subr_pool.c revision 1.239 1 /* $NetBSD: subr_pool.c,v 1.239 2019/03/17 07:22:18 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.239 2019/03/17 07:22:18 maxv Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60
61 #include <uvm/uvm_extern.h>
62
63 /*
64 * Pool resource management utility.
65 *
66 * Memory is allocated in pages which are split into pieces according to
67 * the pool item size. Each page is kept on one of three lists in the
68 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 * for empty, full and partially-full pages respectively. The individual
70 * pool items are on a linked list headed by `ph_itemlist' in each page
71 * header. The memory for building the page list is either taken from
72 * the allocated pages themselves (for small pool items) or taken from
73 * an internal pool of page headers (`phpool').
74 */
75
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78
79 /* Private pool for page header structures */
80 #define PHPOOL_MAX 8
81 static struct pool phpool[PHPOOL_MAX];
82 #define PHPOOL_FREELIST_NELEM(idx) \
83 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 # define POOL_REDZONE_SIZE 8
97 # else
98 # define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 static void pool_cache_redzone_check(pool_cache_t, void *);
104 #else
105 # define pool_redzone_init(pp, sz) __nothing
106 # define pool_redzone_fill(pp, ptr) __nothing
107 # define pool_redzone_check(pp, ptr) __nothing
108 # define pool_cache_redzone_check(pc, ptr) __nothing
109 #endif
110
111 #ifdef KLEAK
112 static void pool_kleak_fill(struct pool *, void *);
113 static void pool_cache_kleak_fill(pool_cache_t, void *);
114 #else
115 #define pool_kleak_fill(pp, ptr) __nothing
116 #define pool_cache_kleak_fill(pc, ptr) __nothing
117 #endif
118
119 #define pc_has_ctor(pc) \
120 (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
121 #define pc_has_dtor(pc) \
122 (pc->pc_dtor != (void (*)(void *, void *))nullop)
123
124 static void *pool_page_alloc_meta(struct pool *, int);
125 static void pool_page_free_meta(struct pool *, void *);
126
127 /* allocator for pool metadata */
128 struct pool_allocator pool_allocator_meta = {
129 .pa_alloc = pool_page_alloc_meta,
130 .pa_free = pool_page_free_meta,
131 .pa_pagesz = 0
132 };
133
134 #define POOL_ALLOCATOR_BIG_BASE 13
135 extern struct pool_allocator pool_allocator_big[];
136 static int pool_bigidx(size_t);
137
138 /* # of seconds to retain page after last use */
139 int pool_inactive_time = 10;
140
141 /* Next candidate for drainage (see pool_drain()) */
142 static struct pool *drainpp;
143
144 /* This lock protects both pool_head and drainpp. */
145 static kmutex_t pool_head_lock;
146 static kcondvar_t pool_busy;
147
148 /* This lock protects initialization of a potentially shared pool allocator */
149 static kmutex_t pool_allocator_lock;
150
151 typedef uint32_t pool_item_bitmap_t;
152 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
153 #define BITMAP_MASK (BITMAP_SIZE - 1)
154
155 struct pool_item_header {
156 /* Page headers */
157 LIST_ENTRY(pool_item_header)
158 ph_pagelist; /* pool page list */
159 SPLAY_ENTRY(pool_item_header)
160 ph_node; /* Off-page page headers */
161 void * ph_page; /* this page's address */
162 uint32_t ph_time; /* last referenced */
163 uint16_t ph_nmissing; /* # of chunks in use */
164 uint16_t ph_off; /* start offset in page */
165 union {
166 /* !PR_NOTOUCH */
167 struct {
168 LIST_HEAD(, pool_item)
169 phu_itemlist; /* chunk list for this page */
170 } phu_normal;
171 /* PR_NOTOUCH */
172 struct {
173 pool_item_bitmap_t phu_bitmap[1];
174 } phu_notouch;
175 } ph_u;
176 };
177 #define ph_itemlist ph_u.phu_normal.phu_itemlist
178 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
179
180 #if defined(DIAGNOSTIC) && !defined(KASAN)
181 #define POOL_CHECK_MAGIC
182 #endif
183
184 struct pool_item {
185 #ifdef POOL_CHECK_MAGIC
186 u_int pi_magic;
187 #endif
188 #define PI_MAGIC 0xdeaddeadU
189 /* Other entries use only this list entry */
190 LIST_ENTRY(pool_item) pi_list;
191 };
192
193 #define POOL_NEEDS_CATCHUP(pp) \
194 ((pp)->pr_nitems < (pp)->pr_minitems)
195
196 /*
197 * Pool cache management.
198 *
199 * Pool caches provide a way for constructed objects to be cached by the
200 * pool subsystem. This can lead to performance improvements by avoiding
201 * needless object construction/destruction; it is deferred until absolutely
202 * necessary.
203 *
204 * Caches are grouped into cache groups. Each cache group references up
205 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
206 * object from the pool, it calls the object's constructor and places it
207 * into a cache group. When a cache group frees an object back to the
208 * pool, it first calls the object's destructor. This allows the object
209 * to persist in constructed form while freed to the cache.
210 *
211 * The pool references each cache, so that when a pool is drained by the
212 * pagedaemon, it can drain each individual cache as well. Each time a
213 * cache is drained, the most idle cache group is freed to the pool in
214 * its entirety.
215 *
216 * Pool caches are layed on top of pools. By layering them, we can avoid
217 * the complexity of cache management for pools which would not benefit
218 * from it.
219 */
220
221 static struct pool pcg_normal_pool;
222 static struct pool pcg_large_pool;
223 static struct pool cache_pool;
224 static struct pool cache_cpu_pool;
225
226 pool_cache_t pnbuf_cache; /* pathname buffer cache */
227
228 /* List of all caches. */
229 TAILQ_HEAD(,pool_cache) pool_cache_head =
230 TAILQ_HEAD_INITIALIZER(pool_cache_head);
231
232 int pool_cache_disable; /* global disable for caching */
233 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
234
235 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
236 void *);
237 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
238 void **, paddr_t *, int);
239 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
240 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
241 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
242 static void pool_cache_transfer(pool_cache_t);
243
244 static int pool_catchup(struct pool *);
245 static void pool_prime_page(struct pool *, void *,
246 struct pool_item_header *);
247 static void pool_update_curpage(struct pool *);
248
249 static int pool_grow(struct pool *, int);
250 static void *pool_allocator_alloc(struct pool *, int);
251 static void pool_allocator_free(struct pool *, void *);
252
253 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
254 void (*)(const char *, ...) __printflike(1, 2));
255 static void pool_print1(struct pool *, const char *,
256 void (*)(const char *, ...) __printflike(1, 2));
257
258 static int pool_chk_page(struct pool *, const char *,
259 struct pool_item_header *);
260
261 /* -------------------------------------------------------------------------- */
262
263 static inline unsigned int
264 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
265 const void *v)
266 {
267 const char *cp = v;
268 unsigned int idx;
269
270 KASSERT(pp->pr_roflags & PR_NOTOUCH);
271 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
272
273 if (__predict_false(idx >= pp->pr_itemsperpage)) {
274 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
275 pp->pr_itemsperpage);
276 }
277
278 return idx;
279 }
280
281 static inline void
282 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
283 void *obj)
284 {
285 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
286 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
287 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
288
289 if (__predict_false((*bitmap & mask) != 0)) {
290 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
291 }
292
293 *bitmap |= mask;
294 }
295
296 static inline void *
297 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
298 {
299 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
300 unsigned int idx;
301 int i;
302
303 for (i = 0; ; i++) {
304 int bit;
305
306 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
307 bit = ffs32(bitmap[i]);
308 if (bit) {
309 pool_item_bitmap_t mask;
310
311 bit--;
312 idx = (i * BITMAP_SIZE) + bit;
313 mask = 1U << bit;
314 KASSERT((bitmap[i] & mask) != 0);
315 bitmap[i] &= ~mask;
316 break;
317 }
318 }
319 KASSERT(idx < pp->pr_itemsperpage);
320 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
321 }
322
323 static inline void
324 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
325 {
326 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
327 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
328 int i;
329
330 for (i = 0; i < n; i++) {
331 bitmap[i] = (pool_item_bitmap_t)-1;
332 }
333 }
334
335 /* -------------------------------------------------------------------------- */
336
337 static inline void
338 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
339 void *obj)
340 {
341 struct pool_item *pi = obj;
342
343 #ifdef POOL_CHECK_MAGIC
344 pi->pi_magic = PI_MAGIC;
345 #endif
346
347 if (pp->pr_redzone) {
348 /*
349 * Mark the pool_item as valid. The rest is already
350 * invalid.
351 */
352 kasan_mark(pi, sizeof(*pi), sizeof(*pi));
353 }
354
355 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
356 }
357
358 static inline void *
359 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
360 {
361 struct pool_item *pi;
362 void *v;
363
364 v = pi = LIST_FIRST(&ph->ph_itemlist);
365 if (__predict_false(v == NULL)) {
366 mutex_exit(&pp->pr_lock);
367 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
368 }
369 KASSERTMSG((pp->pr_nitems > 0),
370 "%s: [%s] nitems %u inconsistent on itemlist",
371 __func__, pp->pr_wchan, pp->pr_nitems);
372 #ifdef POOL_CHECK_MAGIC
373 KASSERTMSG((pi->pi_magic == PI_MAGIC),
374 "%s: [%s] free list modified: "
375 "magic=%x; page %p; item addr %p", __func__,
376 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
377 #endif
378
379 /*
380 * Remove from item list.
381 */
382 LIST_REMOVE(pi, pi_list);
383
384 return v;
385 }
386
387 /* -------------------------------------------------------------------------- */
388
389 static inline int
390 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
391 {
392
393 /*
394 * We consider pool_item_header with smaller ph_page bigger. This
395 * unnatural ordering is for the benefit of pr_find_pagehead.
396 */
397 if (a->ph_page < b->ph_page)
398 return 1;
399 else if (a->ph_page > b->ph_page)
400 return -1;
401 else
402 return 0;
403 }
404
405 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
406 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
407
408 static inline struct pool_item_header *
409 pr_find_pagehead_noalign(struct pool *pp, void *v)
410 {
411 struct pool_item_header *ph, tmp;
412
413 tmp.ph_page = (void *)(uintptr_t)v;
414 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
415 if (ph == NULL) {
416 ph = SPLAY_ROOT(&pp->pr_phtree);
417 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
418 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
419 }
420 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
421 }
422
423 return ph;
424 }
425
426 /*
427 * Return the pool page header based on item address.
428 */
429 static inline struct pool_item_header *
430 pr_find_pagehead(struct pool *pp, void *v)
431 {
432 struct pool_item_header *ph, tmp;
433
434 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
435 ph = pr_find_pagehead_noalign(pp, v);
436 } else {
437 void *page =
438 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
439
440 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
441 ph = (struct pool_item_header *)
442 ((char *)page + pp->pr_phoffset);
443 if (__predict_false((void *)ph->ph_page != page)) {
444 panic("%s: [%s] item %p not part of pool",
445 __func__, pp->pr_wchan, v);
446 }
447 if (__predict_false((char *)v < (char *)page +
448 ph->ph_off)) {
449 panic("%s: [%s] item %p below item space",
450 __func__, pp->pr_wchan, v);
451 }
452 } else {
453 tmp.ph_page = page;
454 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
455 }
456 }
457
458 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
459 ((char *)ph->ph_page <= (char *)v &&
460 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
461 return ph;
462 }
463
464 static void
465 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
466 {
467 struct pool_item_header *ph;
468
469 while ((ph = LIST_FIRST(pq)) != NULL) {
470 LIST_REMOVE(ph, ph_pagelist);
471 pool_allocator_free(pp, ph->ph_page);
472 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
473 pool_put(pp->pr_phpool, ph);
474 }
475 }
476
477 /*
478 * Remove a page from the pool.
479 */
480 static inline void
481 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
482 struct pool_pagelist *pq)
483 {
484
485 KASSERT(mutex_owned(&pp->pr_lock));
486
487 /*
488 * If the page was idle, decrement the idle page count.
489 */
490 if (ph->ph_nmissing == 0) {
491 KASSERT(pp->pr_nidle != 0);
492 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
493 "nitems=%u < itemsperpage=%u",
494 pp->pr_nitems, pp->pr_itemsperpage);
495 pp->pr_nidle--;
496 }
497
498 pp->pr_nitems -= pp->pr_itemsperpage;
499
500 /*
501 * Unlink the page from the pool and queue it for release.
502 */
503 LIST_REMOVE(ph, ph_pagelist);
504 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
505 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
506 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
507
508 pp->pr_npages--;
509 pp->pr_npagefree++;
510
511 pool_update_curpage(pp);
512 }
513
514 /*
515 * Initialize all the pools listed in the "pools" link set.
516 */
517 void
518 pool_subsystem_init(void)
519 {
520 size_t size;
521 int idx;
522
523 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
524 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
525 cv_init(&pool_busy, "poolbusy");
526
527 /*
528 * Initialize private page header pool and cache magazine pool if we
529 * haven't done so yet.
530 */
531 for (idx = 0; idx < PHPOOL_MAX; idx++) {
532 static char phpool_names[PHPOOL_MAX][6+1+6+1];
533 int nelem;
534 size_t sz;
535
536 nelem = PHPOOL_FREELIST_NELEM(idx);
537 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
538 "phpool-%d", nelem);
539 sz = sizeof(struct pool_item_header);
540 if (nelem) {
541 sz = offsetof(struct pool_item_header,
542 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
543 }
544 pool_init(&phpool[idx], sz, 0, 0, 0,
545 phpool_names[idx], &pool_allocator_meta, IPL_VM);
546 }
547 #ifdef POOL_SUBPAGE
548 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
549 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
550 #endif
551
552 size = sizeof(pcg_t) +
553 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
554 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
555 "pcgnormal", &pool_allocator_meta, IPL_VM);
556
557 size = sizeof(pcg_t) +
558 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
559 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
560 "pcglarge", &pool_allocator_meta, IPL_VM);
561
562 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
563 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
564
565 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
566 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
567 }
568
569 /*
570 * Initialize the given pool resource structure.
571 *
572 * We export this routine to allow other kernel parts to declare
573 * static pools that must be initialized before kmem(9) is available.
574 */
575 void
576 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
577 const char *wchan, struct pool_allocator *palloc, int ipl)
578 {
579 struct pool *pp1;
580 size_t trysize, phsize, prsize;
581 int itemspace, slack;
582
583 /* XXX ioff will be removed. */
584 KASSERT(ioff == 0);
585
586 #ifdef DEBUG
587 if (__predict_true(!cold))
588 mutex_enter(&pool_head_lock);
589 /*
590 * Check that the pool hasn't already been initialised and
591 * added to the list of all pools.
592 */
593 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
594 if (pp == pp1)
595 panic("%s: [%s] already initialised", __func__,
596 wchan);
597 }
598 if (__predict_true(!cold))
599 mutex_exit(&pool_head_lock);
600 #endif
601
602 if (palloc == NULL)
603 palloc = &pool_allocator_kmem;
604 #ifdef POOL_SUBPAGE
605 if (size > palloc->pa_pagesz) {
606 if (palloc == &pool_allocator_kmem)
607 palloc = &pool_allocator_kmem_fullpage;
608 else if (palloc == &pool_allocator_nointr)
609 palloc = &pool_allocator_nointr_fullpage;
610 }
611 #endif /* POOL_SUBPAGE */
612 if (!cold)
613 mutex_enter(&pool_allocator_lock);
614 if (palloc->pa_refcnt++ == 0) {
615 if (palloc->pa_pagesz == 0)
616 palloc->pa_pagesz = PAGE_SIZE;
617
618 TAILQ_INIT(&palloc->pa_list);
619
620 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
621 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
622 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
623 }
624 if (!cold)
625 mutex_exit(&pool_allocator_lock);
626
627 if (align == 0)
628 align = ALIGN(1);
629
630 prsize = size;
631 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
632 prsize = sizeof(struct pool_item);
633
634 prsize = roundup(prsize, align);
635 KASSERTMSG((prsize <= palloc->pa_pagesz),
636 "%s: [%s] pool item size (%zu) larger than page size (%u)",
637 __func__, wchan, prsize, palloc->pa_pagesz);
638
639 /*
640 * Initialize the pool structure.
641 */
642 LIST_INIT(&pp->pr_emptypages);
643 LIST_INIT(&pp->pr_fullpages);
644 LIST_INIT(&pp->pr_partpages);
645 pp->pr_cache = NULL;
646 pp->pr_curpage = NULL;
647 pp->pr_npages = 0;
648 pp->pr_minitems = 0;
649 pp->pr_minpages = 0;
650 pp->pr_maxpages = UINT_MAX;
651 pp->pr_roflags = flags;
652 pp->pr_flags = 0;
653 pp->pr_size = prsize;
654 pp->pr_reqsize = size;
655 pp->pr_align = align;
656 pp->pr_wchan = wchan;
657 pp->pr_alloc = palloc;
658 pp->pr_nitems = 0;
659 pp->pr_nout = 0;
660 pp->pr_hardlimit = UINT_MAX;
661 pp->pr_hardlimit_warning = NULL;
662 pp->pr_hardlimit_ratecap.tv_sec = 0;
663 pp->pr_hardlimit_ratecap.tv_usec = 0;
664 pp->pr_hardlimit_warning_last.tv_sec = 0;
665 pp->pr_hardlimit_warning_last.tv_usec = 0;
666 pp->pr_drain_hook = NULL;
667 pp->pr_drain_hook_arg = NULL;
668 pp->pr_freecheck = NULL;
669 pool_redzone_init(pp, size);
670
671 /*
672 * Decide whether to put the page header off page to avoid wasting too
673 * large a part of the page or too big item. Off-page page headers go
674 * on a hash table, so we can match a returned item with its header
675 * based on the page address. We use 1/16 of the page size and about 8
676 * times of the item size as the threshold. (XXX: tune)
677 *
678 * However, we'll put the header into the page if we can put it without
679 * wasting any items.
680 */
681 pp->pr_itemoffset = 0;
682 trysize = palloc->pa_pagesz;
683 phsize = ALIGN(sizeof(struct pool_item_header));
684 if (pp->pr_roflags & PR_PHINPAGE ||
685 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
686 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
687 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
688 /* Use the end of the page for the page header */
689 itemspace = palloc->pa_pagesz - phsize;
690 pp->pr_phoffset = itemspace;
691 pp->pr_roflags |= PR_PHINPAGE;
692 } else {
693 /* The page header will be taken from our page header pool */
694 itemspace = palloc->pa_pagesz;
695 pp->pr_phoffset = 0;
696 SPLAY_INIT(&pp->pr_phtree);
697 }
698
699 pp->pr_itemsperpage = itemspace / pp->pr_size;
700 KASSERT(pp->pr_itemsperpage != 0);
701 if ((pp->pr_roflags & PR_NOTOUCH)) {
702 int idx;
703
704 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
705 idx++) {
706 /* nothing */
707 }
708 if (idx >= PHPOOL_MAX) {
709 /*
710 * if you see this panic, consider to tweak
711 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
712 */
713 panic("%s: [%s] too large itemsperpage(%d) for "
714 "PR_NOTOUCH", __func__,
715 pp->pr_wchan, pp->pr_itemsperpage);
716 }
717 pp->pr_phpool = &phpool[idx];
718 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
719 pp->pr_phpool = &phpool[0];
720 }
721 #if defined(DIAGNOSTIC)
722 else {
723 pp->pr_phpool = NULL;
724 }
725 #endif
726
727 /*
728 * Use the slack between the chunks and the page header
729 * for "cache coloring".
730 */
731 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
732 pp->pr_maxcolor = rounddown(slack, align);
733 pp->pr_curcolor = 0;
734
735 pp->pr_nget = 0;
736 pp->pr_nfail = 0;
737 pp->pr_nput = 0;
738 pp->pr_npagealloc = 0;
739 pp->pr_npagefree = 0;
740 pp->pr_hiwat = 0;
741 pp->pr_nidle = 0;
742 pp->pr_refcnt = 0;
743
744 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
745 cv_init(&pp->pr_cv, wchan);
746 pp->pr_ipl = ipl;
747
748 /* Insert into the list of all pools. */
749 if (!cold)
750 mutex_enter(&pool_head_lock);
751 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
752 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
753 break;
754 }
755 if (pp1 == NULL)
756 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
757 else
758 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
759 if (!cold)
760 mutex_exit(&pool_head_lock);
761
762 /* Insert this into the list of pools using this allocator. */
763 if (!cold)
764 mutex_enter(&palloc->pa_lock);
765 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
766 if (!cold)
767 mutex_exit(&palloc->pa_lock);
768 }
769
770 /*
771 * De-commision a pool resource.
772 */
773 void
774 pool_destroy(struct pool *pp)
775 {
776 struct pool_pagelist pq;
777 struct pool_item_header *ph;
778
779 /* Remove from global pool list */
780 mutex_enter(&pool_head_lock);
781 while (pp->pr_refcnt != 0)
782 cv_wait(&pool_busy, &pool_head_lock);
783 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
784 if (drainpp == pp)
785 drainpp = NULL;
786 mutex_exit(&pool_head_lock);
787
788 /* Remove this pool from its allocator's list of pools. */
789 mutex_enter(&pp->pr_alloc->pa_lock);
790 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
791 mutex_exit(&pp->pr_alloc->pa_lock);
792
793 mutex_enter(&pool_allocator_lock);
794 if (--pp->pr_alloc->pa_refcnt == 0)
795 mutex_destroy(&pp->pr_alloc->pa_lock);
796 mutex_exit(&pool_allocator_lock);
797
798 mutex_enter(&pp->pr_lock);
799
800 KASSERT(pp->pr_cache == NULL);
801 KASSERTMSG((pp->pr_nout == 0),
802 "%s: pool busy: still out: %u", __func__, pp->pr_nout);
803 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
804 KASSERT(LIST_EMPTY(&pp->pr_partpages));
805
806 /* Remove all pages */
807 LIST_INIT(&pq);
808 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
809 pr_rmpage(pp, ph, &pq);
810
811 mutex_exit(&pp->pr_lock);
812
813 pr_pagelist_free(pp, &pq);
814 cv_destroy(&pp->pr_cv);
815 mutex_destroy(&pp->pr_lock);
816 }
817
818 void
819 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
820 {
821
822 /* XXX no locking -- must be used just after pool_init() */
823 KASSERTMSG((pp->pr_drain_hook == NULL),
824 "%s: [%s] already set", __func__, pp->pr_wchan);
825 pp->pr_drain_hook = fn;
826 pp->pr_drain_hook_arg = arg;
827 }
828
829 static struct pool_item_header *
830 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
831 {
832 struct pool_item_header *ph;
833
834 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
835 ph = (void *)((char *)storage + pp->pr_phoffset);
836 else
837 ph = pool_get(pp->pr_phpool, flags);
838
839 return ph;
840 }
841
842 /*
843 * Grab an item from the pool.
844 */
845 void *
846 pool_get(struct pool *pp, int flags)
847 {
848 struct pool_item_header *ph;
849 void *v;
850
851 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
852 KASSERTMSG((pp->pr_itemsperpage != 0),
853 "%s: [%s] pr_itemsperpage is zero, "
854 "pool not initialized?", __func__, pp->pr_wchan);
855 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
856 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
857 "%s: [%s] is IPL_NONE, but called from interrupt context",
858 __func__, pp->pr_wchan);
859 if (flags & PR_WAITOK) {
860 ASSERT_SLEEPABLE();
861 }
862
863 mutex_enter(&pp->pr_lock);
864 startover:
865 /*
866 * Check to see if we've reached the hard limit. If we have,
867 * and we can wait, then wait until an item has been returned to
868 * the pool.
869 */
870 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
871 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
872 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
873 if (pp->pr_drain_hook != NULL) {
874 /*
875 * Since the drain hook is going to free things
876 * back to the pool, unlock, call the hook, re-lock,
877 * and check the hardlimit condition again.
878 */
879 mutex_exit(&pp->pr_lock);
880 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
881 mutex_enter(&pp->pr_lock);
882 if (pp->pr_nout < pp->pr_hardlimit)
883 goto startover;
884 }
885
886 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
887 /*
888 * XXX: A warning isn't logged in this case. Should
889 * it be?
890 */
891 pp->pr_flags |= PR_WANTED;
892 do {
893 cv_wait(&pp->pr_cv, &pp->pr_lock);
894 } while (pp->pr_flags & PR_WANTED);
895 goto startover;
896 }
897
898 /*
899 * Log a message that the hard limit has been hit.
900 */
901 if (pp->pr_hardlimit_warning != NULL &&
902 ratecheck(&pp->pr_hardlimit_warning_last,
903 &pp->pr_hardlimit_ratecap))
904 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
905
906 pp->pr_nfail++;
907
908 mutex_exit(&pp->pr_lock);
909 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
910 return NULL;
911 }
912
913 /*
914 * The convention we use is that if `curpage' is not NULL, then
915 * it points at a non-empty bucket. In particular, `curpage'
916 * never points at a page header which has PR_PHINPAGE set and
917 * has no items in its bucket.
918 */
919 if ((ph = pp->pr_curpage) == NULL) {
920 int error;
921
922 KASSERTMSG((pp->pr_nitems == 0),
923 "%s: [%s] curpage NULL, inconsistent nitems %u",
924 __func__, pp->pr_wchan, pp->pr_nitems);
925
926 /*
927 * Call the back-end page allocator for more memory.
928 * Release the pool lock, as the back-end page allocator
929 * may block.
930 */
931 error = pool_grow(pp, flags);
932 if (error != 0) {
933 /*
934 * pool_grow aborts when another thread
935 * is allocating a new page. Retry if it
936 * waited for it.
937 */
938 if (error == ERESTART)
939 goto startover;
940
941 /*
942 * We were unable to allocate a page or item
943 * header, but we released the lock during
944 * allocation, so perhaps items were freed
945 * back to the pool. Check for this case.
946 */
947 if (pp->pr_curpage != NULL)
948 goto startover;
949
950 pp->pr_nfail++;
951 mutex_exit(&pp->pr_lock);
952 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
953 return NULL;
954 }
955
956 /* Start the allocation process over. */
957 goto startover;
958 }
959 if (pp->pr_roflags & PR_NOTOUCH) {
960 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
961 "%s: %s: page empty", __func__, pp->pr_wchan);
962 v = pr_item_bitmap_get(pp, ph);
963 } else {
964 v = pr_item_linkedlist_get(pp, ph);
965 }
966 pp->pr_nitems--;
967 pp->pr_nout++;
968 if (ph->ph_nmissing == 0) {
969 KASSERT(pp->pr_nidle > 0);
970 pp->pr_nidle--;
971
972 /*
973 * This page was previously empty. Move it to the list of
974 * partially-full pages. This page is already curpage.
975 */
976 LIST_REMOVE(ph, ph_pagelist);
977 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
978 }
979 ph->ph_nmissing++;
980 if (ph->ph_nmissing == pp->pr_itemsperpage) {
981 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
982 LIST_EMPTY(&ph->ph_itemlist)),
983 "%s: [%s] nmissing (%u) inconsistent", __func__,
984 pp->pr_wchan, ph->ph_nmissing);
985 /*
986 * This page is now full. Move it to the full list
987 * and select a new current page.
988 */
989 LIST_REMOVE(ph, ph_pagelist);
990 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
991 pool_update_curpage(pp);
992 }
993
994 pp->pr_nget++;
995
996 /*
997 * If we have a low water mark and we are now below that low
998 * water mark, add more items to the pool.
999 */
1000 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1001 /*
1002 * XXX: Should we log a warning? Should we set up a timeout
1003 * to try again in a second or so? The latter could break
1004 * a caller's assumptions about interrupt protection, etc.
1005 */
1006 }
1007
1008 mutex_exit(&pp->pr_lock);
1009 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1010 FREECHECK_OUT(&pp->pr_freecheck, v);
1011 pool_redzone_fill(pp, v);
1012 if (flags & PR_ZERO)
1013 memset(v, 0, pp->pr_reqsize);
1014 else
1015 pool_kleak_fill(pp, v);
1016 return v;
1017 }
1018
1019 /*
1020 * Internal version of pool_put(). Pool is already locked/entered.
1021 */
1022 static void
1023 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1024 {
1025 struct pool_item_header *ph;
1026
1027 KASSERT(mutex_owned(&pp->pr_lock));
1028 pool_redzone_check(pp, v);
1029 FREECHECK_IN(&pp->pr_freecheck, v);
1030 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1031
1032 KASSERTMSG((pp->pr_nout > 0),
1033 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1034
1035 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1036 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1037 }
1038
1039 /*
1040 * Return to item list.
1041 */
1042 if (pp->pr_roflags & PR_NOTOUCH) {
1043 pr_item_bitmap_put(pp, ph, v);
1044 } else {
1045 pr_item_linkedlist_put(pp, ph, v);
1046 }
1047 KDASSERT(ph->ph_nmissing != 0);
1048 ph->ph_nmissing--;
1049 pp->pr_nput++;
1050 pp->pr_nitems++;
1051 pp->pr_nout--;
1052
1053 /* Cancel "pool empty" condition if it exists */
1054 if (pp->pr_curpage == NULL)
1055 pp->pr_curpage = ph;
1056
1057 if (pp->pr_flags & PR_WANTED) {
1058 pp->pr_flags &= ~PR_WANTED;
1059 cv_broadcast(&pp->pr_cv);
1060 }
1061
1062 /*
1063 * If this page is now empty, do one of two things:
1064 *
1065 * (1) If we have more pages than the page high water mark,
1066 * free the page back to the system. ONLY CONSIDER
1067 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1068 * CLAIM.
1069 *
1070 * (2) Otherwise, move the page to the empty page list.
1071 *
1072 * Either way, select a new current page (so we use a partially-full
1073 * page if one is available).
1074 */
1075 if (ph->ph_nmissing == 0) {
1076 pp->pr_nidle++;
1077 if (pp->pr_npages > pp->pr_minpages &&
1078 pp->pr_npages > pp->pr_maxpages) {
1079 pr_rmpage(pp, ph, pq);
1080 } else {
1081 LIST_REMOVE(ph, ph_pagelist);
1082 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1083
1084 /*
1085 * Update the timestamp on the page. A page must
1086 * be idle for some period of time before it can
1087 * be reclaimed by the pagedaemon. This minimizes
1088 * ping-pong'ing for memory.
1089 *
1090 * note for 64-bit time_t: truncating to 32-bit is not
1091 * a problem for our usage.
1092 */
1093 ph->ph_time = time_uptime;
1094 }
1095 pool_update_curpage(pp);
1096 }
1097
1098 /*
1099 * If the page was previously completely full, move it to the
1100 * partially-full list and make it the current page. The next
1101 * allocation will get the item from this page, instead of
1102 * further fragmenting the pool.
1103 */
1104 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1105 LIST_REMOVE(ph, ph_pagelist);
1106 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1107 pp->pr_curpage = ph;
1108 }
1109 }
1110
1111 void
1112 pool_put(struct pool *pp, void *v)
1113 {
1114 struct pool_pagelist pq;
1115
1116 LIST_INIT(&pq);
1117
1118 mutex_enter(&pp->pr_lock);
1119 pool_do_put(pp, v, &pq);
1120 mutex_exit(&pp->pr_lock);
1121
1122 pr_pagelist_free(pp, &pq);
1123 }
1124
1125 /*
1126 * pool_grow: grow a pool by a page.
1127 *
1128 * => called with pool locked.
1129 * => unlock and relock the pool.
1130 * => return with pool locked.
1131 */
1132
1133 static int
1134 pool_grow(struct pool *pp, int flags)
1135 {
1136 struct pool_item_header *ph;
1137 char *storage;
1138
1139 /*
1140 * If there's a pool_grow in progress, wait for it to complete
1141 * and try again from the top.
1142 */
1143 if (pp->pr_flags & PR_GROWING) {
1144 if (flags & PR_WAITOK) {
1145 do {
1146 cv_wait(&pp->pr_cv, &pp->pr_lock);
1147 } while (pp->pr_flags & PR_GROWING);
1148 return ERESTART;
1149 } else {
1150 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1151 /*
1152 * This needs an unlock/relock dance so
1153 * that the other caller has a chance to
1154 * run and actually do the thing. Note
1155 * that this is effectively a busy-wait.
1156 */
1157 mutex_exit(&pp->pr_lock);
1158 mutex_enter(&pp->pr_lock);
1159 return ERESTART;
1160 }
1161 return EWOULDBLOCK;
1162 }
1163 }
1164 pp->pr_flags |= PR_GROWING;
1165 if (flags & PR_WAITOK)
1166 mutex_exit(&pp->pr_lock);
1167 else
1168 pp->pr_flags |= PR_GROWINGNOWAIT;
1169
1170 storage = pool_allocator_alloc(pp, flags);
1171 if (__predict_false(storage == NULL))
1172 goto out;
1173
1174 ph = pool_alloc_item_header(pp, storage, flags);
1175 if (__predict_false(ph == NULL)) {
1176 pool_allocator_free(pp, storage);
1177 goto out;
1178 }
1179
1180 if (flags & PR_WAITOK)
1181 mutex_enter(&pp->pr_lock);
1182 pool_prime_page(pp, storage, ph);
1183 pp->pr_npagealloc++;
1184 KASSERT(pp->pr_flags & PR_GROWING);
1185 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1186 /*
1187 * If anyone was waiting for pool_grow, notify them that we
1188 * may have just done it.
1189 */
1190 cv_broadcast(&pp->pr_cv);
1191 return 0;
1192 out:
1193 if (flags & PR_WAITOK)
1194 mutex_enter(&pp->pr_lock);
1195 KASSERT(pp->pr_flags & PR_GROWING);
1196 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1197 return ENOMEM;
1198 }
1199
1200 /*
1201 * Add N items to the pool.
1202 */
1203 int
1204 pool_prime(struct pool *pp, int n)
1205 {
1206 int newpages;
1207 int error = 0;
1208
1209 mutex_enter(&pp->pr_lock);
1210
1211 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1212
1213 while (newpages > 0) {
1214 error = pool_grow(pp, PR_NOWAIT);
1215 if (error) {
1216 if (error == ERESTART)
1217 continue;
1218 break;
1219 }
1220 pp->pr_minpages++;
1221 newpages--;
1222 }
1223
1224 if (pp->pr_minpages >= pp->pr_maxpages)
1225 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1226
1227 mutex_exit(&pp->pr_lock);
1228 return error;
1229 }
1230
1231 /*
1232 * Add a page worth of items to the pool.
1233 *
1234 * Note, we must be called with the pool descriptor LOCKED.
1235 */
1236 static void
1237 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1238 {
1239 const unsigned int align = pp->pr_align;
1240 struct pool_item *pi;
1241 void *cp = storage;
1242 int n;
1243
1244 KASSERT(mutex_owned(&pp->pr_lock));
1245 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1246 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1247 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1248
1249 /*
1250 * Insert page header.
1251 */
1252 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1253 LIST_INIT(&ph->ph_itemlist);
1254 ph->ph_page = storage;
1255 ph->ph_nmissing = 0;
1256 ph->ph_time = time_uptime;
1257 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1258 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1259
1260 pp->pr_nidle++;
1261
1262 /*
1263 * Color this page.
1264 */
1265 ph->ph_off = pp->pr_curcolor;
1266 cp = (char *)cp + ph->ph_off;
1267 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1268 pp->pr_curcolor = 0;
1269
1270 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1271
1272 /*
1273 * Insert remaining chunks on the bucket list.
1274 */
1275 n = pp->pr_itemsperpage;
1276 pp->pr_nitems += n;
1277
1278 if (pp->pr_roflags & PR_NOTOUCH) {
1279 pr_item_bitmap_init(pp, ph);
1280 } else {
1281 while (n--) {
1282 pi = (struct pool_item *)cp;
1283
1284 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1285
1286 /* Insert on page list */
1287 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1288 #ifdef POOL_CHECK_MAGIC
1289 pi->pi_magic = PI_MAGIC;
1290 #endif
1291 cp = (char *)cp + pp->pr_size;
1292
1293 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1294 }
1295 }
1296
1297 /*
1298 * If the pool was depleted, point at the new page.
1299 */
1300 if (pp->pr_curpage == NULL)
1301 pp->pr_curpage = ph;
1302
1303 if (++pp->pr_npages > pp->pr_hiwat)
1304 pp->pr_hiwat = pp->pr_npages;
1305 }
1306
1307 /*
1308 * Used by pool_get() when nitems drops below the low water mark. This
1309 * is used to catch up pr_nitems with the low water mark.
1310 *
1311 * Note 1, we never wait for memory here, we let the caller decide what to do.
1312 *
1313 * Note 2, we must be called with the pool already locked, and we return
1314 * with it locked.
1315 */
1316 static int
1317 pool_catchup(struct pool *pp)
1318 {
1319 int error = 0;
1320
1321 while (POOL_NEEDS_CATCHUP(pp)) {
1322 error = pool_grow(pp, PR_NOWAIT);
1323 if (error) {
1324 if (error == ERESTART)
1325 continue;
1326 break;
1327 }
1328 }
1329 return error;
1330 }
1331
1332 static void
1333 pool_update_curpage(struct pool *pp)
1334 {
1335
1336 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1337 if (pp->pr_curpage == NULL) {
1338 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1339 }
1340 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1341 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1342 }
1343
1344 void
1345 pool_setlowat(struct pool *pp, int n)
1346 {
1347
1348 mutex_enter(&pp->pr_lock);
1349
1350 pp->pr_minitems = n;
1351 pp->pr_minpages = (n == 0)
1352 ? 0
1353 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1354
1355 /* Make sure we're caught up with the newly-set low water mark. */
1356 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1357 /*
1358 * XXX: Should we log a warning? Should we set up a timeout
1359 * to try again in a second or so? The latter could break
1360 * a caller's assumptions about interrupt protection, etc.
1361 */
1362 }
1363
1364 mutex_exit(&pp->pr_lock);
1365 }
1366
1367 void
1368 pool_sethiwat(struct pool *pp, int n)
1369 {
1370
1371 mutex_enter(&pp->pr_lock);
1372
1373 pp->pr_maxpages = (n == 0)
1374 ? 0
1375 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1376
1377 mutex_exit(&pp->pr_lock);
1378 }
1379
1380 void
1381 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1382 {
1383
1384 mutex_enter(&pp->pr_lock);
1385
1386 pp->pr_hardlimit = n;
1387 pp->pr_hardlimit_warning = warnmess;
1388 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1389 pp->pr_hardlimit_warning_last.tv_sec = 0;
1390 pp->pr_hardlimit_warning_last.tv_usec = 0;
1391
1392 /*
1393 * In-line version of pool_sethiwat(), because we don't want to
1394 * release the lock.
1395 */
1396 pp->pr_maxpages = (n == 0)
1397 ? 0
1398 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1399
1400 mutex_exit(&pp->pr_lock);
1401 }
1402
1403 /*
1404 * Release all complete pages that have not been used recently.
1405 *
1406 * Must not be called from interrupt context.
1407 */
1408 int
1409 pool_reclaim(struct pool *pp)
1410 {
1411 struct pool_item_header *ph, *phnext;
1412 struct pool_pagelist pq;
1413 uint32_t curtime;
1414 bool klock;
1415 int rv;
1416
1417 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1418
1419 if (pp->pr_drain_hook != NULL) {
1420 /*
1421 * The drain hook must be called with the pool unlocked.
1422 */
1423 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1424 }
1425
1426 /*
1427 * XXXSMP Because we do not want to cause non-MPSAFE code
1428 * to block.
1429 */
1430 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1431 pp->pr_ipl == IPL_SOFTSERIAL) {
1432 KERNEL_LOCK(1, NULL);
1433 klock = true;
1434 } else
1435 klock = false;
1436
1437 /* Reclaim items from the pool's cache (if any). */
1438 if (pp->pr_cache != NULL)
1439 pool_cache_invalidate(pp->pr_cache);
1440
1441 if (mutex_tryenter(&pp->pr_lock) == 0) {
1442 if (klock) {
1443 KERNEL_UNLOCK_ONE(NULL);
1444 }
1445 return 0;
1446 }
1447
1448 LIST_INIT(&pq);
1449
1450 curtime = time_uptime;
1451
1452 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1453 phnext = LIST_NEXT(ph, ph_pagelist);
1454
1455 /* Check our minimum page claim */
1456 if (pp->pr_npages <= pp->pr_minpages)
1457 break;
1458
1459 KASSERT(ph->ph_nmissing == 0);
1460 if (curtime - ph->ph_time < pool_inactive_time)
1461 continue;
1462
1463 /*
1464 * If freeing this page would put us below
1465 * the low water mark, stop now.
1466 */
1467 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1468 pp->pr_minitems)
1469 break;
1470
1471 pr_rmpage(pp, ph, &pq);
1472 }
1473
1474 mutex_exit(&pp->pr_lock);
1475
1476 if (LIST_EMPTY(&pq))
1477 rv = 0;
1478 else {
1479 pr_pagelist_free(pp, &pq);
1480 rv = 1;
1481 }
1482
1483 if (klock) {
1484 KERNEL_UNLOCK_ONE(NULL);
1485 }
1486
1487 return rv;
1488 }
1489
1490 /*
1491 * Drain pools, one at a time. The drained pool is returned within ppp.
1492 *
1493 * Note, must never be called from interrupt context.
1494 */
1495 bool
1496 pool_drain(struct pool **ppp)
1497 {
1498 bool reclaimed;
1499 struct pool *pp;
1500
1501 KASSERT(!TAILQ_EMPTY(&pool_head));
1502
1503 pp = NULL;
1504
1505 /* Find next pool to drain, and add a reference. */
1506 mutex_enter(&pool_head_lock);
1507 do {
1508 if (drainpp == NULL) {
1509 drainpp = TAILQ_FIRST(&pool_head);
1510 }
1511 if (drainpp != NULL) {
1512 pp = drainpp;
1513 drainpp = TAILQ_NEXT(pp, pr_poollist);
1514 }
1515 /*
1516 * Skip completely idle pools. We depend on at least
1517 * one pool in the system being active.
1518 */
1519 } while (pp == NULL || pp->pr_npages == 0);
1520 pp->pr_refcnt++;
1521 mutex_exit(&pool_head_lock);
1522
1523 /* Drain the cache (if any) and pool.. */
1524 reclaimed = pool_reclaim(pp);
1525
1526 /* Finally, unlock the pool. */
1527 mutex_enter(&pool_head_lock);
1528 pp->pr_refcnt--;
1529 cv_broadcast(&pool_busy);
1530 mutex_exit(&pool_head_lock);
1531
1532 if (ppp != NULL)
1533 *ppp = pp;
1534
1535 return reclaimed;
1536 }
1537
1538 /*
1539 * Calculate the total number of pages consumed by pools.
1540 */
1541 int
1542 pool_totalpages(void)
1543 {
1544 struct pool *pp;
1545 uint64_t total = 0;
1546
1547 mutex_enter(&pool_head_lock);
1548 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1549 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1550
1551 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1552 bytes -= (pp->pr_nout * pp->pr_size);
1553 total += bytes;
1554 }
1555 mutex_exit(&pool_head_lock);
1556
1557 return atop(total);
1558 }
1559
1560 /*
1561 * Diagnostic helpers.
1562 */
1563
1564 void
1565 pool_printall(const char *modif, void (*pr)(const char *, ...))
1566 {
1567 struct pool *pp;
1568
1569 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1570 pool_printit(pp, modif, pr);
1571 }
1572 }
1573
1574 void
1575 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1576 {
1577
1578 if (pp == NULL) {
1579 (*pr)("Must specify a pool to print.\n");
1580 return;
1581 }
1582
1583 pool_print1(pp, modif, pr);
1584 }
1585
1586 static void
1587 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1588 void (*pr)(const char *, ...))
1589 {
1590 struct pool_item_header *ph;
1591
1592 LIST_FOREACH(ph, pl, ph_pagelist) {
1593 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1594 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1595 #ifdef POOL_CHECK_MAGIC
1596 struct pool_item *pi;
1597 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1598 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1599 if (pi->pi_magic != PI_MAGIC) {
1600 (*pr)("\t\t\titem %p, magic 0x%x\n",
1601 pi, pi->pi_magic);
1602 }
1603 }
1604 }
1605 #endif
1606 }
1607 }
1608
1609 static void
1610 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1611 {
1612 struct pool_item_header *ph;
1613 pool_cache_t pc;
1614 pcg_t *pcg;
1615 pool_cache_cpu_t *cc;
1616 uint64_t cpuhit, cpumiss;
1617 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1618 char c;
1619
1620 while ((c = *modif++) != '\0') {
1621 if (c == 'l')
1622 print_log = 1;
1623 if (c == 'p')
1624 print_pagelist = 1;
1625 if (c == 'c')
1626 print_cache = 1;
1627 }
1628
1629 if ((pc = pp->pr_cache) != NULL) {
1630 (*pr)("POOL CACHE");
1631 } else {
1632 (*pr)("POOL");
1633 }
1634
1635 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1636 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1637 pp->pr_roflags);
1638 (*pr)("\talloc %p\n", pp->pr_alloc);
1639 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1640 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1641 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1642 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1643
1644 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1645 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1646 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1647 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1648
1649 if (print_pagelist == 0)
1650 goto skip_pagelist;
1651
1652 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1653 (*pr)("\n\tempty page list:\n");
1654 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1655 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1656 (*pr)("\n\tfull page list:\n");
1657 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1658 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1659 (*pr)("\n\tpartial-page list:\n");
1660 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1661
1662 if (pp->pr_curpage == NULL)
1663 (*pr)("\tno current page\n");
1664 else
1665 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1666
1667 skip_pagelist:
1668 if (print_log == 0)
1669 goto skip_log;
1670
1671 (*pr)("\n");
1672
1673 skip_log:
1674
1675 #define PR_GROUPLIST(pcg) \
1676 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1677 for (i = 0; i < pcg->pcg_size; i++) { \
1678 if (pcg->pcg_objects[i].pcgo_pa != \
1679 POOL_PADDR_INVALID) { \
1680 (*pr)("\t\t\t%p, 0x%llx\n", \
1681 pcg->pcg_objects[i].pcgo_va, \
1682 (unsigned long long) \
1683 pcg->pcg_objects[i].pcgo_pa); \
1684 } else { \
1685 (*pr)("\t\t\t%p\n", \
1686 pcg->pcg_objects[i].pcgo_va); \
1687 } \
1688 }
1689
1690 if (pc != NULL) {
1691 cpuhit = 0;
1692 cpumiss = 0;
1693 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1694 if ((cc = pc->pc_cpus[i]) == NULL)
1695 continue;
1696 cpuhit += cc->cc_hits;
1697 cpumiss += cc->cc_misses;
1698 }
1699 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1700 (*pr)("\tcache layer hits %llu misses %llu\n",
1701 pc->pc_hits, pc->pc_misses);
1702 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1703 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1704 pc->pc_contended);
1705 (*pr)("\tcache layer empty groups %u full groups %u\n",
1706 pc->pc_nempty, pc->pc_nfull);
1707 if (print_cache) {
1708 (*pr)("\tfull cache groups:\n");
1709 for (pcg = pc->pc_fullgroups; pcg != NULL;
1710 pcg = pcg->pcg_next) {
1711 PR_GROUPLIST(pcg);
1712 }
1713 (*pr)("\tempty cache groups:\n");
1714 for (pcg = pc->pc_emptygroups; pcg != NULL;
1715 pcg = pcg->pcg_next) {
1716 PR_GROUPLIST(pcg);
1717 }
1718 }
1719 }
1720 #undef PR_GROUPLIST
1721 }
1722
1723 static int
1724 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1725 {
1726 struct pool_item *pi;
1727 void *page;
1728 int n;
1729
1730 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1731 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1732 if (page != ph->ph_page &&
1733 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1734 if (label != NULL)
1735 printf("%s: ", label);
1736 printf("pool(%p:%s): page inconsistency: page %p;"
1737 " at page head addr %p (p %p)\n", pp,
1738 pp->pr_wchan, ph->ph_page,
1739 ph, page);
1740 return 1;
1741 }
1742 }
1743
1744 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1745 return 0;
1746
1747 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1748 pi != NULL;
1749 pi = LIST_NEXT(pi,pi_list), n++) {
1750
1751 #ifdef POOL_CHECK_MAGIC
1752 if (pi->pi_magic != PI_MAGIC) {
1753 if (label != NULL)
1754 printf("%s: ", label);
1755 printf("pool(%s): free list modified: magic=%x;"
1756 " page %p; item ordinal %d; addr %p\n",
1757 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1758 n, pi);
1759 panic("pool");
1760 }
1761 #endif
1762 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1763 continue;
1764 }
1765 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1766 if (page == ph->ph_page)
1767 continue;
1768
1769 if (label != NULL)
1770 printf("%s: ", label);
1771 printf("pool(%p:%s): page inconsistency: page %p;"
1772 " item ordinal %d; addr %p (p %p)\n", pp,
1773 pp->pr_wchan, ph->ph_page,
1774 n, pi, page);
1775 return 1;
1776 }
1777 return 0;
1778 }
1779
1780
1781 int
1782 pool_chk(struct pool *pp, const char *label)
1783 {
1784 struct pool_item_header *ph;
1785 int r = 0;
1786
1787 mutex_enter(&pp->pr_lock);
1788 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1789 r = pool_chk_page(pp, label, ph);
1790 if (r) {
1791 goto out;
1792 }
1793 }
1794 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1795 r = pool_chk_page(pp, label, ph);
1796 if (r) {
1797 goto out;
1798 }
1799 }
1800 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1801 r = pool_chk_page(pp, label, ph);
1802 if (r) {
1803 goto out;
1804 }
1805 }
1806
1807 out:
1808 mutex_exit(&pp->pr_lock);
1809 return r;
1810 }
1811
1812 /*
1813 * pool_cache_init:
1814 *
1815 * Initialize a pool cache.
1816 */
1817 pool_cache_t
1818 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1819 const char *wchan, struct pool_allocator *palloc, int ipl,
1820 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1821 {
1822 pool_cache_t pc;
1823
1824 pc = pool_get(&cache_pool, PR_WAITOK);
1825 if (pc == NULL)
1826 return NULL;
1827
1828 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1829 palloc, ipl, ctor, dtor, arg);
1830
1831 return pc;
1832 }
1833
1834 /*
1835 * pool_cache_bootstrap:
1836 *
1837 * Kernel-private version of pool_cache_init(). The caller
1838 * provides initial storage.
1839 */
1840 void
1841 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1842 u_int align_offset, u_int flags, const char *wchan,
1843 struct pool_allocator *palloc, int ipl,
1844 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1845 void *arg)
1846 {
1847 CPU_INFO_ITERATOR cii;
1848 pool_cache_t pc1;
1849 struct cpu_info *ci;
1850 struct pool *pp;
1851
1852 pp = &pc->pc_pool;
1853 if (palloc == NULL && ipl == IPL_NONE) {
1854 if (size > PAGE_SIZE) {
1855 int bigidx = pool_bigidx(size);
1856
1857 palloc = &pool_allocator_big[bigidx];
1858 } else
1859 palloc = &pool_allocator_nointr;
1860 }
1861 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1862 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1863
1864 if (ctor == NULL) {
1865 ctor = (int (*)(void *, void *, int))nullop;
1866 }
1867 if (dtor == NULL) {
1868 dtor = (void (*)(void *, void *))nullop;
1869 }
1870
1871 pc->pc_emptygroups = NULL;
1872 pc->pc_fullgroups = NULL;
1873 pc->pc_partgroups = NULL;
1874 pc->pc_ctor = ctor;
1875 pc->pc_dtor = dtor;
1876 pc->pc_arg = arg;
1877 pc->pc_hits = 0;
1878 pc->pc_misses = 0;
1879 pc->pc_nempty = 0;
1880 pc->pc_npart = 0;
1881 pc->pc_nfull = 0;
1882 pc->pc_contended = 0;
1883 pc->pc_refcnt = 0;
1884 pc->pc_freecheck = NULL;
1885
1886 if ((flags & PR_LARGECACHE) != 0) {
1887 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1888 pc->pc_pcgpool = &pcg_large_pool;
1889 } else {
1890 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1891 pc->pc_pcgpool = &pcg_normal_pool;
1892 }
1893
1894 /* Allocate per-CPU caches. */
1895 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1896 pc->pc_ncpu = 0;
1897 if (ncpu < 2) {
1898 /* XXX For sparc: boot CPU is not attached yet. */
1899 pool_cache_cpu_init1(curcpu(), pc);
1900 } else {
1901 for (CPU_INFO_FOREACH(cii, ci)) {
1902 pool_cache_cpu_init1(ci, pc);
1903 }
1904 }
1905
1906 /* Add to list of all pools. */
1907 if (__predict_true(!cold))
1908 mutex_enter(&pool_head_lock);
1909 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1910 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1911 break;
1912 }
1913 if (pc1 == NULL)
1914 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1915 else
1916 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1917 if (__predict_true(!cold))
1918 mutex_exit(&pool_head_lock);
1919
1920 membar_sync();
1921 pp->pr_cache = pc;
1922 }
1923
1924 /*
1925 * pool_cache_destroy:
1926 *
1927 * Destroy a pool cache.
1928 */
1929 void
1930 pool_cache_destroy(pool_cache_t pc)
1931 {
1932
1933 pool_cache_bootstrap_destroy(pc);
1934 pool_put(&cache_pool, pc);
1935 }
1936
1937 /*
1938 * pool_cache_bootstrap_destroy:
1939 *
1940 * Destroy a pool cache.
1941 */
1942 void
1943 pool_cache_bootstrap_destroy(pool_cache_t pc)
1944 {
1945 struct pool *pp = &pc->pc_pool;
1946 u_int i;
1947
1948 /* Remove it from the global list. */
1949 mutex_enter(&pool_head_lock);
1950 while (pc->pc_refcnt != 0)
1951 cv_wait(&pool_busy, &pool_head_lock);
1952 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1953 mutex_exit(&pool_head_lock);
1954
1955 /* First, invalidate the entire cache. */
1956 pool_cache_invalidate(pc);
1957
1958 /* Disassociate it from the pool. */
1959 mutex_enter(&pp->pr_lock);
1960 pp->pr_cache = NULL;
1961 mutex_exit(&pp->pr_lock);
1962
1963 /* Destroy per-CPU data */
1964 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1965 pool_cache_invalidate_cpu(pc, i);
1966
1967 /* Finally, destroy it. */
1968 mutex_destroy(&pc->pc_lock);
1969 pool_destroy(pp);
1970 }
1971
1972 /*
1973 * pool_cache_cpu_init1:
1974 *
1975 * Called for each pool_cache whenever a new CPU is attached.
1976 */
1977 static void
1978 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1979 {
1980 pool_cache_cpu_t *cc;
1981 int index;
1982
1983 index = ci->ci_index;
1984
1985 KASSERT(index < __arraycount(pc->pc_cpus));
1986
1987 if ((cc = pc->pc_cpus[index]) != NULL) {
1988 KASSERT(cc->cc_cpuindex == index);
1989 return;
1990 }
1991
1992 /*
1993 * The first CPU is 'free'. This needs to be the case for
1994 * bootstrap - we may not be able to allocate yet.
1995 */
1996 if (pc->pc_ncpu == 0) {
1997 cc = &pc->pc_cpu0;
1998 pc->pc_ncpu = 1;
1999 } else {
2000 mutex_enter(&pc->pc_lock);
2001 pc->pc_ncpu++;
2002 mutex_exit(&pc->pc_lock);
2003 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2004 }
2005
2006 cc->cc_ipl = pc->pc_pool.pr_ipl;
2007 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2008 cc->cc_cache = pc;
2009 cc->cc_cpuindex = index;
2010 cc->cc_hits = 0;
2011 cc->cc_misses = 0;
2012 cc->cc_current = __UNCONST(&pcg_dummy);
2013 cc->cc_previous = __UNCONST(&pcg_dummy);
2014
2015 pc->pc_cpus[index] = cc;
2016 }
2017
2018 /*
2019 * pool_cache_cpu_init:
2020 *
2021 * Called whenever a new CPU is attached.
2022 */
2023 void
2024 pool_cache_cpu_init(struct cpu_info *ci)
2025 {
2026 pool_cache_t pc;
2027
2028 mutex_enter(&pool_head_lock);
2029 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2030 pc->pc_refcnt++;
2031 mutex_exit(&pool_head_lock);
2032
2033 pool_cache_cpu_init1(ci, pc);
2034
2035 mutex_enter(&pool_head_lock);
2036 pc->pc_refcnt--;
2037 cv_broadcast(&pool_busy);
2038 }
2039 mutex_exit(&pool_head_lock);
2040 }
2041
2042 /*
2043 * pool_cache_reclaim:
2044 *
2045 * Reclaim memory from a pool cache.
2046 */
2047 bool
2048 pool_cache_reclaim(pool_cache_t pc)
2049 {
2050
2051 return pool_reclaim(&pc->pc_pool);
2052 }
2053
2054 static void
2055 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2056 {
2057 if (pc->pc_pool.pr_redzone) {
2058 /*
2059 * The object is marked as invalid. Temporarily mark it as
2060 * valid for the destructor. pool_put below will re-mark it
2061 * as invalid.
2062 */
2063 kasan_mark(object, pc->pc_pool.pr_reqsize,
2064 pc->pc_pool.pr_reqsize_with_redzone);
2065 }
2066
2067 (*pc->pc_dtor)(pc->pc_arg, object);
2068 pool_put(&pc->pc_pool, object);
2069 }
2070
2071 /*
2072 * pool_cache_destruct_object:
2073 *
2074 * Force destruction of an object and its release back into
2075 * the pool.
2076 */
2077 void
2078 pool_cache_destruct_object(pool_cache_t pc, void *object)
2079 {
2080
2081 FREECHECK_IN(&pc->pc_freecheck, object);
2082
2083 pool_cache_destruct_object1(pc, object);
2084 }
2085
2086 /*
2087 * pool_cache_invalidate_groups:
2088 *
2089 * Invalidate a chain of groups and destruct all objects.
2090 */
2091 static void
2092 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2093 {
2094 void *object;
2095 pcg_t *next;
2096 int i;
2097
2098 for (; pcg != NULL; pcg = next) {
2099 next = pcg->pcg_next;
2100
2101 for (i = 0; i < pcg->pcg_avail; i++) {
2102 object = pcg->pcg_objects[i].pcgo_va;
2103 pool_cache_destruct_object1(pc, object);
2104 }
2105
2106 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2107 pool_put(&pcg_large_pool, pcg);
2108 } else {
2109 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2110 pool_put(&pcg_normal_pool, pcg);
2111 }
2112 }
2113 }
2114
2115 /*
2116 * pool_cache_invalidate:
2117 *
2118 * Invalidate a pool cache (destruct and release all of the
2119 * cached objects). Does not reclaim objects from the pool.
2120 *
2121 * Note: For pool caches that provide constructed objects, there
2122 * is an assumption that another level of synchronization is occurring
2123 * between the input to the constructor and the cache invalidation.
2124 *
2125 * Invalidation is a costly process and should not be called from
2126 * interrupt context.
2127 */
2128 void
2129 pool_cache_invalidate(pool_cache_t pc)
2130 {
2131 uint64_t where;
2132 pcg_t *full, *empty, *part;
2133
2134 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2135
2136 if (ncpu < 2 || !mp_online) {
2137 /*
2138 * We might be called early enough in the boot process
2139 * for the CPU data structures to not be fully initialized.
2140 * In this case, transfer the content of the local CPU's
2141 * cache back into global cache as only this CPU is currently
2142 * running.
2143 */
2144 pool_cache_transfer(pc);
2145 } else {
2146 /*
2147 * Signal all CPUs that they must transfer their local
2148 * cache back to the global pool then wait for the xcall to
2149 * complete.
2150 */
2151 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2152 pc, NULL);
2153 xc_wait(where);
2154 }
2155
2156 /* Empty pool caches, then invalidate objects */
2157 mutex_enter(&pc->pc_lock);
2158 full = pc->pc_fullgroups;
2159 empty = pc->pc_emptygroups;
2160 part = pc->pc_partgroups;
2161 pc->pc_fullgroups = NULL;
2162 pc->pc_emptygroups = NULL;
2163 pc->pc_partgroups = NULL;
2164 pc->pc_nfull = 0;
2165 pc->pc_nempty = 0;
2166 pc->pc_npart = 0;
2167 mutex_exit(&pc->pc_lock);
2168
2169 pool_cache_invalidate_groups(pc, full);
2170 pool_cache_invalidate_groups(pc, empty);
2171 pool_cache_invalidate_groups(pc, part);
2172 }
2173
2174 /*
2175 * pool_cache_invalidate_cpu:
2176 *
2177 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2178 * identified by its associated index.
2179 * It is caller's responsibility to ensure that no operation is
2180 * taking place on this pool cache while doing this invalidation.
2181 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2182 * pool cached objects from a CPU different from the one currently running
2183 * may result in an undefined behaviour.
2184 */
2185 static void
2186 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2187 {
2188 pool_cache_cpu_t *cc;
2189 pcg_t *pcg;
2190
2191 if ((cc = pc->pc_cpus[index]) == NULL)
2192 return;
2193
2194 if ((pcg = cc->cc_current) != &pcg_dummy) {
2195 pcg->pcg_next = NULL;
2196 pool_cache_invalidate_groups(pc, pcg);
2197 }
2198 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2199 pcg->pcg_next = NULL;
2200 pool_cache_invalidate_groups(pc, pcg);
2201 }
2202 if (cc != &pc->pc_cpu0)
2203 pool_put(&cache_cpu_pool, cc);
2204
2205 }
2206
2207 void
2208 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2209 {
2210
2211 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2212 }
2213
2214 void
2215 pool_cache_setlowat(pool_cache_t pc, int n)
2216 {
2217
2218 pool_setlowat(&pc->pc_pool, n);
2219 }
2220
2221 void
2222 pool_cache_sethiwat(pool_cache_t pc, int n)
2223 {
2224
2225 pool_sethiwat(&pc->pc_pool, n);
2226 }
2227
2228 void
2229 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2230 {
2231
2232 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2233 }
2234
2235 static bool __noinline
2236 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2237 paddr_t *pap, int flags)
2238 {
2239 pcg_t *pcg, *cur;
2240 uint64_t ncsw;
2241 pool_cache_t pc;
2242 void *object;
2243
2244 KASSERT(cc->cc_current->pcg_avail == 0);
2245 KASSERT(cc->cc_previous->pcg_avail == 0);
2246
2247 pc = cc->cc_cache;
2248 cc->cc_misses++;
2249
2250 /*
2251 * Nothing was available locally. Try and grab a group
2252 * from the cache.
2253 */
2254 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2255 ncsw = curlwp->l_ncsw;
2256 mutex_enter(&pc->pc_lock);
2257 pc->pc_contended++;
2258
2259 /*
2260 * If we context switched while locking, then
2261 * our view of the per-CPU data is invalid:
2262 * retry.
2263 */
2264 if (curlwp->l_ncsw != ncsw) {
2265 mutex_exit(&pc->pc_lock);
2266 return true;
2267 }
2268 }
2269
2270 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2271 /*
2272 * If there's a full group, release our empty
2273 * group back to the cache. Install the full
2274 * group as cc_current and return.
2275 */
2276 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2277 KASSERT(cur->pcg_avail == 0);
2278 cur->pcg_next = pc->pc_emptygroups;
2279 pc->pc_emptygroups = cur;
2280 pc->pc_nempty++;
2281 }
2282 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2283 cc->cc_current = pcg;
2284 pc->pc_fullgroups = pcg->pcg_next;
2285 pc->pc_hits++;
2286 pc->pc_nfull--;
2287 mutex_exit(&pc->pc_lock);
2288 return true;
2289 }
2290
2291 /*
2292 * Nothing available locally or in cache. Take the slow
2293 * path: fetch a new object from the pool and construct
2294 * it.
2295 */
2296 pc->pc_misses++;
2297 mutex_exit(&pc->pc_lock);
2298 splx(s);
2299
2300 object = pool_get(&pc->pc_pool, flags);
2301 *objectp = object;
2302 if (__predict_false(object == NULL)) {
2303 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2304 return false;
2305 }
2306
2307 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2308 pool_put(&pc->pc_pool, object);
2309 *objectp = NULL;
2310 return false;
2311 }
2312
2313 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2314
2315 if (pap != NULL) {
2316 #ifdef POOL_VTOPHYS
2317 *pap = POOL_VTOPHYS(object);
2318 #else
2319 *pap = POOL_PADDR_INVALID;
2320 #endif
2321 }
2322
2323 FREECHECK_OUT(&pc->pc_freecheck, object);
2324 pool_redzone_fill(&pc->pc_pool, object);
2325 pool_cache_kleak_fill(pc, object);
2326 return false;
2327 }
2328
2329 /*
2330 * pool_cache_get{,_paddr}:
2331 *
2332 * Get an object from a pool cache (optionally returning
2333 * the physical address of the object).
2334 */
2335 void *
2336 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2337 {
2338 pool_cache_cpu_t *cc;
2339 pcg_t *pcg;
2340 void *object;
2341 int s;
2342
2343 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2344 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2345 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2346 "%s: [%s] is IPL_NONE, but called from interrupt context",
2347 __func__, pc->pc_pool.pr_wchan);
2348
2349 if (flags & PR_WAITOK) {
2350 ASSERT_SLEEPABLE();
2351 }
2352
2353 /* Lock out interrupts and disable preemption. */
2354 s = splvm();
2355 while (/* CONSTCOND */ true) {
2356 /* Try and allocate an object from the current group. */
2357 cc = pc->pc_cpus[curcpu()->ci_index];
2358 KASSERT(cc->cc_cache == pc);
2359 pcg = cc->cc_current;
2360 if (__predict_true(pcg->pcg_avail > 0)) {
2361 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2362 if (__predict_false(pap != NULL))
2363 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2364 #if defined(DIAGNOSTIC)
2365 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2366 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2367 KASSERT(object != NULL);
2368 #endif
2369 cc->cc_hits++;
2370 splx(s);
2371 FREECHECK_OUT(&pc->pc_freecheck, object);
2372 pool_redzone_fill(&pc->pc_pool, object);
2373 pool_cache_kleak_fill(pc, object);
2374 return object;
2375 }
2376
2377 /*
2378 * That failed. If the previous group isn't empty, swap
2379 * it with the current group and allocate from there.
2380 */
2381 pcg = cc->cc_previous;
2382 if (__predict_true(pcg->pcg_avail > 0)) {
2383 cc->cc_previous = cc->cc_current;
2384 cc->cc_current = pcg;
2385 continue;
2386 }
2387
2388 /*
2389 * Can't allocate from either group: try the slow path.
2390 * If get_slow() allocated an object for us, or if
2391 * no more objects are available, it will return false.
2392 * Otherwise, we need to retry.
2393 */
2394 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2395 break;
2396 }
2397
2398 /*
2399 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2400 * pool_cache_get can fail even in the PR_WAITOK case, if the
2401 * constructor fails.
2402 */
2403 return object;
2404 }
2405
2406 static bool __noinline
2407 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2408 {
2409 struct lwp *l = curlwp;
2410 pcg_t *pcg, *cur;
2411 uint64_t ncsw;
2412 pool_cache_t pc;
2413
2414 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2415 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2416
2417 pc = cc->cc_cache;
2418 pcg = NULL;
2419 cc->cc_misses++;
2420 ncsw = l->l_ncsw;
2421
2422 /*
2423 * If there are no empty groups in the cache then allocate one
2424 * while still unlocked.
2425 */
2426 if (__predict_false(pc->pc_emptygroups == NULL)) {
2427 if (__predict_true(!pool_cache_disable)) {
2428 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2429 }
2430 /*
2431 * If pool_get() blocked, then our view of
2432 * the per-CPU data is invalid: retry.
2433 */
2434 if (__predict_false(l->l_ncsw != ncsw)) {
2435 if (pcg != NULL) {
2436 pool_put(pc->pc_pcgpool, pcg);
2437 }
2438 return true;
2439 }
2440 if (__predict_true(pcg != NULL)) {
2441 pcg->pcg_avail = 0;
2442 pcg->pcg_size = pc->pc_pcgsize;
2443 }
2444 }
2445
2446 /* Lock the cache. */
2447 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2448 mutex_enter(&pc->pc_lock);
2449 pc->pc_contended++;
2450
2451 /*
2452 * If we context switched while locking, then our view of
2453 * the per-CPU data is invalid: retry.
2454 */
2455 if (__predict_false(l->l_ncsw != ncsw)) {
2456 mutex_exit(&pc->pc_lock);
2457 if (pcg != NULL) {
2458 pool_put(pc->pc_pcgpool, pcg);
2459 }
2460 return true;
2461 }
2462 }
2463
2464 /* If there are no empty groups in the cache then allocate one. */
2465 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2466 pcg = pc->pc_emptygroups;
2467 pc->pc_emptygroups = pcg->pcg_next;
2468 pc->pc_nempty--;
2469 }
2470
2471 /*
2472 * If there's a empty group, release our full group back
2473 * to the cache. Install the empty group to the local CPU
2474 * and return.
2475 */
2476 if (pcg != NULL) {
2477 KASSERT(pcg->pcg_avail == 0);
2478 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2479 cc->cc_previous = pcg;
2480 } else {
2481 cur = cc->cc_current;
2482 if (__predict_true(cur != &pcg_dummy)) {
2483 KASSERT(cur->pcg_avail == cur->pcg_size);
2484 cur->pcg_next = pc->pc_fullgroups;
2485 pc->pc_fullgroups = cur;
2486 pc->pc_nfull++;
2487 }
2488 cc->cc_current = pcg;
2489 }
2490 pc->pc_hits++;
2491 mutex_exit(&pc->pc_lock);
2492 return true;
2493 }
2494
2495 /*
2496 * Nothing available locally or in cache, and we didn't
2497 * allocate an empty group. Take the slow path and destroy
2498 * the object here and now.
2499 */
2500 pc->pc_misses++;
2501 mutex_exit(&pc->pc_lock);
2502 splx(s);
2503 pool_cache_destruct_object(pc, object);
2504
2505 return false;
2506 }
2507
2508 /*
2509 * pool_cache_put{,_paddr}:
2510 *
2511 * Put an object back to the pool cache (optionally caching the
2512 * physical address of the object).
2513 */
2514 void
2515 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2516 {
2517 pool_cache_cpu_t *cc;
2518 pcg_t *pcg;
2519 int s;
2520
2521 KASSERT(object != NULL);
2522 pool_cache_redzone_check(pc, object);
2523 FREECHECK_IN(&pc->pc_freecheck, object);
2524
2525 /* Lock out interrupts and disable preemption. */
2526 s = splvm();
2527 while (/* CONSTCOND */ true) {
2528 /* If the current group isn't full, release it there. */
2529 cc = pc->pc_cpus[curcpu()->ci_index];
2530 KASSERT(cc->cc_cache == pc);
2531 pcg = cc->cc_current;
2532 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2533 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2534 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2535 pcg->pcg_avail++;
2536 cc->cc_hits++;
2537 splx(s);
2538 return;
2539 }
2540
2541 /*
2542 * That failed. If the previous group isn't full, swap
2543 * it with the current group and try again.
2544 */
2545 pcg = cc->cc_previous;
2546 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2547 cc->cc_previous = cc->cc_current;
2548 cc->cc_current = pcg;
2549 continue;
2550 }
2551
2552 /*
2553 * Can't free to either group: try the slow path.
2554 * If put_slow() releases the object for us, it
2555 * will return false. Otherwise we need to retry.
2556 */
2557 if (!pool_cache_put_slow(cc, s, object))
2558 break;
2559 }
2560 }
2561
2562 /*
2563 * pool_cache_transfer:
2564 *
2565 * Transfer objects from the per-CPU cache to the global cache.
2566 * Run within a cross-call thread.
2567 */
2568 static void
2569 pool_cache_transfer(pool_cache_t pc)
2570 {
2571 pool_cache_cpu_t *cc;
2572 pcg_t *prev, *cur, **list;
2573 int s;
2574
2575 s = splvm();
2576 mutex_enter(&pc->pc_lock);
2577 cc = pc->pc_cpus[curcpu()->ci_index];
2578 cur = cc->cc_current;
2579 cc->cc_current = __UNCONST(&pcg_dummy);
2580 prev = cc->cc_previous;
2581 cc->cc_previous = __UNCONST(&pcg_dummy);
2582 if (cur != &pcg_dummy) {
2583 if (cur->pcg_avail == cur->pcg_size) {
2584 list = &pc->pc_fullgroups;
2585 pc->pc_nfull++;
2586 } else if (cur->pcg_avail == 0) {
2587 list = &pc->pc_emptygroups;
2588 pc->pc_nempty++;
2589 } else {
2590 list = &pc->pc_partgroups;
2591 pc->pc_npart++;
2592 }
2593 cur->pcg_next = *list;
2594 *list = cur;
2595 }
2596 if (prev != &pcg_dummy) {
2597 if (prev->pcg_avail == prev->pcg_size) {
2598 list = &pc->pc_fullgroups;
2599 pc->pc_nfull++;
2600 } else if (prev->pcg_avail == 0) {
2601 list = &pc->pc_emptygroups;
2602 pc->pc_nempty++;
2603 } else {
2604 list = &pc->pc_partgroups;
2605 pc->pc_npart++;
2606 }
2607 prev->pcg_next = *list;
2608 *list = prev;
2609 }
2610 mutex_exit(&pc->pc_lock);
2611 splx(s);
2612 }
2613
2614 /*
2615 * Pool backend allocators.
2616 *
2617 * Each pool has a backend allocator that handles allocation, deallocation,
2618 * and any additional draining that might be needed.
2619 *
2620 * We provide two standard allocators:
2621 *
2622 * pool_allocator_kmem - the default when no allocator is specified
2623 *
2624 * pool_allocator_nointr - used for pools that will not be accessed
2625 * in interrupt context.
2626 */
2627 void *pool_page_alloc(struct pool *, int);
2628 void pool_page_free(struct pool *, void *);
2629
2630 #ifdef POOL_SUBPAGE
2631 struct pool_allocator pool_allocator_kmem_fullpage = {
2632 .pa_alloc = pool_page_alloc,
2633 .pa_free = pool_page_free,
2634 .pa_pagesz = 0
2635 };
2636 #else
2637 struct pool_allocator pool_allocator_kmem = {
2638 .pa_alloc = pool_page_alloc,
2639 .pa_free = pool_page_free,
2640 .pa_pagesz = 0
2641 };
2642 #endif
2643
2644 #ifdef POOL_SUBPAGE
2645 struct pool_allocator pool_allocator_nointr_fullpage = {
2646 .pa_alloc = pool_page_alloc,
2647 .pa_free = pool_page_free,
2648 .pa_pagesz = 0
2649 };
2650 #else
2651 struct pool_allocator pool_allocator_nointr = {
2652 .pa_alloc = pool_page_alloc,
2653 .pa_free = pool_page_free,
2654 .pa_pagesz = 0
2655 };
2656 #endif
2657
2658 #ifdef POOL_SUBPAGE
2659 void *pool_subpage_alloc(struct pool *, int);
2660 void pool_subpage_free(struct pool *, void *);
2661
2662 struct pool_allocator pool_allocator_kmem = {
2663 .pa_alloc = pool_subpage_alloc,
2664 .pa_free = pool_subpage_free,
2665 .pa_pagesz = POOL_SUBPAGE
2666 };
2667
2668 struct pool_allocator pool_allocator_nointr = {
2669 .pa_alloc = pool_subpage_alloc,
2670 .pa_free = pool_subpage_free,
2671 .pa_pagesz = POOL_SUBPAGE
2672 };
2673 #endif /* POOL_SUBPAGE */
2674
2675 struct pool_allocator pool_allocator_big[] = {
2676 {
2677 .pa_alloc = pool_page_alloc,
2678 .pa_free = pool_page_free,
2679 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2680 },
2681 {
2682 .pa_alloc = pool_page_alloc,
2683 .pa_free = pool_page_free,
2684 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2685 },
2686 {
2687 .pa_alloc = pool_page_alloc,
2688 .pa_free = pool_page_free,
2689 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2690 },
2691 {
2692 .pa_alloc = pool_page_alloc,
2693 .pa_free = pool_page_free,
2694 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2695 },
2696 {
2697 .pa_alloc = pool_page_alloc,
2698 .pa_free = pool_page_free,
2699 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2700 },
2701 {
2702 .pa_alloc = pool_page_alloc,
2703 .pa_free = pool_page_free,
2704 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2705 },
2706 {
2707 .pa_alloc = pool_page_alloc,
2708 .pa_free = pool_page_free,
2709 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2710 },
2711 {
2712 .pa_alloc = pool_page_alloc,
2713 .pa_free = pool_page_free,
2714 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2715 }
2716 };
2717
2718 static int
2719 pool_bigidx(size_t size)
2720 {
2721 int i;
2722
2723 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2724 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2725 return i;
2726 }
2727 panic("pool item size %zu too large, use a custom allocator", size);
2728 }
2729
2730 static void *
2731 pool_allocator_alloc(struct pool *pp, int flags)
2732 {
2733 struct pool_allocator *pa = pp->pr_alloc;
2734 void *res;
2735
2736 res = (*pa->pa_alloc)(pp, flags);
2737 if (res == NULL && (flags & PR_WAITOK) == 0) {
2738 /*
2739 * We only run the drain hook here if PR_NOWAIT.
2740 * In other cases, the hook will be run in
2741 * pool_reclaim().
2742 */
2743 if (pp->pr_drain_hook != NULL) {
2744 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2745 res = (*pa->pa_alloc)(pp, flags);
2746 }
2747 }
2748 return res;
2749 }
2750
2751 static void
2752 pool_allocator_free(struct pool *pp, void *v)
2753 {
2754 struct pool_allocator *pa = pp->pr_alloc;
2755
2756 if (pp->pr_redzone) {
2757 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
2758 }
2759 (*pa->pa_free)(pp, v);
2760 }
2761
2762 void *
2763 pool_page_alloc(struct pool *pp, int flags)
2764 {
2765 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2766 vmem_addr_t va;
2767 int ret;
2768
2769 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2770 vflags | VM_INSTANTFIT, &va);
2771
2772 return ret ? NULL : (void *)va;
2773 }
2774
2775 void
2776 pool_page_free(struct pool *pp, void *v)
2777 {
2778
2779 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2780 }
2781
2782 static void *
2783 pool_page_alloc_meta(struct pool *pp, int flags)
2784 {
2785 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2786 vmem_addr_t va;
2787 int ret;
2788
2789 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2790 vflags | VM_INSTANTFIT, &va);
2791
2792 return ret ? NULL : (void *)va;
2793 }
2794
2795 static void
2796 pool_page_free_meta(struct pool *pp, void *v)
2797 {
2798
2799 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2800 }
2801
2802 #ifdef KLEAK
2803 static void
2804 pool_kleak_fill(struct pool *pp, void *p)
2805 {
2806 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2807 return;
2808 }
2809 kleak_fill_area(p, pp->pr_size);
2810 }
2811
2812 static void
2813 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2814 {
2815 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2816 return;
2817 }
2818 pool_kleak_fill(&pc->pc_pool, p);
2819 }
2820 #endif
2821
2822 #ifdef POOL_REDZONE
2823 #if defined(_LP64)
2824 # define PRIME 0x9e37fffffffc0000UL
2825 #else /* defined(_LP64) */
2826 # define PRIME 0x9e3779b1
2827 #endif /* defined(_LP64) */
2828 #define STATIC_BYTE 0xFE
2829 CTASSERT(POOL_REDZONE_SIZE > 1);
2830
2831 #ifndef KASAN
2832 static inline uint8_t
2833 pool_pattern_generate(const void *p)
2834 {
2835 return (uint8_t)(((uintptr_t)p) * PRIME
2836 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2837 }
2838 #endif
2839
2840 static void
2841 pool_redzone_init(struct pool *pp, size_t requested_size)
2842 {
2843 size_t redzsz;
2844 size_t nsz;
2845
2846 #ifdef KASAN
2847 redzsz = requested_size;
2848 kasan_add_redzone(&redzsz);
2849 redzsz -= requested_size;
2850 #else
2851 redzsz = POOL_REDZONE_SIZE;
2852 #endif
2853
2854 if (pp->pr_roflags & PR_NOTOUCH) {
2855 pp->pr_redzone = false;
2856 return;
2857 }
2858
2859 /*
2860 * We may have extended the requested size earlier; check if
2861 * there's naturally space in the padding for a red zone.
2862 */
2863 if (pp->pr_size - requested_size >= redzsz) {
2864 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2865 pp->pr_redzone = true;
2866 return;
2867 }
2868
2869 /*
2870 * No space in the natural padding; check if we can extend a
2871 * bit the size of the pool.
2872 */
2873 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2874 if (nsz <= pp->pr_alloc->pa_pagesz) {
2875 /* Ok, we can */
2876 pp->pr_size = nsz;
2877 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2878 pp->pr_redzone = true;
2879 } else {
2880 /* No space for a red zone... snif :'( */
2881 pp->pr_redzone = false;
2882 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2883 }
2884 }
2885
2886 static void
2887 pool_redzone_fill(struct pool *pp, void *p)
2888 {
2889 if (!pp->pr_redzone)
2890 return;
2891 #ifdef KASAN
2892 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
2893 #else
2894 uint8_t *cp, pat;
2895 const uint8_t *ep;
2896
2897 cp = (uint8_t *)p + pp->pr_reqsize;
2898 ep = cp + POOL_REDZONE_SIZE;
2899
2900 /*
2901 * We really don't want the first byte of the red zone to be '\0';
2902 * an off-by-one in a string may not be properly detected.
2903 */
2904 pat = pool_pattern_generate(cp);
2905 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2906 cp++;
2907
2908 while (cp < ep) {
2909 *cp = pool_pattern_generate(cp);
2910 cp++;
2911 }
2912 #endif
2913 }
2914
2915 static void
2916 pool_redzone_check(struct pool *pp, void *p)
2917 {
2918 if (!pp->pr_redzone)
2919 return;
2920 #ifdef KASAN
2921 kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
2922 #else
2923 uint8_t *cp, pat, expected;
2924 const uint8_t *ep;
2925
2926 cp = (uint8_t *)p + pp->pr_reqsize;
2927 ep = cp + POOL_REDZONE_SIZE;
2928
2929 pat = pool_pattern_generate(cp);
2930 expected = (pat == '\0') ? STATIC_BYTE: pat;
2931 if (__predict_false(expected != *cp)) {
2932 printf("%s: %p: 0x%02x != 0x%02x\n",
2933 __func__, cp, *cp, expected);
2934 }
2935 cp++;
2936
2937 while (cp < ep) {
2938 expected = pool_pattern_generate(cp);
2939 if (__predict_false(*cp != expected)) {
2940 printf("%s: %p: 0x%02x != 0x%02x\n",
2941 __func__, cp, *cp, expected);
2942 }
2943 cp++;
2944 }
2945 #endif
2946 }
2947
2948 static void
2949 pool_cache_redzone_check(pool_cache_t pc, void *p)
2950 {
2951 #ifdef KASAN
2952 /* If there is a ctor/dtor, leave the data as valid. */
2953 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2954 return;
2955 }
2956 #endif
2957 pool_redzone_check(&pc->pc_pool, p);
2958 }
2959
2960 #endif /* POOL_REDZONE */
2961
2962
2963 #ifdef POOL_SUBPAGE
2964 /* Sub-page allocator, for machines with large hardware pages. */
2965 void *
2966 pool_subpage_alloc(struct pool *pp, int flags)
2967 {
2968 return pool_get(&psppool, flags);
2969 }
2970
2971 void
2972 pool_subpage_free(struct pool *pp, void *v)
2973 {
2974 pool_put(&psppool, v);
2975 }
2976
2977 #endif /* POOL_SUBPAGE */
2978
2979 #if defined(DDB)
2980 static bool
2981 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2982 {
2983
2984 return (uintptr_t)ph->ph_page <= addr &&
2985 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2986 }
2987
2988 static bool
2989 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2990 {
2991
2992 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2993 }
2994
2995 static bool
2996 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2997 {
2998 int i;
2999
3000 if (pcg == NULL) {
3001 return false;
3002 }
3003 for (i = 0; i < pcg->pcg_avail; i++) {
3004 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3005 return true;
3006 }
3007 }
3008 return false;
3009 }
3010
3011 static bool
3012 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3013 {
3014
3015 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
3016 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3017 pool_item_bitmap_t *bitmap =
3018 ph->ph_bitmap + (idx / BITMAP_SIZE);
3019 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3020
3021 return (*bitmap & mask) == 0;
3022 } else {
3023 struct pool_item *pi;
3024
3025 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3026 if (pool_in_item(pp, pi, addr)) {
3027 return false;
3028 }
3029 }
3030 return true;
3031 }
3032 }
3033
3034 void
3035 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3036 {
3037 struct pool *pp;
3038
3039 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3040 struct pool_item_header *ph;
3041 uintptr_t item;
3042 bool allocated = true;
3043 bool incache = false;
3044 bool incpucache = false;
3045 char cpucachestr[32];
3046
3047 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3048 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3049 if (pool_in_page(pp, ph, addr)) {
3050 goto found;
3051 }
3052 }
3053 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3054 if (pool_in_page(pp, ph, addr)) {
3055 allocated =
3056 pool_allocated(pp, ph, addr);
3057 goto found;
3058 }
3059 }
3060 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3061 if (pool_in_page(pp, ph, addr)) {
3062 allocated = false;
3063 goto found;
3064 }
3065 }
3066 continue;
3067 } else {
3068 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3069 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3070 continue;
3071 }
3072 allocated = pool_allocated(pp, ph, addr);
3073 }
3074 found:
3075 if (allocated && pp->pr_cache) {
3076 pool_cache_t pc = pp->pr_cache;
3077 struct pool_cache_group *pcg;
3078 int i;
3079
3080 for (pcg = pc->pc_fullgroups; pcg != NULL;
3081 pcg = pcg->pcg_next) {
3082 if (pool_in_cg(pp, pcg, addr)) {
3083 incache = true;
3084 goto print;
3085 }
3086 }
3087 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3088 pool_cache_cpu_t *cc;
3089
3090 if ((cc = pc->pc_cpus[i]) == NULL) {
3091 continue;
3092 }
3093 if (pool_in_cg(pp, cc->cc_current, addr) ||
3094 pool_in_cg(pp, cc->cc_previous, addr)) {
3095 struct cpu_info *ci =
3096 cpu_lookup(i);
3097
3098 incpucache = true;
3099 snprintf(cpucachestr,
3100 sizeof(cpucachestr),
3101 "cached by CPU %u",
3102 ci->ci_index);
3103 goto print;
3104 }
3105 }
3106 }
3107 print:
3108 item = (uintptr_t)ph->ph_page + ph->ph_off;
3109 item = item + rounddown(addr - item, pp->pr_size);
3110 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3111 (void *)addr, item, (size_t)(addr - item),
3112 pp->pr_wchan,
3113 incpucache ? cpucachestr :
3114 incache ? "cached" : allocated ? "allocated" : "free");
3115 }
3116 }
3117 #endif /* defined(DDB) */
3118
3119 static int
3120 pool_sysctl(SYSCTLFN_ARGS)
3121 {
3122 struct pool_sysctl data;
3123 struct pool *pp;
3124 struct pool_cache *pc;
3125 pool_cache_cpu_t *cc;
3126 int error;
3127 size_t i, written;
3128
3129 if (oldp == NULL) {
3130 *oldlenp = 0;
3131 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3132 *oldlenp += sizeof(data);
3133 return 0;
3134 }
3135
3136 memset(&data, 0, sizeof(data));
3137 error = 0;
3138 written = 0;
3139 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3140 if (written + sizeof(data) > *oldlenp)
3141 break;
3142 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3143 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3144 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3145 #define COPY(field) data.field = pp->field
3146 COPY(pr_size);
3147
3148 COPY(pr_itemsperpage);
3149 COPY(pr_nitems);
3150 COPY(pr_nout);
3151 COPY(pr_hardlimit);
3152 COPY(pr_npages);
3153 COPY(pr_minpages);
3154 COPY(pr_maxpages);
3155
3156 COPY(pr_nget);
3157 COPY(pr_nfail);
3158 COPY(pr_nput);
3159 COPY(pr_npagealloc);
3160 COPY(pr_npagefree);
3161 COPY(pr_hiwat);
3162 COPY(pr_nidle);
3163 #undef COPY
3164
3165 data.pr_cache_nmiss_pcpu = 0;
3166 data.pr_cache_nhit_pcpu = 0;
3167 if (pp->pr_cache) {
3168 pc = pp->pr_cache;
3169 data.pr_cache_meta_size = pc->pc_pcgsize;
3170 data.pr_cache_nfull = pc->pc_nfull;
3171 data.pr_cache_npartial = pc->pc_npart;
3172 data.pr_cache_nempty = pc->pc_nempty;
3173 data.pr_cache_ncontended = pc->pc_contended;
3174 data.pr_cache_nmiss_global = pc->pc_misses;
3175 data.pr_cache_nhit_global = pc->pc_hits;
3176 for (i = 0; i < pc->pc_ncpu; ++i) {
3177 cc = pc->pc_cpus[i];
3178 if (cc == NULL)
3179 continue;
3180 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3181 data.pr_cache_nhit_pcpu += cc->cc_hits;
3182 }
3183 } else {
3184 data.pr_cache_meta_size = 0;
3185 data.pr_cache_nfull = 0;
3186 data.pr_cache_npartial = 0;
3187 data.pr_cache_nempty = 0;
3188 data.pr_cache_ncontended = 0;
3189 data.pr_cache_nmiss_global = 0;
3190 data.pr_cache_nhit_global = 0;
3191 }
3192
3193 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3194 if (error)
3195 break;
3196 written += sizeof(data);
3197 oldp = (char *)oldp + sizeof(data);
3198 }
3199
3200 *oldlenp = written;
3201 return error;
3202 }
3203
3204 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3205 {
3206 const struct sysctlnode *rnode = NULL;
3207
3208 sysctl_createv(clog, 0, NULL, &rnode,
3209 CTLFLAG_PERMANENT,
3210 CTLTYPE_STRUCT, "pool",
3211 SYSCTL_DESCR("Get pool statistics"),
3212 pool_sysctl, 0, NULL, 0,
3213 CTL_KERN, CTL_CREATE, CTL_EOL);
3214 }
3215