Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.24
      1 /*	$NetBSD: subr_pool.c,v 1.24 1999/04/29 17:47:19 scottr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_poollog.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/errno.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/lock.h>
     49 #include <sys/pool.h>
     50 #include <sys/syslog.h>
     51 
     52 #include <vm/vm.h>
     53 #include <vm/vm_kern.h>
     54 
     55 #include <uvm/uvm.h>
     56 
     57 /*
     58  * Pool resource management utility.
     59  *
     60  * Memory is allocated in pages which are split into pieces according
     61  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     62  * in the pool structure and the individual pool items are on a linked list
     63  * headed by `ph_itemlist' in each page header. The memory for building
     64  * the page list is either taken from the allocated pages themselves (for
     65  * small pool items) or taken from an internal pool of page headers (`phpool').
     66  */
     67 
     68 /* List of all pools */
     69 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     70 
     71 /* Private pool for page header structures */
     72 static struct pool phpool;
     73 
     74 /* # of seconds to retain page after last use */
     75 int pool_inactive_time = 10;
     76 
     77 /* Next candidate for drainage (see pool_drain()) */
     78 static struct pool	*drainpp;
     79 
     80 /* This spin lock protects both pool_head and drainpp. */
     81 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     82 
     83 struct pool_item_header {
     84 	/* Page headers */
     85 	TAILQ_ENTRY(pool_item_header)
     86 				ph_pagelist;	/* pool page list */
     87 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     88 	LIST_ENTRY(pool_item_header)
     89 				ph_hashlist;	/* Off-page page headers */
     90 	int			ph_nmissing;	/* # of chunks in use */
     91 	caddr_t			ph_page;	/* this page's address */
     92 	struct timeval		ph_time;	/* last referenced */
     93 };
     94 
     95 struct pool_item {
     96 #ifdef DIAGNOSTIC
     97 	int pi_magic;
     98 #define PI_MAGIC 0xdeadbeef
     99 #endif
    100 	/* Other entries use only this list entry */
    101 	TAILQ_ENTRY(pool_item)	pi_list;
    102 };
    103 
    104 
    105 #define PR_HASH_INDEX(pp,addr) \
    106 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    107 
    108 
    109 
    110 static struct pool_item_header
    111 		*pr_find_pagehead __P((struct pool *, caddr_t));
    112 static void	pr_rmpage __P((struct pool *, struct pool_item_header *));
    113 static int	pool_catchup __P((struct pool *));
    114 static void	pool_prime_page __P((struct pool *, caddr_t));
    115 static void	*pool_page_alloc __P((unsigned long, int, int));
    116 static void	pool_page_free __P((void *, unsigned long, int));
    117 
    118 #if defined(POOL_DIAGNOSTIC) || defined(DEBUG)
    119 static void pool_print1 __P((struct pool *, const char *));
    120 #endif
    121 
    122 #ifdef POOL_DIAGNOSTIC
    123 /*
    124  * Pool log entry. An array of these is allocated in pool_create().
    125  */
    126 struct pool_log {
    127 	const char	*pl_file;
    128 	long		pl_line;
    129 	int		pl_action;
    130 #define PRLOG_GET	1
    131 #define PRLOG_PUT	2
    132 	void		*pl_addr;
    133 };
    134 
    135 /* Number of entries in pool log buffers */
    136 #ifndef POOL_LOGSIZE
    137 #define	POOL_LOGSIZE	10
    138 #endif
    139 
    140 int pool_logsize = POOL_LOGSIZE;
    141 
    142 static void	pr_log __P((struct pool *, void *, int, const char *, long));
    143 static void	pr_printlog __P((struct pool *));
    144 
    145 static __inline__ void
    146 pr_log(pp, v, action, file, line)
    147 	struct pool	*pp;
    148 	void		*v;
    149 	int		action;
    150 	const char	*file;
    151 	long		line;
    152 {
    153 	int n = pp->pr_curlogentry;
    154 	struct pool_log *pl;
    155 
    156 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    157 		return;
    158 
    159 	/*
    160 	 * Fill in the current entry. Wrap around and overwrite
    161 	 * the oldest entry if necessary.
    162 	 */
    163 	pl = &pp->pr_log[n];
    164 	pl->pl_file = file;
    165 	pl->pl_line = line;
    166 	pl->pl_action = action;
    167 	pl->pl_addr = v;
    168 	if (++n >= pp->pr_logsize)
    169 		n = 0;
    170 	pp->pr_curlogentry = n;
    171 }
    172 
    173 static void
    174 pr_printlog(pp)
    175 	struct pool *pp;
    176 {
    177 	int i = pp->pr_logsize;
    178 	int n = pp->pr_curlogentry;
    179 
    180 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    181 		return;
    182 
    183 	pool_print1(pp, "printlog");
    184 
    185 	/*
    186 	 * Print all entries in this pool's log.
    187 	 */
    188 	while (i-- > 0) {
    189 		struct pool_log *pl = &pp->pr_log[n];
    190 		if (pl->pl_action != 0) {
    191 			printf("log entry %d:\n", i);
    192 			printf("\taction = %s, addr = %p\n",
    193 				pl->pl_action == PRLOG_GET ? "get" : "put",
    194 				pl->pl_addr);
    195 			printf("\tfile: %s at line %lu\n",
    196 				pl->pl_file, pl->pl_line);
    197 		}
    198 		if (++n >= pp->pr_logsize)
    199 			n = 0;
    200 	}
    201 }
    202 #else
    203 #define pr_log(pp, v, action, file, line)
    204 #define pr_printlog(pp)
    205 #endif
    206 
    207 
    208 /*
    209  * Return the pool page header based on page address.
    210  */
    211 static __inline__ struct pool_item_header *
    212 pr_find_pagehead(pp, page)
    213 	struct pool *pp;
    214 	caddr_t page;
    215 {
    216 	struct pool_item_header *ph;
    217 
    218 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    219 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    220 
    221 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    222 	     ph != NULL;
    223 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    224 		if (ph->ph_page == page)
    225 			return (ph);
    226 	}
    227 	return (NULL);
    228 }
    229 
    230 /*
    231  * Remove a page from the pool.
    232  */
    233 static __inline__ void
    234 pr_rmpage(pp, ph)
    235 	struct pool *pp;
    236 	struct pool_item_header *ph;
    237 {
    238 
    239 	/*
    240 	 * If the page was idle, decrement the idle page count.
    241 	 */
    242 	if (ph->ph_nmissing == 0) {
    243 #ifdef DIAGNOSTIC
    244 		if (pp->pr_nidle == 0)
    245 			panic("pr_rmpage: nidle inconsistent");
    246 		if (pp->pr_nitems < pp->pr_itemsperpage)
    247 			panic("pr_rmpage: nitems inconsistent");
    248 #endif
    249 		pp->pr_nidle--;
    250 	}
    251 
    252 	pp->pr_nitems -= pp->pr_itemsperpage;
    253 
    254 	/*
    255 	 * Unlink a page from the pool and release it.
    256 	 */
    257 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    258 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    259 	pp->pr_npages--;
    260 	pp->pr_npagefree++;
    261 
    262 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    263 		LIST_REMOVE(ph, ph_hashlist);
    264 		pool_put(&phpool, ph);
    265 	}
    266 
    267 	if (pp->pr_curpage == ph) {
    268 		/*
    269 		 * Find a new non-empty page header, if any.
    270 		 * Start search from the page head, to increase the
    271 		 * chance for "high water" pages to be freed.
    272 		 */
    273 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    274 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    275 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    276 				break;
    277 
    278 		pp->pr_curpage = ph;
    279 	}
    280 }
    281 
    282 /*
    283  * Allocate and initialize a pool.
    284  */
    285 struct pool *
    286 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
    287 	size_t	size;
    288 	u_int	align;
    289 	u_int	ioff;
    290 	int	nitems;
    291 	const char *wchan;
    292 	size_t	pagesz;
    293 	void	*(*alloc) __P((unsigned long, int, int));
    294 	void	(*release) __P((void *, unsigned long, int));
    295 	int	mtype;
    296 {
    297 	struct pool *pp;
    298 	int flags;
    299 
    300 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
    301 	if (pp == NULL)
    302 		return (NULL);
    303 
    304 	flags = PR_FREEHEADER;
    305 #ifdef POOL_DIAGNOSTIC
    306 	if (pool_logsize != 0)
    307 		flags |= PR_LOGGING;
    308 #endif
    309 
    310 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
    311 		  alloc, release, mtype);
    312 
    313 	if (nitems != 0) {
    314 		if (pool_prime(pp, nitems, NULL) != 0) {
    315 			pool_destroy(pp);
    316 			return (NULL);
    317 		}
    318 	}
    319 
    320 	return (pp);
    321 }
    322 
    323 /*
    324  * Initialize the given pool resource structure.
    325  *
    326  * We export this routine to allow other kernel parts to declare
    327  * static pools that must be initialized before malloc() is available.
    328  */
    329 void
    330 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
    331 	struct pool	*pp;
    332 	size_t		size;
    333 	u_int		align;
    334 	u_int		ioff;
    335 	int		flags;
    336 	const char	*wchan;
    337 	size_t		pagesz;
    338 	void		*(*alloc) __P((unsigned long, int, int));
    339 	void		(*release) __P((void *, unsigned long, int));
    340 	int		mtype;
    341 {
    342 	int off, slack, i;
    343 
    344 	/*
    345 	 * Check arguments and construct default values.
    346 	 */
    347 	if (!powerof2(pagesz) || pagesz > PAGE_SIZE)
    348 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    349 
    350 	if (alloc == NULL && release == NULL) {
    351 		alloc = pool_page_alloc;
    352 		release = pool_page_free;
    353 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    354 	} else if ((alloc != NULL && release != NULL) == 0) {
    355 		/* If you specifiy one, must specify both. */
    356 		panic("pool_init: must specify alloc and release together");
    357 	}
    358 
    359 	if (pagesz == 0)
    360 		pagesz = PAGE_SIZE;
    361 
    362 	if (align == 0)
    363 		align = ALIGN(1);
    364 
    365 	if (size < sizeof(struct pool_item))
    366 		size = sizeof(struct pool_item);
    367 
    368 	/*
    369 	 * Initialize the pool structure.
    370 	 */
    371 	TAILQ_INIT(&pp->pr_pagelist);
    372 	pp->pr_curpage = NULL;
    373 	pp->pr_npages = 0;
    374 	pp->pr_minitems = 0;
    375 	pp->pr_minpages = 0;
    376 	pp->pr_maxpages = UINT_MAX;
    377 	pp->pr_roflags = flags;
    378 	pp->pr_flags = 0;
    379 	pp->pr_size = ALIGN(size);
    380 	pp->pr_align = align;
    381 	pp->pr_wchan = wchan;
    382 	pp->pr_mtype = mtype;
    383 	pp->pr_alloc = alloc;
    384 	pp->pr_free = release;
    385 	pp->pr_pagesz = pagesz;
    386 	pp->pr_pagemask = ~(pagesz - 1);
    387 	pp->pr_pageshift = ffs(pagesz) - 1;
    388 	pp->pr_nitems = 0;
    389 	pp->pr_nout = 0;
    390 	pp->pr_hardlimit = UINT_MAX;
    391 	pp->pr_hardlimit_warning = NULL;
    392 	pp->pr_hardlimit_ratecap = 0;
    393 	memset(&pp->pr_hardlimit_warning_last, 0,
    394 	    sizeof(pp->pr_hardlimit_warning_last));
    395 
    396 	/*
    397 	 * Decide whether to put the page header off page to avoid
    398 	 * wasting too large a part of the page. Off-page page headers
    399 	 * go on a hash table, so we can match a returned item
    400 	 * with its header based on the page address.
    401 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    402 	 */
    403 	if (pp->pr_size < pagesz/16) {
    404 		/* Use the end of the page for the page header */
    405 		pp->pr_roflags |= PR_PHINPAGE;
    406 		pp->pr_phoffset = off =
    407 			pagesz - ALIGN(sizeof(struct pool_item_header));
    408 	} else {
    409 		/* The page header will be taken from our page header pool */
    410 		pp->pr_phoffset = 0;
    411 		off = pagesz;
    412 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    413 			LIST_INIT(&pp->pr_hashtab[i]);
    414 		}
    415 	}
    416 
    417 	/*
    418 	 * Alignment is to take place at `ioff' within the item. This means
    419 	 * we must reserve up to `align - 1' bytes on the page to allow
    420 	 * appropriate positioning of each item.
    421 	 *
    422 	 * Silently enforce `0 <= ioff < align'.
    423 	 */
    424 	pp->pr_itemoffset = ioff = ioff % align;
    425 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    426 
    427 	/*
    428 	 * Use the slack between the chunks and the page header
    429 	 * for "cache coloring".
    430 	 */
    431 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    432 	pp->pr_maxcolor = (slack / align) * align;
    433 	pp->pr_curcolor = 0;
    434 
    435 	pp->pr_nget = 0;
    436 	pp->pr_nfail = 0;
    437 	pp->pr_nput = 0;
    438 	pp->pr_npagealloc = 0;
    439 	pp->pr_npagefree = 0;
    440 	pp->pr_hiwat = 0;
    441 	pp->pr_nidle = 0;
    442 
    443 #ifdef POOL_DIAGNOSTIC
    444 	if ((flags & PR_LOGGING) != 0) {
    445 		pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    446 				    M_TEMP, M_NOWAIT);
    447 		if (pp->pr_log == NULL)
    448 			pp->pr_roflags &= ~PR_LOGGING;
    449 		pp->pr_curlogentry = 0;
    450 		pp->pr_logsize = pool_logsize;
    451 	}
    452 #endif
    453 
    454 	simple_lock_init(&pp->pr_slock);
    455 
    456 	/*
    457 	 * Initialize private page header pool if we haven't done so yet.
    458 	 * XXX LOCKING.
    459 	 */
    460 	if (phpool.pr_size == 0) {
    461 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    462 			  0, "phpool", 0, 0, 0, 0);
    463 	}
    464 
    465 	/* Insert into the list of all pools. */
    466 	simple_lock(&pool_head_slock);
    467 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    468 	simple_unlock(&pool_head_slock);
    469 }
    470 
    471 /*
    472  * De-commision a pool resource.
    473  */
    474 void
    475 pool_destroy(pp)
    476 	struct pool *pp;
    477 {
    478 	struct pool_item_header *ph;
    479 
    480 #ifdef DIAGNOSTIC
    481 	if (pp->pr_nout != 0) {
    482 		pr_printlog(pp);
    483 		panic("pool_destroy: pool busy: still out: %u\n",
    484 		    pp->pr_nout);
    485 	}
    486 #endif
    487 
    488 	/* Remove all pages */
    489 	if ((pp->pr_roflags & PR_STATIC) == 0)
    490 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    491 			pr_rmpage(pp, ph);
    492 
    493 	/* Remove from global pool list */
    494 	simple_lock(&pool_head_slock);
    495 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    496 	/* XXX Only clear this if we were drainpp? */
    497 	drainpp = NULL;
    498 	simple_unlock(&pool_head_slock);
    499 
    500 #ifdef POOL_DIAGNOSTIC
    501 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    502 		free(pp->pr_log, M_TEMP);
    503 #endif
    504 
    505 	if (pp->pr_roflags & PR_FREEHEADER)
    506 		free(pp, M_POOL);
    507 }
    508 
    509 
    510 /*
    511  * Grab an item from the pool; must be called at appropriate spl level
    512  */
    513 #ifdef POOL_DIAGNOSTIC
    514 void *
    515 _pool_get(pp, flags, file, line)
    516 	struct pool *pp;
    517 	int flags;
    518 	const char *file;
    519 	long line;
    520 #else
    521 void *
    522 pool_get(pp, flags)
    523 	struct pool *pp;
    524 	int flags;
    525 #endif
    526 {
    527 	void *v;
    528 	struct pool_item *pi;
    529 	struct pool_item_header *ph;
    530 
    531 #ifdef DIAGNOSTIC
    532 	if ((pp->pr_roflags & PR_STATIC) && (flags & PR_MALLOCOK)) {
    533 		pr_printlog(pp);
    534 		panic("pool_get: static");
    535 	}
    536 #endif
    537 
    538 	if (curproc == NULL && (flags & PR_WAITOK) != 0)
    539 		panic("pool_get: must have NOWAIT");
    540 
    541 	simple_lock(&pp->pr_slock);
    542 
    543  startover:
    544 	/*
    545 	 * Check to see if we've reached the hard limit.  If we have,
    546 	 * and we can wait, then wait until an item has been returned to
    547 	 * the pool.
    548 	 */
    549 #ifdef DIAGNOSTIC
    550 	if (pp->pr_nout > pp->pr_hardlimit) {
    551 		simple_unlock(&pp->pr_slock);
    552 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    553 	}
    554 #endif
    555 	if (pp->pr_nout == pp->pr_hardlimit) {
    556 		if (flags & PR_WAITOK) {
    557 			/*
    558 			 * XXX: A warning isn't logged in this case.  Should
    559 			 * it be?
    560 			 */
    561 			pp->pr_flags |= PR_WANTED;
    562 			simple_unlock(&pp->pr_slock);
    563 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    564 			simple_lock(&pp->pr_slock);
    565 			goto startover;
    566 		}
    567 		if (pp->pr_hardlimit_warning != NULL) {
    568 			/*
    569 			 * Log a message that the hard limit has been hit.
    570 			 */
    571 			struct timeval curtime, logdiff;
    572 			int s = splclock();
    573 			curtime = mono_time;
    574 			splx(s);
    575 			timersub(&curtime, &pp->pr_hardlimit_warning_last,
    576 			    &logdiff);
    577 			if (logdiff.tv_sec >= pp->pr_hardlimit_ratecap) {
    578 				pp->pr_hardlimit_warning_last = curtime;
    579 				log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    580 			}
    581 		}
    582 
    583 		if (flags & PR_URGENT)
    584 			panic("pool_get: urgent");
    585 
    586 		pp->pr_nfail++;
    587 
    588 		simple_unlock(&pp->pr_slock);
    589 		return (NULL);
    590 	}
    591 
    592 	/*
    593 	 * The convention we use is that if `curpage' is not NULL, then
    594 	 * it points at a non-empty bucket. In particular, `curpage'
    595 	 * never points at a page header which has PR_PHINPAGE set and
    596 	 * has no items in its bucket.
    597 	 */
    598 	if ((ph = pp->pr_curpage) == NULL) {
    599 		void *v;
    600 
    601 #ifdef DIAGNOSTIC
    602 		if (pp->pr_nitems != 0) {
    603 			simple_unlock(&pp->pr_slock);
    604 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    605 			    pp->pr_wchan, pp->pr_nitems);
    606 			panic("pool_get: nitems inconsistent\n");
    607 		}
    608 #endif
    609 
    610 		/*
    611 		 * Call the back-end page allocator for more memory.
    612 		 * Release the pool lock, as the back-end page allocator
    613 		 * may block.
    614 		 */
    615 		simple_unlock(&pp->pr_slock);
    616 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    617 		simple_lock(&pp->pr_slock);
    618 
    619 		if (v == NULL) {
    620 			/*
    621 			 * We were unable to allocate a page, but
    622 			 * we released the lock during allocation,
    623 			 * so perhaps items were freed back to the
    624 			 * pool.  Check for this case.
    625 			 */
    626 			if (pp->pr_curpage != NULL)
    627 				goto startover;
    628 
    629 			if (flags & PR_URGENT)
    630 				panic("pool_get: urgent");
    631 
    632 			if ((flags & PR_WAITOK) == 0) {
    633 				pp->pr_nfail++;
    634 				simple_unlock(&pp->pr_slock);
    635 				return (NULL);
    636 			}
    637 
    638 			/*
    639 			 * Wait for items to be returned to this pool.
    640 			 *
    641 			 * XXX: we actually want to wait just until
    642 			 * the page allocator has memory again. Depending
    643 			 * on this pool's usage, we might get stuck here
    644 			 * for a long time.
    645 			 *
    646 			 * XXX: maybe we should wake up once a second and
    647 			 * try again?
    648 			 */
    649 			pp->pr_flags |= PR_WANTED;
    650 			simple_unlock(&pp->pr_slock);
    651 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    652 			simple_lock(&pp->pr_slock);
    653 			goto startover;
    654 		}
    655 
    656 		/* We have more memory; add it to the pool */
    657 		pp->pr_npagealloc++;
    658 		pool_prime_page(pp, v);
    659 
    660 		/* Start the allocation process over. */
    661 		goto startover;
    662 	}
    663 
    664 	if ((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL) {
    665 		simple_unlock(&pp->pr_slock);
    666 		panic("pool_get: %s: page empty", pp->pr_wchan);
    667 	}
    668 #ifdef DIAGNOSTIC
    669 	if (pp->pr_nitems == 0) {
    670 		simple_unlock(&pp->pr_slock);
    671 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    672 		    pp->pr_wchan, pp->pr_nitems);
    673 		panic("pool_get: nitems inconsistent\n");
    674 	}
    675 #endif
    676 	pr_log(pp, v, PRLOG_GET, file, line);
    677 
    678 #ifdef DIAGNOSTIC
    679 	if (pi->pi_magic != PI_MAGIC) {
    680 		pr_printlog(pp);
    681 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    682 		       " item addr %p\n",
    683 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    684 	}
    685 #endif
    686 
    687 	/*
    688 	 * Remove from item list.
    689 	 */
    690 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    691 	pp->pr_nitems--;
    692 	pp->pr_nout++;
    693 	if (ph->ph_nmissing == 0) {
    694 #ifdef DIAGNOSTIC
    695 		if (pp->pr_nidle == 0)
    696 			panic("pool_get: nidle inconsistent");
    697 #endif
    698 		pp->pr_nidle--;
    699 	}
    700 	ph->ph_nmissing++;
    701 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    702 #ifdef DIAGNOSTIC
    703 		if (ph->ph_nmissing != pp->pr_itemsperpage) {
    704 			simple_unlock(&pp->pr_slock);
    705 			panic("pool_get: %s: nmissing inconsistent",
    706 			    pp->pr_wchan);
    707 		}
    708 #endif
    709 		/*
    710 		 * Find a new non-empty page header, if any.
    711 		 * Start search from the page head, to increase
    712 		 * the chance for "high water" pages to be freed.
    713 		 *
    714 		 * Migrate empty pages to the end of the list.  This
    715 		 * will speed the update of curpage as pages become
    716 		 * idle.  Empty pages intermingled with idle pages
    717 		 * is no big deal.  As soon as a page becomes un-empty,
    718 		 * it will move back to the head of the list.
    719 		 */
    720 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    721 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    722 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    723 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    724 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    725 				break;
    726 
    727 		pp->pr_curpage = ph;
    728 	}
    729 
    730 	pp->pr_nget++;
    731 
    732 	/*
    733 	 * If we have a low water mark and we are now below that low
    734 	 * water mark, add more items to the pool.
    735 	 */
    736 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
    737 		/*
    738 		 * XXX: Should we log a warning?  Should we set up a timeout
    739 		 * to try again in a second or so?  The latter could break
    740 		 * a caller's assumptions about interrupt protection, etc.
    741 		 */
    742 	}
    743 
    744 	simple_unlock(&pp->pr_slock);
    745 	return (v);
    746 }
    747 
    748 /*
    749  * Return resource to the pool; must be called at appropriate spl level
    750  */
    751 #ifdef POOL_DIAGNOSTIC
    752 void
    753 _pool_put(pp, v, file, line)
    754 	struct pool *pp;
    755 	void *v;
    756 	const char *file;
    757 	long line;
    758 #else
    759 void
    760 pool_put(pp, v)
    761 	struct pool *pp;
    762 	void *v;
    763 #endif
    764 {
    765 	struct pool_item *pi = v;
    766 	struct pool_item_header *ph;
    767 	caddr_t page;
    768 	int s;
    769 
    770 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    771 
    772 	simple_lock(&pp->pr_slock);
    773 
    774 	pr_log(pp, v, PRLOG_PUT, file, line);
    775 
    776 	if ((ph = pr_find_pagehead(pp, page)) == NULL) {
    777 		pr_printlog(pp);
    778 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    779 	}
    780 
    781 	/*
    782 	 * Return to item list.
    783 	 */
    784 #ifdef DIAGNOSTIC
    785 	pi->pi_magic = PI_MAGIC;
    786 #endif
    787 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    788 	ph->ph_nmissing--;
    789 	pp->pr_nput++;
    790 	pp->pr_nitems++;
    791 	pp->pr_nout--;
    792 
    793 	/* Cancel "pool empty" condition if it exists */
    794 	if (pp->pr_curpage == NULL)
    795 		pp->pr_curpage = ph;
    796 
    797 	if (pp->pr_flags & PR_WANTED) {
    798 		pp->pr_flags &= ~PR_WANTED;
    799 		if (ph->ph_nmissing == 0)
    800 			pp->pr_nidle++;
    801 		simple_unlock(&pp->pr_slock);
    802 		wakeup((caddr_t)pp);
    803 		return;
    804 	}
    805 
    806 	/*
    807 	 * If this page is now complete, do one of two things:
    808 	 *
    809 	 *	(1) If we have more pages than the page high water
    810 	 *	    mark, free the page back to the system.
    811 	 *
    812 	 *	(2) Move it to the end of the page list, so that
    813 	 *	    we minimize our chances of fragmenting the
    814 	 *	    pool.  Idle pages migrate to the end (along with
    815 	 *	    completely empty pages, so that we find un-empty
    816 	 *	    pages more quickly when we update curpage) of the
    817 	 *	    list so they can be more easily swept up by
    818 	 *	    the pagedaemon when pages are scarce.
    819 	 */
    820 	if (ph->ph_nmissing == 0) {
    821 		pp->pr_nidle++;
    822 		if (pp->pr_npages > pp->pr_maxpages) {
    823 			pr_rmpage(pp, ph);
    824 		} else {
    825 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    826 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    827 
    828 			/*
    829 			 * Update the timestamp on the page.  A page must
    830 			 * be idle for some period of time before it can
    831 			 * be reclaimed by the pagedaemon.  This minimizes
    832 			 * ping-pong'ing for memory.
    833 			 */
    834 			s = splclock();
    835 			ph->ph_time = mono_time;
    836 			splx(s);
    837 
    838 			/*
    839 			 * Update the current page pointer.  Just look for
    840 			 * the first page with any free items.
    841 			 *
    842 			 * XXX: Maybe we want an option to look for the
    843 			 * page with the fewest available items, to minimize
    844 			 * fragmentation?
    845 			 */
    846 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    847 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    848 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    849 					break;
    850 
    851 			pp->pr_curpage = ph;
    852 		}
    853 	}
    854 	/*
    855 	 * If the page has just become un-empty, move it to the head of
    856 	 * the list, and make it the current page.  The next allocation
    857 	 * will get the item from this page, instead of further fragmenting
    858 	 * the pool.
    859 	 */
    860 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    861 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    862 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    863 		pp->pr_curpage = ph;
    864 	}
    865 
    866 	simple_unlock(&pp->pr_slock);
    867 
    868 }
    869 
    870 /*
    871  * Add N items to the pool.
    872  */
    873 int
    874 pool_prime(pp, n, storage)
    875 	struct pool *pp;
    876 	int n;
    877 	caddr_t storage;
    878 {
    879 	caddr_t cp;
    880 	int newnitems, newpages;
    881 
    882 #ifdef DIAGNOSTIC
    883 	if (storage && !(pp->pr_roflags & PR_STATIC))
    884 		panic("pool_prime: static");
    885 	/* !storage && static caught below */
    886 #endif
    887 
    888 	simple_lock(&pp->pr_slock);
    889 
    890 	newnitems = pp->pr_minitems + n;
    891 	newpages =
    892 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
    893 		- pp->pr_minpages;
    894 
    895 	while (newpages-- > 0) {
    896 		if (pp->pr_roflags & PR_STATIC) {
    897 			cp = storage;
    898 			storage += pp->pr_pagesz;
    899 		} else {
    900 			simple_unlock(&pp->pr_slock);
    901 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
    902 			simple_lock(&pp->pr_slock);
    903 		}
    904 
    905 		if (cp == NULL) {
    906 			simple_unlock(&pp->pr_slock);
    907 			return (ENOMEM);
    908 		}
    909 
    910 		pool_prime_page(pp, cp);
    911 		pp->pr_minpages++;
    912 	}
    913 
    914 	pp->pr_minitems = newnitems;
    915 
    916 	if (pp->pr_minpages >= pp->pr_maxpages)
    917 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
    918 
    919 	simple_unlock(&pp->pr_slock);
    920 	return (0);
    921 }
    922 
    923 /*
    924  * Add a page worth of items to the pool.
    925  *
    926  * Note, we must be called with the pool descriptor LOCKED.
    927  */
    928 static void
    929 pool_prime_page(pp, storage)
    930 	struct pool *pp;
    931 	caddr_t storage;
    932 {
    933 	struct pool_item *pi;
    934 	struct pool_item_header *ph;
    935 	caddr_t cp = storage;
    936 	unsigned int align = pp->pr_align;
    937 	unsigned int ioff = pp->pr_itemoffset;
    938 	int n;
    939 
    940 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    941 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
    942 	} else {
    943 		ph = pool_get(&phpool, PR_URGENT);
    944 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
    945 				 ph, ph_hashlist);
    946 	}
    947 
    948 	/*
    949 	 * Insert page header.
    950 	 */
    951 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    952 	TAILQ_INIT(&ph->ph_itemlist);
    953 	ph->ph_page = storage;
    954 	ph->ph_nmissing = 0;
    955 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
    956 
    957 	pp->pr_nidle++;
    958 
    959 	/*
    960 	 * Color this page.
    961 	 */
    962 	cp = (caddr_t)(cp + pp->pr_curcolor);
    963 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
    964 		pp->pr_curcolor = 0;
    965 
    966 	/*
    967 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
    968 	 */
    969 	if (ioff != 0)
    970 		cp = (caddr_t)(cp + (align - ioff));
    971 
    972 	/*
    973 	 * Insert remaining chunks on the bucket list.
    974 	 */
    975 	n = pp->pr_itemsperpage;
    976 	pp->pr_nitems += n;
    977 
    978 	while (n--) {
    979 		pi = (struct pool_item *)cp;
    980 
    981 		/* Insert on page list */
    982 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
    983 #ifdef DIAGNOSTIC
    984 		pi->pi_magic = PI_MAGIC;
    985 #endif
    986 		cp = (caddr_t)(cp + pp->pr_size);
    987 	}
    988 
    989 	/*
    990 	 * If the pool was depleted, point at the new page.
    991 	 */
    992 	if (pp->pr_curpage == NULL)
    993 		pp->pr_curpage = ph;
    994 
    995 	if (++pp->pr_npages > pp->pr_hiwat)
    996 		pp->pr_hiwat = pp->pr_npages;
    997 }
    998 
    999 /*
   1000  * Like pool_prime(), except this is used by pool_get() when nitems
   1001  * drops below the low water mark.  This is used to catch up nitmes
   1002  * with the low water mark.
   1003  *
   1004  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1005  *
   1006  * Note 2, this doesn't work with static pools.
   1007  *
   1008  * Note 3, we must be called with the pool already locked, and we return
   1009  * with it locked.
   1010  */
   1011 static int
   1012 pool_catchup(pp)
   1013 	struct pool *pp;
   1014 {
   1015 	caddr_t cp;
   1016 	int error = 0;
   1017 
   1018 	if (pp->pr_roflags & PR_STATIC) {
   1019 		/*
   1020 		 * We dropped below the low water mark, and this is not a
   1021 		 * good thing.  Log a warning.
   1022 		 *
   1023 		 * XXX: rate-limit this?
   1024 		 */
   1025 		printf("WARNING: static pool `%s' dropped below low water "
   1026 		    "mark\n", pp->pr_wchan);
   1027 		return (0);
   1028 	}
   1029 
   1030 	while (pp->pr_nitems < pp->pr_minitems) {
   1031 		/*
   1032 		 * Call the page back-end allocator for more memory.
   1033 		 *
   1034 		 * XXX: We never wait, so should we bother unlocking
   1035 		 * the pool descriptor?
   1036 		 */
   1037 		simple_unlock(&pp->pr_slock);
   1038 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
   1039 		simple_lock(&pp->pr_slock);
   1040 		if (cp == NULL) {
   1041 			error = ENOMEM;
   1042 			break;
   1043 		}
   1044 		pool_prime_page(pp, cp);
   1045 	}
   1046 
   1047 	return (error);
   1048 }
   1049 
   1050 void
   1051 pool_setlowat(pp, n)
   1052 	pool_handle_t	pp;
   1053 	int n;
   1054 {
   1055 	int error;
   1056 
   1057 	simple_lock(&pp->pr_slock);
   1058 
   1059 	pp->pr_minitems = n;
   1060 	pp->pr_minpages = (n == 0)
   1061 		? 0
   1062 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1063 
   1064 	/* Make sure we're caught up with the newly-set low water mark. */
   1065 	if ((error = pool_catchup(pp)) != 0) {
   1066 		/*
   1067 		 * XXX: Should we log a warning?  Should we set up a timeout
   1068 		 * to try again in a second or so?  The latter could break
   1069 		 * a caller's assumptions about interrupt protection, etc.
   1070 		 */
   1071 	}
   1072 
   1073 	simple_unlock(&pp->pr_slock);
   1074 }
   1075 
   1076 void
   1077 pool_sethiwat(pp, n)
   1078 	pool_handle_t	pp;
   1079 	int n;
   1080 {
   1081 
   1082 	simple_lock(&pp->pr_slock);
   1083 
   1084 	pp->pr_maxpages = (n == 0)
   1085 		? 0
   1086 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1087 
   1088 	simple_unlock(&pp->pr_slock);
   1089 }
   1090 
   1091 void
   1092 pool_sethardlimit(pp, n, warnmess, ratecap)
   1093 	pool_handle_t pp;
   1094 	int n;
   1095 	const char *warnmess;
   1096 	int ratecap;
   1097 {
   1098 
   1099 	simple_lock(&pp->pr_slock);
   1100 
   1101 	pp->pr_hardlimit = n;
   1102 	pp->pr_hardlimit_warning = warnmess;
   1103 	pp->pr_hardlimit_ratecap = ratecap;
   1104 	memset(&pp->pr_hardlimit_warning_last, 0,
   1105 	    sizeof(pp->pr_hardlimit_warning_last));
   1106 
   1107 	/*
   1108 	 * In-line version of pool_sethiwat(), because we don't want to
   1109 	 * release the lock.
   1110 	 */
   1111 	pp->pr_maxpages = (n == 0)
   1112 		? 0
   1113 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1114 
   1115 	simple_unlock(&pp->pr_slock);
   1116 }
   1117 
   1118 /*
   1119  * Default page allocator.
   1120  */
   1121 static void *
   1122 pool_page_alloc(sz, flags, mtype)
   1123 	unsigned long sz;
   1124 	int flags;
   1125 	int mtype;
   1126 {
   1127 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1128 
   1129 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1130 }
   1131 
   1132 static void
   1133 pool_page_free(v, sz, mtype)
   1134 	void *v;
   1135 	unsigned long sz;
   1136 	int mtype;
   1137 {
   1138 
   1139 	uvm_km_free_poolpage((vaddr_t)v);
   1140 }
   1141 
   1142 /*
   1143  * Alternate pool page allocator for pools that know they will
   1144  * never be accessed in interrupt context.
   1145  */
   1146 void *
   1147 pool_page_alloc_nointr(sz, flags, mtype)
   1148 	unsigned long sz;
   1149 	int flags;
   1150 	int mtype;
   1151 {
   1152 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1153 
   1154 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1155 	    waitok));
   1156 }
   1157 
   1158 void
   1159 pool_page_free_nointr(v, sz, mtype)
   1160 	void *v;
   1161 	unsigned long sz;
   1162 	int mtype;
   1163 {
   1164 
   1165 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1166 }
   1167 
   1168 
   1169 /*
   1170  * Release all complete pages that have not been used recently.
   1171  */
   1172 void
   1173 pool_reclaim(pp)
   1174 	pool_handle_t pp;
   1175 {
   1176 	struct pool_item_header *ph, *phnext;
   1177 	struct timeval curtime;
   1178 	int s;
   1179 
   1180 	if (pp->pr_roflags & PR_STATIC)
   1181 		return;
   1182 
   1183 	if (simple_lock_try(&pp->pr_slock) == 0)
   1184 		return;
   1185 
   1186 	s = splclock();
   1187 	curtime = mono_time;
   1188 	splx(s);
   1189 
   1190 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1191 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1192 
   1193 		/* Check our minimum page claim */
   1194 		if (pp->pr_npages <= pp->pr_minpages)
   1195 			break;
   1196 
   1197 		if (ph->ph_nmissing == 0) {
   1198 			struct timeval diff;
   1199 			timersub(&curtime, &ph->ph_time, &diff);
   1200 			if (diff.tv_sec < pool_inactive_time)
   1201 				continue;
   1202 
   1203 			/*
   1204 			 * If freeing this page would put us below
   1205 			 * the low water mark, stop now.
   1206 			 */
   1207 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1208 			    pp->pr_minitems)
   1209 				break;
   1210 
   1211 			pr_rmpage(pp, ph);
   1212 		}
   1213 	}
   1214 
   1215 	simple_unlock(&pp->pr_slock);
   1216 }
   1217 
   1218 
   1219 /*
   1220  * Drain pools, one at a time.
   1221  *
   1222  * Note, we must never be called from an interrupt context.
   1223  */
   1224 void
   1225 pool_drain(arg)
   1226 	void *arg;
   1227 {
   1228 	struct pool *pp;
   1229 	int s;
   1230 
   1231 	s = splimp();
   1232 	simple_lock(&pool_head_slock);
   1233 
   1234 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1235 		goto out;
   1236 
   1237 	pp = drainpp;
   1238 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1239 
   1240 	pool_reclaim(pp);
   1241 
   1242  out:
   1243 	simple_unlock(&pool_head_slock);
   1244 	splx(s);
   1245 }
   1246 
   1247 
   1248 #if defined(POOL_DIAGNOSTIC) || defined(DEBUG)
   1249 /*
   1250  * Diagnostic helpers.
   1251  */
   1252 void
   1253 pool_print(pp, label)
   1254 	struct pool *pp;
   1255 	const char *label;
   1256 {
   1257 	int s;
   1258 
   1259 	s = splimp();
   1260 	simple_lock(&pp->pr_slock);
   1261 	pool_print1(pp, label);
   1262 	simple_unlock(&pp->pr_slock);
   1263 	splx(s);
   1264 }
   1265 
   1266 static void
   1267 pool_print1(pp, label)
   1268 	struct pool *pp;
   1269 	const char *label;
   1270 {
   1271 
   1272 	if (label != NULL)
   1273 		printf("%s: ", label);
   1274 
   1275 	printf("pool %s: nalloc %lu nfree %lu npagealloc %lu npagefree %lu\n"
   1276 	       "         npages %u minitems %u itemsperpage %u itemoffset %u\n"
   1277 	       "         nidle %lu\n",
   1278 		pp->pr_wchan,
   1279 		pp->pr_nget,
   1280 		pp->pr_nput,
   1281 		pp->pr_npagealloc,
   1282 		pp->pr_npagefree,
   1283 		pp->pr_npages,
   1284 		pp->pr_minitems,
   1285 		pp->pr_itemsperpage,
   1286 		pp->pr_itemoffset,
   1287 		pp->pr_nidle);
   1288 }
   1289 
   1290 int
   1291 pool_chk(pp, label)
   1292 	struct pool *pp;
   1293 	char *label;
   1294 {
   1295 	struct pool_item_header *ph;
   1296 	int r = 0;
   1297 
   1298 	simple_lock(&pp->pr_slock);
   1299 
   1300 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1301 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1302 
   1303 		struct pool_item *pi;
   1304 		int n;
   1305 		caddr_t page;
   1306 
   1307 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1308 		if (page != ph->ph_page &&
   1309 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1310 			if (label != NULL)
   1311 				printf("%s: ", label);
   1312 			printf("pool(%p:%s): page inconsistency: page %p;"
   1313 			       " at page head addr %p (p %p)\n", pp,
   1314 				pp->pr_wchan, ph->ph_page,
   1315 				ph, page);
   1316 			r++;
   1317 			goto out;
   1318 		}
   1319 
   1320 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1321 		     pi != NULL;
   1322 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1323 
   1324 #ifdef DIAGNOSTIC
   1325 			if (pi->pi_magic != PI_MAGIC) {
   1326 				if (label != NULL)
   1327 					printf("%s: ", label);
   1328 				printf("pool(%s): free list modified: magic=%x;"
   1329 				       " page %p; item ordinal %d;"
   1330 				       " addr %p (p %p)\n",
   1331 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1332 					n, pi, page);
   1333 				panic("pool");
   1334 			}
   1335 #endif
   1336 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1337 			if (page == ph->ph_page)
   1338 				continue;
   1339 
   1340 			if (label != NULL)
   1341 				printf("%s: ", label);
   1342 			printf("pool(%p:%s): page inconsistency: page %p;"
   1343 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1344 				pp->pr_wchan, ph->ph_page,
   1345 				n, pi, page);
   1346 			r++;
   1347 			goto out;
   1348 		}
   1349 	}
   1350 out:
   1351 	simple_unlock(&pp->pr_slock);
   1352 	return (r);
   1353 }
   1354 #endif /* POOL_DIAGNOSTIC || DEBUG */
   1355