subr_pool.c revision 1.229 1 /* $NetBSD: subr_pool.c,v 1.229 2018/12/16 21:03:35 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.229 2018/12/16 21:03:35 maxv Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60
61 #include <uvm/uvm_extern.h>
62
63 /*
64 * Pool resource management utility.
65 *
66 * Memory is allocated in pages which are split into pieces according to
67 * the pool item size. Each page is kept on one of three lists in the
68 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 * for empty, full and partially-full pages respectively. The individual
70 * pool items are on a linked list headed by `ph_itemlist' in each page
71 * header. The memory for building the page list is either taken from
72 * the allocated pages themselves (for small pool items) or taken from
73 * an internal pool of page headers (`phpool').
74 */
75
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78
79 /* Private pool for page header structures */
80 #define PHPOOL_MAX 8
81 static struct pool phpool[PHPOOL_MAX];
82 #define PHPOOL_FREELIST_NELEM(idx) \
83 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 # define POOL_REDZONE_SIZE 8
97 # else
98 # define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 static void pool_cache_redzone_check(pool_cache_t, void *);
104 #else
105 # define pool_redzone_init(pp, sz) __nothing
106 # define pool_redzone_fill(pp, ptr) __nothing
107 # define pool_redzone_check(pp, ptr) __nothing
108 # define pool_cache_redzone_check(pc, ptr) __nothing
109 #endif
110
111 #ifdef KLEAK
112 static void pool_kleak_fill(struct pool *, void *);
113 static void pool_cache_kleak_fill(pool_cache_t, void *);
114 #else
115 #define pool_kleak_fill(pp, ptr) __nothing
116 #define pool_cache_kleak_fill(pc, ptr) __nothing
117 #endif
118
119 #define pc_has_ctor(pc) \
120 (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
121 #define pc_has_dtor(pc) \
122 (pc->pc_dtor != (void (*)(void *, void *))nullop)
123
124 static void *pool_page_alloc_meta(struct pool *, int);
125 static void pool_page_free_meta(struct pool *, void *);
126
127 /* allocator for pool metadata */
128 struct pool_allocator pool_allocator_meta = {
129 .pa_alloc = pool_page_alloc_meta,
130 .pa_free = pool_page_free_meta,
131 .pa_pagesz = 0
132 };
133
134 #define POOL_ALLOCATOR_BIG_BASE 13
135 extern struct pool_allocator pool_allocator_big[];
136 static int pool_bigidx(size_t);
137
138 /* # of seconds to retain page after last use */
139 int pool_inactive_time = 10;
140
141 /* Next candidate for drainage (see pool_drain()) */
142 static struct pool *drainpp;
143
144 /* This lock protects both pool_head and drainpp. */
145 static kmutex_t pool_head_lock;
146 static kcondvar_t pool_busy;
147
148 /* This lock protects initialization of a potentially shared pool allocator */
149 static kmutex_t pool_allocator_lock;
150
151 typedef uint32_t pool_item_bitmap_t;
152 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
153 #define BITMAP_MASK (BITMAP_SIZE - 1)
154
155 struct pool_item_header {
156 /* Page headers */
157 LIST_ENTRY(pool_item_header)
158 ph_pagelist; /* pool page list */
159 SPLAY_ENTRY(pool_item_header)
160 ph_node; /* Off-page page headers */
161 void * ph_page; /* this page's address */
162 uint32_t ph_time; /* last referenced */
163 uint16_t ph_nmissing; /* # of chunks in use */
164 uint16_t ph_off; /* start offset in page */
165 union {
166 /* !PR_NOTOUCH */
167 struct {
168 LIST_HEAD(, pool_item)
169 phu_itemlist; /* chunk list for this page */
170 } phu_normal;
171 /* PR_NOTOUCH */
172 struct {
173 pool_item_bitmap_t phu_bitmap[1];
174 } phu_notouch;
175 } ph_u;
176 };
177 #define ph_itemlist ph_u.phu_normal.phu_itemlist
178 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
179
180 #if defined(DIAGNOSTIC) && !defined(KASAN)
181 #define POOL_CHECK_MAGIC
182 #endif
183
184 struct pool_item {
185 #ifdef POOL_CHECK_MAGIC
186 u_int pi_magic;
187 #endif
188 #define PI_MAGIC 0xdeaddeadU
189 /* Other entries use only this list entry */
190 LIST_ENTRY(pool_item) pi_list;
191 };
192
193 #define POOL_NEEDS_CATCHUP(pp) \
194 ((pp)->pr_nitems < (pp)->pr_minitems)
195
196 /*
197 * Pool cache management.
198 *
199 * Pool caches provide a way for constructed objects to be cached by the
200 * pool subsystem. This can lead to performance improvements by avoiding
201 * needless object construction/destruction; it is deferred until absolutely
202 * necessary.
203 *
204 * Caches are grouped into cache groups. Each cache group references up
205 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
206 * object from the pool, it calls the object's constructor and places it
207 * into a cache group. When a cache group frees an object back to the
208 * pool, it first calls the object's destructor. This allows the object
209 * to persist in constructed form while freed to the cache.
210 *
211 * The pool references each cache, so that when a pool is drained by the
212 * pagedaemon, it can drain each individual cache as well. Each time a
213 * cache is drained, the most idle cache group is freed to the pool in
214 * its entirety.
215 *
216 * Pool caches are layed on top of pools. By layering them, we can avoid
217 * the complexity of cache management for pools which would not benefit
218 * from it.
219 */
220
221 static struct pool pcg_normal_pool;
222 static struct pool pcg_large_pool;
223 static struct pool cache_pool;
224 static struct pool cache_cpu_pool;
225
226 pool_cache_t pnbuf_cache; /* pathname buffer cache */
227
228 /* List of all caches. */
229 TAILQ_HEAD(,pool_cache) pool_cache_head =
230 TAILQ_HEAD_INITIALIZER(pool_cache_head);
231
232 int pool_cache_disable; /* global disable for caching */
233 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
234
235 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
236 void *);
237 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
238 void **, paddr_t *, int);
239 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
240 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
241 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
242 static void pool_cache_transfer(pool_cache_t);
243
244 static int pool_catchup(struct pool *);
245 static void pool_prime_page(struct pool *, void *,
246 struct pool_item_header *);
247 static void pool_update_curpage(struct pool *);
248
249 static int pool_grow(struct pool *, int);
250 static void *pool_allocator_alloc(struct pool *, int);
251 static void pool_allocator_free(struct pool *, void *);
252
253 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
254 void (*)(const char *, ...) __printflike(1, 2));
255 static void pool_print1(struct pool *, const char *,
256 void (*)(const char *, ...) __printflike(1, 2));
257
258 static int pool_chk_page(struct pool *, const char *,
259 struct pool_item_header *);
260
261 static inline unsigned int
262 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
263 const void *v)
264 {
265 const char *cp = v;
266 unsigned int idx;
267
268 KASSERT(pp->pr_roflags & PR_NOTOUCH);
269 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
270 KASSERT(idx < pp->pr_itemsperpage);
271 return idx;
272 }
273
274 static inline void
275 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
276 void *obj)
277 {
278 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
279 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
280 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
281
282 KASSERT((*bitmap & mask) == 0);
283 *bitmap |= mask;
284 }
285
286 static inline void *
287 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
288 {
289 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
290 unsigned int idx;
291 int i;
292
293 for (i = 0; ; i++) {
294 int bit;
295
296 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
297 bit = ffs32(bitmap[i]);
298 if (bit) {
299 pool_item_bitmap_t mask;
300
301 bit--;
302 idx = (i * BITMAP_SIZE) + bit;
303 mask = 1U << bit;
304 KASSERT((bitmap[i] & mask) != 0);
305 bitmap[i] &= ~mask;
306 break;
307 }
308 }
309 KASSERT(idx < pp->pr_itemsperpage);
310 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
311 }
312
313 static inline void
314 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
315 {
316 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
317 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
318 int i;
319
320 for (i = 0; i < n; i++) {
321 bitmap[i] = (pool_item_bitmap_t)-1;
322 }
323 }
324
325 static inline int
326 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
327 {
328
329 /*
330 * we consider pool_item_header with smaller ph_page bigger.
331 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
332 */
333
334 if (a->ph_page < b->ph_page)
335 return (1);
336 else if (a->ph_page > b->ph_page)
337 return (-1);
338 else
339 return (0);
340 }
341
342 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
343 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
344
345 static inline struct pool_item_header *
346 pr_find_pagehead_noalign(struct pool *pp, void *v)
347 {
348 struct pool_item_header *ph, tmp;
349
350 tmp.ph_page = (void *)(uintptr_t)v;
351 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
352 if (ph == NULL) {
353 ph = SPLAY_ROOT(&pp->pr_phtree);
354 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
355 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
356 }
357 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
358 }
359
360 return ph;
361 }
362
363 /*
364 * Return the pool page header based on item address.
365 */
366 static inline struct pool_item_header *
367 pr_find_pagehead(struct pool *pp, void *v)
368 {
369 struct pool_item_header *ph, tmp;
370
371 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
372 ph = pr_find_pagehead_noalign(pp, v);
373 } else {
374 void *page =
375 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
376
377 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
378 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
379 } else {
380 tmp.ph_page = page;
381 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
382 }
383 }
384
385 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
386 ((char *)ph->ph_page <= (char *)v &&
387 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
388 return ph;
389 }
390
391 static void
392 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
393 {
394 struct pool_item_header *ph;
395
396 while ((ph = LIST_FIRST(pq)) != NULL) {
397 LIST_REMOVE(ph, ph_pagelist);
398 pool_allocator_free(pp, ph->ph_page);
399 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
400 pool_put(pp->pr_phpool, ph);
401 }
402 }
403
404 /*
405 * Remove a page from the pool.
406 */
407 static inline void
408 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
409 struct pool_pagelist *pq)
410 {
411
412 KASSERT(mutex_owned(&pp->pr_lock));
413
414 /*
415 * If the page was idle, decrement the idle page count.
416 */
417 if (ph->ph_nmissing == 0) {
418 KASSERT(pp->pr_nidle != 0);
419 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
420 "nitems=%u < itemsperpage=%u",
421 pp->pr_nitems, pp->pr_itemsperpage);
422 pp->pr_nidle--;
423 }
424
425 pp->pr_nitems -= pp->pr_itemsperpage;
426
427 /*
428 * Unlink the page from the pool and queue it for release.
429 */
430 LIST_REMOVE(ph, ph_pagelist);
431 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
432 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
433 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
434
435 pp->pr_npages--;
436 pp->pr_npagefree++;
437
438 pool_update_curpage(pp);
439 }
440
441 /*
442 * Initialize all the pools listed in the "pools" link set.
443 */
444 void
445 pool_subsystem_init(void)
446 {
447 size_t size;
448 int idx;
449
450 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
451 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
452 cv_init(&pool_busy, "poolbusy");
453
454 /*
455 * Initialize private page header pool and cache magazine pool if we
456 * haven't done so yet.
457 */
458 for (idx = 0; idx < PHPOOL_MAX; idx++) {
459 static char phpool_names[PHPOOL_MAX][6+1+6+1];
460 int nelem;
461 size_t sz;
462
463 nelem = PHPOOL_FREELIST_NELEM(idx);
464 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
465 "phpool-%d", nelem);
466 sz = sizeof(struct pool_item_header);
467 if (nelem) {
468 sz = offsetof(struct pool_item_header,
469 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
470 }
471 pool_init(&phpool[idx], sz, 0, 0, 0,
472 phpool_names[idx], &pool_allocator_meta, IPL_VM);
473 }
474 #ifdef POOL_SUBPAGE
475 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
476 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
477 #endif
478
479 size = sizeof(pcg_t) +
480 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
481 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
482 "pcgnormal", &pool_allocator_meta, IPL_VM);
483
484 size = sizeof(pcg_t) +
485 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
486 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
487 "pcglarge", &pool_allocator_meta, IPL_VM);
488
489 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
490 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
491
492 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
493 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
494 }
495
496 /*
497 * Initialize the given pool resource structure.
498 *
499 * We export this routine to allow other kernel parts to declare
500 * static pools that must be initialized before kmem(9) is available.
501 */
502 void
503 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
504 const char *wchan, struct pool_allocator *palloc, int ipl)
505 {
506 struct pool *pp1;
507 size_t trysize, phsize, prsize;
508 int off, slack;
509
510 #ifdef DEBUG
511 if (__predict_true(!cold))
512 mutex_enter(&pool_head_lock);
513 /*
514 * Check that the pool hasn't already been initialised and
515 * added to the list of all pools.
516 */
517 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
518 if (pp == pp1)
519 panic("%s: [%s] already initialised", __func__,
520 wchan);
521 }
522 if (__predict_true(!cold))
523 mutex_exit(&pool_head_lock);
524 #endif
525
526 if (palloc == NULL)
527 palloc = &pool_allocator_kmem;
528 #ifdef POOL_SUBPAGE
529 if (size > palloc->pa_pagesz) {
530 if (palloc == &pool_allocator_kmem)
531 palloc = &pool_allocator_kmem_fullpage;
532 else if (palloc == &pool_allocator_nointr)
533 palloc = &pool_allocator_nointr_fullpage;
534 }
535 #endif /* POOL_SUBPAGE */
536 if (!cold)
537 mutex_enter(&pool_allocator_lock);
538 if (palloc->pa_refcnt++ == 0) {
539 if (palloc->pa_pagesz == 0)
540 palloc->pa_pagesz = PAGE_SIZE;
541
542 TAILQ_INIT(&palloc->pa_list);
543
544 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
545 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
546 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
547 }
548 if (!cold)
549 mutex_exit(&pool_allocator_lock);
550
551 if (align == 0)
552 align = ALIGN(1);
553
554 prsize = size;
555 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
556 prsize = sizeof(struct pool_item);
557
558 prsize = roundup(prsize, align);
559 KASSERTMSG((prsize <= palloc->pa_pagesz),
560 "%s: [%s] pool item size (%zu) larger than page size (%u)",
561 __func__, wchan, prsize, palloc->pa_pagesz);
562
563 /*
564 * Initialize the pool structure.
565 */
566 LIST_INIT(&pp->pr_emptypages);
567 LIST_INIT(&pp->pr_fullpages);
568 LIST_INIT(&pp->pr_partpages);
569 pp->pr_cache = NULL;
570 pp->pr_curpage = NULL;
571 pp->pr_npages = 0;
572 pp->pr_minitems = 0;
573 pp->pr_minpages = 0;
574 pp->pr_maxpages = UINT_MAX;
575 pp->pr_roflags = flags;
576 pp->pr_flags = 0;
577 pp->pr_size = prsize;
578 pp->pr_align = align;
579 pp->pr_wchan = wchan;
580 pp->pr_alloc = palloc;
581 pp->pr_nitems = 0;
582 pp->pr_nout = 0;
583 pp->pr_hardlimit = UINT_MAX;
584 pp->pr_hardlimit_warning = NULL;
585 pp->pr_hardlimit_ratecap.tv_sec = 0;
586 pp->pr_hardlimit_ratecap.tv_usec = 0;
587 pp->pr_hardlimit_warning_last.tv_sec = 0;
588 pp->pr_hardlimit_warning_last.tv_usec = 0;
589 pp->pr_drain_hook = NULL;
590 pp->pr_drain_hook_arg = NULL;
591 pp->pr_freecheck = NULL;
592 pool_redzone_init(pp, size);
593
594 /*
595 * Decide whether to put the page header off page to avoid
596 * wasting too large a part of the page or too big item.
597 * Off-page page headers go on a hash table, so we can match
598 * a returned item with its header based on the page address.
599 * We use 1/16 of the page size and about 8 times of the item
600 * size as the threshold (XXX: tune)
601 *
602 * However, we'll put the header into the page if we can put
603 * it without wasting any items.
604 *
605 * Silently enforce `0 <= ioff < align'.
606 */
607 pp->pr_itemoffset = ioff %= align;
608 /* See the comment below about reserved bytes. */
609 trysize = palloc->pa_pagesz - ((align - ioff) % align);
610 phsize = ALIGN(sizeof(struct pool_item_header));
611 if (pp->pr_roflags & PR_PHINPAGE ||
612 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
613 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
614 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
615 /* Use the end of the page for the page header */
616 pp->pr_roflags |= PR_PHINPAGE;
617 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
618 } else {
619 /* The page header will be taken from our page header pool */
620 pp->pr_phoffset = 0;
621 off = palloc->pa_pagesz;
622 SPLAY_INIT(&pp->pr_phtree);
623 }
624
625 /*
626 * Alignment is to take place at `ioff' within the item. This means
627 * we must reserve up to `align - 1' bytes on the page to allow
628 * appropriate positioning of each item.
629 */
630 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
631 KASSERT(pp->pr_itemsperpage != 0);
632 if ((pp->pr_roflags & PR_NOTOUCH)) {
633 int idx;
634
635 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
636 idx++) {
637 /* nothing */
638 }
639 if (idx >= PHPOOL_MAX) {
640 /*
641 * if you see this panic, consider to tweak
642 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
643 */
644 panic("%s: [%s] too large itemsperpage(%d) for "
645 "PR_NOTOUCH", __func__,
646 pp->pr_wchan, pp->pr_itemsperpage);
647 }
648 pp->pr_phpool = &phpool[idx];
649 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
650 pp->pr_phpool = &phpool[0];
651 }
652 #if defined(DIAGNOSTIC)
653 else {
654 pp->pr_phpool = NULL;
655 }
656 #endif
657
658 /*
659 * Use the slack between the chunks and the page header
660 * for "cache coloring".
661 */
662 slack = off - pp->pr_itemsperpage * pp->pr_size;
663 pp->pr_maxcolor = (slack / align) * align;
664 pp->pr_curcolor = 0;
665
666 pp->pr_nget = 0;
667 pp->pr_nfail = 0;
668 pp->pr_nput = 0;
669 pp->pr_npagealloc = 0;
670 pp->pr_npagefree = 0;
671 pp->pr_hiwat = 0;
672 pp->pr_nidle = 0;
673 pp->pr_refcnt = 0;
674
675 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
676 cv_init(&pp->pr_cv, wchan);
677 pp->pr_ipl = ipl;
678
679 /* Insert into the list of all pools. */
680 if (!cold)
681 mutex_enter(&pool_head_lock);
682 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
683 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
684 break;
685 }
686 if (pp1 == NULL)
687 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
688 else
689 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
690 if (!cold)
691 mutex_exit(&pool_head_lock);
692
693 /* Insert this into the list of pools using this allocator. */
694 if (!cold)
695 mutex_enter(&palloc->pa_lock);
696 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
697 if (!cold)
698 mutex_exit(&palloc->pa_lock);
699 }
700
701 /*
702 * De-commision a pool resource.
703 */
704 void
705 pool_destroy(struct pool *pp)
706 {
707 struct pool_pagelist pq;
708 struct pool_item_header *ph;
709
710 /* Remove from global pool list */
711 mutex_enter(&pool_head_lock);
712 while (pp->pr_refcnt != 0)
713 cv_wait(&pool_busy, &pool_head_lock);
714 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
715 if (drainpp == pp)
716 drainpp = NULL;
717 mutex_exit(&pool_head_lock);
718
719 /* Remove this pool from its allocator's list of pools. */
720 mutex_enter(&pp->pr_alloc->pa_lock);
721 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
722 mutex_exit(&pp->pr_alloc->pa_lock);
723
724 mutex_enter(&pool_allocator_lock);
725 if (--pp->pr_alloc->pa_refcnt == 0)
726 mutex_destroy(&pp->pr_alloc->pa_lock);
727 mutex_exit(&pool_allocator_lock);
728
729 mutex_enter(&pp->pr_lock);
730
731 KASSERT(pp->pr_cache == NULL);
732 KASSERTMSG((pp->pr_nout == 0),
733 "%s: pool busy: still out: %u", __func__, pp->pr_nout);
734 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
735 KASSERT(LIST_EMPTY(&pp->pr_partpages));
736
737 /* Remove all pages */
738 LIST_INIT(&pq);
739 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
740 pr_rmpage(pp, ph, &pq);
741
742 mutex_exit(&pp->pr_lock);
743
744 pr_pagelist_free(pp, &pq);
745 cv_destroy(&pp->pr_cv);
746 mutex_destroy(&pp->pr_lock);
747 }
748
749 void
750 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
751 {
752
753 /* XXX no locking -- must be used just after pool_init() */
754 KASSERTMSG((pp->pr_drain_hook == NULL),
755 "%s: [%s] already set", __func__, pp->pr_wchan);
756 pp->pr_drain_hook = fn;
757 pp->pr_drain_hook_arg = arg;
758 }
759
760 static struct pool_item_header *
761 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
762 {
763 struct pool_item_header *ph;
764
765 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
766 ph = (void *)((char *)storage + pp->pr_phoffset);
767 else
768 ph = pool_get(pp->pr_phpool, flags);
769
770 return (ph);
771 }
772
773 /*
774 * Grab an item from the pool.
775 */
776 void *
777 pool_get(struct pool *pp, int flags)
778 {
779 struct pool_item *pi;
780 struct pool_item_header *ph;
781 void *v;
782
783 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
784 KASSERTMSG((pp->pr_itemsperpage != 0),
785 "%s: [%s] pr_itemsperpage is zero, "
786 "pool not initialized?", __func__, pp->pr_wchan);
787 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
788 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
789 "%s: [%s] is IPL_NONE, but called from interrupt context",
790 __func__, pp->pr_wchan);
791 if (flags & PR_WAITOK) {
792 ASSERT_SLEEPABLE();
793 }
794
795 mutex_enter(&pp->pr_lock);
796 startover:
797 /*
798 * Check to see if we've reached the hard limit. If we have,
799 * and we can wait, then wait until an item has been returned to
800 * the pool.
801 */
802 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
803 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
804 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
805 if (pp->pr_drain_hook != NULL) {
806 /*
807 * Since the drain hook is going to free things
808 * back to the pool, unlock, call the hook, re-lock,
809 * and check the hardlimit condition again.
810 */
811 mutex_exit(&pp->pr_lock);
812 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
813 mutex_enter(&pp->pr_lock);
814 if (pp->pr_nout < pp->pr_hardlimit)
815 goto startover;
816 }
817
818 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
819 /*
820 * XXX: A warning isn't logged in this case. Should
821 * it be?
822 */
823 pp->pr_flags |= PR_WANTED;
824 do {
825 cv_wait(&pp->pr_cv, &pp->pr_lock);
826 } while (pp->pr_flags & PR_WANTED);
827 goto startover;
828 }
829
830 /*
831 * Log a message that the hard limit has been hit.
832 */
833 if (pp->pr_hardlimit_warning != NULL &&
834 ratecheck(&pp->pr_hardlimit_warning_last,
835 &pp->pr_hardlimit_ratecap))
836 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
837
838 pp->pr_nfail++;
839
840 mutex_exit(&pp->pr_lock);
841 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
842 return (NULL);
843 }
844
845 /*
846 * The convention we use is that if `curpage' is not NULL, then
847 * it points at a non-empty bucket. In particular, `curpage'
848 * never points at a page header which has PR_PHINPAGE set and
849 * has no items in its bucket.
850 */
851 if ((ph = pp->pr_curpage) == NULL) {
852 int error;
853
854 KASSERTMSG((pp->pr_nitems == 0),
855 "%s: [%s] curpage NULL, inconsistent nitems %u",
856 __func__, pp->pr_wchan, pp->pr_nitems);
857
858 /*
859 * Call the back-end page allocator for more memory.
860 * Release the pool lock, as the back-end page allocator
861 * may block.
862 */
863 error = pool_grow(pp, flags);
864 if (error != 0) {
865 /*
866 * pool_grow aborts when another thread
867 * is allocating a new page. Retry if it
868 * waited for it.
869 */
870 if (error == ERESTART)
871 goto startover;
872
873 /*
874 * We were unable to allocate a page or item
875 * header, but we released the lock during
876 * allocation, so perhaps items were freed
877 * back to the pool. Check for this case.
878 */
879 if (pp->pr_curpage != NULL)
880 goto startover;
881
882 pp->pr_nfail++;
883 mutex_exit(&pp->pr_lock);
884 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
885 return (NULL);
886 }
887
888 /* Start the allocation process over. */
889 goto startover;
890 }
891 if (pp->pr_roflags & PR_NOTOUCH) {
892 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
893 "%s: %s: page empty", __func__, pp->pr_wchan);
894 v = pr_item_notouch_get(pp, ph);
895 } else {
896 v = pi = LIST_FIRST(&ph->ph_itemlist);
897 if (__predict_false(v == NULL)) {
898 mutex_exit(&pp->pr_lock);
899 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
900 }
901 KASSERTMSG((pp->pr_nitems > 0),
902 "%s: [%s] nitems %u inconsistent on itemlist",
903 __func__, pp->pr_wchan, pp->pr_nitems);
904 #ifdef POOL_CHECK_MAGIC
905 KASSERTMSG((pi->pi_magic == PI_MAGIC),
906 "%s: [%s] free list modified: "
907 "magic=%x; page %p; item addr %p", __func__,
908 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
909 #endif
910
911 /*
912 * Remove from item list.
913 */
914 LIST_REMOVE(pi, pi_list);
915 }
916 pp->pr_nitems--;
917 pp->pr_nout++;
918 if (ph->ph_nmissing == 0) {
919 KASSERT(pp->pr_nidle > 0);
920 pp->pr_nidle--;
921
922 /*
923 * This page was previously empty. Move it to the list of
924 * partially-full pages. This page is already curpage.
925 */
926 LIST_REMOVE(ph, ph_pagelist);
927 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
928 }
929 ph->ph_nmissing++;
930 if (ph->ph_nmissing == pp->pr_itemsperpage) {
931 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
932 LIST_EMPTY(&ph->ph_itemlist)),
933 "%s: [%s] nmissing (%u) inconsistent", __func__,
934 pp->pr_wchan, ph->ph_nmissing);
935 /*
936 * This page is now full. Move it to the full list
937 * and select a new current page.
938 */
939 LIST_REMOVE(ph, ph_pagelist);
940 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
941 pool_update_curpage(pp);
942 }
943
944 pp->pr_nget++;
945
946 /*
947 * If we have a low water mark and we are now below that low
948 * water mark, add more items to the pool.
949 */
950 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
951 /*
952 * XXX: Should we log a warning? Should we set up a timeout
953 * to try again in a second or so? The latter could break
954 * a caller's assumptions about interrupt protection, etc.
955 */
956 }
957
958 mutex_exit(&pp->pr_lock);
959 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
960 FREECHECK_OUT(&pp->pr_freecheck, v);
961 pool_redzone_fill(pp, v);
962 pool_kleak_fill(pp, v);
963 return (v);
964 }
965
966 /*
967 * Internal version of pool_put(). Pool is already locked/entered.
968 */
969 static void
970 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
971 {
972 struct pool_item *pi = v;
973 struct pool_item_header *ph;
974
975 KASSERT(mutex_owned(&pp->pr_lock));
976 pool_redzone_check(pp, v);
977 FREECHECK_IN(&pp->pr_freecheck, v);
978 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
979
980 KASSERTMSG((pp->pr_nout > 0),
981 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
982
983 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
984 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
985 }
986
987 /*
988 * Return to item list.
989 */
990 if (pp->pr_roflags & PR_NOTOUCH) {
991 pr_item_notouch_put(pp, ph, v);
992 } else {
993 #ifdef POOL_CHECK_MAGIC
994 pi->pi_magic = PI_MAGIC;
995 #endif
996 #ifdef DEBUG
997 {
998 int i, *ip = v;
999
1000 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1001 *ip++ = PI_MAGIC;
1002 }
1003 }
1004 #endif
1005 if (pp->pr_redzone) {
1006 /*
1007 * Mark the pool_item as valid. The rest is already
1008 * invalid.
1009 */
1010 kasan_alloc(pi, sizeof(*pi), sizeof(*pi));
1011 }
1012
1013 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1014 }
1015 KDASSERT(ph->ph_nmissing != 0);
1016 ph->ph_nmissing--;
1017 pp->pr_nput++;
1018 pp->pr_nitems++;
1019 pp->pr_nout--;
1020
1021 /* Cancel "pool empty" condition if it exists */
1022 if (pp->pr_curpage == NULL)
1023 pp->pr_curpage = ph;
1024
1025 if (pp->pr_flags & PR_WANTED) {
1026 pp->pr_flags &= ~PR_WANTED;
1027 cv_broadcast(&pp->pr_cv);
1028 }
1029
1030 /*
1031 * If this page is now empty, do one of two things:
1032 *
1033 * (1) If we have more pages than the page high water mark,
1034 * free the page back to the system. ONLY CONSIDER
1035 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1036 * CLAIM.
1037 *
1038 * (2) Otherwise, move the page to the empty page list.
1039 *
1040 * Either way, select a new current page (so we use a partially-full
1041 * page if one is available).
1042 */
1043 if (ph->ph_nmissing == 0) {
1044 pp->pr_nidle++;
1045 if (pp->pr_npages > pp->pr_minpages &&
1046 pp->pr_npages > pp->pr_maxpages) {
1047 pr_rmpage(pp, ph, pq);
1048 } else {
1049 LIST_REMOVE(ph, ph_pagelist);
1050 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1051
1052 /*
1053 * Update the timestamp on the page. A page must
1054 * be idle for some period of time before it can
1055 * be reclaimed by the pagedaemon. This minimizes
1056 * ping-pong'ing for memory.
1057 *
1058 * note for 64-bit time_t: truncating to 32-bit is not
1059 * a problem for our usage.
1060 */
1061 ph->ph_time = time_uptime;
1062 }
1063 pool_update_curpage(pp);
1064 }
1065
1066 /*
1067 * If the page was previously completely full, move it to the
1068 * partially-full list and make it the current page. The next
1069 * allocation will get the item from this page, instead of
1070 * further fragmenting the pool.
1071 */
1072 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1073 LIST_REMOVE(ph, ph_pagelist);
1074 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1075 pp->pr_curpage = ph;
1076 }
1077 }
1078
1079 void
1080 pool_put(struct pool *pp, void *v)
1081 {
1082 struct pool_pagelist pq;
1083
1084 LIST_INIT(&pq);
1085
1086 mutex_enter(&pp->pr_lock);
1087 pool_do_put(pp, v, &pq);
1088 mutex_exit(&pp->pr_lock);
1089
1090 pr_pagelist_free(pp, &pq);
1091 }
1092
1093 /*
1094 * pool_grow: grow a pool by a page.
1095 *
1096 * => called with pool locked.
1097 * => unlock and relock the pool.
1098 * => return with pool locked.
1099 */
1100
1101 static int
1102 pool_grow(struct pool *pp, int flags)
1103 {
1104 /*
1105 * If there's a pool_grow in progress, wait for it to complete
1106 * and try again from the top.
1107 */
1108 if (pp->pr_flags & PR_GROWING) {
1109 if (flags & PR_WAITOK) {
1110 do {
1111 cv_wait(&pp->pr_cv, &pp->pr_lock);
1112 } while (pp->pr_flags & PR_GROWING);
1113 return ERESTART;
1114 } else {
1115 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1116 /*
1117 * This needs an unlock/relock dance so
1118 * that the other caller has a chance to
1119 * run and actually do the thing. Note
1120 * that this is effectively a busy-wait.
1121 */
1122 mutex_exit(&pp->pr_lock);
1123 mutex_enter(&pp->pr_lock);
1124 return ERESTART;
1125 }
1126 return EWOULDBLOCK;
1127 }
1128 }
1129 pp->pr_flags |= PR_GROWING;
1130 if (flags & PR_WAITOK)
1131 mutex_exit(&pp->pr_lock);
1132 else
1133 pp->pr_flags |= PR_GROWINGNOWAIT;
1134
1135 char *cp = pool_allocator_alloc(pp, flags);
1136 if (__predict_false(cp == NULL))
1137 goto out;
1138
1139 struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1140 if (__predict_false(ph == NULL)) {
1141 pool_allocator_free(pp, cp);
1142 goto out;
1143 }
1144
1145 if (flags & PR_WAITOK)
1146 mutex_enter(&pp->pr_lock);
1147 pool_prime_page(pp, cp, ph);
1148 pp->pr_npagealloc++;
1149 KASSERT(pp->pr_flags & PR_GROWING);
1150 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1151 /*
1152 * If anyone was waiting for pool_grow, notify them that we
1153 * may have just done it.
1154 */
1155 cv_broadcast(&pp->pr_cv);
1156 return 0;
1157 out:
1158 if (flags & PR_WAITOK)
1159 mutex_enter(&pp->pr_lock);
1160 KASSERT(pp->pr_flags & PR_GROWING);
1161 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1162 return ENOMEM;
1163 }
1164
1165 /*
1166 * Add N items to the pool.
1167 */
1168 int
1169 pool_prime(struct pool *pp, int n)
1170 {
1171 int newpages;
1172 int error = 0;
1173
1174 mutex_enter(&pp->pr_lock);
1175
1176 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1177
1178 while (newpages > 0) {
1179 error = pool_grow(pp, PR_NOWAIT);
1180 if (error) {
1181 if (error == ERESTART)
1182 continue;
1183 break;
1184 }
1185 pp->pr_minpages++;
1186 newpages--;
1187 }
1188
1189 if (pp->pr_minpages >= pp->pr_maxpages)
1190 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1191
1192 mutex_exit(&pp->pr_lock);
1193 return error;
1194 }
1195
1196 /*
1197 * Add a page worth of items to the pool.
1198 *
1199 * Note, we must be called with the pool descriptor LOCKED.
1200 */
1201 static void
1202 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1203 {
1204 struct pool_item *pi;
1205 void *cp = storage;
1206 const unsigned int align = pp->pr_align;
1207 const unsigned int ioff = pp->pr_itemoffset;
1208 int n;
1209
1210 KASSERT(mutex_owned(&pp->pr_lock));
1211 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1212 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1213 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1214
1215 /*
1216 * Insert page header.
1217 */
1218 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1219 LIST_INIT(&ph->ph_itemlist);
1220 ph->ph_page = storage;
1221 ph->ph_nmissing = 0;
1222 ph->ph_time = time_uptime;
1223 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1224 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1225
1226 pp->pr_nidle++;
1227
1228 /*
1229 * Color this page.
1230 */
1231 ph->ph_off = pp->pr_curcolor;
1232 cp = (char *)cp + ph->ph_off;
1233 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1234 pp->pr_curcolor = 0;
1235
1236 /*
1237 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1238 */
1239 if (ioff != 0)
1240 cp = (char *)cp + align - ioff;
1241
1242 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1243
1244 /*
1245 * Insert remaining chunks on the bucket list.
1246 */
1247 n = pp->pr_itemsperpage;
1248 pp->pr_nitems += n;
1249
1250 if (pp->pr_roflags & PR_NOTOUCH) {
1251 pr_item_notouch_init(pp, ph);
1252 } else {
1253 while (n--) {
1254 pi = (struct pool_item *)cp;
1255
1256 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1257
1258 /* Insert on page list */
1259 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1260 #ifdef POOL_CHECK_MAGIC
1261 pi->pi_magic = PI_MAGIC;
1262 #endif
1263 cp = (char *)cp + pp->pr_size;
1264
1265 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1266 }
1267 }
1268
1269 /*
1270 * If the pool was depleted, point at the new page.
1271 */
1272 if (pp->pr_curpage == NULL)
1273 pp->pr_curpage = ph;
1274
1275 if (++pp->pr_npages > pp->pr_hiwat)
1276 pp->pr_hiwat = pp->pr_npages;
1277 }
1278
1279 /*
1280 * Used by pool_get() when nitems drops below the low water mark. This
1281 * is used to catch up pr_nitems with the low water mark.
1282 *
1283 * Note 1, we never wait for memory here, we let the caller decide what to do.
1284 *
1285 * Note 2, we must be called with the pool already locked, and we return
1286 * with it locked.
1287 */
1288 static int
1289 pool_catchup(struct pool *pp)
1290 {
1291 int error = 0;
1292
1293 while (POOL_NEEDS_CATCHUP(pp)) {
1294 error = pool_grow(pp, PR_NOWAIT);
1295 if (error) {
1296 if (error == ERESTART)
1297 continue;
1298 break;
1299 }
1300 }
1301 return error;
1302 }
1303
1304 static void
1305 pool_update_curpage(struct pool *pp)
1306 {
1307
1308 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1309 if (pp->pr_curpage == NULL) {
1310 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1311 }
1312 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1313 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1314 }
1315
1316 void
1317 pool_setlowat(struct pool *pp, int n)
1318 {
1319
1320 mutex_enter(&pp->pr_lock);
1321
1322 pp->pr_minitems = n;
1323 pp->pr_minpages = (n == 0)
1324 ? 0
1325 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1326
1327 /* Make sure we're caught up with the newly-set low water mark. */
1328 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1329 /*
1330 * XXX: Should we log a warning? Should we set up a timeout
1331 * to try again in a second or so? The latter could break
1332 * a caller's assumptions about interrupt protection, etc.
1333 */
1334 }
1335
1336 mutex_exit(&pp->pr_lock);
1337 }
1338
1339 void
1340 pool_sethiwat(struct pool *pp, int n)
1341 {
1342
1343 mutex_enter(&pp->pr_lock);
1344
1345 pp->pr_maxpages = (n == 0)
1346 ? 0
1347 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1348
1349 mutex_exit(&pp->pr_lock);
1350 }
1351
1352 void
1353 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1354 {
1355
1356 mutex_enter(&pp->pr_lock);
1357
1358 pp->pr_hardlimit = n;
1359 pp->pr_hardlimit_warning = warnmess;
1360 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1361 pp->pr_hardlimit_warning_last.tv_sec = 0;
1362 pp->pr_hardlimit_warning_last.tv_usec = 0;
1363
1364 /*
1365 * In-line version of pool_sethiwat(), because we don't want to
1366 * release the lock.
1367 */
1368 pp->pr_maxpages = (n == 0)
1369 ? 0
1370 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1371
1372 mutex_exit(&pp->pr_lock);
1373 }
1374
1375 /*
1376 * Release all complete pages that have not been used recently.
1377 *
1378 * Must not be called from interrupt context.
1379 */
1380 int
1381 pool_reclaim(struct pool *pp)
1382 {
1383 struct pool_item_header *ph, *phnext;
1384 struct pool_pagelist pq;
1385 uint32_t curtime;
1386 bool klock;
1387 int rv;
1388
1389 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1390
1391 if (pp->pr_drain_hook != NULL) {
1392 /*
1393 * The drain hook must be called with the pool unlocked.
1394 */
1395 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1396 }
1397
1398 /*
1399 * XXXSMP Because we do not want to cause non-MPSAFE code
1400 * to block.
1401 */
1402 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1403 pp->pr_ipl == IPL_SOFTSERIAL) {
1404 KERNEL_LOCK(1, NULL);
1405 klock = true;
1406 } else
1407 klock = false;
1408
1409 /* Reclaim items from the pool's cache (if any). */
1410 if (pp->pr_cache != NULL)
1411 pool_cache_invalidate(pp->pr_cache);
1412
1413 if (mutex_tryenter(&pp->pr_lock) == 0) {
1414 if (klock) {
1415 KERNEL_UNLOCK_ONE(NULL);
1416 }
1417 return (0);
1418 }
1419
1420 LIST_INIT(&pq);
1421
1422 curtime = time_uptime;
1423
1424 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1425 phnext = LIST_NEXT(ph, ph_pagelist);
1426
1427 /* Check our minimum page claim */
1428 if (pp->pr_npages <= pp->pr_minpages)
1429 break;
1430
1431 KASSERT(ph->ph_nmissing == 0);
1432 if (curtime - ph->ph_time < pool_inactive_time)
1433 continue;
1434
1435 /*
1436 * If freeing this page would put us below
1437 * the low water mark, stop now.
1438 */
1439 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1440 pp->pr_minitems)
1441 break;
1442
1443 pr_rmpage(pp, ph, &pq);
1444 }
1445
1446 mutex_exit(&pp->pr_lock);
1447
1448 if (LIST_EMPTY(&pq))
1449 rv = 0;
1450 else {
1451 pr_pagelist_free(pp, &pq);
1452 rv = 1;
1453 }
1454
1455 if (klock) {
1456 KERNEL_UNLOCK_ONE(NULL);
1457 }
1458
1459 return (rv);
1460 }
1461
1462 /*
1463 * Drain pools, one at a time. The drained pool is returned within ppp.
1464 *
1465 * Note, must never be called from interrupt context.
1466 */
1467 bool
1468 pool_drain(struct pool **ppp)
1469 {
1470 bool reclaimed;
1471 struct pool *pp;
1472
1473 KASSERT(!TAILQ_EMPTY(&pool_head));
1474
1475 pp = NULL;
1476
1477 /* Find next pool to drain, and add a reference. */
1478 mutex_enter(&pool_head_lock);
1479 do {
1480 if (drainpp == NULL) {
1481 drainpp = TAILQ_FIRST(&pool_head);
1482 }
1483 if (drainpp != NULL) {
1484 pp = drainpp;
1485 drainpp = TAILQ_NEXT(pp, pr_poollist);
1486 }
1487 /*
1488 * Skip completely idle pools. We depend on at least
1489 * one pool in the system being active.
1490 */
1491 } while (pp == NULL || pp->pr_npages == 0);
1492 pp->pr_refcnt++;
1493 mutex_exit(&pool_head_lock);
1494
1495 /* Drain the cache (if any) and pool.. */
1496 reclaimed = pool_reclaim(pp);
1497
1498 /* Finally, unlock the pool. */
1499 mutex_enter(&pool_head_lock);
1500 pp->pr_refcnt--;
1501 cv_broadcast(&pool_busy);
1502 mutex_exit(&pool_head_lock);
1503
1504 if (ppp != NULL)
1505 *ppp = pp;
1506
1507 return reclaimed;
1508 }
1509
1510 /*
1511 * Calculate the total number of pages consumed by pools.
1512 */
1513 int
1514 pool_totalpages(void)
1515 {
1516 struct pool *pp;
1517 uint64_t total = 0;
1518
1519 mutex_enter(&pool_head_lock);
1520 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1521 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1522
1523 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1524 bytes -= (pp->pr_nout * pp->pr_size);
1525 total += bytes;
1526 }
1527 mutex_exit(&pool_head_lock);
1528
1529 return atop(total);
1530 }
1531
1532 /*
1533 * Diagnostic helpers.
1534 */
1535
1536 void
1537 pool_printall(const char *modif, void (*pr)(const char *, ...))
1538 {
1539 struct pool *pp;
1540
1541 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1542 pool_printit(pp, modif, pr);
1543 }
1544 }
1545
1546 void
1547 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1548 {
1549
1550 if (pp == NULL) {
1551 (*pr)("Must specify a pool to print.\n");
1552 return;
1553 }
1554
1555 pool_print1(pp, modif, pr);
1556 }
1557
1558 static void
1559 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1560 void (*pr)(const char *, ...))
1561 {
1562 struct pool_item_header *ph;
1563
1564 LIST_FOREACH(ph, pl, ph_pagelist) {
1565 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1566 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1567 #ifdef POOL_CHECK_MAGIC
1568 struct pool_item *pi;
1569 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1570 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1571 if (pi->pi_magic != PI_MAGIC) {
1572 (*pr)("\t\t\titem %p, magic 0x%x\n",
1573 pi, pi->pi_magic);
1574 }
1575 }
1576 }
1577 #endif
1578 }
1579 }
1580
1581 static void
1582 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1583 {
1584 struct pool_item_header *ph;
1585 pool_cache_t pc;
1586 pcg_t *pcg;
1587 pool_cache_cpu_t *cc;
1588 uint64_t cpuhit, cpumiss;
1589 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1590 char c;
1591
1592 while ((c = *modif++) != '\0') {
1593 if (c == 'l')
1594 print_log = 1;
1595 if (c == 'p')
1596 print_pagelist = 1;
1597 if (c == 'c')
1598 print_cache = 1;
1599 }
1600
1601 if ((pc = pp->pr_cache) != NULL) {
1602 (*pr)("POOL CACHE");
1603 } else {
1604 (*pr)("POOL");
1605 }
1606
1607 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1608 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1609 pp->pr_roflags);
1610 (*pr)("\talloc %p\n", pp->pr_alloc);
1611 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1612 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1613 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1614 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1615
1616 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1617 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1618 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1619 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1620
1621 if (print_pagelist == 0)
1622 goto skip_pagelist;
1623
1624 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1625 (*pr)("\n\tempty page list:\n");
1626 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1627 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1628 (*pr)("\n\tfull page list:\n");
1629 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1630 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1631 (*pr)("\n\tpartial-page list:\n");
1632 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1633
1634 if (pp->pr_curpage == NULL)
1635 (*pr)("\tno current page\n");
1636 else
1637 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1638
1639 skip_pagelist:
1640 if (print_log == 0)
1641 goto skip_log;
1642
1643 (*pr)("\n");
1644
1645 skip_log:
1646
1647 #define PR_GROUPLIST(pcg) \
1648 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1649 for (i = 0; i < pcg->pcg_size; i++) { \
1650 if (pcg->pcg_objects[i].pcgo_pa != \
1651 POOL_PADDR_INVALID) { \
1652 (*pr)("\t\t\t%p, 0x%llx\n", \
1653 pcg->pcg_objects[i].pcgo_va, \
1654 (unsigned long long) \
1655 pcg->pcg_objects[i].pcgo_pa); \
1656 } else { \
1657 (*pr)("\t\t\t%p\n", \
1658 pcg->pcg_objects[i].pcgo_va); \
1659 } \
1660 }
1661
1662 if (pc != NULL) {
1663 cpuhit = 0;
1664 cpumiss = 0;
1665 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1666 if ((cc = pc->pc_cpus[i]) == NULL)
1667 continue;
1668 cpuhit += cc->cc_hits;
1669 cpumiss += cc->cc_misses;
1670 }
1671 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1672 (*pr)("\tcache layer hits %llu misses %llu\n",
1673 pc->pc_hits, pc->pc_misses);
1674 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1675 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1676 pc->pc_contended);
1677 (*pr)("\tcache layer empty groups %u full groups %u\n",
1678 pc->pc_nempty, pc->pc_nfull);
1679 if (print_cache) {
1680 (*pr)("\tfull cache groups:\n");
1681 for (pcg = pc->pc_fullgroups; pcg != NULL;
1682 pcg = pcg->pcg_next) {
1683 PR_GROUPLIST(pcg);
1684 }
1685 (*pr)("\tempty cache groups:\n");
1686 for (pcg = pc->pc_emptygroups; pcg != NULL;
1687 pcg = pcg->pcg_next) {
1688 PR_GROUPLIST(pcg);
1689 }
1690 }
1691 }
1692 #undef PR_GROUPLIST
1693 }
1694
1695 static int
1696 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1697 {
1698 struct pool_item *pi;
1699 void *page;
1700 int n;
1701
1702 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1703 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1704 if (page != ph->ph_page &&
1705 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1706 if (label != NULL)
1707 printf("%s: ", label);
1708 printf("pool(%p:%s): page inconsistency: page %p;"
1709 " at page head addr %p (p %p)\n", pp,
1710 pp->pr_wchan, ph->ph_page,
1711 ph, page);
1712 return 1;
1713 }
1714 }
1715
1716 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1717 return 0;
1718
1719 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1720 pi != NULL;
1721 pi = LIST_NEXT(pi,pi_list), n++) {
1722
1723 #ifdef POOL_CHECK_MAGIC
1724 if (pi->pi_magic != PI_MAGIC) {
1725 if (label != NULL)
1726 printf("%s: ", label);
1727 printf("pool(%s): free list modified: magic=%x;"
1728 " page %p; item ordinal %d; addr %p\n",
1729 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1730 n, pi);
1731 panic("pool");
1732 }
1733 #endif
1734 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1735 continue;
1736 }
1737 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1738 if (page == ph->ph_page)
1739 continue;
1740
1741 if (label != NULL)
1742 printf("%s: ", label);
1743 printf("pool(%p:%s): page inconsistency: page %p;"
1744 " item ordinal %d; addr %p (p %p)\n", pp,
1745 pp->pr_wchan, ph->ph_page,
1746 n, pi, page);
1747 return 1;
1748 }
1749 return 0;
1750 }
1751
1752
1753 int
1754 pool_chk(struct pool *pp, const char *label)
1755 {
1756 struct pool_item_header *ph;
1757 int r = 0;
1758
1759 mutex_enter(&pp->pr_lock);
1760 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1761 r = pool_chk_page(pp, label, ph);
1762 if (r) {
1763 goto out;
1764 }
1765 }
1766 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1767 r = pool_chk_page(pp, label, ph);
1768 if (r) {
1769 goto out;
1770 }
1771 }
1772 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1773 r = pool_chk_page(pp, label, ph);
1774 if (r) {
1775 goto out;
1776 }
1777 }
1778
1779 out:
1780 mutex_exit(&pp->pr_lock);
1781 return (r);
1782 }
1783
1784 /*
1785 * pool_cache_init:
1786 *
1787 * Initialize a pool cache.
1788 */
1789 pool_cache_t
1790 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1791 const char *wchan, struct pool_allocator *palloc, int ipl,
1792 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1793 {
1794 pool_cache_t pc;
1795
1796 pc = pool_get(&cache_pool, PR_WAITOK);
1797 if (pc == NULL)
1798 return NULL;
1799
1800 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1801 palloc, ipl, ctor, dtor, arg);
1802
1803 return pc;
1804 }
1805
1806 /*
1807 * pool_cache_bootstrap:
1808 *
1809 * Kernel-private version of pool_cache_init(). The caller
1810 * provides initial storage.
1811 */
1812 void
1813 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1814 u_int align_offset, u_int flags, const char *wchan,
1815 struct pool_allocator *palloc, int ipl,
1816 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1817 void *arg)
1818 {
1819 CPU_INFO_ITERATOR cii;
1820 pool_cache_t pc1;
1821 struct cpu_info *ci;
1822 struct pool *pp;
1823
1824 pp = &pc->pc_pool;
1825 if (palloc == NULL && ipl == IPL_NONE) {
1826 if (size > PAGE_SIZE) {
1827 int bigidx = pool_bigidx(size);
1828
1829 palloc = &pool_allocator_big[bigidx];
1830 } else
1831 palloc = &pool_allocator_nointr;
1832 }
1833 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1834 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1835
1836 if (ctor == NULL) {
1837 ctor = (int (*)(void *, void *, int))nullop;
1838 }
1839 if (dtor == NULL) {
1840 dtor = (void (*)(void *, void *))nullop;
1841 }
1842
1843 pc->pc_emptygroups = NULL;
1844 pc->pc_fullgroups = NULL;
1845 pc->pc_partgroups = NULL;
1846 pc->pc_ctor = ctor;
1847 pc->pc_dtor = dtor;
1848 pc->pc_arg = arg;
1849 pc->pc_hits = 0;
1850 pc->pc_misses = 0;
1851 pc->pc_nempty = 0;
1852 pc->pc_npart = 0;
1853 pc->pc_nfull = 0;
1854 pc->pc_contended = 0;
1855 pc->pc_refcnt = 0;
1856 pc->pc_freecheck = NULL;
1857
1858 if ((flags & PR_LARGECACHE) != 0) {
1859 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1860 pc->pc_pcgpool = &pcg_large_pool;
1861 } else {
1862 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1863 pc->pc_pcgpool = &pcg_normal_pool;
1864 }
1865
1866 /* Allocate per-CPU caches. */
1867 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1868 pc->pc_ncpu = 0;
1869 if (ncpu < 2) {
1870 /* XXX For sparc: boot CPU is not attached yet. */
1871 pool_cache_cpu_init1(curcpu(), pc);
1872 } else {
1873 for (CPU_INFO_FOREACH(cii, ci)) {
1874 pool_cache_cpu_init1(ci, pc);
1875 }
1876 }
1877
1878 /* Add to list of all pools. */
1879 if (__predict_true(!cold))
1880 mutex_enter(&pool_head_lock);
1881 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1882 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1883 break;
1884 }
1885 if (pc1 == NULL)
1886 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1887 else
1888 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1889 if (__predict_true(!cold))
1890 mutex_exit(&pool_head_lock);
1891
1892 membar_sync();
1893 pp->pr_cache = pc;
1894 }
1895
1896 /*
1897 * pool_cache_destroy:
1898 *
1899 * Destroy a pool cache.
1900 */
1901 void
1902 pool_cache_destroy(pool_cache_t pc)
1903 {
1904
1905 pool_cache_bootstrap_destroy(pc);
1906 pool_put(&cache_pool, pc);
1907 }
1908
1909 /*
1910 * pool_cache_bootstrap_destroy:
1911 *
1912 * Destroy a pool cache.
1913 */
1914 void
1915 pool_cache_bootstrap_destroy(pool_cache_t pc)
1916 {
1917 struct pool *pp = &pc->pc_pool;
1918 u_int i;
1919
1920 /* Remove it from the global list. */
1921 mutex_enter(&pool_head_lock);
1922 while (pc->pc_refcnt != 0)
1923 cv_wait(&pool_busy, &pool_head_lock);
1924 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1925 mutex_exit(&pool_head_lock);
1926
1927 /* First, invalidate the entire cache. */
1928 pool_cache_invalidate(pc);
1929
1930 /* Disassociate it from the pool. */
1931 mutex_enter(&pp->pr_lock);
1932 pp->pr_cache = NULL;
1933 mutex_exit(&pp->pr_lock);
1934
1935 /* Destroy per-CPU data */
1936 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1937 pool_cache_invalidate_cpu(pc, i);
1938
1939 /* Finally, destroy it. */
1940 mutex_destroy(&pc->pc_lock);
1941 pool_destroy(pp);
1942 }
1943
1944 /*
1945 * pool_cache_cpu_init1:
1946 *
1947 * Called for each pool_cache whenever a new CPU is attached.
1948 */
1949 static void
1950 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1951 {
1952 pool_cache_cpu_t *cc;
1953 int index;
1954
1955 index = ci->ci_index;
1956
1957 KASSERT(index < __arraycount(pc->pc_cpus));
1958
1959 if ((cc = pc->pc_cpus[index]) != NULL) {
1960 KASSERT(cc->cc_cpuindex == index);
1961 return;
1962 }
1963
1964 /*
1965 * The first CPU is 'free'. This needs to be the case for
1966 * bootstrap - we may not be able to allocate yet.
1967 */
1968 if (pc->pc_ncpu == 0) {
1969 cc = &pc->pc_cpu0;
1970 pc->pc_ncpu = 1;
1971 } else {
1972 mutex_enter(&pc->pc_lock);
1973 pc->pc_ncpu++;
1974 mutex_exit(&pc->pc_lock);
1975 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1976 }
1977
1978 cc->cc_ipl = pc->pc_pool.pr_ipl;
1979 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1980 cc->cc_cache = pc;
1981 cc->cc_cpuindex = index;
1982 cc->cc_hits = 0;
1983 cc->cc_misses = 0;
1984 cc->cc_current = __UNCONST(&pcg_dummy);
1985 cc->cc_previous = __UNCONST(&pcg_dummy);
1986
1987 pc->pc_cpus[index] = cc;
1988 }
1989
1990 /*
1991 * pool_cache_cpu_init:
1992 *
1993 * Called whenever a new CPU is attached.
1994 */
1995 void
1996 pool_cache_cpu_init(struct cpu_info *ci)
1997 {
1998 pool_cache_t pc;
1999
2000 mutex_enter(&pool_head_lock);
2001 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2002 pc->pc_refcnt++;
2003 mutex_exit(&pool_head_lock);
2004
2005 pool_cache_cpu_init1(ci, pc);
2006
2007 mutex_enter(&pool_head_lock);
2008 pc->pc_refcnt--;
2009 cv_broadcast(&pool_busy);
2010 }
2011 mutex_exit(&pool_head_lock);
2012 }
2013
2014 /*
2015 * pool_cache_reclaim:
2016 *
2017 * Reclaim memory from a pool cache.
2018 */
2019 bool
2020 pool_cache_reclaim(pool_cache_t pc)
2021 {
2022
2023 return pool_reclaim(&pc->pc_pool);
2024 }
2025
2026 static void
2027 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2028 {
2029 if (pc->pc_pool.pr_redzone) {
2030 /*
2031 * The object is marked as invalid. Temporarily mark it as
2032 * valid for the destructor. pool_put below will re-mark it
2033 * as invalid.
2034 */
2035 kasan_alloc(object, pc->pc_pool.pr_reqsize,
2036 pc->pc_pool.pr_reqsize_with_redzone);
2037 }
2038
2039 (*pc->pc_dtor)(pc->pc_arg, object);
2040 pool_put(&pc->pc_pool, object);
2041 }
2042
2043 /*
2044 * pool_cache_destruct_object:
2045 *
2046 * Force destruction of an object and its release back into
2047 * the pool.
2048 */
2049 void
2050 pool_cache_destruct_object(pool_cache_t pc, void *object)
2051 {
2052
2053 FREECHECK_IN(&pc->pc_freecheck, object);
2054
2055 pool_cache_destruct_object1(pc, object);
2056 }
2057
2058 /*
2059 * pool_cache_invalidate_groups:
2060 *
2061 * Invalidate a chain of groups and destruct all objects.
2062 */
2063 static void
2064 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2065 {
2066 void *object;
2067 pcg_t *next;
2068 int i;
2069
2070 for (; pcg != NULL; pcg = next) {
2071 next = pcg->pcg_next;
2072
2073 for (i = 0; i < pcg->pcg_avail; i++) {
2074 object = pcg->pcg_objects[i].pcgo_va;
2075 pool_cache_destruct_object1(pc, object);
2076 }
2077
2078 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2079 pool_put(&pcg_large_pool, pcg);
2080 } else {
2081 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2082 pool_put(&pcg_normal_pool, pcg);
2083 }
2084 }
2085 }
2086
2087 /*
2088 * pool_cache_invalidate:
2089 *
2090 * Invalidate a pool cache (destruct and release all of the
2091 * cached objects). Does not reclaim objects from the pool.
2092 *
2093 * Note: For pool caches that provide constructed objects, there
2094 * is an assumption that another level of synchronization is occurring
2095 * between the input to the constructor and the cache invalidation.
2096 *
2097 * Invalidation is a costly process and should not be called from
2098 * interrupt context.
2099 */
2100 void
2101 pool_cache_invalidate(pool_cache_t pc)
2102 {
2103 uint64_t where;
2104 pcg_t *full, *empty, *part;
2105
2106 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2107
2108 if (ncpu < 2 || !mp_online) {
2109 /*
2110 * We might be called early enough in the boot process
2111 * for the CPU data structures to not be fully initialized.
2112 * In this case, transfer the content of the local CPU's
2113 * cache back into global cache as only this CPU is currently
2114 * running.
2115 */
2116 pool_cache_transfer(pc);
2117 } else {
2118 /*
2119 * Signal all CPUs that they must transfer their local
2120 * cache back to the global pool then wait for the xcall to
2121 * complete.
2122 */
2123 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2124 pc, NULL);
2125 xc_wait(where);
2126 }
2127
2128 /* Empty pool caches, then invalidate objects */
2129 mutex_enter(&pc->pc_lock);
2130 full = pc->pc_fullgroups;
2131 empty = pc->pc_emptygroups;
2132 part = pc->pc_partgroups;
2133 pc->pc_fullgroups = NULL;
2134 pc->pc_emptygroups = NULL;
2135 pc->pc_partgroups = NULL;
2136 pc->pc_nfull = 0;
2137 pc->pc_nempty = 0;
2138 pc->pc_npart = 0;
2139 mutex_exit(&pc->pc_lock);
2140
2141 pool_cache_invalidate_groups(pc, full);
2142 pool_cache_invalidate_groups(pc, empty);
2143 pool_cache_invalidate_groups(pc, part);
2144 }
2145
2146 /*
2147 * pool_cache_invalidate_cpu:
2148 *
2149 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2150 * identified by its associated index.
2151 * It is caller's responsibility to ensure that no operation is
2152 * taking place on this pool cache while doing this invalidation.
2153 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2154 * pool cached objects from a CPU different from the one currently running
2155 * may result in an undefined behaviour.
2156 */
2157 static void
2158 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2159 {
2160 pool_cache_cpu_t *cc;
2161 pcg_t *pcg;
2162
2163 if ((cc = pc->pc_cpus[index]) == NULL)
2164 return;
2165
2166 if ((pcg = cc->cc_current) != &pcg_dummy) {
2167 pcg->pcg_next = NULL;
2168 pool_cache_invalidate_groups(pc, pcg);
2169 }
2170 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2171 pcg->pcg_next = NULL;
2172 pool_cache_invalidate_groups(pc, pcg);
2173 }
2174 if (cc != &pc->pc_cpu0)
2175 pool_put(&cache_cpu_pool, cc);
2176
2177 }
2178
2179 void
2180 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2181 {
2182
2183 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2184 }
2185
2186 void
2187 pool_cache_setlowat(pool_cache_t pc, int n)
2188 {
2189
2190 pool_setlowat(&pc->pc_pool, n);
2191 }
2192
2193 void
2194 pool_cache_sethiwat(pool_cache_t pc, int n)
2195 {
2196
2197 pool_sethiwat(&pc->pc_pool, n);
2198 }
2199
2200 void
2201 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2202 {
2203
2204 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2205 }
2206
2207 static bool __noinline
2208 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2209 paddr_t *pap, int flags)
2210 {
2211 pcg_t *pcg, *cur;
2212 uint64_t ncsw;
2213 pool_cache_t pc;
2214 void *object;
2215
2216 KASSERT(cc->cc_current->pcg_avail == 0);
2217 KASSERT(cc->cc_previous->pcg_avail == 0);
2218
2219 pc = cc->cc_cache;
2220 cc->cc_misses++;
2221
2222 /*
2223 * Nothing was available locally. Try and grab a group
2224 * from the cache.
2225 */
2226 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2227 ncsw = curlwp->l_ncsw;
2228 mutex_enter(&pc->pc_lock);
2229 pc->pc_contended++;
2230
2231 /*
2232 * If we context switched while locking, then
2233 * our view of the per-CPU data is invalid:
2234 * retry.
2235 */
2236 if (curlwp->l_ncsw != ncsw) {
2237 mutex_exit(&pc->pc_lock);
2238 return true;
2239 }
2240 }
2241
2242 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2243 /*
2244 * If there's a full group, release our empty
2245 * group back to the cache. Install the full
2246 * group as cc_current and return.
2247 */
2248 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2249 KASSERT(cur->pcg_avail == 0);
2250 cur->pcg_next = pc->pc_emptygroups;
2251 pc->pc_emptygroups = cur;
2252 pc->pc_nempty++;
2253 }
2254 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2255 cc->cc_current = pcg;
2256 pc->pc_fullgroups = pcg->pcg_next;
2257 pc->pc_hits++;
2258 pc->pc_nfull--;
2259 mutex_exit(&pc->pc_lock);
2260 return true;
2261 }
2262
2263 /*
2264 * Nothing available locally or in cache. Take the slow
2265 * path: fetch a new object from the pool and construct
2266 * it.
2267 */
2268 pc->pc_misses++;
2269 mutex_exit(&pc->pc_lock);
2270 splx(s);
2271
2272 object = pool_get(&pc->pc_pool, flags);
2273 *objectp = object;
2274 if (__predict_false(object == NULL)) {
2275 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2276 return false;
2277 }
2278
2279 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2280 pool_put(&pc->pc_pool, object);
2281 *objectp = NULL;
2282 return false;
2283 }
2284
2285 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2286 (pc->pc_pool.pr_align - 1)) == 0);
2287
2288 if (pap != NULL) {
2289 #ifdef POOL_VTOPHYS
2290 *pap = POOL_VTOPHYS(object);
2291 #else
2292 *pap = POOL_PADDR_INVALID;
2293 #endif
2294 }
2295
2296 FREECHECK_OUT(&pc->pc_freecheck, object);
2297 pool_redzone_fill(&pc->pc_pool, object);
2298 pool_cache_kleak_fill(pc, object);
2299 return false;
2300 }
2301
2302 /*
2303 * pool_cache_get{,_paddr}:
2304 *
2305 * Get an object from a pool cache (optionally returning
2306 * the physical address of the object).
2307 */
2308 void *
2309 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2310 {
2311 pool_cache_cpu_t *cc;
2312 pcg_t *pcg;
2313 void *object;
2314 int s;
2315
2316 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2317 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2318 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2319 "%s: [%s] is IPL_NONE, but called from interrupt context",
2320 __func__, pc->pc_pool.pr_wchan);
2321
2322 if (flags & PR_WAITOK) {
2323 ASSERT_SLEEPABLE();
2324 }
2325
2326 /* Lock out interrupts and disable preemption. */
2327 s = splvm();
2328 while (/* CONSTCOND */ true) {
2329 /* Try and allocate an object from the current group. */
2330 cc = pc->pc_cpus[curcpu()->ci_index];
2331 KASSERT(cc->cc_cache == pc);
2332 pcg = cc->cc_current;
2333 if (__predict_true(pcg->pcg_avail > 0)) {
2334 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2335 if (__predict_false(pap != NULL))
2336 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2337 #if defined(DIAGNOSTIC)
2338 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2339 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2340 KASSERT(object != NULL);
2341 #endif
2342 cc->cc_hits++;
2343 splx(s);
2344 FREECHECK_OUT(&pc->pc_freecheck, object);
2345 pool_redzone_fill(&pc->pc_pool, object);
2346 pool_cache_kleak_fill(pc, object);
2347 return object;
2348 }
2349
2350 /*
2351 * That failed. If the previous group isn't empty, swap
2352 * it with the current group and allocate from there.
2353 */
2354 pcg = cc->cc_previous;
2355 if (__predict_true(pcg->pcg_avail > 0)) {
2356 cc->cc_previous = cc->cc_current;
2357 cc->cc_current = pcg;
2358 continue;
2359 }
2360
2361 /*
2362 * Can't allocate from either group: try the slow path.
2363 * If get_slow() allocated an object for us, or if
2364 * no more objects are available, it will return false.
2365 * Otherwise, we need to retry.
2366 */
2367 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2368 break;
2369 }
2370
2371 /*
2372 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2373 * pool_cache_get can fail even in the PR_WAITOK case, if the
2374 * constructor fails.
2375 */
2376 return object;
2377 }
2378
2379 static bool __noinline
2380 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2381 {
2382 struct lwp *l = curlwp;
2383 pcg_t *pcg, *cur;
2384 uint64_t ncsw;
2385 pool_cache_t pc;
2386
2387 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2388 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2389
2390 pc = cc->cc_cache;
2391 pcg = NULL;
2392 cc->cc_misses++;
2393 ncsw = l->l_ncsw;
2394
2395 /*
2396 * If there are no empty groups in the cache then allocate one
2397 * while still unlocked.
2398 */
2399 if (__predict_false(pc->pc_emptygroups == NULL)) {
2400 if (__predict_true(!pool_cache_disable)) {
2401 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2402 }
2403 /*
2404 * If pool_get() blocked, then our view of
2405 * the per-CPU data is invalid: retry.
2406 */
2407 if (__predict_false(l->l_ncsw != ncsw)) {
2408 if (pcg != NULL) {
2409 pool_put(pc->pc_pcgpool, pcg);
2410 }
2411 return true;
2412 }
2413 if (__predict_true(pcg != NULL)) {
2414 pcg->pcg_avail = 0;
2415 pcg->pcg_size = pc->pc_pcgsize;
2416 }
2417 }
2418
2419 /* Lock the cache. */
2420 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2421 mutex_enter(&pc->pc_lock);
2422 pc->pc_contended++;
2423
2424 /*
2425 * If we context switched while locking, then our view of
2426 * the per-CPU data is invalid: retry.
2427 */
2428 if (__predict_false(l->l_ncsw != ncsw)) {
2429 mutex_exit(&pc->pc_lock);
2430 if (pcg != NULL) {
2431 pool_put(pc->pc_pcgpool, pcg);
2432 }
2433 return true;
2434 }
2435 }
2436
2437 /* If there are no empty groups in the cache then allocate one. */
2438 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2439 pcg = pc->pc_emptygroups;
2440 pc->pc_emptygroups = pcg->pcg_next;
2441 pc->pc_nempty--;
2442 }
2443
2444 /*
2445 * If there's a empty group, release our full group back
2446 * to the cache. Install the empty group to the local CPU
2447 * and return.
2448 */
2449 if (pcg != NULL) {
2450 KASSERT(pcg->pcg_avail == 0);
2451 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2452 cc->cc_previous = pcg;
2453 } else {
2454 cur = cc->cc_current;
2455 if (__predict_true(cur != &pcg_dummy)) {
2456 KASSERT(cur->pcg_avail == cur->pcg_size);
2457 cur->pcg_next = pc->pc_fullgroups;
2458 pc->pc_fullgroups = cur;
2459 pc->pc_nfull++;
2460 }
2461 cc->cc_current = pcg;
2462 }
2463 pc->pc_hits++;
2464 mutex_exit(&pc->pc_lock);
2465 return true;
2466 }
2467
2468 /*
2469 * Nothing available locally or in cache, and we didn't
2470 * allocate an empty group. Take the slow path and destroy
2471 * the object here and now.
2472 */
2473 pc->pc_misses++;
2474 mutex_exit(&pc->pc_lock);
2475 splx(s);
2476 pool_cache_destruct_object(pc, object);
2477
2478 return false;
2479 }
2480
2481 /*
2482 * pool_cache_put{,_paddr}:
2483 *
2484 * Put an object back to the pool cache (optionally caching the
2485 * physical address of the object).
2486 */
2487 void
2488 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2489 {
2490 pool_cache_cpu_t *cc;
2491 pcg_t *pcg;
2492 int s;
2493
2494 KASSERT(object != NULL);
2495 pool_cache_redzone_check(pc, object);
2496 FREECHECK_IN(&pc->pc_freecheck, object);
2497
2498 /* Lock out interrupts and disable preemption. */
2499 s = splvm();
2500 while (/* CONSTCOND */ true) {
2501 /* If the current group isn't full, release it there. */
2502 cc = pc->pc_cpus[curcpu()->ci_index];
2503 KASSERT(cc->cc_cache == pc);
2504 pcg = cc->cc_current;
2505 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2506 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2507 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2508 pcg->pcg_avail++;
2509 cc->cc_hits++;
2510 splx(s);
2511 return;
2512 }
2513
2514 /*
2515 * That failed. If the previous group isn't full, swap
2516 * it with the current group and try again.
2517 */
2518 pcg = cc->cc_previous;
2519 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2520 cc->cc_previous = cc->cc_current;
2521 cc->cc_current = pcg;
2522 continue;
2523 }
2524
2525 /*
2526 * Can't free to either group: try the slow path.
2527 * If put_slow() releases the object for us, it
2528 * will return false. Otherwise we need to retry.
2529 */
2530 if (!pool_cache_put_slow(cc, s, object))
2531 break;
2532 }
2533 }
2534
2535 /*
2536 * pool_cache_transfer:
2537 *
2538 * Transfer objects from the per-CPU cache to the global cache.
2539 * Run within a cross-call thread.
2540 */
2541 static void
2542 pool_cache_transfer(pool_cache_t pc)
2543 {
2544 pool_cache_cpu_t *cc;
2545 pcg_t *prev, *cur, **list;
2546 int s;
2547
2548 s = splvm();
2549 mutex_enter(&pc->pc_lock);
2550 cc = pc->pc_cpus[curcpu()->ci_index];
2551 cur = cc->cc_current;
2552 cc->cc_current = __UNCONST(&pcg_dummy);
2553 prev = cc->cc_previous;
2554 cc->cc_previous = __UNCONST(&pcg_dummy);
2555 if (cur != &pcg_dummy) {
2556 if (cur->pcg_avail == cur->pcg_size) {
2557 list = &pc->pc_fullgroups;
2558 pc->pc_nfull++;
2559 } else if (cur->pcg_avail == 0) {
2560 list = &pc->pc_emptygroups;
2561 pc->pc_nempty++;
2562 } else {
2563 list = &pc->pc_partgroups;
2564 pc->pc_npart++;
2565 }
2566 cur->pcg_next = *list;
2567 *list = cur;
2568 }
2569 if (prev != &pcg_dummy) {
2570 if (prev->pcg_avail == prev->pcg_size) {
2571 list = &pc->pc_fullgroups;
2572 pc->pc_nfull++;
2573 } else if (prev->pcg_avail == 0) {
2574 list = &pc->pc_emptygroups;
2575 pc->pc_nempty++;
2576 } else {
2577 list = &pc->pc_partgroups;
2578 pc->pc_npart++;
2579 }
2580 prev->pcg_next = *list;
2581 *list = prev;
2582 }
2583 mutex_exit(&pc->pc_lock);
2584 splx(s);
2585 }
2586
2587 /*
2588 * Pool backend allocators.
2589 *
2590 * Each pool has a backend allocator that handles allocation, deallocation,
2591 * and any additional draining that might be needed.
2592 *
2593 * We provide two standard allocators:
2594 *
2595 * pool_allocator_kmem - the default when no allocator is specified
2596 *
2597 * pool_allocator_nointr - used for pools that will not be accessed
2598 * in interrupt context.
2599 */
2600 void *pool_page_alloc(struct pool *, int);
2601 void pool_page_free(struct pool *, void *);
2602
2603 #ifdef POOL_SUBPAGE
2604 struct pool_allocator pool_allocator_kmem_fullpage = {
2605 .pa_alloc = pool_page_alloc,
2606 .pa_free = pool_page_free,
2607 .pa_pagesz = 0
2608 };
2609 #else
2610 struct pool_allocator pool_allocator_kmem = {
2611 .pa_alloc = pool_page_alloc,
2612 .pa_free = pool_page_free,
2613 .pa_pagesz = 0
2614 };
2615 #endif
2616
2617 #ifdef POOL_SUBPAGE
2618 struct pool_allocator pool_allocator_nointr_fullpage = {
2619 .pa_alloc = pool_page_alloc,
2620 .pa_free = pool_page_free,
2621 .pa_pagesz = 0
2622 };
2623 #else
2624 struct pool_allocator pool_allocator_nointr = {
2625 .pa_alloc = pool_page_alloc,
2626 .pa_free = pool_page_free,
2627 .pa_pagesz = 0
2628 };
2629 #endif
2630
2631 #ifdef POOL_SUBPAGE
2632 void *pool_subpage_alloc(struct pool *, int);
2633 void pool_subpage_free(struct pool *, void *);
2634
2635 struct pool_allocator pool_allocator_kmem = {
2636 .pa_alloc = pool_subpage_alloc,
2637 .pa_free = pool_subpage_free,
2638 .pa_pagesz = POOL_SUBPAGE
2639 };
2640
2641 struct pool_allocator pool_allocator_nointr = {
2642 .pa_alloc = pool_subpage_alloc,
2643 .pa_free = pool_subpage_free,
2644 .pa_pagesz = POOL_SUBPAGE
2645 };
2646 #endif /* POOL_SUBPAGE */
2647
2648 struct pool_allocator pool_allocator_big[] = {
2649 {
2650 .pa_alloc = pool_page_alloc,
2651 .pa_free = pool_page_free,
2652 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2653 },
2654 {
2655 .pa_alloc = pool_page_alloc,
2656 .pa_free = pool_page_free,
2657 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2658 },
2659 {
2660 .pa_alloc = pool_page_alloc,
2661 .pa_free = pool_page_free,
2662 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2663 },
2664 {
2665 .pa_alloc = pool_page_alloc,
2666 .pa_free = pool_page_free,
2667 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2668 },
2669 {
2670 .pa_alloc = pool_page_alloc,
2671 .pa_free = pool_page_free,
2672 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2673 },
2674 {
2675 .pa_alloc = pool_page_alloc,
2676 .pa_free = pool_page_free,
2677 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2678 },
2679 {
2680 .pa_alloc = pool_page_alloc,
2681 .pa_free = pool_page_free,
2682 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2683 },
2684 {
2685 .pa_alloc = pool_page_alloc,
2686 .pa_free = pool_page_free,
2687 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2688 }
2689 };
2690
2691 static int
2692 pool_bigidx(size_t size)
2693 {
2694 int i;
2695
2696 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2697 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2698 return i;
2699 }
2700 panic("pool item size %zu too large, use a custom allocator", size);
2701 }
2702
2703 static void *
2704 pool_allocator_alloc(struct pool *pp, int flags)
2705 {
2706 struct pool_allocator *pa = pp->pr_alloc;
2707 void *res;
2708
2709 res = (*pa->pa_alloc)(pp, flags);
2710 if (res == NULL && (flags & PR_WAITOK) == 0) {
2711 /*
2712 * We only run the drain hook here if PR_NOWAIT.
2713 * In other cases, the hook will be run in
2714 * pool_reclaim().
2715 */
2716 if (pp->pr_drain_hook != NULL) {
2717 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2718 res = (*pa->pa_alloc)(pp, flags);
2719 }
2720 }
2721 return res;
2722 }
2723
2724 static void
2725 pool_allocator_free(struct pool *pp, void *v)
2726 {
2727 struct pool_allocator *pa = pp->pr_alloc;
2728
2729 if (pp->pr_redzone) {
2730 kasan_alloc(v, pa->pa_pagesz, pa->pa_pagesz);
2731 }
2732 (*pa->pa_free)(pp, v);
2733 }
2734
2735 void *
2736 pool_page_alloc(struct pool *pp, int flags)
2737 {
2738 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2739 vmem_addr_t va;
2740 int ret;
2741
2742 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2743 vflags | VM_INSTANTFIT, &va);
2744
2745 return ret ? NULL : (void *)va;
2746 }
2747
2748 void
2749 pool_page_free(struct pool *pp, void *v)
2750 {
2751
2752 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2753 }
2754
2755 static void *
2756 pool_page_alloc_meta(struct pool *pp, int flags)
2757 {
2758 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2759 vmem_addr_t va;
2760 int ret;
2761
2762 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2763 vflags | VM_INSTANTFIT, &va);
2764
2765 return ret ? NULL : (void *)va;
2766 }
2767
2768 static void
2769 pool_page_free_meta(struct pool *pp, void *v)
2770 {
2771
2772 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2773 }
2774
2775 #ifdef KLEAK
2776 static void
2777 pool_kleak_fill(struct pool *pp, void *p)
2778 {
2779 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2780 return;
2781 }
2782 kleak_fill_area(p, pp->pr_size);
2783 }
2784
2785 static void
2786 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2787 {
2788 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2789 return;
2790 }
2791 pool_kleak_fill(&pc->pc_pool, p);
2792 }
2793 #endif
2794
2795 #ifdef POOL_REDZONE
2796 #if defined(_LP64)
2797 # define PRIME 0x9e37fffffffc0000UL
2798 #else /* defined(_LP64) */
2799 # define PRIME 0x9e3779b1
2800 #endif /* defined(_LP64) */
2801 #define STATIC_BYTE 0xFE
2802 CTASSERT(POOL_REDZONE_SIZE > 1);
2803
2804 #ifndef KASAN
2805 static inline uint8_t
2806 pool_pattern_generate(const void *p)
2807 {
2808 return (uint8_t)(((uintptr_t)p) * PRIME
2809 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2810 }
2811 #endif
2812
2813 static void
2814 pool_redzone_init(struct pool *pp, size_t requested_size)
2815 {
2816 size_t redzsz;
2817 size_t nsz;
2818
2819 #ifdef KASAN
2820 redzsz = requested_size;
2821 kasan_add_redzone(&redzsz);
2822 redzsz -= requested_size;
2823 #else
2824 redzsz = POOL_REDZONE_SIZE;
2825 #endif
2826
2827 if (pp->pr_roflags & PR_NOTOUCH) {
2828 pp->pr_reqsize = 0;
2829 pp->pr_redzone = false;
2830 return;
2831 }
2832
2833 /*
2834 * We may have extended the requested size earlier; check if
2835 * there's naturally space in the padding for a red zone.
2836 */
2837 if (pp->pr_size - requested_size >= redzsz) {
2838 pp->pr_reqsize = requested_size;
2839 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2840 pp->pr_redzone = true;
2841 return;
2842 }
2843
2844 /*
2845 * No space in the natural padding; check if we can extend a
2846 * bit the size of the pool.
2847 */
2848 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2849 if (nsz <= pp->pr_alloc->pa_pagesz) {
2850 /* Ok, we can */
2851 pp->pr_size = nsz;
2852 pp->pr_reqsize = requested_size;
2853 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2854 pp->pr_redzone = true;
2855 } else {
2856 /* No space for a red zone... snif :'( */
2857 pp->pr_reqsize = 0;
2858 pp->pr_redzone = false;
2859 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2860 }
2861 }
2862
2863 static void
2864 pool_redzone_fill(struct pool *pp, void *p)
2865 {
2866 if (!pp->pr_redzone)
2867 return;
2868 #ifdef KASAN
2869 kasan_alloc(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
2870 #else
2871 uint8_t *cp, pat;
2872 const uint8_t *ep;
2873
2874 cp = (uint8_t *)p + pp->pr_reqsize;
2875 ep = cp + POOL_REDZONE_SIZE;
2876
2877 /*
2878 * We really don't want the first byte of the red zone to be '\0';
2879 * an off-by-one in a string may not be properly detected.
2880 */
2881 pat = pool_pattern_generate(cp);
2882 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2883 cp++;
2884
2885 while (cp < ep) {
2886 *cp = pool_pattern_generate(cp);
2887 cp++;
2888 }
2889 #endif
2890 }
2891
2892 static void
2893 pool_redzone_check(struct pool *pp, void *p)
2894 {
2895 if (!pp->pr_redzone)
2896 return;
2897 #ifdef KASAN
2898 kasan_alloc(p, 0, pp->pr_reqsize_with_redzone);
2899 #else
2900 uint8_t *cp, pat, expected;
2901 const uint8_t *ep;
2902
2903 cp = (uint8_t *)p + pp->pr_reqsize;
2904 ep = cp + POOL_REDZONE_SIZE;
2905
2906 pat = pool_pattern_generate(cp);
2907 expected = (pat == '\0') ? STATIC_BYTE: pat;
2908 if (__predict_false(expected != *cp)) {
2909 printf("%s: %p: 0x%02x != 0x%02x\n",
2910 __func__, cp, *cp, expected);
2911 }
2912 cp++;
2913
2914 while (cp < ep) {
2915 expected = pool_pattern_generate(cp);
2916 if (__predict_false(*cp != expected)) {
2917 printf("%s: %p: 0x%02x != 0x%02x\n",
2918 __func__, cp, *cp, expected);
2919 }
2920 cp++;
2921 }
2922 #endif
2923 }
2924
2925 static void
2926 pool_cache_redzone_check(pool_cache_t pc, void *p)
2927 {
2928 #ifdef KASAN
2929 /* If there is a ctor/dtor, leave the data as valid. */
2930 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2931 return;
2932 }
2933 #endif
2934 pool_redzone_check(&pc->pc_pool, p);
2935 }
2936
2937 #endif /* POOL_REDZONE */
2938
2939
2940 #ifdef POOL_SUBPAGE
2941 /* Sub-page allocator, for machines with large hardware pages. */
2942 void *
2943 pool_subpage_alloc(struct pool *pp, int flags)
2944 {
2945 return pool_get(&psppool, flags);
2946 }
2947
2948 void
2949 pool_subpage_free(struct pool *pp, void *v)
2950 {
2951 pool_put(&psppool, v);
2952 }
2953
2954 #endif /* POOL_SUBPAGE */
2955
2956 #if defined(DDB)
2957 static bool
2958 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2959 {
2960
2961 return (uintptr_t)ph->ph_page <= addr &&
2962 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2963 }
2964
2965 static bool
2966 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2967 {
2968
2969 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2970 }
2971
2972 static bool
2973 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2974 {
2975 int i;
2976
2977 if (pcg == NULL) {
2978 return false;
2979 }
2980 for (i = 0; i < pcg->pcg_avail; i++) {
2981 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2982 return true;
2983 }
2984 }
2985 return false;
2986 }
2987
2988 static bool
2989 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2990 {
2991
2992 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2993 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2994 pool_item_bitmap_t *bitmap =
2995 ph->ph_bitmap + (idx / BITMAP_SIZE);
2996 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2997
2998 return (*bitmap & mask) == 0;
2999 } else {
3000 struct pool_item *pi;
3001
3002 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3003 if (pool_in_item(pp, pi, addr)) {
3004 return false;
3005 }
3006 }
3007 return true;
3008 }
3009 }
3010
3011 void
3012 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3013 {
3014 struct pool *pp;
3015
3016 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3017 struct pool_item_header *ph;
3018 uintptr_t item;
3019 bool allocated = true;
3020 bool incache = false;
3021 bool incpucache = false;
3022 char cpucachestr[32];
3023
3024 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3025 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3026 if (pool_in_page(pp, ph, addr)) {
3027 goto found;
3028 }
3029 }
3030 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3031 if (pool_in_page(pp, ph, addr)) {
3032 allocated =
3033 pool_allocated(pp, ph, addr);
3034 goto found;
3035 }
3036 }
3037 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3038 if (pool_in_page(pp, ph, addr)) {
3039 allocated = false;
3040 goto found;
3041 }
3042 }
3043 continue;
3044 } else {
3045 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3046 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3047 continue;
3048 }
3049 allocated = pool_allocated(pp, ph, addr);
3050 }
3051 found:
3052 if (allocated && pp->pr_cache) {
3053 pool_cache_t pc = pp->pr_cache;
3054 struct pool_cache_group *pcg;
3055 int i;
3056
3057 for (pcg = pc->pc_fullgroups; pcg != NULL;
3058 pcg = pcg->pcg_next) {
3059 if (pool_in_cg(pp, pcg, addr)) {
3060 incache = true;
3061 goto print;
3062 }
3063 }
3064 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3065 pool_cache_cpu_t *cc;
3066
3067 if ((cc = pc->pc_cpus[i]) == NULL) {
3068 continue;
3069 }
3070 if (pool_in_cg(pp, cc->cc_current, addr) ||
3071 pool_in_cg(pp, cc->cc_previous, addr)) {
3072 struct cpu_info *ci =
3073 cpu_lookup(i);
3074
3075 incpucache = true;
3076 snprintf(cpucachestr,
3077 sizeof(cpucachestr),
3078 "cached by CPU %u",
3079 ci->ci_index);
3080 goto print;
3081 }
3082 }
3083 }
3084 print:
3085 item = (uintptr_t)ph->ph_page + ph->ph_off;
3086 item = item + rounddown(addr - item, pp->pr_size);
3087 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3088 (void *)addr, item, (size_t)(addr - item),
3089 pp->pr_wchan,
3090 incpucache ? cpucachestr :
3091 incache ? "cached" : allocated ? "allocated" : "free");
3092 }
3093 }
3094 #endif /* defined(DDB) */
3095
3096 static int
3097 pool_sysctl(SYSCTLFN_ARGS)
3098 {
3099 struct pool_sysctl data;
3100 struct pool *pp;
3101 struct pool_cache *pc;
3102 pool_cache_cpu_t *cc;
3103 int error;
3104 size_t i, written;
3105
3106 if (oldp == NULL) {
3107 *oldlenp = 0;
3108 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3109 *oldlenp += sizeof(data);
3110 return 0;
3111 }
3112
3113 memset(&data, 0, sizeof(data));
3114 error = 0;
3115 written = 0;
3116 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3117 if (written + sizeof(data) > *oldlenp)
3118 break;
3119 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3120 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3121 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3122 #define COPY(field) data.field = pp->field
3123 COPY(pr_size);
3124
3125 COPY(pr_itemsperpage);
3126 COPY(pr_nitems);
3127 COPY(pr_nout);
3128 COPY(pr_hardlimit);
3129 COPY(pr_npages);
3130 COPY(pr_minpages);
3131 COPY(pr_maxpages);
3132
3133 COPY(pr_nget);
3134 COPY(pr_nfail);
3135 COPY(pr_nput);
3136 COPY(pr_npagealloc);
3137 COPY(pr_npagefree);
3138 COPY(pr_hiwat);
3139 COPY(pr_nidle);
3140 #undef COPY
3141
3142 data.pr_cache_nmiss_pcpu = 0;
3143 data.pr_cache_nhit_pcpu = 0;
3144 if (pp->pr_cache) {
3145 pc = pp->pr_cache;
3146 data.pr_cache_meta_size = pc->pc_pcgsize;
3147 data.pr_cache_nfull = pc->pc_nfull;
3148 data.pr_cache_npartial = pc->pc_npart;
3149 data.pr_cache_nempty = pc->pc_nempty;
3150 data.pr_cache_ncontended = pc->pc_contended;
3151 data.pr_cache_nmiss_global = pc->pc_misses;
3152 data.pr_cache_nhit_global = pc->pc_hits;
3153 for (i = 0; i < pc->pc_ncpu; ++i) {
3154 cc = pc->pc_cpus[i];
3155 if (cc == NULL)
3156 continue;
3157 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3158 data.pr_cache_nhit_pcpu += cc->cc_hits;
3159 }
3160 } else {
3161 data.pr_cache_meta_size = 0;
3162 data.pr_cache_nfull = 0;
3163 data.pr_cache_npartial = 0;
3164 data.pr_cache_nempty = 0;
3165 data.pr_cache_ncontended = 0;
3166 data.pr_cache_nmiss_global = 0;
3167 data.pr_cache_nhit_global = 0;
3168 }
3169
3170 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3171 if (error)
3172 break;
3173 written += sizeof(data);
3174 oldp = (char *)oldp + sizeof(data);
3175 }
3176
3177 *oldlenp = written;
3178 return error;
3179 }
3180
3181 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3182 {
3183 const struct sysctlnode *rnode = NULL;
3184
3185 sysctl_createv(clog, 0, NULL, &rnode,
3186 CTLFLAG_PERMANENT,
3187 CTLTYPE_STRUCT, "pool",
3188 SYSCTL_DESCR("Get pool statistics"),
3189 pool_sysctl, 0, NULL, 0,
3190 CTL_KERN, CTL_CREATE, CTL_EOL);
3191 }
3192