subr_pool.c revision 1.228 1 /* $NetBSD: subr_pool.c,v 1.228 2018/12/02 21:00:13 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.228 2018/12/02 21:00:13 maxv Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60
61 #include <uvm/uvm_extern.h>
62
63 /*
64 * Pool resource management utility.
65 *
66 * Memory is allocated in pages which are split into pieces according to
67 * the pool item size. Each page is kept on one of three lists in the
68 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 * for empty, full and partially-full pages respectively. The individual
70 * pool items are on a linked list headed by `ph_itemlist' in each page
71 * header. The memory for building the page list is either taken from
72 * the allocated pages themselves (for small pool items) or taken from
73 * an internal pool of page headers (`phpool').
74 */
75
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78
79 /* Private pool for page header structures */
80 #define PHPOOL_MAX 8
81 static struct pool phpool[PHPOOL_MAX];
82 #define PHPOOL_FREELIST_NELEM(idx) \
83 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 # define POOL_REDZONE_SIZE 8
97 # else
98 # define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 #else
104 # define pool_redzone_init(pp, sz) /* NOTHING */
105 # define pool_redzone_fill(pp, ptr) /* NOTHING */
106 # define pool_redzone_check(pp, ptr) /* NOTHING */
107 #endif
108
109 #ifdef KLEAK
110 static void pool_kleak_fill(struct pool *, void *);
111 static void pool_cache_kleak_fill(pool_cache_t, void *);
112 #else
113 #define pool_kleak_fill(pp, ptr) __nothing
114 #define pool_cache_kleak_fill(pc, ptr) __nothing
115 #endif
116
117 static void *pool_page_alloc_meta(struct pool *, int);
118 static void pool_page_free_meta(struct pool *, void *);
119
120 /* allocator for pool metadata */
121 struct pool_allocator pool_allocator_meta = {
122 .pa_alloc = pool_page_alloc_meta,
123 .pa_free = pool_page_free_meta,
124 .pa_pagesz = 0
125 };
126
127 #define POOL_ALLOCATOR_BIG_BASE 13
128 extern struct pool_allocator pool_allocator_big[];
129 static int pool_bigidx(size_t);
130
131 /* # of seconds to retain page after last use */
132 int pool_inactive_time = 10;
133
134 /* Next candidate for drainage (see pool_drain()) */
135 static struct pool *drainpp;
136
137 /* This lock protects both pool_head and drainpp. */
138 static kmutex_t pool_head_lock;
139 static kcondvar_t pool_busy;
140
141 /* This lock protects initialization of a potentially shared pool allocator */
142 static kmutex_t pool_allocator_lock;
143
144 typedef uint32_t pool_item_bitmap_t;
145 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
146 #define BITMAP_MASK (BITMAP_SIZE - 1)
147
148 struct pool_item_header {
149 /* Page headers */
150 LIST_ENTRY(pool_item_header)
151 ph_pagelist; /* pool page list */
152 SPLAY_ENTRY(pool_item_header)
153 ph_node; /* Off-page page headers */
154 void * ph_page; /* this page's address */
155 uint32_t ph_time; /* last referenced */
156 uint16_t ph_nmissing; /* # of chunks in use */
157 uint16_t ph_off; /* start offset in page */
158 union {
159 /* !PR_NOTOUCH */
160 struct {
161 LIST_HEAD(, pool_item)
162 phu_itemlist; /* chunk list for this page */
163 } phu_normal;
164 /* PR_NOTOUCH */
165 struct {
166 pool_item_bitmap_t phu_bitmap[1];
167 } phu_notouch;
168 } ph_u;
169 };
170 #define ph_itemlist ph_u.phu_normal.phu_itemlist
171 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
172
173 struct pool_item {
174 #ifdef DIAGNOSTIC
175 u_int pi_magic;
176 #endif
177 #define PI_MAGIC 0xdeaddeadU
178 /* Other entries use only this list entry */
179 LIST_ENTRY(pool_item) pi_list;
180 };
181
182 #define POOL_NEEDS_CATCHUP(pp) \
183 ((pp)->pr_nitems < (pp)->pr_minitems)
184
185 /*
186 * Pool cache management.
187 *
188 * Pool caches provide a way for constructed objects to be cached by the
189 * pool subsystem. This can lead to performance improvements by avoiding
190 * needless object construction/destruction; it is deferred until absolutely
191 * necessary.
192 *
193 * Caches are grouped into cache groups. Each cache group references up
194 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
195 * object from the pool, it calls the object's constructor and places it
196 * into a cache group. When a cache group frees an object back to the
197 * pool, it first calls the object's destructor. This allows the object
198 * to persist in constructed form while freed to the cache.
199 *
200 * The pool references each cache, so that when a pool is drained by the
201 * pagedaemon, it can drain each individual cache as well. Each time a
202 * cache is drained, the most idle cache group is freed to the pool in
203 * its entirety.
204 *
205 * Pool caches are layed on top of pools. By layering them, we can avoid
206 * the complexity of cache management for pools which would not benefit
207 * from it.
208 */
209
210 static struct pool pcg_normal_pool;
211 static struct pool pcg_large_pool;
212 static struct pool cache_pool;
213 static struct pool cache_cpu_pool;
214
215 pool_cache_t pnbuf_cache; /* pathname buffer cache */
216
217 /* List of all caches. */
218 TAILQ_HEAD(,pool_cache) pool_cache_head =
219 TAILQ_HEAD_INITIALIZER(pool_cache_head);
220
221 int pool_cache_disable; /* global disable for caching */
222 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
223
224 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
225 void *);
226 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
227 void **, paddr_t *, int);
228 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
229 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
230 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
231 static void pool_cache_transfer(pool_cache_t);
232
233 static int pool_catchup(struct pool *);
234 static void pool_prime_page(struct pool *, void *,
235 struct pool_item_header *);
236 static void pool_update_curpage(struct pool *);
237
238 static int pool_grow(struct pool *, int);
239 static void *pool_allocator_alloc(struct pool *, int);
240 static void pool_allocator_free(struct pool *, void *);
241
242 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
243 void (*)(const char *, ...) __printflike(1, 2));
244 static void pool_print1(struct pool *, const char *,
245 void (*)(const char *, ...) __printflike(1, 2));
246
247 static int pool_chk_page(struct pool *, const char *,
248 struct pool_item_header *);
249
250 static inline unsigned int
251 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
252 const void *v)
253 {
254 const char *cp = v;
255 unsigned int idx;
256
257 KASSERT(pp->pr_roflags & PR_NOTOUCH);
258 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
259 KASSERT(idx < pp->pr_itemsperpage);
260 return idx;
261 }
262
263 static inline void
264 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
265 void *obj)
266 {
267 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
268 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
269 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
270
271 KASSERT((*bitmap & mask) == 0);
272 *bitmap |= mask;
273 }
274
275 static inline void *
276 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
277 {
278 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
279 unsigned int idx;
280 int i;
281
282 for (i = 0; ; i++) {
283 int bit;
284
285 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
286 bit = ffs32(bitmap[i]);
287 if (bit) {
288 pool_item_bitmap_t mask;
289
290 bit--;
291 idx = (i * BITMAP_SIZE) + bit;
292 mask = 1U << bit;
293 KASSERT((bitmap[i] & mask) != 0);
294 bitmap[i] &= ~mask;
295 break;
296 }
297 }
298 KASSERT(idx < pp->pr_itemsperpage);
299 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
300 }
301
302 static inline void
303 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
304 {
305 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
306 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
307 int i;
308
309 for (i = 0; i < n; i++) {
310 bitmap[i] = (pool_item_bitmap_t)-1;
311 }
312 }
313
314 static inline int
315 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
316 {
317
318 /*
319 * we consider pool_item_header with smaller ph_page bigger.
320 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
321 */
322
323 if (a->ph_page < b->ph_page)
324 return (1);
325 else if (a->ph_page > b->ph_page)
326 return (-1);
327 else
328 return (0);
329 }
330
331 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
332 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
333
334 static inline struct pool_item_header *
335 pr_find_pagehead_noalign(struct pool *pp, void *v)
336 {
337 struct pool_item_header *ph, tmp;
338
339 tmp.ph_page = (void *)(uintptr_t)v;
340 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
341 if (ph == NULL) {
342 ph = SPLAY_ROOT(&pp->pr_phtree);
343 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
344 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
345 }
346 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
347 }
348
349 return ph;
350 }
351
352 /*
353 * Return the pool page header based on item address.
354 */
355 static inline struct pool_item_header *
356 pr_find_pagehead(struct pool *pp, void *v)
357 {
358 struct pool_item_header *ph, tmp;
359
360 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
361 ph = pr_find_pagehead_noalign(pp, v);
362 } else {
363 void *page =
364 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
365
366 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
367 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
368 } else {
369 tmp.ph_page = page;
370 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
371 }
372 }
373
374 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
375 ((char *)ph->ph_page <= (char *)v &&
376 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
377 return ph;
378 }
379
380 static void
381 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
382 {
383 struct pool_item_header *ph;
384
385 while ((ph = LIST_FIRST(pq)) != NULL) {
386 LIST_REMOVE(ph, ph_pagelist);
387 pool_allocator_free(pp, ph->ph_page);
388 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
389 pool_put(pp->pr_phpool, ph);
390 }
391 }
392
393 /*
394 * Remove a page from the pool.
395 */
396 static inline void
397 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
398 struct pool_pagelist *pq)
399 {
400
401 KASSERT(mutex_owned(&pp->pr_lock));
402
403 /*
404 * If the page was idle, decrement the idle page count.
405 */
406 if (ph->ph_nmissing == 0) {
407 KASSERT(pp->pr_nidle != 0);
408 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
409 "nitems=%u < itemsperpage=%u",
410 pp->pr_nitems, pp->pr_itemsperpage);
411 pp->pr_nidle--;
412 }
413
414 pp->pr_nitems -= pp->pr_itemsperpage;
415
416 /*
417 * Unlink the page from the pool and queue it for release.
418 */
419 LIST_REMOVE(ph, ph_pagelist);
420 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
421 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
422 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
423
424 pp->pr_npages--;
425 pp->pr_npagefree++;
426
427 pool_update_curpage(pp);
428 }
429
430 /*
431 * Initialize all the pools listed in the "pools" link set.
432 */
433 void
434 pool_subsystem_init(void)
435 {
436 size_t size;
437 int idx;
438
439 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
440 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
441 cv_init(&pool_busy, "poolbusy");
442
443 /*
444 * Initialize private page header pool and cache magazine pool if we
445 * haven't done so yet.
446 */
447 for (idx = 0; idx < PHPOOL_MAX; idx++) {
448 static char phpool_names[PHPOOL_MAX][6+1+6+1];
449 int nelem;
450 size_t sz;
451
452 nelem = PHPOOL_FREELIST_NELEM(idx);
453 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
454 "phpool-%d", nelem);
455 sz = sizeof(struct pool_item_header);
456 if (nelem) {
457 sz = offsetof(struct pool_item_header,
458 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
459 }
460 pool_init(&phpool[idx], sz, 0, 0, 0,
461 phpool_names[idx], &pool_allocator_meta, IPL_VM);
462 }
463 #ifdef POOL_SUBPAGE
464 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
465 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
466 #endif
467
468 size = sizeof(pcg_t) +
469 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
470 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
471 "pcgnormal", &pool_allocator_meta, IPL_VM);
472
473 size = sizeof(pcg_t) +
474 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
475 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
476 "pcglarge", &pool_allocator_meta, IPL_VM);
477
478 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
479 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
480
481 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
482 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
483 }
484
485 /*
486 * Initialize the given pool resource structure.
487 *
488 * We export this routine to allow other kernel parts to declare
489 * static pools that must be initialized before kmem(9) is available.
490 */
491 void
492 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
493 const char *wchan, struct pool_allocator *palloc, int ipl)
494 {
495 struct pool *pp1;
496 size_t trysize, phsize, prsize;
497 int off, slack;
498
499 #ifdef DEBUG
500 if (__predict_true(!cold))
501 mutex_enter(&pool_head_lock);
502 /*
503 * Check that the pool hasn't already been initialised and
504 * added to the list of all pools.
505 */
506 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
507 if (pp == pp1)
508 panic("%s: [%s] already initialised", __func__,
509 wchan);
510 }
511 if (__predict_true(!cold))
512 mutex_exit(&pool_head_lock);
513 #endif
514
515 if (palloc == NULL)
516 palloc = &pool_allocator_kmem;
517 #ifdef POOL_SUBPAGE
518 if (size > palloc->pa_pagesz) {
519 if (palloc == &pool_allocator_kmem)
520 palloc = &pool_allocator_kmem_fullpage;
521 else if (palloc == &pool_allocator_nointr)
522 palloc = &pool_allocator_nointr_fullpage;
523 }
524 #endif /* POOL_SUBPAGE */
525 if (!cold)
526 mutex_enter(&pool_allocator_lock);
527 if (palloc->pa_refcnt++ == 0) {
528 if (palloc->pa_pagesz == 0)
529 palloc->pa_pagesz = PAGE_SIZE;
530
531 TAILQ_INIT(&palloc->pa_list);
532
533 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
534 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
535 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
536 }
537 if (!cold)
538 mutex_exit(&pool_allocator_lock);
539
540 if (align == 0)
541 align = ALIGN(1);
542
543 prsize = size;
544 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
545 prsize = sizeof(struct pool_item);
546
547 prsize = roundup(prsize, align);
548 KASSERTMSG((prsize <= palloc->pa_pagesz),
549 "%s: [%s] pool item size (%zu) larger than page size (%u)",
550 __func__, wchan, prsize, palloc->pa_pagesz);
551
552 /*
553 * Initialize the pool structure.
554 */
555 LIST_INIT(&pp->pr_emptypages);
556 LIST_INIT(&pp->pr_fullpages);
557 LIST_INIT(&pp->pr_partpages);
558 pp->pr_cache = NULL;
559 pp->pr_curpage = NULL;
560 pp->pr_npages = 0;
561 pp->pr_minitems = 0;
562 pp->pr_minpages = 0;
563 pp->pr_maxpages = UINT_MAX;
564 pp->pr_roflags = flags;
565 pp->pr_flags = 0;
566 pp->pr_size = prsize;
567 pp->pr_align = align;
568 pp->pr_wchan = wchan;
569 pp->pr_alloc = palloc;
570 pp->pr_nitems = 0;
571 pp->pr_nout = 0;
572 pp->pr_hardlimit = UINT_MAX;
573 pp->pr_hardlimit_warning = NULL;
574 pp->pr_hardlimit_ratecap.tv_sec = 0;
575 pp->pr_hardlimit_ratecap.tv_usec = 0;
576 pp->pr_hardlimit_warning_last.tv_sec = 0;
577 pp->pr_hardlimit_warning_last.tv_usec = 0;
578 pp->pr_drain_hook = NULL;
579 pp->pr_drain_hook_arg = NULL;
580 pp->pr_freecheck = NULL;
581 pool_redzone_init(pp, size);
582
583 /*
584 * Decide whether to put the page header off page to avoid
585 * wasting too large a part of the page or too big item.
586 * Off-page page headers go on a hash table, so we can match
587 * a returned item with its header based on the page address.
588 * We use 1/16 of the page size and about 8 times of the item
589 * size as the threshold (XXX: tune)
590 *
591 * However, we'll put the header into the page if we can put
592 * it without wasting any items.
593 *
594 * Silently enforce `0 <= ioff < align'.
595 */
596 pp->pr_itemoffset = ioff %= align;
597 /* See the comment below about reserved bytes. */
598 trysize = palloc->pa_pagesz - ((align - ioff) % align);
599 phsize = ALIGN(sizeof(struct pool_item_header));
600 if (pp->pr_roflags & PR_PHINPAGE ||
601 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
602 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
603 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
604 /* Use the end of the page for the page header */
605 pp->pr_roflags |= PR_PHINPAGE;
606 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
607 } else {
608 /* The page header will be taken from our page header pool */
609 pp->pr_phoffset = 0;
610 off = palloc->pa_pagesz;
611 SPLAY_INIT(&pp->pr_phtree);
612 }
613
614 /*
615 * Alignment is to take place at `ioff' within the item. This means
616 * we must reserve up to `align - 1' bytes on the page to allow
617 * appropriate positioning of each item.
618 */
619 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
620 KASSERT(pp->pr_itemsperpage != 0);
621 if ((pp->pr_roflags & PR_NOTOUCH)) {
622 int idx;
623
624 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
625 idx++) {
626 /* nothing */
627 }
628 if (idx >= PHPOOL_MAX) {
629 /*
630 * if you see this panic, consider to tweak
631 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
632 */
633 panic("%s: [%s] too large itemsperpage(%d) for "
634 "PR_NOTOUCH", __func__,
635 pp->pr_wchan, pp->pr_itemsperpage);
636 }
637 pp->pr_phpool = &phpool[idx];
638 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
639 pp->pr_phpool = &phpool[0];
640 }
641 #if defined(DIAGNOSTIC)
642 else {
643 pp->pr_phpool = NULL;
644 }
645 #endif
646
647 /*
648 * Use the slack between the chunks and the page header
649 * for "cache coloring".
650 */
651 slack = off - pp->pr_itemsperpage * pp->pr_size;
652 pp->pr_maxcolor = (slack / align) * align;
653 pp->pr_curcolor = 0;
654
655 pp->pr_nget = 0;
656 pp->pr_nfail = 0;
657 pp->pr_nput = 0;
658 pp->pr_npagealloc = 0;
659 pp->pr_npagefree = 0;
660 pp->pr_hiwat = 0;
661 pp->pr_nidle = 0;
662 pp->pr_refcnt = 0;
663
664 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
665 cv_init(&pp->pr_cv, wchan);
666 pp->pr_ipl = ipl;
667
668 /* Insert into the list of all pools. */
669 if (!cold)
670 mutex_enter(&pool_head_lock);
671 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
672 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
673 break;
674 }
675 if (pp1 == NULL)
676 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
677 else
678 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
679 if (!cold)
680 mutex_exit(&pool_head_lock);
681
682 /* Insert this into the list of pools using this allocator. */
683 if (!cold)
684 mutex_enter(&palloc->pa_lock);
685 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
686 if (!cold)
687 mutex_exit(&palloc->pa_lock);
688 }
689
690 /*
691 * De-commision a pool resource.
692 */
693 void
694 pool_destroy(struct pool *pp)
695 {
696 struct pool_pagelist pq;
697 struct pool_item_header *ph;
698
699 /* Remove from global pool list */
700 mutex_enter(&pool_head_lock);
701 while (pp->pr_refcnt != 0)
702 cv_wait(&pool_busy, &pool_head_lock);
703 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
704 if (drainpp == pp)
705 drainpp = NULL;
706 mutex_exit(&pool_head_lock);
707
708 /* Remove this pool from its allocator's list of pools. */
709 mutex_enter(&pp->pr_alloc->pa_lock);
710 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
711 mutex_exit(&pp->pr_alloc->pa_lock);
712
713 mutex_enter(&pool_allocator_lock);
714 if (--pp->pr_alloc->pa_refcnt == 0)
715 mutex_destroy(&pp->pr_alloc->pa_lock);
716 mutex_exit(&pool_allocator_lock);
717
718 mutex_enter(&pp->pr_lock);
719
720 KASSERT(pp->pr_cache == NULL);
721 KASSERTMSG((pp->pr_nout == 0),
722 "%s: pool busy: still out: %u", __func__, pp->pr_nout);
723 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
724 KASSERT(LIST_EMPTY(&pp->pr_partpages));
725
726 /* Remove all pages */
727 LIST_INIT(&pq);
728 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
729 pr_rmpage(pp, ph, &pq);
730
731 mutex_exit(&pp->pr_lock);
732
733 pr_pagelist_free(pp, &pq);
734 cv_destroy(&pp->pr_cv);
735 mutex_destroy(&pp->pr_lock);
736 }
737
738 void
739 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
740 {
741
742 /* XXX no locking -- must be used just after pool_init() */
743 KASSERTMSG((pp->pr_drain_hook == NULL),
744 "%s: [%s] already set", __func__, pp->pr_wchan);
745 pp->pr_drain_hook = fn;
746 pp->pr_drain_hook_arg = arg;
747 }
748
749 static struct pool_item_header *
750 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
751 {
752 struct pool_item_header *ph;
753
754 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
755 ph = (void *)((char *)storage + pp->pr_phoffset);
756 else
757 ph = pool_get(pp->pr_phpool, flags);
758
759 return (ph);
760 }
761
762 /*
763 * Grab an item from the pool.
764 */
765 void *
766 pool_get(struct pool *pp, int flags)
767 {
768 struct pool_item *pi;
769 struct pool_item_header *ph;
770 void *v;
771
772 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
773 KASSERTMSG((pp->pr_itemsperpage != 0),
774 "%s: [%s] pr_itemsperpage is zero, "
775 "pool not initialized?", __func__, pp->pr_wchan);
776 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
777 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
778 "%s: [%s] is IPL_NONE, but called from interrupt context",
779 __func__, pp->pr_wchan);
780 if (flags & PR_WAITOK) {
781 ASSERT_SLEEPABLE();
782 }
783
784 mutex_enter(&pp->pr_lock);
785 startover:
786 /*
787 * Check to see if we've reached the hard limit. If we have,
788 * and we can wait, then wait until an item has been returned to
789 * the pool.
790 */
791 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
792 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
793 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
794 if (pp->pr_drain_hook != NULL) {
795 /*
796 * Since the drain hook is going to free things
797 * back to the pool, unlock, call the hook, re-lock,
798 * and check the hardlimit condition again.
799 */
800 mutex_exit(&pp->pr_lock);
801 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
802 mutex_enter(&pp->pr_lock);
803 if (pp->pr_nout < pp->pr_hardlimit)
804 goto startover;
805 }
806
807 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
808 /*
809 * XXX: A warning isn't logged in this case. Should
810 * it be?
811 */
812 pp->pr_flags |= PR_WANTED;
813 do {
814 cv_wait(&pp->pr_cv, &pp->pr_lock);
815 } while (pp->pr_flags & PR_WANTED);
816 goto startover;
817 }
818
819 /*
820 * Log a message that the hard limit has been hit.
821 */
822 if (pp->pr_hardlimit_warning != NULL &&
823 ratecheck(&pp->pr_hardlimit_warning_last,
824 &pp->pr_hardlimit_ratecap))
825 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
826
827 pp->pr_nfail++;
828
829 mutex_exit(&pp->pr_lock);
830 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
831 return (NULL);
832 }
833
834 /*
835 * The convention we use is that if `curpage' is not NULL, then
836 * it points at a non-empty bucket. In particular, `curpage'
837 * never points at a page header which has PR_PHINPAGE set and
838 * has no items in its bucket.
839 */
840 if ((ph = pp->pr_curpage) == NULL) {
841 int error;
842
843 KASSERTMSG((pp->pr_nitems == 0),
844 "%s: [%s] curpage NULL, inconsistent nitems %u",
845 __func__, pp->pr_wchan, pp->pr_nitems);
846
847 /*
848 * Call the back-end page allocator for more memory.
849 * Release the pool lock, as the back-end page allocator
850 * may block.
851 */
852 error = pool_grow(pp, flags);
853 if (error != 0) {
854 /*
855 * pool_grow aborts when another thread
856 * is allocating a new page. Retry if it
857 * waited for it.
858 */
859 if (error == ERESTART)
860 goto startover;
861
862 /*
863 * We were unable to allocate a page or item
864 * header, but we released the lock during
865 * allocation, so perhaps items were freed
866 * back to the pool. Check for this case.
867 */
868 if (pp->pr_curpage != NULL)
869 goto startover;
870
871 pp->pr_nfail++;
872 mutex_exit(&pp->pr_lock);
873 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
874 return (NULL);
875 }
876
877 /* Start the allocation process over. */
878 goto startover;
879 }
880 if (pp->pr_roflags & PR_NOTOUCH) {
881 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
882 "%s: %s: page empty", __func__, pp->pr_wchan);
883 v = pr_item_notouch_get(pp, ph);
884 } else {
885 v = pi = LIST_FIRST(&ph->ph_itemlist);
886 if (__predict_false(v == NULL)) {
887 mutex_exit(&pp->pr_lock);
888 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
889 }
890 KASSERTMSG((pp->pr_nitems > 0),
891 "%s: [%s] nitems %u inconsistent on itemlist",
892 __func__, pp->pr_wchan, pp->pr_nitems);
893 KASSERTMSG((pi->pi_magic == PI_MAGIC),
894 "%s: [%s] free list modified: "
895 "magic=%x; page %p; item addr %p", __func__,
896 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
897
898 /*
899 * Remove from item list.
900 */
901 LIST_REMOVE(pi, pi_list);
902 }
903 pp->pr_nitems--;
904 pp->pr_nout++;
905 if (ph->ph_nmissing == 0) {
906 KASSERT(pp->pr_nidle > 0);
907 pp->pr_nidle--;
908
909 /*
910 * This page was previously empty. Move it to the list of
911 * partially-full pages. This page is already curpage.
912 */
913 LIST_REMOVE(ph, ph_pagelist);
914 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
915 }
916 ph->ph_nmissing++;
917 if (ph->ph_nmissing == pp->pr_itemsperpage) {
918 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
919 LIST_EMPTY(&ph->ph_itemlist)),
920 "%s: [%s] nmissing (%u) inconsistent", __func__,
921 pp->pr_wchan, ph->ph_nmissing);
922 /*
923 * This page is now full. Move it to the full list
924 * and select a new current page.
925 */
926 LIST_REMOVE(ph, ph_pagelist);
927 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
928 pool_update_curpage(pp);
929 }
930
931 pp->pr_nget++;
932
933 /*
934 * If we have a low water mark and we are now below that low
935 * water mark, add more items to the pool.
936 */
937 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
938 /*
939 * XXX: Should we log a warning? Should we set up a timeout
940 * to try again in a second or so? The latter could break
941 * a caller's assumptions about interrupt protection, etc.
942 */
943 }
944
945 mutex_exit(&pp->pr_lock);
946 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
947 FREECHECK_OUT(&pp->pr_freecheck, v);
948 pool_redzone_fill(pp, v);
949 pool_kleak_fill(pp, v);
950 return (v);
951 }
952
953 /*
954 * Internal version of pool_put(). Pool is already locked/entered.
955 */
956 static void
957 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
958 {
959 struct pool_item *pi = v;
960 struct pool_item_header *ph;
961
962 KASSERT(mutex_owned(&pp->pr_lock));
963 pool_redzone_check(pp, v);
964 FREECHECK_IN(&pp->pr_freecheck, v);
965 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
966
967 KASSERTMSG((pp->pr_nout > 0),
968 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
969
970 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
971 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
972 }
973
974 /*
975 * Return to item list.
976 */
977 if (pp->pr_roflags & PR_NOTOUCH) {
978 pr_item_notouch_put(pp, ph, v);
979 } else {
980 #ifdef DIAGNOSTIC
981 pi->pi_magic = PI_MAGIC;
982 #endif
983 #ifdef DEBUG
984 {
985 int i, *ip = v;
986
987 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
988 *ip++ = PI_MAGIC;
989 }
990 }
991 #endif
992
993 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
994 }
995 KDASSERT(ph->ph_nmissing != 0);
996 ph->ph_nmissing--;
997 pp->pr_nput++;
998 pp->pr_nitems++;
999 pp->pr_nout--;
1000
1001 /* Cancel "pool empty" condition if it exists */
1002 if (pp->pr_curpage == NULL)
1003 pp->pr_curpage = ph;
1004
1005 if (pp->pr_flags & PR_WANTED) {
1006 pp->pr_flags &= ~PR_WANTED;
1007 cv_broadcast(&pp->pr_cv);
1008 }
1009
1010 /*
1011 * If this page is now empty, do one of two things:
1012 *
1013 * (1) If we have more pages than the page high water mark,
1014 * free the page back to the system. ONLY CONSIDER
1015 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1016 * CLAIM.
1017 *
1018 * (2) Otherwise, move the page to the empty page list.
1019 *
1020 * Either way, select a new current page (so we use a partially-full
1021 * page if one is available).
1022 */
1023 if (ph->ph_nmissing == 0) {
1024 pp->pr_nidle++;
1025 if (pp->pr_npages > pp->pr_minpages &&
1026 pp->pr_npages > pp->pr_maxpages) {
1027 pr_rmpage(pp, ph, pq);
1028 } else {
1029 LIST_REMOVE(ph, ph_pagelist);
1030 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1031
1032 /*
1033 * Update the timestamp on the page. A page must
1034 * be idle for some period of time before it can
1035 * be reclaimed by the pagedaemon. This minimizes
1036 * ping-pong'ing for memory.
1037 *
1038 * note for 64-bit time_t: truncating to 32-bit is not
1039 * a problem for our usage.
1040 */
1041 ph->ph_time = time_uptime;
1042 }
1043 pool_update_curpage(pp);
1044 }
1045
1046 /*
1047 * If the page was previously completely full, move it to the
1048 * partially-full list and make it the current page. The next
1049 * allocation will get the item from this page, instead of
1050 * further fragmenting the pool.
1051 */
1052 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1053 LIST_REMOVE(ph, ph_pagelist);
1054 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1055 pp->pr_curpage = ph;
1056 }
1057 }
1058
1059 void
1060 pool_put(struct pool *pp, void *v)
1061 {
1062 struct pool_pagelist pq;
1063
1064 LIST_INIT(&pq);
1065
1066 mutex_enter(&pp->pr_lock);
1067 pool_do_put(pp, v, &pq);
1068 mutex_exit(&pp->pr_lock);
1069
1070 pr_pagelist_free(pp, &pq);
1071 }
1072
1073 /*
1074 * pool_grow: grow a pool by a page.
1075 *
1076 * => called with pool locked.
1077 * => unlock and relock the pool.
1078 * => return with pool locked.
1079 */
1080
1081 static int
1082 pool_grow(struct pool *pp, int flags)
1083 {
1084 /*
1085 * If there's a pool_grow in progress, wait for it to complete
1086 * and try again from the top.
1087 */
1088 if (pp->pr_flags & PR_GROWING) {
1089 if (flags & PR_WAITOK) {
1090 do {
1091 cv_wait(&pp->pr_cv, &pp->pr_lock);
1092 } while (pp->pr_flags & PR_GROWING);
1093 return ERESTART;
1094 } else {
1095 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1096 /*
1097 * This needs an unlock/relock dance so
1098 * that the other caller has a chance to
1099 * run and actually do the thing. Note
1100 * that this is effectively a busy-wait.
1101 */
1102 mutex_exit(&pp->pr_lock);
1103 mutex_enter(&pp->pr_lock);
1104 return ERESTART;
1105 }
1106 return EWOULDBLOCK;
1107 }
1108 }
1109 pp->pr_flags |= PR_GROWING;
1110 if (flags & PR_WAITOK)
1111 mutex_exit(&pp->pr_lock);
1112 else
1113 pp->pr_flags |= PR_GROWINGNOWAIT;
1114
1115 char *cp = pool_allocator_alloc(pp, flags);
1116 if (__predict_false(cp == NULL))
1117 goto out;
1118
1119 struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1120 if (__predict_false(ph == NULL)) {
1121 pool_allocator_free(pp, cp);
1122 goto out;
1123 }
1124
1125 if (flags & PR_WAITOK)
1126 mutex_enter(&pp->pr_lock);
1127 pool_prime_page(pp, cp, ph);
1128 pp->pr_npagealloc++;
1129 KASSERT(pp->pr_flags & PR_GROWING);
1130 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1131 /*
1132 * If anyone was waiting for pool_grow, notify them that we
1133 * may have just done it.
1134 */
1135 cv_broadcast(&pp->pr_cv);
1136 return 0;
1137 out:
1138 if (flags & PR_WAITOK)
1139 mutex_enter(&pp->pr_lock);
1140 KASSERT(pp->pr_flags & PR_GROWING);
1141 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1142 return ENOMEM;
1143 }
1144
1145 /*
1146 * Add N items to the pool.
1147 */
1148 int
1149 pool_prime(struct pool *pp, int n)
1150 {
1151 int newpages;
1152 int error = 0;
1153
1154 mutex_enter(&pp->pr_lock);
1155
1156 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1157
1158 while (newpages > 0) {
1159 error = pool_grow(pp, PR_NOWAIT);
1160 if (error) {
1161 if (error == ERESTART)
1162 continue;
1163 break;
1164 }
1165 pp->pr_minpages++;
1166 newpages--;
1167 }
1168
1169 if (pp->pr_minpages >= pp->pr_maxpages)
1170 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1171
1172 mutex_exit(&pp->pr_lock);
1173 return error;
1174 }
1175
1176 /*
1177 * Add a page worth of items to the pool.
1178 *
1179 * Note, we must be called with the pool descriptor LOCKED.
1180 */
1181 static void
1182 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1183 {
1184 struct pool_item *pi;
1185 void *cp = storage;
1186 const unsigned int align = pp->pr_align;
1187 const unsigned int ioff = pp->pr_itemoffset;
1188 int n;
1189
1190 KASSERT(mutex_owned(&pp->pr_lock));
1191 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1192 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1193 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1194
1195 /*
1196 * Insert page header.
1197 */
1198 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1199 LIST_INIT(&ph->ph_itemlist);
1200 ph->ph_page = storage;
1201 ph->ph_nmissing = 0;
1202 ph->ph_time = time_uptime;
1203 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1204 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1205
1206 pp->pr_nidle++;
1207
1208 /*
1209 * Color this page.
1210 */
1211 ph->ph_off = pp->pr_curcolor;
1212 cp = (char *)cp + ph->ph_off;
1213 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1214 pp->pr_curcolor = 0;
1215
1216 /*
1217 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1218 */
1219 if (ioff != 0)
1220 cp = (char *)cp + align - ioff;
1221
1222 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1223
1224 /*
1225 * Insert remaining chunks on the bucket list.
1226 */
1227 n = pp->pr_itemsperpage;
1228 pp->pr_nitems += n;
1229
1230 if (pp->pr_roflags & PR_NOTOUCH) {
1231 pr_item_notouch_init(pp, ph);
1232 } else {
1233 while (n--) {
1234 pi = (struct pool_item *)cp;
1235
1236 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1237
1238 /* Insert on page list */
1239 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1240 #ifdef DIAGNOSTIC
1241 pi->pi_magic = PI_MAGIC;
1242 #endif
1243 cp = (char *)cp + pp->pr_size;
1244
1245 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1246 }
1247 }
1248
1249 /*
1250 * If the pool was depleted, point at the new page.
1251 */
1252 if (pp->pr_curpage == NULL)
1253 pp->pr_curpage = ph;
1254
1255 if (++pp->pr_npages > pp->pr_hiwat)
1256 pp->pr_hiwat = pp->pr_npages;
1257 }
1258
1259 /*
1260 * Used by pool_get() when nitems drops below the low water mark. This
1261 * is used to catch up pr_nitems with the low water mark.
1262 *
1263 * Note 1, we never wait for memory here, we let the caller decide what to do.
1264 *
1265 * Note 2, we must be called with the pool already locked, and we return
1266 * with it locked.
1267 */
1268 static int
1269 pool_catchup(struct pool *pp)
1270 {
1271 int error = 0;
1272
1273 while (POOL_NEEDS_CATCHUP(pp)) {
1274 error = pool_grow(pp, PR_NOWAIT);
1275 if (error) {
1276 if (error == ERESTART)
1277 continue;
1278 break;
1279 }
1280 }
1281 return error;
1282 }
1283
1284 static void
1285 pool_update_curpage(struct pool *pp)
1286 {
1287
1288 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1289 if (pp->pr_curpage == NULL) {
1290 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1291 }
1292 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1293 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1294 }
1295
1296 void
1297 pool_setlowat(struct pool *pp, int n)
1298 {
1299
1300 mutex_enter(&pp->pr_lock);
1301
1302 pp->pr_minitems = n;
1303 pp->pr_minpages = (n == 0)
1304 ? 0
1305 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1306
1307 /* Make sure we're caught up with the newly-set low water mark. */
1308 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1309 /*
1310 * XXX: Should we log a warning? Should we set up a timeout
1311 * to try again in a second or so? The latter could break
1312 * a caller's assumptions about interrupt protection, etc.
1313 */
1314 }
1315
1316 mutex_exit(&pp->pr_lock);
1317 }
1318
1319 void
1320 pool_sethiwat(struct pool *pp, int n)
1321 {
1322
1323 mutex_enter(&pp->pr_lock);
1324
1325 pp->pr_maxpages = (n == 0)
1326 ? 0
1327 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1328
1329 mutex_exit(&pp->pr_lock);
1330 }
1331
1332 void
1333 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1334 {
1335
1336 mutex_enter(&pp->pr_lock);
1337
1338 pp->pr_hardlimit = n;
1339 pp->pr_hardlimit_warning = warnmess;
1340 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1341 pp->pr_hardlimit_warning_last.tv_sec = 0;
1342 pp->pr_hardlimit_warning_last.tv_usec = 0;
1343
1344 /*
1345 * In-line version of pool_sethiwat(), because we don't want to
1346 * release the lock.
1347 */
1348 pp->pr_maxpages = (n == 0)
1349 ? 0
1350 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1351
1352 mutex_exit(&pp->pr_lock);
1353 }
1354
1355 /*
1356 * Release all complete pages that have not been used recently.
1357 *
1358 * Must not be called from interrupt context.
1359 */
1360 int
1361 pool_reclaim(struct pool *pp)
1362 {
1363 struct pool_item_header *ph, *phnext;
1364 struct pool_pagelist pq;
1365 uint32_t curtime;
1366 bool klock;
1367 int rv;
1368
1369 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1370
1371 if (pp->pr_drain_hook != NULL) {
1372 /*
1373 * The drain hook must be called with the pool unlocked.
1374 */
1375 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1376 }
1377
1378 /*
1379 * XXXSMP Because we do not want to cause non-MPSAFE code
1380 * to block.
1381 */
1382 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1383 pp->pr_ipl == IPL_SOFTSERIAL) {
1384 KERNEL_LOCK(1, NULL);
1385 klock = true;
1386 } else
1387 klock = false;
1388
1389 /* Reclaim items from the pool's cache (if any). */
1390 if (pp->pr_cache != NULL)
1391 pool_cache_invalidate(pp->pr_cache);
1392
1393 if (mutex_tryenter(&pp->pr_lock) == 0) {
1394 if (klock) {
1395 KERNEL_UNLOCK_ONE(NULL);
1396 }
1397 return (0);
1398 }
1399
1400 LIST_INIT(&pq);
1401
1402 curtime = time_uptime;
1403
1404 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1405 phnext = LIST_NEXT(ph, ph_pagelist);
1406
1407 /* Check our minimum page claim */
1408 if (pp->pr_npages <= pp->pr_minpages)
1409 break;
1410
1411 KASSERT(ph->ph_nmissing == 0);
1412 if (curtime - ph->ph_time < pool_inactive_time)
1413 continue;
1414
1415 /*
1416 * If freeing this page would put us below
1417 * the low water mark, stop now.
1418 */
1419 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1420 pp->pr_minitems)
1421 break;
1422
1423 pr_rmpage(pp, ph, &pq);
1424 }
1425
1426 mutex_exit(&pp->pr_lock);
1427
1428 if (LIST_EMPTY(&pq))
1429 rv = 0;
1430 else {
1431 pr_pagelist_free(pp, &pq);
1432 rv = 1;
1433 }
1434
1435 if (klock) {
1436 KERNEL_UNLOCK_ONE(NULL);
1437 }
1438
1439 return (rv);
1440 }
1441
1442 /*
1443 * Drain pools, one at a time. The drained pool is returned within ppp.
1444 *
1445 * Note, must never be called from interrupt context.
1446 */
1447 bool
1448 pool_drain(struct pool **ppp)
1449 {
1450 bool reclaimed;
1451 struct pool *pp;
1452
1453 KASSERT(!TAILQ_EMPTY(&pool_head));
1454
1455 pp = NULL;
1456
1457 /* Find next pool to drain, and add a reference. */
1458 mutex_enter(&pool_head_lock);
1459 do {
1460 if (drainpp == NULL) {
1461 drainpp = TAILQ_FIRST(&pool_head);
1462 }
1463 if (drainpp != NULL) {
1464 pp = drainpp;
1465 drainpp = TAILQ_NEXT(pp, pr_poollist);
1466 }
1467 /*
1468 * Skip completely idle pools. We depend on at least
1469 * one pool in the system being active.
1470 */
1471 } while (pp == NULL || pp->pr_npages == 0);
1472 pp->pr_refcnt++;
1473 mutex_exit(&pool_head_lock);
1474
1475 /* Drain the cache (if any) and pool.. */
1476 reclaimed = pool_reclaim(pp);
1477
1478 /* Finally, unlock the pool. */
1479 mutex_enter(&pool_head_lock);
1480 pp->pr_refcnt--;
1481 cv_broadcast(&pool_busy);
1482 mutex_exit(&pool_head_lock);
1483
1484 if (ppp != NULL)
1485 *ppp = pp;
1486
1487 return reclaimed;
1488 }
1489
1490 /*
1491 * Calculate the total number of pages consumed by pools.
1492 */
1493 int
1494 pool_totalpages(void)
1495 {
1496 struct pool *pp;
1497 uint64_t total = 0;
1498
1499 mutex_enter(&pool_head_lock);
1500 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1501 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1502
1503 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1504 bytes -= (pp->pr_nout * pp->pr_size);
1505 total += bytes;
1506 }
1507 mutex_exit(&pool_head_lock);
1508
1509 return atop(total);
1510 }
1511
1512 /*
1513 * Diagnostic helpers.
1514 */
1515
1516 void
1517 pool_printall(const char *modif, void (*pr)(const char *, ...))
1518 {
1519 struct pool *pp;
1520
1521 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1522 pool_printit(pp, modif, pr);
1523 }
1524 }
1525
1526 void
1527 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1528 {
1529
1530 if (pp == NULL) {
1531 (*pr)("Must specify a pool to print.\n");
1532 return;
1533 }
1534
1535 pool_print1(pp, modif, pr);
1536 }
1537
1538 static void
1539 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1540 void (*pr)(const char *, ...))
1541 {
1542 struct pool_item_header *ph;
1543 struct pool_item *pi __diagused;
1544
1545 LIST_FOREACH(ph, pl, ph_pagelist) {
1546 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1547 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1548 #ifdef DIAGNOSTIC
1549 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1550 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1551 if (pi->pi_magic != PI_MAGIC) {
1552 (*pr)("\t\t\titem %p, magic 0x%x\n",
1553 pi, pi->pi_magic);
1554 }
1555 }
1556 }
1557 #endif
1558 }
1559 }
1560
1561 static void
1562 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1563 {
1564 struct pool_item_header *ph;
1565 pool_cache_t pc;
1566 pcg_t *pcg;
1567 pool_cache_cpu_t *cc;
1568 uint64_t cpuhit, cpumiss;
1569 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1570 char c;
1571
1572 while ((c = *modif++) != '\0') {
1573 if (c == 'l')
1574 print_log = 1;
1575 if (c == 'p')
1576 print_pagelist = 1;
1577 if (c == 'c')
1578 print_cache = 1;
1579 }
1580
1581 if ((pc = pp->pr_cache) != NULL) {
1582 (*pr)("POOL CACHE");
1583 } else {
1584 (*pr)("POOL");
1585 }
1586
1587 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1588 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1589 pp->pr_roflags);
1590 (*pr)("\talloc %p\n", pp->pr_alloc);
1591 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1592 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1593 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1594 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1595
1596 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1597 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1598 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1599 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1600
1601 if (print_pagelist == 0)
1602 goto skip_pagelist;
1603
1604 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1605 (*pr)("\n\tempty page list:\n");
1606 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1607 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1608 (*pr)("\n\tfull page list:\n");
1609 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1610 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1611 (*pr)("\n\tpartial-page list:\n");
1612 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1613
1614 if (pp->pr_curpage == NULL)
1615 (*pr)("\tno current page\n");
1616 else
1617 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1618
1619 skip_pagelist:
1620 if (print_log == 0)
1621 goto skip_log;
1622
1623 (*pr)("\n");
1624
1625 skip_log:
1626
1627 #define PR_GROUPLIST(pcg) \
1628 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1629 for (i = 0; i < pcg->pcg_size; i++) { \
1630 if (pcg->pcg_objects[i].pcgo_pa != \
1631 POOL_PADDR_INVALID) { \
1632 (*pr)("\t\t\t%p, 0x%llx\n", \
1633 pcg->pcg_objects[i].pcgo_va, \
1634 (unsigned long long) \
1635 pcg->pcg_objects[i].pcgo_pa); \
1636 } else { \
1637 (*pr)("\t\t\t%p\n", \
1638 pcg->pcg_objects[i].pcgo_va); \
1639 } \
1640 }
1641
1642 if (pc != NULL) {
1643 cpuhit = 0;
1644 cpumiss = 0;
1645 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1646 if ((cc = pc->pc_cpus[i]) == NULL)
1647 continue;
1648 cpuhit += cc->cc_hits;
1649 cpumiss += cc->cc_misses;
1650 }
1651 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1652 (*pr)("\tcache layer hits %llu misses %llu\n",
1653 pc->pc_hits, pc->pc_misses);
1654 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1655 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1656 pc->pc_contended);
1657 (*pr)("\tcache layer empty groups %u full groups %u\n",
1658 pc->pc_nempty, pc->pc_nfull);
1659 if (print_cache) {
1660 (*pr)("\tfull cache groups:\n");
1661 for (pcg = pc->pc_fullgroups; pcg != NULL;
1662 pcg = pcg->pcg_next) {
1663 PR_GROUPLIST(pcg);
1664 }
1665 (*pr)("\tempty cache groups:\n");
1666 for (pcg = pc->pc_emptygroups; pcg != NULL;
1667 pcg = pcg->pcg_next) {
1668 PR_GROUPLIST(pcg);
1669 }
1670 }
1671 }
1672 #undef PR_GROUPLIST
1673 }
1674
1675 static int
1676 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1677 {
1678 struct pool_item *pi;
1679 void *page;
1680 int n;
1681
1682 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1683 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1684 if (page != ph->ph_page &&
1685 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1686 if (label != NULL)
1687 printf("%s: ", label);
1688 printf("pool(%p:%s): page inconsistency: page %p;"
1689 " at page head addr %p (p %p)\n", pp,
1690 pp->pr_wchan, ph->ph_page,
1691 ph, page);
1692 return 1;
1693 }
1694 }
1695
1696 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1697 return 0;
1698
1699 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1700 pi != NULL;
1701 pi = LIST_NEXT(pi,pi_list), n++) {
1702
1703 #ifdef DIAGNOSTIC
1704 if (pi->pi_magic != PI_MAGIC) {
1705 if (label != NULL)
1706 printf("%s: ", label);
1707 printf("pool(%s): free list modified: magic=%x;"
1708 " page %p; item ordinal %d; addr %p\n",
1709 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1710 n, pi);
1711 panic("pool");
1712 }
1713 #endif
1714 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1715 continue;
1716 }
1717 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1718 if (page == ph->ph_page)
1719 continue;
1720
1721 if (label != NULL)
1722 printf("%s: ", label);
1723 printf("pool(%p:%s): page inconsistency: page %p;"
1724 " item ordinal %d; addr %p (p %p)\n", pp,
1725 pp->pr_wchan, ph->ph_page,
1726 n, pi, page);
1727 return 1;
1728 }
1729 return 0;
1730 }
1731
1732
1733 int
1734 pool_chk(struct pool *pp, const char *label)
1735 {
1736 struct pool_item_header *ph;
1737 int r = 0;
1738
1739 mutex_enter(&pp->pr_lock);
1740 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1741 r = pool_chk_page(pp, label, ph);
1742 if (r) {
1743 goto out;
1744 }
1745 }
1746 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1747 r = pool_chk_page(pp, label, ph);
1748 if (r) {
1749 goto out;
1750 }
1751 }
1752 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1753 r = pool_chk_page(pp, label, ph);
1754 if (r) {
1755 goto out;
1756 }
1757 }
1758
1759 out:
1760 mutex_exit(&pp->pr_lock);
1761 return (r);
1762 }
1763
1764 /*
1765 * pool_cache_init:
1766 *
1767 * Initialize a pool cache.
1768 */
1769 pool_cache_t
1770 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1771 const char *wchan, struct pool_allocator *palloc, int ipl,
1772 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1773 {
1774 pool_cache_t pc;
1775
1776 pc = pool_get(&cache_pool, PR_WAITOK);
1777 if (pc == NULL)
1778 return NULL;
1779
1780 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1781 palloc, ipl, ctor, dtor, arg);
1782
1783 return pc;
1784 }
1785
1786 /*
1787 * pool_cache_bootstrap:
1788 *
1789 * Kernel-private version of pool_cache_init(). The caller
1790 * provides initial storage.
1791 */
1792 void
1793 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1794 u_int align_offset, u_int flags, const char *wchan,
1795 struct pool_allocator *palloc, int ipl,
1796 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1797 void *arg)
1798 {
1799 CPU_INFO_ITERATOR cii;
1800 pool_cache_t pc1;
1801 struct cpu_info *ci;
1802 struct pool *pp;
1803
1804 pp = &pc->pc_pool;
1805 if (palloc == NULL && ipl == IPL_NONE) {
1806 if (size > PAGE_SIZE) {
1807 int bigidx = pool_bigidx(size);
1808
1809 palloc = &pool_allocator_big[bigidx];
1810 } else
1811 palloc = &pool_allocator_nointr;
1812 }
1813 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1814 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1815
1816 if (ctor == NULL) {
1817 ctor = (int (*)(void *, void *, int))nullop;
1818 }
1819 if (dtor == NULL) {
1820 dtor = (void (*)(void *, void *))nullop;
1821 }
1822
1823 pc->pc_emptygroups = NULL;
1824 pc->pc_fullgroups = NULL;
1825 pc->pc_partgroups = NULL;
1826 pc->pc_ctor = ctor;
1827 pc->pc_dtor = dtor;
1828 pc->pc_arg = arg;
1829 pc->pc_hits = 0;
1830 pc->pc_misses = 0;
1831 pc->pc_nempty = 0;
1832 pc->pc_npart = 0;
1833 pc->pc_nfull = 0;
1834 pc->pc_contended = 0;
1835 pc->pc_refcnt = 0;
1836 pc->pc_freecheck = NULL;
1837
1838 if ((flags & PR_LARGECACHE) != 0) {
1839 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1840 pc->pc_pcgpool = &pcg_large_pool;
1841 } else {
1842 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1843 pc->pc_pcgpool = &pcg_normal_pool;
1844 }
1845
1846 /* Allocate per-CPU caches. */
1847 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1848 pc->pc_ncpu = 0;
1849 if (ncpu < 2) {
1850 /* XXX For sparc: boot CPU is not attached yet. */
1851 pool_cache_cpu_init1(curcpu(), pc);
1852 } else {
1853 for (CPU_INFO_FOREACH(cii, ci)) {
1854 pool_cache_cpu_init1(ci, pc);
1855 }
1856 }
1857
1858 /* Add to list of all pools. */
1859 if (__predict_true(!cold))
1860 mutex_enter(&pool_head_lock);
1861 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1862 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1863 break;
1864 }
1865 if (pc1 == NULL)
1866 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1867 else
1868 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1869 if (__predict_true(!cold))
1870 mutex_exit(&pool_head_lock);
1871
1872 membar_sync();
1873 pp->pr_cache = pc;
1874 }
1875
1876 /*
1877 * pool_cache_destroy:
1878 *
1879 * Destroy a pool cache.
1880 */
1881 void
1882 pool_cache_destroy(pool_cache_t pc)
1883 {
1884
1885 pool_cache_bootstrap_destroy(pc);
1886 pool_put(&cache_pool, pc);
1887 }
1888
1889 /*
1890 * pool_cache_bootstrap_destroy:
1891 *
1892 * Destroy a pool cache.
1893 */
1894 void
1895 pool_cache_bootstrap_destroy(pool_cache_t pc)
1896 {
1897 struct pool *pp = &pc->pc_pool;
1898 u_int i;
1899
1900 /* Remove it from the global list. */
1901 mutex_enter(&pool_head_lock);
1902 while (pc->pc_refcnt != 0)
1903 cv_wait(&pool_busy, &pool_head_lock);
1904 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1905 mutex_exit(&pool_head_lock);
1906
1907 /* First, invalidate the entire cache. */
1908 pool_cache_invalidate(pc);
1909
1910 /* Disassociate it from the pool. */
1911 mutex_enter(&pp->pr_lock);
1912 pp->pr_cache = NULL;
1913 mutex_exit(&pp->pr_lock);
1914
1915 /* Destroy per-CPU data */
1916 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1917 pool_cache_invalidate_cpu(pc, i);
1918
1919 /* Finally, destroy it. */
1920 mutex_destroy(&pc->pc_lock);
1921 pool_destroy(pp);
1922 }
1923
1924 /*
1925 * pool_cache_cpu_init1:
1926 *
1927 * Called for each pool_cache whenever a new CPU is attached.
1928 */
1929 static void
1930 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1931 {
1932 pool_cache_cpu_t *cc;
1933 int index;
1934
1935 index = ci->ci_index;
1936
1937 KASSERT(index < __arraycount(pc->pc_cpus));
1938
1939 if ((cc = pc->pc_cpus[index]) != NULL) {
1940 KASSERT(cc->cc_cpuindex == index);
1941 return;
1942 }
1943
1944 /*
1945 * The first CPU is 'free'. This needs to be the case for
1946 * bootstrap - we may not be able to allocate yet.
1947 */
1948 if (pc->pc_ncpu == 0) {
1949 cc = &pc->pc_cpu0;
1950 pc->pc_ncpu = 1;
1951 } else {
1952 mutex_enter(&pc->pc_lock);
1953 pc->pc_ncpu++;
1954 mutex_exit(&pc->pc_lock);
1955 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1956 }
1957
1958 cc->cc_ipl = pc->pc_pool.pr_ipl;
1959 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1960 cc->cc_cache = pc;
1961 cc->cc_cpuindex = index;
1962 cc->cc_hits = 0;
1963 cc->cc_misses = 0;
1964 cc->cc_current = __UNCONST(&pcg_dummy);
1965 cc->cc_previous = __UNCONST(&pcg_dummy);
1966
1967 pc->pc_cpus[index] = cc;
1968 }
1969
1970 /*
1971 * pool_cache_cpu_init:
1972 *
1973 * Called whenever a new CPU is attached.
1974 */
1975 void
1976 pool_cache_cpu_init(struct cpu_info *ci)
1977 {
1978 pool_cache_t pc;
1979
1980 mutex_enter(&pool_head_lock);
1981 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1982 pc->pc_refcnt++;
1983 mutex_exit(&pool_head_lock);
1984
1985 pool_cache_cpu_init1(ci, pc);
1986
1987 mutex_enter(&pool_head_lock);
1988 pc->pc_refcnt--;
1989 cv_broadcast(&pool_busy);
1990 }
1991 mutex_exit(&pool_head_lock);
1992 }
1993
1994 /*
1995 * pool_cache_reclaim:
1996 *
1997 * Reclaim memory from a pool cache.
1998 */
1999 bool
2000 pool_cache_reclaim(pool_cache_t pc)
2001 {
2002
2003 return pool_reclaim(&pc->pc_pool);
2004 }
2005
2006 static void
2007 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2008 {
2009
2010 (*pc->pc_dtor)(pc->pc_arg, object);
2011 pool_put(&pc->pc_pool, object);
2012 }
2013
2014 /*
2015 * pool_cache_destruct_object:
2016 *
2017 * Force destruction of an object and its release back into
2018 * the pool.
2019 */
2020 void
2021 pool_cache_destruct_object(pool_cache_t pc, void *object)
2022 {
2023
2024 FREECHECK_IN(&pc->pc_freecheck, object);
2025
2026 pool_cache_destruct_object1(pc, object);
2027 }
2028
2029 /*
2030 * pool_cache_invalidate_groups:
2031 *
2032 * Invalidate a chain of groups and destruct all objects.
2033 */
2034 static void
2035 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2036 {
2037 void *object;
2038 pcg_t *next;
2039 int i;
2040
2041 for (; pcg != NULL; pcg = next) {
2042 next = pcg->pcg_next;
2043
2044 for (i = 0; i < pcg->pcg_avail; i++) {
2045 object = pcg->pcg_objects[i].pcgo_va;
2046 pool_cache_destruct_object1(pc, object);
2047 }
2048
2049 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2050 pool_put(&pcg_large_pool, pcg);
2051 } else {
2052 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2053 pool_put(&pcg_normal_pool, pcg);
2054 }
2055 }
2056 }
2057
2058 /*
2059 * pool_cache_invalidate:
2060 *
2061 * Invalidate a pool cache (destruct and release all of the
2062 * cached objects). Does not reclaim objects from the pool.
2063 *
2064 * Note: For pool caches that provide constructed objects, there
2065 * is an assumption that another level of synchronization is occurring
2066 * between the input to the constructor and the cache invalidation.
2067 *
2068 * Invalidation is a costly process and should not be called from
2069 * interrupt context.
2070 */
2071 void
2072 pool_cache_invalidate(pool_cache_t pc)
2073 {
2074 uint64_t where;
2075 pcg_t *full, *empty, *part;
2076
2077 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2078
2079 if (ncpu < 2 || !mp_online) {
2080 /*
2081 * We might be called early enough in the boot process
2082 * for the CPU data structures to not be fully initialized.
2083 * In this case, transfer the content of the local CPU's
2084 * cache back into global cache as only this CPU is currently
2085 * running.
2086 */
2087 pool_cache_transfer(pc);
2088 } else {
2089 /*
2090 * Signal all CPUs that they must transfer their local
2091 * cache back to the global pool then wait for the xcall to
2092 * complete.
2093 */
2094 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2095 pc, NULL);
2096 xc_wait(where);
2097 }
2098
2099 /* Empty pool caches, then invalidate objects */
2100 mutex_enter(&pc->pc_lock);
2101 full = pc->pc_fullgroups;
2102 empty = pc->pc_emptygroups;
2103 part = pc->pc_partgroups;
2104 pc->pc_fullgroups = NULL;
2105 pc->pc_emptygroups = NULL;
2106 pc->pc_partgroups = NULL;
2107 pc->pc_nfull = 0;
2108 pc->pc_nempty = 0;
2109 pc->pc_npart = 0;
2110 mutex_exit(&pc->pc_lock);
2111
2112 pool_cache_invalidate_groups(pc, full);
2113 pool_cache_invalidate_groups(pc, empty);
2114 pool_cache_invalidate_groups(pc, part);
2115 }
2116
2117 /*
2118 * pool_cache_invalidate_cpu:
2119 *
2120 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2121 * identified by its associated index.
2122 * It is caller's responsibility to ensure that no operation is
2123 * taking place on this pool cache while doing this invalidation.
2124 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2125 * pool cached objects from a CPU different from the one currently running
2126 * may result in an undefined behaviour.
2127 */
2128 static void
2129 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2130 {
2131 pool_cache_cpu_t *cc;
2132 pcg_t *pcg;
2133
2134 if ((cc = pc->pc_cpus[index]) == NULL)
2135 return;
2136
2137 if ((pcg = cc->cc_current) != &pcg_dummy) {
2138 pcg->pcg_next = NULL;
2139 pool_cache_invalidate_groups(pc, pcg);
2140 }
2141 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2142 pcg->pcg_next = NULL;
2143 pool_cache_invalidate_groups(pc, pcg);
2144 }
2145 if (cc != &pc->pc_cpu0)
2146 pool_put(&cache_cpu_pool, cc);
2147
2148 }
2149
2150 void
2151 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2152 {
2153
2154 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2155 }
2156
2157 void
2158 pool_cache_setlowat(pool_cache_t pc, int n)
2159 {
2160
2161 pool_setlowat(&pc->pc_pool, n);
2162 }
2163
2164 void
2165 pool_cache_sethiwat(pool_cache_t pc, int n)
2166 {
2167
2168 pool_sethiwat(&pc->pc_pool, n);
2169 }
2170
2171 void
2172 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2173 {
2174
2175 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2176 }
2177
2178 static bool __noinline
2179 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2180 paddr_t *pap, int flags)
2181 {
2182 pcg_t *pcg, *cur;
2183 uint64_t ncsw;
2184 pool_cache_t pc;
2185 void *object;
2186
2187 KASSERT(cc->cc_current->pcg_avail == 0);
2188 KASSERT(cc->cc_previous->pcg_avail == 0);
2189
2190 pc = cc->cc_cache;
2191 cc->cc_misses++;
2192
2193 /*
2194 * Nothing was available locally. Try and grab a group
2195 * from the cache.
2196 */
2197 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2198 ncsw = curlwp->l_ncsw;
2199 mutex_enter(&pc->pc_lock);
2200 pc->pc_contended++;
2201
2202 /*
2203 * If we context switched while locking, then
2204 * our view of the per-CPU data is invalid:
2205 * retry.
2206 */
2207 if (curlwp->l_ncsw != ncsw) {
2208 mutex_exit(&pc->pc_lock);
2209 return true;
2210 }
2211 }
2212
2213 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2214 /*
2215 * If there's a full group, release our empty
2216 * group back to the cache. Install the full
2217 * group as cc_current and return.
2218 */
2219 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2220 KASSERT(cur->pcg_avail == 0);
2221 cur->pcg_next = pc->pc_emptygroups;
2222 pc->pc_emptygroups = cur;
2223 pc->pc_nempty++;
2224 }
2225 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2226 cc->cc_current = pcg;
2227 pc->pc_fullgroups = pcg->pcg_next;
2228 pc->pc_hits++;
2229 pc->pc_nfull--;
2230 mutex_exit(&pc->pc_lock);
2231 return true;
2232 }
2233
2234 /*
2235 * Nothing available locally or in cache. Take the slow
2236 * path: fetch a new object from the pool and construct
2237 * it.
2238 */
2239 pc->pc_misses++;
2240 mutex_exit(&pc->pc_lock);
2241 splx(s);
2242
2243 object = pool_get(&pc->pc_pool, flags);
2244 *objectp = object;
2245 if (__predict_false(object == NULL)) {
2246 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2247 return false;
2248 }
2249
2250 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2251 pool_put(&pc->pc_pool, object);
2252 *objectp = NULL;
2253 return false;
2254 }
2255
2256 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2257 (pc->pc_pool.pr_align - 1)) == 0);
2258
2259 if (pap != NULL) {
2260 #ifdef POOL_VTOPHYS
2261 *pap = POOL_VTOPHYS(object);
2262 #else
2263 *pap = POOL_PADDR_INVALID;
2264 #endif
2265 }
2266
2267 FREECHECK_OUT(&pc->pc_freecheck, object);
2268 pool_redzone_fill(&pc->pc_pool, object);
2269 pool_cache_kleak_fill(pc, object);
2270 return false;
2271 }
2272
2273 /*
2274 * pool_cache_get{,_paddr}:
2275 *
2276 * Get an object from a pool cache (optionally returning
2277 * the physical address of the object).
2278 */
2279 void *
2280 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2281 {
2282 pool_cache_cpu_t *cc;
2283 pcg_t *pcg;
2284 void *object;
2285 int s;
2286
2287 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2288 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2289 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2290 "%s: [%s] is IPL_NONE, but called from interrupt context",
2291 __func__, pc->pc_pool.pr_wchan);
2292
2293 if (flags & PR_WAITOK) {
2294 ASSERT_SLEEPABLE();
2295 }
2296
2297 /* Lock out interrupts and disable preemption. */
2298 s = splvm();
2299 while (/* CONSTCOND */ true) {
2300 /* Try and allocate an object from the current group. */
2301 cc = pc->pc_cpus[curcpu()->ci_index];
2302 KASSERT(cc->cc_cache == pc);
2303 pcg = cc->cc_current;
2304 if (__predict_true(pcg->pcg_avail > 0)) {
2305 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2306 if (__predict_false(pap != NULL))
2307 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2308 #if defined(DIAGNOSTIC)
2309 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2310 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2311 KASSERT(object != NULL);
2312 #endif
2313 cc->cc_hits++;
2314 splx(s);
2315 FREECHECK_OUT(&pc->pc_freecheck, object);
2316 pool_redzone_fill(&pc->pc_pool, object);
2317 pool_cache_kleak_fill(pc, object);
2318 return object;
2319 }
2320
2321 /*
2322 * That failed. If the previous group isn't empty, swap
2323 * it with the current group and allocate from there.
2324 */
2325 pcg = cc->cc_previous;
2326 if (__predict_true(pcg->pcg_avail > 0)) {
2327 cc->cc_previous = cc->cc_current;
2328 cc->cc_current = pcg;
2329 continue;
2330 }
2331
2332 /*
2333 * Can't allocate from either group: try the slow path.
2334 * If get_slow() allocated an object for us, or if
2335 * no more objects are available, it will return false.
2336 * Otherwise, we need to retry.
2337 */
2338 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2339 break;
2340 }
2341
2342 /*
2343 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2344 * pool_cache_get can fail even in the PR_WAITOK case, if the
2345 * constructor fails.
2346 */
2347 return object;
2348 }
2349
2350 static bool __noinline
2351 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2352 {
2353 struct lwp *l = curlwp;
2354 pcg_t *pcg, *cur;
2355 uint64_t ncsw;
2356 pool_cache_t pc;
2357
2358 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2359 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2360
2361 pc = cc->cc_cache;
2362 pcg = NULL;
2363 cc->cc_misses++;
2364 ncsw = l->l_ncsw;
2365
2366 /*
2367 * If there are no empty groups in the cache then allocate one
2368 * while still unlocked.
2369 */
2370 if (__predict_false(pc->pc_emptygroups == NULL)) {
2371 if (__predict_true(!pool_cache_disable)) {
2372 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2373 }
2374 /*
2375 * If pool_get() blocked, then our view of
2376 * the per-CPU data is invalid: retry.
2377 */
2378 if (__predict_false(l->l_ncsw != ncsw)) {
2379 if (pcg != NULL) {
2380 pool_put(pc->pc_pcgpool, pcg);
2381 }
2382 return true;
2383 }
2384 if (__predict_true(pcg != NULL)) {
2385 pcg->pcg_avail = 0;
2386 pcg->pcg_size = pc->pc_pcgsize;
2387 }
2388 }
2389
2390 /* Lock the cache. */
2391 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2392 mutex_enter(&pc->pc_lock);
2393 pc->pc_contended++;
2394
2395 /*
2396 * If we context switched while locking, then our view of
2397 * the per-CPU data is invalid: retry.
2398 */
2399 if (__predict_false(l->l_ncsw != ncsw)) {
2400 mutex_exit(&pc->pc_lock);
2401 if (pcg != NULL) {
2402 pool_put(pc->pc_pcgpool, pcg);
2403 }
2404 return true;
2405 }
2406 }
2407
2408 /* If there are no empty groups in the cache then allocate one. */
2409 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2410 pcg = pc->pc_emptygroups;
2411 pc->pc_emptygroups = pcg->pcg_next;
2412 pc->pc_nempty--;
2413 }
2414
2415 /*
2416 * If there's a empty group, release our full group back
2417 * to the cache. Install the empty group to the local CPU
2418 * and return.
2419 */
2420 if (pcg != NULL) {
2421 KASSERT(pcg->pcg_avail == 0);
2422 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2423 cc->cc_previous = pcg;
2424 } else {
2425 cur = cc->cc_current;
2426 if (__predict_true(cur != &pcg_dummy)) {
2427 KASSERT(cur->pcg_avail == cur->pcg_size);
2428 cur->pcg_next = pc->pc_fullgroups;
2429 pc->pc_fullgroups = cur;
2430 pc->pc_nfull++;
2431 }
2432 cc->cc_current = pcg;
2433 }
2434 pc->pc_hits++;
2435 mutex_exit(&pc->pc_lock);
2436 return true;
2437 }
2438
2439 /*
2440 * Nothing available locally or in cache, and we didn't
2441 * allocate an empty group. Take the slow path and destroy
2442 * the object here and now.
2443 */
2444 pc->pc_misses++;
2445 mutex_exit(&pc->pc_lock);
2446 splx(s);
2447 pool_cache_destruct_object(pc, object);
2448
2449 return false;
2450 }
2451
2452 /*
2453 * pool_cache_put{,_paddr}:
2454 *
2455 * Put an object back to the pool cache (optionally caching the
2456 * physical address of the object).
2457 */
2458 void
2459 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2460 {
2461 pool_cache_cpu_t *cc;
2462 pcg_t *pcg;
2463 int s;
2464
2465 KASSERT(object != NULL);
2466 pool_redzone_check(&pc->pc_pool, object);
2467 FREECHECK_IN(&pc->pc_freecheck, object);
2468
2469 /* Lock out interrupts and disable preemption. */
2470 s = splvm();
2471 while (/* CONSTCOND */ true) {
2472 /* If the current group isn't full, release it there. */
2473 cc = pc->pc_cpus[curcpu()->ci_index];
2474 KASSERT(cc->cc_cache == pc);
2475 pcg = cc->cc_current;
2476 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2477 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2478 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2479 pcg->pcg_avail++;
2480 cc->cc_hits++;
2481 splx(s);
2482 return;
2483 }
2484
2485 /*
2486 * That failed. If the previous group isn't full, swap
2487 * it with the current group and try again.
2488 */
2489 pcg = cc->cc_previous;
2490 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2491 cc->cc_previous = cc->cc_current;
2492 cc->cc_current = pcg;
2493 continue;
2494 }
2495
2496 /*
2497 * Can't free to either group: try the slow path.
2498 * If put_slow() releases the object for us, it
2499 * will return false. Otherwise we need to retry.
2500 */
2501 if (!pool_cache_put_slow(cc, s, object))
2502 break;
2503 }
2504 }
2505
2506 /*
2507 * pool_cache_transfer:
2508 *
2509 * Transfer objects from the per-CPU cache to the global cache.
2510 * Run within a cross-call thread.
2511 */
2512 static void
2513 pool_cache_transfer(pool_cache_t pc)
2514 {
2515 pool_cache_cpu_t *cc;
2516 pcg_t *prev, *cur, **list;
2517 int s;
2518
2519 s = splvm();
2520 mutex_enter(&pc->pc_lock);
2521 cc = pc->pc_cpus[curcpu()->ci_index];
2522 cur = cc->cc_current;
2523 cc->cc_current = __UNCONST(&pcg_dummy);
2524 prev = cc->cc_previous;
2525 cc->cc_previous = __UNCONST(&pcg_dummy);
2526 if (cur != &pcg_dummy) {
2527 if (cur->pcg_avail == cur->pcg_size) {
2528 list = &pc->pc_fullgroups;
2529 pc->pc_nfull++;
2530 } else if (cur->pcg_avail == 0) {
2531 list = &pc->pc_emptygroups;
2532 pc->pc_nempty++;
2533 } else {
2534 list = &pc->pc_partgroups;
2535 pc->pc_npart++;
2536 }
2537 cur->pcg_next = *list;
2538 *list = cur;
2539 }
2540 if (prev != &pcg_dummy) {
2541 if (prev->pcg_avail == prev->pcg_size) {
2542 list = &pc->pc_fullgroups;
2543 pc->pc_nfull++;
2544 } else if (prev->pcg_avail == 0) {
2545 list = &pc->pc_emptygroups;
2546 pc->pc_nempty++;
2547 } else {
2548 list = &pc->pc_partgroups;
2549 pc->pc_npart++;
2550 }
2551 prev->pcg_next = *list;
2552 *list = prev;
2553 }
2554 mutex_exit(&pc->pc_lock);
2555 splx(s);
2556 }
2557
2558 /*
2559 * Pool backend allocators.
2560 *
2561 * Each pool has a backend allocator that handles allocation, deallocation,
2562 * and any additional draining that might be needed.
2563 *
2564 * We provide two standard allocators:
2565 *
2566 * pool_allocator_kmem - the default when no allocator is specified
2567 *
2568 * pool_allocator_nointr - used for pools that will not be accessed
2569 * in interrupt context.
2570 */
2571 void *pool_page_alloc(struct pool *, int);
2572 void pool_page_free(struct pool *, void *);
2573
2574 #ifdef POOL_SUBPAGE
2575 struct pool_allocator pool_allocator_kmem_fullpage = {
2576 .pa_alloc = pool_page_alloc,
2577 .pa_free = pool_page_free,
2578 .pa_pagesz = 0
2579 };
2580 #else
2581 struct pool_allocator pool_allocator_kmem = {
2582 .pa_alloc = pool_page_alloc,
2583 .pa_free = pool_page_free,
2584 .pa_pagesz = 0
2585 };
2586 #endif
2587
2588 #ifdef POOL_SUBPAGE
2589 struct pool_allocator pool_allocator_nointr_fullpage = {
2590 .pa_alloc = pool_page_alloc,
2591 .pa_free = pool_page_free,
2592 .pa_pagesz = 0
2593 };
2594 #else
2595 struct pool_allocator pool_allocator_nointr = {
2596 .pa_alloc = pool_page_alloc,
2597 .pa_free = pool_page_free,
2598 .pa_pagesz = 0
2599 };
2600 #endif
2601
2602 #ifdef POOL_SUBPAGE
2603 void *pool_subpage_alloc(struct pool *, int);
2604 void pool_subpage_free(struct pool *, void *);
2605
2606 struct pool_allocator pool_allocator_kmem = {
2607 .pa_alloc = pool_subpage_alloc,
2608 .pa_free = pool_subpage_free,
2609 .pa_pagesz = POOL_SUBPAGE
2610 };
2611
2612 struct pool_allocator pool_allocator_nointr = {
2613 .pa_alloc = pool_subpage_alloc,
2614 .pa_free = pool_subpage_free,
2615 .pa_pagesz = POOL_SUBPAGE
2616 };
2617 #endif /* POOL_SUBPAGE */
2618
2619 struct pool_allocator pool_allocator_big[] = {
2620 {
2621 .pa_alloc = pool_page_alloc,
2622 .pa_free = pool_page_free,
2623 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2624 },
2625 {
2626 .pa_alloc = pool_page_alloc,
2627 .pa_free = pool_page_free,
2628 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2629 },
2630 {
2631 .pa_alloc = pool_page_alloc,
2632 .pa_free = pool_page_free,
2633 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2634 },
2635 {
2636 .pa_alloc = pool_page_alloc,
2637 .pa_free = pool_page_free,
2638 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2639 },
2640 {
2641 .pa_alloc = pool_page_alloc,
2642 .pa_free = pool_page_free,
2643 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2644 },
2645 {
2646 .pa_alloc = pool_page_alloc,
2647 .pa_free = pool_page_free,
2648 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2649 },
2650 {
2651 .pa_alloc = pool_page_alloc,
2652 .pa_free = pool_page_free,
2653 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2654 },
2655 {
2656 .pa_alloc = pool_page_alloc,
2657 .pa_free = pool_page_free,
2658 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2659 }
2660 };
2661
2662 static int
2663 pool_bigidx(size_t size)
2664 {
2665 int i;
2666
2667 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2668 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2669 return i;
2670 }
2671 panic("pool item size %zu too large, use a custom allocator", size);
2672 }
2673
2674 static void *
2675 pool_allocator_alloc(struct pool *pp, int flags)
2676 {
2677 struct pool_allocator *pa = pp->pr_alloc;
2678 void *res;
2679
2680 res = (*pa->pa_alloc)(pp, flags);
2681 if (res == NULL && (flags & PR_WAITOK) == 0) {
2682 /*
2683 * We only run the drain hook here if PR_NOWAIT.
2684 * In other cases, the hook will be run in
2685 * pool_reclaim().
2686 */
2687 if (pp->pr_drain_hook != NULL) {
2688 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2689 res = (*pa->pa_alloc)(pp, flags);
2690 }
2691 }
2692 return res;
2693 }
2694
2695 static void
2696 pool_allocator_free(struct pool *pp, void *v)
2697 {
2698 struct pool_allocator *pa = pp->pr_alloc;
2699
2700 (*pa->pa_free)(pp, v);
2701 }
2702
2703 void *
2704 pool_page_alloc(struct pool *pp, int flags)
2705 {
2706 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2707 vmem_addr_t va;
2708 int ret;
2709
2710 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2711 vflags | VM_INSTANTFIT, &va);
2712
2713 return ret ? NULL : (void *)va;
2714 }
2715
2716 void
2717 pool_page_free(struct pool *pp, void *v)
2718 {
2719
2720 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2721 }
2722
2723 static void *
2724 pool_page_alloc_meta(struct pool *pp, int flags)
2725 {
2726 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2727 vmem_addr_t va;
2728 int ret;
2729
2730 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2731 vflags | VM_INSTANTFIT, &va);
2732
2733 return ret ? NULL : (void *)va;
2734 }
2735
2736 static void
2737 pool_page_free_meta(struct pool *pp, void *v)
2738 {
2739
2740 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2741 }
2742
2743 #ifdef KLEAK
2744 static void
2745 pool_kleak_fill(struct pool *pp, void *p)
2746 {
2747 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2748 return;
2749 }
2750 kleak_fill_area(p, pp->pr_size);
2751 }
2752
2753 static void
2754 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2755 {
2756 if (__predict_false(pc->pc_ctor != NULL || pc->pc_dtor != NULL)) {
2757 return;
2758 }
2759 pool_kleak_fill(&pc->pc_pool, p);
2760 }
2761 #endif
2762
2763 #ifdef POOL_REDZONE
2764 #if defined(_LP64)
2765 # define PRIME 0x9e37fffffffc0000UL
2766 #else /* defined(_LP64) */
2767 # define PRIME 0x9e3779b1
2768 #endif /* defined(_LP64) */
2769 #define STATIC_BYTE 0xFE
2770 CTASSERT(POOL_REDZONE_SIZE > 1);
2771
2772 #ifndef KASAN
2773 static inline uint8_t
2774 pool_pattern_generate(const void *p)
2775 {
2776 return (uint8_t)(((uintptr_t)p) * PRIME
2777 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2778 }
2779 #endif
2780
2781 static void
2782 pool_redzone_init(struct pool *pp, size_t requested_size)
2783 {
2784 size_t redzsz;
2785 size_t nsz;
2786
2787 #ifdef KASAN
2788 redzsz = requested_size;
2789 kasan_add_redzone(&redzsz);
2790 redzsz -= requested_size;
2791 #else
2792 redzsz = POOL_REDZONE_SIZE;
2793 #endif
2794
2795 if (pp->pr_roflags & PR_NOTOUCH) {
2796 pp->pr_reqsize = 0;
2797 pp->pr_redzone = false;
2798 return;
2799 }
2800
2801 /*
2802 * We may have extended the requested size earlier; check if
2803 * there's naturally space in the padding for a red zone.
2804 */
2805 if (pp->pr_size - requested_size >= redzsz) {
2806 pp->pr_reqsize = requested_size;
2807 pp->pr_redzone = true;
2808 return;
2809 }
2810
2811 /*
2812 * No space in the natural padding; check if we can extend a
2813 * bit the size of the pool.
2814 */
2815 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2816 if (nsz <= pp->pr_alloc->pa_pagesz) {
2817 /* Ok, we can */
2818 pp->pr_size = nsz;
2819 pp->pr_reqsize = requested_size;
2820 pp->pr_redzone = true;
2821 } else {
2822 /* No space for a red zone... snif :'( */
2823 pp->pr_reqsize = 0;
2824 pp->pr_redzone = false;
2825 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2826 }
2827 }
2828
2829 static void
2830 pool_redzone_fill(struct pool *pp, void *p)
2831 {
2832 if (!pp->pr_redzone)
2833 return;
2834 #ifdef KASAN
2835 size_t size_with_redzone = pp->pr_reqsize;
2836 kasan_add_redzone(&size_with_redzone);
2837 kasan_alloc(p, pp->pr_reqsize, size_with_redzone);
2838 #else
2839 uint8_t *cp, pat;
2840 const uint8_t *ep;
2841
2842 cp = (uint8_t *)p + pp->pr_reqsize;
2843 ep = cp + POOL_REDZONE_SIZE;
2844
2845 /*
2846 * We really don't want the first byte of the red zone to be '\0';
2847 * an off-by-one in a string may not be properly detected.
2848 */
2849 pat = pool_pattern_generate(cp);
2850 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2851 cp++;
2852
2853 while (cp < ep) {
2854 *cp = pool_pattern_generate(cp);
2855 cp++;
2856 }
2857 #endif
2858 }
2859
2860 static void
2861 pool_redzone_check(struct pool *pp, void *p)
2862 {
2863 if (!pp->pr_redzone)
2864 return;
2865 #ifdef KASAN
2866 size_t size_with_redzone = pp->pr_reqsize;
2867 kasan_add_redzone(&size_with_redzone);
2868 kasan_free(p, size_with_redzone);
2869 #else
2870 uint8_t *cp, pat, expected;
2871 const uint8_t *ep;
2872
2873 cp = (uint8_t *)p + pp->pr_reqsize;
2874 ep = cp + POOL_REDZONE_SIZE;
2875
2876 pat = pool_pattern_generate(cp);
2877 expected = (pat == '\0') ? STATIC_BYTE: pat;
2878 if (__predict_false(expected != *cp)) {
2879 printf("%s: %p: 0x%02x != 0x%02x\n",
2880 __func__, cp, *cp, expected);
2881 }
2882 cp++;
2883
2884 while (cp < ep) {
2885 expected = pool_pattern_generate(cp);
2886 if (__predict_false(*cp != expected)) {
2887 printf("%s: %p: 0x%02x != 0x%02x\n",
2888 __func__, cp, *cp, expected);
2889 }
2890 cp++;
2891 }
2892 #endif
2893 }
2894
2895 #endif /* POOL_REDZONE */
2896
2897
2898 #ifdef POOL_SUBPAGE
2899 /* Sub-page allocator, for machines with large hardware pages. */
2900 void *
2901 pool_subpage_alloc(struct pool *pp, int flags)
2902 {
2903 return pool_get(&psppool, flags);
2904 }
2905
2906 void
2907 pool_subpage_free(struct pool *pp, void *v)
2908 {
2909 pool_put(&psppool, v);
2910 }
2911
2912 #endif /* POOL_SUBPAGE */
2913
2914 #if defined(DDB)
2915 static bool
2916 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2917 {
2918
2919 return (uintptr_t)ph->ph_page <= addr &&
2920 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2921 }
2922
2923 static bool
2924 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2925 {
2926
2927 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2928 }
2929
2930 static bool
2931 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2932 {
2933 int i;
2934
2935 if (pcg == NULL) {
2936 return false;
2937 }
2938 for (i = 0; i < pcg->pcg_avail; i++) {
2939 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2940 return true;
2941 }
2942 }
2943 return false;
2944 }
2945
2946 static bool
2947 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2948 {
2949
2950 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2951 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2952 pool_item_bitmap_t *bitmap =
2953 ph->ph_bitmap + (idx / BITMAP_SIZE);
2954 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2955
2956 return (*bitmap & mask) == 0;
2957 } else {
2958 struct pool_item *pi;
2959
2960 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2961 if (pool_in_item(pp, pi, addr)) {
2962 return false;
2963 }
2964 }
2965 return true;
2966 }
2967 }
2968
2969 void
2970 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2971 {
2972 struct pool *pp;
2973
2974 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2975 struct pool_item_header *ph;
2976 uintptr_t item;
2977 bool allocated = true;
2978 bool incache = false;
2979 bool incpucache = false;
2980 char cpucachestr[32];
2981
2982 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2983 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2984 if (pool_in_page(pp, ph, addr)) {
2985 goto found;
2986 }
2987 }
2988 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2989 if (pool_in_page(pp, ph, addr)) {
2990 allocated =
2991 pool_allocated(pp, ph, addr);
2992 goto found;
2993 }
2994 }
2995 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2996 if (pool_in_page(pp, ph, addr)) {
2997 allocated = false;
2998 goto found;
2999 }
3000 }
3001 continue;
3002 } else {
3003 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3004 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3005 continue;
3006 }
3007 allocated = pool_allocated(pp, ph, addr);
3008 }
3009 found:
3010 if (allocated && pp->pr_cache) {
3011 pool_cache_t pc = pp->pr_cache;
3012 struct pool_cache_group *pcg;
3013 int i;
3014
3015 for (pcg = pc->pc_fullgroups; pcg != NULL;
3016 pcg = pcg->pcg_next) {
3017 if (pool_in_cg(pp, pcg, addr)) {
3018 incache = true;
3019 goto print;
3020 }
3021 }
3022 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3023 pool_cache_cpu_t *cc;
3024
3025 if ((cc = pc->pc_cpus[i]) == NULL) {
3026 continue;
3027 }
3028 if (pool_in_cg(pp, cc->cc_current, addr) ||
3029 pool_in_cg(pp, cc->cc_previous, addr)) {
3030 struct cpu_info *ci =
3031 cpu_lookup(i);
3032
3033 incpucache = true;
3034 snprintf(cpucachestr,
3035 sizeof(cpucachestr),
3036 "cached by CPU %u",
3037 ci->ci_index);
3038 goto print;
3039 }
3040 }
3041 }
3042 print:
3043 item = (uintptr_t)ph->ph_page + ph->ph_off;
3044 item = item + rounddown(addr - item, pp->pr_size);
3045 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3046 (void *)addr, item, (size_t)(addr - item),
3047 pp->pr_wchan,
3048 incpucache ? cpucachestr :
3049 incache ? "cached" : allocated ? "allocated" : "free");
3050 }
3051 }
3052 #endif /* defined(DDB) */
3053
3054 static int
3055 pool_sysctl(SYSCTLFN_ARGS)
3056 {
3057 struct pool_sysctl data;
3058 struct pool *pp;
3059 struct pool_cache *pc;
3060 pool_cache_cpu_t *cc;
3061 int error;
3062 size_t i, written;
3063
3064 if (oldp == NULL) {
3065 *oldlenp = 0;
3066 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3067 *oldlenp += sizeof(data);
3068 return 0;
3069 }
3070
3071 memset(&data, 0, sizeof(data));
3072 error = 0;
3073 written = 0;
3074 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3075 if (written + sizeof(data) > *oldlenp)
3076 break;
3077 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3078 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3079 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3080 #define COPY(field) data.field = pp->field
3081 COPY(pr_size);
3082
3083 COPY(pr_itemsperpage);
3084 COPY(pr_nitems);
3085 COPY(pr_nout);
3086 COPY(pr_hardlimit);
3087 COPY(pr_npages);
3088 COPY(pr_minpages);
3089 COPY(pr_maxpages);
3090
3091 COPY(pr_nget);
3092 COPY(pr_nfail);
3093 COPY(pr_nput);
3094 COPY(pr_npagealloc);
3095 COPY(pr_npagefree);
3096 COPY(pr_hiwat);
3097 COPY(pr_nidle);
3098 #undef COPY
3099
3100 data.pr_cache_nmiss_pcpu = 0;
3101 data.pr_cache_nhit_pcpu = 0;
3102 if (pp->pr_cache) {
3103 pc = pp->pr_cache;
3104 data.pr_cache_meta_size = pc->pc_pcgsize;
3105 data.pr_cache_nfull = pc->pc_nfull;
3106 data.pr_cache_npartial = pc->pc_npart;
3107 data.pr_cache_nempty = pc->pc_nempty;
3108 data.pr_cache_ncontended = pc->pc_contended;
3109 data.pr_cache_nmiss_global = pc->pc_misses;
3110 data.pr_cache_nhit_global = pc->pc_hits;
3111 for (i = 0; i < pc->pc_ncpu; ++i) {
3112 cc = pc->pc_cpus[i];
3113 if (cc == NULL)
3114 continue;
3115 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3116 data.pr_cache_nhit_pcpu += cc->cc_hits;
3117 }
3118 } else {
3119 data.pr_cache_meta_size = 0;
3120 data.pr_cache_nfull = 0;
3121 data.pr_cache_npartial = 0;
3122 data.pr_cache_nempty = 0;
3123 data.pr_cache_ncontended = 0;
3124 data.pr_cache_nmiss_global = 0;
3125 data.pr_cache_nhit_global = 0;
3126 }
3127
3128 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3129 if (error)
3130 break;
3131 written += sizeof(data);
3132 oldp = (char *)oldp + sizeof(data);
3133 }
3134
3135 *oldlenp = written;
3136 return error;
3137 }
3138
3139 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3140 {
3141 const struct sysctlnode *rnode = NULL;
3142
3143 sysctl_createv(clog, 0, NULL, &rnode,
3144 CTLFLAG_PERMANENT,
3145 CTLTYPE_STRUCT, "pool",
3146 SYSCTL_DESCR("Get pool statistics"),
3147 pool_sysctl, 0, NULL, 0,
3148 CTL_KERN, CTL_CREATE, CTL_EOL);
3149 }
3150