Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.235
      1 /*	$NetBSD: subr_pool.c,v 1.235 2019/03/11 20:38:27 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.235 2019/03/11 20:38:27 maxv Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_kleak.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/sysctl.h>
     47 #include <sys/bitops.h>
     48 #include <sys/proc.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmem.h>
     52 #include <sys/pool.h>
     53 #include <sys/syslog.h>
     54 #include <sys/debug.h>
     55 #include <sys/lockdebug.h>
     56 #include <sys/xcall.h>
     57 #include <sys/cpu.h>
     58 #include <sys/atomic.h>
     59 #include <sys/asan.h>
     60 
     61 #include <uvm/uvm_extern.h>
     62 
     63 /*
     64  * Pool resource management utility.
     65  *
     66  * Memory is allocated in pages which are split into pieces according to
     67  * the pool item size. Each page is kept on one of three lists in the
     68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69  * for empty, full and partially-full pages respectively. The individual
     70  * pool items are on a linked list headed by `ph_itemlist' in each page
     71  * header. The memory for building the page list is either taken from
     72  * the allocated pages themselves (for small pool items) or taken from
     73  * an internal pool of page headers (`phpool').
     74  */
     75 
     76 /* List of all pools. Non static as needed by 'vmstat -m' */
     77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     78 
     79 /* Private pool for page header structures */
     80 #define	PHPOOL_MAX	8
     81 static struct pool phpool[PHPOOL_MAX];
     82 #define	PHPOOL_FREELIST_NELEM(idx) \
     83 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     84 
     85 #ifdef POOL_SUBPAGE
     86 /* Pool of subpages for use by normal pools. */
     87 static struct pool psppool;
     88 #endif
     89 
     90 #if defined(KASAN)
     91 #define POOL_REDZONE
     92 #endif
     93 
     94 #ifdef POOL_REDZONE
     95 # ifdef KASAN
     96 #  define POOL_REDZONE_SIZE 8
     97 # else
     98 #  define POOL_REDZONE_SIZE 2
     99 # endif
    100 static void pool_redzone_init(struct pool *, size_t);
    101 static void pool_redzone_fill(struct pool *, void *);
    102 static void pool_redzone_check(struct pool *, void *);
    103 static void pool_cache_redzone_check(pool_cache_t, void *);
    104 #else
    105 # define pool_redzone_init(pp, sz)		__nothing
    106 # define pool_redzone_fill(pp, ptr)		__nothing
    107 # define pool_redzone_check(pp, ptr)		__nothing
    108 # define pool_cache_redzone_check(pc, ptr)	__nothing
    109 #endif
    110 
    111 #ifdef KLEAK
    112 static void pool_kleak_fill(struct pool *, void *);
    113 static void pool_cache_kleak_fill(pool_cache_t, void *);
    114 #else
    115 #define pool_kleak_fill(pp, ptr)	__nothing
    116 #define pool_cache_kleak_fill(pc, ptr)	__nothing
    117 #endif
    118 
    119 #define pc_has_ctor(pc) \
    120 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    121 #define pc_has_dtor(pc) \
    122 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    123 
    124 static void *pool_page_alloc_meta(struct pool *, int);
    125 static void pool_page_free_meta(struct pool *, void *);
    126 
    127 /* allocator for pool metadata */
    128 struct pool_allocator pool_allocator_meta = {
    129 	.pa_alloc = pool_page_alloc_meta,
    130 	.pa_free = pool_page_free_meta,
    131 	.pa_pagesz = 0
    132 };
    133 
    134 #define POOL_ALLOCATOR_BIG_BASE 13
    135 extern struct pool_allocator pool_allocator_big[];
    136 static int pool_bigidx(size_t);
    137 
    138 /* # of seconds to retain page after last use */
    139 int pool_inactive_time = 10;
    140 
    141 /* Next candidate for drainage (see pool_drain()) */
    142 static struct pool	*drainpp;
    143 
    144 /* This lock protects both pool_head and drainpp. */
    145 static kmutex_t pool_head_lock;
    146 static kcondvar_t pool_busy;
    147 
    148 /* This lock protects initialization of a potentially shared pool allocator */
    149 static kmutex_t pool_allocator_lock;
    150 
    151 typedef uint32_t pool_item_bitmap_t;
    152 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    153 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    154 
    155 struct pool_item_header {
    156 	/* Page headers */
    157 	LIST_ENTRY(pool_item_header)
    158 				ph_pagelist;	/* pool page list */
    159 	SPLAY_ENTRY(pool_item_header)
    160 				ph_node;	/* Off-page page headers */
    161 	void *			ph_page;	/* this page's address */
    162 	uint32_t		ph_time;	/* last referenced */
    163 	uint16_t		ph_nmissing;	/* # of chunks in use */
    164 	uint16_t		ph_off;		/* start offset in page */
    165 	union {
    166 		/* !PR_NOTOUCH */
    167 		struct {
    168 			LIST_HEAD(, pool_item)
    169 				phu_itemlist;	/* chunk list for this page */
    170 		} phu_normal;
    171 		/* PR_NOTOUCH */
    172 		struct {
    173 			pool_item_bitmap_t phu_bitmap[1];
    174 		} phu_notouch;
    175 	} ph_u;
    176 };
    177 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    178 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    179 
    180 #if defined(DIAGNOSTIC) && !defined(KASAN)
    181 #define POOL_CHECK_MAGIC
    182 #endif
    183 
    184 struct pool_item {
    185 #ifdef POOL_CHECK_MAGIC
    186 	u_int pi_magic;
    187 #endif
    188 #define	PI_MAGIC 0xdeaddeadU
    189 	/* Other entries use only this list entry */
    190 	LIST_ENTRY(pool_item)	pi_list;
    191 };
    192 
    193 #define	POOL_NEEDS_CATCHUP(pp)						\
    194 	((pp)->pr_nitems < (pp)->pr_minitems)
    195 
    196 /*
    197  * Pool cache management.
    198  *
    199  * Pool caches provide a way for constructed objects to be cached by the
    200  * pool subsystem.  This can lead to performance improvements by avoiding
    201  * needless object construction/destruction; it is deferred until absolutely
    202  * necessary.
    203  *
    204  * Caches are grouped into cache groups.  Each cache group references up
    205  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    206  * object from the pool, it calls the object's constructor and places it
    207  * into a cache group.  When a cache group frees an object back to the
    208  * pool, it first calls the object's destructor.  This allows the object
    209  * to persist in constructed form while freed to the cache.
    210  *
    211  * The pool references each cache, so that when a pool is drained by the
    212  * pagedaemon, it can drain each individual cache as well.  Each time a
    213  * cache is drained, the most idle cache group is freed to the pool in
    214  * its entirety.
    215  *
    216  * Pool caches are layed on top of pools.  By layering them, we can avoid
    217  * the complexity of cache management for pools which would not benefit
    218  * from it.
    219  */
    220 
    221 static struct pool pcg_normal_pool;
    222 static struct pool pcg_large_pool;
    223 static struct pool cache_pool;
    224 static struct pool cache_cpu_pool;
    225 
    226 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    227 
    228 /* List of all caches. */
    229 TAILQ_HEAD(,pool_cache) pool_cache_head =
    230     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    231 
    232 int pool_cache_disable;		/* global disable for caching */
    233 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    234 
    235 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    236 				    void *);
    237 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    238 				    void **, paddr_t *, int);
    239 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    240 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    241 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    242 static void	pool_cache_transfer(pool_cache_t);
    243 
    244 static int	pool_catchup(struct pool *);
    245 static void	pool_prime_page(struct pool *, void *,
    246 		    struct pool_item_header *);
    247 static void	pool_update_curpage(struct pool *);
    248 
    249 static int	pool_grow(struct pool *, int);
    250 static void	*pool_allocator_alloc(struct pool *, int);
    251 static void	pool_allocator_free(struct pool *, void *);
    252 
    253 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    254 	void (*)(const char *, ...) __printflike(1, 2));
    255 static void pool_print1(struct pool *, const char *,
    256 	void (*)(const char *, ...) __printflike(1, 2));
    257 
    258 static int pool_chk_page(struct pool *, const char *,
    259 			 struct pool_item_header *);
    260 
    261 /* -------------------------------------------------------------------------- */
    262 
    263 static inline unsigned int
    264 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    265     const void *v)
    266 {
    267 	const char *cp = v;
    268 	unsigned int idx;
    269 
    270 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    271 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    272 	KASSERT(idx < pp->pr_itemsperpage);
    273 	return idx;
    274 }
    275 
    276 static inline void
    277 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    278     void *obj)
    279 {
    280 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    281 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    282 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    283 
    284 	KASSERT((*bitmap & mask) == 0);
    285 	*bitmap |= mask;
    286 }
    287 
    288 static inline void *
    289 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    290 {
    291 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    292 	unsigned int idx;
    293 	int i;
    294 
    295 	for (i = 0; ; i++) {
    296 		int bit;
    297 
    298 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    299 		bit = ffs32(bitmap[i]);
    300 		if (bit) {
    301 			pool_item_bitmap_t mask;
    302 
    303 			bit--;
    304 			idx = (i * BITMAP_SIZE) + bit;
    305 			mask = 1U << bit;
    306 			KASSERT((bitmap[i] & mask) != 0);
    307 			bitmap[i] &= ~mask;
    308 			break;
    309 		}
    310 	}
    311 	KASSERT(idx < pp->pr_itemsperpage);
    312 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    313 }
    314 
    315 static inline void
    316 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    317 {
    318 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    319 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    320 	int i;
    321 
    322 	for (i = 0; i < n; i++) {
    323 		bitmap[i] = (pool_item_bitmap_t)-1;
    324 	}
    325 }
    326 
    327 /* -------------------------------------------------------------------------- */
    328 
    329 static inline void
    330 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    331     void *obj)
    332 {
    333 	struct pool_item *pi = obj;
    334 
    335 #ifdef POOL_CHECK_MAGIC
    336 	pi->pi_magic = PI_MAGIC;
    337 #endif
    338 
    339 	if (pp->pr_redzone) {
    340 		/*
    341 		 * Mark the pool_item as valid. The rest is already
    342 		 * invalid.
    343 		 */
    344 		kasan_mark(pi, sizeof(*pi), sizeof(*pi));
    345 	}
    346 
    347 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    348 }
    349 
    350 static inline void *
    351 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    352 {
    353 	struct pool_item *pi;
    354 	void *v;
    355 
    356 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    357 	if (__predict_false(v == NULL)) {
    358 		mutex_exit(&pp->pr_lock);
    359 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    360 	}
    361 	KASSERTMSG((pp->pr_nitems > 0),
    362 	    "%s: [%s] nitems %u inconsistent on itemlist",
    363 	    __func__, pp->pr_wchan, pp->pr_nitems);
    364 #ifdef POOL_CHECK_MAGIC
    365 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    366 	    "%s: [%s] free list modified: "
    367 	    "magic=%x; page %p; item addr %p", __func__,
    368 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    369 #endif
    370 
    371 	/*
    372 	 * Remove from item list.
    373 	 */
    374 	LIST_REMOVE(pi, pi_list);
    375 
    376 	return v;
    377 }
    378 
    379 /* -------------------------------------------------------------------------- */
    380 
    381 static inline int
    382 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    383 {
    384 
    385 	/*
    386 	 * we consider pool_item_header with smaller ph_page bigger.
    387 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    388 	 */
    389 
    390 	if (a->ph_page < b->ph_page)
    391 		return (1);
    392 	else if (a->ph_page > b->ph_page)
    393 		return (-1);
    394 	else
    395 		return (0);
    396 }
    397 
    398 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    399 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    400 
    401 static inline struct pool_item_header *
    402 pr_find_pagehead_noalign(struct pool *pp, void *v)
    403 {
    404 	struct pool_item_header *ph, tmp;
    405 
    406 	tmp.ph_page = (void *)(uintptr_t)v;
    407 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    408 	if (ph == NULL) {
    409 		ph = SPLAY_ROOT(&pp->pr_phtree);
    410 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    411 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    412 		}
    413 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    414 	}
    415 
    416 	return ph;
    417 }
    418 
    419 /*
    420  * Return the pool page header based on item address.
    421  */
    422 static inline struct pool_item_header *
    423 pr_find_pagehead(struct pool *pp, void *v)
    424 {
    425 	struct pool_item_header *ph, tmp;
    426 
    427 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    428 		ph = pr_find_pagehead_noalign(pp, v);
    429 	} else {
    430 		void *page =
    431 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    432 
    433 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    434 			ph = (struct pool_item_header *)
    435 			    ((char *)page + pp->pr_phoffset);
    436 			if (__predict_false((void *)ph->ph_page != page)) {
    437 				panic("%s: [%s] item not part of pool",
    438 				    __func__, pp->pr_wchan);
    439 			}
    440 		} else {
    441 			tmp.ph_page = page;
    442 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    443 		}
    444 	}
    445 
    446 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    447 	    ((char *)ph->ph_page <= (char *)v &&
    448 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    449 	return ph;
    450 }
    451 
    452 static void
    453 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    454 {
    455 	struct pool_item_header *ph;
    456 
    457 	while ((ph = LIST_FIRST(pq)) != NULL) {
    458 		LIST_REMOVE(ph, ph_pagelist);
    459 		pool_allocator_free(pp, ph->ph_page);
    460 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    461 			pool_put(pp->pr_phpool, ph);
    462 	}
    463 }
    464 
    465 /*
    466  * Remove a page from the pool.
    467  */
    468 static inline void
    469 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    470      struct pool_pagelist *pq)
    471 {
    472 
    473 	KASSERT(mutex_owned(&pp->pr_lock));
    474 
    475 	/*
    476 	 * If the page was idle, decrement the idle page count.
    477 	 */
    478 	if (ph->ph_nmissing == 0) {
    479 		KASSERT(pp->pr_nidle != 0);
    480 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    481 		    "nitems=%u < itemsperpage=%u",
    482 		    pp->pr_nitems, pp->pr_itemsperpage);
    483 		pp->pr_nidle--;
    484 	}
    485 
    486 	pp->pr_nitems -= pp->pr_itemsperpage;
    487 
    488 	/*
    489 	 * Unlink the page from the pool and queue it for release.
    490 	 */
    491 	LIST_REMOVE(ph, ph_pagelist);
    492 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    493 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    494 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    495 
    496 	pp->pr_npages--;
    497 	pp->pr_npagefree++;
    498 
    499 	pool_update_curpage(pp);
    500 }
    501 
    502 /*
    503  * Initialize all the pools listed in the "pools" link set.
    504  */
    505 void
    506 pool_subsystem_init(void)
    507 {
    508 	size_t size;
    509 	int idx;
    510 
    511 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    512 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    513 	cv_init(&pool_busy, "poolbusy");
    514 
    515 	/*
    516 	 * Initialize private page header pool and cache magazine pool if we
    517 	 * haven't done so yet.
    518 	 */
    519 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    520 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    521 		int nelem;
    522 		size_t sz;
    523 
    524 		nelem = PHPOOL_FREELIST_NELEM(idx);
    525 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    526 		    "phpool-%d", nelem);
    527 		sz = sizeof(struct pool_item_header);
    528 		if (nelem) {
    529 			sz = offsetof(struct pool_item_header,
    530 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    531 		}
    532 		pool_init(&phpool[idx], sz, 0, 0, 0,
    533 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    534 	}
    535 #ifdef POOL_SUBPAGE
    536 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    537 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    538 #endif
    539 
    540 	size = sizeof(pcg_t) +
    541 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    542 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    543 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    544 
    545 	size = sizeof(pcg_t) +
    546 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    547 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    548 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    549 
    550 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    551 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    552 
    553 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    554 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    555 }
    556 
    557 /*
    558  * Initialize the given pool resource structure.
    559  *
    560  * We export this routine to allow other kernel parts to declare
    561  * static pools that must be initialized before kmem(9) is available.
    562  */
    563 void
    564 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    565     const char *wchan, struct pool_allocator *palloc, int ipl)
    566 {
    567 	struct pool *pp1;
    568 	size_t trysize, phsize, prsize;
    569 	int off, slack;
    570 
    571 #ifdef DEBUG
    572 	if (__predict_true(!cold))
    573 		mutex_enter(&pool_head_lock);
    574 	/*
    575 	 * Check that the pool hasn't already been initialised and
    576 	 * added to the list of all pools.
    577 	 */
    578 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    579 		if (pp == pp1)
    580 			panic("%s: [%s] already initialised", __func__,
    581 			    wchan);
    582 	}
    583 	if (__predict_true(!cold))
    584 		mutex_exit(&pool_head_lock);
    585 #endif
    586 
    587 	if (palloc == NULL)
    588 		palloc = &pool_allocator_kmem;
    589 #ifdef POOL_SUBPAGE
    590 	if (size > palloc->pa_pagesz) {
    591 		if (palloc == &pool_allocator_kmem)
    592 			palloc = &pool_allocator_kmem_fullpage;
    593 		else if (palloc == &pool_allocator_nointr)
    594 			palloc = &pool_allocator_nointr_fullpage;
    595 	}
    596 #endif /* POOL_SUBPAGE */
    597 	if (!cold)
    598 		mutex_enter(&pool_allocator_lock);
    599 	if (palloc->pa_refcnt++ == 0) {
    600 		if (palloc->pa_pagesz == 0)
    601 			palloc->pa_pagesz = PAGE_SIZE;
    602 
    603 		TAILQ_INIT(&palloc->pa_list);
    604 
    605 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    606 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    607 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    608 	}
    609 	if (!cold)
    610 		mutex_exit(&pool_allocator_lock);
    611 
    612 	if (align == 0)
    613 		align = ALIGN(1);
    614 
    615 	prsize = size;
    616 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    617 		prsize = sizeof(struct pool_item);
    618 
    619 	prsize = roundup(prsize, align);
    620 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    621 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    622 	    __func__, wchan, prsize, palloc->pa_pagesz);
    623 
    624 	/*
    625 	 * Initialize the pool structure.
    626 	 */
    627 	LIST_INIT(&pp->pr_emptypages);
    628 	LIST_INIT(&pp->pr_fullpages);
    629 	LIST_INIT(&pp->pr_partpages);
    630 	pp->pr_cache = NULL;
    631 	pp->pr_curpage = NULL;
    632 	pp->pr_npages = 0;
    633 	pp->pr_minitems = 0;
    634 	pp->pr_minpages = 0;
    635 	pp->pr_maxpages = UINT_MAX;
    636 	pp->pr_roflags = flags;
    637 	pp->pr_flags = 0;
    638 	pp->pr_size = prsize;
    639 	pp->pr_reqsize = size;
    640 	pp->pr_align = align;
    641 	pp->pr_wchan = wchan;
    642 	pp->pr_alloc = palloc;
    643 	pp->pr_nitems = 0;
    644 	pp->pr_nout = 0;
    645 	pp->pr_hardlimit = UINT_MAX;
    646 	pp->pr_hardlimit_warning = NULL;
    647 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    648 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    649 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    650 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    651 	pp->pr_drain_hook = NULL;
    652 	pp->pr_drain_hook_arg = NULL;
    653 	pp->pr_freecheck = NULL;
    654 	pool_redzone_init(pp, size);
    655 
    656 	/*
    657 	 * Decide whether to put the page header off page to avoid
    658 	 * wasting too large a part of the page or too big item.
    659 	 * Off-page page headers go on a hash table, so we can match
    660 	 * a returned item with its header based on the page address.
    661 	 * We use 1/16 of the page size and about 8 times of the item
    662 	 * size as the threshold (XXX: tune)
    663 	 *
    664 	 * However, we'll put the header into the page if we can put
    665 	 * it without wasting any items.
    666 	 *
    667 	 * Silently enforce `0 <= ioff < align'.
    668 	 */
    669 	pp->pr_itemoffset = ioff %= align;
    670 	/* See the comment below about reserved bytes. */
    671 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    672 	phsize = ALIGN(sizeof(struct pool_item_header));
    673 	if (pp->pr_roflags & PR_PHINPAGE ||
    674 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    675 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    676 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    677 		/* Use the end of the page for the page header */
    678 		pp->pr_roflags |= PR_PHINPAGE;
    679 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    680 	} else {
    681 		/* The page header will be taken from our page header pool */
    682 		pp->pr_phoffset = 0;
    683 		off = palloc->pa_pagesz;
    684 		SPLAY_INIT(&pp->pr_phtree);
    685 	}
    686 
    687 	/*
    688 	 * Alignment is to take place at `ioff' within the item. This means
    689 	 * we must reserve up to `align - 1' bytes on the page to allow
    690 	 * appropriate positioning of each item.
    691 	 */
    692 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    693 	KASSERT(pp->pr_itemsperpage != 0);
    694 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    695 		int idx;
    696 
    697 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    698 		    idx++) {
    699 			/* nothing */
    700 		}
    701 		if (idx >= PHPOOL_MAX) {
    702 			/*
    703 			 * if you see this panic, consider to tweak
    704 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    705 			 */
    706 			panic("%s: [%s] too large itemsperpage(%d) for "
    707 			    "PR_NOTOUCH", __func__,
    708 			    pp->pr_wchan, pp->pr_itemsperpage);
    709 		}
    710 		pp->pr_phpool = &phpool[idx];
    711 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    712 		pp->pr_phpool = &phpool[0];
    713 	}
    714 #if defined(DIAGNOSTIC)
    715 	else {
    716 		pp->pr_phpool = NULL;
    717 	}
    718 #endif
    719 
    720 	/*
    721 	 * Use the slack between the chunks and the page header
    722 	 * for "cache coloring".
    723 	 */
    724 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    725 	pp->pr_maxcolor = (slack / align) * align;
    726 	pp->pr_curcolor = 0;
    727 
    728 	pp->pr_nget = 0;
    729 	pp->pr_nfail = 0;
    730 	pp->pr_nput = 0;
    731 	pp->pr_npagealloc = 0;
    732 	pp->pr_npagefree = 0;
    733 	pp->pr_hiwat = 0;
    734 	pp->pr_nidle = 0;
    735 	pp->pr_refcnt = 0;
    736 
    737 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    738 	cv_init(&pp->pr_cv, wchan);
    739 	pp->pr_ipl = ipl;
    740 
    741 	/* Insert into the list of all pools. */
    742 	if (!cold)
    743 		mutex_enter(&pool_head_lock);
    744 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    745 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    746 			break;
    747 	}
    748 	if (pp1 == NULL)
    749 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    750 	else
    751 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    752 	if (!cold)
    753 		mutex_exit(&pool_head_lock);
    754 
    755 	/* Insert this into the list of pools using this allocator. */
    756 	if (!cold)
    757 		mutex_enter(&palloc->pa_lock);
    758 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    759 	if (!cold)
    760 		mutex_exit(&palloc->pa_lock);
    761 }
    762 
    763 /*
    764  * De-commision a pool resource.
    765  */
    766 void
    767 pool_destroy(struct pool *pp)
    768 {
    769 	struct pool_pagelist pq;
    770 	struct pool_item_header *ph;
    771 
    772 	/* Remove from global pool list */
    773 	mutex_enter(&pool_head_lock);
    774 	while (pp->pr_refcnt != 0)
    775 		cv_wait(&pool_busy, &pool_head_lock);
    776 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    777 	if (drainpp == pp)
    778 		drainpp = NULL;
    779 	mutex_exit(&pool_head_lock);
    780 
    781 	/* Remove this pool from its allocator's list of pools. */
    782 	mutex_enter(&pp->pr_alloc->pa_lock);
    783 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    784 	mutex_exit(&pp->pr_alloc->pa_lock);
    785 
    786 	mutex_enter(&pool_allocator_lock);
    787 	if (--pp->pr_alloc->pa_refcnt == 0)
    788 		mutex_destroy(&pp->pr_alloc->pa_lock);
    789 	mutex_exit(&pool_allocator_lock);
    790 
    791 	mutex_enter(&pp->pr_lock);
    792 
    793 	KASSERT(pp->pr_cache == NULL);
    794 	KASSERTMSG((pp->pr_nout == 0),
    795 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    796 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    797 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    798 
    799 	/* Remove all pages */
    800 	LIST_INIT(&pq);
    801 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    802 		pr_rmpage(pp, ph, &pq);
    803 
    804 	mutex_exit(&pp->pr_lock);
    805 
    806 	pr_pagelist_free(pp, &pq);
    807 	cv_destroy(&pp->pr_cv);
    808 	mutex_destroy(&pp->pr_lock);
    809 }
    810 
    811 void
    812 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    813 {
    814 
    815 	/* XXX no locking -- must be used just after pool_init() */
    816 	KASSERTMSG((pp->pr_drain_hook == NULL),
    817 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    818 	pp->pr_drain_hook = fn;
    819 	pp->pr_drain_hook_arg = arg;
    820 }
    821 
    822 static struct pool_item_header *
    823 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    824 {
    825 	struct pool_item_header *ph;
    826 
    827 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    828 		ph = (void *)((char *)storage + pp->pr_phoffset);
    829 	else
    830 		ph = pool_get(pp->pr_phpool, flags);
    831 
    832 	return (ph);
    833 }
    834 
    835 /*
    836  * Grab an item from the pool.
    837  */
    838 void *
    839 pool_get(struct pool *pp, int flags)
    840 {
    841 	struct pool_item_header *ph;
    842 	void *v;
    843 
    844 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    845 	KASSERTMSG((pp->pr_itemsperpage != 0),
    846 	    "%s: [%s] pr_itemsperpage is zero, "
    847 	    "pool not initialized?", __func__, pp->pr_wchan);
    848 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    849 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    850 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    851 	    __func__, pp->pr_wchan);
    852 	if (flags & PR_WAITOK) {
    853 		ASSERT_SLEEPABLE();
    854 	}
    855 
    856 	mutex_enter(&pp->pr_lock);
    857  startover:
    858 	/*
    859 	 * Check to see if we've reached the hard limit.  If we have,
    860 	 * and we can wait, then wait until an item has been returned to
    861 	 * the pool.
    862 	 */
    863 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    864 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    865 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    866 		if (pp->pr_drain_hook != NULL) {
    867 			/*
    868 			 * Since the drain hook is going to free things
    869 			 * back to the pool, unlock, call the hook, re-lock,
    870 			 * and check the hardlimit condition again.
    871 			 */
    872 			mutex_exit(&pp->pr_lock);
    873 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    874 			mutex_enter(&pp->pr_lock);
    875 			if (pp->pr_nout < pp->pr_hardlimit)
    876 				goto startover;
    877 		}
    878 
    879 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    880 			/*
    881 			 * XXX: A warning isn't logged in this case.  Should
    882 			 * it be?
    883 			 */
    884 			pp->pr_flags |= PR_WANTED;
    885 			do {
    886 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    887 			} while (pp->pr_flags & PR_WANTED);
    888 			goto startover;
    889 		}
    890 
    891 		/*
    892 		 * Log a message that the hard limit has been hit.
    893 		 */
    894 		if (pp->pr_hardlimit_warning != NULL &&
    895 		    ratecheck(&pp->pr_hardlimit_warning_last,
    896 			      &pp->pr_hardlimit_ratecap))
    897 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    898 
    899 		pp->pr_nfail++;
    900 
    901 		mutex_exit(&pp->pr_lock);
    902 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    903 		return (NULL);
    904 	}
    905 
    906 	/*
    907 	 * The convention we use is that if `curpage' is not NULL, then
    908 	 * it points at a non-empty bucket. In particular, `curpage'
    909 	 * never points at a page header which has PR_PHINPAGE set and
    910 	 * has no items in its bucket.
    911 	 */
    912 	if ((ph = pp->pr_curpage) == NULL) {
    913 		int error;
    914 
    915 		KASSERTMSG((pp->pr_nitems == 0),
    916 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    917 		    __func__, pp->pr_wchan, pp->pr_nitems);
    918 
    919 		/*
    920 		 * Call the back-end page allocator for more memory.
    921 		 * Release the pool lock, as the back-end page allocator
    922 		 * may block.
    923 		 */
    924 		error = pool_grow(pp, flags);
    925 		if (error != 0) {
    926 			/*
    927 			 * pool_grow aborts when another thread
    928 			 * is allocating a new page. Retry if it
    929 			 * waited for it.
    930 			 */
    931 			if (error == ERESTART)
    932 				goto startover;
    933 
    934 			/*
    935 			 * We were unable to allocate a page or item
    936 			 * header, but we released the lock during
    937 			 * allocation, so perhaps items were freed
    938 			 * back to the pool.  Check for this case.
    939 			 */
    940 			if (pp->pr_curpage != NULL)
    941 				goto startover;
    942 
    943 			pp->pr_nfail++;
    944 			mutex_exit(&pp->pr_lock);
    945 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    946 			return (NULL);
    947 		}
    948 
    949 		/* Start the allocation process over. */
    950 		goto startover;
    951 	}
    952 	if (pp->pr_roflags & PR_NOTOUCH) {
    953 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    954 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    955 		v = pr_item_bitmap_get(pp, ph);
    956 	} else {
    957 		v = pr_item_linkedlist_get(pp, ph);
    958 	}
    959 	pp->pr_nitems--;
    960 	pp->pr_nout++;
    961 	if (ph->ph_nmissing == 0) {
    962 		KASSERT(pp->pr_nidle > 0);
    963 		pp->pr_nidle--;
    964 
    965 		/*
    966 		 * This page was previously empty.  Move it to the list of
    967 		 * partially-full pages.  This page is already curpage.
    968 		 */
    969 		LIST_REMOVE(ph, ph_pagelist);
    970 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    971 	}
    972 	ph->ph_nmissing++;
    973 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    974 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    975 			LIST_EMPTY(&ph->ph_itemlist)),
    976 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    977 			pp->pr_wchan, ph->ph_nmissing);
    978 		/*
    979 		 * This page is now full.  Move it to the full list
    980 		 * and select a new current page.
    981 		 */
    982 		LIST_REMOVE(ph, ph_pagelist);
    983 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    984 		pool_update_curpage(pp);
    985 	}
    986 
    987 	pp->pr_nget++;
    988 
    989 	/*
    990 	 * If we have a low water mark and we are now below that low
    991 	 * water mark, add more items to the pool.
    992 	 */
    993 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    994 		/*
    995 		 * XXX: Should we log a warning?  Should we set up a timeout
    996 		 * to try again in a second or so?  The latter could break
    997 		 * a caller's assumptions about interrupt protection, etc.
    998 		 */
    999 	}
   1000 
   1001 	mutex_exit(&pp->pr_lock);
   1002 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1003 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1004 	pool_redzone_fill(pp, v);
   1005 	if (flags & PR_ZERO)
   1006 		memset(v, 0, pp->pr_reqsize);
   1007 	else
   1008 		pool_kleak_fill(pp, v);
   1009 	return v;
   1010 }
   1011 
   1012 /*
   1013  * Internal version of pool_put().  Pool is already locked/entered.
   1014  */
   1015 static void
   1016 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1017 {
   1018 	struct pool_item_header *ph;
   1019 
   1020 	KASSERT(mutex_owned(&pp->pr_lock));
   1021 	pool_redzone_check(pp, v);
   1022 	FREECHECK_IN(&pp->pr_freecheck, v);
   1023 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1024 
   1025 	KASSERTMSG((pp->pr_nout > 0),
   1026 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1027 
   1028 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1029 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1030 	}
   1031 
   1032 	/*
   1033 	 * Return to item list.
   1034 	 */
   1035 	if (pp->pr_roflags & PR_NOTOUCH) {
   1036 		pr_item_bitmap_put(pp, ph, v);
   1037 	} else {
   1038 		pr_item_linkedlist_put(pp, ph, v);
   1039 	}
   1040 	KDASSERT(ph->ph_nmissing != 0);
   1041 	ph->ph_nmissing--;
   1042 	pp->pr_nput++;
   1043 	pp->pr_nitems++;
   1044 	pp->pr_nout--;
   1045 
   1046 	/* Cancel "pool empty" condition if it exists */
   1047 	if (pp->pr_curpage == NULL)
   1048 		pp->pr_curpage = ph;
   1049 
   1050 	if (pp->pr_flags & PR_WANTED) {
   1051 		pp->pr_flags &= ~PR_WANTED;
   1052 		cv_broadcast(&pp->pr_cv);
   1053 	}
   1054 
   1055 	/*
   1056 	 * If this page is now empty, do one of two things:
   1057 	 *
   1058 	 *	(1) If we have more pages than the page high water mark,
   1059 	 *	    free the page back to the system.  ONLY CONSIDER
   1060 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1061 	 *	    CLAIM.
   1062 	 *
   1063 	 *	(2) Otherwise, move the page to the empty page list.
   1064 	 *
   1065 	 * Either way, select a new current page (so we use a partially-full
   1066 	 * page if one is available).
   1067 	 */
   1068 	if (ph->ph_nmissing == 0) {
   1069 		pp->pr_nidle++;
   1070 		if (pp->pr_npages > pp->pr_minpages &&
   1071 		    pp->pr_npages > pp->pr_maxpages) {
   1072 			pr_rmpage(pp, ph, pq);
   1073 		} else {
   1074 			LIST_REMOVE(ph, ph_pagelist);
   1075 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1076 
   1077 			/*
   1078 			 * Update the timestamp on the page.  A page must
   1079 			 * be idle for some period of time before it can
   1080 			 * be reclaimed by the pagedaemon.  This minimizes
   1081 			 * ping-pong'ing for memory.
   1082 			 *
   1083 			 * note for 64-bit time_t: truncating to 32-bit is not
   1084 			 * a problem for our usage.
   1085 			 */
   1086 			ph->ph_time = time_uptime;
   1087 		}
   1088 		pool_update_curpage(pp);
   1089 	}
   1090 
   1091 	/*
   1092 	 * If the page was previously completely full, move it to the
   1093 	 * partially-full list and make it the current page.  The next
   1094 	 * allocation will get the item from this page, instead of
   1095 	 * further fragmenting the pool.
   1096 	 */
   1097 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1098 		LIST_REMOVE(ph, ph_pagelist);
   1099 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1100 		pp->pr_curpage = ph;
   1101 	}
   1102 }
   1103 
   1104 void
   1105 pool_put(struct pool *pp, void *v)
   1106 {
   1107 	struct pool_pagelist pq;
   1108 
   1109 	LIST_INIT(&pq);
   1110 
   1111 	mutex_enter(&pp->pr_lock);
   1112 	pool_do_put(pp, v, &pq);
   1113 	mutex_exit(&pp->pr_lock);
   1114 
   1115 	pr_pagelist_free(pp, &pq);
   1116 }
   1117 
   1118 /*
   1119  * pool_grow: grow a pool by a page.
   1120  *
   1121  * => called with pool locked.
   1122  * => unlock and relock the pool.
   1123  * => return with pool locked.
   1124  */
   1125 
   1126 static int
   1127 pool_grow(struct pool *pp, int flags)
   1128 {
   1129 	/*
   1130 	 * If there's a pool_grow in progress, wait for it to complete
   1131 	 * and try again from the top.
   1132 	 */
   1133 	if (pp->pr_flags & PR_GROWING) {
   1134 		if (flags & PR_WAITOK) {
   1135 			do {
   1136 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1137 			} while (pp->pr_flags & PR_GROWING);
   1138 			return ERESTART;
   1139 		} else {
   1140 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1141 				/*
   1142 				 * This needs an unlock/relock dance so
   1143 				 * that the other caller has a chance to
   1144 				 * run and actually do the thing.  Note
   1145 				 * that this is effectively a busy-wait.
   1146 				 */
   1147 				mutex_exit(&pp->pr_lock);
   1148 				mutex_enter(&pp->pr_lock);
   1149 				return ERESTART;
   1150 			}
   1151 			return EWOULDBLOCK;
   1152 		}
   1153 	}
   1154 	pp->pr_flags |= PR_GROWING;
   1155 	if (flags & PR_WAITOK)
   1156 		mutex_exit(&pp->pr_lock);
   1157 	else
   1158 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1159 
   1160 	char *cp = pool_allocator_alloc(pp, flags);
   1161 	if (__predict_false(cp == NULL))
   1162 		goto out;
   1163 
   1164 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
   1165 	if (__predict_false(ph == NULL)) {
   1166 		pool_allocator_free(pp, cp);
   1167 		goto out;
   1168 	}
   1169 
   1170 	if (flags & PR_WAITOK)
   1171 		mutex_enter(&pp->pr_lock);
   1172 	pool_prime_page(pp, cp, ph);
   1173 	pp->pr_npagealloc++;
   1174 	KASSERT(pp->pr_flags & PR_GROWING);
   1175 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1176 	/*
   1177 	 * If anyone was waiting for pool_grow, notify them that we
   1178 	 * may have just done it.
   1179 	 */
   1180 	cv_broadcast(&pp->pr_cv);
   1181 	return 0;
   1182 out:
   1183 	if (flags & PR_WAITOK)
   1184 		mutex_enter(&pp->pr_lock);
   1185 	KASSERT(pp->pr_flags & PR_GROWING);
   1186 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1187 	return ENOMEM;
   1188 }
   1189 
   1190 /*
   1191  * Add N items to the pool.
   1192  */
   1193 int
   1194 pool_prime(struct pool *pp, int n)
   1195 {
   1196 	int newpages;
   1197 	int error = 0;
   1198 
   1199 	mutex_enter(&pp->pr_lock);
   1200 
   1201 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1202 
   1203 	while (newpages > 0) {
   1204 		error = pool_grow(pp, PR_NOWAIT);
   1205 		if (error) {
   1206 			if (error == ERESTART)
   1207 				continue;
   1208 			break;
   1209 		}
   1210 		pp->pr_minpages++;
   1211 		newpages--;
   1212 	}
   1213 
   1214 	if (pp->pr_minpages >= pp->pr_maxpages)
   1215 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1216 
   1217 	mutex_exit(&pp->pr_lock);
   1218 	return error;
   1219 }
   1220 
   1221 /*
   1222  * Add a page worth of items to the pool.
   1223  *
   1224  * Note, we must be called with the pool descriptor LOCKED.
   1225  */
   1226 static void
   1227 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1228 {
   1229 	struct pool_item *pi;
   1230 	void *cp = storage;
   1231 	const unsigned int align = pp->pr_align;
   1232 	const unsigned int ioff = pp->pr_itemoffset;
   1233 	int n;
   1234 
   1235 	KASSERT(mutex_owned(&pp->pr_lock));
   1236 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1237 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1238 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1239 
   1240 	/*
   1241 	 * Insert page header.
   1242 	 */
   1243 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1244 	LIST_INIT(&ph->ph_itemlist);
   1245 	ph->ph_page = storage;
   1246 	ph->ph_nmissing = 0;
   1247 	ph->ph_time = time_uptime;
   1248 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1249 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1250 
   1251 	pp->pr_nidle++;
   1252 
   1253 	/*
   1254 	 * Color this page.
   1255 	 */
   1256 	ph->ph_off = pp->pr_curcolor;
   1257 	cp = (char *)cp + ph->ph_off;
   1258 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1259 		pp->pr_curcolor = 0;
   1260 
   1261 	/*
   1262 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1263 	 */
   1264 	if (ioff != 0)
   1265 		cp = (char *)cp + align - ioff;
   1266 
   1267 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1268 
   1269 	/*
   1270 	 * Insert remaining chunks on the bucket list.
   1271 	 */
   1272 	n = pp->pr_itemsperpage;
   1273 	pp->pr_nitems += n;
   1274 
   1275 	if (pp->pr_roflags & PR_NOTOUCH) {
   1276 		pr_item_bitmap_init(pp, ph);
   1277 	} else {
   1278 		while (n--) {
   1279 			pi = (struct pool_item *)cp;
   1280 
   1281 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1282 
   1283 			/* Insert on page list */
   1284 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1285 #ifdef POOL_CHECK_MAGIC
   1286 			pi->pi_magic = PI_MAGIC;
   1287 #endif
   1288 			cp = (char *)cp + pp->pr_size;
   1289 
   1290 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1291 		}
   1292 	}
   1293 
   1294 	/*
   1295 	 * If the pool was depleted, point at the new page.
   1296 	 */
   1297 	if (pp->pr_curpage == NULL)
   1298 		pp->pr_curpage = ph;
   1299 
   1300 	if (++pp->pr_npages > pp->pr_hiwat)
   1301 		pp->pr_hiwat = pp->pr_npages;
   1302 }
   1303 
   1304 /*
   1305  * Used by pool_get() when nitems drops below the low water mark.  This
   1306  * is used to catch up pr_nitems with the low water mark.
   1307  *
   1308  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1309  *
   1310  * Note 2, we must be called with the pool already locked, and we return
   1311  * with it locked.
   1312  */
   1313 static int
   1314 pool_catchup(struct pool *pp)
   1315 {
   1316 	int error = 0;
   1317 
   1318 	while (POOL_NEEDS_CATCHUP(pp)) {
   1319 		error = pool_grow(pp, PR_NOWAIT);
   1320 		if (error) {
   1321 			if (error == ERESTART)
   1322 				continue;
   1323 			break;
   1324 		}
   1325 	}
   1326 	return error;
   1327 }
   1328 
   1329 static void
   1330 pool_update_curpage(struct pool *pp)
   1331 {
   1332 
   1333 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1334 	if (pp->pr_curpage == NULL) {
   1335 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1336 	}
   1337 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1338 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1339 }
   1340 
   1341 void
   1342 pool_setlowat(struct pool *pp, int n)
   1343 {
   1344 
   1345 	mutex_enter(&pp->pr_lock);
   1346 
   1347 	pp->pr_minitems = n;
   1348 	pp->pr_minpages = (n == 0)
   1349 		? 0
   1350 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1351 
   1352 	/* Make sure we're caught up with the newly-set low water mark. */
   1353 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1354 		/*
   1355 		 * XXX: Should we log a warning?  Should we set up a timeout
   1356 		 * to try again in a second or so?  The latter could break
   1357 		 * a caller's assumptions about interrupt protection, etc.
   1358 		 */
   1359 	}
   1360 
   1361 	mutex_exit(&pp->pr_lock);
   1362 }
   1363 
   1364 void
   1365 pool_sethiwat(struct pool *pp, int n)
   1366 {
   1367 
   1368 	mutex_enter(&pp->pr_lock);
   1369 
   1370 	pp->pr_maxpages = (n == 0)
   1371 		? 0
   1372 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1373 
   1374 	mutex_exit(&pp->pr_lock);
   1375 }
   1376 
   1377 void
   1378 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1379 {
   1380 
   1381 	mutex_enter(&pp->pr_lock);
   1382 
   1383 	pp->pr_hardlimit = n;
   1384 	pp->pr_hardlimit_warning = warnmess;
   1385 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1386 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1387 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1388 
   1389 	/*
   1390 	 * In-line version of pool_sethiwat(), because we don't want to
   1391 	 * release the lock.
   1392 	 */
   1393 	pp->pr_maxpages = (n == 0)
   1394 		? 0
   1395 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1396 
   1397 	mutex_exit(&pp->pr_lock);
   1398 }
   1399 
   1400 /*
   1401  * Release all complete pages that have not been used recently.
   1402  *
   1403  * Must not be called from interrupt context.
   1404  */
   1405 int
   1406 pool_reclaim(struct pool *pp)
   1407 {
   1408 	struct pool_item_header *ph, *phnext;
   1409 	struct pool_pagelist pq;
   1410 	uint32_t curtime;
   1411 	bool klock;
   1412 	int rv;
   1413 
   1414 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1415 
   1416 	if (pp->pr_drain_hook != NULL) {
   1417 		/*
   1418 		 * The drain hook must be called with the pool unlocked.
   1419 		 */
   1420 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1421 	}
   1422 
   1423 	/*
   1424 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1425 	 * to block.
   1426 	 */
   1427 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1428 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1429 		KERNEL_LOCK(1, NULL);
   1430 		klock = true;
   1431 	} else
   1432 		klock = false;
   1433 
   1434 	/* Reclaim items from the pool's cache (if any). */
   1435 	if (pp->pr_cache != NULL)
   1436 		pool_cache_invalidate(pp->pr_cache);
   1437 
   1438 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1439 		if (klock) {
   1440 			KERNEL_UNLOCK_ONE(NULL);
   1441 		}
   1442 		return (0);
   1443 	}
   1444 
   1445 	LIST_INIT(&pq);
   1446 
   1447 	curtime = time_uptime;
   1448 
   1449 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1450 		phnext = LIST_NEXT(ph, ph_pagelist);
   1451 
   1452 		/* Check our minimum page claim */
   1453 		if (pp->pr_npages <= pp->pr_minpages)
   1454 			break;
   1455 
   1456 		KASSERT(ph->ph_nmissing == 0);
   1457 		if (curtime - ph->ph_time < pool_inactive_time)
   1458 			continue;
   1459 
   1460 		/*
   1461 		 * If freeing this page would put us below
   1462 		 * the low water mark, stop now.
   1463 		 */
   1464 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1465 		    pp->pr_minitems)
   1466 			break;
   1467 
   1468 		pr_rmpage(pp, ph, &pq);
   1469 	}
   1470 
   1471 	mutex_exit(&pp->pr_lock);
   1472 
   1473 	if (LIST_EMPTY(&pq))
   1474 		rv = 0;
   1475 	else {
   1476 		pr_pagelist_free(pp, &pq);
   1477 		rv = 1;
   1478 	}
   1479 
   1480 	if (klock) {
   1481 		KERNEL_UNLOCK_ONE(NULL);
   1482 	}
   1483 
   1484 	return (rv);
   1485 }
   1486 
   1487 /*
   1488  * Drain pools, one at a time. The drained pool is returned within ppp.
   1489  *
   1490  * Note, must never be called from interrupt context.
   1491  */
   1492 bool
   1493 pool_drain(struct pool **ppp)
   1494 {
   1495 	bool reclaimed;
   1496 	struct pool *pp;
   1497 
   1498 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1499 
   1500 	pp = NULL;
   1501 
   1502 	/* Find next pool to drain, and add a reference. */
   1503 	mutex_enter(&pool_head_lock);
   1504 	do {
   1505 		if (drainpp == NULL) {
   1506 			drainpp = TAILQ_FIRST(&pool_head);
   1507 		}
   1508 		if (drainpp != NULL) {
   1509 			pp = drainpp;
   1510 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1511 		}
   1512 		/*
   1513 		 * Skip completely idle pools.  We depend on at least
   1514 		 * one pool in the system being active.
   1515 		 */
   1516 	} while (pp == NULL || pp->pr_npages == 0);
   1517 	pp->pr_refcnt++;
   1518 	mutex_exit(&pool_head_lock);
   1519 
   1520 	/* Drain the cache (if any) and pool.. */
   1521 	reclaimed = pool_reclaim(pp);
   1522 
   1523 	/* Finally, unlock the pool. */
   1524 	mutex_enter(&pool_head_lock);
   1525 	pp->pr_refcnt--;
   1526 	cv_broadcast(&pool_busy);
   1527 	mutex_exit(&pool_head_lock);
   1528 
   1529 	if (ppp != NULL)
   1530 		*ppp = pp;
   1531 
   1532 	return reclaimed;
   1533 }
   1534 
   1535 /*
   1536  * Calculate the total number of pages consumed by pools.
   1537  */
   1538 int
   1539 pool_totalpages(void)
   1540 {
   1541 	struct pool *pp;
   1542 	uint64_t total = 0;
   1543 
   1544 	mutex_enter(&pool_head_lock);
   1545 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1546 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1547 
   1548 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1549 			bytes -= (pp->pr_nout * pp->pr_size);
   1550 		total += bytes;
   1551 	}
   1552 	mutex_exit(&pool_head_lock);
   1553 
   1554 	return atop(total);
   1555 }
   1556 
   1557 /*
   1558  * Diagnostic helpers.
   1559  */
   1560 
   1561 void
   1562 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1563 {
   1564 	struct pool *pp;
   1565 
   1566 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1567 		pool_printit(pp, modif, pr);
   1568 	}
   1569 }
   1570 
   1571 void
   1572 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1573 {
   1574 
   1575 	if (pp == NULL) {
   1576 		(*pr)("Must specify a pool to print.\n");
   1577 		return;
   1578 	}
   1579 
   1580 	pool_print1(pp, modif, pr);
   1581 }
   1582 
   1583 static void
   1584 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1585     void (*pr)(const char *, ...))
   1586 {
   1587 	struct pool_item_header *ph;
   1588 
   1589 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1590 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1591 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1592 #ifdef POOL_CHECK_MAGIC
   1593 		struct pool_item *pi;
   1594 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1595 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1596 				if (pi->pi_magic != PI_MAGIC) {
   1597 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1598 					    pi, pi->pi_magic);
   1599 				}
   1600 			}
   1601 		}
   1602 #endif
   1603 	}
   1604 }
   1605 
   1606 static void
   1607 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1608 {
   1609 	struct pool_item_header *ph;
   1610 	pool_cache_t pc;
   1611 	pcg_t *pcg;
   1612 	pool_cache_cpu_t *cc;
   1613 	uint64_t cpuhit, cpumiss;
   1614 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1615 	char c;
   1616 
   1617 	while ((c = *modif++) != '\0') {
   1618 		if (c == 'l')
   1619 			print_log = 1;
   1620 		if (c == 'p')
   1621 			print_pagelist = 1;
   1622 		if (c == 'c')
   1623 			print_cache = 1;
   1624 	}
   1625 
   1626 	if ((pc = pp->pr_cache) != NULL) {
   1627 		(*pr)("POOL CACHE");
   1628 	} else {
   1629 		(*pr)("POOL");
   1630 	}
   1631 
   1632 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1633 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1634 	    pp->pr_roflags);
   1635 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1636 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1637 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1638 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1639 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1640 
   1641 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1642 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1643 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1644 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1645 
   1646 	if (print_pagelist == 0)
   1647 		goto skip_pagelist;
   1648 
   1649 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1650 		(*pr)("\n\tempty page list:\n");
   1651 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1652 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1653 		(*pr)("\n\tfull page list:\n");
   1654 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1655 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1656 		(*pr)("\n\tpartial-page list:\n");
   1657 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1658 
   1659 	if (pp->pr_curpage == NULL)
   1660 		(*pr)("\tno current page\n");
   1661 	else
   1662 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1663 
   1664  skip_pagelist:
   1665 	if (print_log == 0)
   1666 		goto skip_log;
   1667 
   1668 	(*pr)("\n");
   1669 
   1670  skip_log:
   1671 
   1672 #define PR_GROUPLIST(pcg)						\
   1673 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1674 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1675 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1676 		    POOL_PADDR_INVALID) {				\
   1677 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1678 			    pcg->pcg_objects[i].pcgo_va,		\
   1679 			    (unsigned long long)			\
   1680 			    pcg->pcg_objects[i].pcgo_pa);		\
   1681 		} else {						\
   1682 			(*pr)("\t\t\t%p\n",				\
   1683 			    pcg->pcg_objects[i].pcgo_va);		\
   1684 		}							\
   1685 	}
   1686 
   1687 	if (pc != NULL) {
   1688 		cpuhit = 0;
   1689 		cpumiss = 0;
   1690 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1691 			if ((cc = pc->pc_cpus[i]) == NULL)
   1692 				continue;
   1693 			cpuhit += cc->cc_hits;
   1694 			cpumiss += cc->cc_misses;
   1695 		}
   1696 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1697 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1698 		    pc->pc_hits, pc->pc_misses);
   1699 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1700 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1701 		    pc->pc_contended);
   1702 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1703 		    pc->pc_nempty, pc->pc_nfull);
   1704 		if (print_cache) {
   1705 			(*pr)("\tfull cache groups:\n");
   1706 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1707 			    pcg = pcg->pcg_next) {
   1708 				PR_GROUPLIST(pcg);
   1709 			}
   1710 			(*pr)("\tempty cache groups:\n");
   1711 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1712 			    pcg = pcg->pcg_next) {
   1713 				PR_GROUPLIST(pcg);
   1714 			}
   1715 		}
   1716 	}
   1717 #undef PR_GROUPLIST
   1718 }
   1719 
   1720 static int
   1721 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1722 {
   1723 	struct pool_item *pi;
   1724 	void *page;
   1725 	int n;
   1726 
   1727 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1728 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1729 		if (page != ph->ph_page &&
   1730 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1731 			if (label != NULL)
   1732 				printf("%s: ", label);
   1733 			printf("pool(%p:%s): page inconsistency: page %p;"
   1734 			       " at page head addr %p (p %p)\n", pp,
   1735 				pp->pr_wchan, ph->ph_page,
   1736 				ph, page);
   1737 			return 1;
   1738 		}
   1739 	}
   1740 
   1741 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1742 		return 0;
   1743 
   1744 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1745 	     pi != NULL;
   1746 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1747 
   1748 #ifdef POOL_CHECK_MAGIC
   1749 		if (pi->pi_magic != PI_MAGIC) {
   1750 			if (label != NULL)
   1751 				printf("%s: ", label);
   1752 			printf("pool(%s): free list modified: magic=%x;"
   1753 			       " page %p; item ordinal %d; addr %p\n",
   1754 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1755 				n, pi);
   1756 			panic("pool");
   1757 		}
   1758 #endif
   1759 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1760 			continue;
   1761 		}
   1762 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1763 		if (page == ph->ph_page)
   1764 			continue;
   1765 
   1766 		if (label != NULL)
   1767 			printf("%s: ", label);
   1768 		printf("pool(%p:%s): page inconsistency: page %p;"
   1769 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1770 			pp->pr_wchan, ph->ph_page,
   1771 			n, pi, page);
   1772 		return 1;
   1773 	}
   1774 	return 0;
   1775 }
   1776 
   1777 
   1778 int
   1779 pool_chk(struct pool *pp, const char *label)
   1780 {
   1781 	struct pool_item_header *ph;
   1782 	int r = 0;
   1783 
   1784 	mutex_enter(&pp->pr_lock);
   1785 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1786 		r = pool_chk_page(pp, label, ph);
   1787 		if (r) {
   1788 			goto out;
   1789 		}
   1790 	}
   1791 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1792 		r = pool_chk_page(pp, label, ph);
   1793 		if (r) {
   1794 			goto out;
   1795 		}
   1796 	}
   1797 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1798 		r = pool_chk_page(pp, label, ph);
   1799 		if (r) {
   1800 			goto out;
   1801 		}
   1802 	}
   1803 
   1804 out:
   1805 	mutex_exit(&pp->pr_lock);
   1806 	return (r);
   1807 }
   1808 
   1809 /*
   1810  * pool_cache_init:
   1811  *
   1812  *	Initialize a pool cache.
   1813  */
   1814 pool_cache_t
   1815 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1816     const char *wchan, struct pool_allocator *palloc, int ipl,
   1817     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1818 {
   1819 	pool_cache_t pc;
   1820 
   1821 	pc = pool_get(&cache_pool, PR_WAITOK);
   1822 	if (pc == NULL)
   1823 		return NULL;
   1824 
   1825 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1826 	   palloc, ipl, ctor, dtor, arg);
   1827 
   1828 	return pc;
   1829 }
   1830 
   1831 /*
   1832  * pool_cache_bootstrap:
   1833  *
   1834  *	Kernel-private version of pool_cache_init().  The caller
   1835  *	provides initial storage.
   1836  */
   1837 void
   1838 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1839     u_int align_offset, u_int flags, const char *wchan,
   1840     struct pool_allocator *palloc, int ipl,
   1841     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1842     void *arg)
   1843 {
   1844 	CPU_INFO_ITERATOR cii;
   1845 	pool_cache_t pc1;
   1846 	struct cpu_info *ci;
   1847 	struct pool *pp;
   1848 
   1849 	pp = &pc->pc_pool;
   1850 	if (palloc == NULL && ipl == IPL_NONE) {
   1851 		if (size > PAGE_SIZE) {
   1852 			int bigidx = pool_bigidx(size);
   1853 
   1854 			palloc = &pool_allocator_big[bigidx];
   1855 		} else
   1856 			palloc = &pool_allocator_nointr;
   1857 	}
   1858 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1859 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1860 
   1861 	if (ctor == NULL) {
   1862 		ctor = (int (*)(void *, void *, int))nullop;
   1863 	}
   1864 	if (dtor == NULL) {
   1865 		dtor = (void (*)(void *, void *))nullop;
   1866 	}
   1867 
   1868 	pc->pc_emptygroups = NULL;
   1869 	pc->pc_fullgroups = NULL;
   1870 	pc->pc_partgroups = NULL;
   1871 	pc->pc_ctor = ctor;
   1872 	pc->pc_dtor = dtor;
   1873 	pc->pc_arg  = arg;
   1874 	pc->pc_hits  = 0;
   1875 	pc->pc_misses = 0;
   1876 	pc->pc_nempty = 0;
   1877 	pc->pc_npart = 0;
   1878 	pc->pc_nfull = 0;
   1879 	pc->pc_contended = 0;
   1880 	pc->pc_refcnt = 0;
   1881 	pc->pc_freecheck = NULL;
   1882 
   1883 	if ((flags & PR_LARGECACHE) != 0) {
   1884 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1885 		pc->pc_pcgpool = &pcg_large_pool;
   1886 	} else {
   1887 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1888 		pc->pc_pcgpool = &pcg_normal_pool;
   1889 	}
   1890 
   1891 	/* Allocate per-CPU caches. */
   1892 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1893 	pc->pc_ncpu = 0;
   1894 	if (ncpu < 2) {
   1895 		/* XXX For sparc: boot CPU is not attached yet. */
   1896 		pool_cache_cpu_init1(curcpu(), pc);
   1897 	} else {
   1898 		for (CPU_INFO_FOREACH(cii, ci)) {
   1899 			pool_cache_cpu_init1(ci, pc);
   1900 		}
   1901 	}
   1902 
   1903 	/* Add to list of all pools. */
   1904 	if (__predict_true(!cold))
   1905 		mutex_enter(&pool_head_lock);
   1906 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1907 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1908 			break;
   1909 	}
   1910 	if (pc1 == NULL)
   1911 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1912 	else
   1913 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1914 	if (__predict_true(!cold))
   1915 		mutex_exit(&pool_head_lock);
   1916 
   1917 	membar_sync();
   1918 	pp->pr_cache = pc;
   1919 }
   1920 
   1921 /*
   1922  * pool_cache_destroy:
   1923  *
   1924  *	Destroy a pool cache.
   1925  */
   1926 void
   1927 pool_cache_destroy(pool_cache_t pc)
   1928 {
   1929 
   1930 	pool_cache_bootstrap_destroy(pc);
   1931 	pool_put(&cache_pool, pc);
   1932 }
   1933 
   1934 /*
   1935  * pool_cache_bootstrap_destroy:
   1936  *
   1937  *	Destroy a pool cache.
   1938  */
   1939 void
   1940 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1941 {
   1942 	struct pool *pp = &pc->pc_pool;
   1943 	u_int i;
   1944 
   1945 	/* Remove it from the global list. */
   1946 	mutex_enter(&pool_head_lock);
   1947 	while (pc->pc_refcnt != 0)
   1948 		cv_wait(&pool_busy, &pool_head_lock);
   1949 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1950 	mutex_exit(&pool_head_lock);
   1951 
   1952 	/* First, invalidate the entire cache. */
   1953 	pool_cache_invalidate(pc);
   1954 
   1955 	/* Disassociate it from the pool. */
   1956 	mutex_enter(&pp->pr_lock);
   1957 	pp->pr_cache = NULL;
   1958 	mutex_exit(&pp->pr_lock);
   1959 
   1960 	/* Destroy per-CPU data */
   1961 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1962 		pool_cache_invalidate_cpu(pc, i);
   1963 
   1964 	/* Finally, destroy it. */
   1965 	mutex_destroy(&pc->pc_lock);
   1966 	pool_destroy(pp);
   1967 }
   1968 
   1969 /*
   1970  * pool_cache_cpu_init1:
   1971  *
   1972  *	Called for each pool_cache whenever a new CPU is attached.
   1973  */
   1974 static void
   1975 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1976 {
   1977 	pool_cache_cpu_t *cc;
   1978 	int index;
   1979 
   1980 	index = ci->ci_index;
   1981 
   1982 	KASSERT(index < __arraycount(pc->pc_cpus));
   1983 
   1984 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1985 		KASSERT(cc->cc_cpuindex == index);
   1986 		return;
   1987 	}
   1988 
   1989 	/*
   1990 	 * The first CPU is 'free'.  This needs to be the case for
   1991 	 * bootstrap - we may not be able to allocate yet.
   1992 	 */
   1993 	if (pc->pc_ncpu == 0) {
   1994 		cc = &pc->pc_cpu0;
   1995 		pc->pc_ncpu = 1;
   1996 	} else {
   1997 		mutex_enter(&pc->pc_lock);
   1998 		pc->pc_ncpu++;
   1999 		mutex_exit(&pc->pc_lock);
   2000 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2001 	}
   2002 
   2003 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2004 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2005 	cc->cc_cache = pc;
   2006 	cc->cc_cpuindex = index;
   2007 	cc->cc_hits = 0;
   2008 	cc->cc_misses = 0;
   2009 	cc->cc_current = __UNCONST(&pcg_dummy);
   2010 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2011 
   2012 	pc->pc_cpus[index] = cc;
   2013 }
   2014 
   2015 /*
   2016  * pool_cache_cpu_init:
   2017  *
   2018  *	Called whenever a new CPU is attached.
   2019  */
   2020 void
   2021 pool_cache_cpu_init(struct cpu_info *ci)
   2022 {
   2023 	pool_cache_t pc;
   2024 
   2025 	mutex_enter(&pool_head_lock);
   2026 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2027 		pc->pc_refcnt++;
   2028 		mutex_exit(&pool_head_lock);
   2029 
   2030 		pool_cache_cpu_init1(ci, pc);
   2031 
   2032 		mutex_enter(&pool_head_lock);
   2033 		pc->pc_refcnt--;
   2034 		cv_broadcast(&pool_busy);
   2035 	}
   2036 	mutex_exit(&pool_head_lock);
   2037 }
   2038 
   2039 /*
   2040  * pool_cache_reclaim:
   2041  *
   2042  *	Reclaim memory from a pool cache.
   2043  */
   2044 bool
   2045 pool_cache_reclaim(pool_cache_t pc)
   2046 {
   2047 
   2048 	return pool_reclaim(&pc->pc_pool);
   2049 }
   2050 
   2051 static void
   2052 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2053 {
   2054 	if (pc->pc_pool.pr_redzone) {
   2055 		/*
   2056 		 * The object is marked as invalid. Temporarily mark it as
   2057 		 * valid for the destructor. pool_put below will re-mark it
   2058 		 * as invalid.
   2059 		 */
   2060 		kasan_mark(object, pc->pc_pool.pr_reqsize,
   2061 		    pc->pc_pool.pr_reqsize_with_redzone);
   2062 	}
   2063 
   2064 	(*pc->pc_dtor)(pc->pc_arg, object);
   2065 	pool_put(&pc->pc_pool, object);
   2066 }
   2067 
   2068 /*
   2069  * pool_cache_destruct_object:
   2070  *
   2071  *	Force destruction of an object and its release back into
   2072  *	the pool.
   2073  */
   2074 void
   2075 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2076 {
   2077 
   2078 	FREECHECK_IN(&pc->pc_freecheck, object);
   2079 
   2080 	pool_cache_destruct_object1(pc, object);
   2081 }
   2082 
   2083 /*
   2084  * pool_cache_invalidate_groups:
   2085  *
   2086  *	Invalidate a chain of groups and destruct all objects.
   2087  */
   2088 static void
   2089 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2090 {
   2091 	void *object;
   2092 	pcg_t *next;
   2093 	int i;
   2094 
   2095 	for (; pcg != NULL; pcg = next) {
   2096 		next = pcg->pcg_next;
   2097 
   2098 		for (i = 0; i < pcg->pcg_avail; i++) {
   2099 			object = pcg->pcg_objects[i].pcgo_va;
   2100 			pool_cache_destruct_object1(pc, object);
   2101 		}
   2102 
   2103 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2104 			pool_put(&pcg_large_pool, pcg);
   2105 		} else {
   2106 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2107 			pool_put(&pcg_normal_pool, pcg);
   2108 		}
   2109 	}
   2110 }
   2111 
   2112 /*
   2113  * pool_cache_invalidate:
   2114  *
   2115  *	Invalidate a pool cache (destruct and release all of the
   2116  *	cached objects).  Does not reclaim objects from the pool.
   2117  *
   2118  *	Note: For pool caches that provide constructed objects, there
   2119  *	is an assumption that another level of synchronization is occurring
   2120  *	between the input to the constructor and the cache invalidation.
   2121  *
   2122  *	Invalidation is a costly process and should not be called from
   2123  *	interrupt context.
   2124  */
   2125 void
   2126 pool_cache_invalidate(pool_cache_t pc)
   2127 {
   2128 	uint64_t where;
   2129 	pcg_t *full, *empty, *part;
   2130 
   2131 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2132 
   2133 	if (ncpu < 2 || !mp_online) {
   2134 		/*
   2135 		 * We might be called early enough in the boot process
   2136 		 * for the CPU data structures to not be fully initialized.
   2137 		 * In this case, transfer the content of the local CPU's
   2138 		 * cache back into global cache as only this CPU is currently
   2139 		 * running.
   2140 		 */
   2141 		pool_cache_transfer(pc);
   2142 	} else {
   2143 		/*
   2144 		 * Signal all CPUs that they must transfer their local
   2145 		 * cache back to the global pool then wait for the xcall to
   2146 		 * complete.
   2147 		 */
   2148 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2149 		    pc, NULL);
   2150 		xc_wait(where);
   2151 	}
   2152 
   2153 	/* Empty pool caches, then invalidate objects */
   2154 	mutex_enter(&pc->pc_lock);
   2155 	full = pc->pc_fullgroups;
   2156 	empty = pc->pc_emptygroups;
   2157 	part = pc->pc_partgroups;
   2158 	pc->pc_fullgroups = NULL;
   2159 	pc->pc_emptygroups = NULL;
   2160 	pc->pc_partgroups = NULL;
   2161 	pc->pc_nfull = 0;
   2162 	pc->pc_nempty = 0;
   2163 	pc->pc_npart = 0;
   2164 	mutex_exit(&pc->pc_lock);
   2165 
   2166 	pool_cache_invalidate_groups(pc, full);
   2167 	pool_cache_invalidate_groups(pc, empty);
   2168 	pool_cache_invalidate_groups(pc, part);
   2169 }
   2170 
   2171 /*
   2172  * pool_cache_invalidate_cpu:
   2173  *
   2174  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2175  *	identified by its associated index.
   2176  *	It is caller's responsibility to ensure that no operation is
   2177  *	taking place on this pool cache while doing this invalidation.
   2178  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2179  *	pool cached objects from a CPU different from the one currently running
   2180  *	may result in an undefined behaviour.
   2181  */
   2182 static void
   2183 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2184 {
   2185 	pool_cache_cpu_t *cc;
   2186 	pcg_t *pcg;
   2187 
   2188 	if ((cc = pc->pc_cpus[index]) == NULL)
   2189 		return;
   2190 
   2191 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2192 		pcg->pcg_next = NULL;
   2193 		pool_cache_invalidate_groups(pc, pcg);
   2194 	}
   2195 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2196 		pcg->pcg_next = NULL;
   2197 		pool_cache_invalidate_groups(pc, pcg);
   2198 	}
   2199 	if (cc != &pc->pc_cpu0)
   2200 		pool_put(&cache_cpu_pool, cc);
   2201 
   2202 }
   2203 
   2204 void
   2205 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2206 {
   2207 
   2208 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2209 }
   2210 
   2211 void
   2212 pool_cache_setlowat(pool_cache_t pc, int n)
   2213 {
   2214 
   2215 	pool_setlowat(&pc->pc_pool, n);
   2216 }
   2217 
   2218 void
   2219 pool_cache_sethiwat(pool_cache_t pc, int n)
   2220 {
   2221 
   2222 	pool_sethiwat(&pc->pc_pool, n);
   2223 }
   2224 
   2225 void
   2226 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2227 {
   2228 
   2229 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2230 }
   2231 
   2232 static bool __noinline
   2233 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2234 		    paddr_t *pap, int flags)
   2235 {
   2236 	pcg_t *pcg, *cur;
   2237 	uint64_t ncsw;
   2238 	pool_cache_t pc;
   2239 	void *object;
   2240 
   2241 	KASSERT(cc->cc_current->pcg_avail == 0);
   2242 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2243 
   2244 	pc = cc->cc_cache;
   2245 	cc->cc_misses++;
   2246 
   2247 	/*
   2248 	 * Nothing was available locally.  Try and grab a group
   2249 	 * from the cache.
   2250 	 */
   2251 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2252 		ncsw = curlwp->l_ncsw;
   2253 		mutex_enter(&pc->pc_lock);
   2254 		pc->pc_contended++;
   2255 
   2256 		/*
   2257 		 * If we context switched while locking, then
   2258 		 * our view of the per-CPU data is invalid:
   2259 		 * retry.
   2260 		 */
   2261 		if (curlwp->l_ncsw != ncsw) {
   2262 			mutex_exit(&pc->pc_lock);
   2263 			return true;
   2264 		}
   2265 	}
   2266 
   2267 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2268 		/*
   2269 		 * If there's a full group, release our empty
   2270 		 * group back to the cache.  Install the full
   2271 		 * group as cc_current and return.
   2272 		 */
   2273 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2274 			KASSERT(cur->pcg_avail == 0);
   2275 			cur->pcg_next = pc->pc_emptygroups;
   2276 			pc->pc_emptygroups = cur;
   2277 			pc->pc_nempty++;
   2278 		}
   2279 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2280 		cc->cc_current = pcg;
   2281 		pc->pc_fullgroups = pcg->pcg_next;
   2282 		pc->pc_hits++;
   2283 		pc->pc_nfull--;
   2284 		mutex_exit(&pc->pc_lock);
   2285 		return true;
   2286 	}
   2287 
   2288 	/*
   2289 	 * Nothing available locally or in cache.  Take the slow
   2290 	 * path: fetch a new object from the pool and construct
   2291 	 * it.
   2292 	 */
   2293 	pc->pc_misses++;
   2294 	mutex_exit(&pc->pc_lock);
   2295 	splx(s);
   2296 
   2297 	object = pool_get(&pc->pc_pool, flags);
   2298 	*objectp = object;
   2299 	if (__predict_false(object == NULL)) {
   2300 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2301 		return false;
   2302 	}
   2303 
   2304 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2305 		pool_put(&pc->pc_pool, object);
   2306 		*objectp = NULL;
   2307 		return false;
   2308 	}
   2309 
   2310 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2311 	    (pc->pc_pool.pr_align - 1)) == 0);
   2312 
   2313 	if (pap != NULL) {
   2314 #ifdef POOL_VTOPHYS
   2315 		*pap = POOL_VTOPHYS(object);
   2316 #else
   2317 		*pap = POOL_PADDR_INVALID;
   2318 #endif
   2319 	}
   2320 
   2321 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2322 	pool_redzone_fill(&pc->pc_pool, object);
   2323 	pool_cache_kleak_fill(pc, object);
   2324 	return false;
   2325 }
   2326 
   2327 /*
   2328  * pool_cache_get{,_paddr}:
   2329  *
   2330  *	Get an object from a pool cache (optionally returning
   2331  *	the physical address of the object).
   2332  */
   2333 void *
   2334 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2335 {
   2336 	pool_cache_cpu_t *cc;
   2337 	pcg_t *pcg;
   2338 	void *object;
   2339 	int s;
   2340 
   2341 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2342 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2343 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2344 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2345 	    __func__, pc->pc_pool.pr_wchan);
   2346 
   2347 	if (flags & PR_WAITOK) {
   2348 		ASSERT_SLEEPABLE();
   2349 	}
   2350 
   2351 	/* Lock out interrupts and disable preemption. */
   2352 	s = splvm();
   2353 	while (/* CONSTCOND */ true) {
   2354 		/* Try and allocate an object from the current group. */
   2355 		cc = pc->pc_cpus[curcpu()->ci_index];
   2356 		KASSERT(cc->cc_cache == pc);
   2357 	 	pcg = cc->cc_current;
   2358 		if (__predict_true(pcg->pcg_avail > 0)) {
   2359 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2360 			if (__predict_false(pap != NULL))
   2361 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2362 #if defined(DIAGNOSTIC)
   2363 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2364 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2365 			KASSERT(object != NULL);
   2366 #endif
   2367 			cc->cc_hits++;
   2368 			splx(s);
   2369 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2370 			pool_redzone_fill(&pc->pc_pool, object);
   2371 			pool_cache_kleak_fill(pc, object);
   2372 			return object;
   2373 		}
   2374 
   2375 		/*
   2376 		 * That failed.  If the previous group isn't empty, swap
   2377 		 * it with the current group and allocate from there.
   2378 		 */
   2379 		pcg = cc->cc_previous;
   2380 		if (__predict_true(pcg->pcg_avail > 0)) {
   2381 			cc->cc_previous = cc->cc_current;
   2382 			cc->cc_current = pcg;
   2383 			continue;
   2384 		}
   2385 
   2386 		/*
   2387 		 * Can't allocate from either group: try the slow path.
   2388 		 * If get_slow() allocated an object for us, or if
   2389 		 * no more objects are available, it will return false.
   2390 		 * Otherwise, we need to retry.
   2391 		 */
   2392 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2393 			break;
   2394 	}
   2395 
   2396 	/*
   2397 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2398 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2399 	 * constructor fails.
   2400 	 */
   2401 	return object;
   2402 }
   2403 
   2404 static bool __noinline
   2405 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2406 {
   2407 	struct lwp *l = curlwp;
   2408 	pcg_t *pcg, *cur;
   2409 	uint64_t ncsw;
   2410 	pool_cache_t pc;
   2411 
   2412 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2413 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2414 
   2415 	pc = cc->cc_cache;
   2416 	pcg = NULL;
   2417 	cc->cc_misses++;
   2418 	ncsw = l->l_ncsw;
   2419 
   2420 	/*
   2421 	 * If there are no empty groups in the cache then allocate one
   2422 	 * while still unlocked.
   2423 	 */
   2424 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2425 		if (__predict_true(!pool_cache_disable)) {
   2426 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2427 		}
   2428 		/*
   2429 		 * If pool_get() blocked, then our view of
   2430 		 * the per-CPU data is invalid: retry.
   2431 		 */
   2432 		if (__predict_false(l->l_ncsw != ncsw)) {
   2433 			if (pcg != NULL) {
   2434 				pool_put(pc->pc_pcgpool, pcg);
   2435 			}
   2436 			return true;
   2437 		}
   2438 		if (__predict_true(pcg != NULL)) {
   2439 			pcg->pcg_avail = 0;
   2440 			pcg->pcg_size = pc->pc_pcgsize;
   2441 		}
   2442 	}
   2443 
   2444 	/* Lock the cache. */
   2445 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2446 		mutex_enter(&pc->pc_lock);
   2447 		pc->pc_contended++;
   2448 
   2449 		/*
   2450 		 * If we context switched while locking, then our view of
   2451 		 * the per-CPU data is invalid: retry.
   2452 		 */
   2453 		if (__predict_false(l->l_ncsw != ncsw)) {
   2454 			mutex_exit(&pc->pc_lock);
   2455 			if (pcg != NULL) {
   2456 				pool_put(pc->pc_pcgpool, pcg);
   2457 			}
   2458 			return true;
   2459 		}
   2460 	}
   2461 
   2462 	/* If there are no empty groups in the cache then allocate one. */
   2463 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2464 		pcg = pc->pc_emptygroups;
   2465 		pc->pc_emptygroups = pcg->pcg_next;
   2466 		pc->pc_nempty--;
   2467 	}
   2468 
   2469 	/*
   2470 	 * If there's a empty group, release our full group back
   2471 	 * to the cache.  Install the empty group to the local CPU
   2472 	 * and return.
   2473 	 */
   2474 	if (pcg != NULL) {
   2475 		KASSERT(pcg->pcg_avail == 0);
   2476 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2477 			cc->cc_previous = pcg;
   2478 		} else {
   2479 			cur = cc->cc_current;
   2480 			if (__predict_true(cur != &pcg_dummy)) {
   2481 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2482 				cur->pcg_next = pc->pc_fullgroups;
   2483 				pc->pc_fullgroups = cur;
   2484 				pc->pc_nfull++;
   2485 			}
   2486 			cc->cc_current = pcg;
   2487 		}
   2488 		pc->pc_hits++;
   2489 		mutex_exit(&pc->pc_lock);
   2490 		return true;
   2491 	}
   2492 
   2493 	/*
   2494 	 * Nothing available locally or in cache, and we didn't
   2495 	 * allocate an empty group.  Take the slow path and destroy
   2496 	 * the object here and now.
   2497 	 */
   2498 	pc->pc_misses++;
   2499 	mutex_exit(&pc->pc_lock);
   2500 	splx(s);
   2501 	pool_cache_destruct_object(pc, object);
   2502 
   2503 	return false;
   2504 }
   2505 
   2506 /*
   2507  * pool_cache_put{,_paddr}:
   2508  *
   2509  *	Put an object back to the pool cache (optionally caching the
   2510  *	physical address of the object).
   2511  */
   2512 void
   2513 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2514 {
   2515 	pool_cache_cpu_t *cc;
   2516 	pcg_t *pcg;
   2517 	int s;
   2518 
   2519 	KASSERT(object != NULL);
   2520 	pool_cache_redzone_check(pc, object);
   2521 	FREECHECK_IN(&pc->pc_freecheck, object);
   2522 
   2523 	/* Lock out interrupts and disable preemption. */
   2524 	s = splvm();
   2525 	while (/* CONSTCOND */ true) {
   2526 		/* If the current group isn't full, release it there. */
   2527 		cc = pc->pc_cpus[curcpu()->ci_index];
   2528 		KASSERT(cc->cc_cache == pc);
   2529 	 	pcg = cc->cc_current;
   2530 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2531 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2532 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2533 			pcg->pcg_avail++;
   2534 			cc->cc_hits++;
   2535 			splx(s);
   2536 			return;
   2537 		}
   2538 
   2539 		/*
   2540 		 * That failed.  If the previous group isn't full, swap
   2541 		 * it with the current group and try again.
   2542 		 */
   2543 		pcg = cc->cc_previous;
   2544 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2545 			cc->cc_previous = cc->cc_current;
   2546 			cc->cc_current = pcg;
   2547 			continue;
   2548 		}
   2549 
   2550 		/*
   2551 		 * Can't free to either group: try the slow path.
   2552 		 * If put_slow() releases the object for us, it
   2553 		 * will return false.  Otherwise we need to retry.
   2554 		 */
   2555 		if (!pool_cache_put_slow(cc, s, object))
   2556 			break;
   2557 	}
   2558 }
   2559 
   2560 /*
   2561  * pool_cache_transfer:
   2562  *
   2563  *	Transfer objects from the per-CPU cache to the global cache.
   2564  *	Run within a cross-call thread.
   2565  */
   2566 static void
   2567 pool_cache_transfer(pool_cache_t pc)
   2568 {
   2569 	pool_cache_cpu_t *cc;
   2570 	pcg_t *prev, *cur, **list;
   2571 	int s;
   2572 
   2573 	s = splvm();
   2574 	mutex_enter(&pc->pc_lock);
   2575 	cc = pc->pc_cpus[curcpu()->ci_index];
   2576 	cur = cc->cc_current;
   2577 	cc->cc_current = __UNCONST(&pcg_dummy);
   2578 	prev = cc->cc_previous;
   2579 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2580 	if (cur != &pcg_dummy) {
   2581 		if (cur->pcg_avail == cur->pcg_size) {
   2582 			list = &pc->pc_fullgroups;
   2583 			pc->pc_nfull++;
   2584 		} else if (cur->pcg_avail == 0) {
   2585 			list = &pc->pc_emptygroups;
   2586 			pc->pc_nempty++;
   2587 		} else {
   2588 			list = &pc->pc_partgroups;
   2589 			pc->pc_npart++;
   2590 		}
   2591 		cur->pcg_next = *list;
   2592 		*list = cur;
   2593 	}
   2594 	if (prev != &pcg_dummy) {
   2595 		if (prev->pcg_avail == prev->pcg_size) {
   2596 			list = &pc->pc_fullgroups;
   2597 			pc->pc_nfull++;
   2598 		} else if (prev->pcg_avail == 0) {
   2599 			list = &pc->pc_emptygroups;
   2600 			pc->pc_nempty++;
   2601 		} else {
   2602 			list = &pc->pc_partgroups;
   2603 			pc->pc_npart++;
   2604 		}
   2605 		prev->pcg_next = *list;
   2606 		*list = prev;
   2607 	}
   2608 	mutex_exit(&pc->pc_lock);
   2609 	splx(s);
   2610 }
   2611 
   2612 /*
   2613  * Pool backend allocators.
   2614  *
   2615  * Each pool has a backend allocator that handles allocation, deallocation,
   2616  * and any additional draining that might be needed.
   2617  *
   2618  * We provide two standard allocators:
   2619  *
   2620  *	pool_allocator_kmem - the default when no allocator is specified
   2621  *
   2622  *	pool_allocator_nointr - used for pools that will not be accessed
   2623  *	in interrupt context.
   2624  */
   2625 void	*pool_page_alloc(struct pool *, int);
   2626 void	pool_page_free(struct pool *, void *);
   2627 
   2628 #ifdef POOL_SUBPAGE
   2629 struct pool_allocator pool_allocator_kmem_fullpage = {
   2630 	.pa_alloc = pool_page_alloc,
   2631 	.pa_free = pool_page_free,
   2632 	.pa_pagesz = 0
   2633 };
   2634 #else
   2635 struct pool_allocator pool_allocator_kmem = {
   2636 	.pa_alloc = pool_page_alloc,
   2637 	.pa_free = pool_page_free,
   2638 	.pa_pagesz = 0
   2639 };
   2640 #endif
   2641 
   2642 #ifdef POOL_SUBPAGE
   2643 struct pool_allocator pool_allocator_nointr_fullpage = {
   2644 	.pa_alloc = pool_page_alloc,
   2645 	.pa_free = pool_page_free,
   2646 	.pa_pagesz = 0
   2647 };
   2648 #else
   2649 struct pool_allocator pool_allocator_nointr = {
   2650 	.pa_alloc = pool_page_alloc,
   2651 	.pa_free = pool_page_free,
   2652 	.pa_pagesz = 0
   2653 };
   2654 #endif
   2655 
   2656 #ifdef POOL_SUBPAGE
   2657 void	*pool_subpage_alloc(struct pool *, int);
   2658 void	pool_subpage_free(struct pool *, void *);
   2659 
   2660 struct pool_allocator pool_allocator_kmem = {
   2661 	.pa_alloc = pool_subpage_alloc,
   2662 	.pa_free = pool_subpage_free,
   2663 	.pa_pagesz = POOL_SUBPAGE
   2664 };
   2665 
   2666 struct pool_allocator pool_allocator_nointr = {
   2667 	.pa_alloc = pool_subpage_alloc,
   2668 	.pa_free = pool_subpage_free,
   2669 	.pa_pagesz = POOL_SUBPAGE
   2670 };
   2671 #endif /* POOL_SUBPAGE */
   2672 
   2673 struct pool_allocator pool_allocator_big[] = {
   2674 	{
   2675 		.pa_alloc = pool_page_alloc,
   2676 		.pa_free = pool_page_free,
   2677 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2678 	},
   2679 	{
   2680 		.pa_alloc = pool_page_alloc,
   2681 		.pa_free = pool_page_free,
   2682 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2683 	},
   2684 	{
   2685 		.pa_alloc = pool_page_alloc,
   2686 		.pa_free = pool_page_free,
   2687 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2688 	},
   2689 	{
   2690 		.pa_alloc = pool_page_alloc,
   2691 		.pa_free = pool_page_free,
   2692 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2693 	},
   2694 	{
   2695 		.pa_alloc = pool_page_alloc,
   2696 		.pa_free = pool_page_free,
   2697 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2698 	},
   2699 	{
   2700 		.pa_alloc = pool_page_alloc,
   2701 		.pa_free = pool_page_free,
   2702 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2703 	},
   2704 	{
   2705 		.pa_alloc = pool_page_alloc,
   2706 		.pa_free = pool_page_free,
   2707 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2708 	},
   2709 	{
   2710 		.pa_alloc = pool_page_alloc,
   2711 		.pa_free = pool_page_free,
   2712 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2713 	}
   2714 };
   2715 
   2716 static int
   2717 pool_bigidx(size_t size)
   2718 {
   2719 	int i;
   2720 
   2721 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2722 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2723 			return i;
   2724 	}
   2725 	panic("pool item size %zu too large, use a custom allocator", size);
   2726 }
   2727 
   2728 static void *
   2729 pool_allocator_alloc(struct pool *pp, int flags)
   2730 {
   2731 	struct pool_allocator *pa = pp->pr_alloc;
   2732 	void *res;
   2733 
   2734 	res = (*pa->pa_alloc)(pp, flags);
   2735 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2736 		/*
   2737 		 * We only run the drain hook here if PR_NOWAIT.
   2738 		 * In other cases, the hook will be run in
   2739 		 * pool_reclaim().
   2740 		 */
   2741 		if (pp->pr_drain_hook != NULL) {
   2742 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2743 			res = (*pa->pa_alloc)(pp, flags);
   2744 		}
   2745 	}
   2746 	return res;
   2747 }
   2748 
   2749 static void
   2750 pool_allocator_free(struct pool *pp, void *v)
   2751 {
   2752 	struct pool_allocator *pa = pp->pr_alloc;
   2753 
   2754 	if (pp->pr_redzone) {
   2755 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
   2756 	}
   2757 	(*pa->pa_free)(pp, v);
   2758 }
   2759 
   2760 void *
   2761 pool_page_alloc(struct pool *pp, int flags)
   2762 {
   2763 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2764 	vmem_addr_t va;
   2765 	int ret;
   2766 
   2767 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2768 	    vflags | VM_INSTANTFIT, &va);
   2769 
   2770 	return ret ? NULL : (void *)va;
   2771 }
   2772 
   2773 void
   2774 pool_page_free(struct pool *pp, void *v)
   2775 {
   2776 
   2777 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2778 }
   2779 
   2780 static void *
   2781 pool_page_alloc_meta(struct pool *pp, int flags)
   2782 {
   2783 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2784 	vmem_addr_t va;
   2785 	int ret;
   2786 
   2787 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2788 	    vflags | VM_INSTANTFIT, &va);
   2789 
   2790 	return ret ? NULL : (void *)va;
   2791 }
   2792 
   2793 static void
   2794 pool_page_free_meta(struct pool *pp, void *v)
   2795 {
   2796 
   2797 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2798 }
   2799 
   2800 #ifdef KLEAK
   2801 static void
   2802 pool_kleak_fill(struct pool *pp, void *p)
   2803 {
   2804 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2805 		return;
   2806 	}
   2807 	kleak_fill_area(p, pp->pr_size);
   2808 }
   2809 
   2810 static void
   2811 pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2812 {
   2813 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2814 		return;
   2815 	}
   2816 	pool_kleak_fill(&pc->pc_pool, p);
   2817 }
   2818 #endif
   2819 
   2820 #ifdef POOL_REDZONE
   2821 #if defined(_LP64)
   2822 # define PRIME 0x9e37fffffffc0000UL
   2823 #else /* defined(_LP64) */
   2824 # define PRIME 0x9e3779b1
   2825 #endif /* defined(_LP64) */
   2826 #define STATIC_BYTE	0xFE
   2827 CTASSERT(POOL_REDZONE_SIZE > 1);
   2828 
   2829 #ifndef KASAN
   2830 static inline uint8_t
   2831 pool_pattern_generate(const void *p)
   2832 {
   2833 	return (uint8_t)(((uintptr_t)p) * PRIME
   2834 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2835 }
   2836 #endif
   2837 
   2838 static void
   2839 pool_redzone_init(struct pool *pp, size_t requested_size)
   2840 {
   2841 	size_t redzsz;
   2842 	size_t nsz;
   2843 
   2844 #ifdef KASAN
   2845 	redzsz = requested_size;
   2846 	kasan_add_redzone(&redzsz);
   2847 	redzsz -= requested_size;
   2848 #else
   2849 	redzsz = POOL_REDZONE_SIZE;
   2850 #endif
   2851 
   2852 	if (pp->pr_roflags & PR_NOTOUCH) {
   2853 		pp->pr_redzone = false;
   2854 		return;
   2855 	}
   2856 
   2857 	/*
   2858 	 * We may have extended the requested size earlier; check if
   2859 	 * there's naturally space in the padding for a red zone.
   2860 	 */
   2861 	if (pp->pr_size - requested_size >= redzsz) {
   2862 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2863 		pp->pr_redzone = true;
   2864 		return;
   2865 	}
   2866 
   2867 	/*
   2868 	 * No space in the natural padding; check if we can extend a
   2869 	 * bit the size of the pool.
   2870 	 */
   2871 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2872 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2873 		/* Ok, we can */
   2874 		pp->pr_size = nsz;
   2875 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2876 		pp->pr_redzone = true;
   2877 	} else {
   2878 		/* No space for a red zone... snif :'( */
   2879 		pp->pr_redzone = false;
   2880 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2881 	}
   2882 }
   2883 
   2884 static void
   2885 pool_redzone_fill(struct pool *pp, void *p)
   2886 {
   2887 	if (!pp->pr_redzone)
   2888 		return;
   2889 #ifdef KASAN
   2890 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
   2891 #else
   2892 	uint8_t *cp, pat;
   2893 	const uint8_t *ep;
   2894 
   2895 	cp = (uint8_t *)p + pp->pr_reqsize;
   2896 	ep = cp + POOL_REDZONE_SIZE;
   2897 
   2898 	/*
   2899 	 * We really don't want the first byte of the red zone to be '\0';
   2900 	 * an off-by-one in a string may not be properly detected.
   2901 	 */
   2902 	pat = pool_pattern_generate(cp);
   2903 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2904 	cp++;
   2905 
   2906 	while (cp < ep) {
   2907 		*cp = pool_pattern_generate(cp);
   2908 		cp++;
   2909 	}
   2910 #endif
   2911 }
   2912 
   2913 static void
   2914 pool_redzone_check(struct pool *pp, void *p)
   2915 {
   2916 	if (!pp->pr_redzone)
   2917 		return;
   2918 #ifdef KASAN
   2919 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
   2920 #else
   2921 	uint8_t *cp, pat, expected;
   2922 	const uint8_t *ep;
   2923 
   2924 	cp = (uint8_t *)p + pp->pr_reqsize;
   2925 	ep = cp + POOL_REDZONE_SIZE;
   2926 
   2927 	pat = pool_pattern_generate(cp);
   2928 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2929 	if (__predict_false(expected != *cp)) {
   2930 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2931 		   __func__, cp, *cp, expected);
   2932 	}
   2933 	cp++;
   2934 
   2935 	while (cp < ep) {
   2936 		expected = pool_pattern_generate(cp);
   2937 		if (__predict_false(*cp != expected)) {
   2938 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2939 			   __func__, cp, *cp, expected);
   2940 		}
   2941 		cp++;
   2942 	}
   2943 #endif
   2944 }
   2945 
   2946 static void
   2947 pool_cache_redzone_check(pool_cache_t pc, void *p)
   2948 {
   2949 #ifdef KASAN
   2950 	/* If there is a ctor/dtor, leave the data as valid. */
   2951 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2952 		return;
   2953 	}
   2954 #endif
   2955 	pool_redzone_check(&pc->pc_pool, p);
   2956 }
   2957 
   2958 #endif /* POOL_REDZONE */
   2959 
   2960 
   2961 #ifdef POOL_SUBPAGE
   2962 /* Sub-page allocator, for machines with large hardware pages. */
   2963 void *
   2964 pool_subpage_alloc(struct pool *pp, int flags)
   2965 {
   2966 	return pool_get(&psppool, flags);
   2967 }
   2968 
   2969 void
   2970 pool_subpage_free(struct pool *pp, void *v)
   2971 {
   2972 	pool_put(&psppool, v);
   2973 }
   2974 
   2975 #endif /* POOL_SUBPAGE */
   2976 
   2977 #if defined(DDB)
   2978 static bool
   2979 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2980 {
   2981 
   2982 	return (uintptr_t)ph->ph_page <= addr &&
   2983 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2984 }
   2985 
   2986 static bool
   2987 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2988 {
   2989 
   2990 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2991 }
   2992 
   2993 static bool
   2994 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2995 {
   2996 	int i;
   2997 
   2998 	if (pcg == NULL) {
   2999 		return false;
   3000 	}
   3001 	for (i = 0; i < pcg->pcg_avail; i++) {
   3002 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3003 			return true;
   3004 		}
   3005 	}
   3006 	return false;
   3007 }
   3008 
   3009 static bool
   3010 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3011 {
   3012 
   3013 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   3014 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3015 		pool_item_bitmap_t *bitmap =
   3016 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3017 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3018 
   3019 		return (*bitmap & mask) == 0;
   3020 	} else {
   3021 		struct pool_item *pi;
   3022 
   3023 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3024 			if (pool_in_item(pp, pi, addr)) {
   3025 				return false;
   3026 			}
   3027 		}
   3028 		return true;
   3029 	}
   3030 }
   3031 
   3032 void
   3033 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3034 {
   3035 	struct pool *pp;
   3036 
   3037 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3038 		struct pool_item_header *ph;
   3039 		uintptr_t item;
   3040 		bool allocated = true;
   3041 		bool incache = false;
   3042 		bool incpucache = false;
   3043 		char cpucachestr[32];
   3044 
   3045 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3046 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3047 				if (pool_in_page(pp, ph, addr)) {
   3048 					goto found;
   3049 				}
   3050 			}
   3051 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3052 				if (pool_in_page(pp, ph, addr)) {
   3053 					allocated =
   3054 					    pool_allocated(pp, ph, addr);
   3055 					goto found;
   3056 				}
   3057 			}
   3058 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3059 				if (pool_in_page(pp, ph, addr)) {
   3060 					allocated = false;
   3061 					goto found;
   3062 				}
   3063 			}
   3064 			continue;
   3065 		} else {
   3066 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3067 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3068 				continue;
   3069 			}
   3070 			allocated = pool_allocated(pp, ph, addr);
   3071 		}
   3072 found:
   3073 		if (allocated && pp->pr_cache) {
   3074 			pool_cache_t pc = pp->pr_cache;
   3075 			struct pool_cache_group *pcg;
   3076 			int i;
   3077 
   3078 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3079 			    pcg = pcg->pcg_next) {
   3080 				if (pool_in_cg(pp, pcg, addr)) {
   3081 					incache = true;
   3082 					goto print;
   3083 				}
   3084 			}
   3085 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3086 				pool_cache_cpu_t *cc;
   3087 
   3088 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3089 					continue;
   3090 				}
   3091 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3092 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3093 					struct cpu_info *ci =
   3094 					    cpu_lookup(i);
   3095 
   3096 					incpucache = true;
   3097 					snprintf(cpucachestr,
   3098 					    sizeof(cpucachestr),
   3099 					    "cached by CPU %u",
   3100 					    ci->ci_index);
   3101 					goto print;
   3102 				}
   3103 			}
   3104 		}
   3105 print:
   3106 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3107 		item = item + rounddown(addr - item, pp->pr_size);
   3108 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3109 		    (void *)addr, item, (size_t)(addr - item),
   3110 		    pp->pr_wchan,
   3111 		    incpucache ? cpucachestr :
   3112 		    incache ? "cached" : allocated ? "allocated" : "free");
   3113 	}
   3114 }
   3115 #endif /* defined(DDB) */
   3116 
   3117 static int
   3118 pool_sysctl(SYSCTLFN_ARGS)
   3119 {
   3120 	struct pool_sysctl data;
   3121 	struct pool *pp;
   3122 	struct pool_cache *pc;
   3123 	pool_cache_cpu_t *cc;
   3124 	int error;
   3125 	size_t i, written;
   3126 
   3127 	if (oldp == NULL) {
   3128 		*oldlenp = 0;
   3129 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3130 			*oldlenp += sizeof(data);
   3131 		return 0;
   3132 	}
   3133 
   3134 	memset(&data, 0, sizeof(data));
   3135 	error = 0;
   3136 	written = 0;
   3137 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3138 		if (written + sizeof(data) > *oldlenp)
   3139 			break;
   3140 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3141 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3142 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3143 #define COPY(field) data.field = pp->field
   3144 		COPY(pr_size);
   3145 
   3146 		COPY(pr_itemsperpage);
   3147 		COPY(pr_nitems);
   3148 		COPY(pr_nout);
   3149 		COPY(pr_hardlimit);
   3150 		COPY(pr_npages);
   3151 		COPY(pr_minpages);
   3152 		COPY(pr_maxpages);
   3153 
   3154 		COPY(pr_nget);
   3155 		COPY(pr_nfail);
   3156 		COPY(pr_nput);
   3157 		COPY(pr_npagealloc);
   3158 		COPY(pr_npagefree);
   3159 		COPY(pr_hiwat);
   3160 		COPY(pr_nidle);
   3161 #undef COPY
   3162 
   3163 		data.pr_cache_nmiss_pcpu = 0;
   3164 		data.pr_cache_nhit_pcpu = 0;
   3165 		if (pp->pr_cache) {
   3166 			pc = pp->pr_cache;
   3167 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3168 			data.pr_cache_nfull = pc->pc_nfull;
   3169 			data.pr_cache_npartial = pc->pc_npart;
   3170 			data.pr_cache_nempty = pc->pc_nempty;
   3171 			data.pr_cache_ncontended = pc->pc_contended;
   3172 			data.pr_cache_nmiss_global = pc->pc_misses;
   3173 			data.pr_cache_nhit_global = pc->pc_hits;
   3174 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3175 				cc = pc->pc_cpus[i];
   3176 				if (cc == NULL)
   3177 					continue;
   3178 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3179 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3180 			}
   3181 		} else {
   3182 			data.pr_cache_meta_size = 0;
   3183 			data.pr_cache_nfull = 0;
   3184 			data.pr_cache_npartial = 0;
   3185 			data.pr_cache_nempty = 0;
   3186 			data.pr_cache_ncontended = 0;
   3187 			data.pr_cache_nmiss_global = 0;
   3188 			data.pr_cache_nhit_global = 0;
   3189 		}
   3190 
   3191 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3192 		if (error)
   3193 			break;
   3194 		written += sizeof(data);
   3195 		oldp = (char *)oldp + sizeof(data);
   3196 	}
   3197 
   3198 	*oldlenp = written;
   3199 	return error;
   3200 }
   3201 
   3202 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3203 {
   3204 	const struct sysctlnode *rnode = NULL;
   3205 
   3206 	sysctl_createv(clog, 0, NULL, &rnode,
   3207 		       CTLFLAG_PERMANENT,
   3208 		       CTLTYPE_STRUCT, "pool",
   3209 		       SYSCTL_DESCR("Get pool statistics"),
   3210 		       pool_sysctl, 0, NULL, 0,
   3211 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3212 }
   3213