Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.228
      1 /*	$NetBSD: subr_pool.c,v 1.228 2018/12/02 21:00:13 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.228 2018/12/02 21:00:13 maxv Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_kleak.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/sysctl.h>
     47 #include <sys/bitops.h>
     48 #include <sys/proc.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmem.h>
     52 #include <sys/pool.h>
     53 #include <sys/syslog.h>
     54 #include <sys/debug.h>
     55 #include <sys/lockdebug.h>
     56 #include <sys/xcall.h>
     57 #include <sys/cpu.h>
     58 #include <sys/atomic.h>
     59 #include <sys/asan.h>
     60 
     61 #include <uvm/uvm_extern.h>
     62 
     63 /*
     64  * Pool resource management utility.
     65  *
     66  * Memory is allocated in pages which are split into pieces according to
     67  * the pool item size. Each page is kept on one of three lists in the
     68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69  * for empty, full and partially-full pages respectively. The individual
     70  * pool items are on a linked list headed by `ph_itemlist' in each page
     71  * header. The memory for building the page list is either taken from
     72  * the allocated pages themselves (for small pool items) or taken from
     73  * an internal pool of page headers (`phpool').
     74  */
     75 
     76 /* List of all pools. Non static as needed by 'vmstat -m' */
     77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     78 
     79 /* Private pool for page header structures */
     80 #define	PHPOOL_MAX	8
     81 static struct pool phpool[PHPOOL_MAX];
     82 #define	PHPOOL_FREELIST_NELEM(idx) \
     83 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     84 
     85 #ifdef POOL_SUBPAGE
     86 /* Pool of subpages for use by normal pools. */
     87 static struct pool psppool;
     88 #endif
     89 
     90 #if defined(KASAN)
     91 #define POOL_REDZONE
     92 #endif
     93 
     94 #ifdef POOL_REDZONE
     95 # ifdef KASAN
     96 #  define POOL_REDZONE_SIZE 8
     97 # else
     98 #  define POOL_REDZONE_SIZE 2
     99 # endif
    100 static void pool_redzone_init(struct pool *, size_t);
    101 static void pool_redzone_fill(struct pool *, void *);
    102 static void pool_redzone_check(struct pool *, void *);
    103 #else
    104 # define pool_redzone_init(pp, sz)	/* NOTHING */
    105 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
    106 # define pool_redzone_check(pp, ptr)	/* NOTHING */
    107 #endif
    108 
    109 #ifdef KLEAK
    110 static void pool_kleak_fill(struct pool *, void *);
    111 static void pool_cache_kleak_fill(pool_cache_t, void *);
    112 #else
    113 #define pool_kleak_fill(pp, ptr)	__nothing
    114 #define pool_cache_kleak_fill(pc, ptr)	__nothing
    115 #endif
    116 
    117 static void *pool_page_alloc_meta(struct pool *, int);
    118 static void pool_page_free_meta(struct pool *, void *);
    119 
    120 /* allocator for pool metadata */
    121 struct pool_allocator pool_allocator_meta = {
    122 	.pa_alloc = pool_page_alloc_meta,
    123 	.pa_free = pool_page_free_meta,
    124 	.pa_pagesz = 0
    125 };
    126 
    127 #define POOL_ALLOCATOR_BIG_BASE 13
    128 extern struct pool_allocator pool_allocator_big[];
    129 static int pool_bigidx(size_t);
    130 
    131 /* # of seconds to retain page after last use */
    132 int pool_inactive_time = 10;
    133 
    134 /* Next candidate for drainage (see pool_drain()) */
    135 static struct pool	*drainpp;
    136 
    137 /* This lock protects both pool_head and drainpp. */
    138 static kmutex_t pool_head_lock;
    139 static kcondvar_t pool_busy;
    140 
    141 /* This lock protects initialization of a potentially shared pool allocator */
    142 static kmutex_t pool_allocator_lock;
    143 
    144 typedef uint32_t pool_item_bitmap_t;
    145 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    146 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    147 
    148 struct pool_item_header {
    149 	/* Page headers */
    150 	LIST_ENTRY(pool_item_header)
    151 				ph_pagelist;	/* pool page list */
    152 	SPLAY_ENTRY(pool_item_header)
    153 				ph_node;	/* Off-page page headers */
    154 	void *			ph_page;	/* this page's address */
    155 	uint32_t		ph_time;	/* last referenced */
    156 	uint16_t		ph_nmissing;	/* # of chunks in use */
    157 	uint16_t		ph_off;		/* start offset in page */
    158 	union {
    159 		/* !PR_NOTOUCH */
    160 		struct {
    161 			LIST_HEAD(, pool_item)
    162 				phu_itemlist;	/* chunk list for this page */
    163 		} phu_normal;
    164 		/* PR_NOTOUCH */
    165 		struct {
    166 			pool_item_bitmap_t phu_bitmap[1];
    167 		} phu_notouch;
    168 	} ph_u;
    169 };
    170 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    171 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    172 
    173 struct pool_item {
    174 #ifdef DIAGNOSTIC
    175 	u_int pi_magic;
    176 #endif
    177 #define	PI_MAGIC 0xdeaddeadU
    178 	/* Other entries use only this list entry */
    179 	LIST_ENTRY(pool_item)	pi_list;
    180 };
    181 
    182 #define	POOL_NEEDS_CATCHUP(pp)						\
    183 	((pp)->pr_nitems < (pp)->pr_minitems)
    184 
    185 /*
    186  * Pool cache management.
    187  *
    188  * Pool caches provide a way for constructed objects to be cached by the
    189  * pool subsystem.  This can lead to performance improvements by avoiding
    190  * needless object construction/destruction; it is deferred until absolutely
    191  * necessary.
    192  *
    193  * Caches are grouped into cache groups.  Each cache group references up
    194  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    195  * object from the pool, it calls the object's constructor and places it
    196  * into a cache group.  When a cache group frees an object back to the
    197  * pool, it first calls the object's destructor.  This allows the object
    198  * to persist in constructed form while freed to the cache.
    199  *
    200  * The pool references each cache, so that when a pool is drained by the
    201  * pagedaemon, it can drain each individual cache as well.  Each time a
    202  * cache is drained, the most idle cache group is freed to the pool in
    203  * its entirety.
    204  *
    205  * Pool caches are layed on top of pools.  By layering them, we can avoid
    206  * the complexity of cache management for pools which would not benefit
    207  * from it.
    208  */
    209 
    210 static struct pool pcg_normal_pool;
    211 static struct pool pcg_large_pool;
    212 static struct pool cache_pool;
    213 static struct pool cache_cpu_pool;
    214 
    215 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    216 
    217 /* List of all caches. */
    218 TAILQ_HEAD(,pool_cache) pool_cache_head =
    219     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    220 
    221 int pool_cache_disable;		/* global disable for caching */
    222 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    223 
    224 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    225 				    void *);
    226 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    227 				    void **, paddr_t *, int);
    228 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    229 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    230 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    231 static void	pool_cache_transfer(pool_cache_t);
    232 
    233 static int	pool_catchup(struct pool *);
    234 static void	pool_prime_page(struct pool *, void *,
    235 		    struct pool_item_header *);
    236 static void	pool_update_curpage(struct pool *);
    237 
    238 static int	pool_grow(struct pool *, int);
    239 static void	*pool_allocator_alloc(struct pool *, int);
    240 static void	pool_allocator_free(struct pool *, void *);
    241 
    242 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    243 	void (*)(const char *, ...) __printflike(1, 2));
    244 static void pool_print1(struct pool *, const char *,
    245 	void (*)(const char *, ...) __printflike(1, 2));
    246 
    247 static int pool_chk_page(struct pool *, const char *,
    248 			 struct pool_item_header *);
    249 
    250 static inline unsigned int
    251 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    252     const void *v)
    253 {
    254 	const char *cp = v;
    255 	unsigned int idx;
    256 
    257 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    258 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    259 	KASSERT(idx < pp->pr_itemsperpage);
    260 	return idx;
    261 }
    262 
    263 static inline void
    264 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    265     void *obj)
    266 {
    267 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    268 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    269 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    270 
    271 	KASSERT((*bitmap & mask) == 0);
    272 	*bitmap |= mask;
    273 }
    274 
    275 static inline void *
    276 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    277 {
    278 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    279 	unsigned int idx;
    280 	int i;
    281 
    282 	for (i = 0; ; i++) {
    283 		int bit;
    284 
    285 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    286 		bit = ffs32(bitmap[i]);
    287 		if (bit) {
    288 			pool_item_bitmap_t mask;
    289 
    290 			bit--;
    291 			idx = (i * BITMAP_SIZE) + bit;
    292 			mask = 1U << bit;
    293 			KASSERT((bitmap[i] & mask) != 0);
    294 			bitmap[i] &= ~mask;
    295 			break;
    296 		}
    297 	}
    298 	KASSERT(idx < pp->pr_itemsperpage);
    299 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    300 }
    301 
    302 static inline void
    303 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    304 {
    305 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    306 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    307 	int i;
    308 
    309 	for (i = 0; i < n; i++) {
    310 		bitmap[i] = (pool_item_bitmap_t)-1;
    311 	}
    312 }
    313 
    314 static inline int
    315 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    316 {
    317 
    318 	/*
    319 	 * we consider pool_item_header with smaller ph_page bigger.
    320 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    321 	 */
    322 
    323 	if (a->ph_page < b->ph_page)
    324 		return (1);
    325 	else if (a->ph_page > b->ph_page)
    326 		return (-1);
    327 	else
    328 		return (0);
    329 }
    330 
    331 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    332 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    333 
    334 static inline struct pool_item_header *
    335 pr_find_pagehead_noalign(struct pool *pp, void *v)
    336 {
    337 	struct pool_item_header *ph, tmp;
    338 
    339 	tmp.ph_page = (void *)(uintptr_t)v;
    340 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    341 	if (ph == NULL) {
    342 		ph = SPLAY_ROOT(&pp->pr_phtree);
    343 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    344 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    345 		}
    346 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    347 	}
    348 
    349 	return ph;
    350 }
    351 
    352 /*
    353  * Return the pool page header based on item address.
    354  */
    355 static inline struct pool_item_header *
    356 pr_find_pagehead(struct pool *pp, void *v)
    357 {
    358 	struct pool_item_header *ph, tmp;
    359 
    360 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    361 		ph = pr_find_pagehead_noalign(pp, v);
    362 	} else {
    363 		void *page =
    364 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    365 
    366 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    367 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    368 		} else {
    369 			tmp.ph_page = page;
    370 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    371 		}
    372 	}
    373 
    374 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    375 	    ((char *)ph->ph_page <= (char *)v &&
    376 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    377 	return ph;
    378 }
    379 
    380 static void
    381 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    382 {
    383 	struct pool_item_header *ph;
    384 
    385 	while ((ph = LIST_FIRST(pq)) != NULL) {
    386 		LIST_REMOVE(ph, ph_pagelist);
    387 		pool_allocator_free(pp, ph->ph_page);
    388 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    389 			pool_put(pp->pr_phpool, ph);
    390 	}
    391 }
    392 
    393 /*
    394  * Remove a page from the pool.
    395  */
    396 static inline void
    397 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    398      struct pool_pagelist *pq)
    399 {
    400 
    401 	KASSERT(mutex_owned(&pp->pr_lock));
    402 
    403 	/*
    404 	 * If the page was idle, decrement the idle page count.
    405 	 */
    406 	if (ph->ph_nmissing == 0) {
    407 		KASSERT(pp->pr_nidle != 0);
    408 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    409 		    "nitems=%u < itemsperpage=%u",
    410 		    pp->pr_nitems, pp->pr_itemsperpage);
    411 		pp->pr_nidle--;
    412 	}
    413 
    414 	pp->pr_nitems -= pp->pr_itemsperpage;
    415 
    416 	/*
    417 	 * Unlink the page from the pool and queue it for release.
    418 	 */
    419 	LIST_REMOVE(ph, ph_pagelist);
    420 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    421 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    422 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    423 
    424 	pp->pr_npages--;
    425 	pp->pr_npagefree++;
    426 
    427 	pool_update_curpage(pp);
    428 }
    429 
    430 /*
    431  * Initialize all the pools listed in the "pools" link set.
    432  */
    433 void
    434 pool_subsystem_init(void)
    435 {
    436 	size_t size;
    437 	int idx;
    438 
    439 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    440 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    441 	cv_init(&pool_busy, "poolbusy");
    442 
    443 	/*
    444 	 * Initialize private page header pool and cache magazine pool if we
    445 	 * haven't done so yet.
    446 	 */
    447 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    448 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    449 		int nelem;
    450 		size_t sz;
    451 
    452 		nelem = PHPOOL_FREELIST_NELEM(idx);
    453 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    454 		    "phpool-%d", nelem);
    455 		sz = sizeof(struct pool_item_header);
    456 		if (nelem) {
    457 			sz = offsetof(struct pool_item_header,
    458 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    459 		}
    460 		pool_init(&phpool[idx], sz, 0, 0, 0,
    461 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    462 	}
    463 #ifdef POOL_SUBPAGE
    464 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    465 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    466 #endif
    467 
    468 	size = sizeof(pcg_t) +
    469 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    470 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    471 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    472 
    473 	size = sizeof(pcg_t) +
    474 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    475 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    476 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    477 
    478 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    479 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    480 
    481 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    482 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    483 }
    484 
    485 /*
    486  * Initialize the given pool resource structure.
    487  *
    488  * We export this routine to allow other kernel parts to declare
    489  * static pools that must be initialized before kmem(9) is available.
    490  */
    491 void
    492 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    493     const char *wchan, struct pool_allocator *palloc, int ipl)
    494 {
    495 	struct pool *pp1;
    496 	size_t trysize, phsize, prsize;
    497 	int off, slack;
    498 
    499 #ifdef DEBUG
    500 	if (__predict_true(!cold))
    501 		mutex_enter(&pool_head_lock);
    502 	/*
    503 	 * Check that the pool hasn't already been initialised and
    504 	 * added to the list of all pools.
    505 	 */
    506 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    507 		if (pp == pp1)
    508 			panic("%s: [%s] already initialised", __func__,
    509 			    wchan);
    510 	}
    511 	if (__predict_true(!cold))
    512 		mutex_exit(&pool_head_lock);
    513 #endif
    514 
    515 	if (palloc == NULL)
    516 		palloc = &pool_allocator_kmem;
    517 #ifdef POOL_SUBPAGE
    518 	if (size > palloc->pa_pagesz) {
    519 		if (palloc == &pool_allocator_kmem)
    520 			palloc = &pool_allocator_kmem_fullpage;
    521 		else if (palloc == &pool_allocator_nointr)
    522 			palloc = &pool_allocator_nointr_fullpage;
    523 	}
    524 #endif /* POOL_SUBPAGE */
    525 	if (!cold)
    526 		mutex_enter(&pool_allocator_lock);
    527 	if (palloc->pa_refcnt++ == 0) {
    528 		if (palloc->pa_pagesz == 0)
    529 			palloc->pa_pagesz = PAGE_SIZE;
    530 
    531 		TAILQ_INIT(&palloc->pa_list);
    532 
    533 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    534 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    535 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    536 	}
    537 	if (!cold)
    538 		mutex_exit(&pool_allocator_lock);
    539 
    540 	if (align == 0)
    541 		align = ALIGN(1);
    542 
    543 	prsize = size;
    544 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    545 		prsize = sizeof(struct pool_item);
    546 
    547 	prsize = roundup(prsize, align);
    548 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    549 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    550 	    __func__, wchan, prsize, palloc->pa_pagesz);
    551 
    552 	/*
    553 	 * Initialize the pool structure.
    554 	 */
    555 	LIST_INIT(&pp->pr_emptypages);
    556 	LIST_INIT(&pp->pr_fullpages);
    557 	LIST_INIT(&pp->pr_partpages);
    558 	pp->pr_cache = NULL;
    559 	pp->pr_curpage = NULL;
    560 	pp->pr_npages = 0;
    561 	pp->pr_minitems = 0;
    562 	pp->pr_minpages = 0;
    563 	pp->pr_maxpages = UINT_MAX;
    564 	pp->pr_roflags = flags;
    565 	pp->pr_flags = 0;
    566 	pp->pr_size = prsize;
    567 	pp->pr_align = align;
    568 	pp->pr_wchan = wchan;
    569 	pp->pr_alloc = palloc;
    570 	pp->pr_nitems = 0;
    571 	pp->pr_nout = 0;
    572 	pp->pr_hardlimit = UINT_MAX;
    573 	pp->pr_hardlimit_warning = NULL;
    574 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    575 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    576 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    577 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    578 	pp->pr_drain_hook = NULL;
    579 	pp->pr_drain_hook_arg = NULL;
    580 	pp->pr_freecheck = NULL;
    581 	pool_redzone_init(pp, size);
    582 
    583 	/*
    584 	 * Decide whether to put the page header off page to avoid
    585 	 * wasting too large a part of the page or too big item.
    586 	 * Off-page page headers go on a hash table, so we can match
    587 	 * a returned item with its header based on the page address.
    588 	 * We use 1/16 of the page size and about 8 times of the item
    589 	 * size as the threshold (XXX: tune)
    590 	 *
    591 	 * However, we'll put the header into the page if we can put
    592 	 * it without wasting any items.
    593 	 *
    594 	 * Silently enforce `0 <= ioff < align'.
    595 	 */
    596 	pp->pr_itemoffset = ioff %= align;
    597 	/* See the comment below about reserved bytes. */
    598 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    599 	phsize = ALIGN(sizeof(struct pool_item_header));
    600 	if (pp->pr_roflags & PR_PHINPAGE ||
    601 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    602 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    603 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    604 		/* Use the end of the page for the page header */
    605 		pp->pr_roflags |= PR_PHINPAGE;
    606 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    607 	} else {
    608 		/* The page header will be taken from our page header pool */
    609 		pp->pr_phoffset = 0;
    610 		off = palloc->pa_pagesz;
    611 		SPLAY_INIT(&pp->pr_phtree);
    612 	}
    613 
    614 	/*
    615 	 * Alignment is to take place at `ioff' within the item. This means
    616 	 * we must reserve up to `align - 1' bytes on the page to allow
    617 	 * appropriate positioning of each item.
    618 	 */
    619 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    620 	KASSERT(pp->pr_itemsperpage != 0);
    621 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    622 		int idx;
    623 
    624 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    625 		    idx++) {
    626 			/* nothing */
    627 		}
    628 		if (idx >= PHPOOL_MAX) {
    629 			/*
    630 			 * if you see this panic, consider to tweak
    631 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    632 			 */
    633 			panic("%s: [%s] too large itemsperpage(%d) for "
    634 			    "PR_NOTOUCH", __func__,
    635 			    pp->pr_wchan, pp->pr_itemsperpage);
    636 		}
    637 		pp->pr_phpool = &phpool[idx];
    638 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    639 		pp->pr_phpool = &phpool[0];
    640 	}
    641 #if defined(DIAGNOSTIC)
    642 	else {
    643 		pp->pr_phpool = NULL;
    644 	}
    645 #endif
    646 
    647 	/*
    648 	 * Use the slack between the chunks and the page header
    649 	 * for "cache coloring".
    650 	 */
    651 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    652 	pp->pr_maxcolor = (slack / align) * align;
    653 	pp->pr_curcolor = 0;
    654 
    655 	pp->pr_nget = 0;
    656 	pp->pr_nfail = 0;
    657 	pp->pr_nput = 0;
    658 	pp->pr_npagealloc = 0;
    659 	pp->pr_npagefree = 0;
    660 	pp->pr_hiwat = 0;
    661 	pp->pr_nidle = 0;
    662 	pp->pr_refcnt = 0;
    663 
    664 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    665 	cv_init(&pp->pr_cv, wchan);
    666 	pp->pr_ipl = ipl;
    667 
    668 	/* Insert into the list of all pools. */
    669 	if (!cold)
    670 		mutex_enter(&pool_head_lock);
    671 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    672 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    673 			break;
    674 	}
    675 	if (pp1 == NULL)
    676 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    677 	else
    678 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    679 	if (!cold)
    680 		mutex_exit(&pool_head_lock);
    681 
    682 	/* Insert this into the list of pools using this allocator. */
    683 	if (!cold)
    684 		mutex_enter(&palloc->pa_lock);
    685 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    686 	if (!cold)
    687 		mutex_exit(&palloc->pa_lock);
    688 }
    689 
    690 /*
    691  * De-commision a pool resource.
    692  */
    693 void
    694 pool_destroy(struct pool *pp)
    695 {
    696 	struct pool_pagelist pq;
    697 	struct pool_item_header *ph;
    698 
    699 	/* Remove from global pool list */
    700 	mutex_enter(&pool_head_lock);
    701 	while (pp->pr_refcnt != 0)
    702 		cv_wait(&pool_busy, &pool_head_lock);
    703 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    704 	if (drainpp == pp)
    705 		drainpp = NULL;
    706 	mutex_exit(&pool_head_lock);
    707 
    708 	/* Remove this pool from its allocator's list of pools. */
    709 	mutex_enter(&pp->pr_alloc->pa_lock);
    710 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    711 	mutex_exit(&pp->pr_alloc->pa_lock);
    712 
    713 	mutex_enter(&pool_allocator_lock);
    714 	if (--pp->pr_alloc->pa_refcnt == 0)
    715 		mutex_destroy(&pp->pr_alloc->pa_lock);
    716 	mutex_exit(&pool_allocator_lock);
    717 
    718 	mutex_enter(&pp->pr_lock);
    719 
    720 	KASSERT(pp->pr_cache == NULL);
    721 	KASSERTMSG((pp->pr_nout == 0),
    722 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    723 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    724 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    725 
    726 	/* Remove all pages */
    727 	LIST_INIT(&pq);
    728 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    729 		pr_rmpage(pp, ph, &pq);
    730 
    731 	mutex_exit(&pp->pr_lock);
    732 
    733 	pr_pagelist_free(pp, &pq);
    734 	cv_destroy(&pp->pr_cv);
    735 	mutex_destroy(&pp->pr_lock);
    736 }
    737 
    738 void
    739 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    740 {
    741 
    742 	/* XXX no locking -- must be used just after pool_init() */
    743 	KASSERTMSG((pp->pr_drain_hook == NULL),
    744 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    745 	pp->pr_drain_hook = fn;
    746 	pp->pr_drain_hook_arg = arg;
    747 }
    748 
    749 static struct pool_item_header *
    750 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    751 {
    752 	struct pool_item_header *ph;
    753 
    754 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    755 		ph = (void *)((char *)storage + pp->pr_phoffset);
    756 	else
    757 		ph = pool_get(pp->pr_phpool, flags);
    758 
    759 	return (ph);
    760 }
    761 
    762 /*
    763  * Grab an item from the pool.
    764  */
    765 void *
    766 pool_get(struct pool *pp, int flags)
    767 {
    768 	struct pool_item *pi;
    769 	struct pool_item_header *ph;
    770 	void *v;
    771 
    772 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    773 	KASSERTMSG((pp->pr_itemsperpage != 0),
    774 	    "%s: [%s] pr_itemsperpage is zero, "
    775 	    "pool not initialized?", __func__, pp->pr_wchan);
    776 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    777 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    778 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    779 	    __func__, pp->pr_wchan);
    780 	if (flags & PR_WAITOK) {
    781 		ASSERT_SLEEPABLE();
    782 	}
    783 
    784 	mutex_enter(&pp->pr_lock);
    785  startover:
    786 	/*
    787 	 * Check to see if we've reached the hard limit.  If we have,
    788 	 * and we can wait, then wait until an item has been returned to
    789 	 * the pool.
    790 	 */
    791 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    792 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    793 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    794 		if (pp->pr_drain_hook != NULL) {
    795 			/*
    796 			 * Since the drain hook is going to free things
    797 			 * back to the pool, unlock, call the hook, re-lock,
    798 			 * and check the hardlimit condition again.
    799 			 */
    800 			mutex_exit(&pp->pr_lock);
    801 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    802 			mutex_enter(&pp->pr_lock);
    803 			if (pp->pr_nout < pp->pr_hardlimit)
    804 				goto startover;
    805 		}
    806 
    807 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    808 			/*
    809 			 * XXX: A warning isn't logged in this case.  Should
    810 			 * it be?
    811 			 */
    812 			pp->pr_flags |= PR_WANTED;
    813 			do {
    814 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    815 			} while (pp->pr_flags & PR_WANTED);
    816 			goto startover;
    817 		}
    818 
    819 		/*
    820 		 * Log a message that the hard limit has been hit.
    821 		 */
    822 		if (pp->pr_hardlimit_warning != NULL &&
    823 		    ratecheck(&pp->pr_hardlimit_warning_last,
    824 			      &pp->pr_hardlimit_ratecap))
    825 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    826 
    827 		pp->pr_nfail++;
    828 
    829 		mutex_exit(&pp->pr_lock);
    830 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    831 		return (NULL);
    832 	}
    833 
    834 	/*
    835 	 * The convention we use is that if `curpage' is not NULL, then
    836 	 * it points at a non-empty bucket. In particular, `curpage'
    837 	 * never points at a page header which has PR_PHINPAGE set and
    838 	 * has no items in its bucket.
    839 	 */
    840 	if ((ph = pp->pr_curpage) == NULL) {
    841 		int error;
    842 
    843 		KASSERTMSG((pp->pr_nitems == 0),
    844 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    845 		    __func__, pp->pr_wchan, pp->pr_nitems);
    846 
    847 		/*
    848 		 * Call the back-end page allocator for more memory.
    849 		 * Release the pool lock, as the back-end page allocator
    850 		 * may block.
    851 		 */
    852 		error = pool_grow(pp, flags);
    853 		if (error != 0) {
    854 			/*
    855 			 * pool_grow aborts when another thread
    856 			 * is allocating a new page. Retry if it
    857 			 * waited for it.
    858 			 */
    859 			if (error == ERESTART)
    860 				goto startover;
    861 
    862 			/*
    863 			 * We were unable to allocate a page or item
    864 			 * header, but we released the lock during
    865 			 * allocation, so perhaps items were freed
    866 			 * back to the pool.  Check for this case.
    867 			 */
    868 			if (pp->pr_curpage != NULL)
    869 				goto startover;
    870 
    871 			pp->pr_nfail++;
    872 			mutex_exit(&pp->pr_lock);
    873 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    874 			return (NULL);
    875 		}
    876 
    877 		/* Start the allocation process over. */
    878 		goto startover;
    879 	}
    880 	if (pp->pr_roflags & PR_NOTOUCH) {
    881 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    882 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    883 		v = pr_item_notouch_get(pp, ph);
    884 	} else {
    885 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    886 		if (__predict_false(v == NULL)) {
    887 			mutex_exit(&pp->pr_lock);
    888 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    889 		}
    890 		KASSERTMSG((pp->pr_nitems > 0),
    891 		    "%s: [%s] nitems %u inconsistent on itemlist",
    892 		    __func__, pp->pr_wchan, pp->pr_nitems);
    893 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    894 		    "%s: [%s] free list modified: "
    895 		    "magic=%x; page %p; item addr %p", __func__,
    896 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    897 
    898 		/*
    899 		 * Remove from item list.
    900 		 */
    901 		LIST_REMOVE(pi, pi_list);
    902 	}
    903 	pp->pr_nitems--;
    904 	pp->pr_nout++;
    905 	if (ph->ph_nmissing == 0) {
    906 		KASSERT(pp->pr_nidle > 0);
    907 		pp->pr_nidle--;
    908 
    909 		/*
    910 		 * This page was previously empty.  Move it to the list of
    911 		 * partially-full pages.  This page is already curpage.
    912 		 */
    913 		LIST_REMOVE(ph, ph_pagelist);
    914 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    915 	}
    916 	ph->ph_nmissing++;
    917 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    918 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    919 			LIST_EMPTY(&ph->ph_itemlist)),
    920 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    921 			pp->pr_wchan, ph->ph_nmissing);
    922 		/*
    923 		 * This page is now full.  Move it to the full list
    924 		 * and select a new current page.
    925 		 */
    926 		LIST_REMOVE(ph, ph_pagelist);
    927 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    928 		pool_update_curpage(pp);
    929 	}
    930 
    931 	pp->pr_nget++;
    932 
    933 	/*
    934 	 * If we have a low water mark and we are now below that low
    935 	 * water mark, add more items to the pool.
    936 	 */
    937 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    938 		/*
    939 		 * XXX: Should we log a warning?  Should we set up a timeout
    940 		 * to try again in a second or so?  The latter could break
    941 		 * a caller's assumptions about interrupt protection, etc.
    942 		 */
    943 	}
    944 
    945 	mutex_exit(&pp->pr_lock);
    946 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    947 	FREECHECK_OUT(&pp->pr_freecheck, v);
    948 	pool_redzone_fill(pp, v);
    949 	pool_kleak_fill(pp, v);
    950 	return (v);
    951 }
    952 
    953 /*
    954  * Internal version of pool_put().  Pool is already locked/entered.
    955  */
    956 static void
    957 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    958 {
    959 	struct pool_item *pi = v;
    960 	struct pool_item_header *ph;
    961 
    962 	KASSERT(mutex_owned(&pp->pr_lock));
    963 	pool_redzone_check(pp, v);
    964 	FREECHECK_IN(&pp->pr_freecheck, v);
    965 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    966 
    967 	KASSERTMSG((pp->pr_nout > 0),
    968 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
    969 
    970 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    971 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
    972 	}
    973 
    974 	/*
    975 	 * Return to item list.
    976 	 */
    977 	if (pp->pr_roflags & PR_NOTOUCH) {
    978 		pr_item_notouch_put(pp, ph, v);
    979 	} else {
    980 #ifdef DIAGNOSTIC
    981 		pi->pi_magic = PI_MAGIC;
    982 #endif
    983 #ifdef DEBUG
    984 		{
    985 			int i, *ip = v;
    986 
    987 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    988 				*ip++ = PI_MAGIC;
    989 			}
    990 		}
    991 #endif
    992 
    993 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    994 	}
    995 	KDASSERT(ph->ph_nmissing != 0);
    996 	ph->ph_nmissing--;
    997 	pp->pr_nput++;
    998 	pp->pr_nitems++;
    999 	pp->pr_nout--;
   1000 
   1001 	/* Cancel "pool empty" condition if it exists */
   1002 	if (pp->pr_curpage == NULL)
   1003 		pp->pr_curpage = ph;
   1004 
   1005 	if (pp->pr_flags & PR_WANTED) {
   1006 		pp->pr_flags &= ~PR_WANTED;
   1007 		cv_broadcast(&pp->pr_cv);
   1008 	}
   1009 
   1010 	/*
   1011 	 * If this page is now empty, do one of two things:
   1012 	 *
   1013 	 *	(1) If we have more pages than the page high water mark,
   1014 	 *	    free the page back to the system.  ONLY CONSIDER
   1015 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1016 	 *	    CLAIM.
   1017 	 *
   1018 	 *	(2) Otherwise, move the page to the empty page list.
   1019 	 *
   1020 	 * Either way, select a new current page (so we use a partially-full
   1021 	 * page if one is available).
   1022 	 */
   1023 	if (ph->ph_nmissing == 0) {
   1024 		pp->pr_nidle++;
   1025 		if (pp->pr_npages > pp->pr_minpages &&
   1026 		    pp->pr_npages > pp->pr_maxpages) {
   1027 			pr_rmpage(pp, ph, pq);
   1028 		} else {
   1029 			LIST_REMOVE(ph, ph_pagelist);
   1030 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1031 
   1032 			/*
   1033 			 * Update the timestamp on the page.  A page must
   1034 			 * be idle for some period of time before it can
   1035 			 * be reclaimed by the pagedaemon.  This minimizes
   1036 			 * ping-pong'ing for memory.
   1037 			 *
   1038 			 * note for 64-bit time_t: truncating to 32-bit is not
   1039 			 * a problem for our usage.
   1040 			 */
   1041 			ph->ph_time = time_uptime;
   1042 		}
   1043 		pool_update_curpage(pp);
   1044 	}
   1045 
   1046 	/*
   1047 	 * If the page was previously completely full, move it to the
   1048 	 * partially-full list and make it the current page.  The next
   1049 	 * allocation will get the item from this page, instead of
   1050 	 * further fragmenting the pool.
   1051 	 */
   1052 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1053 		LIST_REMOVE(ph, ph_pagelist);
   1054 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1055 		pp->pr_curpage = ph;
   1056 	}
   1057 }
   1058 
   1059 void
   1060 pool_put(struct pool *pp, void *v)
   1061 {
   1062 	struct pool_pagelist pq;
   1063 
   1064 	LIST_INIT(&pq);
   1065 
   1066 	mutex_enter(&pp->pr_lock);
   1067 	pool_do_put(pp, v, &pq);
   1068 	mutex_exit(&pp->pr_lock);
   1069 
   1070 	pr_pagelist_free(pp, &pq);
   1071 }
   1072 
   1073 /*
   1074  * pool_grow: grow a pool by a page.
   1075  *
   1076  * => called with pool locked.
   1077  * => unlock and relock the pool.
   1078  * => return with pool locked.
   1079  */
   1080 
   1081 static int
   1082 pool_grow(struct pool *pp, int flags)
   1083 {
   1084 	/*
   1085 	 * If there's a pool_grow in progress, wait for it to complete
   1086 	 * and try again from the top.
   1087 	 */
   1088 	if (pp->pr_flags & PR_GROWING) {
   1089 		if (flags & PR_WAITOK) {
   1090 			do {
   1091 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1092 			} while (pp->pr_flags & PR_GROWING);
   1093 			return ERESTART;
   1094 		} else {
   1095 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1096 				/*
   1097 				 * This needs an unlock/relock dance so
   1098 				 * that the other caller has a chance to
   1099 				 * run and actually do the thing.  Note
   1100 				 * that this is effectively a busy-wait.
   1101 				 */
   1102 				mutex_exit(&pp->pr_lock);
   1103 				mutex_enter(&pp->pr_lock);
   1104 				return ERESTART;
   1105 			}
   1106 			return EWOULDBLOCK;
   1107 		}
   1108 	}
   1109 	pp->pr_flags |= PR_GROWING;
   1110 	if (flags & PR_WAITOK)
   1111 		mutex_exit(&pp->pr_lock);
   1112 	else
   1113 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1114 
   1115 	char *cp = pool_allocator_alloc(pp, flags);
   1116 	if (__predict_false(cp == NULL))
   1117 		goto out;
   1118 
   1119 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
   1120 	if (__predict_false(ph == NULL)) {
   1121 		pool_allocator_free(pp, cp);
   1122 		goto out;
   1123 	}
   1124 
   1125 	if (flags & PR_WAITOK)
   1126 		mutex_enter(&pp->pr_lock);
   1127 	pool_prime_page(pp, cp, ph);
   1128 	pp->pr_npagealloc++;
   1129 	KASSERT(pp->pr_flags & PR_GROWING);
   1130 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1131 	/*
   1132 	 * If anyone was waiting for pool_grow, notify them that we
   1133 	 * may have just done it.
   1134 	 */
   1135 	cv_broadcast(&pp->pr_cv);
   1136 	return 0;
   1137 out:
   1138 	if (flags & PR_WAITOK)
   1139 		mutex_enter(&pp->pr_lock);
   1140 	KASSERT(pp->pr_flags & PR_GROWING);
   1141 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1142 	return ENOMEM;
   1143 }
   1144 
   1145 /*
   1146  * Add N items to the pool.
   1147  */
   1148 int
   1149 pool_prime(struct pool *pp, int n)
   1150 {
   1151 	int newpages;
   1152 	int error = 0;
   1153 
   1154 	mutex_enter(&pp->pr_lock);
   1155 
   1156 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1157 
   1158 	while (newpages > 0) {
   1159 		error = pool_grow(pp, PR_NOWAIT);
   1160 		if (error) {
   1161 			if (error == ERESTART)
   1162 				continue;
   1163 			break;
   1164 		}
   1165 		pp->pr_minpages++;
   1166 		newpages--;
   1167 	}
   1168 
   1169 	if (pp->pr_minpages >= pp->pr_maxpages)
   1170 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1171 
   1172 	mutex_exit(&pp->pr_lock);
   1173 	return error;
   1174 }
   1175 
   1176 /*
   1177  * Add a page worth of items to the pool.
   1178  *
   1179  * Note, we must be called with the pool descriptor LOCKED.
   1180  */
   1181 static void
   1182 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1183 {
   1184 	struct pool_item *pi;
   1185 	void *cp = storage;
   1186 	const unsigned int align = pp->pr_align;
   1187 	const unsigned int ioff = pp->pr_itemoffset;
   1188 	int n;
   1189 
   1190 	KASSERT(mutex_owned(&pp->pr_lock));
   1191 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1192 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1193 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1194 
   1195 	/*
   1196 	 * Insert page header.
   1197 	 */
   1198 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1199 	LIST_INIT(&ph->ph_itemlist);
   1200 	ph->ph_page = storage;
   1201 	ph->ph_nmissing = 0;
   1202 	ph->ph_time = time_uptime;
   1203 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1204 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1205 
   1206 	pp->pr_nidle++;
   1207 
   1208 	/*
   1209 	 * Color this page.
   1210 	 */
   1211 	ph->ph_off = pp->pr_curcolor;
   1212 	cp = (char *)cp + ph->ph_off;
   1213 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1214 		pp->pr_curcolor = 0;
   1215 
   1216 	/*
   1217 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1218 	 */
   1219 	if (ioff != 0)
   1220 		cp = (char *)cp + align - ioff;
   1221 
   1222 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1223 
   1224 	/*
   1225 	 * Insert remaining chunks on the bucket list.
   1226 	 */
   1227 	n = pp->pr_itemsperpage;
   1228 	pp->pr_nitems += n;
   1229 
   1230 	if (pp->pr_roflags & PR_NOTOUCH) {
   1231 		pr_item_notouch_init(pp, ph);
   1232 	} else {
   1233 		while (n--) {
   1234 			pi = (struct pool_item *)cp;
   1235 
   1236 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1237 
   1238 			/* Insert on page list */
   1239 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1240 #ifdef DIAGNOSTIC
   1241 			pi->pi_magic = PI_MAGIC;
   1242 #endif
   1243 			cp = (char *)cp + pp->pr_size;
   1244 
   1245 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1246 		}
   1247 	}
   1248 
   1249 	/*
   1250 	 * If the pool was depleted, point at the new page.
   1251 	 */
   1252 	if (pp->pr_curpage == NULL)
   1253 		pp->pr_curpage = ph;
   1254 
   1255 	if (++pp->pr_npages > pp->pr_hiwat)
   1256 		pp->pr_hiwat = pp->pr_npages;
   1257 }
   1258 
   1259 /*
   1260  * Used by pool_get() when nitems drops below the low water mark.  This
   1261  * is used to catch up pr_nitems with the low water mark.
   1262  *
   1263  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1264  *
   1265  * Note 2, we must be called with the pool already locked, and we return
   1266  * with it locked.
   1267  */
   1268 static int
   1269 pool_catchup(struct pool *pp)
   1270 {
   1271 	int error = 0;
   1272 
   1273 	while (POOL_NEEDS_CATCHUP(pp)) {
   1274 		error = pool_grow(pp, PR_NOWAIT);
   1275 		if (error) {
   1276 			if (error == ERESTART)
   1277 				continue;
   1278 			break;
   1279 		}
   1280 	}
   1281 	return error;
   1282 }
   1283 
   1284 static void
   1285 pool_update_curpage(struct pool *pp)
   1286 {
   1287 
   1288 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1289 	if (pp->pr_curpage == NULL) {
   1290 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1291 	}
   1292 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1293 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1294 }
   1295 
   1296 void
   1297 pool_setlowat(struct pool *pp, int n)
   1298 {
   1299 
   1300 	mutex_enter(&pp->pr_lock);
   1301 
   1302 	pp->pr_minitems = n;
   1303 	pp->pr_minpages = (n == 0)
   1304 		? 0
   1305 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1306 
   1307 	/* Make sure we're caught up with the newly-set low water mark. */
   1308 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1309 		/*
   1310 		 * XXX: Should we log a warning?  Should we set up a timeout
   1311 		 * to try again in a second or so?  The latter could break
   1312 		 * a caller's assumptions about interrupt protection, etc.
   1313 		 */
   1314 	}
   1315 
   1316 	mutex_exit(&pp->pr_lock);
   1317 }
   1318 
   1319 void
   1320 pool_sethiwat(struct pool *pp, int n)
   1321 {
   1322 
   1323 	mutex_enter(&pp->pr_lock);
   1324 
   1325 	pp->pr_maxpages = (n == 0)
   1326 		? 0
   1327 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1328 
   1329 	mutex_exit(&pp->pr_lock);
   1330 }
   1331 
   1332 void
   1333 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1334 {
   1335 
   1336 	mutex_enter(&pp->pr_lock);
   1337 
   1338 	pp->pr_hardlimit = n;
   1339 	pp->pr_hardlimit_warning = warnmess;
   1340 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1341 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1342 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1343 
   1344 	/*
   1345 	 * In-line version of pool_sethiwat(), because we don't want to
   1346 	 * release the lock.
   1347 	 */
   1348 	pp->pr_maxpages = (n == 0)
   1349 		? 0
   1350 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1351 
   1352 	mutex_exit(&pp->pr_lock);
   1353 }
   1354 
   1355 /*
   1356  * Release all complete pages that have not been used recently.
   1357  *
   1358  * Must not be called from interrupt context.
   1359  */
   1360 int
   1361 pool_reclaim(struct pool *pp)
   1362 {
   1363 	struct pool_item_header *ph, *phnext;
   1364 	struct pool_pagelist pq;
   1365 	uint32_t curtime;
   1366 	bool klock;
   1367 	int rv;
   1368 
   1369 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1370 
   1371 	if (pp->pr_drain_hook != NULL) {
   1372 		/*
   1373 		 * The drain hook must be called with the pool unlocked.
   1374 		 */
   1375 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1376 	}
   1377 
   1378 	/*
   1379 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1380 	 * to block.
   1381 	 */
   1382 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1383 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1384 		KERNEL_LOCK(1, NULL);
   1385 		klock = true;
   1386 	} else
   1387 		klock = false;
   1388 
   1389 	/* Reclaim items from the pool's cache (if any). */
   1390 	if (pp->pr_cache != NULL)
   1391 		pool_cache_invalidate(pp->pr_cache);
   1392 
   1393 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1394 		if (klock) {
   1395 			KERNEL_UNLOCK_ONE(NULL);
   1396 		}
   1397 		return (0);
   1398 	}
   1399 
   1400 	LIST_INIT(&pq);
   1401 
   1402 	curtime = time_uptime;
   1403 
   1404 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1405 		phnext = LIST_NEXT(ph, ph_pagelist);
   1406 
   1407 		/* Check our minimum page claim */
   1408 		if (pp->pr_npages <= pp->pr_minpages)
   1409 			break;
   1410 
   1411 		KASSERT(ph->ph_nmissing == 0);
   1412 		if (curtime - ph->ph_time < pool_inactive_time)
   1413 			continue;
   1414 
   1415 		/*
   1416 		 * If freeing this page would put us below
   1417 		 * the low water mark, stop now.
   1418 		 */
   1419 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1420 		    pp->pr_minitems)
   1421 			break;
   1422 
   1423 		pr_rmpage(pp, ph, &pq);
   1424 	}
   1425 
   1426 	mutex_exit(&pp->pr_lock);
   1427 
   1428 	if (LIST_EMPTY(&pq))
   1429 		rv = 0;
   1430 	else {
   1431 		pr_pagelist_free(pp, &pq);
   1432 		rv = 1;
   1433 	}
   1434 
   1435 	if (klock) {
   1436 		KERNEL_UNLOCK_ONE(NULL);
   1437 	}
   1438 
   1439 	return (rv);
   1440 }
   1441 
   1442 /*
   1443  * Drain pools, one at a time. The drained pool is returned within ppp.
   1444  *
   1445  * Note, must never be called from interrupt context.
   1446  */
   1447 bool
   1448 pool_drain(struct pool **ppp)
   1449 {
   1450 	bool reclaimed;
   1451 	struct pool *pp;
   1452 
   1453 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1454 
   1455 	pp = NULL;
   1456 
   1457 	/* Find next pool to drain, and add a reference. */
   1458 	mutex_enter(&pool_head_lock);
   1459 	do {
   1460 		if (drainpp == NULL) {
   1461 			drainpp = TAILQ_FIRST(&pool_head);
   1462 		}
   1463 		if (drainpp != NULL) {
   1464 			pp = drainpp;
   1465 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1466 		}
   1467 		/*
   1468 		 * Skip completely idle pools.  We depend on at least
   1469 		 * one pool in the system being active.
   1470 		 */
   1471 	} while (pp == NULL || pp->pr_npages == 0);
   1472 	pp->pr_refcnt++;
   1473 	mutex_exit(&pool_head_lock);
   1474 
   1475 	/* Drain the cache (if any) and pool.. */
   1476 	reclaimed = pool_reclaim(pp);
   1477 
   1478 	/* Finally, unlock the pool. */
   1479 	mutex_enter(&pool_head_lock);
   1480 	pp->pr_refcnt--;
   1481 	cv_broadcast(&pool_busy);
   1482 	mutex_exit(&pool_head_lock);
   1483 
   1484 	if (ppp != NULL)
   1485 		*ppp = pp;
   1486 
   1487 	return reclaimed;
   1488 }
   1489 
   1490 /*
   1491  * Calculate the total number of pages consumed by pools.
   1492  */
   1493 int
   1494 pool_totalpages(void)
   1495 {
   1496 	struct pool *pp;
   1497 	uint64_t total = 0;
   1498 
   1499 	mutex_enter(&pool_head_lock);
   1500 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1501 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1502 
   1503 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1504 			bytes -= (pp->pr_nout * pp->pr_size);
   1505 		total += bytes;
   1506 	}
   1507 	mutex_exit(&pool_head_lock);
   1508 
   1509 	return atop(total);
   1510 }
   1511 
   1512 /*
   1513  * Diagnostic helpers.
   1514  */
   1515 
   1516 void
   1517 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1518 {
   1519 	struct pool *pp;
   1520 
   1521 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1522 		pool_printit(pp, modif, pr);
   1523 	}
   1524 }
   1525 
   1526 void
   1527 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1528 {
   1529 
   1530 	if (pp == NULL) {
   1531 		(*pr)("Must specify a pool to print.\n");
   1532 		return;
   1533 	}
   1534 
   1535 	pool_print1(pp, modif, pr);
   1536 }
   1537 
   1538 static void
   1539 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1540     void (*pr)(const char *, ...))
   1541 {
   1542 	struct pool_item_header *ph;
   1543 	struct pool_item *pi __diagused;
   1544 
   1545 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1546 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1547 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1548 #ifdef DIAGNOSTIC
   1549 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1550 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1551 				if (pi->pi_magic != PI_MAGIC) {
   1552 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1553 					    pi, pi->pi_magic);
   1554 				}
   1555 			}
   1556 		}
   1557 #endif
   1558 	}
   1559 }
   1560 
   1561 static void
   1562 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1563 {
   1564 	struct pool_item_header *ph;
   1565 	pool_cache_t pc;
   1566 	pcg_t *pcg;
   1567 	pool_cache_cpu_t *cc;
   1568 	uint64_t cpuhit, cpumiss;
   1569 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1570 	char c;
   1571 
   1572 	while ((c = *modif++) != '\0') {
   1573 		if (c == 'l')
   1574 			print_log = 1;
   1575 		if (c == 'p')
   1576 			print_pagelist = 1;
   1577 		if (c == 'c')
   1578 			print_cache = 1;
   1579 	}
   1580 
   1581 	if ((pc = pp->pr_cache) != NULL) {
   1582 		(*pr)("POOL CACHE");
   1583 	} else {
   1584 		(*pr)("POOL");
   1585 	}
   1586 
   1587 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1588 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1589 	    pp->pr_roflags);
   1590 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1591 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1592 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1593 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1594 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1595 
   1596 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1597 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1598 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1599 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1600 
   1601 	if (print_pagelist == 0)
   1602 		goto skip_pagelist;
   1603 
   1604 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1605 		(*pr)("\n\tempty page list:\n");
   1606 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1607 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1608 		(*pr)("\n\tfull page list:\n");
   1609 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1610 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1611 		(*pr)("\n\tpartial-page list:\n");
   1612 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1613 
   1614 	if (pp->pr_curpage == NULL)
   1615 		(*pr)("\tno current page\n");
   1616 	else
   1617 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1618 
   1619  skip_pagelist:
   1620 	if (print_log == 0)
   1621 		goto skip_log;
   1622 
   1623 	(*pr)("\n");
   1624 
   1625  skip_log:
   1626 
   1627 #define PR_GROUPLIST(pcg)						\
   1628 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1629 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1630 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1631 		    POOL_PADDR_INVALID) {				\
   1632 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1633 			    pcg->pcg_objects[i].pcgo_va,		\
   1634 			    (unsigned long long)			\
   1635 			    pcg->pcg_objects[i].pcgo_pa);		\
   1636 		} else {						\
   1637 			(*pr)("\t\t\t%p\n",				\
   1638 			    pcg->pcg_objects[i].pcgo_va);		\
   1639 		}							\
   1640 	}
   1641 
   1642 	if (pc != NULL) {
   1643 		cpuhit = 0;
   1644 		cpumiss = 0;
   1645 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1646 			if ((cc = pc->pc_cpus[i]) == NULL)
   1647 				continue;
   1648 			cpuhit += cc->cc_hits;
   1649 			cpumiss += cc->cc_misses;
   1650 		}
   1651 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1652 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1653 		    pc->pc_hits, pc->pc_misses);
   1654 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1655 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1656 		    pc->pc_contended);
   1657 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1658 		    pc->pc_nempty, pc->pc_nfull);
   1659 		if (print_cache) {
   1660 			(*pr)("\tfull cache groups:\n");
   1661 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1662 			    pcg = pcg->pcg_next) {
   1663 				PR_GROUPLIST(pcg);
   1664 			}
   1665 			(*pr)("\tempty cache groups:\n");
   1666 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1667 			    pcg = pcg->pcg_next) {
   1668 				PR_GROUPLIST(pcg);
   1669 			}
   1670 		}
   1671 	}
   1672 #undef PR_GROUPLIST
   1673 }
   1674 
   1675 static int
   1676 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1677 {
   1678 	struct pool_item *pi;
   1679 	void *page;
   1680 	int n;
   1681 
   1682 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1683 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1684 		if (page != ph->ph_page &&
   1685 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1686 			if (label != NULL)
   1687 				printf("%s: ", label);
   1688 			printf("pool(%p:%s): page inconsistency: page %p;"
   1689 			       " at page head addr %p (p %p)\n", pp,
   1690 				pp->pr_wchan, ph->ph_page,
   1691 				ph, page);
   1692 			return 1;
   1693 		}
   1694 	}
   1695 
   1696 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1697 		return 0;
   1698 
   1699 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1700 	     pi != NULL;
   1701 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1702 
   1703 #ifdef DIAGNOSTIC
   1704 		if (pi->pi_magic != PI_MAGIC) {
   1705 			if (label != NULL)
   1706 				printf("%s: ", label);
   1707 			printf("pool(%s): free list modified: magic=%x;"
   1708 			       " page %p; item ordinal %d; addr %p\n",
   1709 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1710 				n, pi);
   1711 			panic("pool");
   1712 		}
   1713 #endif
   1714 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1715 			continue;
   1716 		}
   1717 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1718 		if (page == ph->ph_page)
   1719 			continue;
   1720 
   1721 		if (label != NULL)
   1722 			printf("%s: ", label);
   1723 		printf("pool(%p:%s): page inconsistency: page %p;"
   1724 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1725 			pp->pr_wchan, ph->ph_page,
   1726 			n, pi, page);
   1727 		return 1;
   1728 	}
   1729 	return 0;
   1730 }
   1731 
   1732 
   1733 int
   1734 pool_chk(struct pool *pp, const char *label)
   1735 {
   1736 	struct pool_item_header *ph;
   1737 	int r = 0;
   1738 
   1739 	mutex_enter(&pp->pr_lock);
   1740 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1741 		r = pool_chk_page(pp, label, ph);
   1742 		if (r) {
   1743 			goto out;
   1744 		}
   1745 	}
   1746 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1747 		r = pool_chk_page(pp, label, ph);
   1748 		if (r) {
   1749 			goto out;
   1750 		}
   1751 	}
   1752 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1753 		r = pool_chk_page(pp, label, ph);
   1754 		if (r) {
   1755 			goto out;
   1756 		}
   1757 	}
   1758 
   1759 out:
   1760 	mutex_exit(&pp->pr_lock);
   1761 	return (r);
   1762 }
   1763 
   1764 /*
   1765  * pool_cache_init:
   1766  *
   1767  *	Initialize a pool cache.
   1768  */
   1769 pool_cache_t
   1770 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1771     const char *wchan, struct pool_allocator *palloc, int ipl,
   1772     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1773 {
   1774 	pool_cache_t pc;
   1775 
   1776 	pc = pool_get(&cache_pool, PR_WAITOK);
   1777 	if (pc == NULL)
   1778 		return NULL;
   1779 
   1780 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1781 	   palloc, ipl, ctor, dtor, arg);
   1782 
   1783 	return pc;
   1784 }
   1785 
   1786 /*
   1787  * pool_cache_bootstrap:
   1788  *
   1789  *	Kernel-private version of pool_cache_init().  The caller
   1790  *	provides initial storage.
   1791  */
   1792 void
   1793 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1794     u_int align_offset, u_int flags, const char *wchan,
   1795     struct pool_allocator *palloc, int ipl,
   1796     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1797     void *arg)
   1798 {
   1799 	CPU_INFO_ITERATOR cii;
   1800 	pool_cache_t pc1;
   1801 	struct cpu_info *ci;
   1802 	struct pool *pp;
   1803 
   1804 	pp = &pc->pc_pool;
   1805 	if (palloc == NULL && ipl == IPL_NONE) {
   1806 		if (size > PAGE_SIZE) {
   1807 			int bigidx = pool_bigidx(size);
   1808 
   1809 			palloc = &pool_allocator_big[bigidx];
   1810 		} else
   1811 			palloc = &pool_allocator_nointr;
   1812 	}
   1813 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1814 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1815 
   1816 	if (ctor == NULL) {
   1817 		ctor = (int (*)(void *, void *, int))nullop;
   1818 	}
   1819 	if (dtor == NULL) {
   1820 		dtor = (void (*)(void *, void *))nullop;
   1821 	}
   1822 
   1823 	pc->pc_emptygroups = NULL;
   1824 	pc->pc_fullgroups = NULL;
   1825 	pc->pc_partgroups = NULL;
   1826 	pc->pc_ctor = ctor;
   1827 	pc->pc_dtor = dtor;
   1828 	pc->pc_arg  = arg;
   1829 	pc->pc_hits  = 0;
   1830 	pc->pc_misses = 0;
   1831 	pc->pc_nempty = 0;
   1832 	pc->pc_npart = 0;
   1833 	pc->pc_nfull = 0;
   1834 	pc->pc_contended = 0;
   1835 	pc->pc_refcnt = 0;
   1836 	pc->pc_freecheck = NULL;
   1837 
   1838 	if ((flags & PR_LARGECACHE) != 0) {
   1839 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1840 		pc->pc_pcgpool = &pcg_large_pool;
   1841 	} else {
   1842 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1843 		pc->pc_pcgpool = &pcg_normal_pool;
   1844 	}
   1845 
   1846 	/* Allocate per-CPU caches. */
   1847 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1848 	pc->pc_ncpu = 0;
   1849 	if (ncpu < 2) {
   1850 		/* XXX For sparc: boot CPU is not attached yet. */
   1851 		pool_cache_cpu_init1(curcpu(), pc);
   1852 	} else {
   1853 		for (CPU_INFO_FOREACH(cii, ci)) {
   1854 			pool_cache_cpu_init1(ci, pc);
   1855 		}
   1856 	}
   1857 
   1858 	/* Add to list of all pools. */
   1859 	if (__predict_true(!cold))
   1860 		mutex_enter(&pool_head_lock);
   1861 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1862 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1863 			break;
   1864 	}
   1865 	if (pc1 == NULL)
   1866 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1867 	else
   1868 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1869 	if (__predict_true(!cold))
   1870 		mutex_exit(&pool_head_lock);
   1871 
   1872 	membar_sync();
   1873 	pp->pr_cache = pc;
   1874 }
   1875 
   1876 /*
   1877  * pool_cache_destroy:
   1878  *
   1879  *	Destroy a pool cache.
   1880  */
   1881 void
   1882 pool_cache_destroy(pool_cache_t pc)
   1883 {
   1884 
   1885 	pool_cache_bootstrap_destroy(pc);
   1886 	pool_put(&cache_pool, pc);
   1887 }
   1888 
   1889 /*
   1890  * pool_cache_bootstrap_destroy:
   1891  *
   1892  *	Destroy a pool cache.
   1893  */
   1894 void
   1895 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1896 {
   1897 	struct pool *pp = &pc->pc_pool;
   1898 	u_int i;
   1899 
   1900 	/* Remove it from the global list. */
   1901 	mutex_enter(&pool_head_lock);
   1902 	while (pc->pc_refcnt != 0)
   1903 		cv_wait(&pool_busy, &pool_head_lock);
   1904 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1905 	mutex_exit(&pool_head_lock);
   1906 
   1907 	/* First, invalidate the entire cache. */
   1908 	pool_cache_invalidate(pc);
   1909 
   1910 	/* Disassociate it from the pool. */
   1911 	mutex_enter(&pp->pr_lock);
   1912 	pp->pr_cache = NULL;
   1913 	mutex_exit(&pp->pr_lock);
   1914 
   1915 	/* Destroy per-CPU data */
   1916 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1917 		pool_cache_invalidate_cpu(pc, i);
   1918 
   1919 	/* Finally, destroy it. */
   1920 	mutex_destroy(&pc->pc_lock);
   1921 	pool_destroy(pp);
   1922 }
   1923 
   1924 /*
   1925  * pool_cache_cpu_init1:
   1926  *
   1927  *	Called for each pool_cache whenever a new CPU is attached.
   1928  */
   1929 static void
   1930 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1931 {
   1932 	pool_cache_cpu_t *cc;
   1933 	int index;
   1934 
   1935 	index = ci->ci_index;
   1936 
   1937 	KASSERT(index < __arraycount(pc->pc_cpus));
   1938 
   1939 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1940 		KASSERT(cc->cc_cpuindex == index);
   1941 		return;
   1942 	}
   1943 
   1944 	/*
   1945 	 * The first CPU is 'free'.  This needs to be the case for
   1946 	 * bootstrap - we may not be able to allocate yet.
   1947 	 */
   1948 	if (pc->pc_ncpu == 0) {
   1949 		cc = &pc->pc_cpu0;
   1950 		pc->pc_ncpu = 1;
   1951 	} else {
   1952 		mutex_enter(&pc->pc_lock);
   1953 		pc->pc_ncpu++;
   1954 		mutex_exit(&pc->pc_lock);
   1955 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1956 	}
   1957 
   1958 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1959 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1960 	cc->cc_cache = pc;
   1961 	cc->cc_cpuindex = index;
   1962 	cc->cc_hits = 0;
   1963 	cc->cc_misses = 0;
   1964 	cc->cc_current = __UNCONST(&pcg_dummy);
   1965 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1966 
   1967 	pc->pc_cpus[index] = cc;
   1968 }
   1969 
   1970 /*
   1971  * pool_cache_cpu_init:
   1972  *
   1973  *	Called whenever a new CPU is attached.
   1974  */
   1975 void
   1976 pool_cache_cpu_init(struct cpu_info *ci)
   1977 {
   1978 	pool_cache_t pc;
   1979 
   1980 	mutex_enter(&pool_head_lock);
   1981 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1982 		pc->pc_refcnt++;
   1983 		mutex_exit(&pool_head_lock);
   1984 
   1985 		pool_cache_cpu_init1(ci, pc);
   1986 
   1987 		mutex_enter(&pool_head_lock);
   1988 		pc->pc_refcnt--;
   1989 		cv_broadcast(&pool_busy);
   1990 	}
   1991 	mutex_exit(&pool_head_lock);
   1992 }
   1993 
   1994 /*
   1995  * pool_cache_reclaim:
   1996  *
   1997  *	Reclaim memory from a pool cache.
   1998  */
   1999 bool
   2000 pool_cache_reclaim(pool_cache_t pc)
   2001 {
   2002 
   2003 	return pool_reclaim(&pc->pc_pool);
   2004 }
   2005 
   2006 static void
   2007 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2008 {
   2009 
   2010 	(*pc->pc_dtor)(pc->pc_arg, object);
   2011 	pool_put(&pc->pc_pool, object);
   2012 }
   2013 
   2014 /*
   2015  * pool_cache_destruct_object:
   2016  *
   2017  *	Force destruction of an object and its release back into
   2018  *	the pool.
   2019  */
   2020 void
   2021 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2022 {
   2023 
   2024 	FREECHECK_IN(&pc->pc_freecheck, object);
   2025 
   2026 	pool_cache_destruct_object1(pc, object);
   2027 }
   2028 
   2029 /*
   2030  * pool_cache_invalidate_groups:
   2031  *
   2032  *	Invalidate a chain of groups and destruct all objects.
   2033  */
   2034 static void
   2035 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2036 {
   2037 	void *object;
   2038 	pcg_t *next;
   2039 	int i;
   2040 
   2041 	for (; pcg != NULL; pcg = next) {
   2042 		next = pcg->pcg_next;
   2043 
   2044 		for (i = 0; i < pcg->pcg_avail; i++) {
   2045 			object = pcg->pcg_objects[i].pcgo_va;
   2046 			pool_cache_destruct_object1(pc, object);
   2047 		}
   2048 
   2049 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2050 			pool_put(&pcg_large_pool, pcg);
   2051 		} else {
   2052 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2053 			pool_put(&pcg_normal_pool, pcg);
   2054 		}
   2055 	}
   2056 }
   2057 
   2058 /*
   2059  * pool_cache_invalidate:
   2060  *
   2061  *	Invalidate a pool cache (destruct and release all of the
   2062  *	cached objects).  Does not reclaim objects from the pool.
   2063  *
   2064  *	Note: For pool caches that provide constructed objects, there
   2065  *	is an assumption that another level of synchronization is occurring
   2066  *	between the input to the constructor and the cache invalidation.
   2067  *
   2068  *	Invalidation is a costly process and should not be called from
   2069  *	interrupt context.
   2070  */
   2071 void
   2072 pool_cache_invalidate(pool_cache_t pc)
   2073 {
   2074 	uint64_t where;
   2075 	pcg_t *full, *empty, *part;
   2076 
   2077 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2078 
   2079 	if (ncpu < 2 || !mp_online) {
   2080 		/*
   2081 		 * We might be called early enough in the boot process
   2082 		 * for the CPU data structures to not be fully initialized.
   2083 		 * In this case, transfer the content of the local CPU's
   2084 		 * cache back into global cache as only this CPU is currently
   2085 		 * running.
   2086 		 */
   2087 		pool_cache_transfer(pc);
   2088 	} else {
   2089 		/*
   2090 		 * Signal all CPUs that they must transfer their local
   2091 		 * cache back to the global pool then wait for the xcall to
   2092 		 * complete.
   2093 		 */
   2094 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2095 		    pc, NULL);
   2096 		xc_wait(where);
   2097 	}
   2098 
   2099 	/* Empty pool caches, then invalidate objects */
   2100 	mutex_enter(&pc->pc_lock);
   2101 	full = pc->pc_fullgroups;
   2102 	empty = pc->pc_emptygroups;
   2103 	part = pc->pc_partgroups;
   2104 	pc->pc_fullgroups = NULL;
   2105 	pc->pc_emptygroups = NULL;
   2106 	pc->pc_partgroups = NULL;
   2107 	pc->pc_nfull = 0;
   2108 	pc->pc_nempty = 0;
   2109 	pc->pc_npart = 0;
   2110 	mutex_exit(&pc->pc_lock);
   2111 
   2112 	pool_cache_invalidate_groups(pc, full);
   2113 	pool_cache_invalidate_groups(pc, empty);
   2114 	pool_cache_invalidate_groups(pc, part);
   2115 }
   2116 
   2117 /*
   2118  * pool_cache_invalidate_cpu:
   2119  *
   2120  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2121  *	identified by its associated index.
   2122  *	It is caller's responsibility to ensure that no operation is
   2123  *	taking place on this pool cache while doing this invalidation.
   2124  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2125  *	pool cached objects from a CPU different from the one currently running
   2126  *	may result in an undefined behaviour.
   2127  */
   2128 static void
   2129 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2130 {
   2131 	pool_cache_cpu_t *cc;
   2132 	pcg_t *pcg;
   2133 
   2134 	if ((cc = pc->pc_cpus[index]) == NULL)
   2135 		return;
   2136 
   2137 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2138 		pcg->pcg_next = NULL;
   2139 		pool_cache_invalidate_groups(pc, pcg);
   2140 	}
   2141 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2142 		pcg->pcg_next = NULL;
   2143 		pool_cache_invalidate_groups(pc, pcg);
   2144 	}
   2145 	if (cc != &pc->pc_cpu0)
   2146 		pool_put(&cache_cpu_pool, cc);
   2147 
   2148 }
   2149 
   2150 void
   2151 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2152 {
   2153 
   2154 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2155 }
   2156 
   2157 void
   2158 pool_cache_setlowat(pool_cache_t pc, int n)
   2159 {
   2160 
   2161 	pool_setlowat(&pc->pc_pool, n);
   2162 }
   2163 
   2164 void
   2165 pool_cache_sethiwat(pool_cache_t pc, int n)
   2166 {
   2167 
   2168 	pool_sethiwat(&pc->pc_pool, n);
   2169 }
   2170 
   2171 void
   2172 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2173 {
   2174 
   2175 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2176 }
   2177 
   2178 static bool __noinline
   2179 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2180 		    paddr_t *pap, int flags)
   2181 {
   2182 	pcg_t *pcg, *cur;
   2183 	uint64_t ncsw;
   2184 	pool_cache_t pc;
   2185 	void *object;
   2186 
   2187 	KASSERT(cc->cc_current->pcg_avail == 0);
   2188 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2189 
   2190 	pc = cc->cc_cache;
   2191 	cc->cc_misses++;
   2192 
   2193 	/*
   2194 	 * Nothing was available locally.  Try and grab a group
   2195 	 * from the cache.
   2196 	 */
   2197 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2198 		ncsw = curlwp->l_ncsw;
   2199 		mutex_enter(&pc->pc_lock);
   2200 		pc->pc_contended++;
   2201 
   2202 		/*
   2203 		 * If we context switched while locking, then
   2204 		 * our view of the per-CPU data is invalid:
   2205 		 * retry.
   2206 		 */
   2207 		if (curlwp->l_ncsw != ncsw) {
   2208 			mutex_exit(&pc->pc_lock);
   2209 			return true;
   2210 		}
   2211 	}
   2212 
   2213 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2214 		/*
   2215 		 * If there's a full group, release our empty
   2216 		 * group back to the cache.  Install the full
   2217 		 * group as cc_current and return.
   2218 		 */
   2219 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2220 			KASSERT(cur->pcg_avail == 0);
   2221 			cur->pcg_next = pc->pc_emptygroups;
   2222 			pc->pc_emptygroups = cur;
   2223 			pc->pc_nempty++;
   2224 		}
   2225 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2226 		cc->cc_current = pcg;
   2227 		pc->pc_fullgroups = pcg->pcg_next;
   2228 		pc->pc_hits++;
   2229 		pc->pc_nfull--;
   2230 		mutex_exit(&pc->pc_lock);
   2231 		return true;
   2232 	}
   2233 
   2234 	/*
   2235 	 * Nothing available locally or in cache.  Take the slow
   2236 	 * path: fetch a new object from the pool and construct
   2237 	 * it.
   2238 	 */
   2239 	pc->pc_misses++;
   2240 	mutex_exit(&pc->pc_lock);
   2241 	splx(s);
   2242 
   2243 	object = pool_get(&pc->pc_pool, flags);
   2244 	*objectp = object;
   2245 	if (__predict_false(object == NULL)) {
   2246 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2247 		return false;
   2248 	}
   2249 
   2250 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2251 		pool_put(&pc->pc_pool, object);
   2252 		*objectp = NULL;
   2253 		return false;
   2254 	}
   2255 
   2256 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2257 	    (pc->pc_pool.pr_align - 1)) == 0);
   2258 
   2259 	if (pap != NULL) {
   2260 #ifdef POOL_VTOPHYS
   2261 		*pap = POOL_VTOPHYS(object);
   2262 #else
   2263 		*pap = POOL_PADDR_INVALID;
   2264 #endif
   2265 	}
   2266 
   2267 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2268 	pool_redzone_fill(&pc->pc_pool, object);
   2269 	pool_cache_kleak_fill(pc, object);
   2270 	return false;
   2271 }
   2272 
   2273 /*
   2274  * pool_cache_get{,_paddr}:
   2275  *
   2276  *	Get an object from a pool cache (optionally returning
   2277  *	the physical address of the object).
   2278  */
   2279 void *
   2280 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2281 {
   2282 	pool_cache_cpu_t *cc;
   2283 	pcg_t *pcg;
   2284 	void *object;
   2285 	int s;
   2286 
   2287 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2288 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2289 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2290 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2291 	    __func__, pc->pc_pool.pr_wchan);
   2292 
   2293 	if (flags & PR_WAITOK) {
   2294 		ASSERT_SLEEPABLE();
   2295 	}
   2296 
   2297 	/* Lock out interrupts and disable preemption. */
   2298 	s = splvm();
   2299 	while (/* CONSTCOND */ true) {
   2300 		/* Try and allocate an object from the current group. */
   2301 		cc = pc->pc_cpus[curcpu()->ci_index];
   2302 		KASSERT(cc->cc_cache == pc);
   2303 	 	pcg = cc->cc_current;
   2304 		if (__predict_true(pcg->pcg_avail > 0)) {
   2305 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2306 			if (__predict_false(pap != NULL))
   2307 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2308 #if defined(DIAGNOSTIC)
   2309 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2310 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2311 			KASSERT(object != NULL);
   2312 #endif
   2313 			cc->cc_hits++;
   2314 			splx(s);
   2315 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2316 			pool_redzone_fill(&pc->pc_pool, object);
   2317 			pool_cache_kleak_fill(pc, object);
   2318 			return object;
   2319 		}
   2320 
   2321 		/*
   2322 		 * That failed.  If the previous group isn't empty, swap
   2323 		 * it with the current group and allocate from there.
   2324 		 */
   2325 		pcg = cc->cc_previous;
   2326 		if (__predict_true(pcg->pcg_avail > 0)) {
   2327 			cc->cc_previous = cc->cc_current;
   2328 			cc->cc_current = pcg;
   2329 			continue;
   2330 		}
   2331 
   2332 		/*
   2333 		 * Can't allocate from either group: try the slow path.
   2334 		 * If get_slow() allocated an object for us, or if
   2335 		 * no more objects are available, it will return false.
   2336 		 * Otherwise, we need to retry.
   2337 		 */
   2338 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2339 			break;
   2340 	}
   2341 
   2342 	/*
   2343 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2344 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2345 	 * constructor fails.
   2346 	 */
   2347 	return object;
   2348 }
   2349 
   2350 static bool __noinline
   2351 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2352 {
   2353 	struct lwp *l = curlwp;
   2354 	pcg_t *pcg, *cur;
   2355 	uint64_t ncsw;
   2356 	pool_cache_t pc;
   2357 
   2358 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2359 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2360 
   2361 	pc = cc->cc_cache;
   2362 	pcg = NULL;
   2363 	cc->cc_misses++;
   2364 	ncsw = l->l_ncsw;
   2365 
   2366 	/*
   2367 	 * If there are no empty groups in the cache then allocate one
   2368 	 * while still unlocked.
   2369 	 */
   2370 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2371 		if (__predict_true(!pool_cache_disable)) {
   2372 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2373 		}
   2374 		/*
   2375 		 * If pool_get() blocked, then our view of
   2376 		 * the per-CPU data is invalid: retry.
   2377 		 */
   2378 		if (__predict_false(l->l_ncsw != ncsw)) {
   2379 			if (pcg != NULL) {
   2380 				pool_put(pc->pc_pcgpool, pcg);
   2381 			}
   2382 			return true;
   2383 		}
   2384 		if (__predict_true(pcg != NULL)) {
   2385 			pcg->pcg_avail = 0;
   2386 			pcg->pcg_size = pc->pc_pcgsize;
   2387 		}
   2388 	}
   2389 
   2390 	/* Lock the cache. */
   2391 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2392 		mutex_enter(&pc->pc_lock);
   2393 		pc->pc_contended++;
   2394 
   2395 		/*
   2396 		 * If we context switched while locking, then our view of
   2397 		 * the per-CPU data is invalid: retry.
   2398 		 */
   2399 		if (__predict_false(l->l_ncsw != ncsw)) {
   2400 			mutex_exit(&pc->pc_lock);
   2401 			if (pcg != NULL) {
   2402 				pool_put(pc->pc_pcgpool, pcg);
   2403 			}
   2404 			return true;
   2405 		}
   2406 	}
   2407 
   2408 	/* If there are no empty groups in the cache then allocate one. */
   2409 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2410 		pcg = pc->pc_emptygroups;
   2411 		pc->pc_emptygroups = pcg->pcg_next;
   2412 		pc->pc_nempty--;
   2413 	}
   2414 
   2415 	/*
   2416 	 * If there's a empty group, release our full group back
   2417 	 * to the cache.  Install the empty group to the local CPU
   2418 	 * and return.
   2419 	 */
   2420 	if (pcg != NULL) {
   2421 		KASSERT(pcg->pcg_avail == 0);
   2422 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2423 			cc->cc_previous = pcg;
   2424 		} else {
   2425 			cur = cc->cc_current;
   2426 			if (__predict_true(cur != &pcg_dummy)) {
   2427 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2428 				cur->pcg_next = pc->pc_fullgroups;
   2429 				pc->pc_fullgroups = cur;
   2430 				pc->pc_nfull++;
   2431 			}
   2432 			cc->cc_current = pcg;
   2433 		}
   2434 		pc->pc_hits++;
   2435 		mutex_exit(&pc->pc_lock);
   2436 		return true;
   2437 	}
   2438 
   2439 	/*
   2440 	 * Nothing available locally or in cache, and we didn't
   2441 	 * allocate an empty group.  Take the slow path and destroy
   2442 	 * the object here and now.
   2443 	 */
   2444 	pc->pc_misses++;
   2445 	mutex_exit(&pc->pc_lock);
   2446 	splx(s);
   2447 	pool_cache_destruct_object(pc, object);
   2448 
   2449 	return false;
   2450 }
   2451 
   2452 /*
   2453  * pool_cache_put{,_paddr}:
   2454  *
   2455  *	Put an object back to the pool cache (optionally caching the
   2456  *	physical address of the object).
   2457  */
   2458 void
   2459 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2460 {
   2461 	pool_cache_cpu_t *cc;
   2462 	pcg_t *pcg;
   2463 	int s;
   2464 
   2465 	KASSERT(object != NULL);
   2466 	pool_redzone_check(&pc->pc_pool, object);
   2467 	FREECHECK_IN(&pc->pc_freecheck, object);
   2468 
   2469 	/* Lock out interrupts and disable preemption. */
   2470 	s = splvm();
   2471 	while (/* CONSTCOND */ true) {
   2472 		/* If the current group isn't full, release it there. */
   2473 		cc = pc->pc_cpus[curcpu()->ci_index];
   2474 		KASSERT(cc->cc_cache == pc);
   2475 	 	pcg = cc->cc_current;
   2476 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2477 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2478 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2479 			pcg->pcg_avail++;
   2480 			cc->cc_hits++;
   2481 			splx(s);
   2482 			return;
   2483 		}
   2484 
   2485 		/*
   2486 		 * That failed.  If the previous group isn't full, swap
   2487 		 * it with the current group and try again.
   2488 		 */
   2489 		pcg = cc->cc_previous;
   2490 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2491 			cc->cc_previous = cc->cc_current;
   2492 			cc->cc_current = pcg;
   2493 			continue;
   2494 		}
   2495 
   2496 		/*
   2497 		 * Can't free to either group: try the slow path.
   2498 		 * If put_slow() releases the object for us, it
   2499 		 * will return false.  Otherwise we need to retry.
   2500 		 */
   2501 		if (!pool_cache_put_slow(cc, s, object))
   2502 			break;
   2503 	}
   2504 }
   2505 
   2506 /*
   2507  * pool_cache_transfer:
   2508  *
   2509  *	Transfer objects from the per-CPU cache to the global cache.
   2510  *	Run within a cross-call thread.
   2511  */
   2512 static void
   2513 pool_cache_transfer(pool_cache_t pc)
   2514 {
   2515 	pool_cache_cpu_t *cc;
   2516 	pcg_t *prev, *cur, **list;
   2517 	int s;
   2518 
   2519 	s = splvm();
   2520 	mutex_enter(&pc->pc_lock);
   2521 	cc = pc->pc_cpus[curcpu()->ci_index];
   2522 	cur = cc->cc_current;
   2523 	cc->cc_current = __UNCONST(&pcg_dummy);
   2524 	prev = cc->cc_previous;
   2525 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2526 	if (cur != &pcg_dummy) {
   2527 		if (cur->pcg_avail == cur->pcg_size) {
   2528 			list = &pc->pc_fullgroups;
   2529 			pc->pc_nfull++;
   2530 		} else if (cur->pcg_avail == 0) {
   2531 			list = &pc->pc_emptygroups;
   2532 			pc->pc_nempty++;
   2533 		} else {
   2534 			list = &pc->pc_partgroups;
   2535 			pc->pc_npart++;
   2536 		}
   2537 		cur->pcg_next = *list;
   2538 		*list = cur;
   2539 	}
   2540 	if (prev != &pcg_dummy) {
   2541 		if (prev->pcg_avail == prev->pcg_size) {
   2542 			list = &pc->pc_fullgroups;
   2543 			pc->pc_nfull++;
   2544 		} else if (prev->pcg_avail == 0) {
   2545 			list = &pc->pc_emptygroups;
   2546 			pc->pc_nempty++;
   2547 		} else {
   2548 			list = &pc->pc_partgroups;
   2549 			pc->pc_npart++;
   2550 		}
   2551 		prev->pcg_next = *list;
   2552 		*list = prev;
   2553 	}
   2554 	mutex_exit(&pc->pc_lock);
   2555 	splx(s);
   2556 }
   2557 
   2558 /*
   2559  * Pool backend allocators.
   2560  *
   2561  * Each pool has a backend allocator that handles allocation, deallocation,
   2562  * and any additional draining that might be needed.
   2563  *
   2564  * We provide two standard allocators:
   2565  *
   2566  *	pool_allocator_kmem - the default when no allocator is specified
   2567  *
   2568  *	pool_allocator_nointr - used for pools that will not be accessed
   2569  *	in interrupt context.
   2570  */
   2571 void	*pool_page_alloc(struct pool *, int);
   2572 void	pool_page_free(struct pool *, void *);
   2573 
   2574 #ifdef POOL_SUBPAGE
   2575 struct pool_allocator pool_allocator_kmem_fullpage = {
   2576 	.pa_alloc = pool_page_alloc,
   2577 	.pa_free = pool_page_free,
   2578 	.pa_pagesz = 0
   2579 };
   2580 #else
   2581 struct pool_allocator pool_allocator_kmem = {
   2582 	.pa_alloc = pool_page_alloc,
   2583 	.pa_free = pool_page_free,
   2584 	.pa_pagesz = 0
   2585 };
   2586 #endif
   2587 
   2588 #ifdef POOL_SUBPAGE
   2589 struct pool_allocator pool_allocator_nointr_fullpage = {
   2590 	.pa_alloc = pool_page_alloc,
   2591 	.pa_free = pool_page_free,
   2592 	.pa_pagesz = 0
   2593 };
   2594 #else
   2595 struct pool_allocator pool_allocator_nointr = {
   2596 	.pa_alloc = pool_page_alloc,
   2597 	.pa_free = pool_page_free,
   2598 	.pa_pagesz = 0
   2599 };
   2600 #endif
   2601 
   2602 #ifdef POOL_SUBPAGE
   2603 void	*pool_subpage_alloc(struct pool *, int);
   2604 void	pool_subpage_free(struct pool *, void *);
   2605 
   2606 struct pool_allocator pool_allocator_kmem = {
   2607 	.pa_alloc = pool_subpage_alloc,
   2608 	.pa_free = pool_subpage_free,
   2609 	.pa_pagesz = POOL_SUBPAGE
   2610 };
   2611 
   2612 struct pool_allocator pool_allocator_nointr = {
   2613 	.pa_alloc = pool_subpage_alloc,
   2614 	.pa_free = pool_subpage_free,
   2615 	.pa_pagesz = POOL_SUBPAGE
   2616 };
   2617 #endif /* POOL_SUBPAGE */
   2618 
   2619 struct pool_allocator pool_allocator_big[] = {
   2620 	{
   2621 		.pa_alloc = pool_page_alloc,
   2622 		.pa_free = pool_page_free,
   2623 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2624 	},
   2625 	{
   2626 		.pa_alloc = pool_page_alloc,
   2627 		.pa_free = pool_page_free,
   2628 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2629 	},
   2630 	{
   2631 		.pa_alloc = pool_page_alloc,
   2632 		.pa_free = pool_page_free,
   2633 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2634 	},
   2635 	{
   2636 		.pa_alloc = pool_page_alloc,
   2637 		.pa_free = pool_page_free,
   2638 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2639 	},
   2640 	{
   2641 		.pa_alloc = pool_page_alloc,
   2642 		.pa_free = pool_page_free,
   2643 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2644 	},
   2645 	{
   2646 		.pa_alloc = pool_page_alloc,
   2647 		.pa_free = pool_page_free,
   2648 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2649 	},
   2650 	{
   2651 		.pa_alloc = pool_page_alloc,
   2652 		.pa_free = pool_page_free,
   2653 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2654 	},
   2655 	{
   2656 		.pa_alloc = pool_page_alloc,
   2657 		.pa_free = pool_page_free,
   2658 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2659 	}
   2660 };
   2661 
   2662 static int
   2663 pool_bigidx(size_t size)
   2664 {
   2665 	int i;
   2666 
   2667 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2668 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2669 			return i;
   2670 	}
   2671 	panic("pool item size %zu too large, use a custom allocator", size);
   2672 }
   2673 
   2674 static void *
   2675 pool_allocator_alloc(struct pool *pp, int flags)
   2676 {
   2677 	struct pool_allocator *pa = pp->pr_alloc;
   2678 	void *res;
   2679 
   2680 	res = (*pa->pa_alloc)(pp, flags);
   2681 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2682 		/*
   2683 		 * We only run the drain hook here if PR_NOWAIT.
   2684 		 * In other cases, the hook will be run in
   2685 		 * pool_reclaim().
   2686 		 */
   2687 		if (pp->pr_drain_hook != NULL) {
   2688 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2689 			res = (*pa->pa_alloc)(pp, flags);
   2690 		}
   2691 	}
   2692 	return res;
   2693 }
   2694 
   2695 static void
   2696 pool_allocator_free(struct pool *pp, void *v)
   2697 {
   2698 	struct pool_allocator *pa = pp->pr_alloc;
   2699 
   2700 	(*pa->pa_free)(pp, v);
   2701 }
   2702 
   2703 void *
   2704 pool_page_alloc(struct pool *pp, int flags)
   2705 {
   2706 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2707 	vmem_addr_t va;
   2708 	int ret;
   2709 
   2710 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2711 	    vflags | VM_INSTANTFIT, &va);
   2712 
   2713 	return ret ? NULL : (void *)va;
   2714 }
   2715 
   2716 void
   2717 pool_page_free(struct pool *pp, void *v)
   2718 {
   2719 
   2720 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2721 }
   2722 
   2723 static void *
   2724 pool_page_alloc_meta(struct pool *pp, int flags)
   2725 {
   2726 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2727 	vmem_addr_t va;
   2728 	int ret;
   2729 
   2730 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2731 	    vflags | VM_INSTANTFIT, &va);
   2732 
   2733 	return ret ? NULL : (void *)va;
   2734 }
   2735 
   2736 static void
   2737 pool_page_free_meta(struct pool *pp, void *v)
   2738 {
   2739 
   2740 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2741 }
   2742 
   2743 #ifdef KLEAK
   2744 static void
   2745 pool_kleak_fill(struct pool *pp, void *p)
   2746 {
   2747 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2748 		return;
   2749 	}
   2750 	kleak_fill_area(p, pp->pr_size);
   2751 }
   2752 
   2753 static void
   2754 pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2755 {
   2756 	if (__predict_false(pc->pc_ctor != NULL || pc->pc_dtor != NULL)) {
   2757 		return;
   2758 	}
   2759 	pool_kleak_fill(&pc->pc_pool, p);
   2760 }
   2761 #endif
   2762 
   2763 #ifdef POOL_REDZONE
   2764 #if defined(_LP64)
   2765 # define PRIME 0x9e37fffffffc0000UL
   2766 #else /* defined(_LP64) */
   2767 # define PRIME 0x9e3779b1
   2768 #endif /* defined(_LP64) */
   2769 #define STATIC_BYTE	0xFE
   2770 CTASSERT(POOL_REDZONE_SIZE > 1);
   2771 
   2772 #ifndef KASAN
   2773 static inline uint8_t
   2774 pool_pattern_generate(const void *p)
   2775 {
   2776 	return (uint8_t)(((uintptr_t)p) * PRIME
   2777 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2778 }
   2779 #endif
   2780 
   2781 static void
   2782 pool_redzone_init(struct pool *pp, size_t requested_size)
   2783 {
   2784 	size_t redzsz;
   2785 	size_t nsz;
   2786 
   2787 #ifdef KASAN
   2788 	redzsz = requested_size;
   2789 	kasan_add_redzone(&redzsz);
   2790 	redzsz -= requested_size;
   2791 #else
   2792 	redzsz = POOL_REDZONE_SIZE;
   2793 #endif
   2794 
   2795 	if (pp->pr_roflags & PR_NOTOUCH) {
   2796 		pp->pr_reqsize = 0;
   2797 		pp->pr_redzone = false;
   2798 		return;
   2799 	}
   2800 
   2801 	/*
   2802 	 * We may have extended the requested size earlier; check if
   2803 	 * there's naturally space in the padding for a red zone.
   2804 	 */
   2805 	if (pp->pr_size - requested_size >= redzsz) {
   2806 		pp->pr_reqsize = requested_size;
   2807 		pp->pr_redzone = true;
   2808 		return;
   2809 	}
   2810 
   2811 	/*
   2812 	 * No space in the natural padding; check if we can extend a
   2813 	 * bit the size of the pool.
   2814 	 */
   2815 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2816 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2817 		/* Ok, we can */
   2818 		pp->pr_size = nsz;
   2819 		pp->pr_reqsize = requested_size;
   2820 		pp->pr_redzone = true;
   2821 	} else {
   2822 		/* No space for a red zone... snif :'( */
   2823 		pp->pr_reqsize = 0;
   2824 		pp->pr_redzone = false;
   2825 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2826 	}
   2827 }
   2828 
   2829 static void
   2830 pool_redzone_fill(struct pool *pp, void *p)
   2831 {
   2832 	if (!pp->pr_redzone)
   2833 		return;
   2834 #ifdef KASAN
   2835 	size_t size_with_redzone = pp->pr_reqsize;
   2836 	kasan_add_redzone(&size_with_redzone);
   2837 	kasan_alloc(p, pp->pr_reqsize, size_with_redzone);
   2838 #else
   2839 	uint8_t *cp, pat;
   2840 	const uint8_t *ep;
   2841 
   2842 	cp = (uint8_t *)p + pp->pr_reqsize;
   2843 	ep = cp + POOL_REDZONE_SIZE;
   2844 
   2845 	/*
   2846 	 * We really don't want the first byte of the red zone to be '\0';
   2847 	 * an off-by-one in a string may not be properly detected.
   2848 	 */
   2849 	pat = pool_pattern_generate(cp);
   2850 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2851 	cp++;
   2852 
   2853 	while (cp < ep) {
   2854 		*cp = pool_pattern_generate(cp);
   2855 		cp++;
   2856 	}
   2857 #endif
   2858 }
   2859 
   2860 static void
   2861 pool_redzone_check(struct pool *pp, void *p)
   2862 {
   2863 	if (!pp->pr_redzone)
   2864 		return;
   2865 #ifdef KASAN
   2866 	size_t size_with_redzone = pp->pr_reqsize;
   2867 	kasan_add_redzone(&size_with_redzone);
   2868 	kasan_free(p, size_with_redzone);
   2869 #else
   2870 	uint8_t *cp, pat, expected;
   2871 	const uint8_t *ep;
   2872 
   2873 	cp = (uint8_t *)p + pp->pr_reqsize;
   2874 	ep = cp + POOL_REDZONE_SIZE;
   2875 
   2876 	pat = pool_pattern_generate(cp);
   2877 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2878 	if (__predict_false(expected != *cp)) {
   2879 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2880 		   __func__, cp, *cp, expected);
   2881 	}
   2882 	cp++;
   2883 
   2884 	while (cp < ep) {
   2885 		expected = pool_pattern_generate(cp);
   2886 		if (__predict_false(*cp != expected)) {
   2887 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2888 			   __func__, cp, *cp, expected);
   2889 		}
   2890 		cp++;
   2891 	}
   2892 #endif
   2893 }
   2894 
   2895 #endif /* POOL_REDZONE */
   2896 
   2897 
   2898 #ifdef POOL_SUBPAGE
   2899 /* Sub-page allocator, for machines with large hardware pages. */
   2900 void *
   2901 pool_subpage_alloc(struct pool *pp, int flags)
   2902 {
   2903 	return pool_get(&psppool, flags);
   2904 }
   2905 
   2906 void
   2907 pool_subpage_free(struct pool *pp, void *v)
   2908 {
   2909 	pool_put(&psppool, v);
   2910 }
   2911 
   2912 #endif /* POOL_SUBPAGE */
   2913 
   2914 #if defined(DDB)
   2915 static bool
   2916 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2917 {
   2918 
   2919 	return (uintptr_t)ph->ph_page <= addr &&
   2920 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2921 }
   2922 
   2923 static bool
   2924 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2925 {
   2926 
   2927 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2928 }
   2929 
   2930 static bool
   2931 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2932 {
   2933 	int i;
   2934 
   2935 	if (pcg == NULL) {
   2936 		return false;
   2937 	}
   2938 	for (i = 0; i < pcg->pcg_avail; i++) {
   2939 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2940 			return true;
   2941 		}
   2942 	}
   2943 	return false;
   2944 }
   2945 
   2946 static bool
   2947 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2948 {
   2949 
   2950 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2951 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2952 		pool_item_bitmap_t *bitmap =
   2953 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2954 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2955 
   2956 		return (*bitmap & mask) == 0;
   2957 	} else {
   2958 		struct pool_item *pi;
   2959 
   2960 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2961 			if (pool_in_item(pp, pi, addr)) {
   2962 				return false;
   2963 			}
   2964 		}
   2965 		return true;
   2966 	}
   2967 }
   2968 
   2969 void
   2970 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2971 {
   2972 	struct pool *pp;
   2973 
   2974 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2975 		struct pool_item_header *ph;
   2976 		uintptr_t item;
   2977 		bool allocated = true;
   2978 		bool incache = false;
   2979 		bool incpucache = false;
   2980 		char cpucachestr[32];
   2981 
   2982 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2983 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2984 				if (pool_in_page(pp, ph, addr)) {
   2985 					goto found;
   2986 				}
   2987 			}
   2988 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2989 				if (pool_in_page(pp, ph, addr)) {
   2990 					allocated =
   2991 					    pool_allocated(pp, ph, addr);
   2992 					goto found;
   2993 				}
   2994 			}
   2995 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2996 				if (pool_in_page(pp, ph, addr)) {
   2997 					allocated = false;
   2998 					goto found;
   2999 				}
   3000 			}
   3001 			continue;
   3002 		} else {
   3003 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3004 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3005 				continue;
   3006 			}
   3007 			allocated = pool_allocated(pp, ph, addr);
   3008 		}
   3009 found:
   3010 		if (allocated && pp->pr_cache) {
   3011 			pool_cache_t pc = pp->pr_cache;
   3012 			struct pool_cache_group *pcg;
   3013 			int i;
   3014 
   3015 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3016 			    pcg = pcg->pcg_next) {
   3017 				if (pool_in_cg(pp, pcg, addr)) {
   3018 					incache = true;
   3019 					goto print;
   3020 				}
   3021 			}
   3022 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3023 				pool_cache_cpu_t *cc;
   3024 
   3025 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3026 					continue;
   3027 				}
   3028 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3029 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3030 					struct cpu_info *ci =
   3031 					    cpu_lookup(i);
   3032 
   3033 					incpucache = true;
   3034 					snprintf(cpucachestr,
   3035 					    sizeof(cpucachestr),
   3036 					    "cached by CPU %u",
   3037 					    ci->ci_index);
   3038 					goto print;
   3039 				}
   3040 			}
   3041 		}
   3042 print:
   3043 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3044 		item = item + rounddown(addr - item, pp->pr_size);
   3045 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3046 		    (void *)addr, item, (size_t)(addr - item),
   3047 		    pp->pr_wchan,
   3048 		    incpucache ? cpucachestr :
   3049 		    incache ? "cached" : allocated ? "allocated" : "free");
   3050 	}
   3051 }
   3052 #endif /* defined(DDB) */
   3053 
   3054 static int
   3055 pool_sysctl(SYSCTLFN_ARGS)
   3056 {
   3057 	struct pool_sysctl data;
   3058 	struct pool *pp;
   3059 	struct pool_cache *pc;
   3060 	pool_cache_cpu_t *cc;
   3061 	int error;
   3062 	size_t i, written;
   3063 
   3064 	if (oldp == NULL) {
   3065 		*oldlenp = 0;
   3066 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3067 			*oldlenp += sizeof(data);
   3068 		return 0;
   3069 	}
   3070 
   3071 	memset(&data, 0, sizeof(data));
   3072 	error = 0;
   3073 	written = 0;
   3074 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3075 		if (written + sizeof(data) > *oldlenp)
   3076 			break;
   3077 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3078 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3079 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3080 #define COPY(field) data.field = pp->field
   3081 		COPY(pr_size);
   3082 
   3083 		COPY(pr_itemsperpage);
   3084 		COPY(pr_nitems);
   3085 		COPY(pr_nout);
   3086 		COPY(pr_hardlimit);
   3087 		COPY(pr_npages);
   3088 		COPY(pr_minpages);
   3089 		COPY(pr_maxpages);
   3090 
   3091 		COPY(pr_nget);
   3092 		COPY(pr_nfail);
   3093 		COPY(pr_nput);
   3094 		COPY(pr_npagealloc);
   3095 		COPY(pr_npagefree);
   3096 		COPY(pr_hiwat);
   3097 		COPY(pr_nidle);
   3098 #undef COPY
   3099 
   3100 		data.pr_cache_nmiss_pcpu = 0;
   3101 		data.pr_cache_nhit_pcpu = 0;
   3102 		if (pp->pr_cache) {
   3103 			pc = pp->pr_cache;
   3104 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3105 			data.pr_cache_nfull = pc->pc_nfull;
   3106 			data.pr_cache_npartial = pc->pc_npart;
   3107 			data.pr_cache_nempty = pc->pc_nempty;
   3108 			data.pr_cache_ncontended = pc->pc_contended;
   3109 			data.pr_cache_nmiss_global = pc->pc_misses;
   3110 			data.pr_cache_nhit_global = pc->pc_hits;
   3111 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3112 				cc = pc->pc_cpus[i];
   3113 				if (cc == NULL)
   3114 					continue;
   3115 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3116 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3117 			}
   3118 		} else {
   3119 			data.pr_cache_meta_size = 0;
   3120 			data.pr_cache_nfull = 0;
   3121 			data.pr_cache_npartial = 0;
   3122 			data.pr_cache_nempty = 0;
   3123 			data.pr_cache_ncontended = 0;
   3124 			data.pr_cache_nmiss_global = 0;
   3125 			data.pr_cache_nhit_global = 0;
   3126 		}
   3127 
   3128 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3129 		if (error)
   3130 			break;
   3131 		written += sizeof(data);
   3132 		oldp = (char *)oldp + sizeof(data);
   3133 	}
   3134 
   3135 	*oldlenp = written;
   3136 	return error;
   3137 }
   3138 
   3139 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3140 {
   3141 	const struct sysctlnode *rnode = NULL;
   3142 
   3143 	sysctl_createv(clog, 0, NULL, &rnode,
   3144 		       CTLFLAG_PERMANENT,
   3145 		       CTLTYPE_STRUCT, "pool",
   3146 		       SYSCTL_DESCR("Get pool statistics"),
   3147 		       pool_sysctl, 0, NULL, 0,
   3148 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3149 }
   3150