t) +
456 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
457 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
458 "pcglarge", &pool_allocator_meta, IPL_VM);
459
460 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
461 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
462
463 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
464 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
465 }
466
467 /*
468 * Initialize the given pool resource structure.
469 *
470 * We export this routine to allow other kernel parts to declare
471 * static pools that must be initialized before kmem(9) is available.
472 */
473 void
474 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
475 const char *wchan, struct pool_allocator *palloc, int ipl)
476 {
477 struct pool *pp1;
478 size_t trysize, phsize, prsize;
479 int off, slack;
480
481 #ifdef DEBUG
482 if (__predict_true(!cold))
483 mutex_enter(&pool_head_lock);
484 /*
485 * Check that the pool hasn't already been initialised and
486 * added to the list of all pools.
487 */
488 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
489 if (pp == pp1)
490 panic("%s: [%s] already initialised", __func__,
491 wchan);
492 }
493 if (__predict_true(!cold))
494 mutex_exit(&pool_head_lock);
495 #endif
496
497 if (palloc == NULL)
498 palloc = &pool_allocator_kmem;
499 #ifdef POOL_SUBPAGE
500 if (size > palloc->pa_pagesz) {
501 if (palloc == &pool_allocator_kmem)
502 palloc = &pool_allocator_kmem_fullpage;
503 else if (palloc == &pool_allocator_nointr)
504 palloc = &pool_allocator_nointr_fullpage;
505 }
506 #endif /* POOL_SUBPAGE */
507 if (!cold)
508 mutex_enter(&pool_allocator_lock);
509 if (palloc->pa_refcnt++ == 0) {
510 if (palloc->pa_pagesz == 0)
511 palloc->pa_pagesz = PAGE_SIZE;
512
513 TAILQ_INIT(&palloc->pa_list);
514
515 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
516 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
517 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
518 }
519 if (!cold)
520 mutex_exit(&pool_allocator_lock);
521
522 if (align == 0)
523 align = ALIGN(1);
524
525 prsize = size;
526 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
527 prsize = sizeof(struct pool_item);
528
529 prsize = roundup(prsize, align);
530 KASSERTMSG((prsize <= palloc->pa_pagesz),
531 "%s: [%s] pool item size (%zu) larger than page size (%u)",
532 __func__, wchan, prsize, palloc->pa_pagesz);
533
534 /*
535 * Initialize the pool structure.
536 */
537 LIST_INIT(&pp->pr_emptypages);
538 LIST_INIT(&pp->pr_fullpages);
539 LIST_INIT(&pp->pr_partpages);
540 pp->pr_cache = NULL;
541 pp->pr_curpage = NULL;
542 pp->pr_npages = 0;
543 pp->pr_minitems = 0;
544 pp->pr_minpages = 0;
545 pp->pr_maxpages = UINT_MAX;
546 pp->pr_roflags = flags;
547 pp->pr_flags = 0;
548 pp->pr_size = prsize;
549 pp->pr_align = align;
550 pp->pr_wchan = wchan;
551 pp->pr_alloc = palloc;
552 pp->pr_nitems = 0;
553 pp->pr_nout = 0;
554 pp->pr_hardlimit = UINT_MAX;
555 pp->pr_hardlimit_warning = NULL;
556 pp->pr_hardlimit_ratecap.tv_sec = 0;
557 pp->pr_hardlimit_ratecap.tv_usec = 0;
558 pp->pr_hardlimit_warning_last.tv_sec = 0;
559 pp->pr_hardlimit_warning_last.tv_usec = 0;
560 pp->pr_drain_hook = NULL;
561 pp->pr_drain_hook_arg = NULL;
562 pp->pr_freecheck = NULL;
563 pool_redzone_init(pp, size);
564
565 /*
566 * Decide whether to put the page header off page to avoid
567 * wasting too large a part of the page or too big item.
568 * Off-page page headers go on a hash table, so we can match
569 * a returned item with its header based on the page address.
570 * We use 1/16 of the page size and about 8 times of the item
571 * size as the threshold (XXX: tune)
572 *
573 * However, we'll put the header into the page if we can put
574 * it without wasting any items.
575 *
576 * Silently enforce `0 <= ioff < align'.
577 */
578 pp->pr_itemoffset = ioff %= align;
579 /* See the comment below about reserved bytes. */
580 trysize = palloc->pa_pagesz - ((align - ioff) % align);
581 phsize = ALIGN(sizeof(struct pool_item_header));
582 if (pp->pr_roflags & PR_PHINPAGE ||
583 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
584 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
585 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
586 /* Use the end of the page for the page header */
587 pp->pr_roflags |= PR_PHINPAGE;
588 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
589 } else {
590 /* The page header will be taken from our page header pool */
591 pp->pr_phoffset = 0;
592 off = palloc->pa_pagesz;
593 SPLAY_INIT(&pp->pr_phtree);
594 }
595
596 /*
597 * Alignment is to take place at `ioff' within the item. This means
598 * we must reserve up to `align - 1' bytes on the page to allow
599 * appropriate positioning of each item.
600 */
601 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
602 KASSERT(pp->pr_itemsperpage != 0);
603 if ((pp->pr_roflags & PR_NOTOUCH)) {
604 int idx;
605
606 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
607 idx++) {
608 /* nothing */
609 }
610 if (idx >= PHPOOL_MAX) {
611 /*
612 * if you see this panic, consider to tweak
613 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
614 */
615 panic("%s: [%s] too large itemsperpage(%d) for "
616 "PR_NOTOUCH", __func__,
617 pp->pr_wchan, pp->pr_itemsperpage);
618 }
619 pp->pr_phpool = &phpool[idx];
620 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
621 pp->pr_phpool = &phpool[0];
622 }
623 #if defined(DIAGNOSTIC)
624 else {
625 pp->pr_phpool = NULL;
626 }
627 #endif
628
629 /*
630 * Use the slack between the chunks and the page header
631 * for "cache coloring".
632 */
633 slack = off - pp->pr_itemsperpage * pp->pr_size;
634 pp->pr_maxcolor = (slack / align) * align;
635 pp->pr_curcolor = 0;
636
637 pp->pr_nget = 0;
638 pp->pr_nfail = 0;
639 pp->pr_nput = 0;
640 pp->pr_npagealloc = 0;
641 pp->pr_npagefree = 0;
642 pp->pr_hiwat = 0;
643 pp->pr_nidle = 0;
644 pp->pr_refcnt = 0;
645
646 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
647 cv_init(&pp->pr_cv, wchan);
648 pp->pr_ipl = ipl;
649
650 /* Insert into the list of all pools. */
651 if (!cold)
652 mutex_enter(&pool_head_lock);
653 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
654 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
655 break;
656 }
657 if (pp1 == NULL)
658 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
659 else
660 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
661 if (!cold)
662 mutex_exit(&pool_head_lock);
663
664 /* Insert this into the list of pools using this allocator. */
665 if (!cold)
666 mutex_enter(&palloc->pa_lock);
667 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
668 if (!cold)
669 mutex_exit(&palloc->pa_lock);
670 }
671
672 /*
673 * De-commision a pool resource.
674 */
675 void
676 pool_destroy(struct pool *pp)
677 {
678 struct pool_pagelist pq;
679 struct pool_item_header *ph;
680
681 /* Remove from global pool list */
682 mutex_enter(&pool_head_lock);
683 while (pp->pr_refcnt != 0)
684 cv_wait(&pool_busy, &pool_head_lock);
685 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
686 if (drainpp == pp)
687 drainpp = NULL;
688 mutex_exit(&pool_head_lock);
689
690 /* Remove this pool from its allocator's list of pools. */
691 mutex_enter(&pp->pr_alloc->pa_lock);
692 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
693 mutex_exit(&pp->pr_alloc->pa_lock);
694
695 mutex_enter(&pool_allocator_lock);
696 if (--pp->pr_alloc->pa_refcnt == 0)
697 mutex_destroy(&pp->pr_alloc->pa_lock);
698 mutex_exit(&pool_allocator_lock);
699
700 mutex_enter(&pp->pr_lock);
701
702 KASSERT(pp->pr_cache == NULL);
703 KASSERTMSG((pp->pr_nout == 0),
704 "%s: pool busy: still out: %u", __func__, pp->pr_nout);
705 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
706 KASSERT(LIST_EMPTY(&pp->pr_partpages));
707
708 /* Remove all pages */
709 LIST_INIT(&pq);
710 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
711 pr_rmpage(pp, ph, &pq);
712
713 mutex_exit(&pp->pr_lock);
714
715 pr_pagelist_free(pp, &pq);
716 cv_destroy(&pp->pr_cv);
717 mutex_destroy(&pp->pr_lock);
718 }
719
720 void
721 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
722 {
723
724 /* XXX no locking -- must be used just after pool_init() */
725 KASSERTMSG((pp->pr_drain_hook == NULL),
726 "%s: [%s] already set", __func__, pp->pr_wchan);
727 pp->pr_drain_hook = fn;
728 pp->pr_drain_hook_arg = arg;
729 }
730
731 static struct pool_item_header *
732 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
733 {
734 struct pool_item_header *ph;
735
736 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
737 ph = (void *)((char *)storage + pp->pr_phoffset);
738 else
739 ph = pool_get(pp->pr_phpool, flags);
740
741 return (ph);
742 }
743
744 /*
745 * Grab an item from the pool.
746 */
747 void *
748 pool_get(struct pool *pp, int flags)
749 {
750 struct pool_item *pi;
751 struct pool_item_header *ph;
752 void *v;
753
754 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
755 KASSERTMSG((pp->pr_itemsperpage != 0),
756 "%s: [%s] pr_itemsperpage is zero, "
757 "pool not initialized?", __func__, pp->pr_wchan);
758 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
759 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
760 "%s: [%s] is IPL_NONE, but called from interrupt context",
761 __func__, pp->pr_wchan);
762 if (flags & PR_WAITOK) {
763 ASSERT_SLEEPABLE();
764 }
765
766 mutex_enter(&pp->pr_lock);
767 startover:
768 /*
769 * Check to see if we've reached the hard limit. If we have,
770 * and we can wait, then wait until an item has been returned to
771 * the pool.
772 */
773 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
774 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
775 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
776 if (pp->pr_drain_hook != NULL) {
777 /*
778 * Since the drain hook is going to free things
779 * back to the pool, unlock, call the hook, re-lock,
780 * and check the hardlimit condition again.
781 */
782 mutex_exit(&pp->pr_lock);
783 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
784 mutex_enter(&pp->pr_lock);
785 if (pp->pr_nout < pp->pr_hardlimit)
786 goto startover;
787 }
788
789 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
790 /*
791 * XXX: A warning isn't logged in this case. Should
792 * it be?
793 */
794 pp->pr_flags |= PR_WANTED;
795 do {
796 cv_wait(&pp->pr_cv, &pp->pr_lock);
797 } while (pp->pr_flags & PR_WANTED);
798 goto startover;
799 }
800
801 /*
802 * Log a message that the hard limit has been hit.
803 */
804 if (pp->pr_hardlimit_warning != NULL &&
805 ratecheck(&pp->pr_hardlimit_warning_last,
806 &pp->pr_hardlimit_ratecap))
807 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
808
809 pp->pr_nfail++;
810
811 mutex_exit(&pp->pr_lock);
812 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
813 return (NULL);
814 }
815
816 /*
817 * The convention we use is that if `curpage' is not NULL, then
818 * it points at a non-empty bucket. In particular, `curpage'
819 * never points at a page header which has PR_PHINPAGE set and
820 * has no items in its bucket.
821 */
822 if ((ph = pp->pr_curpage) == NULL) {
823 int error;
824
825 KASSERTMSG((pp->pr_nitems == 0),
826 "%s: [%s] curpage NULL, inconsistent nitems %u",
827 __func__, pp->pr_wchan, pp->pr_nitems);
828
829 /*
830 * Call the back-end page allocator for more memory.
831 * Release the pool lock, as the back-end page allocator
832 * may block.
833 */
834 error = pool_grow(pp, flags);
835 if (error != 0) {
836 /*
837 * pool_grow aborts when another thread
838 * is allocating a new page. Retry if it
839 * waited for it.
840 */
841 if (error == ERESTART)
842 goto startover;
843
844 /*
845 * We were unable to allocate a page or item
846 * header, but we released the lock during
847 * allocation, so perhaps items were freed
848 * back to the pool. Check for this case.
849 */
850 if (pp->pr_curpage != NULL)
851 goto startover;
852
853 pp->pr_nfail++;
854 mutex_exit(&pp->pr_lock);
855 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
856 return (NULL);
857 }
858
859 /* Start the allocation process over. */
860 goto startover;
861 }
862 if (pp->pr_roflags & PR_NOTOUCH) {
863 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
864 "%s: %s: page empty", __func__, pp->pr_wchan);
865 v = pr_item_notouch_get(pp, ph);
866 } else {
867 v = pi = LIST_FIRST(&ph->ph_itemlist);
868 if (__predict_false(v == NULL)) {
869 mutex_exit(&pp->pr_lock);
870 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
871 }
872 KASSERTMSG((pp->pr_nitems > 0),
873 "%s: [%s] nitems %u inconsistent on itemlist",
874 __func__, pp->pr_wchan, pp->pr_nitems);
875 KASSERTMSG((pi->pi_magic == PI_MAGIC),
876 "%s: [%s] free list modified: "
877 "magic=%x; page %p; item addr %p", __func__,
878 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
879
880 /*
881 * Remove from item list.
882 */
883 LIST_REMOVE(pi, pi_list);
884 }
885 pp->pr_nitems--;
886 pp->pr_nout++;
887 if (ph->ph_nmissing == 0) {
888 KASSERT(pp->pr_nidle > 0);
889 pp->pr_nidle--;
890
891 /*
892 * This page was previously empty. Move it to the list of
893 * partially-full pages. This page is already curpage.
894 */
895 LIST_REMOVE(ph, ph_pagelist);
896 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
897 }
898 ph->ph_nmissing++;
899 if (ph->ph_nmissing == pp->pr_itemsperpage) {
900 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
901 LIST_EMPTY(&ph->ph_itemlist)),
902 "%s: [%s] nmissing (%u) inconsistent", __func__,
903 pp->pr_wchan, ph->ph_nmissing);
904 /*
905 * This page is now full. Move it to the full list
906 * and select a new current page.
907 */
908 LIST_REMOVE(ph, ph_pagelist);
909 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
910 pool_update_curpage(pp);
911 }
912
913 pp->pr_nget++;
914
915 /*
916 * If we have a low water mark and we are now below that low
917 * water mark, add more items to the pool.
918 */
919 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
920 /*
921 * XXX: Should we log a warning? Should we set up a timeout
922 * to try again in a second or so? The latter could break
923 * a caller's assumptions about interrupt protection, etc.
924 */
925 }
926
927 mutex_exit(&pp->pr_lock);
928 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
929 FREECHECK_OUT(&pp->pr_freecheck, v);
930 pool_redzone_fill(pp, v);
931 return (v);
932 }
933
934 /*
935 * Internal version of pool_put(). Pool is already locked/entered.
936 */
937 static void
938 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
939 {
940 struct pool_item *pi = v;
941 struct pool_item_header *ph;
942
943 KASSERT(mutex_owned(&pp->pr_lock));
944 pool_redzone_check(pp, v);
945 FREECHECK_IN(&pp->pr_freecheck, v);
946 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
947
948 KASSERTMSG((pp->pr_nout > 0),
949 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
950
951 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
952 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
953 }
954
955 /*
956 * Return to item list.
957 */
958 if (pp->pr_roflags & PR_NOTOUCH) {
959 pr_item_notouch_put(pp, ph, v);
960 } else {
961 #ifdef DIAGNOSTIC
962 pi->pi_magic = PI_MAGIC;
963 #endif
964 #ifdef DEBUG
965 {
966 int i, *ip = v;
967
968 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
969 *ip++ = PI_MAGIC;
970 }
971 }
972 #endif
973
974 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
975 }
976 KDASSERT(ph->ph_nmissing != 0);
977 ph->ph_nmissing--;
978 pp->pr_nput++;
979 pp->pr_nitems++;
980 pp->pr_nout--;
981
982 /* Cancel "pool empty" condition if it exists */
983 if (pp->pr_curpage == NULL)
984 pp->pr_curpage = ph;
985
986 if (pp->pr_flags & PR_WANTED) {
987 pp->pr_flags &= ~PR_WANTED;
988 cv_broadcast(&pp->pr_cv);
989 }
990
991 /*
992 * If this page is now empty, do one of two things:
993 *
994 * (1) If we have more pages than the page high water mark,
995 * free the page back to the system. ONLY CONSIDER
996 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
997 * CLAIM.
998 *
999 * (2) Otherwise, move the page to the empty page list.
1000 *
1001 * Either way, select a new current page (so we use a partially-full
1002 * page if one is available).
1003 */
1004 if (ph->ph_nmissing == 0) {
1005 pp->pr_nidle++;
1006 if (pp->pr_npages > pp->pr_minpages &&
1007 pp->pr_npages > pp->pr_maxpages) {
1008 pr_rmpage(pp, ph, pq);
1009 } else {
1010 LIST_REMOVE(ph, ph_pagelist);
1011 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1012
1013 /*
1014 * Update the timestamp on the page. A page must
1015 * be idle for some period of time before it can
1016 * be reclaimed by the pagedaemon. This minimizes
1017 * ping-pong'ing for memory.
1018 *
1019 * note for 64-bit time_t: truncating to 32-bit is not
1020 * a problem for our usage.
1021 */
1022 ph->ph_time = time_uptime;
1023 }
1024 pool_update_curpage(pp);
1025 }
1026
1027 /*
1028 * If the page was previously completely full, move it to the
1029 * partially-full list and make it the current page. The next
1030 * allocation will get the item from this page, instead of
1031 * further fragmenting the pool.
1032 */
1033 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1034 LIST_REMOVE(ph, ph_pagelist);
1035 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1036 pp->pr_curpage = ph;
1037 }
1038 }
1039
1040 void
1041 pool_put(struct pool *pp, void *v)
1042 {
1043 struct pool_pagelist pq;
1044
1045 LIST_INIT(&pq);
1046
1047 mutex_enter(&pp->pr_lock);
1048 pool_do_put(pp, v, &pq);
1049 mutex_exit(&pp->pr_lock);
1050
1051 pr_pagelist_free(pp, &pq);
1052 }
1053
1054 /*
1055 * pool_grow: grow a pool by a page.
1056 *
1057 * => called with pool locked.
1058 * => unlock and relock the pool.
1059 * => return with pool locked.
1060 */
1061
1062 static int
1063 pool_grow(struct pool *pp, int flags)
1064 {
1065 /*
1066 * If there's a pool_grow in progress, wait for it to complete
1067 * and try again from the top.
1068 */
1069 if (pp->pr_flags & PR_GROWING) {
1070 if (flags & PR_WAITOK) {
1071 do {
1072 cv_wait(&pp->pr_cv, &pp->pr_lock);
1073 } while (pp->pr_flags & PR_GROWING);
1074 return ERESTART;
1075 } else {
1076 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1077 /*
1078 * This needs an unlock/relock dance so
1079 * that the other caller has a chance to
1080 * run and actually do the thing. Note
1081 * that this is effectively a busy-wait.
1082 */
1083 mutex_exit(&pp->pr_lock);
1084 mutex_enter(&pp->pr_lock);
1085 return ERESTART;
1086 }
1087 return EWOULDBLOCK;
1088 }
1089 }
1090 pp->pr_flags |= PR_GROWING;
1091 if (flags & PR_WAITOK)
1092 mutex_exit(&pp->pr_lock);
1093 else
1094 pp->pr_flags |= PR_GROWINGNOWAIT;
1095
1096 char *cp = pool_allocator_alloc(pp, flags);
1097 if (__predict_false(cp == NULL))
1098 goto out;
1099
1100 struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1101 if (__predict_false(ph == NULL)) {
1102 pool_allocator_free(pp, cp);
1103 goto out;
1104 }
1105
1106 if (flags & PR_WAITOK)
1107 mutex_enter(&pp->pr_lock);
1108 pool_prime_page(pp, cp, ph);
1109 pp->pr_npagealloc++;
1110 KASSERT(pp->pr_flags & PR_GROWING);
1111 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1112 /*
1113 * If anyone was waiting for pool_grow, notify them that we
1114 * may have just done it.
1115 */
1116 cv_broadcast(&pp->pr_cv);
1117 return 0;
1118 out:
1119 if (flags & PR_WAITOK)
1120 mutex_enter(&pp->pr_lock);
1121 KASSERT(pp->pr_flags & PR_GROWING);
1122 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1123 return ENOMEM;
1124 }
1125
1126 /*
1127 * Add N items to the pool.
1128 */
1129 int
1130 pool_prime(struct pool *pp, int n)
1131 {
1132 int newpages;
1133 int error = 0;
1134
1135 mutex_enter(&pp->pr_lock);
1136
1137 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1138
1139 while (newpages > 0) {
1140 error = pool_grow(pp, PR_NOWAIT);
1141 if (error) {
1142 if (error == ERESTART)
1143 continue;
1144 break;
1145 }
1146 pp->pr_minpages++;
1147 newpages--;
1148 }
1149
1150 if (pp->pr_minpages >= pp->pr_maxpages)
1151 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1152
1153 mutex_exit(&pp->pr_lock);
1154 return error;
1155 }
1156
1157 /*
1158 * Add a page worth of items to the pool.
1159 *
1160 * Note, we must be called with the pool descriptor LOCKED.
1161 */
1162 static void
1163 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1164 {
1165 struct pool_item *pi;
1166 void *cp = storage;
1167 const unsigned int align = pp->pr_align;
1168 const unsigned int ioff = pp->pr_itemoffset;
1169 int n;
1170
1171 KASSERT(mutex_owned(&pp->pr_lock));
1172 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1173 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1174 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1175
1176 /*
1177 * Insert page header.
1178 */
1179 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1180 LIST_INIT(&ph->ph_itemlist);
1181 ph->ph_page = storage;
1182 ph->ph_nmissing = 0;
1183 ph->ph_time = time_uptime;
1184 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1185 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1186
1187 pp->pr_nidle++;
1188
1189 /*
1190 * Color this page.
1191 */
1192 ph->ph_off = pp->pr_curcolor;
1193 cp = (char *)cp + ph->ph_off;
1194 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1195 pp->pr_curcolor = 0;
1196
1197 /*
1198 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1199 */
1200 if (ioff != 0)
1201 cp = (char *)cp + align - ioff;
1202
1203 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1204
1205 /*
1206 * Insert remaining chunks on the bucket list.
1207 */
1208 n = pp->pr_itemsperpage;
1209 pp->pr_nitems += n;
1210
1211 if (pp->pr_roflags & PR_NOTOUCH) {
1212 pr_item_notouch_init(pp, ph);
1213 } else {
1214 while (n--) {
1215 pi = (struct pool_item *)cp;
1216
1217 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1218
1219 /* Insert on page list */
1220 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1221 #ifdef DIAGNOSTIC
1222 pi->pi_magic = PI_MAGIC;
1223 #endif
1224 cp = (char *)cp + pp->pr_size;
1225
1226 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1227 }
1228 }
1229
1230 /*
1231 * If the pool was depleted, point at the new page.
1232 */
1233 if (pp->pr_curpage == NULL)
1234 pp->pr_curpage = ph;
1235
1236 if (++pp->pr_npages > pp->pr_hiwat)
1237 pp->pr_hiwat = pp->pr_npages;
1238 }
1239
1240 /*
1241 * Used by pool_get() when nitems drops below the low water mark. This
1242 * is used to catch up pr_nitems with the low water mark.
1243 *
1244 * Note 1, we never wait for memory here, we let the caller decide what to do.
1245 *
1246 * Note 2, we must be called with the pool already locked, and we return
1247 * with it locked.
1248 */
1249 static int
1250 pool_catchup(struct pool *pp)
1251 {
1252 int error = 0;
1253
1254 while (POOL_NEEDS_CATCHUP(pp)) {
1255 error = pool_grow(pp, PR_NOWAIT);
1256 if (error) {
1257 if (error == ERESTART)
1258 continue;
1259 break;
1260 }
1261 }
1262 return error;
1263 }
1264
1265 static void
1266 pool_update_curpage(struct pool *pp)
1267 {
1268
1269 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1270 if (pp->pr_curpage == NULL) {
1271 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1272 }
1273 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1274 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1275 }
1276
1277 void
1278 pool_setlowat(struct pool *pp, int n)
1279 {
1280
1281 mutex_enter(&pp->pr_lock);
1282
1283 pp->pr_minitems = n;
1284 pp->pr_minpages = (n == 0)
1285 ? 0
1286 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1287
1288 /* Make sure we're caught up with the newly-set low water mark. */
1289 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1290 /*
1291 * XXX: Should we log a warning? Should we set up a timeout
1292 * to try again in a second or so? The latter could break
1293 * a caller's assumptions about interrupt protection, etc.
1294 */
1295 }
1296
1297 mutex_exit(&pp->pr_lock);
1298 }
1299
1300 void
1301 pool_sethiwat(struct pool *pp, int n)
1302 {
1303
1304 mutex_enter(&pp->pr_lock);
1305
1306 pp->pr_maxpages = (n == 0)
1307 ? 0
1308 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1309
1310 mutex_exit(&pp->pr_lock);
1311 }
1312
1313 void
1314 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1315 {
1316
1317 mutex_enter(&pp->pr_lock);
1318
1319 pp->pr_hardlimit = n;
1320 pp->pr_hardlimit_warning = warnmess;
1321 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1322 pp->pr_hardlimit_warning_last.tv_sec = 0;
1323 pp->pr_hardlimit_warning_last.tv_usec = 0;
1324
1325 /*
1326 * In-line version of pool_sethiwat(), because we don't want to
1327 * release the lock.
1328 */
1329 pp->pr_maxpages = (n == 0)
1330 ? 0
1331 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1332
1333 mutex_exit(&pp->pr_lock);
1334 }
1335
1336 /*
1337 * Release all complete pages that have not been used recently.
1338 *
1339 * Must not be called from interrupt context.
1340 */
1341 int
1342 pool_reclaim(struct pool *pp)
1343 {
1344 struct pool_item_header *ph, *phnext;
1345 struct pool_pagelist pq;
1346 uint32_t curtime;
1347 bool klock;
1348 int rv;
1349
1350 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1351
1352 if (pp->pr_drain_hook != NULL) {
1353 /*
1354 * The drain hook must be called with the pool unlocked.
1355 */
1356 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1357 }
1358
1359 /*
1360 * XXXSMP Because we do not want to cause non-MPSAFE code
1361 * to block.
1362 */
1363 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1364 pp->pr_ipl == IPL_SOFTSERIAL) {
1365 KERNEL_LOCK(1, NULL);
1366 klock = true;
1367 } else
1368 klock = false;
1369
1370 /* Reclaim items from the pool's cache (if any). */
1371 if (pp->pr_cache != NULL)
1372 pool_cache_invalidate(pp->pr_cache);
1373
1374 if (mutex_tryenter(&pp->pr_lock) == 0) {
1375 if (klock) {
1376 KERNEL_UNLOCK_ONE(NULL);
1377 }
1378 return (0);
1379 }
1380
1381 LIST_INIT(&pq);
1382
1383 curtime = time_uptime;
1384
1385 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1386 phnext = LIST_NEXT(ph, ph_pagelist);
1387
1388 /* Check our minimum page claim */
1389 if (pp->pr_npages <= pp->pr_minpages)
1390 break;
1391
1392 KASSERT(ph->ph_nmissing == 0);
1393 if (curtime - ph->ph_time < pool_inactive_time)
1394 continue;
1395
1396 /*
1397 * If freeing this page would put us below
1398 * the low water mark, stop now.
1399 */
1400 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1401 pp->pr_minitems)
1402 break;
1403
1404 pr_rmpage(pp, ph, &pq);
1405 }
1406
1407 mutex_exit(&pp->pr_lock);
1408
1409 if (LIST_EMPTY(&pq))
1410 rv = 0;
1411 else {
1412 pr_pagelist_free(pp, &pq);
1413 rv = 1;
1414 }
1415
1416 if (klock) {
1417 KERNEL_UNLOCK_ONE(NULL);
1418 }
1419
1420 return (rv);
1421 }
1422
1423 /*
1424 * Drain pools, one at a time. The drained pool is returned within ppp.
1425 *
1426 * Note, must never be called from interrupt context.
1427 */
1428 bool
1429 pool_drain(struct pool **ppp)
1430 {
1431 bool reclaimed;
1432 struct pool *pp;
1433
1434 KASSERT(!TAILQ_EMPTY(&pool_head));
1435
1436 pp = NULL;
1437
1438 /* Find next pool to drain, and add a reference. */
1439 mutex_enter(&pool_head_lock);
1440 do {
1441 if (drainpp == NULL) {
1442 drainpp = TAILQ_FIRST(&pool_head);
1443 }
1444 if (drainpp != NULL) {
1445 pp = drainpp;
1446 drainpp = TAILQ_NEXT(pp, pr_poollist);
1447 }
1448 /*
1449 * Skip completely idle pools. We depend on at least
1450 * one pool in the system being active.
1451 */
1452 } while (pp == NULL || pp->pr_npages == 0);
1453 pp->pr_refcnt++;
1454 mutex_exit(&pool_head_lock);
1455
1456 /* Drain the cache (if any) and pool.. */
1457 reclaimed = pool_reclaim(pp);
1458
1459 /* Finally, unlock the pool. */
1460 mutex_enter(&pool_head_lock);
1461 pp->pr_refcnt--;
1462 cv_broadcast(&pool_busy);
1463 mutex_exit(&pool_head_lock);
1464
1465 if (ppp != NULL)
1466 *ppp = pp;
1467
1468 return reclaimed;
1469 }
1470
1471 /*
1472 * Calculate the total number of pages consumed by pools.
1473 */
1474 int
1475 pool_totalpages(void)
1476 {
1477 struct pool *pp;
1478 uint64_t total = 0;
1479
1480 mutex_enter(&pool_head_lock);
1481 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1482 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1483
1484 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1485 bytes -= (pp->pr_nout * pp->pr_size);
1486 total += bytes;
1487 }
1488 mutex_exit(&pool_head_lock);
1489
1490 return atop(total);
1491 }
1492
1493 /*
1494 * Diagnostic helpers.
1495 */
1496
1497 void
1498 pool_printall(const char *modif, void (*pr)(const char *, ...))
1499 {
1500 struct pool *pp;
1501
1502 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1503 pool_printit(pp, modif, pr);
1504 }
1505 }
1506
1507 void
1508 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1509 {
1510
1511 if (pp == NULL) {
1512 (*pr)("Must specify a pool to print.\n");
1513 return;
1514 }
1515
1516 pool_print1(pp, modif, pr);
1517 }
1518
1519 static void
1520 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1521 void (*pr)(const char *, ...))
1522 {
1523 struct pool_item_header *ph;
1524 struct pool_item *pi __diagused;
1525
1526 LIST_FOREACH(ph, pl, ph_pagelist) {
1527 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1528 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1529 #ifdef DIAGNOSTIC
1530 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1531 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1532 if (pi->pi_magic != PI_MAGIC) {
1533 (*pr)("\t\t\titem %p, magic 0x%x\n",
1534 pi, pi->pi_magic);
1535 }
1536 }
1537 }
1538 #endif
1539 }
1540 }
1541
1542 static void
1543 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1544 {
1545 struct pool_item_header *ph;
1546 pool_cache_t pc;
1547 pcg_t *pcg;
1548 pool_cache_cpu_t *cc;
1549 uint64_t cpuhit, cpumiss;
1550 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1551 char c;
1552
1553 while ((c = *modif++) != '\0') {
1554 if (c == 'l')
1555 print_log = 1;
1556 if (c == 'p')
1557 print_pagelist = 1;
1558 if (c == 'c')
1559 print_cache = 1;
1560 }
1561
1562 if ((pc = pp->pr_cache) != NULL) {
1563 (*pr)("POOL CACHE");
1564 } else {
1565 (*pr)("POOL");
1566 }
1567
1568 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1569 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1570 pp->pr_roflags);
1571 (*pr)("\talloc %p\n", pp->pr_alloc);
1572 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1573 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1574 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1575 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1576
1577 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1578 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1579 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1580 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1581
1582 if (print_pagelist == 0)
1583 goto skip_pagelist;
1584
1585 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1586 (*pr)("\n\tempty page list:\n");
1587 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1588 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1589 (*pr)("\n\tfull page list:\n");
1590 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1591 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1592 (*pr)("\n\tpartial-page list:\n");
1593 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1594
1595 if (pp->pr_curpage == NULL)
1596 (*pr)("\tno current page\n");
1597 else
1598 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1599
1600 skip_pagelist:
1601 if (print_log == 0)
1602 goto skip_log;
1603
1604 (*pr)("\n");
1605
1606 skip_log:
1607
1608 #define PR_GROUPLIST(pcg) \
1609 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1610 for (i = 0; i < pcg->pcg_size; i++) { \
1611 if (pcg->pcg_objects[i].pcgo_pa != \
1612 POOL_PADDR_INVALID) { \
1613 (*pr)("\t\t\t%p, 0x%llx\n", \
1614 pcg->pcg_objects[i].pcgo_va, \
1615 (unsigned long long) \
1616 pcg->pcg_objects[i].pcgo_pa); \
1617 } else { \
1618 (*pr)("\t\t\t%p\n", \
1619 pcg->pcg_objects[i].pcgo_va); \
1620 } \
1621 }
1622
1623 if (pc != NULL) {
1624 cpuhit = 0;
1625 cpumiss = 0;
1626 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1627 if ((cc = pc->pc_cpus[i]) == NULL)
1628 continue;
1629 cpuhit += cc->cc_hits;
1630 cpumiss += cc->cc_misses;
1631 }
1632 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1633 (*pr)("\tcache layer hits %llu misses %llu\n",
1634 pc->pc_hits, pc->pc_misses);
1635 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1636 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1637 pc->pc_contended);
1638 (*pr)("\tcache layer empty groups %u full groups %u\n",
1639 pc->pc_nempty, pc->pc_nfull);
1640 if (print_cache) {
1641 (*pr)("\tfull cache groups:\n");
1642 for (pcg = pc->pc_fullgroups; pcg != NULL;
1643 pcg = pcg->pcg_next) {
1644 PR_GROUPLIST(pcg);
1645 }
1646 (*pr)("\tempty cache groups:\n");
1647 for (pcg = pc->pc_emptygroups; pcg != NULL;
1648 pcg = pcg->pcg_next) {
1649 PR_GROUPLIST(pcg);
1650 }
1651 }
1652 }
1653 #undef PR_GROUPLIST
1654 }
1655
1656 static int
1657 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1658 {
1659 struct pool_item *pi;
1660 void *page;
1661 int n;
1662
1663 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1664 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1665 if (page != ph->ph_page &&
1666 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1667 if (label != NULL)
1668 printf("%s: ", label);
1669 printf("pool(%p:%s): page inconsistency: page %p;"
1670 " at page head addr %p (p %p)\n", pp,
1671 pp->pr_wchan, ph->ph_page,
1672 ph, page);
1673 return 1;
1674 }
1675 }
1676
1677 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1678 return 0;
1679
1680 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1681 pi != NULL;
1682 pi = LIST_NEXT(pi,pi_list), n++) {
1683
1684 #ifdef DIAGNOSTIC
1685 if (pi->pi_magic != PI_MAGIC) {
1686 if (label != NULL)
1687 printf("%s: ", label);
1688 printf("pool(%s): free list modified: magic=%x;"
1689 " page %p; item ordinal %d; addr %p\n",
1690 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1691 n, pi);
1692 panic("pool");
1693 }
1694 #endif
1695 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1696 continue;
1697 }
1698 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1699 if (page == ph->ph_page)
1700 continue;
1701
1702 if (label != NULL)
1703 printf("%s: ", label);
1704 printf("pool(%p:%s): page inconsistency: page %p;"
1705 " item ordinal %d; addr %p (p %p)\n", pp,
1706 pp->pr_wchan, ph->ph_page,
1707 n, pi, page);
1708 return 1;
1709 }
1710 return 0;
1711 }
1712
1713
1714 int
1715 pool_chk(struct pool *pp, const char *label)
1716 {
1717 struct pool_item_header *ph;
1718 int r = 0;
1719
1720 mutex_enter(&pp->pr_lock);
1721 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1722 r = pool_chk_page(pp, label, ph);
1723 if (r) {
1724 goto out;
1725 }
1726 }
1727 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1728 r = pool_chk_page(pp, label, ph);
1729 if (r) {
1730 goto out;
1731 }
1732 }
1733 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1734 r = pool_chk_page(pp, label, ph);
1735 if (r) {
1736 goto out;
1737 }
1738 }
1739
1740 out:
1741 mutex_exit(&pp->pr_lock);
1742 return (r);
1743 }
1744
1745 /*
1746 * pool_cache_init:
1747 *
1748 * Initialize a pool cache.
1749 */
1750 pool_cache_t
1751 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1752 const char *wchan, struct pool_allocator *palloc, int ipl,
1753 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1754 {
1755 pool_cache_t pc;
1756
1757 pc = pool_get(&cache_pool, PR_WAITOK);
1758 if (pc == NULL)
1759 return NULL;
1760
1761 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1762 palloc, ipl, ctor, dtor, arg);
1763
1764 return pc;
1765 }
1766
1767 /*
1768 * pool_cache_bootstrap:
1769 *
1770 * Kernel-private version of pool_cache_init(). The caller
1771 * provides initial storage.
1772 */
1773 void
1774 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1775 u_int align_offset, u_int flags, const char *wchan,
1776 struct pool_allocator *palloc, int ipl,
1777 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1778 void *arg)
1779 {
1780 CPU_INFO_ITERATOR cii;
1781 pool_cache_t pc1;
1782 struct cpu_info *ci;
1783 struct pool *pp;
1784
1785 pp = &pc->pc_pool;
1786 if (palloc == NULL && ipl == IPL_NONE) {
1787 if (size > PAGE_SIZE) {
1788 int bigidx = pool_bigidx(size);
1789
1790 palloc = &pool_allocator_big[bigidx];
1791 } else
1792 palloc = &pool_allocator_nointr;
1793 }
1794 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1795 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1796
1797 if (ctor == NULL) {
1798 ctor = (int (*)(void *, void *, int))nullop;
1799 }
1800 if (dtor == NULL) {
1801 dtor = (void (*)(void *, void *))nullop;
1802 }
1803
1804 pc->pc_emptygroups = NULL;
1805 pc->pc_fullgroups = NULL;
1806 pc->pc_partgroups = NULL;
1807 pc->pc_ctor = ctor;
1808 pc->pc_dtor = dtor;
1809 pc->pc_arg = arg;
1810 pc->pc_hits = 0;
1811 pc->pc_misses = 0;
1812 pc->pc_nempty = 0;
1813 pc->pc_npart = 0;
1814 pc->pc_nfull = 0;
1815 pc->pc_contended = 0;
1816 pc->pc_refcnt = 0;
1817 pc->pc_freecheck = NULL;
1818
1819 if ((flags & PR_LARGECACHE) != 0) {
1820 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1821 pc->pc_pcgpool = &pcg_large_pool;
1822 } else {
1823 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1824 pc->pc_pcgpool = &pcg_normal_pool;
1825 }
1826
1827 /* Allocate per-CPU caches. */
1828 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1829 pc->pc_ncpu = 0;
1830 if (ncpu < 2) {
1831 /* XXX For sparc: boot CPU is not attached yet. */
1832 pool_cache_cpu_init1(curcpu(), pc);
1833 } else {
1834 for (CPU_INFO_FOREACH(cii, ci)) {
1835 pool_cache_cpu_init1(ci, pc);
1836 }
1837 }
1838
1839 /* Add to list of all pools. */
1840 if (__predict_true(!cold))
1841 mutex_enter(&pool_head_lock);
1842 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1843 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1844 break;
1845 }
1846 if (pc1 == NULL)
1847 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1848 else
1849 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1850 if (__predict_true(!cold))
1851 mutex_exit(&pool_head_lock);
1852
1853 membar_sync();
1854 pp->pr_cache = pc;
1855 }
1856
1857 /*
1858 * pool_cache_destroy:
1859 *
1860 * Destroy a pool cache.
1861 */
1862 void
1863 pool_cache_destroy(pool_cache_t pc)
1864 {
1865
1866 pool_cache_bootstrap_destroy(pc);
1867 pool_put(&cache_pool, pc);
1868 }
1869
1870 /*
1871 * pool_cache_bootstrap_destroy:
1872 *
1873 * Destroy a pool cache.
1874 */
1875 void
1876 pool_cache_bootstrap_destroy(pool_cache_t pc)
1877 {
1878 struct pool *pp = &pc->pc_pool;
1879 u_int i;
1880
1881 /* Remove it from the global list. */
1882 mutex_enter(&pool_head_lock);
1883 while (pc->pc_refcnt != 0)
1884 cv_wait(&pool_busy, &pool_head_lock);
1885 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1886 mutex_exit(&pool_head_lock);
1887
1888 /* First, invalidate the entire cache. */
1889 pool_cache_invalidate(pc);
1890
1891 /* Disassociate it from the pool. */
1892 mutex_enter(&pp->pr_lock);
1893 pp->pr_cache = NULL;
1894 mutex_exit(&pp->pr_lock);
1895
1896 /* Destroy per-CPU data */
1897 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1898 pool_cache_invalidate_cpu(pc, i);
1899
1900 /* Finally, destroy it. */
1901 mutex_destroy(&pc->pc_lock);
1902 pool_destroy(pp);
1903 }
1904
1905 /*
1906 * pool_cache_cpu_init1:
1907 *
1908 * Called for each pool_cache whenever a new CPU is attached.
1909 */
1910 static void
1911 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1912 {
1913 pool_cache_cpu_t *cc;
1914 int index;
1915
1916 index = ci->ci_index;
1917
1918 KASSERT(index < __arraycount(pc->pc_cpus));
1919
1920 if ((cc = pc->pc_cpus[index]) != NULL) {
1921 KASSERT(cc->cc_cpuindex == index);
1922 return;
1923 }
1924
1925 /*
1926 * The first CPU is 'free'. This needs to be the case for
1927 * bootstrap - we may not be able to allocate yet.
1928 */
1929 if (pc->pc_ncpu == 0) {
1930 cc = &pc->pc_cpu0;
1931 pc->pc_ncpu = 1;
1932 } else {
1933 mutex_enter(&pc->pc_lock);
1934 pc->pc_ncpu++;
1935 mutex_exit(&pc->pc_lock);
1936 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1937 }
1938
1939 cc->cc_ipl = pc->pc_pool.pr_ipl;
1940 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1941 cc->cc_cache = pc;
1942 cc->cc_cpuindex = index;
1943 cc->cc_hits = 0;
1944 cc->cc_misses = 0;
1945 cc->cc_current = __UNCONST(&pcg_dummy);
1946 cc->cc_previous = __UNCONST(&pcg_dummy);
1947
1948 pc->pc_cpus[index] = cc;
1949 }
1950
1951 /*
1952 * pool_cache_cpu_init:
1953 *
1954 * Called whenever a new CPU is attached.
1955 */
1956 void
1957 pool_cache_cpu_init(struct cpu_info *ci)
1958 {
1959 pool_cache_t pc;
1960
1961 mutex_enter(&pool_head_lock);
1962 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1963 pc->pc_refcnt++;
1964 mutex_exit(&pool_head_lock);
1965
1966 pool_cache_cpu_init1(ci, pc);
1967
1968 mutex_enter(&pool_head_lock);
1969 pc->pc_refcnt--;
1970 cv_broadcast(&pool_busy);
1971 }
1972 mutex_exit(&pool_head_lock);
1973 }
1974
1975 /*
1976 * pool_cache_reclaim:
1977 *
1978 * Reclaim memory from a pool cache.
1979 */
1980 bool
1981 pool_cache_reclaim(pool_cache_t pc)
1982 {
1983
1984 return pool_reclaim(&pc->pc_pool);
1985 }
1986
1987 static void
1988 pool_cache_destruct_object1(pool_cache_t pc, void *object)
1989 {
1990
1991 (*pc->pc_dtor)(pc->pc_arg, object);
1992 pool_put(&pc->pc_pool, object);
1993 }
1994
1995 /*
1996 * pool_cache_destruct_object:
1997 *
1998 * Force destruction of an object and its release back into
1999 * the pool.
2000 */
2001 void
2002 pool_cache_destruct_object(pool_cache_t pc, void *object)
2003 {
2004
2005 FREECHECK_IN(&pc->pc_freecheck, object);
2006
2007 pool_cache_destruct_object1(pc, object);
2008 }
2009
2010 /*
2011 * pool_cache_invalidate_groups:
2012 *
2013 * Invalidate a chain of groups and destruct all objects.
2014 */
2015 static void
2016 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2017 {
2018 void *object;
2019 pcg_t *next;
2020 int i;
2021
2022 for (; pcg != NULL; pcg = next) {
2023 next = pcg->pcg_next;
2024
2025 for (i = 0; i < pcg->pcg_avail; i++) {
2026 object = pcg->pcg_objects[i].pcgo_va;
2027 pool_cache_destruct_object1(pc, object);
2028 }
2029
2030 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2031 pool_put(&pcg_large_pool, pcg);
2032 } else {
2033 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2034 pool_put(&pcg_normal_pool, pcg);
2035 }
2036 }
2037 }
2038
2039 /*
2040 * pool_cache_invalidate:
2041 *
2042 * Invalidate a pool cache (destruct and release all of the
2043 * cached objects). Does not reclaim objects from the pool.
2044 *
2045 * Note: For pool caches that provide constructed objects, there
2046 * is an assumption that another level of synchronization is occurring
2047 * between the input to the constructor and the cache invalidation.
2048 *
2049 * Invalidation is a costly process and should not be called from
2050 * interrupt context.
2051 */
2052 void
2053 pool_cache_invalidate(pool_cache_t pc)
2054 {
2055 uint64_t where;
2056 pcg_t *full, *empty, *part;
2057
2058 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2059
2060 if (ncpu < 2 || !mp_online) {
2061 /*
2062 * We might be called early enough in the boot process
2063 * for the CPU data structures to not be fully initialized.
2064 * In this case, transfer the content of the local CPU's
2065 * cache back into global cache as only this CPU is currently
2066 * running.
2067 */
2068 pool_cache_transfer(pc);
2069 } else {
2070 /*
2071 * Signal all CPUs that they must transfer their local
2072 * cache back to the global pool then wait for the xcall to
2073 * complete.
2074 */
2075 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2076 pc, NULL);
2077 xc_wait(where);
2078 }
2079
2080 /* Empty pool caches, then invalidate objects */
2081 mutex_enter(&pc->pc_lock);
2082 full = pc->pc_fullgroups;
2083 empty = pc->pc_emptygroups;
2084 part = pc->pc_partgroups;
2085 pc->pc_fullgroups = NULL;
2086 pc->pc_emptygroups = NULL;
2087 pc->pc_partgroups = NULL;
2088 pc->pc_nfull = 0;
2089 pc->pc_nempty = 0;
2090 pc->pc_npart = 0;
2091 mutex_exit(&pc->pc_lock);
2092
2093 pool_cache_invalidate_groups(pc, full);
2094 pool_cache_invalidate_groups(pc, empty);
2095 pool_cache_invalidate_groups(pc, part);
2096 }
2097
2098 /*
2099 * pool_cache_invalidate_cpu:
2100 *
2101 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2102 * identified by its associated index.
2103 * It is caller's responsibility to ensure that no operation is
2104 * taking place on this pool cache while doing this invalidation.
2105 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2106 * pool cached objects from a CPU different from the one currently running
2107 * may result in an undefined behaviour.
2108 */
2109 static void
2110 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2111 {
2112 pool_cache_cpu_t *cc;
2113 pcg_t *pcg;
2114
2115 if ((cc = pc->pc_cpus[index]) == NULL)
2116 return;
2117
2118 if ((pcg = cc->cc_current) != &pcg_dummy) {
2119 pcg->pcg_next = NULL;
2120 pool_cache_invalidate_groups(pc, pcg);
2121 }
2122 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2123 pcg->pcg_next = NULL;
2124 pool_cache_invalidate_groups(pc, pcg);
2125 }
2126 if (cc != &pc->pc_cpu0)
2127 pool_put(&cache_cpu_pool, cc);
2128
2129 }
2130
2131 void
2132 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2133 {
2134
2135 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2136 }
2137
2138 void
2139 pool_cache_setlowat(pool_cache_t pc, int n)
2140 {
2141
2142 pool_setlowat(&pc->pc_pool, n);
2143 }
2144
2145 void
2146 pool_cache_sethiwat(pool_cache_t pc, int n)
2147 {
2148
2149 pool_sethiwat(&pc->pc_pool, n);
2150 }
2151
2152 void
2153 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2154 {
2155
2156 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2157 }
2158
2159 static bool __noinline
2160 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2161 paddr_t *pap, int flags)
2162 {
2163 pcg_t *pcg, *cur;
2164 uint64_t ncsw;
2165 pool_cache_t pc;
2166 void *object;
2167
2168 KASSERT(cc->cc_current->pcg_avail == 0);
2169 KASSERT(cc->cc_previous->pcg_avail == 0);
2170
2171 pc = cc->cc_cache;
2172 cc->cc_misses++;
2173
2174 /*
2175 * Nothing was available locally. Try and grab a group
2176 * from the cache.
2177 */
2178 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2179 ncsw = curlwp->l_ncsw;
2180 mutex_enter(&pc->pc_lock);
2181 pc->pc_contended++;
2182
2183 /*
2184 * If we context switched while locking, then
2185 * our view of the per-CPU data is invalid:
2186 * retry.
2187 */
2188 if (curlwp->l_ncsw != ncsw) {
2189 mutex_exit(&pc->pc_lock);
2190 return true;
2191 }
2192 }
2193
2194 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2195 /*
2196 * If there's a full group, release our empty
2197 * group back to the cache. Install the full
2198 * group as cc_current and return.
2199 */
2200 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2201 KASSERT(cur->pcg_avail == 0);
2202 cur->pcg_next = pc->pc_emptygroups;
2203 pc->pc_emptygroups = cur;
2204 pc->pc_nempty++;
2205 }
2206 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2207 cc->cc_current = pcg;
2208 pc->pc_fullgroups = pcg->pcg_next;
2209 pc->pc_hits++;
2210 pc->pc_nfull--;
2211 mutex_exit(&pc->pc_lock);
2212 return true;
2213 }
2214
2215 /*
2216 * Nothing available locally or in cache. Take the slow
2217 * path: fetch a new object from the pool and construct
2218 * it.
2219 */
2220 pc->pc_misses++;
2221 mutex_exit(&pc->pc_lock);
2222 splx(s);
2223
2224 object = pool_get(&pc->pc_pool, flags);
2225 *objectp = object;
2226 if (__predict_false(object == NULL)) {
2227 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2228 return false;
2229 }
2230
2231 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2232 pool_put(&pc->pc_pool, object);
2233 *objectp = NULL;
2234 return false;
2235 }
2236
2237 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2238 (pc->pc_pool.pr_align - 1)) == 0);
2239
2240 if (pap != NULL) {
2241 #ifdef POOL_VTOPHYS
2242 *pap = POOL_VTOPHYS(object);
2243 #else
2244 *pap = POOL_PADDR_INVALID;
2245 #endif
2246 }
2247
2248 FREECHECK_OUT(&pc->pc_freecheck, object);
2249 pool_redzone_fill(&pc->pc_pool, object);
2250 return false;
2251 }
2252
2253 /*
2254 * pool_cache_get{,_paddr}:
2255 *
2256 * Get an object from a pool cache (optionally returning
2257 * the physical address of the object).
2258 */
2259 void *
2260 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2261 {
2262 pool_cache_cpu_t *cc;
2263 pcg_t *pcg;
2264 void *object;
2265 int s;
2266
2267 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2268 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2269 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2270 "%s: [%s] is IPL_NONE, but called from interrupt context",
2271 __func__, pc->pc_pool.pr_wchan);
2272
2273 if (flags & PR_WAITOK) {
2274 ASSERT_SLEEPABLE();
2275 }
2276
2277 /* Lock out interrupts and disable preemption. */
2278 s = splvm();
2279 while (/* CONSTCOND */ true) {
2280 /* Try and allocate an object from the current group. */
2281 cc = pc->pc_cpus[curcpu()->ci_index];
2282 KASSERT(cc->cc_cache == pc);
2283 pcg = cc->cc_current;
2284 if (__predict_true(pcg->pcg_avail > 0)) {
2285 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2286 if (__predict_false(pap != NULL))
2287 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2288 #if defined(DIAGNOSTIC)
2289 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2290 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2291 KASSERT(object != NULL);
2292 #endif
2293 cc->cc_hits++;
2294 splx(s);
2295 FREECHECK_OUT(&pc->pc_freecheck, object);
2296 pool_redzone_fill(&pc->pc_pool, object);
2297 return object;
2298 }
2299
2300 /*
2301 * That failed. If the previous group isn't empty, swap
2302 * it with the current group and allocate from there.
2303 */
2304 pcg = cc->cc_previous;
2305 if (__predict_true(pcg->pcg_avail > 0)) {
2306 cc->cc_previous = cc->cc_current;
2307 cc->cc_current = pcg;
2308 continue;
2309 }
2310
2311 /*
2312 * Can't allocate from either group: try the slow path.
2313 * If get_slow() allocated an object for us, or if
2314 * no more objects are available, it will return false.
2315 * Otherwise, we need to retry.
2316 */
2317 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2318 break;
2319 }
2320
2321 /*
2322 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2323 * pool_cache_get can fail even in the PR_WAITOK case, if the
2324 * constructor fails.
2325 */
2326 return object;
2327 }
2328
2329 static bool __noinline
2330 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2331 {
2332 struct lwp *l = curlwp;
2333 pcg_t *pcg, *cur;
2334 uint64_t ncsw;
2335 pool_cache_t pc;
2336
2337 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2338 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2339
2340 pc = cc->cc_cache;
2341 pcg = NULL;
2342 cc->cc_misses++;
2343 ncsw = l->l_ncsw;
2344
2345 /*
2346 * If there are no empty groups in the cache then allocate one
2347 * while still unlocked.
2348 */
2349 if (__predict_false(pc->pc_emptygroups == NULL)) {
2350 if (__predict_true(!pool_cache_disable)) {
2351 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2352 }
2353 /*
2354 * If pool_get() blocked, then our view of
2355 * the per-CPU data is invalid: retry.
2356 */
2357 if (__predict_false(l->l_ncsw != ncsw)) {
2358 if (pcg != NULL) {
2359 pool_put(pc->pc_pcgpool, pcg);
2360 }
2361 return true;
2362 }
2363 if (__predict_true(pcg != NULL)) {
2364 pcg->pcg_avail = 0;
2365 pcg->pcg_size = pc->pc_pcgsize;
2366 }
2367 }
2368
2369 /* Lock the cache. */
2370 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2371 mutex_enter(&pc->pc_lock);
2372 pc->pc_contended++;
2373
2374 /*
2375 * If we context switched while locking, then our view of
2376 * the per-CPU data is invalid: retry.
2377 */
2378 if (__predict_false(l->l_ncsw != ncsw)) {
2379 mutex_exit(&pc->pc_lock);
2380 if (pcg != NULL) {
2381 pool_put(pc->pc_pcgpool, pcg);
2382 }
2383 return true;
2384 }
2385 }
2386
2387 /* If there are no empty groups in the cache then allocate one. */
2388 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2389 pcg = pc->pc_emptygroups;
2390 pc->pc_emptygroups = pcg->pcg_next;
2391 pc->pc_nempty--;
2392 }
2393
2394 /*
2395 * If there's a empty group, release our full group back
2396 * to the cache. Install the empty group to the local CPU
2397 * and return.
2398 */
2399 if (pcg != NULL) {
2400 KASSERT(pcg->pcg_avail == 0);
2401 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2402 cc->cc_previous = pcg;
2403 } else {
2404 cur = cc->cc_current;
2405 if (__predict_true(cur != &pcg_dummy)) {
2406 KASSERT(cur->pcg_avail == cur->pcg_size);
2407 cur->pcg_next = pc->pc_fullgroups;
2408 pc->pc_fullgroups = cur;
2409 pc->pc_nfull++;
2410 }
2411 cc->cc_current = pcg;
2412 }
2413 pc->pc_hits++;
2414 mutex_exit(&pc->pc_lock);
2415 return true;
2416 }
2417
2418 /*
2419 * Nothing available locally or in cache, and we didn't
2420 * allocate an empty group. Take the slow path and destroy
2421 * the object here and now.
2422 */
2423 pc->pc_misses++;
2424 mutex_exit(&pc->pc_lock);
2425 splx(s);
2426 pool_cache_destruct_object(pc, object);
2427
2428 return false;
2429 }
2430
2431 /*
2432 * pool_cache_put{,_paddr}:
2433 *
2434 * Put an object back to the pool cache (optionally caching the
2435 * physical address of the object).
2436 */
2437 void
2438 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2439 {
2440 pool_cache_cpu_t *cc;
2441 pcg_t *pcg;
2442 int s;
2443
2444 KASSERT(object != NULL);
2445 pool_redzone_check(&pc->pc_pool, object);
2446 FREECHECK_IN(&pc->pc_freecheck, object);
2447
2448 /* Lock out interrupts and disable preemption. */
2449 s = splvm();
2450 while (/* CONSTCOND */ true) {
2451 /* If the current group isn't full, release it there. */
2452 cc = pc->pc_cpus[curcpu()->ci_index];
2453 KASSERT(cc->cc_cache == pc);
2454 pcg = cc->cc_current;
2455 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2456 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2457 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2458 pcg->pcg_avail++;
2459 cc->cc_hits++;
2460 splx(s);
2461 return;
2462 }
2463
2464 /*
2465 * That failed. If the previous group isn't full, swap
2466 * it with the current group and try again.
2467 */
2468 pcg = cc->cc_previous;
2469 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2470 cc->cc_previous = cc->cc_current;
2471 cc->cc_current = pcg;
2472 continue;
2473 }
2474
2475 /*
2476 * Can't free to either group: try the slow path.
2477 * If put_slow() releases the object for us, it
2478 * will return false. Otherwise we need to retry.
2479 */
2480 if (!pool_cache_put_slow(cc, s, object))
2481 break;
2482 }
2483 }
2484
2485 /*
2486 * pool_cache_transfer:
2487 *
2488 * Transfer objects from the per-CPU cache to the global cache.
2489 * Run within a cross-call thread.
2490 */
2491 static void
2492 pool_cache_transfer(pool_cache_t pc)
2493 {
2494 pool_cache_cpu_t *cc;
2495 pcg_t *prev, *cur, **list;
2496 int s;
2497
2498 s = splvm();
2499 mutex_enter(&pc->pc_lock);
2500 cc = pc->pc_cpus[curcpu()->ci_index];
2501 cur = cc->cc_current;
2502 cc->cc_current = __UNCONST(&pcg_dummy);
2503 prev = cc->cc_previous;
2504 cc->cc_previous = __UNCONST(&pcg_dummy);
2505 if (cur != &pcg_dummy) {
2506 if (cur->pcg_avail == cur->pcg_size) {
2507 list = &pc->pc_fullgroups;
2508 pc->pc_nfull++;
2509 } else if (cur->pcg_avail == 0) {
2510 list = &pc->pc_emptygroups;
2511 pc->pc_nempty++;
2512 } else {
2513 list = &pc->pc_partgroups;
2514 pc->pc_npart++;
2515 }
2516 cur->pcg_next = *list;
2517 *list = cur;
2518 }
2519 if (prev != &pcg_dummy) {
2520 if (prev->pcg_avail == prev->pcg_size) {
2521 list = &pc->pc_fullgroups;
2522 pc->pc_nfull++;
2523 } else if (prev->pcg_avail == 0) {
2524 list = &pc->pc_emptygroups;
2525 pc->pc_nempty++;
2526 } else {
2527 list = &pc->pc_partgroups;
2528 pc->pc_npart++;
2529 }
2530 prev->pcg_next = *list;
2531 *list = prev;
2532 }
2533 mutex_exit(&pc->pc_lock);
2534 splx(s);
2535 }
2536
2537 /*
2538 * Pool backend allocators.
2539 *
2540 * Each pool has a backend allocator that handles allocation, deallocation,
2541 * and any additional draining that might be needed.
2542 *
2543 * We provide two standard allocators:
2544 *
2545 * pool_allocator_kmem - the default when no allocator is specified
2546 *
2547 * pool_allocator_nointr - used for pools that will not be accessed
2548 * in interrupt context.
2549 */
2550 void *pool_page_alloc(struct pool *, int);
2551 void pool_page_free(struct pool *, void *);
2552
2553 #ifdef POOL_SUBPAGE
2554 struct pool_allocator pool_allocator_kmem_fullpage = {
2555 .pa_alloc = pool_page_alloc,
2556 .pa_free = pool_page_free,
2557 .pa_pagesz = 0
2558 };
2559 #else
2560 struct pool_allocator pool_allocator_kmem = {
2561 .pa_alloc = pool_page_alloc,
2562 .pa_free = pool_page_free,
2563 .pa_pagesz = 0
2564 };
2565 #endif
2566
2567 #ifdef POOL_SUBPAGE
2568 struct pool_allocator pool_allocator_nointr_fullpage = {
2569 .pa_alloc = pool_page_alloc,
2570 .pa_free = pool_page_free,
2571 .pa_pagesz = 0
2572 };
2573 #else
2574 struct pool_allocator pool_allocator_nointr = {
2575 .pa_alloc = pool_page_alloc,
2576 .pa_free = pool_page_free,
2577 .pa_pagesz = 0
2578 };
2579 #endif
2580
2581 #ifdef POOL_SUBPAGE
2582 void *pool_subpage_alloc(struct pool *, int);
2583 void pool_subpage_free(struct pool *, void *);
2584
2585 struct pool_allocator pool_allocator_kmem = {
2586 .pa_alloc = pool_subpage_alloc,
2587 .pa_free = pool_subpage_free,
2588 .pa_pagesz = POOL_SUBPAGE
2589 };
2590
2591 struct pool_allocator pool_allocator_nointr = {
2592 .pa_alloc = pool_subpage_alloc,
2593 .pa_free = pool_subpage_free,
2594 .pa_pagesz = POOL_SUBPAGE
2595 };
2596 #endif /* POOL_SUBPAGE */
2597
2598 struct pool_allocator pool_allocator_big[] = {
2599 {
2600 .pa_alloc = pool_page_alloc,
2601 .pa_free = pool_page_free,
2602 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2603 },
2604 {
2605 .pa_alloc = pool_page_alloc,
2606 .pa_free = pool_page_free,
2607 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2608 },
2609 {
2610 .pa_alloc = pool_page_alloc,
2611 .pa_free = pool_page_free,
2612 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2613 },
2614 {
2615 .pa_alloc = pool_page_alloc,
2616 .pa_free = pool_page_free,
2617 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2618 },
2619 {
2620 .pa_alloc = pool_page_alloc,
2621 .pa_free = pool_page_free,
2622 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2623 },
2624 {
2625 .pa_alloc = pool_page_alloc,
2626 .pa_free = pool_page_free,
2627 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2628 },
2629 {
2630 .pa_alloc = pool_page_alloc,
2631 .pa_free = pool_page_free,
2632 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2633 },
2634 {
2635 .pa_alloc = pool_page_alloc,
2636 .pa_free = pool_page_free,
2637 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2638 }
2639 };
2640
2641 static int
2642 pool_bigidx(size_t size)
2643 {
2644 int i;
2645
2646 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2647 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2648 return i;
2649 }
2650 panic("pool item size %zu too large, use a custom allocator", size);
2651 }
2652
2653 static void *
2654 pool_allocator_alloc(struct pool *pp, int flags)
2655 {
2656 struct pool_allocator *pa = pp->pr_alloc;
2657 void *res;
2658
2659 res = (*pa->pa_alloc)(pp, flags);
2660 if (res == NULL && (flags & PR_WAITOK) == 0) {
2661 /*
2662 * We only run the drain hook here if PR_NOWAIT.
2663 * In other cases, the hook will be run in
2664 * pool_reclaim().
2665 */
2666 if (pp->pr_drain_hook != NULL) {
2667 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2668 res = (*pa->pa_alloc)(pp, flags);
2669 }
2670 }
2671 return res;
2672 }
2673
2674 static void
2675 pool_allocator_free(struct pool *pp, void *v)
2676 {
2677 struct pool_allocator *pa = pp->pr_alloc;
2678
2679 (*pa->pa_free)(pp, v);
2680 }
2681
2682 void *
2683 pool_page_alloc(struct pool *pp, int flags)
2684 {
2685 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2686 vmem_addr_t va;
2687 int ret;
2688
2689 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2690 vflags | VM_INSTANTFIT, &va);
2691
2692 return ret ? NULL : (void *)va;
2693 }
2694
2695 void
2696 pool_page_free(struct pool *pp, void *v)
2697 {
2698
2699 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2700 }
2701
2702 static void *
2703 pool_page_alloc_meta(struct pool *pp, int flags)
2704 {
2705 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2706 vmem_addr_t va;
2707 int ret;
2708
2709 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2710 vflags | VM_INSTANTFIT, &va);
2711
2712 return ret ? NULL : (void *)va;
2713 }
2714
2715 static void
2716 pool_page_free_meta(struct pool *pp, void *v)
2717 {
2718
2719 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2720 }
2721
2722 #ifdef POOL_REDZONE
2723 #if defined(_LP64)
2724 # define PRIME 0x9e37fffffffc0000UL
2725 #else /* defined(_LP64) */
2726 # define PRIME 0x9e3779b1
2727 #endif /* defined(_LP64) */
2728 #define STATIC_BYTE 0xFE
2729 CTASSERT(POOL_REDZONE_SIZE > 1);
2730
2731 static inline uint8_t
2732 pool_pattern_generate(const void *p)
2733 {
2734 return (uint8_t)(((uintptr_t)p) * PRIME
2735 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2736 }
2737
2738 static void
2739 pool_redzone_init(struct pool *pp, size_t requested_size)
2740 {
2741 size_t nsz;
2742
2743 if (pp->pr_roflags & PR_NOTOUCH) {
2744 pp->pr_reqsize = 0;
2745 pp->pr_redzone = false;
2746 return;
2747 }
2748
2749 /*
2750 * We may have extended the requested size earlier; check if
2751 * there's naturally space in the padding for a red zone.
2752 */
2753 if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
2754 pp->pr_reqsize = requested_size;
2755 pp->pr_redzone = true;
2756 return;
2757 }
2758
2759 /*
2760 * No space in the natural padding; check if we can extend a
2761 * bit the size of the pool.
2762 */
2763 nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
2764 if (nsz <= pp->pr_alloc->pa_pagesz) {
2765 /* Ok, we can */
2766 pp->pr_size = nsz;
2767 pp->pr_reqsize = requested_size;
2768 pp->pr_redzone = true;
2769 } else {
2770 /* No space for a red zone... snif :'( */
2771 pp->pr_reqsize = 0;
2772 pp->pr_redzone = false;
2773 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2774 }
2775 }
2776
2777 static void
2778 pool_redzone_fill(struct pool *pp, void *p)
2779 {
2780 uint8_t *cp, pat;
2781 const uint8_t *ep;
2782
2783 if (!pp->pr_redzone)
2784 return;
2785
2786 cp = (uint8_t *)p + pp->pr_reqsize;
2787 ep = cp + POOL_REDZONE_SIZE;
2788
2789 /*
2790 * We really don't want the first byte of the red zone to be '\0';
2791 * an off-by-one in a string may not be properly detected.
2792 */
2793 pat = pool_pattern_generate(cp);
2794 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2795 cp++;
2796
2797 while (cp < ep) {
2798 *cp = pool_pattern_generate(cp);
2799 cp++;
2800 }
2801 }
2802
2803 static void
2804 pool_redzone_check(struct pool *pp, void *p)
2805 {
2806 uint8_t *cp, pat, expected;
2807 const uint8_t *ep;
2808
2809 if (!pp->pr_redzone)
2810 return;
2811
2812 cp = (uint8_t *)p + pp->pr_reqsize;
2813 ep = cp + POOL_REDZONE_SIZE;
2814
2815 pat = pool_pattern_generate(cp);
2816 expected = (pat == '\0') ? STATIC_BYTE: pat;
2817 if (expected != *cp) {
2818 panic("%s: %p: 0x%02x != 0x%02x\n",
2819 __func__, cp, *cp, expected);
2820 }
2821 cp++;
2822
2823 while (cp < ep) {
2824 expected = pool_pattern_generate(cp);
2825 if (*cp != expected) {
2826 panic("%s: %p: 0x%02x != 0x%02x\n",
2827 __func__, cp, *cp, expected);
2828 }
2829 cp++;
2830 }
2831 }
2832
2833 #endif /* POOL_REDZONE */
2834
2835
2836 #ifdef POOL_SUBPAGE
2837 /* Sub-page allocator, for machines with large hardware pages. */
2838 void *
2839 pool_subpage_alloc(struct pool *pp, int flags)
2840 {
2841 return pool_get(&psppool, flags);
2842 }
2843
2844 void
2845 pool_subpage_free(struct pool *pp, void *v)
2846 {
2847 pool_put(&psppool, v);
2848 }
2849
2850 #endif /* POOL_SUBPAGE */
2851
2852 #if defined(DDB)
2853 static bool
2854 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2855 {
2856
2857 return (uintptr_t)ph->ph_page <= addr &&
2858 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2859 }
2860
2861 static bool
2862 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2863 {
2864
2865 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2866 }
2867
2868 static bool
2869 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2870 {
2871 int i;
2872
2873 if (pcg == NULL) {
2874 return false;
2875 }
2876 for (i = 0; i < pcg->pcg_avail; i++) {
2877 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2878 return true;
2879 }
2880 }
2881 return false;
2882 }
2883
2884 static bool
2885 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2886 {
2887
2888 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2889 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2890 pool_item_bitmap_t *bitmap =
2891 ph->ph_bitmap + (idx / BITMAP_SIZE);
2892 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2893
2894 return (*bitmap & mask) == 0;
2895 } else {
2896 struct pool_item *pi;
2897
2898 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2899 if (pool_in_item(pp, pi, addr)) {
2900 return false;
2901 }
2902 }
2903 return true;
2904 }
2905 }
2906
2907 void
2908 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2909 {
2910 struct pool *pp;
2911
2912 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2913 struct pool_item_header *ph;
2914 uintptr_t item;
2915 bool allocated = true;
2916 bool incache = false;
2917 bool incpucache = false;
2918 char cpucachestr[32];
2919
2920 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2921 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2922 if (pool_in_page(pp, ph, addr)) {
2923 goto found;
2924 }
2925 }
2926 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2927 if (pool_in_page(pp, ph, addr)) {
2928 allocated =
2929 pool_allocated(pp, ph, addr);
2930 goto found;
2931 }
2932 }
2933 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2934 if (pool_in_page(pp, ph, addr)) {
2935 allocated = false;
2936 goto found;
2937 }
2938 }
2939 continue;
2940 } else {
2941 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2942 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2943 continue;
2944 }
2945 allocated = pool_allocated(pp, ph, addr);
2946 }
2947 found:
2948 if (allocated && pp->pr_cache) {
2949 pool_cache_t pc = pp->pr_cache;
2950 struct pool_cache_group *pcg;
2951 int i;
2952
2953 for (pcg = pc->pc_fullgroups; pcg != NULL;
2954 pcg = pcg->pcg_next) {
2955 if (pool_in_cg(pp, pcg, addr)) {
2956 incache = true;
2957 goto print;
2958 }
2959 }
2960 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2961 pool_cache_cpu_t *cc;
2962
2963 if ((cc = pc->pc_cpus[i]) == NULL) {
2964 continue;
2965 }
2966 if (pool_in_cg(pp, cc->cc_current, addr) ||
2967 pool_in_cg(pp, cc->cc_previous, addr)) {
2968 struct cpu_info *ci =
2969 cpu_lookup(i);
2970
2971 incpucache = true;
2972 snprintf(cpucachestr,
2973 sizeof(cpucachestr),
2974 "cached by CPU %u",
2975 ci->ci_index);
2976 goto print;
2977 }
2978 }
2979 }
2980 print:
2981 item = (uintptr_t)ph->ph_page + ph->ph_off;
2982 item = item + rounddown(addr - item, pp->pr_size);
2983 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2984 (void *)addr, item, (size_t)(addr - item),
2985 pp->pr_wchan,
2986 incpucache ? cpucachestr :
2987 incache ? "cached" : allocated ? "allocated" : "free");
2988 }
2989 }
2990 #endif /* defined(DDB) */
2991
2992 static int
2993 pool_sysctl(SYSCTLFN_ARGS)
2994 {
2995 struct pool_sysctl data;
2996 struct pool *pp;
2997 struct pool_cache *pc;
2998 pool_cache_cpu_t *cc;
2999 int error;
3000 size_t i, written;
3001
3002 if (oldp == NULL) {
3003 *oldlenp = 0;
3004 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3005 *oldlenp += sizeof(data);
3006 return 0;
3007 }
3008
3009 memset(&data, 0, sizeof(data));
3010 error = 0;
3011 written = 0;
3012 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3013 if (written + sizeof(data) > *oldlenp)
3014 break;
3015 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3016 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3017 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3018 #define COPY(field) data.field = pp->field
3019 COPY(pr_size);
3020
3021 COPY(pr_itemsperpage);
3022 COPY(pr_nitems);
3023 COPY(pr_nout);
3024 COPY(pr_hardlimit);
3025 COPY(pr_npages);
3026 COPY(pr_minpages);
3027 COPY(pr_maxpages);
3028
3029 COPY(pr_nget);
3030 COPY(pr_nfail);
3031 COPY(pr_nput);
3032 COPY(pr_npagealloc);
3033 COPY(pr_npagefree);
3034 COPY(pr_hiwat);
3035 COPY(pr_nidle);
3036 #undef COPY
3037
3038 data.pr_cache_nmiss_pcpu = 0;
3039 data.pr_cache_nhit_pcpu = 0;
3040 if (pp->pr_cache) {
3041 pc = pp->pr_cache;
3042 data.pr_cache_meta_size = pc->pc_pcgsize;
3043 data.pr_cache_nfull = pc->pc_nfull;
3044 data.pr_cache_npartial = pc->pc_npart;
3045 data.pr_cache_nempty = pc->pc_nempty;
3046 data.pr_cache_ncontended = pc->pc_contended;
3047 data.pr_cache_nmiss_global = pc->pc_misses;
3048 data.pr_cache_nhit_global = pc->pc_hits;
3049 for (i = 0; i < pc->pc_ncpu; ++i) {
3050 cc = pc->pc_cpus[i];
3051 if (cc == NULL)
3052 continue;
3053 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3054 data.pr_cache_nhit_pcpu += cc->cc_hits;
3055 }
3056 } else {
3057 data.pr_cache_meta_size = 0;
3058 data.pr_cache_nfull = 0;
3059 data.pr_cache_npartial = 0;
3060 data.pr_cache_nempty = 0;
3061 data.pr_cache_ncontended = 0;
3062 data.pr_cache_nmiss_global = 0;
3063 data.pr_cache_nhit_global = 0;
3064 }
3065
3066 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3067 if (error)
3068 break;
3069 written += sizeof(data);
3070 oldp = (char *)oldp + sizeof(data);
3071 }
3072
3073 *oldlenp = written;
3074 return error;
3075 }
3076
3077 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3078 {
3079 const struct sysctlnode *rnode = NULL;
3080
3081 sysctl_createv(clog, 0, NULL, &rnode,
3082 CTLFLAG_PERMANENT,
3083 CTLTYPE_STRUCT, "pool",
3084 SYSCTL_DESCR("Get pool statistics"),
3085 pool_sysctl, 0, NULL, 0,
3086 CTL_KERN, CTL_CREATE, CTL_EOL);
3087 }
3088