subr_pool.c revision 1.232 1 /* $NetBSD: subr_pool.c,v 1.232 2019/02/10 17:13:33 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.232 2019/02/10 17:13:33 christos Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60
61 #include <uvm/uvm_extern.h>
62
63 /*
64 * Pool resource management utility.
65 *
66 * Memory is allocated in pages which are split into pieces according to
67 * the pool item size. Each page is kept on one of three lists in the
68 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 * for empty, full and partially-full pages respectively. The individual
70 * pool items are on a linked list headed by `ph_itemlist' in each page
71 * header. The memory for building the page list is either taken from
72 * the allocated pages themselves (for small pool items) or taken from
73 * an internal pool of page headers (`phpool').
74 */
75
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78
79 /* Private pool for page header structures */
80 #define PHPOOL_MAX 8
81 static struct pool phpool[PHPOOL_MAX];
82 #define PHPOOL_FREELIST_NELEM(idx) \
83 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 # define POOL_REDZONE_SIZE 8
97 # else
98 # define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 static void pool_cache_redzone_check(pool_cache_t, void *);
104 #else
105 # define pool_redzone_init(pp, sz) __nothing
106 # define pool_redzone_fill(pp, ptr) __nothing
107 # define pool_redzone_check(pp, ptr) __nothing
108 # define pool_cache_redzone_check(pc, ptr) __nothing
109 #endif
110
111 #ifdef KLEAK
112 static void pool_kleak_fill(struct pool *, void *);
113 static void pool_cache_kleak_fill(pool_cache_t, void *);
114 #else
115 #define pool_kleak_fill(pp, ptr) __nothing
116 #define pool_cache_kleak_fill(pc, ptr) __nothing
117 #endif
118
119 #define pc_has_ctor(pc) \
120 (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
121 #define pc_has_dtor(pc) \
122 (pc->pc_dtor != (void (*)(void *, void *))nullop)
123
124 static void *pool_page_alloc_meta(struct pool *, int);
125 static void pool_page_free_meta(struct pool *, void *);
126
127 /* allocator for pool metadata */
128 struct pool_allocator pool_allocator_meta = {
129 .pa_alloc = pool_page_alloc_meta,
130 .pa_free = pool_page_free_meta,
131 .pa_pagesz = 0
132 };
133
134 #define POOL_ALLOCATOR_BIG_BASE 13
135 extern struct pool_allocator pool_allocator_big[];
136 static int pool_bigidx(size_t);
137
138 /* # of seconds to retain page after last use */
139 int pool_inactive_time = 10;
140
141 /* Next candidate for drainage (see pool_drain()) */
142 static struct pool *drainpp;
143
144 /* This lock protects both pool_head and drainpp. */
145 static kmutex_t pool_head_lock;
146 static kcondvar_t pool_busy;
147
148 /* This lock protects initialization of a potentially shared pool allocator */
149 static kmutex_t pool_allocator_lock;
150
151 typedef uint32_t pool_item_bitmap_t;
152 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
153 #define BITMAP_MASK (BITMAP_SIZE - 1)
154
155 struct pool_item_header {
156 /* Page headers */
157 LIST_ENTRY(pool_item_header)
158 ph_pagelist; /* pool page list */
159 SPLAY_ENTRY(pool_item_header)
160 ph_node; /* Off-page page headers */
161 void * ph_page; /* this page's address */
162 uint32_t ph_time; /* last referenced */
163 uint16_t ph_nmissing; /* # of chunks in use */
164 uint16_t ph_off; /* start offset in page */
165 union {
166 /* !PR_NOTOUCH */
167 struct {
168 LIST_HEAD(, pool_item)
169 phu_itemlist; /* chunk list for this page */
170 } phu_normal;
171 /* PR_NOTOUCH */
172 struct {
173 pool_item_bitmap_t phu_bitmap[1];
174 } phu_notouch;
175 } ph_u;
176 };
177 #define ph_itemlist ph_u.phu_normal.phu_itemlist
178 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
179
180 #if defined(DIAGNOSTIC) && !defined(KASAN)
181 #define POOL_CHECK_MAGIC
182 #endif
183
184 struct pool_item {
185 #ifdef POOL_CHECK_MAGIC
186 u_int pi_magic;
187 #endif
188 #define PI_MAGIC 0xdeaddeadU
189 /* Other entries use only this list entry */
190 LIST_ENTRY(pool_item) pi_list;
191 };
192
193 #define POOL_NEEDS_CATCHUP(pp) \
194 ((pp)->pr_nitems < (pp)->pr_minitems)
195
196 /*
197 * Pool cache management.
198 *
199 * Pool caches provide a way for constructed objects to be cached by the
200 * pool subsystem. This can lead to performance improvements by avoiding
201 * needless object construction/destruction; it is deferred until absolutely
202 * necessary.
203 *
204 * Caches are grouped into cache groups. Each cache group references up
205 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
206 * object from the pool, it calls the object's constructor and places it
207 * into a cache group. When a cache group frees an object back to the
208 * pool, it first calls the object's destructor. This allows the object
209 * to persist in constructed form while freed to the cache.
210 *
211 * The pool references each cache, so that when a pool is drained by the
212 * pagedaemon, it can drain each individual cache as well. Each time a
213 * cache is drained, the most idle cache group is freed to the pool in
214 * its entirety.
215 *
216 * Pool caches are layed on top of pools. By layering them, we can avoid
217 * the complexity of cache management for pools which would not benefit
218 * from it.
219 */
220
221 static struct pool pcg_normal_pool;
222 static struct pool pcg_large_pool;
223 static struct pool cache_pool;
224 static struct pool cache_cpu_pool;
225
226 pool_cache_t pnbuf_cache; /* pathname buffer cache */
227
228 /* List of all caches. */
229 TAILQ_HEAD(,pool_cache) pool_cache_head =
230 TAILQ_HEAD_INITIALIZER(pool_cache_head);
231
232 int pool_cache_disable; /* global disable for caching */
233 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
234
235 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
236 void *);
237 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
238 void **, paddr_t *, int);
239 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
240 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
241 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
242 static void pool_cache_transfer(pool_cache_t);
243
244 static int pool_catchup(struct pool *);
245 static void pool_prime_page(struct pool *, void *,
246 struct pool_item_header *);
247 static void pool_update_curpage(struct pool *);
248
249 static int pool_grow(struct pool *, int);
250 static void *pool_allocator_alloc(struct pool *, int);
251 static void pool_allocator_free(struct pool *, void *);
252
253 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
254 void (*)(const char *, ...) __printflike(1, 2));
255 static void pool_print1(struct pool *, const char *,
256 void (*)(const char *, ...) __printflike(1, 2));
257
258 static int pool_chk_page(struct pool *, const char *,
259 struct pool_item_header *);
260
261 static inline unsigned int
262 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
263 const void *v)
264 {
265 const char *cp = v;
266 unsigned int idx;
267
268 KASSERT(pp->pr_roflags & PR_NOTOUCH);
269 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
270 KASSERT(idx < pp->pr_itemsperpage);
271 return idx;
272 }
273
274 static inline void
275 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
276 void *obj)
277 {
278 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
279 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
280 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
281
282 KASSERT((*bitmap & mask) == 0);
283 *bitmap |= mask;
284 }
285
286 static inline void *
287 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
288 {
289 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
290 unsigned int idx;
291 int i;
292
293 for (i = 0; ; i++) {
294 int bit;
295
296 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
297 bit = ffs32(bitmap[i]);
298 if (bit) {
299 pool_item_bitmap_t mask;
300
301 bit--;
302 idx = (i * BITMAP_SIZE) + bit;
303 mask = 1U << bit;
304 KASSERT((bitmap[i] & mask) != 0);
305 bitmap[i] &= ~mask;
306 break;
307 }
308 }
309 KASSERT(idx < pp->pr_itemsperpage);
310 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
311 }
312
313 static inline void
314 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
315 {
316 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
317 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
318 int i;
319
320 for (i = 0; i < n; i++) {
321 bitmap[i] = (pool_item_bitmap_t)-1;
322 }
323 }
324
325 static inline int
326 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
327 {
328
329 /*
330 * we consider pool_item_header with smaller ph_page bigger.
331 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
332 */
333
334 if (a->ph_page < b->ph_page)
335 return (1);
336 else if (a->ph_page > b->ph_page)
337 return (-1);
338 else
339 return (0);
340 }
341
342 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
343 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
344
345 static inline struct pool_item_header *
346 pr_find_pagehead_noalign(struct pool *pp, void *v)
347 {
348 struct pool_item_header *ph, tmp;
349
350 tmp.ph_page = (void *)(uintptr_t)v;
351 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
352 if (ph == NULL) {
353 ph = SPLAY_ROOT(&pp->pr_phtree);
354 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
355 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
356 }
357 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
358 }
359
360 return ph;
361 }
362
363 /*
364 * Return the pool page header based on item address.
365 */
366 static inline struct pool_item_header *
367 pr_find_pagehead(struct pool *pp, void *v)
368 {
369 struct pool_item_header *ph, tmp;
370
371 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
372 ph = pr_find_pagehead_noalign(pp, v);
373 } else {
374 void *page =
375 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
376
377 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
378 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
379 } else {
380 tmp.ph_page = page;
381 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
382 }
383 }
384
385 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
386 ((char *)ph->ph_page <= (char *)v &&
387 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
388 return ph;
389 }
390
391 static void
392 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
393 {
394 struct pool_item_header *ph;
395
396 while ((ph = LIST_FIRST(pq)) != NULL) {
397 LIST_REMOVE(ph, ph_pagelist);
398 pool_allocator_free(pp, ph->ph_page);
399 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
400 pool_put(pp->pr_phpool, ph);
401 }
402 }
403
404 /*
405 * Remove a page from the pool.
406 */
407 static inline void
408 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
409 struct pool_pagelist *pq)
410 {
411
412 KASSERT(mutex_owned(&pp->pr_lock));
413
414 /*
415 * If the page was idle, decrement the idle page count.
416 */
417 if (ph->ph_nmissing == 0) {
418 KASSERT(pp->pr_nidle != 0);
419 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
420 "nitems=%u < itemsperpage=%u",
421 pp->pr_nitems, pp->pr_itemsperpage);
422 pp->pr_nidle--;
423 }
424
425 pp->pr_nitems -= pp->pr_itemsperpage;
426
427 /*
428 * Unlink the page from the pool and queue it for release.
429 */
430 LIST_REMOVE(ph, ph_pagelist);
431 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
432 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
433 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
434
435 pp->pr_npages--;
436 pp->pr_npagefree++;
437
438 pool_update_curpage(pp);
439 }
440
441 /*
442 * Initialize all the pools listed in the "pools" link set.
443 */
444 void
445 pool_subsystem_init(void)
446 {
447 size_t size;
448 int idx;
449
450 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
451 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
452 cv_init(&pool_busy, "poolbusy");
453
454 /*
455 * Initialize private page header pool and cache magazine pool if we
456 * haven't done so yet.
457 */
458 for (idx = 0; idx < PHPOOL_MAX; idx++) {
459 static char phpool_names[PHPOOL_MAX][6+1+6+1];
460 int nelem;
461 size_t sz;
462
463 nelem = PHPOOL_FREELIST_NELEM(idx);
464 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
465 "phpool-%d", nelem);
466 sz = sizeof(struct pool_item_header);
467 if (nelem) {
468 sz = offsetof(struct pool_item_header,
469 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
470 }
471 pool_init(&phpool[idx], sz, 0, 0, 0,
472 phpool_names[idx], &pool_allocator_meta, IPL_VM);
473 }
474 #ifdef POOL_SUBPAGE
475 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
476 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
477 #endif
478
479 size = sizeof(pcg_t) +
480 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
481 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
482 "pcgnormal", &pool_allocator_meta, IPL_VM);
483
484 size = sizeof(pcg_t) +
485 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
486 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
487 "pcglarge", &pool_allocator_meta, IPL_VM);
488
489 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
490 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
491
492 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
493 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
494 }
495
496 /*
497 * Initialize the given pool resource structure.
498 *
499 * We export this routine to allow other kernel parts to declare
500 * static pools that must be initialized before kmem(9) is available.
501 */
502 void
503 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
504 const char *wchan, struct pool_allocator *palloc, int ipl)
505 {
506 struct pool *pp1;
507 size_t trysize, phsize, prsize;
508 int off, slack;
509
510 #ifdef DEBUG
511 if (__predict_true(!cold))
512 mutex_enter(&pool_head_lock);
513 /*
514 * Check that the pool hasn't already been initialised and
515 * added to the list of all pools.
516 */
517 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
518 if (pp == pp1)
519 panic("%s: [%s] already initialised", __func__,
520 wchan);
521 }
522 if (__predict_true(!cold))
523 mutex_exit(&pool_head_lock);
524 #endif
525
526 if (palloc == NULL)
527 palloc = &pool_allocator_kmem;
528 #ifdef POOL_SUBPAGE
529 if (size > palloc->pa_pagesz) {
530 if (palloc == &pool_allocator_kmem)
531 palloc = &pool_allocator_kmem_fullpage;
532 else if (palloc == &pool_allocator_nointr)
533 palloc = &pool_allocator_nointr_fullpage;
534 }
535 #endif /* POOL_SUBPAGE */
536 if (!cold)
537 mutex_enter(&pool_allocator_lock);
538 if (palloc->pa_refcnt++ == 0) {
539 if (palloc->pa_pagesz == 0)
540 palloc->pa_pagesz = PAGE_SIZE;
541
542 TAILQ_INIT(&palloc->pa_list);
543
544 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
545 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
546 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
547 }
548 if (!cold)
549 mutex_exit(&pool_allocator_lock);
550
551 if (align == 0)
552 align = ALIGN(1);
553
554 prsize = size;
555 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
556 prsize = sizeof(struct pool_item);
557
558 prsize = roundup(prsize, align);
559 KASSERTMSG((prsize <= palloc->pa_pagesz),
560 "%s: [%s] pool item size (%zu) larger than page size (%u)",
561 __func__, wchan, prsize, palloc->pa_pagesz);
562
563 /*
564 * Initialize the pool structure.
565 */
566 LIST_INIT(&pp->pr_emptypages);
567 LIST_INIT(&pp->pr_fullpages);
568 LIST_INIT(&pp->pr_partpages);
569 pp->pr_cache = NULL;
570 pp->pr_curpage = NULL;
571 pp->pr_npages = 0;
572 pp->pr_minitems = 0;
573 pp->pr_minpages = 0;
574 pp->pr_maxpages = UINT_MAX;
575 pp->pr_roflags = flags;
576 pp->pr_flags = 0;
577 pp->pr_size = prsize;
578 pp->pr_align = align;
579 pp->pr_wchan = wchan;
580 pp->pr_alloc = palloc;
581 pp->pr_nitems = 0;
582 pp->pr_nout = 0;
583 pp->pr_hardlimit = UINT_MAX;
584 pp->pr_hardlimit_warning = NULL;
585 pp->pr_hardlimit_ratecap.tv_sec = 0;
586 pp->pr_hardlimit_ratecap.tv_usec = 0;
587 pp->pr_hardlimit_warning_last.tv_sec = 0;
588 pp->pr_hardlimit_warning_last.tv_usec = 0;
589 pp->pr_drain_hook = NULL;
590 pp->pr_drain_hook_arg = NULL;
591 pp->pr_freecheck = NULL;
592 pool_redzone_init(pp, size);
593
594 /*
595 * Decide whether to put the page header off page to avoid
596 * wasting too large a part of the page or too big item.
597 * Off-page page headers go on a hash table, so we can match
598 * a returned item with its header based on the page address.
599 * We use 1/16 of the page size and about 8 times of the item
600 * size as the threshold (XXX: tune)
601 *
602 * However, we'll put the header into the page if we can put
603 * it without wasting any items.
604 *
605 * Silently enforce `0 <= ioff < align'.
606 */
607 pp->pr_itemoffset = ioff %= align;
608 /* See the comment below about reserved bytes. */
609 trysize = palloc->pa_pagesz - ((align - ioff) % align);
610 phsize = ALIGN(sizeof(struct pool_item_header));
611 if (pp->pr_roflags & PR_PHINPAGE ||
612 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
613 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
614 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
615 /* Use the end of the page for the page header */
616 pp->pr_roflags |= PR_PHINPAGE;
617 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
618 } else {
619 /* The page header will be taken from our page header pool */
620 pp->pr_phoffset = 0;
621 off = palloc->pa_pagesz;
622 SPLAY_INIT(&pp->pr_phtree);
623 }
624
625 /*
626 * Alignment is to take place at `ioff' within the item. This means
627 * we must reserve up to `align - 1' bytes on the page to allow
628 * appropriate positioning of each item.
629 */
630 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
631 KASSERT(pp->pr_itemsperpage != 0);
632 if ((pp->pr_roflags & PR_NOTOUCH)) {
633 int idx;
634
635 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
636 idx++) {
637 /* nothing */
638 }
639 if (idx >= PHPOOL_MAX) {
640 /*
641 * if you see this panic, consider to tweak
642 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
643 */
644 panic("%s: [%s] too large itemsperpage(%d) for "
645 "PR_NOTOUCH", __func__,
646 pp->pr_wchan, pp->pr_itemsperpage);
647 }
648 pp->pr_phpool = &phpool[idx];
649 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
650 pp->pr_phpool = &phpool[0];
651 }
652 #if defined(DIAGNOSTIC)
653 else {
654 pp->pr_phpool = NULL;
655 }
656 #endif
657
658 /*
659 * Use the slack between the chunks and the page header
660 * for "cache coloring".
661 */
662 slack = off - pp->pr_itemsperpage * pp->pr_size;
663 pp->pr_maxcolor = (slack / align) * align;
664 pp->pr_curcolor = 0;
665
666 pp->pr_nget = 0;
667 pp->pr_nfail = 0;
668 pp->pr_nput = 0;
669 pp->pr_npagealloc = 0;
670 pp->pr_npagefree = 0;
671 pp->pr_hiwat = 0;
672 pp->pr_nidle = 0;
673 pp->pr_refcnt = 0;
674
675 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
676 cv_init(&pp->pr_cv, wchan);
677 pp->pr_ipl = ipl;
678
679 /* Insert into the list of all pools. */
680 if (!cold)
681 mutex_enter(&pool_head_lock);
682 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
683 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
684 break;
685 }
686 if (pp1 == NULL)
687 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
688 else
689 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
690 if (!cold)
691 mutex_exit(&pool_head_lock);
692
693 /* Insert this into the list of pools using this allocator. */
694 if (!cold)
695 mutex_enter(&palloc->pa_lock);
696 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
697 if (!cold)
698 mutex_exit(&palloc->pa_lock);
699 }
700
701 /*
702 * De-commision a pool resource.
703 */
704 void
705 pool_destroy(struct pool *pp)
706 {
707 struct pool_pagelist pq;
708 struct pool_item_header *ph;
709
710 /* Remove from global pool list */
711 mutex_enter(&pool_head_lock);
712 while (pp->pr_refcnt != 0)
713 cv_wait(&pool_busy, &pool_head_lock);
714 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
715 if (drainpp == pp)
716 drainpp = NULL;
717 mutex_exit(&pool_head_lock);
718
719 /* Remove this pool from its allocator's list of pools. */
720 mutex_enter(&pp->pr_alloc->pa_lock);
721 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
722 mutex_exit(&pp->pr_alloc->pa_lock);
723
724 mutex_enter(&pool_allocator_lock);
725 if (--pp->pr_alloc->pa_refcnt == 0)
726 mutex_destroy(&pp->pr_alloc->pa_lock);
727 mutex_exit(&pool_allocator_lock);
728
729 mutex_enter(&pp->pr_lock);
730
731 KASSERT(pp->pr_cache == NULL);
732 KASSERTMSG((pp->pr_nout == 0),
733 "%s: pool busy: still out: %u", __func__, pp->pr_nout);
734 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
735 KASSERT(LIST_EMPTY(&pp->pr_partpages));
736
737 /* Remove all pages */
738 LIST_INIT(&pq);
739 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
740 pr_rmpage(pp, ph, &pq);
741
742 mutex_exit(&pp->pr_lock);
743
744 pr_pagelist_free(pp, &pq);
745 cv_destroy(&pp->pr_cv);
746 mutex_destroy(&pp->pr_lock);
747 }
748
749 void
750 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
751 {
752
753 /* XXX no locking -- must be used just after pool_init() */
754 KASSERTMSG((pp->pr_drain_hook == NULL),
755 "%s: [%s] already set", __func__, pp->pr_wchan);
756 pp->pr_drain_hook = fn;
757 pp->pr_drain_hook_arg = arg;
758 }
759
760 static struct pool_item_header *
761 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
762 {
763 struct pool_item_header *ph;
764
765 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
766 ph = (void *)((char *)storage + pp->pr_phoffset);
767 else
768 ph = pool_get(pp->pr_phpool, flags);
769
770 return (ph);
771 }
772
773 /*
774 * Grab an item from the pool.
775 */
776 void *
777 pool_get(struct pool *pp, int flags)
778 {
779 struct pool_item *pi;
780 struct pool_item_header *ph;
781 void *v;
782
783 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
784 KASSERTMSG((pp->pr_itemsperpage != 0),
785 "%s: [%s] pr_itemsperpage is zero, "
786 "pool not initialized?", __func__, pp->pr_wchan);
787 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
788 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
789 "%s: [%s] is IPL_NONE, but called from interrupt context",
790 __func__, pp->pr_wchan);
791 if (flags & PR_WAITOK) {
792 ASSERT_SLEEPABLE();
793 }
794
795 mutex_enter(&pp->pr_lock);
796 startover:
797 /*
798 * Check to see if we've reached the hard limit. If we have,
799 * and we can wait, then wait until an item has been returned to
800 * the pool.
801 */
802 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
803 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
804 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
805 if (pp->pr_drain_hook != NULL) {
806 /*
807 * Since the drain hook is going to free things
808 * back to the pool, unlock, call the hook, re-lock,
809 * and check the hardlimit condition again.
810 */
811 mutex_exit(&pp->pr_lock);
812 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
813 mutex_enter(&pp->pr_lock);
814 if (pp->pr_nout < pp->pr_hardlimit)
815 goto startover;
816 }
817
818 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
819 /*
820 * XXX: A warning isn't logged in this case. Should
821 * it be?
822 */
823 pp->pr_flags |= PR_WANTED;
824 do {
825 cv_wait(&pp->pr_cv, &pp->pr_lock);
826 } while (pp->pr_flags & PR_WANTED);
827 goto startover;
828 }
829
830 /*
831 * Log a message that the hard limit has been hit.
832 */
833 if (pp->pr_hardlimit_warning != NULL &&
834 ratecheck(&pp->pr_hardlimit_warning_last,
835 &pp->pr_hardlimit_ratecap))
836 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
837
838 pp->pr_nfail++;
839
840 mutex_exit(&pp->pr_lock);
841 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
842 return (NULL);
843 }
844
845 /*
846 * The convention we use is that if `curpage' is not NULL, then
847 * it points at a non-empty bucket. In particular, `curpage'
848 * never points at a page header which has PR_PHINPAGE set and
849 * has no items in its bucket.
850 */
851 if ((ph = pp->pr_curpage) == NULL) {
852 int error;
853
854 KASSERTMSG((pp->pr_nitems == 0),
855 "%s: [%s] curpage NULL, inconsistent nitems %u",
856 __func__, pp->pr_wchan, pp->pr_nitems);
857
858 /*
859 * Call the back-end page allocator for more memory.
860 * Release the pool lock, as the back-end page allocator
861 * may block.
862 */
863 error = pool_grow(pp, flags);
864 if (error != 0) {
865 /*
866 * pool_grow aborts when another thread
867 * is allocating a new page. Retry if it
868 * waited for it.
869 */
870 if (error == ERESTART)
871 goto startover;
872
873 /*
874 * We were unable to allocate a page or item
875 * header, but we released the lock during
876 * allocation, so perhaps items were freed
877 * back to the pool. Check for this case.
878 */
879 if (pp->pr_curpage != NULL)
880 goto startover;
881
882 pp->pr_nfail++;
883 mutex_exit(&pp->pr_lock);
884 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
885 return (NULL);
886 }
887
888 /* Start the allocation process over. */
889 goto startover;
890 }
891 if (pp->pr_roflags & PR_NOTOUCH) {
892 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
893 "%s: %s: page empty", __func__, pp->pr_wchan);
894 v = pr_item_notouch_get(pp, ph);
895 } else {
896 v = pi = LIST_FIRST(&ph->ph_itemlist);
897 if (__predict_false(v == NULL)) {
898 mutex_exit(&pp->pr_lock);
899 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
900 }
901 KASSERTMSG((pp->pr_nitems > 0),
902 "%s: [%s] nitems %u inconsistent on itemlist",
903 __func__, pp->pr_wchan, pp->pr_nitems);
904 #ifdef POOL_CHECK_MAGIC
905 KASSERTMSG((pi->pi_magic == PI_MAGIC),
906 "%s: [%s] free list modified: "
907 "magic=%x; page %p; item addr %p", __func__,
908 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
909 #endif
910
911 /*
912 * Remove from item list.
913 */
914 LIST_REMOVE(pi, pi_list);
915 }
916 pp->pr_nitems--;
917 pp->pr_nout++;
918 if (ph->ph_nmissing == 0) {
919 KASSERT(pp->pr_nidle > 0);
920 pp->pr_nidle--;
921
922 /*
923 * This page was previously empty. Move it to the list of
924 * partially-full pages. This page is already curpage.
925 */
926 LIST_REMOVE(ph, ph_pagelist);
927 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
928 }
929 ph->ph_nmissing++;
930 if (ph->ph_nmissing == pp->pr_itemsperpage) {
931 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
932 LIST_EMPTY(&ph->ph_itemlist)),
933 "%s: [%s] nmissing (%u) inconsistent", __func__,
934 pp->pr_wchan, ph->ph_nmissing);
935 /*
936 * This page is now full. Move it to the full list
937 * and select a new current page.
938 */
939 LIST_REMOVE(ph, ph_pagelist);
940 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
941 pool_update_curpage(pp);
942 }
943
944 pp->pr_nget++;
945
946 /*
947 * If we have a low water mark and we are now below that low
948 * water mark, add more items to the pool.
949 */
950 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
951 /*
952 * XXX: Should we log a warning? Should we set up a timeout
953 * to try again in a second or so? The latter could break
954 * a caller's assumptions about interrupt protection, etc.
955 */
956 }
957
958 mutex_exit(&pp->pr_lock);
959 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
960 FREECHECK_OUT(&pp->pr_freecheck, v);
961 pool_redzone_fill(pp, v);
962 if (flags & PR_ZERO)
963 memset(v, 0, pp->pr_size);
964 else
965 pool_kleak_fill(pp, v);
966 return v;
967 }
968
969 /*
970 * Internal version of pool_put(). Pool is already locked/entered.
971 */
972 static void
973 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
974 {
975 struct pool_item *pi = v;
976 struct pool_item_header *ph;
977
978 KASSERT(mutex_owned(&pp->pr_lock));
979 pool_redzone_check(pp, v);
980 FREECHECK_IN(&pp->pr_freecheck, v);
981 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
982
983 KASSERTMSG((pp->pr_nout > 0),
984 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
985
986 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
987 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
988 }
989
990 /*
991 * Return to item list.
992 */
993 if (pp->pr_roflags & PR_NOTOUCH) {
994 pr_item_notouch_put(pp, ph, v);
995 } else {
996 #ifdef POOL_CHECK_MAGIC
997 pi->pi_magic = PI_MAGIC;
998 #endif
999
1000 if (pp->pr_redzone) {
1001 /*
1002 * Mark the pool_item as valid. The rest is already
1003 * invalid.
1004 */
1005 kasan_mark(pi, sizeof(*pi), sizeof(*pi));
1006 }
1007
1008 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1009 }
1010 KDASSERT(ph->ph_nmissing != 0);
1011 ph->ph_nmissing--;
1012 pp->pr_nput++;
1013 pp->pr_nitems++;
1014 pp->pr_nout--;
1015
1016 /* Cancel "pool empty" condition if it exists */
1017 if (pp->pr_curpage == NULL)
1018 pp->pr_curpage = ph;
1019
1020 if (pp->pr_flags & PR_WANTED) {
1021 pp->pr_flags &= ~PR_WANTED;
1022 cv_broadcast(&pp->pr_cv);
1023 }
1024
1025 /*
1026 * If this page is now empty, do one of two things:
1027 *
1028 * (1) If we have more pages than the page high water mark,
1029 * free the page back to the system. ONLY CONSIDER
1030 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1031 * CLAIM.
1032 *
1033 * (2) Otherwise, move the page to the empty page list.
1034 *
1035 * Either way, select a new current page (so we use a partially-full
1036 * page if one is available).
1037 */
1038 if (ph->ph_nmissing == 0) {
1039 pp->pr_nidle++;
1040 if (pp->pr_npages > pp->pr_minpages &&
1041 pp->pr_npages > pp->pr_maxpages) {
1042 pr_rmpage(pp, ph, pq);
1043 } else {
1044 LIST_REMOVE(ph, ph_pagelist);
1045 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1046
1047 /*
1048 * Update the timestamp on the page. A page must
1049 * be idle for some period of time before it can
1050 * be reclaimed by the pagedaemon. This minimizes
1051 * ping-pong'ing for memory.
1052 *
1053 * note for 64-bit time_t: truncating to 32-bit is not
1054 * a problem for our usage.
1055 */
1056 ph->ph_time = time_uptime;
1057 }
1058 pool_update_curpage(pp);
1059 }
1060
1061 /*
1062 * If the page was previously completely full, move it to the
1063 * partially-full list and make it the current page. The next
1064 * allocation will get the item from this page, instead of
1065 * further fragmenting the pool.
1066 */
1067 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1068 LIST_REMOVE(ph, ph_pagelist);
1069 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1070 pp->pr_curpage = ph;
1071 }
1072 }
1073
1074 void
1075 pool_put(struct pool *pp, void *v)
1076 {
1077 struct pool_pagelist pq;
1078
1079 LIST_INIT(&pq);
1080
1081 mutex_enter(&pp->pr_lock);
1082 pool_do_put(pp, v, &pq);
1083 mutex_exit(&pp->pr_lock);
1084
1085 pr_pagelist_free(pp, &pq);
1086 }
1087
1088 /*
1089 * pool_grow: grow a pool by a page.
1090 *
1091 * => called with pool locked.
1092 * => unlock and relock the pool.
1093 * => return with pool locked.
1094 */
1095
1096 static int
1097 pool_grow(struct pool *pp, int flags)
1098 {
1099 /*
1100 * If there's a pool_grow in progress, wait for it to complete
1101 * and try again from the top.
1102 */
1103 if (pp->pr_flags & PR_GROWING) {
1104 if (flags & PR_WAITOK) {
1105 do {
1106 cv_wait(&pp->pr_cv, &pp->pr_lock);
1107 } while (pp->pr_flags & PR_GROWING);
1108 return ERESTART;
1109 } else {
1110 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1111 /*
1112 * This needs an unlock/relock dance so
1113 * that the other caller has a chance to
1114 * run and actually do the thing. Note
1115 * that this is effectively a busy-wait.
1116 */
1117 mutex_exit(&pp->pr_lock);
1118 mutex_enter(&pp->pr_lock);
1119 return ERESTART;
1120 }
1121 return EWOULDBLOCK;
1122 }
1123 }
1124 pp->pr_flags |= PR_GROWING;
1125 if (flags & PR_WAITOK)
1126 mutex_exit(&pp->pr_lock);
1127 else
1128 pp->pr_flags |= PR_GROWINGNOWAIT;
1129
1130 char *cp = pool_allocator_alloc(pp, flags);
1131 if (__predict_false(cp == NULL))
1132 goto out;
1133
1134 struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1135 if (__predict_false(ph == NULL)) {
1136 pool_allocator_free(pp, cp);
1137 goto out;
1138 }
1139
1140 if (flags & PR_WAITOK)
1141 mutex_enter(&pp->pr_lock);
1142 pool_prime_page(pp, cp, ph);
1143 pp->pr_npagealloc++;
1144 KASSERT(pp->pr_flags & PR_GROWING);
1145 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1146 /*
1147 * If anyone was waiting for pool_grow, notify them that we
1148 * may have just done it.
1149 */
1150 cv_broadcast(&pp->pr_cv);
1151 return 0;
1152 out:
1153 if (flags & PR_WAITOK)
1154 mutex_enter(&pp->pr_lock);
1155 KASSERT(pp->pr_flags & PR_GROWING);
1156 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1157 return ENOMEM;
1158 }
1159
1160 /*
1161 * Add N items to the pool.
1162 */
1163 int
1164 pool_prime(struct pool *pp, int n)
1165 {
1166 int newpages;
1167 int error = 0;
1168
1169 mutex_enter(&pp->pr_lock);
1170
1171 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1172
1173 while (newpages > 0) {
1174 error = pool_grow(pp, PR_NOWAIT);
1175 if (error) {
1176 if (error == ERESTART)
1177 continue;
1178 break;
1179 }
1180 pp->pr_minpages++;
1181 newpages--;
1182 }
1183
1184 if (pp->pr_minpages >= pp->pr_maxpages)
1185 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1186
1187 mutex_exit(&pp->pr_lock);
1188 return error;
1189 }
1190
1191 /*
1192 * Add a page worth of items to the pool.
1193 *
1194 * Note, we must be called with the pool descriptor LOCKED.
1195 */
1196 static void
1197 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1198 {
1199 struct pool_item *pi;
1200 void *cp = storage;
1201 const unsigned int align = pp->pr_align;
1202 const unsigned int ioff = pp->pr_itemoffset;
1203 int n;
1204
1205 KASSERT(mutex_owned(&pp->pr_lock));
1206 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1207 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1208 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1209
1210 /*
1211 * Insert page header.
1212 */
1213 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1214 LIST_INIT(&ph->ph_itemlist);
1215 ph->ph_page = storage;
1216 ph->ph_nmissing = 0;
1217 ph->ph_time = time_uptime;
1218 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1219 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1220
1221 pp->pr_nidle++;
1222
1223 /*
1224 * Color this page.
1225 */
1226 ph->ph_off = pp->pr_curcolor;
1227 cp = (char *)cp + ph->ph_off;
1228 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1229 pp->pr_curcolor = 0;
1230
1231 /*
1232 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1233 */
1234 if (ioff != 0)
1235 cp = (char *)cp + align - ioff;
1236
1237 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1238
1239 /*
1240 * Insert remaining chunks on the bucket list.
1241 */
1242 n = pp->pr_itemsperpage;
1243 pp->pr_nitems += n;
1244
1245 if (pp->pr_roflags & PR_NOTOUCH) {
1246 pr_item_notouch_init(pp, ph);
1247 } else {
1248 while (n--) {
1249 pi = (struct pool_item *)cp;
1250
1251 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1252
1253 /* Insert on page list */
1254 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1255 #ifdef POOL_CHECK_MAGIC
1256 pi->pi_magic = PI_MAGIC;
1257 #endif
1258 cp = (char *)cp + pp->pr_size;
1259
1260 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1261 }
1262 }
1263
1264 /*
1265 * If the pool was depleted, point at the new page.
1266 */
1267 if (pp->pr_curpage == NULL)
1268 pp->pr_curpage = ph;
1269
1270 if (++pp->pr_npages > pp->pr_hiwat)
1271 pp->pr_hiwat = pp->pr_npages;
1272 }
1273
1274 /*
1275 * Used by pool_get() when nitems drops below the low water mark. This
1276 * is used to catch up pr_nitems with the low water mark.
1277 *
1278 * Note 1, we never wait for memory here, we let the caller decide what to do.
1279 *
1280 * Note 2, we must be called with the pool already locked, and we return
1281 * with it locked.
1282 */
1283 static int
1284 pool_catchup(struct pool *pp)
1285 {
1286 int error = 0;
1287
1288 while (POOL_NEEDS_CATCHUP(pp)) {
1289 error = pool_grow(pp, PR_NOWAIT);
1290 if (error) {
1291 if (error == ERESTART)
1292 continue;
1293 break;
1294 }
1295 }
1296 return error;
1297 }
1298
1299 static void
1300 pool_update_curpage(struct pool *pp)
1301 {
1302
1303 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1304 if (pp->pr_curpage == NULL) {
1305 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1306 }
1307 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1308 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1309 }
1310
1311 void
1312 pool_setlowat(struct pool *pp, int n)
1313 {
1314
1315 mutex_enter(&pp->pr_lock);
1316
1317 pp->pr_minitems = n;
1318 pp->pr_minpages = (n == 0)
1319 ? 0
1320 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1321
1322 /* Make sure we're caught up with the newly-set low water mark. */
1323 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1324 /*
1325 * XXX: Should we log a warning? Should we set up a timeout
1326 * to try again in a second or so? The latter could break
1327 * a caller's assumptions about interrupt protection, etc.
1328 */
1329 }
1330
1331 mutex_exit(&pp->pr_lock);
1332 }
1333
1334 void
1335 pool_sethiwat(struct pool *pp, int n)
1336 {
1337
1338 mutex_enter(&pp->pr_lock);
1339
1340 pp->pr_maxpages = (n == 0)
1341 ? 0
1342 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1343
1344 mutex_exit(&pp->pr_lock);
1345 }
1346
1347 void
1348 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1349 {
1350
1351 mutex_enter(&pp->pr_lock);
1352
1353 pp->pr_hardlimit = n;
1354 pp->pr_hardlimit_warning = warnmess;
1355 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1356 pp->pr_hardlimit_warning_last.tv_sec = 0;
1357 pp->pr_hardlimit_warning_last.tv_usec = 0;
1358
1359 /*
1360 * In-line version of pool_sethiwat(), because we don't want to
1361 * release the lock.
1362 */
1363 pp->pr_maxpages = (n == 0)
1364 ? 0
1365 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1366
1367 mutex_exit(&pp->pr_lock);
1368 }
1369
1370 /*
1371 * Release all complete pages that have not been used recently.
1372 *
1373 * Must not be called from interrupt context.
1374 */
1375 int
1376 pool_reclaim(struct pool *pp)
1377 {
1378 struct pool_item_header *ph, *phnext;
1379 struct pool_pagelist pq;
1380 uint32_t curtime;
1381 bool klock;
1382 int rv;
1383
1384 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1385
1386 if (pp->pr_drain_hook != NULL) {
1387 /*
1388 * The drain hook must be called with the pool unlocked.
1389 */
1390 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1391 }
1392
1393 /*
1394 * XXXSMP Because we do not want to cause non-MPSAFE code
1395 * to block.
1396 */
1397 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1398 pp->pr_ipl == IPL_SOFTSERIAL) {
1399 KERNEL_LOCK(1, NULL);
1400 klock = true;
1401 } else
1402 klock = false;
1403
1404 /* Reclaim items from the pool's cache (if any). */
1405 if (pp->pr_cache != NULL)
1406 pool_cache_invalidate(pp->pr_cache);
1407
1408 if (mutex_tryenter(&pp->pr_lock) == 0) {
1409 if (klock) {
1410 KERNEL_UNLOCK_ONE(NULL);
1411 }
1412 return (0);
1413 }
1414
1415 LIST_INIT(&pq);
1416
1417 curtime = time_uptime;
1418
1419 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1420 phnext = LIST_NEXT(ph, ph_pagelist);
1421
1422 /* Check our minimum page claim */
1423 if (pp->pr_npages <= pp->pr_minpages)
1424 break;
1425
1426 KASSERT(ph->ph_nmissing == 0);
1427 if (curtime - ph->ph_time < pool_inactive_time)
1428 continue;
1429
1430 /*
1431 * If freeing this page would put us below
1432 * the low water mark, stop now.
1433 */
1434 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1435 pp->pr_minitems)
1436 break;
1437
1438 pr_rmpage(pp, ph, &pq);
1439 }
1440
1441 mutex_exit(&pp->pr_lock);
1442
1443 if (LIST_EMPTY(&pq))
1444 rv = 0;
1445 else {
1446 pr_pagelist_free(pp, &pq);
1447 rv = 1;
1448 }
1449
1450 if (klock) {
1451 KERNEL_UNLOCK_ONE(NULL);
1452 }
1453
1454 return (rv);
1455 }
1456
1457 /*
1458 * Drain pools, one at a time. The drained pool is returned within ppp.
1459 *
1460 * Note, must never be called from interrupt context.
1461 */
1462 bool
1463 pool_drain(struct pool **ppp)
1464 {
1465 bool reclaimed;
1466 struct pool *pp;
1467
1468 KASSERT(!TAILQ_EMPTY(&pool_head));
1469
1470 pp = NULL;
1471
1472 /* Find next pool to drain, and add a reference. */
1473 mutex_enter(&pool_head_lock);
1474 do {
1475 if (drainpp == NULL) {
1476 drainpp = TAILQ_FIRST(&pool_head);
1477 }
1478 if (drainpp != NULL) {
1479 pp = drainpp;
1480 drainpp = TAILQ_NEXT(pp, pr_poollist);
1481 }
1482 /*
1483 * Skip completely idle pools. We depend on at least
1484 * one pool in the system being active.
1485 */
1486 } while (pp == NULL || pp->pr_npages == 0);
1487 pp->pr_refcnt++;
1488 mutex_exit(&pool_head_lock);
1489
1490 /* Drain the cache (if any) and pool.. */
1491 reclaimed = pool_reclaim(pp);
1492
1493 /* Finally, unlock the pool. */
1494 mutex_enter(&pool_head_lock);
1495 pp->pr_refcnt--;
1496 cv_broadcast(&pool_busy);
1497 mutex_exit(&pool_head_lock);
1498
1499 if (ppp != NULL)
1500 *ppp = pp;
1501
1502 return reclaimed;
1503 }
1504
1505 /*
1506 * Calculate the total number of pages consumed by pools.
1507 */
1508 int
1509 pool_totalpages(void)
1510 {
1511 struct pool *pp;
1512 uint64_t total = 0;
1513
1514 mutex_enter(&pool_head_lock);
1515 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1516 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1517
1518 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1519 bytes -= (pp->pr_nout * pp->pr_size);
1520 total += bytes;
1521 }
1522 mutex_exit(&pool_head_lock);
1523
1524 return atop(total);
1525 }
1526
1527 /*
1528 * Diagnostic helpers.
1529 */
1530
1531 void
1532 pool_printall(const char *modif, void (*pr)(const char *, ...))
1533 {
1534 struct pool *pp;
1535
1536 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1537 pool_printit(pp, modif, pr);
1538 }
1539 }
1540
1541 void
1542 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1543 {
1544
1545 if (pp == NULL) {
1546 (*pr)("Must specify a pool to print.\n");
1547 return;
1548 }
1549
1550 pool_print1(pp, modif, pr);
1551 }
1552
1553 static void
1554 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1555 void (*pr)(const char *, ...))
1556 {
1557 struct pool_item_header *ph;
1558
1559 LIST_FOREACH(ph, pl, ph_pagelist) {
1560 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1561 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1562 #ifdef POOL_CHECK_MAGIC
1563 struct pool_item *pi;
1564 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1565 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1566 if (pi->pi_magic != PI_MAGIC) {
1567 (*pr)("\t\t\titem %p, magic 0x%x\n",
1568 pi, pi->pi_magic);
1569 }
1570 }
1571 }
1572 #endif
1573 }
1574 }
1575
1576 static void
1577 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1578 {
1579 struct pool_item_header *ph;
1580 pool_cache_t pc;
1581 pcg_t *pcg;
1582 pool_cache_cpu_t *cc;
1583 uint64_t cpuhit, cpumiss;
1584 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1585 char c;
1586
1587 while ((c = *modif++) != '\0') {
1588 if (c == 'l')
1589 print_log = 1;
1590 if (c == 'p')
1591 print_pagelist = 1;
1592 if (c == 'c')
1593 print_cache = 1;
1594 }
1595
1596 if ((pc = pp->pr_cache) != NULL) {
1597 (*pr)("POOL CACHE");
1598 } else {
1599 (*pr)("POOL");
1600 }
1601
1602 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1603 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1604 pp->pr_roflags);
1605 (*pr)("\talloc %p\n", pp->pr_alloc);
1606 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1607 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1608 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1609 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1610
1611 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1612 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1613 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1614 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1615
1616 if (print_pagelist == 0)
1617 goto skip_pagelist;
1618
1619 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1620 (*pr)("\n\tempty page list:\n");
1621 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1622 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1623 (*pr)("\n\tfull page list:\n");
1624 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1625 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1626 (*pr)("\n\tpartial-page list:\n");
1627 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1628
1629 if (pp->pr_curpage == NULL)
1630 (*pr)("\tno current page\n");
1631 else
1632 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1633
1634 skip_pagelist:
1635 if (print_log == 0)
1636 goto skip_log;
1637
1638 (*pr)("\n");
1639
1640 skip_log:
1641
1642 #define PR_GROUPLIST(pcg) \
1643 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1644 for (i = 0; i < pcg->pcg_size; i++) { \
1645 if (pcg->pcg_objects[i].pcgo_pa != \
1646 POOL_PADDR_INVALID) { \
1647 (*pr)("\t\t\t%p, 0x%llx\n", \
1648 pcg->pcg_objects[i].pcgo_va, \
1649 (unsigned long long) \
1650 pcg->pcg_objects[i].pcgo_pa); \
1651 } else { \
1652 (*pr)("\t\t\t%p\n", \
1653 pcg->pcg_objects[i].pcgo_va); \
1654 } \
1655 }
1656
1657 if (pc != NULL) {
1658 cpuhit = 0;
1659 cpumiss = 0;
1660 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1661 if ((cc = pc->pc_cpus[i]) == NULL)
1662 continue;
1663 cpuhit += cc->cc_hits;
1664 cpumiss += cc->cc_misses;
1665 }
1666 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1667 (*pr)("\tcache layer hits %llu misses %llu\n",
1668 pc->pc_hits, pc->pc_misses);
1669 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1670 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1671 pc->pc_contended);
1672 (*pr)("\tcache layer empty groups %u full groups %u\n",
1673 pc->pc_nempty, pc->pc_nfull);
1674 if (print_cache) {
1675 (*pr)("\tfull cache groups:\n");
1676 for (pcg = pc->pc_fullgroups; pcg != NULL;
1677 pcg = pcg->pcg_next) {
1678 PR_GROUPLIST(pcg);
1679 }
1680 (*pr)("\tempty cache groups:\n");
1681 for (pcg = pc->pc_emptygroups; pcg != NULL;
1682 pcg = pcg->pcg_next) {
1683 PR_GROUPLIST(pcg);
1684 }
1685 }
1686 }
1687 #undef PR_GROUPLIST
1688 }
1689
1690 static int
1691 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1692 {
1693 struct pool_item *pi;
1694 void *page;
1695 int n;
1696
1697 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1698 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1699 if (page != ph->ph_page &&
1700 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1701 if (label != NULL)
1702 printf("%s: ", label);
1703 printf("pool(%p:%s): page inconsistency: page %p;"
1704 " at page head addr %p (p %p)\n", pp,
1705 pp->pr_wchan, ph->ph_page,
1706 ph, page);
1707 return 1;
1708 }
1709 }
1710
1711 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1712 return 0;
1713
1714 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1715 pi != NULL;
1716 pi = LIST_NEXT(pi,pi_list), n++) {
1717
1718 #ifdef POOL_CHECK_MAGIC
1719 if (pi->pi_magic != PI_MAGIC) {
1720 if (label != NULL)
1721 printf("%s: ", label);
1722 printf("pool(%s): free list modified: magic=%x;"
1723 " page %p; item ordinal %d; addr %p\n",
1724 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1725 n, pi);
1726 panic("pool");
1727 }
1728 #endif
1729 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1730 continue;
1731 }
1732 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1733 if (page == ph->ph_page)
1734 continue;
1735
1736 if (label != NULL)
1737 printf("%s: ", label);
1738 printf("pool(%p:%s): page inconsistency: page %p;"
1739 " item ordinal %d; addr %p (p %p)\n", pp,
1740 pp->pr_wchan, ph->ph_page,
1741 n, pi, page);
1742 return 1;
1743 }
1744 return 0;
1745 }
1746
1747
1748 int
1749 pool_chk(struct pool *pp, const char *label)
1750 {
1751 struct pool_item_header *ph;
1752 int r = 0;
1753
1754 mutex_enter(&pp->pr_lock);
1755 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1756 r = pool_chk_page(pp, label, ph);
1757 if (r) {
1758 goto out;
1759 }
1760 }
1761 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1762 r = pool_chk_page(pp, label, ph);
1763 if (r) {
1764 goto out;
1765 }
1766 }
1767 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1768 r = pool_chk_page(pp, label, ph);
1769 if (r) {
1770 goto out;
1771 }
1772 }
1773
1774 out:
1775 mutex_exit(&pp->pr_lock);
1776 return (r);
1777 }
1778
1779 /*
1780 * pool_cache_init:
1781 *
1782 * Initialize a pool cache.
1783 */
1784 pool_cache_t
1785 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1786 const char *wchan, struct pool_allocator *palloc, int ipl,
1787 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1788 {
1789 pool_cache_t pc;
1790
1791 pc = pool_get(&cache_pool, PR_WAITOK);
1792 if (pc == NULL)
1793 return NULL;
1794
1795 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1796 palloc, ipl, ctor, dtor, arg);
1797
1798 return pc;
1799 }
1800
1801 /*
1802 * pool_cache_bootstrap:
1803 *
1804 * Kernel-private version of pool_cache_init(). The caller
1805 * provides initial storage.
1806 */
1807 void
1808 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1809 u_int align_offset, u_int flags, const char *wchan,
1810 struct pool_allocator *palloc, int ipl,
1811 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1812 void *arg)
1813 {
1814 CPU_INFO_ITERATOR cii;
1815 pool_cache_t pc1;
1816 struct cpu_info *ci;
1817 struct pool *pp;
1818
1819 pp = &pc->pc_pool;
1820 if (palloc == NULL && ipl == IPL_NONE) {
1821 if (size > PAGE_SIZE) {
1822 int bigidx = pool_bigidx(size);
1823
1824 palloc = &pool_allocator_big[bigidx];
1825 } else
1826 palloc = &pool_allocator_nointr;
1827 }
1828 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1829 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1830
1831 if (ctor == NULL) {
1832 ctor = (int (*)(void *, void *, int))nullop;
1833 }
1834 if (dtor == NULL) {
1835 dtor = (void (*)(void *, void *))nullop;
1836 }
1837
1838 pc->pc_emptygroups = NULL;
1839 pc->pc_fullgroups = NULL;
1840 pc->pc_partgroups = NULL;
1841 pc->pc_ctor = ctor;
1842 pc->pc_dtor = dtor;
1843 pc->pc_arg = arg;
1844 pc->pc_hits = 0;
1845 pc->pc_misses = 0;
1846 pc->pc_nempty = 0;
1847 pc->pc_npart = 0;
1848 pc->pc_nfull = 0;
1849 pc->pc_contended = 0;
1850 pc->pc_refcnt = 0;
1851 pc->pc_freecheck = NULL;
1852
1853 if ((flags & PR_LARGECACHE) != 0) {
1854 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1855 pc->pc_pcgpool = &pcg_large_pool;
1856 } else {
1857 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1858 pc->pc_pcgpool = &pcg_normal_pool;
1859 }
1860
1861 /* Allocate per-CPU caches. */
1862 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1863 pc->pc_ncpu = 0;
1864 if (ncpu < 2) {
1865 /* XXX For sparc: boot CPU is not attached yet. */
1866 pool_cache_cpu_init1(curcpu(), pc);
1867 } else {
1868 for (CPU_INFO_FOREACH(cii, ci)) {
1869 pool_cache_cpu_init1(ci, pc);
1870 }
1871 }
1872
1873 /* Add to list of all pools. */
1874 if (__predict_true(!cold))
1875 mutex_enter(&pool_head_lock);
1876 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1877 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1878 break;
1879 }
1880 if (pc1 == NULL)
1881 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1882 else
1883 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1884 if (__predict_true(!cold))
1885 mutex_exit(&pool_head_lock);
1886
1887 membar_sync();
1888 pp->pr_cache = pc;
1889 }
1890
1891 /*
1892 * pool_cache_destroy:
1893 *
1894 * Destroy a pool cache.
1895 */
1896 void
1897 pool_cache_destroy(pool_cache_t pc)
1898 {
1899
1900 pool_cache_bootstrap_destroy(pc);
1901 pool_put(&cache_pool, pc);
1902 }
1903
1904 /*
1905 * pool_cache_bootstrap_destroy:
1906 *
1907 * Destroy a pool cache.
1908 */
1909 void
1910 pool_cache_bootstrap_destroy(pool_cache_t pc)
1911 {
1912 struct pool *pp = &pc->pc_pool;
1913 u_int i;
1914
1915 /* Remove it from the global list. */
1916 mutex_enter(&pool_head_lock);
1917 while (pc->pc_refcnt != 0)
1918 cv_wait(&pool_busy, &pool_head_lock);
1919 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1920 mutex_exit(&pool_head_lock);
1921
1922 /* First, invalidate the entire cache. */
1923 pool_cache_invalidate(pc);
1924
1925 /* Disassociate it from the pool. */
1926 mutex_enter(&pp->pr_lock);
1927 pp->pr_cache = NULL;
1928 mutex_exit(&pp->pr_lock);
1929
1930 /* Destroy per-CPU data */
1931 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1932 pool_cache_invalidate_cpu(pc, i);
1933
1934 /* Finally, destroy it. */
1935 mutex_destroy(&pc->pc_lock);
1936 pool_destroy(pp);
1937 }
1938
1939 /*
1940 * pool_cache_cpu_init1:
1941 *
1942 * Called for each pool_cache whenever a new CPU is attached.
1943 */
1944 static void
1945 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1946 {
1947 pool_cache_cpu_t *cc;
1948 int index;
1949
1950 index = ci->ci_index;
1951
1952 KASSERT(index < __arraycount(pc->pc_cpus));
1953
1954 if ((cc = pc->pc_cpus[index]) != NULL) {
1955 KASSERT(cc->cc_cpuindex == index);
1956 return;
1957 }
1958
1959 /*
1960 * The first CPU is 'free'. This needs to be the case for
1961 * bootstrap - we may not be able to allocate yet.
1962 */
1963 if (pc->pc_ncpu == 0) {
1964 cc = &pc->pc_cpu0;
1965 pc->pc_ncpu = 1;
1966 } else {
1967 mutex_enter(&pc->pc_lock);
1968 pc->pc_ncpu++;
1969 mutex_exit(&pc->pc_lock);
1970 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1971 }
1972
1973 cc->cc_ipl = pc->pc_pool.pr_ipl;
1974 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1975 cc->cc_cache = pc;
1976 cc->cc_cpuindex = index;
1977 cc->cc_hits = 0;
1978 cc->cc_misses = 0;
1979 cc->cc_current = __UNCONST(&pcg_dummy);
1980 cc->cc_previous = __UNCONST(&pcg_dummy);
1981
1982 pc->pc_cpus[index] = cc;
1983 }
1984
1985 /*
1986 * pool_cache_cpu_init:
1987 *
1988 * Called whenever a new CPU is attached.
1989 */
1990 void
1991 pool_cache_cpu_init(struct cpu_info *ci)
1992 {
1993 pool_cache_t pc;
1994
1995 mutex_enter(&pool_head_lock);
1996 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1997 pc->pc_refcnt++;
1998 mutex_exit(&pool_head_lock);
1999
2000 pool_cache_cpu_init1(ci, pc);
2001
2002 mutex_enter(&pool_head_lock);
2003 pc->pc_refcnt--;
2004 cv_broadcast(&pool_busy);
2005 }
2006 mutex_exit(&pool_head_lock);
2007 }
2008
2009 /*
2010 * pool_cache_reclaim:
2011 *
2012 * Reclaim memory from a pool cache.
2013 */
2014 bool
2015 pool_cache_reclaim(pool_cache_t pc)
2016 {
2017
2018 return pool_reclaim(&pc->pc_pool);
2019 }
2020
2021 static void
2022 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2023 {
2024 if (pc->pc_pool.pr_redzone) {
2025 /*
2026 * The object is marked as invalid. Temporarily mark it as
2027 * valid for the destructor. pool_put below will re-mark it
2028 * as invalid.
2029 */
2030 kasan_mark(object, pc->pc_pool.pr_reqsize,
2031 pc->pc_pool.pr_reqsize_with_redzone);
2032 }
2033
2034 (*pc->pc_dtor)(pc->pc_arg, object);
2035 pool_put(&pc->pc_pool, object);
2036 }
2037
2038 /*
2039 * pool_cache_destruct_object:
2040 *
2041 * Force destruction of an object and its release back into
2042 * the pool.
2043 */
2044 void
2045 pool_cache_destruct_object(pool_cache_t pc, void *object)
2046 {
2047
2048 FREECHECK_IN(&pc->pc_freecheck, object);
2049
2050 pool_cache_destruct_object1(pc, object);
2051 }
2052
2053 /*
2054 * pool_cache_invalidate_groups:
2055 *
2056 * Invalidate a chain of groups and destruct all objects.
2057 */
2058 static void
2059 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2060 {
2061 void *object;
2062 pcg_t *next;
2063 int i;
2064
2065 for (; pcg != NULL; pcg = next) {
2066 next = pcg->pcg_next;
2067
2068 for (i = 0; i < pcg->pcg_avail; i++) {
2069 object = pcg->pcg_objects[i].pcgo_va;
2070 pool_cache_destruct_object1(pc, object);
2071 }
2072
2073 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2074 pool_put(&pcg_large_pool, pcg);
2075 } else {
2076 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2077 pool_put(&pcg_normal_pool, pcg);
2078 }
2079 }
2080 }
2081
2082 /*
2083 * pool_cache_invalidate:
2084 *
2085 * Invalidate a pool cache (destruct and release all of the
2086 * cached objects). Does not reclaim objects from the pool.
2087 *
2088 * Note: For pool caches that provide constructed objects, there
2089 * is an assumption that another level of synchronization is occurring
2090 * between the input to the constructor and the cache invalidation.
2091 *
2092 * Invalidation is a costly process and should not be called from
2093 * interrupt context.
2094 */
2095 void
2096 pool_cache_invalidate(pool_cache_t pc)
2097 {
2098 uint64_t where;
2099 pcg_t *full, *empty, *part;
2100
2101 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2102
2103 if (ncpu < 2 || !mp_online) {
2104 /*
2105 * We might be called early enough in the boot process
2106 * for the CPU data structures to not be fully initialized.
2107 * In this case, transfer the content of the local CPU's
2108 * cache back into global cache as only this CPU is currently
2109 * running.
2110 */
2111 pool_cache_transfer(pc);
2112 } else {
2113 /*
2114 * Signal all CPUs that they must transfer their local
2115 * cache back to the global pool then wait for the xcall to
2116 * complete.
2117 */
2118 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2119 pc, NULL);
2120 xc_wait(where);
2121 }
2122
2123 /* Empty pool caches, then invalidate objects */
2124 mutex_enter(&pc->pc_lock);
2125 full = pc->pc_fullgroups;
2126 empty = pc->pc_emptygroups;
2127 part = pc->pc_partgroups;
2128 pc->pc_fullgroups = NULL;
2129 pc->pc_emptygroups = NULL;
2130 pc->pc_partgroups = NULL;
2131 pc->pc_nfull = 0;
2132 pc->pc_nempty = 0;
2133 pc->pc_npart = 0;
2134 mutex_exit(&pc->pc_lock);
2135
2136 pool_cache_invalidate_groups(pc, full);
2137 pool_cache_invalidate_groups(pc, empty);
2138 pool_cache_invalidate_groups(pc, part);
2139 }
2140
2141 /*
2142 * pool_cache_invalidate_cpu:
2143 *
2144 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2145 * identified by its associated index.
2146 * It is caller's responsibility to ensure that no operation is
2147 * taking place on this pool cache while doing this invalidation.
2148 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2149 * pool cached objects from a CPU different from the one currently running
2150 * may result in an undefined behaviour.
2151 */
2152 static void
2153 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2154 {
2155 pool_cache_cpu_t *cc;
2156 pcg_t *pcg;
2157
2158 if ((cc = pc->pc_cpus[index]) == NULL)
2159 return;
2160
2161 if ((pcg = cc->cc_current) != &pcg_dummy) {
2162 pcg->pcg_next = NULL;
2163 pool_cache_invalidate_groups(pc, pcg);
2164 }
2165 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2166 pcg->pcg_next = NULL;
2167 pool_cache_invalidate_groups(pc, pcg);
2168 }
2169 if (cc != &pc->pc_cpu0)
2170 pool_put(&cache_cpu_pool, cc);
2171
2172 }
2173
2174 void
2175 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2176 {
2177
2178 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2179 }
2180
2181 void
2182 pool_cache_setlowat(pool_cache_t pc, int n)
2183 {
2184
2185 pool_setlowat(&pc->pc_pool, n);
2186 }
2187
2188 void
2189 pool_cache_sethiwat(pool_cache_t pc, int n)
2190 {
2191
2192 pool_sethiwat(&pc->pc_pool, n);
2193 }
2194
2195 void
2196 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2197 {
2198
2199 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2200 }
2201
2202 static bool __noinline
2203 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2204 paddr_t *pap, int flags)
2205 {
2206 pcg_t *pcg, *cur;
2207 uint64_t ncsw;
2208 pool_cache_t pc;
2209 void *object;
2210
2211 KASSERT(cc->cc_current->pcg_avail == 0);
2212 KASSERT(cc->cc_previous->pcg_avail == 0);
2213
2214 pc = cc->cc_cache;
2215 cc->cc_misses++;
2216
2217 /*
2218 * Nothing was available locally. Try and grab a group
2219 * from the cache.
2220 */
2221 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2222 ncsw = curlwp->l_ncsw;
2223 mutex_enter(&pc->pc_lock);
2224 pc->pc_contended++;
2225
2226 /*
2227 * If we context switched while locking, then
2228 * our view of the per-CPU data is invalid:
2229 * retry.
2230 */
2231 if (curlwp->l_ncsw != ncsw) {
2232 mutex_exit(&pc->pc_lock);
2233 return true;
2234 }
2235 }
2236
2237 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2238 /*
2239 * If there's a full group, release our empty
2240 * group back to the cache. Install the full
2241 * group as cc_current and return.
2242 */
2243 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2244 KASSERT(cur->pcg_avail == 0);
2245 cur->pcg_next = pc->pc_emptygroups;
2246 pc->pc_emptygroups = cur;
2247 pc->pc_nempty++;
2248 }
2249 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2250 cc->cc_current = pcg;
2251 pc->pc_fullgroups = pcg->pcg_next;
2252 pc->pc_hits++;
2253 pc->pc_nfull--;
2254 mutex_exit(&pc->pc_lock);
2255 return true;
2256 }
2257
2258 /*
2259 * Nothing available locally or in cache. Take the slow
2260 * path: fetch a new object from the pool and construct
2261 * it.
2262 */
2263 pc->pc_misses++;
2264 mutex_exit(&pc->pc_lock);
2265 splx(s);
2266
2267 object = pool_get(&pc->pc_pool, flags);
2268 *objectp = object;
2269 if (__predict_false(object == NULL)) {
2270 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2271 return false;
2272 }
2273
2274 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2275 pool_put(&pc->pc_pool, object);
2276 *objectp = NULL;
2277 return false;
2278 }
2279
2280 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2281 (pc->pc_pool.pr_align - 1)) == 0);
2282
2283 if (pap != NULL) {
2284 #ifdef POOL_VTOPHYS
2285 *pap = POOL_VTOPHYS(object);
2286 #else
2287 *pap = POOL_PADDR_INVALID;
2288 #endif
2289 }
2290
2291 FREECHECK_OUT(&pc->pc_freecheck, object);
2292 pool_redzone_fill(&pc->pc_pool, object);
2293 pool_cache_kleak_fill(pc, object);
2294 return false;
2295 }
2296
2297 /*
2298 * pool_cache_get{,_paddr}:
2299 *
2300 * Get an object from a pool cache (optionally returning
2301 * the physical address of the object).
2302 */
2303 void *
2304 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2305 {
2306 pool_cache_cpu_t *cc;
2307 pcg_t *pcg;
2308 void *object;
2309 int s;
2310
2311 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2312 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2313 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2314 "%s: [%s] is IPL_NONE, but called from interrupt context",
2315 __func__, pc->pc_pool.pr_wchan);
2316
2317 if (flags & PR_WAITOK) {
2318 ASSERT_SLEEPABLE();
2319 }
2320
2321 /* Lock out interrupts and disable preemption. */
2322 s = splvm();
2323 while (/* CONSTCOND */ true) {
2324 /* Try and allocate an object from the current group. */
2325 cc = pc->pc_cpus[curcpu()->ci_index];
2326 KASSERT(cc->cc_cache == pc);
2327 pcg = cc->cc_current;
2328 if (__predict_true(pcg->pcg_avail > 0)) {
2329 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2330 if (__predict_false(pap != NULL))
2331 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2332 #if defined(DIAGNOSTIC)
2333 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2334 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2335 KASSERT(object != NULL);
2336 #endif
2337 cc->cc_hits++;
2338 splx(s);
2339 FREECHECK_OUT(&pc->pc_freecheck, object);
2340 pool_redzone_fill(&pc->pc_pool, object);
2341 pool_cache_kleak_fill(pc, object);
2342 return object;
2343 }
2344
2345 /*
2346 * That failed. If the previous group isn't empty, swap
2347 * it with the current group and allocate from there.
2348 */
2349 pcg = cc->cc_previous;
2350 if (__predict_true(pcg->pcg_avail > 0)) {
2351 cc->cc_previous = cc->cc_current;
2352 cc->cc_current = pcg;
2353 continue;
2354 }
2355
2356 /*
2357 * Can't allocate from either group: try the slow path.
2358 * If get_slow() allocated an object for us, or if
2359 * no more objects are available, it will return false.
2360 * Otherwise, we need to retry.
2361 */
2362 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2363 break;
2364 }
2365
2366 /*
2367 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2368 * pool_cache_get can fail even in the PR_WAITOK case, if the
2369 * constructor fails.
2370 */
2371 return object;
2372 }
2373
2374 static bool __noinline
2375 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2376 {
2377 struct lwp *l = curlwp;
2378 pcg_t *pcg, *cur;
2379 uint64_t ncsw;
2380 pool_cache_t pc;
2381
2382 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2383 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2384
2385 pc = cc->cc_cache;
2386 pcg = NULL;
2387 cc->cc_misses++;
2388 ncsw = l->l_ncsw;
2389
2390 /*
2391 * If there are no empty groups in the cache then allocate one
2392 * while still unlocked.
2393 */
2394 if (__predict_false(pc->pc_emptygroups == NULL)) {
2395 if (__predict_true(!pool_cache_disable)) {
2396 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2397 }
2398 /*
2399 * If pool_get() blocked, then our view of
2400 * the per-CPU data is invalid: retry.
2401 */
2402 if (__predict_false(l->l_ncsw != ncsw)) {
2403 if (pcg != NULL) {
2404 pool_put(pc->pc_pcgpool, pcg);
2405 }
2406 return true;
2407 }
2408 if (__predict_true(pcg != NULL)) {
2409 pcg->pcg_avail = 0;
2410 pcg->pcg_size = pc->pc_pcgsize;
2411 }
2412 }
2413
2414 /* Lock the cache. */
2415 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2416 mutex_enter(&pc->pc_lock);
2417 pc->pc_contended++;
2418
2419 /*
2420 * If we context switched while locking, then our view of
2421 * the per-CPU data is invalid: retry.
2422 */
2423 if (__predict_false(l->l_ncsw != ncsw)) {
2424 mutex_exit(&pc->pc_lock);
2425 if (pcg != NULL) {
2426 pool_put(pc->pc_pcgpool, pcg);
2427 }
2428 return true;
2429 }
2430 }
2431
2432 /* If there are no empty groups in the cache then allocate one. */
2433 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2434 pcg = pc->pc_emptygroups;
2435 pc->pc_emptygroups = pcg->pcg_next;
2436 pc->pc_nempty--;
2437 }
2438
2439 /*
2440 * If there's a empty group, release our full group back
2441 * to the cache. Install the empty group to the local CPU
2442 * and return.
2443 */
2444 if (pcg != NULL) {
2445 KASSERT(pcg->pcg_avail == 0);
2446 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2447 cc->cc_previous = pcg;
2448 } else {
2449 cur = cc->cc_current;
2450 if (__predict_true(cur != &pcg_dummy)) {
2451 KASSERT(cur->pcg_avail == cur->pcg_size);
2452 cur->pcg_next = pc->pc_fullgroups;
2453 pc->pc_fullgroups = cur;
2454 pc->pc_nfull++;
2455 }
2456 cc->cc_current = pcg;
2457 }
2458 pc->pc_hits++;
2459 mutex_exit(&pc->pc_lock);
2460 return true;
2461 }
2462
2463 /*
2464 * Nothing available locally or in cache, and we didn't
2465 * allocate an empty group. Take the slow path and destroy
2466 * the object here and now.
2467 */
2468 pc->pc_misses++;
2469 mutex_exit(&pc->pc_lock);
2470 splx(s);
2471 pool_cache_destruct_object(pc, object);
2472
2473 return false;
2474 }
2475
2476 /*
2477 * pool_cache_put{,_paddr}:
2478 *
2479 * Put an object back to the pool cache (optionally caching the
2480 * physical address of the object).
2481 */
2482 void
2483 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2484 {
2485 pool_cache_cpu_t *cc;
2486 pcg_t *pcg;
2487 int s;
2488
2489 KASSERT(object != NULL);
2490 pool_cache_redzone_check(pc, object);
2491 FREECHECK_IN(&pc->pc_freecheck, object);
2492
2493 /* Lock out interrupts and disable preemption. */
2494 s = splvm();
2495 while (/* CONSTCOND */ true) {
2496 /* If the current group isn't full, release it there. */
2497 cc = pc->pc_cpus[curcpu()->ci_index];
2498 KASSERT(cc->cc_cache == pc);
2499 pcg = cc->cc_current;
2500 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2501 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2502 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2503 pcg->pcg_avail++;
2504 cc->cc_hits++;
2505 splx(s);
2506 return;
2507 }
2508
2509 /*
2510 * That failed. If the previous group isn't full, swap
2511 * it with the current group and try again.
2512 */
2513 pcg = cc->cc_previous;
2514 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2515 cc->cc_previous = cc->cc_current;
2516 cc->cc_current = pcg;
2517 continue;
2518 }
2519
2520 /*
2521 * Can't free to either group: try the slow path.
2522 * If put_slow() releases the object for us, it
2523 * will return false. Otherwise we need to retry.
2524 */
2525 if (!pool_cache_put_slow(cc, s, object))
2526 break;
2527 }
2528 }
2529
2530 /*
2531 * pool_cache_transfer:
2532 *
2533 * Transfer objects from the per-CPU cache to the global cache.
2534 * Run within a cross-call thread.
2535 */
2536 static void
2537 pool_cache_transfer(pool_cache_t pc)
2538 {
2539 pool_cache_cpu_t *cc;
2540 pcg_t *prev, *cur, **list;
2541 int s;
2542
2543 s = splvm();
2544 mutex_enter(&pc->pc_lock);
2545 cc = pc->pc_cpus[curcpu()->ci_index];
2546 cur = cc->cc_current;
2547 cc->cc_current = __UNCONST(&pcg_dummy);
2548 prev = cc->cc_previous;
2549 cc->cc_previous = __UNCONST(&pcg_dummy);
2550 if (cur != &pcg_dummy) {
2551 if (cur->pcg_avail == cur->pcg_size) {
2552 list = &pc->pc_fullgroups;
2553 pc->pc_nfull++;
2554 } else if (cur->pcg_avail == 0) {
2555 list = &pc->pc_emptygroups;
2556 pc->pc_nempty++;
2557 } else {
2558 list = &pc->pc_partgroups;
2559 pc->pc_npart++;
2560 }
2561 cur->pcg_next = *list;
2562 *list = cur;
2563 }
2564 if (prev != &pcg_dummy) {
2565 if (prev->pcg_avail == prev->pcg_size) {
2566 list = &pc->pc_fullgroups;
2567 pc->pc_nfull++;
2568 } else if (prev->pcg_avail == 0) {
2569 list = &pc->pc_emptygroups;
2570 pc->pc_nempty++;
2571 } else {
2572 list = &pc->pc_partgroups;
2573 pc->pc_npart++;
2574 }
2575 prev->pcg_next = *list;
2576 *list = prev;
2577 }
2578 mutex_exit(&pc->pc_lock);
2579 splx(s);
2580 }
2581
2582 /*
2583 * Pool backend allocators.
2584 *
2585 * Each pool has a backend allocator that handles allocation, deallocation,
2586 * and any additional draining that might be needed.
2587 *
2588 * We provide two standard allocators:
2589 *
2590 * pool_allocator_kmem - the default when no allocator is specified
2591 *
2592 * pool_allocator_nointr - used for pools that will not be accessed
2593 * in interrupt context.
2594 */
2595 void *pool_page_alloc(struct pool *, int);
2596 void pool_page_free(struct pool *, void *);
2597
2598 #ifdef POOL_SUBPAGE
2599 struct pool_allocator pool_allocator_kmem_fullpage = {
2600 .pa_alloc = pool_page_alloc,
2601 .pa_free = pool_page_free,
2602 .pa_pagesz = 0
2603 };
2604 #else
2605 struct pool_allocator pool_allocator_kmem = {
2606 .pa_alloc = pool_page_alloc,
2607 .pa_free = pool_page_free,
2608 .pa_pagesz = 0
2609 };
2610 #endif
2611
2612 #ifdef POOL_SUBPAGE
2613 struct pool_allocator pool_allocator_nointr_fullpage = {
2614 .pa_alloc = pool_page_alloc,
2615 .pa_free = pool_page_free,
2616 .pa_pagesz = 0
2617 };
2618 #else
2619 struct pool_allocator pool_allocator_nointr = {
2620 .pa_alloc = pool_page_alloc,
2621 .pa_free = pool_page_free,
2622 .pa_pagesz = 0
2623 };
2624 #endif
2625
2626 #ifdef POOL_SUBPAGE
2627 void *pool_subpage_alloc(struct pool *, int);
2628 void pool_subpage_free(struct pool *, void *);
2629
2630 struct pool_allocator pool_allocator_kmem = {
2631 .pa_alloc = pool_subpage_alloc,
2632 .pa_free = pool_subpage_free,
2633 .pa_pagesz = POOL_SUBPAGE
2634 };
2635
2636 struct pool_allocator pool_allocator_nointr = {
2637 .pa_alloc = pool_subpage_alloc,
2638 .pa_free = pool_subpage_free,
2639 .pa_pagesz = POOL_SUBPAGE
2640 };
2641 #endif /* POOL_SUBPAGE */
2642
2643 struct pool_allocator pool_allocator_big[] = {
2644 {
2645 .pa_alloc = pool_page_alloc,
2646 .pa_free = pool_page_free,
2647 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2648 },
2649 {
2650 .pa_alloc = pool_page_alloc,
2651 .pa_free = pool_page_free,
2652 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2653 },
2654 {
2655 .pa_alloc = pool_page_alloc,
2656 .pa_free = pool_page_free,
2657 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2658 },
2659 {
2660 .pa_alloc = pool_page_alloc,
2661 .pa_free = pool_page_free,
2662 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2663 },
2664 {
2665 .pa_alloc = pool_page_alloc,
2666 .pa_free = pool_page_free,
2667 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2668 },
2669 {
2670 .pa_alloc = pool_page_alloc,
2671 .pa_free = pool_page_free,
2672 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2673 },
2674 {
2675 .pa_alloc = pool_page_alloc,
2676 .pa_free = pool_page_free,
2677 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2678 },
2679 {
2680 .pa_alloc = pool_page_alloc,
2681 .pa_free = pool_page_free,
2682 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2683 }
2684 };
2685
2686 static int
2687 pool_bigidx(size_t size)
2688 {
2689 int i;
2690
2691 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2692 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2693 return i;
2694 }
2695 panic("pool item size %zu too large, use a custom allocator", size);
2696 }
2697
2698 static void *
2699 pool_allocator_alloc(struct pool *pp, int flags)
2700 {
2701 struct pool_allocator *pa = pp->pr_alloc;
2702 void *res;
2703
2704 res = (*pa->pa_alloc)(pp, flags);
2705 if (res == NULL && (flags & PR_WAITOK) == 0) {
2706 /*
2707 * We only run the drain hook here if PR_NOWAIT.
2708 * In other cases, the hook will be run in
2709 * pool_reclaim().
2710 */
2711 if (pp->pr_drain_hook != NULL) {
2712 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2713 res = (*pa->pa_alloc)(pp, flags);
2714 }
2715 }
2716 return res;
2717 }
2718
2719 static void
2720 pool_allocator_free(struct pool *pp, void *v)
2721 {
2722 struct pool_allocator *pa = pp->pr_alloc;
2723
2724 if (pp->pr_redzone) {
2725 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
2726 }
2727 (*pa->pa_free)(pp, v);
2728 }
2729
2730 void *
2731 pool_page_alloc(struct pool *pp, int flags)
2732 {
2733 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2734 vmem_addr_t va;
2735 int ret;
2736
2737 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2738 vflags | VM_INSTANTFIT, &va);
2739
2740 return ret ? NULL : (void *)va;
2741 }
2742
2743 void
2744 pool_page_free(struct pool *pp, void *v)
2745 {
2746
2747 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2748 }
2749
2750 static void *
2751 pool_page_alloc_meta(struct pool *pp, int flags)
2752 {
2753 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2754 vmem_addr_t va;
2755 int ret;
2756
2757 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2758 vflags | VM_INSTANTFIT, &va);
2759
2760 return ret ? NULL : (void *)va;
2761 }
2762
2763 static void
2764 pool_page_free_meta(struct pool *pp, void *v)
2765 {
2766
2767 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2768 }
2769
2770 #ifdef KLEAK
2771 static void
2772 pool_kleak_fill(struct pool *pp, void *p)
2773 {
2774 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2775 return;
2776 }
2777 kleak_fill_area(p, pp->pr_size);
2778 }
2779
2780 static void
2781 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2782 {
2783 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2784 return;
2785 }
2786 pool_kleak_fill(&pc->pc_pool, p);
2787 }
2788 #endif
2789
2790 #ifdef POOL_REDZONE
2791 #if defined(_LP64)
2792 # define PRIME 0x9e37fffffffc0000UL
2793 #else /* defined(_LP64) */
2794 # define PRIME 0x9e3779b1
2795 #endif /* defined(_LP64) */
2796 #define STATIC_BYTE 0xFE
2797 CTASSERT(POOL_REDZONE_SIZE > 1);
2798
2799 #ifndef KASAN
2800 static inline uint8_t
2801 pool_pattern_generate(const void *p)
2802 {
2803 return (uint8_t)(((uintptr_t)p) * PRIME
2804 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2805 }
2806 #endif
2807
2808 static void
2809 pool_redzone_init(struct pool *pp, size_t requested_size)
2810 {
2811 size_t redzsz;
2812 size_t nsz;
2813
2814 #ifdef KASAN
2815 redzsz = requested_size;
2816 kasan_add_redzone(&redzsz);
2817 redzsz -= requested_size;
2818 #else
2819 redzsz = POOL_REDZONE_SIZE;
2820 #endif
2821
2822 if (pp->pr_roflags & PR_NOTOUCH) {
2823 pp->pr_reqsize = 0;
2824 pp->pr_redzone = false;
2825 return;
2826 }
2827
2828 /*
2829 * We may have extended the requested size earlier; check if
2830 * there's naturally space in the padding for a red zone.
2831 */
2832 if (pp->pr_size - requested_size >= redzsz) {
2833 pp->pr_reqsize = requested_size;
2834 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2835 pp->pr_redzone = true;
2836 return;
2837 }
2838
2839 /*
2840 * No space in the natural padding; check if we can extend a
2841 * bit the size of the pool.
2842 */
2843 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2844 if (nsz <= pp->pr_alloc->pa_pagesz) {
2845 /* Ok, we can */
2846 pp->pr_size = nsz;
2847 pp->pr_reqsize = requested_size;
2848 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2849 pp->pr_redzone = true;
2850 } else {
2851 /* No space for a red zone... snif :'( */
2852 pp->pr_reqsize = 0;
2853 pp->pr_redzone = false;
2854 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2855 }
2856 }
2857
2858 static void
2859 pool_redzone_fill(struct pool *pp, void *p)
2860 {
2861 if (!pp->pr_redzone)
2862 return;
2863 #ifdef KASAN
2864 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
2865 #else
2866 uint8_t *cp, pat;
2867 const uint8_t *ep;
2868
2869 cp = (uint8_t *)p + pp->pr_reqsize;
2870 ep = cp + POOL_REDZONE_SIZE;
2871
2872 /*
2873 * We really don't want the first byte of the red zone to be '\0';
2874 * an off-by-one in a string may not be properly detected.
2875 */
2876 pat = pool_pattern_generate(cp);
2877 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2878 cp++;
2879
2880 while (cp < ep) {
2881 *cp = pool_pattern_generate(cp);
2882 cp++;
2883 }
2884 #endif
2885 }
2886
2887 static void
2888 pool_redzone_check(struct pool *pp, void *p)
2889 {
2890 if (!pp->pr_redzone)
2891 return;
2892 #ifdef KASAN
2893 kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
2894 #else
2895 uint8_t *cp, pat, expected;
2896 const uint8_t *ep;
2897
2898 cp = (uint8_t *)p + pp->pr_reqsize;
2899 ep = cp + POOL_REDZONE_SIZE;
2900
2901 pat = pool_pattern_generate(cp);
2902 expected = (pat == '\0') ? STATIC_BYTE: pat;
2903 if (__predict_false(expected != *cp)) {
2904 printf("%s: %p: 0x%02x != 0x%02x\n",
2905 __func__, cp, *cp, expected);
2906 }
2907 cp++;
2908
2909 while (cp < ep) {
2910 expected = pool_pattern_generate(cp);
2911 if (__predict_false(*cp != expected)) {
2912 printf("%s: %p: 0x%02x != 0x%02x\n",
2913 __func__, cp, *cp, expected);
2914 }
2915 cp++;
2916 }
2917 #endif
2918 }
2919
2920 static void
2921 pool_cache_redzone_check(pool_cache_t pc, void *p)
2922 {
2923 #ifdef KASAN
2924 /* If there is a ctor/dtor, leave the data as valid. */
2925 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2926 return;
2927 }
2928 #endif
2929 pool_redzone_check(&pc->pc_pool, p);
2930 }
2931
2932 #endif /* POOL_REDZONE */
2933
2934
2935 #ifdef POOL_SUBPAGE
2936 /* Sub-page allocator, for machines with large hardware pages. */
2937 void *
2938 pool_subpage_alloc(struct pool *pp, int flags)
2939 {
2940 return pool_get(&psppool, flags);
2941 }
2942
2943 void
2944 pool_subpage_free(struct pool *pp, void *v)
2945 {
2946 pool_put(&psppool, v);
2947 }
2948
2949 #endif /* POOL_SUBPAGE */
2950
2951 #if defined(DDB)
2952 static bool
2953 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2954 {
2955
2956 return (uintptr_t)ph->ph_page <= addr &&
2957 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2958 }
2959
2960 static bool
2961 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2962 {
2963
2964 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2965 }
2966
2967 static bool
2968 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2969 {
2970 int i;
2971
2972 if (pcg == NULL) {
2973 return false;
2974 }
2975 for (i = 0; i < pcg->pcg_avail; i++) {
2976 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2977 return true;
2978 }
2979 }
2980 return false;
2981 }
2982
2983 static bool
2984 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2985 {
2986
2987 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2988 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2989 pool_item_bitmap_t *bitmap =
2990 ph->ph_bitmap + (idx / BITMAP_SIZE);
2991 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2992
2993 return (*bitmap & mask) == 0;
2994 } else {
2995 struct pool_item *pi;
2996
2997 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2998 if (pool_in_item(pp, pi, addr)) {
2999 return false;
3000 }
3001 }
3002 return true;
3003 }
3004 }
3005
3006 void
3007 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3008 {
3009 struct pool *pp;
3010
3011 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3012 struct pool_item_header *ph;
3013 uintptr_t item;
3014 bool allocated = true;
3015 bool incache = false;
3016 bool incpucache = false;
3017 char cpucachestr[32];
3018
3019 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3020 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3021 if (pool_in_page(pp, ph, addr)) {
3022 goto found;
3023 }
3024 }
3025 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3026 if (pool_in_page(pp, ph, addr)) {
3027 allocated =
3028 pool_allocated(pp, ph, addr);
3029 goto found;
3030 }
3031 }
3032 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3033 if (pool_in_page(pp, ph, addr)) {
3034 allocated = false;
3035 goto found;
3036 }
3037 }
3038 continue;
3039 } else {
3040 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3041 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3042 continue;
3043 }
3044 allocated = pool_allocated(pp, ph, addr);
3045 }
3046 found:
3047 if (allocated && pp->pr_cache) {
3048 pool_cache_t pc = pp->pr_cache;
3049 struct pool_cache_group *pcg;
3050 int i;
3051
3052 for (pcg = pc->pc_fullgroups; pcg != NULL;
3053 pcg = pcg->pcg_next) {
3054 if (pool_in_cg(pp, pcg, addr)) {
3055 incache = true;
3056 goto print;
3057 }
3058 }
3059 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3060 pool_cache_cpu_t *cc;
3061
3062 if ((cc = pc->pc_cpus[i]) == NULL) {
3063 continue;
3064 }
3065 if (pool_in_cg(pp, cc->cc_current, addr) ||
3066 pool_in_cg(pp, cc->cc_previous, addr)) {
3067 struct cpu_info *ci =
3068 cpu_lookup(i);
3069
3070 incpucache = true;
3071 snprintf(cpucachestr,
3072 sizeof(cpucachestr),
3073 "cached by CPU %u",
3074 ci->ci_index);
3075 goto print;
3076 }
3077 }
3078 }
3079 print:
3080 item = (uintptr_t)ph->ph_page + ph->ph_off;
3081 item = item + rounddown(addr - item, pp->pr_size);
3082 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3083 (void *)addr, item, (size_t)(addr - item),
3084 pp->pr_wchan,
3085 incpucache ? cpucachestr :
3086 incache ? "cached" : allocated ? "allocated" : "free");
3087 }
3088 }
3089 #endif /* defined(DDB) */
3090
3091 static int
3092 pool_sysctl(SYSCTLFN_ARGS)
3093 {
3094 struct pool_sysctl data;
3095 struct pool *pp;
3096 struct pool_cache *pc;
3097 pool_cache_cpu_t *cc;
3098 int error;
3099 size_t i, written;
3100
3101 if (oldp == NULL) {
3102 *oldlenp = 0;
3103 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3104 *oldlenp += sizeof(data);
3105 return 0;
3106 }
3107
3108 memset(&data, 0, sizeof(data));
3109 error = 0;
3110 written = 0;
3111 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3112 if (written + sizeof(data) > *oldlenp)
3113 break;
3114 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3115 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3116 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3117 #define COPY(field) data.field = pp->field
3118 COPY(pr_size);
3119
3120 COPY(pr_itemsperpage);
3121 COPY(pr_nitems);
3122 COPY(pr_nout);
3123 COPY(pr_hardlimit);
3124 COPY(pr_npages);
3125 COPY(pr_minpages);
3126 COPY(pr_maxpages);
3127
3128 COPY(pr_nget);
3129 COPY(pr_nfail);
3130 COPY(pr_nput);
3131 COPY(pr_npagealloc);
3132 COPY(pr_npagefree);
3133 COPY(pr_hiwat);
3134 COPY(pr_nidle);
3135 #undef COPY
3136
3137 data.pr_cache_nmiss_pcpu = 0;
3138 data.pr_cache_nhit_pcpu = 0;
3139 if (pp->pr_cache) {
3140 pc = pp->pr_cache;
3141 data.pr_cache_meta_size = pc->pc_pcgsize;
3142 data.pr_cache_nfull = pc->pc_nfull;
3143 data.pr_cache_npartial = pc->pc_npart;
3144 data.pr_cache_nempty = pc->pc_nempty;
3145 data.pr_cache_ncontended = pc->pc_contended;
3146 data.pr_cache_nmiss_global = pc->pc_misses;
3147 data.pr_cache_nhit_global = pc->pc_hits;
3148 for (i = 0; i < pc->pc_ncpu; ++i) {
3149 cc = pc->pc_cpus[i];
3150 if (cc == NULL)
3151 continue;
3152 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3153 data.pr_cache_nhit_pcpu += cc->cc_hits;
3154 }
3155 } else {
3156 data.pr_cache_meta_size = 0;
3157 data.pr_cache_nfull = 0;
3158 data.pr_cache_npartial = 0;
3159 data.pr_cache_nempty = 0;
3160 data.pr_cache_ncontended = 0;
3161 data.pr_cache_nmiss_global = 0;
3162 data.pr_cache_nhit_global = 0;
3163 }
3164
3165 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3166 if (error)
3167 break;
3168 written += sizeof(data);
3169 oldp = (char *)oldp + sizeof(data);
3170 }
3171
3172 *oldlenp = written;
3173 return error;
3174 }
3175
3176 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3177 {
3178 const struct sysctlnode *rnode = NULL;
3179
3180 sysctl_createv(clog, 0, NULL, &rnode,
3181 CTLFLAG_PERMANENT,
3182 CTLTYPE_STRUCT, "pool",
3183 SYSCTL_DESCR("Get pool statistics"),
3184 pool_sysctl, 0, NULL, 0,
3185 CTL_KERN, CTL_CREATE, CTL_EOL);
3186 }
3187