Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.236
      1 /*	$NetBSD: subr_pool.c,v 1.236 2019/03/13 20:56:33 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.236 2019/03/13 20:56:33 maxv Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_kleak.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/sysctl.h>
     47 #include <sys/bitops.h>
     48 #include <sys/proc.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmem.h>
     52 #include <sys/pool.h>
     53 #include <sys/syslog.h>
     54 #include <sys/debug.h>
     55 #include <sys/lockdebug.h>
     56 #include <sys/xcall.h>
     57 #include <sys/cpu.h>
     58 #include <sys/atomic.h>
     59 #include <sys/asan.h>
     60 
     61 #include <uvm/uvm_extern.h>
     62 
     63 /*
     64  * Pool resource management utility.
     65  *
     66  * Memory is allocated in pages which are split into pieces according to
     67  * the pool item size. Each page is kept on one of three lists in the
     68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69  * for empty, full and partially-full pages respectively. The individual
     70  * pool items are on a linked list headed by `ph_itemlist' in each page
     71  * header. The memory for building the page list is either taken from
     72  * the allocated pages themselves (for small pool items) or taken from
     73  * an internal pool of page headers (`phpool').
     74  */
     75 
     76 /* List of all pools. Non static as needed by 'vmstat -m' */
     77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     78 
     79 /* Private pool for page header structures */
     80 #define	PHPOOL_MAX	8
     81 static struct pool phpool[PHPOOL_MAX];
     82 #define	PHPOOL_FREELIST_NELEM(idx) \
     83 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     84 
     85 #ifdef POOL_SUBPAGE
     86 /* Pool of subpages for use by normal pools. */
     87 static struct pool psppool;
     88 #endif
     89 
     90 #if defined(KASAN)
     91 #define POOL_REDZONE
     92 #endif
     93 
     94 #ifdef POOL_REDZONE
     95 # ifdef KASAN
     96 #  define POOL_REDZONE_SIZE 8
     97 # else
     98 #  define POOL_REDZONE_SIZE 2
     99 # endif
    100 static void pool_redzone_init(struct pool *, size_t);
    101 static void pool_redzone_fill(struct pool *, void *);
    102 static void pool_redzone_check(struct pool *, void *);
    103 static void pool_cache_redzone_check(pool_cache_t, void *);
    104 #else
    105 # define pool_redzone_init(pp, sz)		__nothing
    106 # define pool_redzone_fill(pp, ptr)		__nothing
    107 # define pool_redzone_check(pp, ptr)		__nothing
    108 # define pool_cache_redzone_check(pc, ptr)	__nothing
    109 #endif
    110 
    111 #ifdef KLEAK
    112 static void pool_kleak_fill(struct pool *, void *);
    113 static void pool_cache_kleak_fill(pool_cache_t, void *);
    114 #else
    115 #define pool_kleak_fill(pp, ptr)	__nothing
    116 #define pool_cache_kleak_fill(pc, ptr)	__nothing
    117 #endif
    118 
    119 #define pc_has_ctor(pc) \
    120 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    121 #define pc_has_dtor(pc) \
    122 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    123 
    124 static void *pool_page_alloc_meta(struct pool *, int);
    125 static void pool_page_free_meta(struct pool *, void *);
    126 
    127 /* allocator for pool metadata */
    128 struct pool_allocator pool_allocator_meta = {
    129 	.pa_alloc = pool_page_alloc_meta,
    130 	.pa_free = pool_page_free_meta,
    131 	.pa_pagesz = 0
    132 };
    133 
    134 #define POOL_ALLOCATOR_BIG_BASE 13
    135 extern struct pool_allocator pool_allocator_big[];
    136 static int pool_bigidx(size_t);
    137 
    138 /* # of seconds to retain page after last use */
    139 int pool_inactive_time = 10;
    140 
    141 /* Next candidate for drainage (see pool_drain()) */
    142 static struct pool *drainpp;
    143 
    144 /* This lock protects both pool_head and drainpp. */
    145 static kmutex_t pool_head_lock;
    146 static kcondvar_t pool_busy;
    147 
    148 /* This lock protects initialization of a potentially shared pool allocator */
    149 static kmutex_t pool_allocator_lock;
    150 
    151 typedef uint32_t pool_item_bitmap_t;
    152 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    153 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    154 
    155 struct pool_item_header {
    156 	/* Page headers */
    157 	LIST_ENTRY(pool_item_header)
    158 				ph_pagelist;	/* pool page list */
    159 	SPLAY_ENTRY(pool_item_header)
    160 				ph_node;	/* Off-page page headers */
    161 	void *			ph_page;	/* this page's address */
    162 	uint32_t		ph_time;	/* last referenced */
    163 	uint16_t		ph_nmissing;	/* # of chunks in use */
    164 	uint16_t		ph_off;		/* start offset in page */
    165 	union {
    166 		/* !PR_NOTOUCH */
    167 		struct {
    168 			LIST_HEAD(, pool_item)
    169 				phu_itemlist;	/* chunk list for this page */
    170 		} phu_normal;
    171 		/* PR_NOTOUCH */
    172 		struct {
    173 			pool_item_bitmap_t phu_bitmap[1];
    174 		} phu_notouch;
    175 	} ph_u;
    176 };
    177 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    178 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    179 
    180 #if defined(DIAGNOSTIC) && !defined(KASAN)
    181 #define POOL_CHECK_MAGIC
    182 #endif
    183 
    184 struct pool_item {
    185 #ifdef POOL_CHECK_MAGIC
    186 	u_int pi_magic;
    187 #endif
    188 #define	PI_MAGIC 0xdeaddeadU
    189 	/* Other entries use only this list entry */
    190 	LIST_ENTRY(pool_item)	pi_list;
    191 };
    192 
    193 #define	POOL_NEEDS_CATCHUP(pp)						\
    194 	((pp)->pr_nitems < (pp)->pr_minitems)
    195 
    196 /*
    197  * Pool cache management.
    198  *
    199  * Pool caches provide a way for constructed objects to be cached by the
    200  * pool subsystem.  This can lead to performance improvements by avoiding
    201  * needless object construction/destruction; it is deferred until absolutely
    202  * necessary.
    203  *
    204  * Caches are grouped into cache groups.  Each cache group references up
    205  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    206  * object from the pool, it calls the object's constructor and places it
    207  * into a cache group.  When a cache group frees an object back to the
    208  * pool, it first calls the object's destructor.  This allows the object
    209  * to persist in constructed form while freed to the cache.
    210  *
    211  * The pool references each cache, so that when a pool is drained by the
    212  * pagedaemon, it can drain each individual cache as well.  Each time a
    213  * cache is drained, the most idle cache group is freed to the pool in
    214  * its entirety.
    215  *
    216  * Pool caches are layed on top of pools.  By layering them, we can avoid
    217  * the complexity of cache management for pools which would not benefit
    218  * from it.
    219  */
    220 
    221 static struct pool pcg_normal_pool;
    222 static struct pool pcg_large_pool;
    223 static struct pool cache_pool;
    224 static struct pool cache_cpu_pool;
    225 
    226 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    227 
    228 /* List of all caches. */
    229 TAILQ_HEAD(,pool_cache) pool_cache_head =
    230     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    231 
    232 int pool_cache_disable;		/* global disable for caching */
    233 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    234 
    235 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    236 				    void *);
    237 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    238 				    void **, paddr_t *, int);
    239 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    240 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    241 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    242 static void	pool_cache_transfer(pool_cache_t);
    243 
    244 static int	pool_catchup(struct pool *);
    245 static void	pool_prime_page(struct pool *, void *,
    246 		    struct pool_item_header *);
    247 static void	pool_update_curpage(struct pool *);
    248 
    249 static int	pool_grow(struct pool *, int);
    250 static void	*pool_allocator_alloc(struct pool *, int);
    251 static void	pool_allocator_free(struct pool *, void *);
    252 
    253 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    254 	void (*)(const char *, ...) __printflike(1, 2));
    255 static void pool_print1(struct pool *, const char *,
    256 	void (*)(const char *, ...) __printflike(1, 2));
    257 
    258 static int pool_chk_page(struct pool *, const char *,
    259 			 struct pool_item_header *);
    260 
    261 /* -------------------------------------------------------------------------- */
    262 
    263 static inline unsigned int
    264 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    265     const void *v)
    266 {
    267 	const char *cp = v;
    268 	unsigned int idx;
    269 
    270 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    271 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    272 	KASSERT(idx < pp->pr_itemsperpage);
    273 	return idx;
    274 }
    275 
    276 static inline void
    277 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    278     void *obj)
    279 {
    280 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    281 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    282 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    283 
    284 	KASSERT((*bitmap & mask) == 0);
    285 	*bitmap |= mask;
    286 }
    287 
    288 static inline void *
    289 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    290 {
    291 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    292 	unsigned int idx;
    293 	int i;
    294 
    295 	for (i = 0; ; i++) {
    296 		int bit;
    297 
    298 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    299 		bit = ffs32(bitmap[i]);
    300 		if (bit) {
    301 			pool_item_bitmap_t mask;
    302 
    303 			bit--;
    304 			idx = (i * BITMAP_SIZE) + bit;
    305 			mask = 1U << bit;
    306 			KASSERT((bitmap[i] & mask) != 0);
    307 			bitmap[i] &= ~mask;
    308 			break;
    309 		}
    310 	}
    311 	KASSERT(idx < pp->pr_itemsperpage);
    312 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    313 }
    314 
    315 static inline void
    316 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    317 {
    318 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    319 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    320 	int i;
    321 
    322 	for (i = 0; i < n; i++) {
    323 		bitmap[i] = (pool_item_bitmap_t)-1;
    324 	}
    325 }
    326 
    327 /* -------------------------------------------------------------------------- */
    328 
    329 static inline void
    330 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    331     void *obj)
    332 {
    333 	struct pool_item *pi = obj;
    334 
    335 #ifdef POOL_CHECK_MAGIC
    336 	pi->pi_magic = PI_MAGIC;
    337 #endif
    338 
    339 	if (pp->pr_redzone) {
    340 		/*
    341 		 * Mark the pool_item as valid. The rest is already
    342 		 * invalid.
    343 		 */
    344 		kasan_mark(pi, sizeof(*pi), sizeof(*pi));
    345 	}
    346 
    347 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    348 }
    349 
    350 static inline void *
    351 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    352 {
    353 	struct pool_item *pi;
    354 	void *v;
    355 
    356 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    357 	if (__predict_false(v == NULL)) {
    358 		mutex_exit(&pp->pr_lock);
    359 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    360 	}
    361 	KASSERTMSG((pp->pr_nitems > 0),
    362 	    "%s: [%s] nitems %u inconsistent on itemlist",
    363 	    __func__, pp->pr_wchan, pp->pr_nitems);
    364 #ifdef POOL_CHECK_MAGIC
    365 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    366 	    "%s: [%s] free list modified: "
    367 	    "magic=%x; page %p; item addr %p", __func__,
    368 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    369 #endif
    370 
    371 	/*
    372 	 * Remove from item list.
    373 	 */
    374 	LIST_REMOVE(pi, pi_list);
    375 
    376 	return v;
    377 }
    378 
    379 /* -------------------------------------------------------------------------- */
    380 
    381 static inline int
    382 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    383 {
    384 
    385 	/*
    386 	 * We consider pool_item_header with smaller ph_page bigger. This
    387 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    388 	 */
    389 	if (a->ph_page < b->ph_page)
    390 		return 1;
    391 	else if (a->ph_page > b->ph_page)
    392 		return -1;
    393 	else
    394 		return 0;
    395 }
    396 
    397 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    398 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    399 
    400 static inline struct pool_item_header *
    401 pr_find_pagehead_noalign(struct pool *pp, void *v)
    402 {
    403 	struct pool_item_header *ph, tmp;
    404 
    405 	tmp.ph_page = (void *)(uintptr_t)v;
    406 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    407 	if (ph == NULL) {
    408 		ph = SPLAY_ROOT(&pp->pr_phtree);
    409 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    410 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    411 		}
    412 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    413 	}
    414 
    415 	return ph;
    416 }
    417 
    418 /*
    419  * Return the pool page header based on item address.
    420  */
    421 static inline struct pool_item_header *
    422 pr_find_pagehead(struct pool *pp, void *v)
    423 {
    424 	struct pool_item_header *ph, tmp;
    425 
    426 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    427 		ph = pr_find_pagehead_noalign(pp, v);
    428 	} else {
    429 		void *page =
    430 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    431 
    432 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    433 			ph = (struct pool_item_header *)
    434 			    ((char *)page + pp->pr_phoffset);
    435 			if (__predict_false((void *)ph->ph_page != page)) {
    436 				panic("%s: [%s] item not part of pool",
    437 				    __func__, pp->pr_wchan);
    438 			}
    439 		} else {
    440 			tmp.ph_page = page;
    441 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    442 		}
    443 	}
    444 
    445 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    446 	    ((char *)ph->ph_page <= (char *)v &&
    447 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    448 	return ph;
    449 }
    450 
    451 static void
    452 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    453 {
    454 	struct pool_item_header *ph;
    455 
    456 	while ((ph = LIST_FIRST(pq)) != NULL) {
    457 		LIST_REMOVE(ph, ph_pagelist);
    458 		pool_allocator_free(pp, ph->ph_page);
    459 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    460 			pool_put(pp->pr_phpool, ph);
    461 	}
    462 }
    463 
    464 /*
    465  * Remove a page from the pool.
    466  */
    467 static inline void
    468 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    469      struct pool_pagelist *pq)
    470 {
    471 
    472 	KASSERT(mutex_owned(&pp->pr_lock));
    473 
    474 	/*
    475 	 * If the page was idle, decrement the idle page count.
    476 	 */
    477 	if (ph->ph_nmissing == 0) {
    478 		KASSERT(pp->pr_nidle != 0);
    479 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    480 		    "nitems=%u < itemsperpage=%u",
    481 		    pp->pr_nitems, pp->pr_itemsperpage);
    482 		pp->pr_nidle--;
    483 	}
    484 
    485 	pp->pr_nitems -= pp->pr_itemsperpage;
    486 
    487 	/*
    488 	 * Unlink the page from the pool and queue it for release.
    489 	 */
    490 	LIST_REMOVE(ph, ph_pagelist);
    491 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    492 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    493 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    494 
    495 	pp->pr_npages--;
    496 	pp->pr_npagefree++;
    497 
    498 	pool_update_curpage(pp);
    499 }
    500 
    501 /*
    502  * Initialize all the pools listed in the "pools" link set.
    503  */
    504 void
    505 pool_subsystem_init(void)
    506 {
    507 	size_t size;
    508 	int idx;
    509 
    510 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    511 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    512 	cv_init(&pool_busy, "poolbusy");
    513 
    514 	/*
    515 	 * Initialize private page header pool and cache magazine pool if we
    516 	 * haven't done so yet.
    517 	 */
    518 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    519 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    520 		int nelem;
    521 		size_t sz;
    522 
    523 		nelem = PHPOOL_FREELIST_NELEM(idx);
    524 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    525 		    "phpool-%d", nelem);
    526 		sz = sizeof(struct pool_item_header);
    527 		if (nelem) {
    528 			sz = offsetof(struct pool_item_header,
    529 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    530 		}
    531 		pool_init(&phpool[idx], sz, 0, 0, 0,
    532 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    533 	}
    534 #ifdef POOL_SUBPAGE
    535 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    536 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    537 #endif
    538 
    539 	size = sizeof(pcg_t) +
    540 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    541 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    542 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    543 
    544 	size = sizeof(pcg_t) +
    545 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    546 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    547 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    548 
    549 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    550 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    551 
    552 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    553 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    554 }
    555 
    556 /*
    557  * Initialize the given pool resource structure.
    558  *
    559  * We export this routine to allow other kernel parts to declare
    560  * static pools that must be initialized before kmem(9) is available.
    561  */
    562 void
    563 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    564     const char *wchan, struct pool_allocator *palloc, int ipl)
    565 {
    566 	struct pool *pp1;
    567 	size_t trysize, phsize, prsize;
    568 	int off, slack;
    569 
    570 #ifdef DEBUG
    571 	if (__predict_true(!cold))
    572 		mutex_enter(&pool_head_lock);
    573 	/*
    574 	 * Check that the pool hasn't already been initialised and
    575 	 * added to the list of all pools.
    576 	 */
    577 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    578 		if (pp == pp1)
    579 			panic("%s: [%s] already initialised", __func__,
    580 			    wchan);
    581 	}
    582 	if (__predict_true(!cold))
    583 		mutex_exit(&pool_head_lock);
    584 #endif
    585 
    586 	if (palloc == NULL)
    587 		palloc = &pool_allocator_kmem;
    588 #ifdef POOL_SUBPAGE
    589 	if (size > palloc->pa_pagesz) {
    590 		if (palloc == &pool_allocator_kmem)
    591 			palloc = &pool_allocator_kmem_fullpage;
    592 		else if (palloc == &pool_allocator_nointr)
    593 			palloc = &pool_allocator_nointr_fullpage;
    594 	}
    595 #endif /* POOL_SUBPAGE */
    596 	if (!cold)
    597 		mutex_enter(&pool_allocator_lock);
    598 	if (palloc->pa_refcnt++ == 0) {
    599 		if (palloc->pa_pagesz == 0)
    600 			palloc->pa_pagesz = PAGE_SIZE;
    601 
    602 		TAILQ_INIT(&palloc->pa_list);
    603 
    604 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    605 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    606 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    607 	}
    608 	if (!cold)
    609 		mutex_exit(&pool_allocator_lock);
    610 
    611 	if (align == 0)
    612 		align = ALIGN(1);
    613 
    614 	prsize = size;
    615 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    616 		prsize = sizeof(struct pool_item);
    617 
    618 	prsize = roundup(prsize, align);
    619 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    620 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    621 	    __func__, wchan, prsize, palloc->pa_pagesz);
    622 
    623 	/*
    624 	 * Initialize the pool structure.
    625 	 */
    626 	LIST_INIT(&pp->pr_emptypages);
    627 	LIST_INIT(&pp->pr_fullpages);
    628 	LIST_INIT(&pp->pr_partpages);
    629 	pp->pr_cache = NULL;
    630 	pp->pr_curpage = NULL;
    631 	pp->pr_npages = 0;
    632 	pp->pr_minitems = 0;
    633 	pp->pr_minpages = 0;
    634 	pp->pr_maxpages = UINT_MAX;
    635 	pp->pr_roflags = flags;
    636 	pp->pr_flags = 0;
    637 	pp->pr_size = prsize;
    638 	pp->pr_reqsize = size;
    639 	pp->pr_align = align;
    640 	pp->pr_wchan = wchan;
    641 	pp->pr_alloc = palloc;
    642 	pp->pr_nitems = 0;
    643 	pp->pr_nout = 0;
    644 	pp->pr_hardlimit = UINT_MAX;
    645 	pp->pr_hardlimit_warning = NULL;
    646 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    647 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    648 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    649 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    650 	pp->pr_drain_hook = NULL;
    651 	pp->pr_drain_hook_arg = NULL;
    652 	pp->pr_freecheck = NULL;
    653 	pool_redzone_init(pp, size);
    654 
    655 	/* Silently enforce '0 <= ioff < align'. */
    656 	ioff %= align;
    657 
    658 	/*
    659 	 * Decide whether to put the page header off page to avoid wasting too
    660 	 * large a part of the page or too big item. Off-page page headers go
    661 	 * on a hash table, so we can match a returned item with its header
    662 	 * based on the page address. We use 1/16 of the page size and about 8
    663 	 * times of the item size as the threshold. (XXX: tune)
    664 	 *
    665 	 * However, we'll put the header into the page if we can put it without
    666 	 * wasting any items.
    667 	 */
    668 	pp->pr_itemoffset = ioff;
    669 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    670 	phsize = ALIGN(sizeof(struct pool_item_header));
    671 	if (pp->pr_roflags & PR_PHINPAGE ||
    672 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    673 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    674 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    675 		/* Use the end of the page for the page header */
    676 		pp->pr_roflags |= PR_PHINPAGE;
    677 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    678 	} else {
    679 		/* The page header will be taken from our page header pool */
    680 		pp->pr_phoffset = 0;
    681 		off = palloc->pa_pagesz;
    682 		SPLAY_INIT(&pp->pr_phtree);
    683 	}
    684 
    685 	/*
    686 	 * Alignment is to take place at `ioff' within the item. This means
    687 	 * we must reserve up to `align - 1' bytes on the page to allow
    688 	 * appropriate positioning of each item.
    689 	 */
    690 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    691 	KASSERT(pp->pr_itemsperpage != 0);
    692 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    693 		int idx;
    694 
    695 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    696 		    idx++) {
    697 			/* nothing */
    698 		}
    699 		if (idx >= PHPOOL_MAX) {
    700 			/*
    701 			 * if you see this panic, consider to tweak
    702 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    703 			 */
    704 			panic("%s: [%s] too large itemsperpage(%d) for "
    705 			    "PR_NOTOUCH", __func__,
    706 			    pp->pr_wchan, pp->pr_itemsperpage);
    707 		}
    708 		pp->pr_phpool = &phpool[idx];
    709 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    710 		pp->pr_phpool = &phpool[0];
    711 	}
    712 #if defined(DIAGNOSTIC)
    713 	else {
    714 		pp->pr_phpool = NULL;
    715 	}
    716 #endif
    717 
    718 	/*
    719 	 * Use the slack between the chunks and the page header
    720 	 * for "cache coloring".
    721 	 */
    722 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    723 	pp->pr_maxcolor = (slack / align) * align;
    724 	pp->pr_curcolor = 0;
    725 
    726 	pp->pr_nget = 0;
    727 	pp->pr_nfail = 0;
    728 	pp->pr_nput = 0;
    729 	pp->pr_npagealloc = 0;
    730 	pp->pr_npagefree = 0;
    731 	pp->pr_hiwat = 0;
    732 	pp->pr_nidle = 0;
    733 	pp->pr_refcnt = 0;
    734 
    735 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    736 	cv_init(&pp->pr_cv, wchan);
    737 	pp->pr_ipl = ipl;
    738 
    739 	/* Insert into the list of all pools. */
    740 	if (!cold)
    741 		mutex_enter(&pool_head_lock);
    742 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    743 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    744 			break;
    745 	}
    746 	if (pp1 == NULL)
    747 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    748 	else
    749 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    750 	if (!cold)
    751 		mutex_exit(&pool_head_lock);
    752 
    753 	/* Insert this into the list of pools using this allocator. */
    754 	if (!cold)
    755 		mutex_enter(&palloc->pa_lock);
    756 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    757 	if (!cold)
    758 		mutex_exit(&palloc->pa_lock);
    759 }
    760 
    761 /*
    762  * De-commision a pool resource.
    763  */
    764 void
    765 pool_destroy(struct pool *pp)
    766 {
    767 	struct pool_pagelist pq;
    768 	struct pool_item_header *ph;
    769 
    770 	/* Remove from global pool list */
    771 	mutex_enter(&pool_head_lock);
    772 	while (pp->pr_refcnt != 0)
    773 		cv_wait(&pool_busy, &pool_head_lock);
    774 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    775 	if (drainpp == pp)
    776 		drainpp = NULL;
    777 	mutex_exit(&pool_head_lock);
    778 
    779 	/* Remove this pool from its allocator's list of pools. */
    780 	mutex_enter(&pp->pr_alloc->pa_lock);
    781 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    782 	mutex_exit(&pp->pr_alloc->pa_lock);
    783 
    784 	mutex_enter(&pool_allocator_lock);
    785 	if (--pp->pr_alloc->pa_refcnt == 0)
    786 		mutex_destroy(&pp->pr_alloc->pa_lock);
    787 	mutex_exit(&pool_allocator_lock);
    788 
    789 	mutex_enter(&pp->pr_lock);
    790 
    791 	KASSERT(pp->pr_cache == NULL);
    792 	KASSERTMSG((pp->pr_nout == 0),
    793 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    794 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    795 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    796 
    797 	/* Remove all pages */
    798 	LIST_INIT(&pq);
    799 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    800 		pr_rmpage(pp, ph, &pq);
    801 
    802 	mutex_exit(&pp->pr_lock);
    803 
    804 	pr_pagelist_free(pp, &pq);
    805 	cv_destroy(&pp->pr_cv);
    806 	mutex_destroy(&pp->pr_lock);
    807 }
    808 
    809 void
    810 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    811 {
    812 
    813 	/* XXX no locking -- must be used just after pool_init() */
    814 	KASSERTMSG((pp->pr_drain_hook == NULL),
    815 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    816 	pp->pr_drain_hook = fn;
    817 	pp->pr_drain_hook_arg = arg;
    818 }
    819 
    820 static struct pool_item_header *
    821 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    822 {
    823 	struct pool_item_header *ph;
    824 
    825 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    826 		ph = (void *)((char *)storage + pp->pr_phoffset);
    827 	else
    828 		ph = pool_get(pp->pr_phpool, flags);
    829 
    830 	return ph;
    831 }
    832 
    833 /*
    834  * Grab an item from the pool.
    835  */
    836 void *
    837 pool_get(struct pool *pp, int flags)
    838 {
    839 	struct pool_item_header *ph;
    840 	void *v;
    841 
    842 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    843 	KASSERTMSG((pp->pr_itemsperpage != 0),
    844 	    "%s: [%s] pr_itemsperpage is zero, "
    845 	    "pool not initialized?", __func__, pp->pr_wchan);
    846 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    847 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    848 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    849 	    __func__, pp->pr_wchan);
    850 	if (flags & PR_WAITOK) {
    851 		ASSERT_SLEEPABLE();
    852 	}
    853 
    854 	mutex_enter(&pp->pr_lock);
    855  startover:
    856 	/*
    857 	 * Check to see if we've reached the hard limit.  If we have,
    858 	 * and we can wait, then wait until an item has been returned to
    859 	 * the pool.
    860 	 */
    861 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    862 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    863 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    864 		if (pp->pr_drain_hook != NULL) {
    865 			/*
    866 			 * Since the drain hook is going to free things
    867 			 * back to the pool, unlock, call the hook, re-lock,
    868 			 * and check the hardlimit condition again.
    869 			 */
    870 			mutex_exit(&pp->pr_lock);
    871 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    872 			mutex_enter(&pp->pr_lock);
    873 			if (pp->pr_nout < pp->pr_hardlimit)
    874 				goto startover;
    875 		}
    876 
    877 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    878 			/*
    879 			 * XXX: A warning isn't logged in this case.  Should
    880 			 * it be?
    881 			 */
    882 			pp->pr_flags |= PR_WANTED;
    883 			do {
    884 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    885 			} while (pp->pr_flags & PR_WANTED);
    886 			goto startover;
    887 		}
    888 
    889 		/*
    890 		 * Log a message that the hard limit has been hit.
    891 		 */
    892 		if (pp->pr_hardlimit_warning != NULL &&
    893 		    ratecheck(&pp->pr_hardlimit_warning_last,
    894 			      &pp->pr_hardlimit_ratecap))
    895 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    896 
    897 		pp->pr_nfail++;
    898 
    899 		mutex_exit(&pp->pr_lock);
    900 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    901 		return NULL;
    902 	}
    903 
    904 	/*
    905 	 * The convention we use is that if `curpage' is not NULL, then
    906 	 * it points at a non-empty bucket. In particular, `curpage'
    907 	 * never points at a page header which has PR_PHINPAGE set and
    908 	 * has no items in its bucket.
    909 	 */
    910 	if ((ph = pp->pr_curpage) == NULL) {
    911 		int error;
    912 
    913 		KASSERTMSG((pp->pr_nitems == 0),
    914 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    915 		    __func__, pp->pr_wchan, pp->pr_nitems);
    916 
    917 		/*
    918 		 * Call the back-end page allocator for more memory.
    919 		 * Release the pool lock, as the back-end page allocator
    920 		 * may block.
    921 		 */
    922 		error = pool_grow(pp, flags);
    923 		if (error != 0) {
    924 			/*
    925 			 * pool_grow aborts when another thread
    926 			 * is allocating a new page. Retry if it
    927 			 * waited for it.
    928 			 */
    929 			if (error == ERESTART)
    930 				goto startover;
    931 
    932 			/*
    933 			 * We were unable to allocate a page or item
    934 			 * header, but we released the lock during
    935 			 * allocation, so perhaps items were freed
    936 			 * back to the pool.  Check for this case.
    937 			 */
    938 			if (pp->pr_curpage != NULL)
    939 				goto startover;
    940 
    941 			pp->pr_nfail++;
    942 			mutex_exit(&pp->pr_lock);
    943 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    944 			return NULL;
    945 		}
    946 
    947 		/* Start the allocation process over. */
    948 		goto startover;
    949 	}
    950 	if (pp->pr_roflags & PR_NOTOUCH) {
    951 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    952 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    953 		v = pr_item_bitmap_get(pp, ph);
    954 	} else {
    955 		v = pr_item_linkedlist_get(pp, ph);
    956 	}
    957 	pp->pr_nitems--;
    958 	pp->pr_nout++;
    959 	if (ph->ph_nmissing == 0) {
    960 		KASSERT(pp->pr_nidle > 0);
    961 		pp->pr_nidle--;
    962 
    963 		/*
    964 		 * This page was previously empty.  Move it to the list of
    965 		 * partially-full pages.  This page is already curpage.
    966 		 */
    967 		LIST_REMOVE(ph, ph_pagelist);
    968 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    969 	}
    970 	ph->ph_nmissing++;
    971 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    972 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    973 			LIST_EMPTY(&ph->ph_itemlist)),
    974 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    975 			pp->pr_wchan, ph->ph_nmissing);
    976 		/*
    977 		 * This page is now full.  Move it to the full list
    978 		 * and select a new current page.
    979 		 */
    980 		LIST_REMOVE(ph, ph_pagelist);
    981 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    982 		pool_update_curpage(pp);
    983 	}
    984 
    985 	pp->pr_nget++;
    986 
    987 	/*
    988 	 * If we have a low water mark and we are now below that low
    989 	 * water mark, add more items to the pool.
    990 	 */
    991 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    992 		/*
    993 		 * XXX: Should we log a warning?  Should we set up a timeout
    994 		 * to try again in a second or so?  The latter could break
    995 		 * a caller's assumptions about interrupt protection, etc.
    996 		 */
    997 	}
    998 
    999 	mutex_exit(&pp->pr_lock);
   1000 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1001 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1002 	pool_redzone_fill(pp, v);
   1003 	if (flags & PR_ZERO)
   1004 		memset(v, 0, pp->pr_reqsize);
   1005 	else
   1006 		pool_kleak_fill(pp, v);
   1007 	return v;
   1008 }
   1009 
   1010 /*
   1011  * Internal version of pool_put().  Pool is already locked/entered.
   1012  */
   1013 static void
   1014 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1015 {
   1016 	struct pool_item_header *ph;
   1017 
   1018 	KASSERT(mutex_owned(&pp->pr_lock));
   1019 	pool_redzone_check(pp, v);
   1020 	FREECHECK_IN(&pp->pr_freecheck, v);
   1021 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1022 
   1023 	KASSERTMSG((pp->pr_nout > 0),
   1024 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1025 
   1026 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1027 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1028 	}
   1029 
   1030 	/*
   1031 	 * Return to item list.
   1032 	 */
   1033 	if (pp->pr_roflags & PR_NOTOUCH) {
   1034 		pr_item_bitmap_put(pp, ph, v);
   1035 	} else {
   1036 		pr_item_linkedlist_put(pp, ph, v);
   1037 	}
   1038 	KDASSERT(ph->ph_nmissing != 0);
   1039 	ph->ph_nmissing--;
   1040 	pp->pr_nput++;
   1041 	pp->pr_nitems++;
   1042 	pp->pr_nout--;
   1043 
   1044 	/* Cancel "pool empty" condition if it exists */
   1045 	if (pp->pr_curpage == NULL)
   1046 		pp->pr_curpage = ph;
   1047 
   1048 	if (pp->pr_flags & PR_WANTED) {
   1049 		pp->pr_flags &= ~PR_WANTED;
   1050 		cv_broadcast(&pp->pr_cv);
   1051 	}
   1052 
   1053 	/*
   1054 	 * If this page is now empty, do one of two things:
   1055 	 *
   1056 	 *	(1) If we have more pages than the page high water mark,
   1057 	 *	    free the page back to the system.  ONLY CONSIDER
   1058 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1059 	 *	    CLAIM.
   1060 	 *
   1061 	 *	(2) Otherwise, move the page to the empty page list.
   1062 	 *
   1063 	 * Either way, select a new current page (so we use a partially-full
   1064 	 * page if one is available).
   1065 	 */
   1066 	if (ph->ph_nmissing == 0) {
   1067 		pp->pr_nidle++;
   1068 		if (pp->pr_npages > pp->pr_minpages &&
   1069 		    pp->pr_npages > pp->pr_maxpages) {
   1070 			pr_rmpage(pp, ph, pq);
   1071 		} else {
   1072 			LIST_REMOVE(ph, ph_pagelist);
   1073 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1074 
   1075 			/*
   1076 			 * Update the timestamp on the page.  A page must
   1077 			 * be idle for some period of time before it can
   1078 			 * be reclaimed by the pagedaemon.  This minimizes
   1079 			 * ping-pong'ing for memory.
   1080 			 *
   1081 			 * note for 64-bit time_t: truncating to 32-bit is not
   1082 			 * a problem for our usage.
   1083 			 */
   1084 			ph->ph_time = time_uptime;
   1085 		}
   1086 		pool_update_curpage(pp);
   1087 	}
   1088 
   1089 	/*
   1090 	 * If the page was previously completely full, move it to the
   1091 	 * partially-full list and make it the current page.  The next
   1092 	 * allocation will get the item from this page, instead of
   1093 	 * further fragmenting the pool.
   1094 	 */
   1095 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1096 		LIST_REMOVE(ph, ph_pagelist);
   1097 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1098 		pp->pr_curpage = ph;
   1099 	}
   1100 }
   1101 
   1102 void
   1103 pool_put(struct pool *pp, void *v)
   1104 {
   1105 	struct pool_pagelist pq;
   1106 
   1107 	LIST_INIT(&pq);
   1108 
   1109 	mutex_enter(&pp->pr_lock);
   1110 	pool_do_put(pp, v, &pq);
   1111 	mutex_exit(&pp->pr_lock);
   1112 
   1113 	pr_pagelist_free(pp, &pq);
   1114 }
   1115 
   1116 /*
   1117  * pool_grow: grow a pool by a page.
   1118  *
   1119  * => called with pool locked.
   1120  * => unlock and relock the pool.
   1121  * => return with pool locked.
   1122  */
   1123 
   1124 static int
   1125 pool_grow(struct pool *pp, int flags)
   1126 {
   1127 	struct pool_item_header *ph;
   1128 	char *cp;
   1129 
   1130 	/*
   1131 	 * If there's a pool_grow in progress, wait for it to complete
   1132 	 * and try again from the top.
   1133 	 */
   1134 	if (pp->pr_flags & PR_GROWING) {
   1135 		if (flags & PR_WAITOK) {
   1136 			do {
   1137 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1138 			} while (pp->pr_flags & PR_GROWING);
   1139 			return ERESTART;
   1140 		} else {
   1141 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1142 				/*
   1143 				 * This needs an unlock/relock dance so
   1144 				 * that the other caller has a chance to
   1145 				 * run and actually do the thing.  Note
   1146 				 * that this is effectively a busy-wait.
   1147 				 */
   1148 				mutex_exit(&pp->pr_lock);
   1149 				mutex_enter(&pp->pr_lock);
   1150 				return ERESTART;
   1151 			}
   1152 			return EWOULDBLOCK;
   1153 		}
   1154 	}
   1155 	pp->pr_flags |= PR_GROWING;
   1156 	if (flags & PR_WAITOK)
   1157 		mutex_exit(&pp->pr_lock);
   1158 	else
   1159 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1160 
   1161 	cp = pool_allocator_alloc(pp, flags);
   1162 	if (__predict_false(cp == NULL))
   1163 		goto out;
   1164 
   1165 	ph = pool_alloc_item_header(pp, cp, flags);
   1166 	if (__predict_false(ph == NULL)) {
   1167 		pool_allocator_free(pp, cp);
   1168 		goto out;
   1169 	}
   1170 
   1171 	if (flags & PR_WAITOK)
   1172 		mutex_enter(&pp->pr_lock);
   1173 	pool_prime_page(pp, cp, ph);
   1174 	pp->pr_npagealloc++;
   1175 	KASSERT(pp->pr_flags & PR_GROWING);
   1176 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1177 	/*
   1178 	 * If anyone was waiting for pool_grow, notify them that we
   1179 	 * may have just done it.
   1180 	 */
   1181 	cv_broadcast(&pp->pr_cv);
   1182 	return 0;
   1183 out:
   1184 	if (flags & PR_WAITOK)
   1185 		mutex_enter(&pp->pr_lock);
   1186 	KASSERT(pp->pr_flags & PR_GROWING);
   1187 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1188 	return ENOMEM;
   1189 }
   1190 
   1191 /*
   1192  * Add N items to the pool.
   1193  */
   1194 int
   1195 pool_prime(struct pool *pp, int n)
   1196 {
   1197 	int newpages;
   1198 	int error = 0;
   1199 
   1200 	mutex_enter(&pp->pr_lock);
   1201 
   1202 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1203 
   1204 	while (newpages > 0) {
   1205 		error = pool_grow(pp, PR_NOWAIT);
   1206 		if (error) {
   1207 			if (error == ERESTART)
   1208 				continue;
   1209 			break;
   1210 		}
   1211 		pp->pr_minpages++;
   1212 		newpages--;
   1213 	}
   1214 
   1215 	if (pp->pr_minpages >= pp->pr_maxpages)
   1216 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1217 
   1218 	mutex_exit(&pp->pr_lock);
   1219 	return error;
   1220 }
   1221 
   1222 /*
   1223  * Add a page worth of items to the pool.
   1224  *
   1225  * Note, we must be called with the pool descriptor LOCKED.
   1226  */
   1227 static void
   1228 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1229 {
   1230 	const unsigned int align = pp->pr_align;
   1231 	const unsigned int ioff = pp->pr_itemoffset;
   1232 	struct pool_item *pi;
   1233 	void *cp = storage;
   1234 	int n;
   1235 
   1236 	KASSERT(mutex_owned(&pp->pr_lock));
   1237 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1238 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1239 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1240 
   1241 	/*
   1242 	 * Insert page header.
   1243 	 */
   1244 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1245 	LIST_INIT(&ph->ph_itemlist);
   1246 	ph->ph_page = storage;
   1247 	ph->ph_nmissing = 0;
   1248 	ph->ph_time = time_uptime;
   1249 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1250 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1251 
   1252 	pp->pr_nidle++;
   1253 
   1254 	/*
   1255 	 * Color this page.
   1256 	 */
   1257 	ph->ph_off = pp->pr_curcolor;
   1258 	cp = (char *)cp + ph->ph_off;
   1259 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1260 		pp->pr_curcolor = 0;
   1261 
   1262 	/*
   1263 	 * Adjust storage to apply alignment to `pr_itemoffset' in each item.
   1264 	 */
   1265 	if (ioff != 0)
   1266 		cp = (char *)cp + align - ioff;
   1267 
   1268 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1269 
   1270 	/*
   1271 	 * Insert remaining chunks on the bucket list.
   1272 	 */
   1273 	n = pp->pr_itemsperpage;
   1274 	pp->pr_nitems += n;
   1275 
   1276 	if (pp->pr_roflags & PR_NOTOUCH) {
   1277 		pr_item_bitmap_init(pp, ph);
   1278 	} else {
   1279 		while (n--) {
   1280 			pi = (struct pool_item *)cp;
   1281 
   1282 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1283 
   1284 			/* Insert on page list */
   1285 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1286 #ifdef POOL_CHECK_MAGIC
   1287 			pi->pi_magic = PI_MAGIC;
   1288 #endif
   1289 			cp = (char *)cp + pp->pr_size;
   1290 
   1291 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1292 		}
   1293 	}
   1294 
   1295 	/*
   1296 	 * If the pool was depleted, point at the new page.
   1297 	 */
   1298 	if (pp->pr_curpage == NULL)
   1299 		pp->pr_curpage = ph;
   1300 
   1301 	if (++pp->pr_npages > pp->pr_hiwat)
   1302 		pp->pr_hiwat = pp->pr_npages;
   1303 }
   1304 
   1305 /*
   1306  * Used by pool_get() when nitems drops below the low water mark.  This
   1307  * is used to catch up pr_nitems with the low water mark.
   1308  *
   1309  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1310  *
   1311  * Note 2, we must be called with the pool already locked, and we return
   1312  * with it locked.
   1313  */
   1314 static int
   1315 pool_catchup(struct pool *pp)
   1316 {
   1317 	int error = 0;
   1318 
   1319 	while (POOL_NEEDS_CATCHUP(pp)) {
   1320 		error = pool_grow(pp, PR_NOWAIT);
   1321 		if (error) {
   1322 			if (error == ERESTART)
   1323 				continue;
   1324 			break;
   1325 		}
   1326 	}
   1327 	return error;
   1328 }
   1329 
   1330 static void
   1331 pool_update_curpage(struct pool *pp)
   1332 {
   1333 
   1334 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1335 	if (pp->pr_curpage == NULL) {
   1336 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1337 	}
   1338 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1339 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1340 }
   1341 
   1342 void
   1343 pool_setlowat(struct pool *pp, int n)
   1344 {
   1345 
   1346 	mutex_enter(&pp->pr_lock);
   1347 
   1348 	pp->pr_minitems = n;
   1349 	pp->pr_minpages = (n == 0)
   1350 		? 0
   1351 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1352 
   1353 	/* Make sure we're caught up with the newly-set low water mark. */
   1354 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1355 		/*
   1356 		 * XXX: Should we log a warning?  Should we set up a timeout
   1357 		 * to try again in a second or so?  The latter could break
   1358 		 * a caller's assumptions about interrupt protection, etc.
   1359 		 */
   1360 	}
   1361 
   1362 	mutex_exit(&pp->pr_lock);
   1363 }
   1364 
   1365 void
   1366 pool_sethiwat(struct pool *pp, int n)
   1367 {
   1368 
   1369 	mutex_enter(&pp->pr_lock);
   1370 
   1371 	pp->pr_maxpages = (n == 0)
   1372 		? 0
   1373 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1374 
   1375 	mutex_exit(&pp->pr_lock);
   1376 }
   1377 
   1378 void
   1379 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1380 {
   1381 
   1382 	mutex_enter(&pp->pr_lock);
   1383 
   1384 	pp->pr_hardlimit = n;
   1385 	pp->pr_hardlimit_warning = warnmess;
   1386 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1387 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1388 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1389 
   1390 	/*
   1391 	 * In-line version of pool_sethiwat(), because we don't want to
   1392 	 * release the lock.
   1393 	 */
   1394 	pp->pr_maxpages = (n == 0)
   1395 		? 0
   1396 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1397 
   1398 	mutex_exit(&pp->pr_lock);
   1399 }
   1400 
   1401 /*
   1402  * Release all complete pages that have not been used recently.
   1403  *
   1404  * Must not be called from interrupt context.
   1405  */
   1406 int
   1407 pool_reclaim(struct pool *pp)
   1408 {
   1409 	struct pool_item_header *ph, *phnext;
   1410 	struct pool_pagelist pq;
   1411 	uint32_t curtime;
   1412 	bool klock;
   1413 	int rv;
   1414 
   1415 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1416 
   1417 	if (pp->pr_drain_hook != NULL) {
   1418 		/*
   1419 		 * The drain hook must be called with the pool unlocked.
   1420 		 */
   1421 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1422 	}
   1423 
   1424 	/*
   1425 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1426 	 * to block.
   1427 	 */
   1428 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1429 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1430 		KERNEL_LOCK(1, NULL);
   1431 		klock = true;
   1432 	} else
   1433 		klock = false;
   1434 
   1435 	/* Reclaim items from the pool's cache (if any). */
   1436 	if (pp->pr_cache != NULL)
   1437 		pool_cache_invalidate(pp->pr_cache);
   1438 
   1439 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1440 		if (klock) {
   1441 			KERNEL_UNLOCK_ONE(NULL);
   1442 		}
   1443 		return 0;
   1444 	}
   1445 
   1446 	LIST_INIT(&pq);
   1447 
   1448 	curtime = time_uptime;
   1449 
   1450 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1451 		phnext = LIST_NEXT(ph, ph_pagelist);
   1452 
   1453 		/* Check our minimum page claim */
   1454 		if (pp->pr_npages <= pp->pr_minpages)
   1455 			break;
   1456 
   1457 		KASSERT(ph->ph_nmissing == 0);
   1458 		if (curtime - ph->ph_time < pool_inactive_time)
   1459 			continue;
   1460 
   1461 		/*
   1462 		 * If freeing this page would put us below
   1463 		 * the low water mark, stop now.
   1464 		 */
   1465 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1466 		    pp->pr_minitems)
   1467 			break;
   1468 
   1469 		pr_rmpage(pp, ph, &pq);
   1470 	}
   1471 
   1472 	mutex_exit(&pp->pr_lock);
   1473 
   1474 	if (LIST_EMPTY(&pq))
   1475 		rv = 0;
   1476 	else {
   1477 		pr_pagelist_free(pp, &pq);
   1478 		rv = 1;
   1479 	}
   1480 
   1481 	if (klock) {
   1482 		KERNEL_UNLOCK_ONE(NULL);
   1483 	}
   1484 
   1485 	return rv;
   1486 }
   1487 
   1488 /*
   1489  * Drain pools, one at a time. The drained pool is returned within ppp.
   1490  *
   1491  * Note, must never be called from interrupt context.
   1492  */
   1493 bool
   1494 pool_drain(struct pool **ppp)
   1495 {
   1496 	bool reclaimed;
   1497 	struct pool *pp;
   1498 
   1499 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1500 
   1501 	pp = NULL;
   1502 
   1503 	/* Find next pool to drain, and add a reference. */
   1504 	mutex_enter(&pool_head_lock);
   1505 	do {
   1506 		if (drainpp == NULL) {
   1507 			drainpp = TAILQ_FIRST(&pool_head);
   1508 		}
   1509 		if (drainpp != NULL) {
   1510 			pp = drainpp;
   1511 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1512 		}
   1513 		/*
   1514 		 * Skip completely idle pools.  We depend on at least
   1515 		 * one pool in the system being active.
   1516 		 */
   1517 	} while (pp == NULL || pp->pr_npages == 0);
   1518 	pp->pr_refcnt++;
   1519 	mutex_exit(&pool_head_lock);
   1520 
   1521 	/* Drain the cache (if any) and pool.. */
   1522 	reclaimed = pool_reclaim(pp);
   1523 
   1524 	/* Finally, unlock the pool. */
   1525 	mutex_enter(&pool_head_lock);
   1526 	pp->pr_refcnt--;
   1527 	cv_broadcast(&pool_busy);
   1528 	mutex_exit(&pool_head_lock);
   1529 
   1530 	if (ppp != NULL)
   1531 		*ppp = pp;
   1532 
   1533 	return reclaimed;
   1534 }
   1535 
   1536 /*
   1537  * Calculate the total number of pages consumed by pools.
   1538  */
   1539 int
   1540 pool_totalpages(void)
   1541 {
   1542 	struct pool *pp;
   1543 	uint64_t total = 0;
   1544 
   1545 	mutex_enter(&pool_head_lock);
   1546 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1547 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1548 
   1549 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1550 			bytes -= (pp->pr_nout * pp->pr_size);
   1551 		total += bytes;
   1552 	}
   1553 	mutex_exit(&pool_head_lock);
   1554 
   1555 	return atop(total);
   1556 }
   1557 
   1558 /*
   1559  * Diagnostic helpers.
   1560  */
   1561 
   1562 void
   1563 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1564 {
   1565 	struct pool *pp;
   1566 
   1567 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1568 		pool_printit(pp, modif, pr);
   1569 	}
   1570 }
   1571 
   1572 void
   1573 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1574 {
   1575 
   1576 	if (pp == NULL) {
   1577 		(*pr)("Must specify a pool to print.\n");
   1578 		return;
   1579 	}
   1580 
   1581 	pool_print1(pp, modif, pr);
   1582 }
   1583 
   1584 static void
   1585 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1586     void (*pr)(const char *, ...))
   1587 {
   1588 	struct pool_item_header *ph;
   1589 
   1590 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1591 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1592 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1593 #ifdef POOL_CHECK_MAGIC
   1594 		struct pool_item *pi;
   1595 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1596 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1597 				if (pi->pi_magic != PI_MAGIC) {
   1598 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1599 					    pi, pi->pi_magic);
   1600 				}
   1601 			}
   1602 		}
   1603 #endif
   1604 	}
   1605 }
   1606 
   1607 static void
   1608 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1609 {
   1610 	struct pool_item_header *ph;
   1611 	pool_cache_t pc;
   1612 	pcg_t *pcg;
   1613 	pool_cache_cpu_t *cc;
   1614 	uint64_t cpuhit, cpumiss;
   1615 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1616 	char c;
   1617 
   1618 	while ((c = *modif++) != '\0') {
   1619 		if (c == 'l')
   1620 			print_log = 1;
   1621 		if (c == 'p')
   1622 			print_pagelist = 1;
   1623 		if (c == 'c')
   1624 			print_cache = 1;
   1625 	}
   1626 
   1627 	if ((pc = pp->pr_cache) != NULL) {
   1628 		(*pr)("POOL CACHE");
   1629 	} else {
   1630 		(*pr)("POOL");
   1631 	}
   1632 
   1633 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1634 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1635 	    pp->pr_roflags);
   1636 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1637 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1638 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1639 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1640 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1641 
   1642 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1643 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1644 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1645 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1646 
   1647 	if (print_pagelist == 0)
   1648 		goto skip_pagelist;
   1649 
   1650 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1651 		(*pr)("\n\tempty page list:\n");
   1652 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1653 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1654 		(*pr)("\n\tfull page list:\n");
   1655 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1656 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1657 		(*pr)("\n\tpartial-page list:\n");
   1658 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1659 
   1660 	if (pp->pr_curpage == NULL)
   1661 		(*pr)("\tno current page\n");
   1662 	else
   1663 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1664 
   1665  skip_pagelist:
   1666 	if (print_log == 0)
   1667 		goto skip_log;
   1668 
   1669 	(*pr)("\n");
   1670 
   1671  skip_log:
   1672 
   1673 #define PR_GROUPLIST(pcg)						\
   1674 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1675 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1676 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1677 		    POOL_PADDR_INVALID) {				\
   1678 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1679 			    pcg->pcg_objects[i].pcgo_va,		\
   1680 			    (unsigned long long)			\
   1681 			    pcg->pcg_objects[i].pcgo_pa);		\
   1682 		} else {						\
   1683 			(*pr)("\t\t\t%p\n",				\
   1684 			    pcg->pcg_objects[i].pcgo_va);		\
   1685 		}							\
   1686 	}
   1687 
   1688 	if (pc != NULL) {
   1689 		cpuhit = 0;
   1690 		cpumiss = 0;
   1691 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1692 			if ((cc = pc->pc_cpus[i]) == NULL)
   1693 				continue;
   1694 			cpuhit += cc->cc_hits;
   1695 			cpumiss += cc->cc_misses;
   1696 		}
   1697 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1698 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1699 		    pc->pc_hits, pc->pc_misses);
   1700 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1701 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1702 		    pc->pc_contended);
   1703 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1704 		    pc->pc_nempty, pc->pc_nfull);
   1705 		if (print_cache) {
   1706 			(*pr)("\tfull cache groups:\n");
   1707 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1708 			    pcg = pcg->pcg_next) {
   1709 				PR_GROUPLIST(pcg);
   1710 			}
   1711 			(*pr)("\tempty cache groups:\n");
   1712 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1713 			    pcg = pcg->pcg_next) {
   1714 				PR_GROUPLIST(pcg);
   1715 			}
   1716 		}
   1717 	}
   1718 #undef PR_GROUPLIST
   1719 }
   1720 
   1721 static int
   1722 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1723 {
   1724 	struct pool_item *pi;
   1725 	void *page;
   1726 	int n;
   1727 
   1728 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1729 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1730 		if (page != ph->ph_page &&
   1731 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1732 			if (label != NULL)
   1733 				printf("%s: ", label);
   1734 			printf("pool(%p:%s): page inconsistency: page %p;"
   1735 			       " at page head addr %p (p %p)\n", pp,
   1736 				pp->pr_wchan, ph->ph_page,
   1737 				ph, page);
   1738 			return 1;
   1739 		}
   1740 	}
   1741 
   1742 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1743 		return 0;
   1744 
   1745 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1746 	     pi != NULL;
   1747 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1748 
   1749 #ifdef POOL_CHECK_MAGIC
   1750 		if (pi->pi_magic != PI_MAGIC) {
   1751 			if (label != NULL)
   1752 				printf("%s: ", label);
   1753 			printf("pool(%s): free list modified: magic=%x;"
   1754 			       " page %p; item ordinal %d; addr %p\n",
   1755 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1756 				n, pi);
   1757 			panic("pool");
   1758 		}
   1759 #endif
   1760 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1761 			continue;
   1762 		}
   1763 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1764 		if (page == ph->ph_page)
   1765 			continue;
   1766 
   1767 		if (label != NULL)
   1768 			printf("%s: ", label);
   1769 		printf("pool(%p:%s): page inconsistency: page %p;"
   1770 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1771 			pp->pr_wchan, ph->ph_page,
   1772 			n, pi, page);
   1773 		return 1;
   1774 	}
   1775 	return 0;
   1776 }
   1777 
   1778 
   1779 int
   1780 pool_chk(struct pool *pp, const char *label)
   1781 {
   1782 	struct pool_item_header *ph;
   1783 	int r = 0;
   1784 
   1785 	mutex_enter(&pp->pr_lock);
   1786 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1787 		r = pool_chk_page(pp, label, ph);
   1788 		if (r) {
   1789 			goto out;
   1790 		}
   1791 	}
   1792 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1793 		r = pool_chk_page(pp, label, ph);
   1794 		if (r) {
   1795 			goto out;
   1796 		}
   1797 	}
   1798 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1799 		r = pool_chk_page(pp, label, ph);
   1800 		if (r) {
   1801 			goto out;
   1802 		}
   1803 	}
   1804 
   1805 out:
   1806 	mutex_exit(&pp->pr_lock);
   1807 	return r;
   1808 }
   1809 
   1810 /*
   1811  * pool_cache_init:
   1812  *
   1813  *	Initialize a pool cache.
   1814  */
   1815 pool_cache_t
   1816 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1817     const char *wchan, struct pool_allocator *palloc, int ipl,
   1818     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1819 {
   1820 	pool_cache_t pc;
   1821 
   1822 	pc = pool_get(&cache_pool, PR_WAITOK);
   1823 	if (pc == NULL)
   1824 		return NULL;
   1825 
   1826 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1827 	   palloc, ipl, ctor, dtor, arg);
   1828 
   1829 	return pc;
   1830 }
   1831 
   1832 /*
   1833  * pool_cache_bootstrap:
   1834  *
   1835  *	Kernel-private version of pool_cache_init().  The caller
   1836  *	provides initial storage.
   1837  */
   1838 void
   1839 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1840     u_int align_offset, u_int flags, const char *wchan,
   1841     struct pool_allocator *palloc, int ipl,
   1842     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1843     void *arg)
   1844 {
   1845 	CPU_INFO_ITERATOR cii;
   1846 	pool_cache_t pc1;
   1847 	struct cpu_info *ci;
   1848 	struct pool *pp;
   1849 
   1850 	pp = &pc->pc_pool;
   1851 	if (palloc == NULL && ipl == IPL_NONE) {
   1852 		if (size > PAGE_SIZE) {
   1853 			int bigidx = pool_bigidx(size);
   1854 
   1855 			palloc = &pool_allocator_big[bigidx];
   1856 		} else
   1857 			palloc = &pool_allocator_nointr;
   1858 	}
   1859 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1860 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1861 
   1862 	if (ctor == NULL) {
   1863 		ctor = (int (*)(void *, void *, int))nullop;
   1864 	}
   1865 	if (dtor == NULL) {
   1866 		dtor = (void (*)(void *, void *))nullop;
   1867 	}
   1868 
   1869 	pc->pc_emptygroups = NULL;
   1870 	pc->pc_fullgroups = NULL;
   1871 	pc->pc_partgroups = NULL;
   1872 	pc->pc_ctor = ctor;
   1873 	pc->pc_dtor = dtor;
   1874 	pc->pc_arg  = arg;
   1875 	pc->pc_hits  = 0;
   1876 	pc->pc_misses = 0;
   1877 	pc->pc_nempty = 0;
   1878 	pc->pc_npart = 0;
   1879 	pc->pc_nfull = 0;
   1880 	pc->pc_contended = 0;
   1881 	pc->pc_refcnt = 0;
   1882 	pc->pc_freecheck = NULL;
   1883 
   1884 	if ((flags & PR_LARGECACHE) != 0) {
   1885 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1886 		pc->pc_pcgpool = &pcg_large_pool;
   1887 	} else {
   1888 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1889 		pc->pc_pcgpool = &pcg_normal_pool;
   1890 	}
   1891 
   1892 	/* Allocate per-CPU caches. */
   1893 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1894 	pc->pc_ncpu = 0;
   1895 	if (ncpu < 2) {
   1896 		/* XXX For sparc: boot CPU is not attached yet. */
   1897 		pool_cache_cpu_init1(curcpu(), pc);
   1898 	} else {
   1899 		for (CPU_INFO_FOREACH(cii, ci)) {
   1900 			pool_cache_cpu_init1(ci, pc);
   1901 		}
   1902 	}
   1903 
   1904 	/* Add to list of all pools. */
   1905 	if (__predict_true(!cold))
   1906 		mutex_enter(&pool_head_lock);
   1907 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1908 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1909 			break;
   1910 	}
   1911 	if (pc1 == NULL)
   1912 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1913 	else
   1914 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1915 	if (__predict_true(!cold))
   1916 		mutex_exit(&pool_head_lock);
   1917 
   1918 	membar_sync();
   1919 	pp->pr_cache = pc;
   1920 }
   1921 
   1922 /*
   1923  * pool_cache_destroy:
   1924  *
   1925  *	Destroy a pool cache.
   1926  */
   1927 void
   1928 pool_cache_destroy(pool_cache_t pc)
   1929 {
   1930 
   1931 	pool_cache_bootstrap_destroy(pc);
   1932 	pool_put(&cache_pool, pc);
   1933 }
   1934 
   1935 /*
   1936  * pool_cache_bootstrap_destroy:
   1937  *
   1938  *	Destroy a pool cache.
   1939  */
   1940 void
   1941 pool_cache_bootstrap_destroy(pool_cache_t pc)
   1942 {
   1943 	struct pool *pp = &pc->pc_pool;
   1944 	u_int i;
   1945 
   1946 	/* Remove it from the global list. */
   1947 	mutex_enter(&pool_head_lock);
   1948 	while (pc->pc_refcnt != 0)
   1949 		cv_wait(&pool_busy, &pool_head_lock);
   1950 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1951 	mutex_exit(&pool_head_lock);
   1952 
   1953 	/* First, invalidate the entire cache. */
   1954 	pool_cache_invalidate(pc);
   1955 
   1956 	/* Disassociate it from the pool. */
   1957 	mutex_enter(&pp->pr_lock);
   1958 	pp->pr_cache = NULL;
   1959 	mutex_exit(&pp->pr_lock);
   1960 
   1961 	/* Destroy per-CPU data */
   1962 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1963 		pool_cache_invalidate_cpu(pc, i);
   1964 
   1965 	/* Finally, destroy it. */
   1966 	mutex_destroy(&pc->pc_lock);
   1967 	pool_destroy(pp);
   1968 }
   1969 
   1970 /*
   1971  * pool_cache_cpu_init1:
   1972  *
   1973  *	Called for each pool_cache whenever a new CPU is attached.
   1974  */
   1975 static void
   1976 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1977 {
   1978 	pool_cache_cpu_t *cc;
   1979 	int index;
   1980 
   1981 	index = ci->ci_index;
   1982 
   1983 	KASSERT(index < __arraycount(pc->pc_cpus));
   1984 
   1985 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1986 		KASSERT(cc->cc_cpuindex == index);
   1987 		return;
   1988 	}
   1989 
   1990 	/*
   1991 	 * The first CPU is 'free'.  This needs to be the case for
   1992 	 * bootstrap - we may not be able to allocate yet.
   1993 	 */
   1994 	if (pc->pc_ncpu == 0) {
   1995 		cc = &pc->pc_cpu0;
   1996 		pc->pc_ncpu = 1;
   1997 	} else {
   1998 		mutex_enter(&pc->pc_lock);
   1999 		pc->pc_ncpu++;
   2000 		mutex_exit(&pc->pc_lock);
   2001 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2002 	}
   2003 
   2004 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2005 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2006 	cc->cc_cache = pc;
   2007 	cc->cc_cpuindex = index;
   2008 	cc->cc_hits = 0;
   2009 	cc->cc_misses = 0;
   2010 	cc->cc_current = __UNCONST(&pcg_dummy);
   2011 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2012 
   2013 	pc->pc_cpus[index] = cc;
   2014 }
   2015 
   2016 /*
   2017  * pool_cache_cpu_init:
   2018  *
   2019  *	Called whenever a new CPU is attached.
   2020  */
   2021 void
   2022 pool_cache_cpu_init(struct cpu_info *ci)
   2023 {
   2024 	pool_cache_t pc;
   2025 
   2026 	mutex_enter(&pool_head_lock);
   2027 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2028 		pc->pc_refcnt++;
   2029 		mutex_exit(&pool_head_lock);
   2030 
   2031 		pool_cache_cpu_init1(ci, pc);
   2032 
   2033 		mutex_enter(&pool_head_lock);
   2034 		pc->pc_refcnt--;
   2035 		cv_broadcast(&pool_busy);
   2036 	}
   2037 	mutex_exit(&pool_head_lock);
   2038 }
   2039 
   2040 /*
   2041  * pool_cache_reclaim:
   2042  *
   2043  *	Reclaim memory from a pool cache.
   2044  */
   2045 bool
   2046 pool_cache_reclaim(pool_cache_t pc)
   2047 {
   2048 
   2049 	return pool_reclaim(&pc->pc_pool);
   2050 }
   2051 
   2052 static void
   2053 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2054 {
   2055 	if (pc->pc_pool.pr_redzone) {
   2056 		/*
   2057 		 * The object is marked as invalid. Temporarily mark it as
   2058 		 * valid for the destructor. pool_put below will re-mark it
   2059 		 * as invalid.
   2060 		 */
   2061 		kasan_mark(object, pc->pc_pool.pr_reqsize,
   2062 		    pc->pc_pool.pr_reqsize_with_redzone);
   2063 	}
   2064 
   2065 	(*pc->pc_dtor)(pc->pc_arg, object);
   2066 	pool_put(&pc->pc_pool, object);
   2067 }
   2068 
   2069 /*
   2070  * pool_cache_destruct_object:
   2071  *
   2072  *	Force destruction of an object and its release back into
   2073  *	the pool.
   2074  */
   2075 void
   2076 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2077 {
   2078 
   2079 	FREECHECK_IN(&pc->pc_freecheck, object);
   2080 
   2081 	pool_cache_destruct_object1(pc, object);
   2082 }
   2083 
   2084 /*
   2085  * pool_cache_invalidate_groups:
   2086  *
   2087  *	Invalidate a chain of groups and destruct all objects.
   2088  */
   2089 static void
   2090 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2091 {
   2092 	void *object;
   2093 	pcg_t *next;
   2094 	int i;
   2095 
   2096 	for (; pcg != NULL; pcg = next) {
   2097 		next = pcg->pcg_next;
   2098 
   2099 		for (i = 0; i < pcg->pcg_avail; i++) {
   2100 			object = pcg->pcg_objects[i].pcgo_va;
   2101 			pool_cache_destruct_object1(pc, object);
   2102 		}
   2103 
   2104 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2105 			pool_put(&pcg_large_pool, pcg);
   2106 		} else {
   2107 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2108 			pool_put(&pcg_normal_pool, pcg);
   2109 		}
   2110 	}
   2111 }
   2112 
   2113 /*
   2114  * pool_cache_invalidate:
   2115  *
   2116  *	Invalidate a pool cache (destruct and release all of the
   2117  *	cached objects).  Does not reclaim objects from the pool.
   2118  *
   2119  *	Note: For pool caches that provide constructed objects, there
   2120  *	is an assumption that another level of synchronization is occurring
   2121  *	between the input to the constructor and the cache invalidation.
   2122  *
   2123  *	Invalidation is a costly process and should not be called from
   2124  *	interrupt context.
   2125  */
   2126 void
   2127 pool_cache_invalidate(pool_cache_t pc)
   2128 {
   2129 	uint64_t where;
   2130 	pcg_t *full, *empty, *part;
   2131 
   2132 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2133 
   2134 	if (ncpu < 2 || !mp_online) {
   2135 		/*
   2136 		 * We might be called early enough in the boot process
   2137 		 * for the CPU data structures to not be fully initialized.
   2138 		 * In this case, transfer the content of the local CPU's
   2139 		 * cache back into global cache as only this CPU is currently
   2140 		 * running.
   2141 		 */
   2142 		pool_cache_transfer(pc);
   2143 	} else {
   2144 		/*
   2145 		 * Signal all CPUs that they must transfer their local
   2146 		 * cache back to the global pool then wait for the xcall to
   2147 		 * complete.
   2148 		 */
   2149 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2150 		    pc, NULL);
   2151 		xc_wait(where);
   2152 	}
   2153 
   2154 	/* Empty pool caches, then invalidate objects */
   2155 	mutex_enter(&pc->pc_lock);
   2156 	full = pc->pc_fullgroups;
   2157 	empty = pc->pc_emptygroups;
   2158 	part = pc->pc_partgroups;
   2159 	pc->pc_fullgroups = NULL;
   2160 	pc->pc_emptygroups = NULL;
   2161 	pc->pc_partgroups = NULL;
   2162 	pc->pc_nfull = 0;
   2163 	pc->pc_nempty = 0;
   2164 	pc->pc_npart = 0;
   2165 	mutex_exit(&pc->pc_lock);
   2166 
   2167 	pool_cache_invalidate_groups(pc, full);
   2168 	pool_cache_invalidate_groups(pc, empty);
   2169 	pool_cache_invalidate_groups(pc, part);
   2170 }
   2171 
   2172 /*
   2173  * pool_cache_invalidate_cpu:
   2174  *
   2175  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2176  *	identified by its associated index.
   2177  *	It is caller's responsibility to ensure that no operation is
   2178  *	taking place on this pool cache while doing this invalidation.
   2179  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2180  *	pool cached objects from a CPU different from the one currently running
   2181  *	may result in an undefined behaviour.
   2182  */
   2183 static void
   2184 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2185 {
   2186 	pool_cache_cpu_t *cc;
   2187 	pcg_t *pcg;
   2188 
   2189 	if ((cc = pc->pc_cpus[index]) == NULL)
   2190 		return;
   2191 
   2192 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2193 		pcg->pcg_next = NULL;
   2194 		pool_cache_invalidate_groups(pc, pcg);
   2195 	}
   2196 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2197 		pcg->pcg_next = NULL;
   2198 		pool_cache_invalidate_groups(pc, pcg);
   2199 	}
   2200 	if (cc != &pc->pc_cpu0)
   2201 		pool_put(&cache_cpu_pool, cc);
   2202 
   2203 }
   2204 
   2205 void
   2206 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2207 {
   2208 
   2209 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2210 }
   2211 
   2212 void
   2213 pool_cache_setlowat(pool_cache_t pc, int n)
   2214 {
   2215 
   2216 	pool_setlowat(&pc->pc_pool, n);
   2217 }
   2218 
   2219 void
   2220 pool_cache_sethiwat(pool_cache_t pc, int n)
   2221 {
   2222 
   2223 	pool_sethiwat(&pc->pc_pool, n);
   2224 }
   2225 
   2226 void
   2227 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2228 {
   2229 
   2230 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2231 }
   2232 
   2233 static bool __noinline
   2234 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2235 		    paddr_t *pap, int flags)
   2236 {
   2237 	pcg_t *pcg, *cur;
   2238 	uint64_t ncsw;
   2239 	pool_cache_t pc;
   2240 	void *object;
   2241 
   2242 	KASSERT(cc->cc_current->pcg_avail == 0);
   2243 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2244 
   2245 	pc = cc->cc_cache;
   2246 	cc->cc_misses++;
   2247 
   2248 	/*
   2249 	 * Nothing was available locally.  Try and grab a group
   2250 	 * from the cache.
   2251 	 */
   2252 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2253 		ncsw = curlwp->l_ncsw;
   2254 		mutex_enter(&pc->pc_lock);
   2255 		pc->pc_contended++;
   2256 
   2257 		/*
   2258 		 * If we context switched while locking, then
   2259 		 * our view of the per-CPU data is invalid:
   2260 		 * retry.
   2261 		 */
   2262 		if (curlwp->l_ncsw != ncsw) {
   2263 			mutex_exit(&pc->pc_lock);
   2264 			return true;
   2265 		}
   2266 	}
   2267 
   2268 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2269 		/*
   2270 		 * If there's a full group, release our empty
   2271 		 * group back to the cache.  Install the full
   2272 		 * group as cc_current and return.
   2273 		 */
   2274 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2275 			KASSERT(cur->pcg_avail == 0);
   2276 			cur->pcg_next = pc->pc_emptygroups;
   2277 			pc->pc_emptygroups = cur;
   2278 			pc->pc_nempty++;
   2279 		}
   2280 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2281 		cc->cc_current = pcg;
   2282 		pc->pc_fullgroups = pcg->pcg_next;
   2283 		pc->pc_hits++;
   2284 		pc->pc_nfull--;
   2285 		mutex_exit(&pc->pc_lock);
   2286 		return true;
   2287 	}
   2288 
   2289 	/*
   2290 	 * Nothing available locally or in cache.  Take the slow
   2291 	 * path: fetch a new object from the pool and construct
   2292 	 * it.
   2293 	 */
   2294 	pc->pc_misses++;
   2295 	mutex_exit(&pc->pc_lock);
   2296 	splx(s);
   2297 
   2298 	object = pool_get(&pc->pc_pool, flags);
   2299 	*objectp = object;
   2300 	if (__predict_false(object == NULL)) {
   2301 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2302 		return false;
   2303 	}
   2304 
   2305 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2306 		pool_put(&pc->pc_pool, object);
   2307 		*objectp = NULL;
   2308 		return false;
   2309 	}
   2310 
   2311 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2312 	    (pc->pc_pool.pr_align - 1)) == 0);
   2313 
   2314 	if (pap != NULL) {
   2315 #ifdef POOL_VTOPHYS
   2316 		*pap = POOL_VTOPHYS(object);
   2317 #else
   2318 		*pap = POOL_PADDR_INVALID;
   2319 #endif
   2320 	}
   2321 
   2322 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2323 	pool_redzone_fill(&pc->pc_pool, object);
   2324 	pool_cache_kleak_fill(pc, object);
   2325 	return false;
   2326 }
   2327 
   2328 /*
   2329  * pool_cache_get{,_paddr}:
   2330  *
   2331  *	Get an object from a pool cache (optionally returning
   2332  *	the physical address of the object).
   2333  */
   2334 void *
   2335 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2336 {
   2337 	pool_cache_cpu_t *cc;
   2338 	pcg_t *pcg;
   2339 	void *object;
   2340 	int s;
   2341 
   2342 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2343 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2344 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2345 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2346 	    __func__, pc->pc_pool.pr_wchan);
   2347 
   2348 	if (flags & PR_WAITOK) {
   2349 		ASSERT_SLEEPABLE();
   2350 	}
   2351 
   2352 	/* Lock out interrupts and disable preemption. */
   2353 	s = splvm();
   2354 	while (/* CONSTCOND */ true) {
   2355 		/* Try and allocate an object from the current group. */
   2356 		cc = pc->pc_cpus[curcpu()->ci_index];
   2357 		KASSERT(cc->cc_cache == pc);
   2358 	 	pcg = cc->cc_current;
   2359 		if (__predict_true(pcg->pcg_avail > 0)) {
   2360 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2361 			if (__predict_false(pap != NULL))
   2362 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2363 #if defined(DIAGNOSTIC)
   2364 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2365 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2366 			KASSERT(object != NULL);
   2367 #endif
   2368 			cc->cc_hits++;
   2369 			splx(s);
   2370 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2371 			pool_redzone_fill(&pc->pc_pool, object);
   2372 			pool_cache_kleak_fill(pc, object);
   2373 			return object;
   2374 		}
   2375 
   2376 		/*
   2377 		 * That failed.  If the previous group isn't empty, swap
   2378 		 * it with the current group and allocate from there.
   2379 		 */
   2380 		pcg = cc->cc_previous;
   2381 		if (__predict_true(pcg->pcg_avail > 0)) {
   2382 			cc->cc_previous = cc->cc_current;
   2383 			cc->cc_current = pcg;
   2384 			continue;
   2385 		}
   2386 
   2387 		/*
   2388 		 * Can't allocate from either group: try the slow path.
   2389 		 * If get_slow() allocated an object for us, or if
   2390 		 * no more objects are available, it will return false.
   2391 		 * Otherwise, we need to retry.
   2392 		 */
   2393 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2394 			break;
   2395 	}
   2396 
   2397 	/*
   2398 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2399 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2400 	 * constructor fails.
   2401 	 */
   2402 	return object;
   2403 }
   2404 
   2405 static bool __noinline
   2406 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2407 {
   2408 	struct lwp *l = curlwp;
   2409 	pcg_t *pcg, *cur;
   2410 	uint64_t ncsw;
   2411 	pool_cache_t pc;
   2412 
   2413 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2414 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2415 
   2416 	pc = cc->cc_cache;
   2417 	pcg = NULL;
   2418 	cc->cc_misses++;
   2419 	ncsw = l->l_ncsw;
   2420 
   2421 	/*
   2422 	 * If there are no empty groups in the cache then allocate one
   2423 	 * while still unlocked.
   2424 	 */
   2425 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2426 		if (__predict_true(!pool_cache_disable)) {
   2427 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2428 		}
   2429 		/*
   2430 		 * If pool_get() blocked, then our view of
   2431 		 * the per-CPU data is invalid: retry.
   2432 		 */
   2433 		if (__predict_false(l->l_ncsw != ncsw)) {
   2434 			if (pcg != NULL) {
   2435 				pool_put(pc->pc_pcgpool, pcg);
   2436 			}
   2437 			return true;
   2438 		}
   2439 		if (__predict_true(pcg != NULL)) {
   2440 			pcg->pcg_avail = 0;
   2441 			pcg->pcg_size = pc->pc_pcgsize;
   2442 		}
   2443 	}
   2444 
   2445 	/* Lock the cache. */
   2446 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2447 		mutex_enter(&pc->pc_lock);
   2448 		pc->pc_contended++;
   2449 
   2450 		/*
   2451 		 * If we context switched while locking, then our view of
   2452 		 * the per-CPU data is invalid: retry.
   2453 		 */
   2454 		if (__predict_false(l->l_ncsw != ncsw)) {
   2455 			mutex_exit(&pc->pc_lock);
   2456 			if (pcg != NULL) {
   2457 				pool_put(pc->pc_pcgpool, pcg);
   2458 			}
   2459 			return true;
   2460 		}
   2461 	}
   2462 
   2463 	/* If there are no empty groups in the cache then allocate one. */
   2464 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2465 		pcg = pc->pc_emptygroups;
   2466 		pc->pc_emptygroups = pcg->pcg_next;
   2467 		pc->pc_nempty--;
   2468 	}
   2469 
   2470 	/*
   2471 	 * If there's a empty group, release our full group back
   2472 	 * to the cache.  Install the empty group to the local CPU
   2473 	 * and return.
   2474 	 */
   2475 	if (pcg != NULL) {
   2476 		KASSERT(pcg->pcg_avail == 0);
   2477 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2478 			cc->cc_previous = pcg;
   2479 		} else {
   2480 			cur = cc->cc_current;
   2481 			if (__predict_true(cur != &pcg_dummy)) {
   2482 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2483 				cur->pcg_next = pc->pc_fullgroups;
   2484 				pc->pc_fullgroups = cur;
   2485 				pc->pc_nfull++;
   2486 			}
   2487 			cc->cc_current = pcg;
   2488 		}
   2489 		pc->pc_hits++;
   2490 		mutex_exit(&pc->pc_lock);
   2491 		return true;
   2492 	}
   2493 
   2494 	/*
   2495 	 * Nothing available locally or in cache, and we didn't
   2496 	 * allocate an empty group.  Take the slow path and destroy
   2497 	 * the object here and now.
   2498 	 */
   2499 	pc->pc_misses++;
   2500 	mutex_exit(&pc->pc_lock);
   2501 	splx(s);
   2502 	pool_cache_destruct_object(pc, object);
   2503 
   2504 	return false;
   2505 }
   2506 
   2507 /*
   2508  * pool_cache_put{,_paddr}:
   2509  *
   2510  *	Put an object back to the pool cache (optionally caching the
   2511  *	physical address of the object).
   2512  */
   2513 void
   2514 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2515 {
   2516 	pool_cache_cpu_t *cc;
   2517 	pcg_t *pcg;
   2518 	int s;
   2519 
   2520 	KASSERT(object != NULL);
   2521 	pool_cache_redzone_check(pc, object);
   2522 	FREECHECK_IN(&pc->pc_freecheck, object);
   2523 
   2524 	/* Lock out interrupts and disable preemption. */
   2525 	s = splvm();
   2526 	while (/* CONSTCOND */ true) {
   2527 		/* If the current group isn't full, release it there. */
   2528 		cc = pc->pc_cpus[curcpu()->ci_index];
   2529 		KASSERT(cc->cc_cache == pc);
   2530 	 	pcg = cc->cc_current;
   2531 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2532 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2533 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2534 			pcg->pcg_avail++;
   2535 			cc->cc_hits++;
   2536 			splx(s);
   2537 			return;
   2538 		}
   2539 
   2540 		/*
   2541 		 * That failed.  If the previous group isn't full, swap
   2542 		 * it with the current group and try again.
   2543 		 */
   2544 		pcg = cc->cc_previous;
   2545 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2546 			cc->cc_previous = cc->cc_current;
   2547 			cc->cc_current = pcg;
   2548 			continue;
   2549 		}
   2550 
   2551 		/*
   2552 		 * Can't free to either group: try the slow path.
   2553 		 * If put_slow() releases the object for us, it
   2554 		 * will return false.  Otherwise we need to retry.
   2555 		 */
   2556 		if (!pool_cache_put_slow(cc, s, object))
   2557 			break;
   2558 	}
   2559 }
   2560 
   2561 /*
   2562  * pool_cache_transfer:
   2563  *
   2564  *	Transfer objects from the per-CPU cache to the global cache.
   2565  *	Run within a cross-call thread.
   2566  */
   2567 static void
   2568 pool_cache_transfer(pool_cache_t pc)
   2569 {
   2570 	pool_cache_cpu_t *cc;
   2571 	pcg_t *prev, *cur, **list;
   2572 	int s;
   2573 
   2574 	s = splvm();
   2575 	mutex_enter(&pc->pc_lock);
   2576 	cc = pc->pc_cpus[curcpu()->ci_index];
   2577 	cur = cc->cc_current;
   2578 	cc->cc_current = __UNCONST(&pcg_dummy);
   2579 	prev = cc->cc_previous;
   2580 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2581 	if (cur != &pcg_dummy) {
   2582 		if (cur->pcg_avail == cur->pcg_size) {
   2583 			list = &pc->pc_fullgroups;
   2584 			pc->pc_nfull++;
   2585 		} else if (cur->pcg_avail == 0) {
   2586 			list = &pc->pc_emptygroups;
   2587 			pc->pc_nempty++;
   2588 		} else {
   2589 			list = &pc->pc_partgroups;
   2590 			pc->pc_npart++;
   2591 		}
   2592 		cur->pcg_next = *list;
   2593 		*list = cur;
   2594 	}
   2595 	if (prev != &pcg_dummy) {
   2596 		if (prev->pcg_avail == prev->pcg_size) {
   2597 			list = &pc->pc_fullgroups;
   2598 			pc->pc_nfull++;
   2599 		} else if (prev->pcg_avail == 0) {
   2600 			list = &pc->pc_emptygroups;
   2601 			pc->pc_nempty++;
   2602 		} else {
   2603 			list = &pc->pc_partgroups;
   2604 			pc->pc_npart++;
   2605 		}
   2606 		prev->pcg_next = *list;
   2607 		*list = prev;
   2608 	}
   2609 	mutex_exit(&pc->pc_lock);
   2610 	splx(s);
   2611 }
   2612 
   2613 /*
   2614  * Pool backend allocators.
   2615  *
   2616  * Each pool has a backend allocator that handles allocation, deallocation,
   2617  * and any additional draining that might be needed.
   2618  *
   2619  * We provide two standard allocators:
   2620  *
   2621  *	pool_allocator_kmem - the default when no allocator is specified
   2622  *
   2623  *	pool_allocator_nointr - used for pools that will not be accessed
   2624  *	in interrupt context.
   2625  */
   2626 void	*pool_page_alloc(struct pool *, int);
   2627 void	pool_page_free(struct pool *, void *);
   2628 
   2629 #ifdef POOL_SUBPAGE
   2630 struct pool_allocator pool_allocator_kmem_fullpage = {
   2631 	.pa_alloc = pool_page_alloc,
   2632 	.pa_free = pool_page_free,
   2633 	.pa_pagesz = 0
   2634 };
   2635 #else
   2636 struct pool_allocator pool_allocator_kmem = {
   2637 	.pa_alloc = pool_page_alloc,
   2638 	.pa_free = pool_page_free,
   2639 	.pa_pagesz = 0
   2640 };
   2641 #endif
   2642 
   2643 #ifdef POOL_SUBPAGE
   2644 struct pool_allocator pool_allocator_nointr_fullpage = {
   2645 	.pa_alloc = pool_page_alloc,
   2646 	.pa_free = pool_page_free,
   2647 	.pa_pagesz = 0
   2648 };
   2649 #else
   2650 struct pool_allocator pool_allocator_nointr = {
   2651 	.pa_alloc = pool_page_alloc,
   2652 	.pa_free = pool_page_free,
   2653 	.pa_pagesz = 0
   2654 };
   2655 #endif
   2656 
   2657 #ifdef POOL_SUBPAGE
   2658 void	*pool_subpage_alloc(struct pool *, int);
   2659 void	pool_subpage_free(struct pool *, void *);
   2660 
   2661 struct pool_allocator pool_allocator_kmem = {
   2662 	.pa_alloc = pool_subpage_alloc,
   2663 	.pa_free = pool_subpage_free,
   2664 	.pa_pagesz = POOL_SUBPAGE
   2665 };
   2666 
   2667 struct pool_allocator pool_allocator_nointr = {
   2668 	.pa_alloc = pool_subpage_alloc,
   2669 	.pa_free = pool_subpage_free,
   2670 	.pa_pagesz = POOL_SUBPAGE
   2671 };
   2672 #endif /* POOL_SUBPAGE */
   2673 
   2674 struct pool_allocator pool_allocator_big[] = {
   2675 	{
   2676 		.pa_alloc = pool_page_alloc,
   2677 		.pa_free = pool_page_free,
   2678 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2679 	},
   2680 	{
   2681 		.pa_alloc = pool_page_alloc,
   2682 		.pa_free = pool_page_free,
   2683 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2684 	},
   2685 	{
   2686 		.pa_alloc = pool_page_alloc,
   2687 		.pa_free = pool_page_free,
   2688 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2689 	},
   2690 	{
   2691 		.pa_alloc = pool_page_alloc,
   2692 		.pa_free = pool_page_free,
   2693 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2694 	},
   2695 	{
   2696 		.pa_alloc = pool_page_alloc,
   2697 		.pa_free = pool_page_free,
   2698 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2699 	},
   2700 	{
   2701 		.pa_alloc = pool_page_alloc,
   2702 		.pa_free = pool_page_free,
   2703 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2704 	},
   2705 	{
   2706 		.pa_alloc = pool_page_alloc,
   2707 		.pa_free = pool_page_free,
   2708 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2709 	},
   2710 	{
   2711 		.pa_alloc = pool_page_alloc,
   2712 		.pa_free = pool_page_free,
   2713 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2714 	}
   2715 };
   2716 
   2717 static int
   2718 pool_bigidx(size_t size)
   2719 {
   2720 	int i;
   2721 
   2722 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2723 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2724 			return i;
   2725 	}
   2726 	panic("pool item size %zu too large, use a custom allocator", size);
   2727 }
   2728 
   2729 static void *
   2730 pool_allocator_alloc(struct pool *pp, int flags)
   2731 {
   2732 	struct pool_allocator *pa = pp->pr_alloc;
   2733 	void *res;
   2734 
   2735 	res = (*pa->pa_alloc)(pp, flags);
   2736 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2737 		/*
   2738 		 * We only run the drain hook here if PR_NOWAIT.
   2739 		 * In other cases, the hook will be run in
   2740 		 * pool_reclaim().
   2741 		 */
   2742 		if (pp->pr_drain_hook != NULL) {
   2743 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2744 			res = (*pa->pa_alloc)(pp, flags);
   2745 		}
   2746 	}
   2747 	return res;
   2748 }
   2749 
   2750 static void
   2751 pool_allocator_free(struct pool *pp, void *v)
   2752 {
   2753 	struct pool_allocator *pa = pp->pr_alloc;
   2754 
   2755 	if (pp->pr_redzone) {
   2756 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
   2757 	}
   2758 	(*pa->pa_free)(pp, v);
   2759 }
   2760 
   2761 void *
   2762 pool_page_alloc(struct pool *pp, int flags)
   2763 {
   2764 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2765 	vmem_addr_t va;
   2766 	int ret;
   2767 
   2768 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2769 	    vflags | VM_INSTANTFIT, &va);
   2770 
   2771 	return ret ? NULL : (void *)va;
   2772 }
   2773 
   2774 void
   2775 pool_page_free(struct pool *pp, void *v)
   2776 {
   2777 
   2778 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2779 }
   2780 
   2781 static void *
   2782 pool_page_alloc_meta(struct pool *pp, int flags)
   2783 {
   2784 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2785 	vmem_addr_t va;
   2786 	int ret;
   2787 
   2788 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2789 	    vflags | VM_INSTANTFIT, &va);
   2790 
   2791 	return ret ? NULL : (void *)va;
   2792 }
   2793 
   2794 static void
   2795 pool_page_free_meta(struct pool *pp, void *v)
   2796 {
   2797 
   2798 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2799 }
   2800 
   2801 #ifdef KLEAK
   2802 static void
   2803 pool_kleak_fill(struct pool *pp, void *p)
   2804 {
   2805 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2806 		return;
   2807 	}
   2808 	kleak_fill_area(p, pp->pr_size);
   2809 }
   2810 
   2811 static void
   2812 pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2813 {
   2814 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2815 		return;
   2816 	}
   2817 	pool_kleak_fill(&pc->pc_pool, p);
   2818 }
   2819 #endif
   2820 
   2821 #ifdef POOL_REDZONE
   2822 #if defined(_LP64)
   2823 # define PRIME 0x9e37fffffffc0000UL
   2824 #else /* defined(_LP64) */
   2825 # define PRIME 0x9e3779b1
   2826 #endif /* defined(_LP64) */
   2827 #define STATIC_BYTE	0xFE
   2828 CTASSERT(POOL_REDZONE_SIZE > 1);
   2829 
   2830 #ifndef KASAN
   2831 static inline uint8_t
   2832 pool_pattern_generate(const void *p)
   2833 {
   2834 	return (uint8_t)(((uintptr_t)p) * PRIME
   2835 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2836 }
   2837 #endif
   2838 
   2839 static void
   2840 pool_redzone_init(struct pool *pp, size_t requested_size)
   2841 {
   2842 	size_t redzsz;
   2843 	size_t nsz;
   2844 
   2845 #ifdef KASAN
   2846 	redzsz = requested_size;
   2847 	kasan_add_redzone(&redzsz);
   2848 	redzsz -= requested_size;
   2849 #else
   2850 	redzsz = POOL_REDZONE_SIZE;
   2851 #endif
   2852 
   2853 	if (pp->pr_roflags & PR_NOTOUCH) {
   2854 		pp->pr_redzone = false;
   2855 		return;
   2856 	}
   2857 
   2858 	/*
   2859 	 * We may have extended the requested size earlier; check if
   2860 	 * there's naturally space in the padding for a red zone.
   2861 	 */
   2862 	if (pp->pr_size - requested_size >= redzsz) {
   2863 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2864 		pp->pr_redzone = true;
   2865 		return;
   2866 	}
   2867 
   2868 	/*
   2869 	 * No space in the natural padding; check if we can extend a
   2870 	 * bit the size of the pool.
   2871 	 */
   2872 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2873 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2874 		/* Ok, we can */
   2875 		pp->pr_size = nsz;
   2876 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2877 		pp->pr_redzone = true;
   2878 	} else {
   2879 		/* No space for a red zone... snif :'( */
   2880 		pp->pr_redzone = false;
   2881 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2882 	}
   2883 }
   2884 
   2885 static void
   2886 pool_redzone_fill(struct pool *pp, void *p)
   2887 {
   2888 	if (!pp->pr_redzone)
   2889 		return;
   2890 #ifdef KASAN
   2891 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
   2892 #else
   2893 	uint8_t *cp, pat;
   2894 	const uint8_t *ep;
   2895 
   2896 	cp = (uint8_t *)p + pp->pr_reqsize;
   2897 	ep = cp + POOL_REDZONE_SIZE;
   2898 
   2899 	/*
   2900 	 * We really don't want the first byte of the red zone to be '\0';
   2901 	 * an off-by-one in a string may not be properly detected.
   2902 	 */
   2903 	pat = pool_pattern_generate(cp);
   2904 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2905 	cp++;
   2906 
   2907 	while (cp < ep) {
   2908 		*cp = pool_pattern_generate(cp);
   2909 		cp++;
   2910 	}
   2911 #endif
   2912 }
   2913 
   2914 static void
   2915 pool_redzone_check(struct pool *pp, void *p)
   2916 {
   2917 	if (!pp->pr_redzone)
   2918 		return;
   2919 #ifdef KASAN
   2920 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
   2921 #else
   2922 	uint8_t *cp, pat, expected;
   2923 	const uint8_t *ep;
   2924 
   2925 	cp = (uint8_t *)p + pp->pr_reqsize;
   2926 	ep = cp + POOL_REDZONE_SIZE;
   2927 
   2928 	pat = pool_pattern_generate(cp);
   2929 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2930 	if (__predict_false(expected != *cp)) {
   2931 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2932 		   __func__, cp, *cp, expected);
   2933 	}
   2934 	cp++;
   2935 
   2936 	while (cp < ep) {
   2937 		expected = pool_pattern_generate(cp);
   2938 		if (__predict_false(*cp != expected)) {
   2939 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2940 			   __func__, cp, *cp, expected);
   2941 		}
   2942 		cp++;
   2943 	}
   2944 #endif
   2945 }
   2946 
   2947 static void
   2948 pool_cache_redzone_check(pool_cache_t pc, void *p)
   2949 {
   2950 #ifdef KASAN
   2951 	/* If there is a ctor/dtor, leave the data as valid. */
   2952 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2953 		return;
   2954 	}
   2955 #endif
   2956 	pool_redzone_check(&pc->pc_pool, p);
   2957 }
   2958 
   2959 #endif /* POOL_REDZONE */
   2960 
   2961 
   2962 #ifdef POOL_SUBPAGE
   2963 /* Sub-page allocator, for machines with large hardware pages. */
   2964 void *
   2965 pool_subpage_alloc(struct pool *pp, int flags)
   2966 {
   2967 	return pool_get(&psppool, flags);
   2968 }
   2969 
   2970 void
   2971 pool_subpage_free(struct pool *pp, void *v)
   2972 {
   2973 	pool_put(&psppool, v);
   2974 }
   2975 
   2976 #endif /* POOL_SUBPAGE */
   2977 
   2978 #if defined(DDB)
   2979 static bool
   2980 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2981 {
   2982 
   2983 	return (uintptr_t)ph->ph_page <= addr &&
   2984 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2985 }
   2986 
   2987 static bool
   2988 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2989 {
   2990 
   2991 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2992 }
   2993 
   2994 static bool
   2995 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2996 {
   2997 	int i;
   2998 
   2999 	if (pcg == NULL) {
   3000 		return false;
   3001 	}
   3002 	for (i = 0; i < pcg->pcg_avail; i++) {
   3003 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3004 			return true;
   3005 		}
   3006 	}
   3007 	return false;
   3008 }
   3009 
   3010 static bool
   3011 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3012 {
   3013 
   3014 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   3015 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3016 		pool_item_bitmap_t *bitmap =
   3017 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3018 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3019 
   3020 		return (*bitmap & mask) == 0;
   3021 	} else {
   3022 		struct pool_item *pi;
   3023 
   3024 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3025 			if (pool_in_item(pp, pi, addr)) {
   3026 				return false;
   3027 			}
   3028 		}
   3029 		return true;
   3030 	}
   3031 }
   3032 
   3033 void
   3034 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3035 {
   3036 	struct pool *pp;
   3037 
   3038 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3039 		struct pool_item_header *ph;
   3040 		uintptr_t item;
   3041 		bool allocated = true;
   3042 		bool incache = false;
   3043 		bool incpucache = false;
   3044 		char cpucachestr[32];
   3045 
   3046 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3047 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3048 				if (pool_in_page(pp, ph, addr)) {
   3049 					goto found;
   3050 				}
   3051 			}
   3052 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3053 				if (pool_in_page(pp, ph, addr)) {
   3054 					allocated =
   3055 					    pool_allocated(pp, ph, addr);
   3056 					goto found;
   3057 				}
   3058 			}
   3059 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3060 				if (pool_in_page(pp, ph, addr)) {
   3061 					allocated = false;
   3062 					goto found;
   3063 				}
   3064 			}
   3065 			continue;
   3066 		} else {
   3067 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3068 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3069 				continue;
   3070 			}
   3071 			allocated = pool_allocated(pp, ph, addr);
   3072 		}
   3073 found:
   3074 		if (allocated && pp->pr_cache) {
   3075 			pool_cache_t pc = pp->pr_cache;
   3076 			struct pool_cache_group *pcg;
   3077 			int i;
   3078 
   3079 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3080 			    pcg = pcg->pcg_next) {
   3081 				if (pool_in_cg(pp, pcg, addr)) {
   3082 					incache = true;
   3083 					goto print;
   3084 				}
   3085 			}
   3086 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3087 				pool_cache_cpu_t *cc;
   3088 
   3089 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3090 					continue;
   3091 				}
   3092 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3093 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3094 					struct cpu_info *ci =
   3095 					    cpu_lookup(i);
   3096 
   3097 					incpucache = true;
   3098 					snprintf(cpucachestr,
   3099 					    sizeof(cpucachestr),
   3100 					    "cached by CPU %u",
   3101 					    ci->ci_index);
   3102 					goto print;
   3103 				}
   3104 			}
   3105 		}
   3106 print:
   3107 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3108 		item = item + rounddown(addr - item, pp->pr_size);
   3109 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3110 		    (void *)addr, item, (size_t)(addr - item),
   3111 		    pp->pr_wchan,
   3112 		    incpucache ? cpucachestr :
   3113 		    incache ? "cached" : allocated ? "allocated" : "free");
   3114 	}
   3115 }
   3116 #endif /* defined(DDB) */
   3117 
   3118 static int
   3119 pool_sysctl(SYSCTLFN_ARGS)
   3120 {
   3121 	struct pool_sysctl data;
   3122 	struct pool *pp;
   3123 	struct pool_cache *pc;
   3124 	pool_cache_cpu_t *cc;
   3125 	int error;
   3126 	size_t i, written;
   3127 
   3128 	if (oldp == NULL) {
   3129 		*oldlenp = 0;
   3130 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3131 			*oldlenp += sizeof(data);
   3132 		return 0;
   3133 	}
   3134 
   3135 	memset(&data, 0, sizeof(data));
   3136 	error = 0;
   3137 	written = 0;
   3138 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3139 		if (written + sizeof(data) > *oldlenp)
   3140 			break;
   3141 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3142 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3143 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3144 #define COPY(field) data.field = pp->field
   3145 		COPY(pr_size);
   3146 
   3147 		COPY(pr_itemsperpage);
   3148 		COPY(pr_nitems);
   3149 		COPY(pr_nout);
   3150 		COPY(pr_hardlimit);
   3151 		COPY(pr_npages);
   3152 		COPY(pr_minpages);
   3153 		COPY(pr_maxpages);
   3154 
   3155 		COPY(pr_nget);
   3156 		COPY(pr_nfail);
   3157 		COPY(pr_nput);
   3158 		COPY(pr_npagealloc);
   3159 		COPY(pr_npagefree);
   3160 		COPY(pr_hiwat);
   3161 		COPY(pr_nidle);
   3162 #undef COPY
   3163 
   3164 		data.pr_cache_nmiss_pcpu = 0;
   3165 		data.pr_cache_nhit_pcpu = 0;
   3166 		if (pp->pr_cache) {
   3167 			pc = pp->pr_cache;
   3168 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3169 			data.pr_cache_nfull = pc->pc_nfull;
   3170 			data.pr_cache_npartial = pc->pc_npart;
   3171 			data.pr_cache_nempty = pc->pc_nempty;
   3172 			data.pr_cache_ncontended = pc->pc_contended;
   3173 			data.pr_cache_nmiss_global = pc->pc_misses;
   3174 			data.pr_cache_nhit_global = pc->pc_hits;
   3175 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3176 				cc = pc->pc_cpus[i];
   3177 				if (cc == NULL)
   3178 					continue;
   3179 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3180 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3181 			}
   3182 		} else {
   3183 			data.pr_cache_meta_size = 0;
   3184 			data.pr_cache_nfull = 0;
   3185 			data.pr_cache_npartial = 0;
   3186 			data.pr_cache_nempty = 0;
   3187 			data.pr_cache_ncontended = 0;
   3188 			data.pr_cache_nmiss_global = 0;
   3189 			data.pr_cache_nhit_global = 0;
   3190 		}
   3191 
   3192 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3193 		if (error)
   3194 			break;
   3195 		written += sizeof(data);
   3196 		oldp = (char *)oldp + sizeof(data);
   3197 	}
   3198 
   3199 	*oldlenp = written;
   3200 	return error;
   3201 }
   3202 
   3203 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3204 {
   3205 	const struct sysctlnode *rnode = NULL;
   3206 
   3207 	sysctl_createv(clog, 0, NULL, &rnode,
   3208 		       CTLFLAG_PERMANENT,
   3209 		       CTLTYPE_STRUCT, "pool",
   3210 		       SYSCTL_DESCR("Get pool statistics"),
   3211 		       pool_sysctl, 0, NULL, 0,
   3212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3213 }
   3214