subr_pool.c revision 1.240 1 /* $NetBSD: subr_pool.c,v 1.240 2019/03/17 14:52:25 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.240 2019/03/17 14:52:25 maxv Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60
61 #include <uvm/uvm_extern.h>
62
63 /*
64 * Pool resource management utility.
65 *
66 * Memory is allocated in pages which are split into pieces according to
67 * the pool item size. Each page is kept on one of three lists in the
68 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 * for empty, full and partially-full pages respectively. The individual
70 * pool items are on a linked list headed by `ph_itemlist' in each page
71 * header. The memory for building the page list is either taken from
72 * the allocated pages themselves (for small pool items) or taken from
73 * an internal pool of page headers (`phpool').
74 */
75
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78
79 /* Private pool for page header structures */
80 #define PHPOOL_MAX 8
81 static struct pool phpool[PHPOOL_MAX];
82 #define PHPOOL_FREELIST_NELEM(idx) \
83 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 # define POOL_REDZONE_SIZE 8
97 # else
98 # define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 static void pool_cache_redzone_check(pool_cache_t, void *);
104 #else
105 # define pool_redzone_init(pp, sz) __nothing
106 # define pool_redzone_fill(pp, ptr) __nothing
107 # define pool_redzone_check(pp, ptr) __nothing
108 # define pool_cache_redzone_check(pc, ptr) __nothing
109 #endif
110
111 #ifdef KLEAK
112 static void pool_kleak_fill(struct pool *, void *);
113 static void pool_cache_kleak_fill(pool_cache_t, void *);
114 #else
115 #define pool_kleak_fill(pp, ptr) __nothing
116 #define pool_cache_kleak_fill(pc, ptr) __nothing
117 #endif
118
119 #define pc_has_ctor(pc) \
120 (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
121 #define pc_has_dtor(pc) \
122 (pc->pc_dtor != (void (*)(void *, void *))nullop)
123
124 static void *pool_page_alloc_meta(struct pool *, int);
125 static void pool_page_free_meta(struct pool *, void *);
126
127 /* allocator for pool metadata */
128 struct pool_allocator pool_allocator_meta = {
129 .pa_alloc = pool_page_alloc_meta,
130 .pa_free = pool_page_free_meta,
131 .pa_pagesz = 0
132 };
133
134 #define POOL_ALLOCATOR_BIG_BASE 13
135 extern struct pool_allocator pool_allocator_big[];
136 static int pool_bigidx(size_t);
137
138 /* # of seconds to retain page after last use */
139 int pool_inactive_time = 10;
140
141 /* Next candidate for drainage (see pool_drain()) */
142 static struct pool *drainpp;
143
144 /* This lock protects both pool_head and drainpp. */
145 static kmutex_t pool_head_lock;
146 static kcondvar_t pool_busy;
147
148 /* This lock protects initialization of a potentially shared pool allocator */
149 static kmutex_t pool_allocator_lock;
150
151 typedef uint32_t pool_item_bitmap_t;
152 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
153 #define BITMAP_MASK (BITMAP_SIZE - 1)
154
155 struct pool_item_header {
156 /* Page headers */
157 LIST_ENTRY(pool_item_header)
158 ph_pagelist; /* pool page list */
159 SPLAY_ENTRY(pool_item_header)
160 ph_node; /* Off-page page headers */
161 void * ph_page; /* this page's address */
162 uint32_t ph_time; /* last referenced */
163 uint16_t ph_nmissing; /* # of chunks in use */
164 uint16_t ph_off; /* start offset in page */
165 union {
166 /* !PR_NOTOUCH */
167 struct {
168 LIST_HEAD(, pool_item)
169 phu_itemlist; /* chunk list for this page */
170 } phu_normal;
171 /* PR_NOTOUCH */
172 struct {
173 pool_item_bitmap_t phu_bitmap[1];
174 } phu_notouch;
175 } ph_u;
176 };
177 #define ph_itemlist ph_u.phu_normal.phu_itemlist
178 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
179
180 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
181
182 #if defined(DIAGNOSTIC) && !defined(KASAN)
183 #define POOL_CHECK_MAGIC
184 #endif
185
186 struct pool_item {
187 #ifdef POOL_CHECK_MAGIC
188 u_int pi_magic;
189 #endif
190 #define PI_MAGIC 0xdeaddeadU
191 /* Other entries use only this list entry */
192 LIST_ENTRY(pool_item) pi_list;
193 };
194
195 #define POOL_NEEDS_CATCHUP(pp) \
196 ((pp)->pr_nitems < (pp)->pr_minitems)
197
198 /*
199 * Pool cache management.
200 *
201 * Pool caches provide a way for constructed objects to be cached by the
202 * pool subsystem. This can lead to performance improvements by avoiding
203 * needless object construction/destruction; it is deferred until absolutely
204 * necessary.
205 *
206 * Caches are grouped into cache groups. Each cache group references up
207 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
208 * object from the pool, it calls the object's constructor and places it
209 * into a cache group. When a cache group frees an object back to the
210 * pool, it first calls the object's destructor. This allows the object
211 * to persist in constructed form while freed to the cache.
212 *
213 * The pool references each cache, so that when a pool is drained by the
214 * pagedaemon, it can drain each individual cache as well. Each time a
215 * cache is drained, the most idle cache group is freed to the pool in
216 * its entirety.
217 *
218 * Pool caches are layed on top of pools. By layering them, we can avoid
219 * the complexity of cache management for pools which would not benefit
220 * from it.
221 */
222
223 static struct pool pcg_normal_pool;
224 static struct pool pcg_large_pool;
225 static struct pool cache_pool;
226 static struct pool cache_cpu_pool;
227
228 pool_cache_t pnbuf_cache; /* pathname buffer cache */
229
230 /* List of all caches. */
231 TAILQ_HEAD(,pool_cache) pool_cache_head =
232 TAILQ_HEAD_INITIALIZER(pool_cache_head);
233
234 int pool_cache_disable; /* global disable for caching */
235 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
236
237 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
238 void *);
239 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
240 void **, paddr_t *, int);
241 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
242 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
243 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
244 static void pool_cache_transfer(pool_cache_t);
245
246 static int pool_catchup(struct pool *);
247 static void pool_prime_page(struct pool *, void *,
248 struct pool_item_header *);
249 static void pool_update_curpage(struct pool *);
250
251 static int pool_grow(struct pool *, int);
252 static void *pool_allocator_alloc(struct pool *, int);
253 static void pool_allocator_free(struct pool *, void *);
254
255 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
256 void (*)(const char *, ...) __printflike(1, 2));
257 static void pool_print1(struct pool *, const char *,
258 void (*)(const char *, ...) __printflike(1, 2));
259
260 static int pool_chk_page(struct pool *, const char *,
261 struct pool_item_header *);
262
263 /* -------------------------------------------------------------------------- */
264
265 static inline unsigned int
266 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
267 const void *v)
268 {
269 const char *cp = v;
270 unsigned int idx;
271
272 KASSERT(pp->pr_roflags & PR_NOTOUCH);
273 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
274
275 if (__predict_false(idx >= pp->pr_itemsperpage)) {
276 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
277 pp->pr_itemsperpage);
278 }
279
280 return idx;
281 }
282
283 static inline void
284 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
285 void *obj)
286 {
287 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
288 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
289 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
290
291 if (__predict_false((*bitmap & mask) != 0)) {
292 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
293 }
294
295 *bitmap |= mask;
296 }
297
298 static inline void *
299 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
300 {
301 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
302 unsigned int idx;
303 int i;
304
305 for (i = 0; ; i++) {
306 int bit;
307
308 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
309 bit = ffs32(bitmap[i]);
310 if (bit) {
311 pool_item_bitmap_t mask;
312
313 bit--;
314 idx = (i * BITMAP_SIZE) + bit;
315 mask = 1U << bit;
316 KASSERT((bitmap[i] & mask) != 0);
317 bitmap[i] &= ~mask;
318 break;
319 }
320 }
321 KASSERT(idx < pp->pr_itemsperpage);
322 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
323 }
324
325 static inline void
326 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
327 {
328 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
329 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
330 int i;
331
332 for (i = 0; i < n; i++) {
333 bitmap[i] = (pool_item_bitmap_t)-1;
334 }
335 }
336
337 /* -------------------------------------------------------------------------- */
338
339 static inline void
340 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
341 void *obj)
342 {
343 struct pool_item *pi = obj;
344
345 #ifdef POOL_CHECK_MAGIC
346 pi->pi_magic = PI_MAGIC;
347 #endif
348
349 if (pp->pr_redzone) {
350 /*
351 * Mark the pool_item as valid. The rest is already
352 * invalid.
353 */
354 kasan_mark(pi, sizeof(*pi), sizeof(*pi));
355 }
356
357 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
358 }
359
360 static inline void *
361 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
362 {
363 struct pool_item *pi;
364 void *v;
365
366 v = pi = LIST_FIRST(&ph->ph_itemlist);
367 if (__predict_false(v == NULL)) {
368 mutex_exit(&pp->pr_lock);
369 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
370 }
371 KASSERTMSG((pp->pr_nitems > 0),
372 "%s: [%s] nitems %u inconsistent on itemlist",
373 __func__, pp->pr_wchan, pp->pr_nitems);
374 #ifdef POOL_CHECK_MAGIC
375 KASSERTMSG((pi->pi_magic == PI_MAGIC),
376 "%s: [%s] free list modified: "
377 "magic=%x; page %p; item addr %p", __func__,
378 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
379 #endif
380
381 /*
382 * Remove from item list.
383 */
384 LIST_REMOVE(pi, pi_list);
385
386 return v;
387 }
388
389 /* -------------------------------------------------------------------------- */
390
391 static inline int
392 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
393 {
394
395 /*
396 * We consider pool_item_header with smaller ph_page bigger. This
397 * unnatural ordering is for the benefit of pr_find_pagehead.
398 */
399 if (a->ph_page < b->ph_page)
400 return 1;
401 else if (a->ph_page > b->ph_page)
402 return -1;
403 else
404 return 0;
405 }
406
407 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
408 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
409
410 static inline struct pool_item_header *
411 pr_find_pagehead_noalign(struct pool *pp, void *v)
412 {
413 struct pool_item_header *ph, tmp;
414
415 tmp.ph_page = (void *)(uintptr_t)v;
416 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
417 if (ph == NULL) {
418 ph = SPLAY_ROOT(&pp->pr_phtree);
419 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
420 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
421 }
422 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
423 }
424
425 return ph;
426 }
427
428 /*
429 * Return the pool page header based on item address.
430 */
431 static inline struct pool_item_header *
432 pr_find_pagehead(struct pool *pp, void *v)
433 {
434 struct pool_item_header *ph, tmp;
435
436 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
437 ph = pr_find_pagehead_noalign(pp, v);
438 } else {
439 void *page =
440 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
441
442 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
443 ph = (struct pool_item_header *)
444 ((char *)page + pp->pr_phoffset);
445 if (__predict_false((void *)ph->ph_page != page)) {
446 panic("%s: [%s] item %p not part of pool",
447 __func__, pp->pr_wchan, v);
448 }
449 if (__predict_false((char *)v < (char *)page +
450 ph->ph_off)) {
451 panic("%s: [%s] item %p below item space",
452 __func__, pp->pr_wchan, v);
453 }
454 } else {
455 tmp.ph_page = page;
456 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
457 }
458 }
459
460 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
461 ((char *)ph->ph_page <= (char *)v &&
462 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
463 return ph;
464 }
465
466 static void
467 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
468 {
469 struct pool_item_header *ph;
470
471 while ((ph = LIST_FIRST(pq)) != NULL) {
472 LIST_REMOVE(ph, ph_pagelist);
473 pool_allocator_free(pp, ph->ph_page);
474 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
475 pool_put(pp->pr_phpool, ph);
476 }
477 }
478
479 /*
480 * Remove a page from the pool.
481 */
482 static inline void
483 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
484 struct pool_pagelist *pq)
485 {
486
487 KASSERT(mutex_owned(&pp->pr_lock));
488
489 /*
490 * If the page was idle, decrement the idle page count.
491 */
492 if (ph->ph_nmissing == 0) {
493 KASSERT(pp->pr_nidle != 0);
494 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
495 "nitems=%u < itemsperpage=%u",
496 pp->pr_nitems, pp->pr_itemsperpage);
497 pp->pr_nidle--;
498 }
499
500 pp->pr_nitems -= pp->pr_itemsperpage;
501
502 /*
503 * Unlink the page from the pool and queue it for release.
504 */
505 LIST_REMOVE(ph, ph_pagelist);
506 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
507 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
508 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
509
510 pp->pr_npages--;
511 pp->pr_npagefree++;
512
513 pool_update_curpage(pp);
514 }
515
516 /*
517 * Initialize all the pools listed in the "pools" link set.
518 */
519 void
520 pool_subsystem_init(void)
521 {
522 size_t size;
523 int idx;
524
525 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
526 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
527 cv_init(&pool_busy, "poolbusy");
528
529 /*
530 * Initialize private page header pool and cache magazine pool if we
531 * haven't done so yet.
532 */
533 for (idx = 0; idx < PHPOOL_MAX; idx++) {
534 static char phpool_names[PHPOOL_MAX][6+1+6+1];
535 int nelem;
536 size_t sz;
537
538 nelem = PHPOOL_FREELIST_NELEM(idx);
539 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
540 "phpool-%d", nelem);
541 sz = sizeof(struct pool_item_header);
542 if (nelem) {
543 sz = offsetof(struct pool_item_header,
544 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
545 }
546 pool_init(&phpool[idx], sz, 0, 0, 0,
547 phpool_names[idx], &pool_allocator_meta, IPL_VM);
548 }
549 #ifdef POOL_SUBPAGE
550 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
551 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
552 #endif
553
554 size = sizeof(pcg_t) +
555 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
556 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
557 "pcgnormal", &pool_allocator_meta, IPL_VM);
558
559 size = sizeof(pcg_t) +
560 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
561 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
562 "pcglarge", &pool_allocator_meta, IPL_VM);
563
564 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
565 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
566
567 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
568 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
569 }
570
571 static inline bool
572 pool_init_is_phinpage(const struct pool *pp)
573 {
574 size_t pagesize;
575
576 if (pp->pr_roflags & PR_PHINPAGE) {
577 return true;
578 }
579 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
580 return false;
581 }
582
583 pagesize = pp->pr_alloc->pa_pagesz;
584
585 /*
586 * Threshold: the item size is below 1/16 of a page size, and below
587 * 8 times the page header size. The latter ensures we go off-page
588 * if the page header would make us waste a rather big item.
589 */
590 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
591 return true;
592 }
593
594 /* Put the header into the page if it doesn't waste any items. */
595 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
596 return true;
597 }
598
599 return false;
600 }
601
602 /*
603 * Initialize the given pool resource structure.
604 *
605 * We export this routine to allow other kernel parts to declare
606 * static pools that must be initialized before kmem(9) is available.
607 */
608 void
609 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
610 const char *wchan, struct pool_allocator *palloc, int ipl)
611 {
612 struct pool *pp1;
613 size_t prsize;
614 int itemspace, slack;
615
616 /* XXX ioff will be removed. */
617 KASSERT(ioff == 0);
618
619 #ifdef DEBUG
620 if (__predict_true(!cold))
621 mutex_enter(&pool_head_lock);
622 /*
623 * Check that the pool hasn't already been initialised and
624 * added to the list of all pools.
625 */
626 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
627 if (pp == pp1)
628 panic("%s: [%s] already initialised", __func__,
629 wchan);
630 }
631 if (__predict_true(!cold))
632 mutex_exit(&pool_head_lock);
633 #endif
634
635 if (palloc == NULL)
636 palloc = &pool_allocator_kmem;
637 #ifdef POOL_SUBPAGE
638 if (size > palloc->pa_pagesz) {
639 if (palloc == &pool_allocator_kmem)
640 palloc = &pool_allocator_kmem_fullpage;
641 else if (palloc == &pool_allocator_nointr)
642 palloc = &pool_allocator_nointr_fullpage;
643 }
644 #endif /* POOL_SUBPAGE */
645 if (!cold)
646 mutex_enter(&pool_allocator_lock);
647 if (palloc->pa_refcnt++ == 0) {
648 if (palloc->pa_pagesz == 0)
649 palloc->pa_pagesz = PAGE_SIZE;
650
651 TAILQ_INIT(&palloc->pa_list);
652
653 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
654 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
655 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
656 }
657 if (!cold)
658 mutex_exit(&pool_allocator_lock);
659
660 if (align == 0)
661 align = ALIGN(1);
662
663 prsize = size;
664 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
665 prsize = sizeof(struct pool_item);
666
667 prsize = roundup(prsize, align);
668 KASSERTMSG((prsize <= palloc->pa_pagesz),
669 "%s: [%s] pool item size (%zu) larger than page size (%u)",
670 __func__, wchan, prsize, palloc->pa_pagesz);
671
672 /*
673 * Initialize the pool structure.
674 */
675 LIST_INIT(&pp->pr_emptypages);
676 LIST_INIT(&pp->pr_fullpages);
677 LIST_INIT(&pp->pr_partpages);
678 pp->pr_cache = NULL;
679 pp->pr_curpage = NULL;
680 pp->pr_npages = 0;
681 pp->pr_minitems = 0;
682 pp->pr_minpages = 0;
683 pp->pr_maxpages = UINT_MAX;
684 pp->pr_roflags = flags;
685 pp->pr_flags = 0;
686 pp->pr_size = prsize;
687 pp->pr_reqsize = size;
688 pp->pr_align = align;
689 pp->pr_wchan = wchan;
690 pp->pr_alloc = palloc;
691 pp->pr_nitems = 0;
692 pp->pr_nout = 0;
693 pp->pr_hardlimit = UINT_MAX;
694 pp->pr_hardlimit_warning = NULL;
695 pp->pr_hardlimit_ratecap.tv_sec = 0;
696 pp->pr_hardlimit_ratecap.tv_usec = 0;
697 pp->pr_hardlimit_warning_last.tv_sec = 0;
698 pp->pr_hardlimit_warning_last.tv_usec = 0;
699 pp->pr_drain_hook = NULL;
700 pp->pr_drain_hook_arg = NULL;
701 pp->pr_freecheck = NULL;
702 pool_redzone_init(pp, size);
703 pp->pr_itemoffset = 0;
704
705 /*
706 * Decide whether to put the page header off-page to avoid wasting too
707 * large a part of the page or too big an item. Off-page page headers
708 * go on a hash table, so we can match a returned item with its header
709 * based on the page address.
710 */
711 if (pool_init_is_phinpage(pp)) {
712 /* Use the end of the page for the page header */
713 itemspace = palloc->pa_pagesz - PHSIZE;
714 pp->pr_phoffset = itemspace;
715 pp->pr_roflags |= PR_PHINPAGE;
716 } else {
717 /* The page header will be taken from our page header pool */
718 itemspace = palloc->pa_pagesz;
719 pp->pr_phoffset = 0;
720 SPLAY_INIT(&pp->pr_phtree);
721 }
722
723 pp->pr_itemsperpage = itemspace / pp->pr_size;
724 KASSERT(pp->pr_itemsperpage != 0);
725 if ((pp->pr_roflags & PR_NOTOUCH)) {
726 int idx;
727
728 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
729 idx++) {
730 /* nothing */
731 }
732 if (idx >= PHPOOL_MAX) {
733 /*
734 * if you see this panic, consider to tweak
735 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
736 */
737 panic("%s: [%s] too large itemsperpage(%d) for "
738 "PR_NOTOUCH", __func__,
739 pp->pr_wchan, pp->pr_itemsperpage);
740 }
741 pp->pr_phpool = &phpool[idx];
742 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
743 pp->pr_phpool = &phpool[0];
744 }
745 #if defined(DIAGNOSTIC)
746 else {
747 pp->pr_phpool = NULL;
748 }
749 #endif
750
751 /*
752 * Use the slack between the chunks and the page header
753 * for "cache coloring".
754 */
755 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
756 pp->pr_maxcolor = rounddown(slack, align);
757 pp->pr_curcolor = 0;
758
759 pp->pr_nget = 0;
760 pp->pr_nfail = 0;
761 pp->pr_nput = 0;
762 pp->pr_npagealloc = 0;
763 pp->pr_npagefree = 0;
764 pp->pr_hiwat = 0;
765 pp->pr_nidle = 0;
766 pp->pr_refcnt = 0;
767
768 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
769 cv_init(&pp->pr_cv, wchan);
770 pp->pr_ipl = ipl;
771
772 /* Insert into the list of all pools. */
773 if (!cold)
774 mutex_enter(&pool_head_lock);
775 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
776 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
777 break;
778 }
779 if (pp1 == NULL)
780 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
781 else
782 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
783 if (!cold)
784 mutex_exit(&pool_head_lock);
785
786 /* Insert this into the list of pools using this allocator. */
787 if (!cold)
788 mutex_enter(&palloc->pa_lock);
789 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
790 if (!cold)
791 mutex_exit(&palloc->pa_lock);
792 }
793
794 /*
795 * De-commision a pool resource.
796 */
797 void
798 pool_destroy(struct pool *pp)
799 {
800 struct pool_pagelist pq;
801 struct pool_item_header *ph;
802
803 /* Remove from global pool list */
804 mutex_enter(&pool_head_lock);
805 while (pp->pr_refcnt != 0)
806 cv_wait(&pool_busy, &pool_head_lock);
807 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
808 if (drainpp == pp)
809 drainpp = NULL;
810 mutex_exit(&pool_head_lock);
811
812 /* Remove this pool from its allocator's list of pools. */
813 mutex_enter(&pp->pr_alloc->pa_lock);
814 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
815 mutex_exit(&pp->pr_alloc->pa_lock);
816
817 mutex_enter(&pool_allocator_lock);
818 if (--pp->pr_alloc->pa_refcnt == 0)
819 mutex_destroy(&pp->pr_alloc->pa_lock);
820 mutex_exit(&pool_allocator_lock);
821
822 mutex_enter(&pp->pr_lock);
823
824 KASSERT(pp->pr_cache == NULL);
825 KASSERTMSG((pp->pr_nout == 0),
826 "%s: pool busy: still out: %u", __func__, pp->pr_nout);
827 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
828 KASSERT(LIST_EMPTY(&pp->pr_partpages));
829
830 /* Remove all pages */
831 LIST_INIT(&pq);
832 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
833 pr_rmpage(pp, ph, &pq);
834
835 mutex_exit(&pp->pr_lock);
836
837 pr_pagelist_free(pp, &pq);
838 cv_destroy(&pp->pr_cv);
839 mutex_destroy(&pp->pr_lock);
840 }
841
842 void
843 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
844 {
845
846 /* XXX no locking -- must be used just after pool_init() */
847 KASSERTMSG((pp->pr_drain_hook == NULL),
848 "%s: [%s] already set", __func__, pp->pr_wchan);
849 pp->pr_drain_hook = fn;
850 pp->pr_drain_hook_arg = arg;
851 }
852
853 static struct pool_item_header *
854 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
855 {
856 struct pool_item_header *ph;
857
858 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
859 ph = (void *)((char *)storage + pp->pr_phoffset);
860 else
861 ph = pool_get(pp->pr_phpool, flags);
862
863 return ph;
864 }
865
866 /*
867 * Grab an item from the pool.
868 */
869 void *
870 pool_get(struct pool *pp, int flags)
871 {
872 struct pool_item_header *ph;
873 void *v;
874
875 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
876 KASSERTMSG((pp->pr_itemsperpage != 0),
877 "%s: [%s] pr_itemsperpage is zero, "
878 "pool not initialized?", __func__, pp->pr_wchan);
879 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
880 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
881 "%s: [%s] is IPL_NONE, but called from interrupt context",
882 __func__, pp->pr_wchan);
883 if (flags & PR_WAITOK) {
884 ASSERT_SLEEPABLE();
885 }
886
887 mutex_enter(&pp->pr_lock);
888 startover:
889 /*
890 * Check to see if we've reached the hard limit. If we have,
891 * and we can wait, then wait until an item has been returned to
892 * the pool.
893 */
894 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
895 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
896 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
897 if (pp->pr_drain_hook != NULL) {
898 /*
899 * Since the drain hook is going to free things
900 * back to the pool, unlock, call the hook, re-lock,
901 * and check the hardlimit condition again.
902 */
903 mutex_exit(&pp->pr_lock);
904 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
905 mutex_enter(&pp->pr_lock);
906 if (pp->pr_nout < pp->pr_hardlimit)
907 goto startover;
908 }
909
910 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
911 /*
912 * XXX: A warning isn't logged in this case. Should
913 * it be?
914 */
915 pp->pr_flags |= PR_WANTED;
916 do {
917 cv_wait(&pp->pr_cv, &pp->pr_lock);
918 } while (pp->pr_flags & PR_WANTED);
919 goto startover;
920 }
921
922 /*
923 * Log a message that the hard limit has been hit.
924 */
925 if (pp->pr_hardlimit_warning != NULL &&
926 ratecheck(&pp->pr_hardlimit_warning_last,
927 &pp->pr_hardlimit_ratecap))
928 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
929
930 pp->pr_nfail++;
931
932 mutex_exit(&pp->pr_lock);
933 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
934 return NULL;
935 }
936
937 /*
938 * The convention we use is that if `curpage' is not NULL, then
939 * it points at a non-empty bucket. In particular, `curpage'
940 * never points at a page header which has PR_PHINPAGE set and
941 * has no items in its bucket.
942 */
943 if ((ph = pp->pr_curpage) == NULL) {
944 int error;
945
946 KASSERTMSG((pp->pr_nitems == 0),
947 "%s: [%s] curpage NULL, inconsistent nitems %u",
948 __func__, pp->pr_wchan, pp->pr_nitems);
949
950 /*
951 * Call the back-end page allocator for more memory.
952 * Release the pool lock, as the back-end page allocator
953 * may block.
954 */
955 error = pool_grow(pp, flags);
956 if (error != 0) {
957 /*
958 * pool_grow aborts when another thread
959 * is allocating a new page. Retry if it
960 * waited for it.
961 */
962 if (error == ERESTART)
963 goto startover;
964
965 /*
966 * We were unable to allocate a page or item
967 * header, but we released the lock during
968 * allocation, so perhaps items were freed
969 * back to the pool. Check for this case.
970 */
971 if (pp->pr_curpage != NULL)
972 goto startover;
973
974 pp->pr_nfail++;
975 mutex_exit(&pp->pr_lock);
976 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
977 return NULL;
978 }
979
980 /* Start the allocation process over. */
981 goto startover;
982 }
983 if (pp->pr_roflags & PR_NOTOUCH) {
984 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
985 "%s: %s: page empty", __func__, pp->pr_wchan);
986 v = pr_item_bitmap_get(pp, ph);
987 } else {
988 v = pr_item_linkedlist_get(pp, ph);
989 }
990 pp->pr_nitems--;
991 pp->pr_nout++;
992 if (ph->ph_nmissing == 0) {
993 KASSERT(pp->pr_nidle > 0);
994 pp->pr_nidle--;
995
996 /*
997 * This page was previously empty. Move it to the list of
998 * partially-full pages. This page is already curpage.
999 */
1000 LIST_REMOVE(ph, ph_pagelist);
1001 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1002 }
1003 ph->ph_nmissing++;
1004 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1005 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
1006 LIST_EMPTY(&ph->ph_itemlist)),
1007 "%s: [%s] nmissing (%u) inconsistent", __func__,
1008 pp->pr_wchan, ph->ph_nmissing);
1009 /*
1010 * This page is now full. Move it to the full list
1011 * and select a new current page.
1012 */
1013 LIST_REMOVE(ph, ph_pagelist);
1014 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1015 pool_update_curpage(pp);
1016 }
1017
1018 pp->pr_nget++;
1019
1020 /*
1021 * If we have a low water mark and we are now below that low
1022 * water mark, add more items to the pool.
1023 */
1024 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1025 /*
1026 * XXX: Should we log a warning? Should we set up a timeout
1027 * to try again in a second or so? The latter could break
1028 * a caller's assumptions about interrupt protection, etc.
1029 */
1030 }
1031
1032 mutex_exit(&pp->pr_lock);
1033 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1034 FREECHECK_OUT(&pp->pr_freecheck, v);
1035 pool_redzone_fill(pp, v);
1036 if (flags & PR_ZERO)
1037 memset(v, 0, pp->pr_reqsize);
1038 else
1039 pool_kleak_fill(pp, v);
1040 return v;
1041 }
1042
1043 /*
1044 * Internal version of pool_put(). Pool is already locked/entered.
1045 */
1046 static void
1047 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1048 {
1049 struct pool_item_header *ph;
1050
1051 KASSERT(mutex_owned(&pp->pr_lock));
1052 pool_redzone_check(pp, v);
1053 FREECHECK_IN(&pp->pr_freecheck, v);
1054 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1055
1056 KASSERTMSG((pp->pr_nout > 0),
1057 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1058
1059 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1060 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1061 }
1062
1063 /*
1064 * Return to item list.
1065 */
1066 if (pp->pr_roflags & PR_NOTOUCH) {
1067 pr_item_bitmap_put(pp, ph, v);
1068 } else {
1069 pr_item_linkedlist_put(pp, ph, v);
1070 }
1071 KDASSERT(ph->ph_nmissing != 0);
1072 ph->ph_nmissing--;
1073 pp->pr_nput++;
1074 pp->pr_nitems++;
1075 pp->pr_nout--;
1076
1077 /* Cancel "pool empty" condition if it exists */
1078 if (pp->pr_curpage == NULL)
1079 pp->pr_curpage = ph;
1080
1081 if (pp->pr_flags & PR_WANTED) {
1082 pp->pr_flags &= ~PR_WANTED;
1083 cv_broadcast(&pp->pr_cv);
1084 }
1085
1086 /*
1087 * If this page is now empty, do one of two things:
1088 *
1089 * (1) If we have more pages than the page high water mark,
1090 * free the page back to the system. ONLY CONSIDER
1091 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1092 * CLAIM.
1093 *
1094 * (2) Otherwise, move the page to the empty page list.
1095 *
1096 * Either way, select a new current page (so we use a partially-full
1097 * page if one is available).
1098 */
1099 if (ph->ph_nmissing == 0) {
1100 pp->pr_nidle++;
1101 if (pp->pr_npages > pp->pr_minpages &&
1102 pp->pr_npages > pp->pr_maxpages) {
1103 pr_rmpage(pp, ph, pq);
1104 } else {
1105 LIST_REMOVE(ph, ph_pagelist);
1106 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1107
1108 /*
1109 * Update the timestamp on the page. A page must
1110 * be idle for some period of time before it can
1111 * be reclaimed by the pagedaemon. This minimizes
1112 * ping-pong'ing for memory.
1113 *
1114 * note for 64-bit time_t: truncating to 32-bit is not
1115 * a problem for our usage.
1116 */
1117 ph->ph_time = time_uptime;
1118 }
1119 pool_update_curpage(pp);
1120 }
1121
1122 /*
1123 * If the page was previously completely full, move it to the
1124 * partially-full list and make it the current page. The next
1125 * allocation will get the item from this page, instead of
1126 * further fragmenting the pool.
1127 */
1128 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1129 LIST_REMOVE(ph, ph_pagelist);
1130 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1131 pp->pr_curpage = ph;
1132 }
1133 }
1134
1135 void
1136 pool_put(struct pool *pp, void *v)
1137 {
1138 struct pool_pagelist pq;
1139
1140 LIST_INIT(&pq);
1141
1142 mutex_enter(&pp->pr_lock);
1143 pool_do_put(pp, v, &pq);
1144 mutex_exit(&pp->pr_lock);
1145
1146 pr_pagelist_free(pp, &pq);
1147 }
1148
1149 /*
1150 * pool_grow: grow a pool by a page.
1151 *
1152 * => called with pool locked.
1153 * => unlock and relock the pool.
1154 * => return with pool locked.
1155 */
1156
1157 static int
1158 pool_grow(struct pool *pp, int flags)
1159 {
1160 struct pool_item_header *ph;
1161 char *storage;
1162
1163 /*
1164 * If there's a pool_grow in progress, wait for it to complete
1165 * and try again from the top.
1166 */
1167 if (pp->pr_flags & PR_GROWING) {
1168 if (flags & PR_WAITOK) {
1169 do {
1170 cv_wait(&pp->pr_cv, &pp->pr_lock);
1171 } while (pp->pr_flags & PR_GROWING);
1172 return ERESTART;
1173 } else {
1174 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1175 /*
1176 * This needs an unlock/relock dance so
1177 * that the other caller has a chance to
1178 * run and actually do the thing. Note
1179 * that this is effectively a busy-wait.
1180 */
1181 mutex_exit(&pp->pr_lock);
1182 mutex_enter(&pp->pr_lock);
1183 return ERESTART;
1184 }
1185 return EWOULDBLOCK;
1186 }
1187 }
1188 pp->pr_flags |= PR_GROWING;
1189 if (flags & PR_WAITOK)
1190 mutex_exit(&pp->pr_lock);
1191 else
1192 pp->pr_flags |= PR_GROWINGNOWAIT;
1193
1194 storage = pool_allocator_alloc(pp, flags);
1195 if (__predict_false(storage == NULL))
1196 goto out;
1197
1198 ph = pool_alloc_item_header(pp, storage, flags);
1199 if (__predict_false(ph == NULL)) {
1200 pool_allocator_free(pp, storage);
1201 goto out;
1202 }
1203
1204 if (flags & PR_WAITOK)
1205 mutex_enter(&pp->pr_lock);
1206 pool_prime_page(pp, storage, ph);
1207 pp->pr_npagealloc++;
1208 KASSERT(pp->pr_flags & PR_GROWING);
1209 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1210 /*
1211 * If anyone was waiting for pool_grow, notify them that we
1212 * may have just done it.
1213 */
1214 cv_broadcast(&pp->pr_cv);
1215 return 0;
1216 out:
1217 if (flags & PR_WAITOK)
1218 mutex_enter(&pp->pr_lock);
1219 KASSERT(pp->pr_flags & PR_GROWING);
1220 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1221 return ENOMEM;
1222 }
1223
1224 /*
1225 * Add N items to the pool.
1226 */
1227 int
1228 pool_prime(struct pool *pp, int n)
1229 {
1230 int newpages;
1231 int error = 0;
1232
1233 mutex_enter(&pp->pr_lock);
1234
1235 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1236
1237 while (newpages > 0) {
1238 error = pool_grow(pp, PR_NOWAIT);
1239 if (error) {
1240 if (error == ERESTART)
1241 continue;
1242 break;
1243 }
1244 pp->pr_minpages++;
1245 newpages--;
1246 }
1247
1248 if (pp->pr_minpages >= pp->pr_maxpages)
1249 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1250
1251 mutex_exit(&pp->pr_lock);
1252 return error;
1253 }
1254
1255 /*
1256 * Add a page worth of items to the pool.
1257 *
1258 * Note, we must be called with the pool descriptor LOCKED.
1259 */
1260 static void
1261 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1262 {
1263 const unsigned int align = pp->pr_align;
1264 struct pool_item *pi;
1265 void *cp = storage;
1266 int n;
1267
1268 KASSERT(mutex_owned(&pp->pr_lock));
1269 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1270 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1271 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1272
1273 /*
1274 * Insert page header.
1275 */
1276 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1277 LIST_INIT(&ph->ph_itemlist);
1278 ph->ph_page = storage;
1279 ph->ph_nmissing = 0;
1280 ph->ph_time = time_uptime;
1281 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1282 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1283
1284 pp->pr_nidle++;
1285
1286 /*
1287 * Color this page.
1288 */
1289 ph->ph_off = pp->pr_curcolor;
1290 cp = (char *)cp + ph->ph_off;
1291 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1292 pp->pr_curcolor = 0;
1293
1294 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1295
1296 /*
1297 * Insert remaining chunks on the bucket list.
1298 */
1299 n = pp->pr_itemsperpage;
1300 pp->pr_nitems += n;
1301
1302 if (pp->pr_roflags & PR_NOTOUCH) {
1303 pr_item_bitmap_init(pp, ph);
1304 } else {
1305 while (n--) {
1306 pi = (struct pool_item *)cp;
1307
1308 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1309
1310 /* Insert on page list */
1311 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1312 #ifdef POOL_CHECK_MAGIC
1313 pi->pi_magic = PI_MAGIC;
1314 #endif
1315 cp = (char *)cp + pp->pr_size;
1316
1317 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1318 }
1319 }
1320
1321 /*
1322 * If the pool was depleted, point at the new page.
1323 */
1324 if (pp->pr_curpage == NULL)
1325 pp->pr_curpage = ph;
1326
1327 if (++pp->pr_npages > pp->pr_hiwat)
1328 pp->pr_hiwat = pp->pr_npages;
1329 }
1330
1331 /*
1332 * Used by pool_get() when nitems drops below the low water mark. This
1333 * is used to catch up pr_nitems with the low water mark.
1334 *
1335 * Note 1, we never wait for memory here, we let the caller decide what to do.
1336 *
1337 * Note 2, we must be called with the pool already locked, and we return
1338 * with it locked.
1339 */
1340 static int
1341 pool_catchup(struct pool *pp)
1342 {
1343 int error = 0;
1344
1345 while (POOL_NEEDS_CATCHUP(pp)) {
1346 error = pool_grow(pp, PR_NOWAIT);
1347 if (error) {
1348 if (error == ERESTART)
1349 continue;
1350 break;
1351 }
1352 }
1353 return error;
1354 }
1355
1356 static void
1357 pool_update_curpage(struct pool *pp)
1358 {
1359
1360 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1361 if (pp->pr_curpage == NULL) {
1362 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1363 }
1364 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1365 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1366 }
1367
1368 void
1369 pool_setlowat(struct pool *pp, int n)
1370 {
1371
1372 mutex_enter(&pp->pr_lock);
1373
1374 pp->pr_minitems = n;
1375 pp->pr_minpages = (n == 0)
1376 ? 0
1377 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1378
1379 /* Make sure we're caught up with the newly-set low water mark. */
1380 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1381 /*
1382 * XXX: Should we log a warning? Should we set up a timeout
1383 * to try again in a second or so? The latter could break
1384 * a caller's assumptions about interrupt protection, etc.
1385 */
1386 }
1387
1388 mutex_exit(&pp->pr_lock);
1389 }
1390
1391 void
1392 pool_sethiwat(struct pool *pp, int n)
1393 {
1394
1395 mutex_enter(&pp->pr_lock);
1396
1397 pp->pr_maxpages = (n == 0)
1398 ? 0
1399 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1400
1401 mutex_exit(&pp->pr_lock);
1402 }
1403
1404 void
1405 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1406 {
1407
1408 mutex_enter(&pp->pr_lock);
1409
1410 pp->pr_hardlimit = n;
1411 pp->pr_hardlimit_warning = warnmess;
1412 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1413 pp->pr_hardlimit_warning_last.tv_sec = 0;
1414 pp->pr_hardlimit_warning_last.tv_usec = 0;
1415
1416 /*
1417 * In-line version of pool_sethiwat(), because we don't want to
1418 * release the lock.
1419 */
1420 pp->pr_maxpages = (n == 0)
1421 ? 0
1422 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1423
1424 mutex_exit(&pp->pr_lock);
1425 }
1426
1427 /*
1428 * Release all complete pages that have not been used recently.
1429 *
1430 * Must not be called from interrupt context.
1431 */
1432 int
1433 pool_reclaim(struct pool *pp)
1434 {
1435 struct pool_item_header *ph, *phnext;
1436 struct pool_pagelist pq;
1437 uint32_t curtime;
1438 bool klock;
1439 int rv;
1440
1441 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1442
1443 if (pp->pr_drain_hook != NULL) {
1444 /*
1445 * The drain hook must be called with the pool unlocked.
1446 */
1447 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1448 }
1449
1450 /*
1451 * XXXSMP Because we do not want to cause non-MPSAFE code
1452 * to block.
1453 */
1454 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1455 pp->pr_ipl == IPL_SOFTSERIAL) {
1456 KERNEL_LOCK(1, NULL);
1457 klock = true;
1458 } else
1459 klock = false;
1460
1461 /* Reclaim items from the pool's cache (if any). */
1462 if (pp->pr_cache != NULL)
1463 pool_cache_invalidate(pp->pr_cache);
1464
1465 if (mutex_tryenter(&pp->pr_lock) == 0) {
1466 if (klock) {
1467 KERNEL_UNLOCK_ONE(NULL);
1468 }
1469 return 0;
1470 }
1471
1472 LIST_INIT(&pq);
1473
1474 curtime = time_uptime;
1475
1476 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1477 phnext = LIST_NEXT(ph, ph_pagelist);
1478
1479 /* Check our minimum page claim */
1480 if (pp->pr_npages <= pp->pr_minpages)
1481 break;
1482
1483 KASSERT(ph->ph_nmissing == 0);
1484 if (curtime - ph->ph_time < pool_inactive_time)
1485 continue;
1486
1487 /*
1488 * If freeing this page would put us below
1489 * the low water mark, stop now.
1490 */
1491 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1492 pp->pr_minitems)
1493 break;
1494
1495 pr_rmpage(pp, ph, &pq);
1496 }
1497
1498 mutex_exit(&pp->pr_lock);
1499
1500 if (LIST_EMPTY(&pq))
1501 rv = 0;
1502 else {
1503 pr_pagelist_free(pp, &pq);
1504 rv = 1;
1505 }
1506
1507 if (klock) {
1508 KERNEL_UNLOCK_ONE(NULL);
1509 }
1510
1511 return rv;
1512 }
1513
1514 /*
1515 * Drain pools, one at a time. The drained pool is returned within ppp.
1516 *
1517 * Note, must never be called from interrupt context.
1518 */
1519 bool
1520 pool_drain(struct pool **ppp)
1521 {
1522 bool reclaimed;
1523 struct pool *pp;
1524
1525 KASSERT(!TAILQ_EMPTY(&pool_head));
1526
1527 pp = NULL;
1528
1529 /* Find next pool to drain, and add a reference. */
1530 mutex_enter(&pool_head_lock);
1531 do {
1532 if (drainpp == NULL) {
1533 drainpp = TAILQ_FIRST(&pool_head);
1534 }
1535 if (drainpp != NULL) {
1536 pp = drainpp;
1537 drainpp = TAILQ_NEXT(pp, pr_poollist);
1538 }
1539 /*
1540 * Skip completely idle pools. We depend on at least
1541 * one pool in the system being active.
1542 */
1543 } while (pp == NULL || pp->pr_npages == 0);
1544 pp->pr_refcnt++;
1545 mutex_exit(&pool_head_lock);
1546
1547 /* Drain the cache (if any) and pool.. */
1548 reclaimed = pool_reclaim(pp);
1549
1550 /* Finally, unlock the pool. */
1551 mutex_enter(&pool_head_lock);
1552 pp->pr_refcnt--;
1553 cv_broadcast(&pool_busy);
1554 mutex_exit(&pool_head_lock);
1555
1556 if (ppp != NULL)
1557 *ppp = pp;
1558
1559 return reclaimed;
1560 }
1561
1562 /*
1563 * Calculate the total number of pages consumed by pools.
1564 */
1565 int
1566 pool_totalpages(void)
1567 {
1568 struct pool *pp;
1569 uint64_t total = 0;
1570
1571 mutex_enter(&pool_head_lock);
1572 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1573 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1574
1575 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1576 bytes -= (pp->pr_nout * pp->pr_size);
1577 total += bytes;
1578 }
1579 mutex_exit(&pool_head_lock);
1580
1581 return atop(total);
1582 }
1583
1584 /*
1585 * Diagnostic helpers.
1586 */
1587
1588 void
1589 pool_printall(const char *modif, void (*pr)(const char *, ...))
1590 {
1591 struct pool *pp;
1592
1593 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1594 pool_printit(pp, modif, pr);
1595 }
1596 }
1597
1598 void
1599 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1600 {
1601
1602 if (pp == NULL) {
1603 (*pr)("Must specify a pool to print.\n");
1604 return;
1605 }
1606
1607 pool_print1(pp, modif, pr);
1608 }
1609
1610 static void
1611 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1612 void (*pr)(const char *, ...))
1613 {
1614 struct pool_item_header *ph;
1615
1616 LIST_FOREACH(ph, pl, ph_pagelist) {
1617 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1618 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1619 #ifdef POOL_CHECK_MAGIC
1620 struct pool_item *pi;
1621 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1622 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1623 if (pi->pi_magic != PI_MAGIC) {
1624 (*pr)("\t\t\titem %p, magic 0x%x\n",
1625 pi, pi->pi_magic);
1626 }
1627 }
1628 }
1629 #endif
1630 }
1631 }
1632
1633 static void
1634 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1635 {
1636 struct pool_item_header *ph;
1637 pool_cache_t pc;
1638 pcg_t *pcg;
1639 pool_cache_cpu_t *cc;
1640 uint64_t cpuhit, cpumiss;
1641 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1642 char c;
1643
1644 while ((c = *modif++) != '\0') {
1645 if (c == 'l')
1646 print_log = 1;
1647 if (c == 'p')
1648 print_pagelist = 1;
1649 if (c == 'c')
1650 print_cache = 1;
1651 }
1652
1653 if ((pc = pp->pr_cache) != NULL) {
1654 (*pr)("POOL CACHE");
1655 } else {
1656 (*pr)("POOL");
1657 }
1658
1659 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1660 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1661 pp->pr_roflags);
1662 (*pr)("\talloc %p\n", pp->pr_alloc);
1663 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1664 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1665 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1666 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1667
1668 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1669 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1670 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1671 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1672
1673 if (print_pagelist == 0)
1674 goto skip_pagelist;
1675
1676 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1677 (*pr)("\n\tempty page list:\n");
1678 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1679 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1680 (*pr)("\n\tfull page list:\n");
1681 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1682 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1683 (*pr)("\n\tpartial-page list:\n");
1684 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1685
1686 if (pp->pr_curpage == NULL)
1687 (*pr)("\tno current page\n");
1688 else
1689 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1690
1691 skip_pagelist:
1692 if (print_log == 0)
1693 goto skip_log;
1694
1695 (*pr)("\n");
1696
1697 skip_log:
1698
1699 #define PR_GROUPLIST(pcg) \
1700 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1701 for (i = 0; i < pcg->pcg_size; i++) { \
1702 if (pcg->pcg_objects[i].pcgo_pa != \
1703 POOL_PADDR_INVALID) { \
1704 (*pr)("\t\t\t%p, 0x%llx\n", \
1705 pcg->pcg_objects[i].pcgo_va, \
1706 (unsigned long long) \
1707 pcg->pcg_objects[i].pcgo_pa); \
1708 } else { \
1709 (*pr)("\t\t\t%p\n", \
1710 pcg->pcg_objects[i].pcgo_va); \
1711 } \
1712 }
1713
1714 if (pc != NULL) {
1715 cpuhit = 0;
1716 cpumiss = 0;
1717 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1718 if ((cc = pc->pc_cpus[i]) == NULL)
1719 continue;
1720 cpuhit += cc->cc_hits;
1721 cpumiss += cc->cc_misses;
1722 }
1723 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1724 (*pr)("\tcache layer hits %llu misses %llu\n",
1725 pc->pc_hits, pc->pc_misses);
1726 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1727 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1728 pc->pc_contended);
1729 (*pr)("\tcache layer empty groups %u full groups %u\n",
1730 pc->pc_nempty, pc->pc_nfull);
1731 if (print_cache) {
1732 (*pr)("\tfull cache groups:\n");
1733 for (pcg = pc->pc_fullgroups; pcg != NULL;
1734 pcg = pcg->pcg_next) {
1735 PR_GROUPLIST(pcg);
1736 }
1737 (*pr)("\tempty cache groups:\n");
1738 for (pcg = pc->pc_emptygroups; pcg != NULL;
1739 pcg = pcg->pcg_next) {
1740 PR_GROUPLIST(pcg);
1741 }
1742 }
1743 }
1744 #undef PR_GROUPLIST
1745 }
1746
1747 static int
1748 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1749 {
1750 struct pool_item *pi;
1751 void *page;
1752 int n;
1753
1754 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1755 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1756 if (page != ph->ph_page &&
1757 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1758 if (label != NULL)
1759 printf("%s: ", label);
1760 printf("pool(%p:%s): page inconsistency: page %p;"
1761 " at page head addr %p (p %p)\n", pp,
1762 pp->pr_wchan, ph->ph_page,
1763 ph, page);
1764 return 1;
1765 }
1766 }
1767
1768 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1769 return 0;
1770
1771 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1772 pi != NULL;
1773 pi = LIST_NEXT(pi,pi_list), n++) {
1774
1775 #ifdef POOL_CHECK_MAGIC
1776 if (pi->pi_magic != PI_MAGIC) {
1777 if (label != NULL)
1778 printf("%s: ", label);
1779 printf("pool(%s): free list modified: magic=%x;"
1780 " page %p; item ordinal %d; addr %p\n",
1781 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1782 n, pi);
1783 panic("pool");
1784 }
1785 #endif
1786 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1787 continue;
1788 }
1789 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1790 if (page == ph->ph_page)
1791 continue;
1792
1793 if (label != NULL)
1794 printf("%s: ", label);
1795 printf("pool(%p:%s): page inconsistency: page %p;"
1796 " item ordinal %d; addr %p (p %p)\n", pp,
1797 pp->pr_wchan, ph->ph_page,
1798 n, pi, page);
1799 return 1;
1800 }
1801 return 0;
1802 }
1803
1804
1805 int
1806 pool_chk(struct pool *pp, const char *label)
1807 {
1808 struct pool_item_header *ph;
1809 int r = 0;
1810
1811 mutex_enter(&pp->pr_lock);
1812 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1813 r = pool_chk_page(pp, label, ph);
1814 if (r) {
1815 goto out;
1816 }
1817 }
1818 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1819 r = pool_chk_page(pp, label, ph);
1820 if (r) {
1821 goto out;
1822 }
1823 }
1824 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1825 r = pool_chk_page(pp, label, ph);
1826 if (r) {
1827 goto out;
1828 }
1829 }
1830
1831 out:
1832 mutex_exit(&pp->pr_lock);
1833 return r;
1834 }
1835
1836 /*
1837 * pool_cache_init:
1838 *
1839 * Initialize a pool cache.
1840 */
1841 pool_cache_t
1842 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1843 const char *wchan, struct pool_allocator *palloc, int ipl,
1844 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1845 {
1846 pool_cache_t pc;
1847
1848 pc = pool_get(&cache_pool, PR_WAITOK);
1849 if (pc == NULL)
1850 return NULL;
1851
1852 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1853 palloc, ipl, ctor, dtor, arg);
1854
1855 return pc;
1856 }
1857
1858 /*
1859 * pool_cache_bootstrap:
1860 *
1861 * Kernel-private version of pool_cache_init(). The caller
1862 * provides initial storage.
1863 */
1864 void
1865 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1866 u_int align_offset, u_int flags, const char *wchan,
1867 struct pool_allocator *palloc, int ipl,
1868 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1869 void *arg)
1870 {
1871 CPU_INFO_ITERATOR cii;
1872 pool_cache_t pc1;
1873 struct cpu_info *ci;
1874 struct pool *pp;
1875
1876 pp = &pc->pc_pool;
1877 if (palloc == NULL && ipl == IPL_NONE) {
1878 if (size > PAGE_SIZE) {
1879 int bigidx = pool_bigidx(size);
1880
1881 palloc = &pool_allocator_big[bigidx];
1882 } else
1883 palloc = &pool_allocator_nointr;
1884 }
1885 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1886 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1887
1888 if (ctor == NULL) {
1889 ctor = (int (*)(void *, void *, int))nullop;
1890 }
1891 if (dtor == NULL) {
1892 dtor = (void (*)(void *, void *))nullop;
1893 }
1894
1895 pc->pc_emptygroups = NULL;
1896 pc->pc_fullgroups = NULL;
1897 pc->pc_partgroups = NULL;
1898 pc->pc_ctor = ctor;
1899 pc->pc_dtor = dtor;
1900 pc->pc_arg = arg;
1901 pc->pc_hits = 0;
1902 pc->pc_misses = 0;
1903 pc->pc_nempty = 0;
1904 pc->pc_npart = 0;
1905 pc->pc_nfull = 0;
1906 pc->pc_contended = 0;
1907 pc->pc_refcnt = 0;
1908 pc->pc_freecheck = NULL;
1909
1910 if ((flags & PR_LARGECACHE) != 0) {
1911 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1912 pc->pc_pcgpool = &pcg_large_pool;
1913 } else {
1914 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1915 pc->pc_pcgpool = &pcg_normal_pool;
1916 }
1917
1918 /* Allocate per-CPU caches. */
1919 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1920 pc->pc_ncpu = 0;
1921 if (ncpu < 2) {
1922 /* XXX For sparc: boot CPU is not attached yet. */
1923 pool_cache_cpu_init1(curcpu(), pc);
1924 } else {
1925 for (CPU_INFO_FOREACH(cii, ci)) {
1926 pool_cache_cpu_init1(ci, pc);
1927 }
1928 }
1929
1930 /* Add to list of all pools. */
1931 if (__predict_true(!cold))
1932 mutex_enter(&pool_head_lock);
1933 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1934 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1935 break;
1936 }
1937 if (pc1 == NULL)
1938 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1939 else
1940 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1941 if (__predict_true(!cold))
1942 mutex_exit(&pool_head_lock);
1943
1944 membar_sync();
1945 pp->pr_cache = pc;
1946 }
1947
1948 /*
1949 * pool_cache_destroy:
1950 *
1951 * Destroy a pool cache.
1952 */
1953 void
1954 pool_cache_destroy(pool_cache_t pc)
1955 {
1956
1957 pool_cache_bootstrap_destroy(pc);
1958 pool_put(&cache_pool, pc);
1959 }
1960
1961 /*
1962 * pool_cache_bootstrap_destroy:
1963 *
1964 * Destroy a pool cache.
1965 */
1966 void
1967 pool_cache_bootstrap_destroy(pool_cache_t pc)
1968 {
1969 struct pool *pp = &pc->pc_pool;
1970 u_int i;
1971
1972 /* Remove it from the global list. */
1973 mutex_enter(&pool_head_lock);
1974 while (pc->pc_refcnt != 0)
1975 cv_wait(&pool_busy, &pool_head_lock);
1976 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1977 mutex_exit(&pool_head_lock);
1978
1979 /* First, invalidate the entire cache. */
1980 pool_cache_invalidate(pc);
1981
1982 /* Disassociate it from the pool. */
1983 mutex_enter(&pp->pr_lock);
1984 pp->pr_cache = NULL;
1985 mutex_exit(&pp->pr_lock);
1986
1987 /* Destroy per-CPU data */
1988 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1989 pool_cache_invalidate_cpu(pc, i);
1990
1991 /* Finally, destroy it. */
1992 mutex_destroy(&pc->pc_lock);
1993 pool_destroy(pp);
1994 }
1995
1996 /*
1997 * pool_cache_cpu_init1:
1998 *
1999 * Called for each pool_cache whenever a new CPU is attached.
2000 */
2001 static void
2002 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2003 {
2004 pool_cache_cpu_t *cc;
2005 int index;
2006
2007 index = ci->ci_index;
2008
2009 KASSERT(index < __arraycount(pc->pc_cpus));
2010
2011 if ((cc = pc->pc_cpus[index]) != NULL) {
2012 KASSERT(cc->cc_cpuindex == index);
2013 return;
2014 }
2015
2016 /*
2017 * The first CPU is 'free'. This needs to be the case for
2018 * bootstrap - we may not be able to allocate yet.
2019 */
2020 if (pc->pc_ncpu == 0) {
2021 cc = &pc->pc_cpu0;
2022 pc->pc_ncpu = 1;
2023 } else {
2024 mutex_enter(&pc->pc_lock);
2025 pc->pc_ncpu++;
2026 mutex_exit(&pc->pc_lock);
2027 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2028 }
2029
2030 cc->cc_ipl = pc->pc_pool.pr_ipl;
2031 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2032 cc->cc_cache = pc;
2033 cc->cc_cpuindex = index;
2034 cc->cc_hits = 0;
2035 cc->cc_misses = 0;
2036 cc->cc_current = __UNCONST(&pcg_dummy);
2037 cc->cc_previous = __UNCONST(&pcg_dummy);
2038
2039 pc->pc_cpus[index] = cc;
2040 }
2041
2042 /*
2043 * pool_cache_cpu_init:
2044 *
2045 * Called whenever a new CPU is attached.
2046 */
2047 void
2048 pool_cache_cpu_init(struct cpu_info *ci)
2049 {
2050 pool_cache_t pc;
2051
2052 mutex_enter(&pool_head_lock);
2053 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2054 pc->pc_refcnt++;
2055 mutex_exit(&pool_head_lock);
2056
2057 pool_cache_cpu_init1(ci, pc);
2058
2059 mutex_enter(&pool_head_lock);
2060 pc->pc_refcnt--;
2061 cv_broadcast(&pool_busy);
2062 }
2063 mutex_exit(&pool_head_lock);
2064 }
2065
2066 /*
2067 * pool_cache_reclaim:
2068 *
2069 * Reclaim memory from a pool cache.
2070 */
2071 bool
2072 pool_cache_reclaim(pool_cache_t pc)
2073 {
2074
2075 return pool_reclaim(&pc->pc_pool);
2076 }
2077
2078 static void
2079 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2080 {
2081 if (pc->pc_pool.pr_redzone) {
2082 /*
2083 * The object is marked as invalid. Temporarily mark it as
2084 * valid for the destructor. pool_put below will re-mark it
2085 * as invalid.
2086 */
2087 kasan_mark(object, pc->pc_pool.pr_reqsize,
2088 pc->pc_pool.pr_reqsize_with_redzone);
2089 }
2090
2091 (*pc->pc_dtor)(pc->pc_arg, object);
2092 pool_put(&pc->pc_pool, object);
2093 }
2094
2095 /*
2096 * pool_cache_destruct_object:
2097 *
2098 * Force destruction of an object and its release back into
2099 * the pool.
2100 */
2101 void
2102 pool_cache_destruct_object(pool_cache_t pc, void *object)
2103 {
2104
2105 FREECHECK_IN(&pc->pc_freecheck, object);
2106
2107 pool_cache_destruct_object1(pc, object);
2108 }
2109
2110 /*
2111 * pool_cache_invalidate_groups:
2112 *
2113 * Invalidate a chain of groups and destruct all objects.
2114 */
2115 static void
2116 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2117 {
2118 void *object;
2119 pcg_t *next;
2120 int i;
2121
2122 for (; pcg != NULL; pcg = next) {
2123 next = pcg->pcg_next;
2124
2125 for (i = 0; i < pcg->pcg_avail; i++) {
2126 object = pcg->pcg_objects[i].pcgo_va;
2127 pool_cache_destruct_object1(pc, object);
2128 }
2129
2130 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2131 pool_put(&pcg_large_pool, pcg);
2132 } else {
2133 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2134 pool_put(&pcg_normal_pool, pcg);
2135 }
2136 }
2137 }
2138
2139 /*
2140 * pool_cache_invalidate:
2141 *
2142 * Invalidate a pool cache (destruct and release all of the
2143 * cached objects). Does not reclaim objects from the pool.
2144 *
2145 * Note: For pool caches that provide constructed objects, there
2146 * is an assumption that another level of synchronization is occurring
2147 * between the input to the constructor and the cache invalidation.
2148 *
2149 * Invalidation is a costly process and should not be called from
2150 * interrupt context.
2151 */
2152 void
2153 pool_cache_invalidate(pool_cache_t pc)
2154 {
2155 uint64_t where;
2156 pcg_t *full, *empty, *part;
2157
2158 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2159
2160 if (ncpu < 2 || !mp_online) {
2161 /*
2162 * We might be called early enough in the boot process
2163 * for the CPU data structures to not be fully initialized.
2164 * In this case, transfer the content of the local CPU's
2165 * cache back into global cache as only this CPU is currently
2166 * running.
2167 */
2168 pool_cache_transfer(pc);
2169 } else {
2170 /*
2171 * Signal all CPUs that they must transfer their local
2172 * cache back to the global pool then wait for the xcall to
2173 * complete.
2174 */
2175 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2176 pc, NULL);
2177 xc_wait(where);
2178 }
2179
2180 /* Empty pool caches, then invalidate objects */
2181 mutex_enter(&pc->pc_lock);
2182 full = pc->pc_fullgroups;
2183 empty = pc->pc_emptygroups;
2184 part = pc->pc_partgroups;
2185 pc->pc_fullgroups = NULL;
2186 pc->pc_emptygroups = NULL;
2187 pc->pc_partgroups = NULL;
2188 pc->pc_nfull = 0;
2189 pc->pc_nempty = 0;
2190 pc->pc_npart = 0;
2191 mutex_exit(&pc->pc_lock);
2192
2193 pool_cache_invalidate_groups(pc, full);
2194 pool_cache_invalidate_groups(pc, empty);
2195 pool_cache_invalidate_groups(pc, part);
2196 }
2197
2198 /*
2199 * pool_cache_invalidate_cpu:
2200 *
2201 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2202 * identified by its associated index.
2203 * It is caller's responsibility to ensure that no operation is
2204 * taking place on this pool cache while doing this invalidation.
2205 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2206 * pool cached objects from a CPU different from the one currently running
2207 * may result in an undefined behaviour.
2208 */
2209 static void
2210 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2211 {
2212 pool_cache_cpu_t *cc;
2213 pcg_t *pcg;
2214
2215 if ((cc = pc->pc_cpus[index]) == NULL)
2216 return;
2217
2218 if ((pcg = cc->cc_current) != &pcg_dummy) {
2219 pcg->pcg_next = NULL;
2220 pool_cache_invalidate_groups(pc, pcg);
2221 }
2222 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2223 pcg->pcg_next = NULL;
2224 pool_cache_invalidate_groups(pc, pcg);
2225 }
2226 if (cc != &pc->pc_cpu0)
2227 pool_put(&cache_cpu_pool, cc);
2228
2229 }
2230
2231 void
2232 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2233 {
2234
2235 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2236 }
2237
2238 void
2239 pool_cache_setlowat(pool_cache_t pc, int n)
2240 {
2241
2242 pool_setlowat(&pc->pc_pool, n);
2243 }
2244
2245 void
2246 pool_cache_sethiwat(pool_cache_t pc, int n)
2247 {
2248
2249 pool_sethiwat(&pc->pc_pool, n);
2250 }
2251
2252 void
2253 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2254 {
2255
2256 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2257 }
2258
2259 static bool __noinline
2260 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2261 paddr_t *pap, int flags)
2262 {
2263 pcg_t *pcg, *cur;
2264 uint64_t ncsw;
2265 pool_cache_t pc;
2266 void *object;
2267
2268 KASSERT(cc->cc_current->pcg_avail == 0);
2269 KASSERT(cc->cc_previous->pcg_avail == 0);
2270
2271 pc = cc->cc_cache;
2272 cc->cc_misses++;
2273
2274 /*
2275 * Nothing was available locally. Try and grab a group
2276 * from the cache.
2277 */
2278 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2279 ncsw = curlwp->l_ncsw;
2280 mutex_enter(&pc->pc_lock);
2281 pc->pc_contended++;
2282
2283 /*
2284 * If we context switched while locking, then
2285 * our view of the per-CPU data is invalid:
2286 * retry.
2287 */
2288 if (curlwp->l_ncsw != ncsw) {
2289 mutex_exit(&pc->pc_lock);
2290 return true;
2291 }
2292 }
2293
2294 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2295 /*
2296 * If there's a full group, release our empty
2297 * group back to the cache. Install the full
2298 * group as cc_current and return.
2299 */
2300 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2301 KASSERT(cur->pcg_avail == 0);
2302 cur->pcg_next = pc->pc_emptygroups;
2303 pc->pc_emptygroups = cur;
2304 pc->pc_nempty++;
2305 }
2306 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2307 cc->cc_current = pcg;
2308 pc->pc_fullgroups = pcg->pcg_next;
2309 pc->pc_hits++;
2310 pc->pc_nfull--;
2311 mutex_exit(&pc->pc_lock);
2312 return true;
2313 }
2314
2315 /*
2316 * Nothing available locally or in cache. Take the slow
2317 * path: fetch a new object from the pool and construct
2318 * it.
2319 */
2320 pc->pc_misses++;
2321 mutex_exit(&pc->pc_lock);
2322 splx(s);
2323
2324 object = pool_get(&pc->pc_pool, flags);
2325 *objectp = object;
2326 if (__predict_false(object == NULL)) {
2327 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2328 return false;
2329 }
2330
2331 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2332 pool_put(&pc->pc_pool, object);
2333 *objectp = NULL;
2334 return false;
2335 }
2336
2337 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2338
2339 if (pap != NULL) {
2340 #ifdef POOL_VTOPHYS
2341 *pap = POOL_VTOPHYS(object);
2342 #else
2343 *pap = POOL_PADDR_INVALID;
2344 #endif
2345 }
2346
2347 FREECHECK_OUT(&pc->pc_freecheck, object);
2348 pool_redzone_fill(&pc->pc_pool, object);
2349 pool_cache_kleak_fill(pc, object);
2350 return false;
2351 }
2352
2353 /*
2354 * pool_cache_get{,_paddr}:
2355 *
2356 * Get an object from a pool cache (optionally returning
2357 * the physical address of the object).
2358 */
2359 void *
2360 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2361 {
2362 pool_cache_cpu_t *cc;
2363 pcg_t *pcg;
2364 void *object;
2365 int s;
2366
2367 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2368 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2369 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2370 "%s: [%s] is IPL_NONE, but called from interrupt context",
2371 __func__, pc->pc_pool.pr_wchan);
2372
2373 if (flags & PR_WAITOK) {
2374 ASSERT_SLEEPABLE();
2375 }
2376
2377 /* Lock out interrupts and disable preemption. */
2378 s = splvm();
2379 while (/* CONSTCOND */ true) {
2380 /* Try and allocate an object from the current group. */
2381 cc = pc->pc_cpus[curcpu()->ci_index];
2382 KASSERT(cc->cc_cache == pc);
2383 pcg = cc->cc_current;
2384 if (__predict_true(pcg->pcg_avail > 0)) {
2385 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2386 if (__predict_false(pap != NULL))
2387 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2388 #if defined(DIAGNOSTIC)
2389 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2390 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2391 KASSERT(object != NULL);
2392 #endif
2393 cc->cc_hits++;
2394 splx(s);
2395 FREECHECK_OUT(&pc->pc_freecheck, object);
2396 pool_redzone_fill(&pc->pc_pool, object);
2397 pool_cache_kleak_fill(pc, object);
2398 return object;
2399 }
2400
2401 /*
2402 * That failed. If the previous group isn't empty, swap
2403 * it with the current group and allocate from there.
2404 */
2405 pcg = cc->cc_previous;
2406 if (__predict_true(pcg->pcg_avail > 0)) {
2407 cc->cc_previous = cc->cc_current;
2408 cc->cc_current = pcg;
2409 continue;
2410 }
2411
2412 /*
2413 * Can't allocate from either group: try the slow path.
2414 * If get_slow() allocated an object for us, or if
2415 * no more objects are available, it will return false.
2416 * Otherwise, we need to retry.
2417 */
2418 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2419 break;
2420 }
2421
2422 /*
2423 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2424 * pool_cache_get can fail even in the PR_WAITOK case, if the
2425 * constructor fails.
2426 */
2427 return object;
2428 }
2429
2430 static bool __noinline
2431 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2432 {
2433 struct lwp *l = curlwp;
2434 pcg_t *pcg, *cur;
2435 uint64_t ncsw;
2436 pool_cache_t pc;
2437
2438 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2439 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2440
2441 pc = cc->cc_cache;
2442 pcg = NULL;
2443 cc->cc_misses++;
2444 ncsw = l->l_ncsw;
2445
2446 /*
2447 * If there are no empty groups in the cache then allocate one
2448 * while still unlocked.
2449 */
2450 if (__predict_false(pc->pc_emptygroups == NULL)) {
2451 if (__predict_true(!pool_cache_disable)) {
2452 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2453 }
2454 /*
2455 * If pool_get() blocked, then our view of
2456 * the per-CPU data is invalid: retry.
2457 */
2458 if (__predict_false(l->l_ncsw != ncsw)) {
2459 if (pcg != NULL) {
2460 pool_put(pc->pc_pcgpool, pcg);
2461 }
2462 return true;
2463 }
2464 if (__predict_true(pcg != NULL)) {
2465 pcg->pcg_avail = 0;
2466 pcg->pcg_size = pc->pc_pcgsize;
2467 }
2468 }
2469
2470 /* Lock the cache. */
2471 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2472 mutex_enter(&pc->pc_lock);
2473 pc->pc_contended++;
2474
2475 /*
2476 * If we context switched while locking, then our view of
2477 * the per-CPU data is invalid: retry.
2478 */
2479 if (__predict_false(l->l_ncsw != ncsw)) {
2480 mutex_exit(&pc->pc_lock);
2481 if (pcg != NULL) {
2482 pool_put(pc->pc_pcgpool, pcg);
2483 }
2484 return true;
2485 }
2486 }
2487
2488 /* If there are no empty groups in the cache then allocate one. */
2489 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2490 pcg = pc->pc_emptygroups;
2491 pc->pc_emptygroups = pcg->pcg_next;
2492 pc->pc_nempty--;
2493 }
2494
2495 /*
2496 * If there's a empty group, release our full group back
2497 * to the cache. Install the empty group to the local CPU
2498 * and return.
2499 */
2500 if (pcg != NULL) {
2501 KASSERT(pcg->pcg_avail == 0);
2502 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2503 cc->cc_previous = pcg;
2504 } else {
2505 cur = cc->cc_current;
2506 if (__predict_true(cur != &pcg_dummy)) {
2507 KASSERT(cur->pcg_avail == cur->pcg_size);
2508 cur->pcg_next = pc->pc_fullgroups;
2509 pc->pc_fullgroups = cur;
2510 pc->pc_nfull++;
2511 }
2512 cc->cc_current = pcg;
2513 }
2514 pc->pc_hits++;
2515 mutex_exit(&pc->pc_lock);
2516 return true;
2517 }
2518
2519 /*
2520 * Nothing available locally or in cache, and we didn't
2521 * allocate an empty group. Take the slow path and destroy
2522 * the object here and now.
2523 */
2524 pc->pc_misses++;
2525 mutex_exit(&pc->pc_lock);
2526 splx(s);
2527 pool_cache_destruct_object(pc, object);
2528
2529 return false;
2530 }
2531
2532 /*
2533 * pool_cache_put{,_paddr}:
2534 *
2535 * Put an object back to the pool cache (optionally caching the
2536 * physical address of the object).
2537 */
2538 void
2539 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2540 {
2541 pool_cache_cpu_t *cc;
2542 pcg_t *pcg;
2543 int s;
2544
2545 KASSERT(object != NULL);
2546 pool_cache_redzone_check(pc, object);
2547 FREECHECK_IN(&pc->pc_freecheck, object);
2548
2549 /* Lock out interrupts and disable preemption. */
2550 s = splvm();
2551 while (/* CONSTCOND */ true) {
2552 /* If the current group isn't full, release it there. */
2553 cc = pc->pc_cpus[curcpu()->ci_index];
2554 KASSERT(cc->cc_cache == pc);
2555 pcg = cc->cc_current;
2556 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2557 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2558 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2559 pcg->pcg_avail++;
2560 cc->cc_hits++;
2561 splx(s);
2562 return;
2563 }
2564
2565 /*
2566 * That failed. If the previous group isn't full, swap
2567 * it with the current group and try again.
2568 */
2569 pcg = cc->cc_previous;
2570 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2571 cc->cc_previous = cc->cc_current;
2572 cc->cc_current = pcg;
2573 continue;
2574 }
2575
2576 /*
2577 * Can't free to either group: try the slow path.
2578 * If put_slow() releases the object for us, it
2579 * will return false. Otherwise we need to retry.
2580 */
2581 if (!pool_cache_put_slow(cc, s, object))
2582 break;
2583 }
2584 }
2585
2586 /*
2587 * pool_cache_transfer:
2588 *
2589 * Transfer objects from the per-CPU cache to the global cache.
2590 * Run within a cross-call thread.
2591 */
2592 static void
2593 pool_cache_transfer(pool_cache_t pc)
2594 {
2595 pool_cache_cpu_t *cc;
2596 pcg_t *prev, *cur, **list;
2597 int s;
2598
2599 s = splvm();
2600 mutex_enter(&pc->pc_lock);
2601 cc = pc->pc_cpus[curcpu()->ci_index];
2602 cur = cc->cc_current;
2603 cc->cc_current = __UNCONST(&pcg_dummy);
2604 prev = cc->cc_previous;
2605 cc->cc_previous = __UNCONST(&pcg_dummy);
2606 if (cur != &pcg_dummy) {
2607 if (cur->pcg_avail == cur->pcg_size) {
2608 list = &pc->pc_fullgroups;
2609 pc->pc_nfull++;
2610 } else if (cur->pcg_avail == 0) {
2611 list = &pc->pc_emptygroups;
2612 pc->pc_nempty++;
2613 } else {
2614 list = &pc->pc_partgroups;
2615 pc->pc_npart++;
2616 }
2617 cur->pcg_next = *list;
2618 *list = cur;
2619 }
2620 if (prev != &pcg_dummy) {
2621 if (prev->pcg_avail == prev->pcg_size) {
2622 list = &pc->pc_fullgroups;
2623 pc->pc_nfull++;
2624 } else if (prev->pcg_avail == 0) {
2625 list = &pc->pc_emptygroups;
2626 pc->pc_nempty++;
2627 } else {
2628 list = &pc->pc_partgroups;
2629 pc->pc_npart++;
2630 }
2631 prev->pcg_next = *list;
2632 *list = prev;
2633 }
2634 mutex_exit(&pc->pc_lock);
2635 splx(s);
2636 }
2637
2638 /*
2639 * Pool backend allocators.
2640 *
2641 * Each pool has a backend allocator that handles allocation, deallocation,
2642 * and any additional draining that might be needed.
2643 *
2644 * We provide two standard allocators:
2645 *
2646 * pool_allocator_kmem - the default when no allocator is specified
2647 *
2648 * pool_allocator_nointr - used for pools that will not be accessed
2649 * in interrupt context.
2650 */
2651 void *pool_page_alloc(struct pool *, int);
2652 void pool_page_free(struct pool *, void *);
2653
2654 #ifdef POOL_SUBPAGE
2655 struct pool_allocator pool_allocator_kmem_fullpage = {
2656 .pa_alloc = pool_page_alloc,
2657 .pa_free = pool_page_free,
2658 .pa_pagesz = 0
2659 };
2660 #else
2661 struct pool_allocator pool_allocator_kmem = {
2662 .pa_alloc = pool_page_alloc,
2663 .pa_free = pool_page_free,
2664 .pa_pagesz = 0
2665 };
2666 #endif
2667
2668 #ifdef POOL_SUBPAGE
2669 struct pool_allocator pool_allocator_nointr_fullpage = {
2670 .pa_alloc = pool_page_alloc,
2671 .pa_free = pool_page_free,
2672 .pa_pagesz = 0
2673 };
2674 #else
2675 struct pool_allocator pool_allocator_nointr = {
2676 .pa_alloc = pool_page_alloc,
2677 .pa_free = pool_page_free,
2678 .pa_pagesz = 0
2679 };
2680 #endif
2681
2682 #ifdef POOL_SUBPAGE
2683 void *pool_subpage_alloc(struct pool *, int);
2684 void pool_subpage_free(struct pool *, void *);
2685
2686 struct pool_allocator pool_allocator_kmem = {
2687 .pa_alloc = pool_subpage_alloc,
2688 .pa_free = pool_subpage_free,
2689 .pa_pagesz = POOL_SUBPAGE
2690 };
2691
2692 struct pool_allocator pool_allocator_nointr = {
2693 .pa_alloc = pool_subpage_alloc,
2694 .pa_free = pool_subpage_free,
2695 .pa_pagesz = POOL_SUBPAGE
2696 };
2697 #endif /* POOL_SUBPAGE */
2698
2699 struct pool_allocator pool_allocator_big[] = {
2700 {
2701 .pa_alloc = pool_page_alloc,
2702 .pa_free = pool_page_free,
2703 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2704 },
2705 {
2706 .pa_alloc = pool_page_alloc,
2707 .pa_free = pool_page_free,
2708 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2709 },
2710 {
2711 .pa_alloc = pool_page_alloc,
2712 .pa_free = pool_page_free,
2713 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2714 },
2715 {
2716 .pa_alloc = pool_page_alloc,
2717 .pa_free = pool_page_free,
2718 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2719 },
2720 {
2721 .pa_alloc = pool_page_alloc,
2722 .pa_free = pool_page_free,
2723 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2724 },
2725 {
2726 .pa_alloc = pool_page_alloc,
2727 .pa_free = pool_page_free,
2728 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2729 },
2730 {
2731 .pa_alloc = pool_page_alloc,
2732 .pa_free = pool_page_free,
2733 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2734 },
2735 {
2736 .pa_alloc = pool_page_alloc,
2737 .pa_free = pool_page_free,
2738 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2739 }
2740 };
2741
2742 static int
2743 pool_bigidx(size_t size)
2744 {
2745 int i;
2746
2747 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2748 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2749 return i;
2750 }
2751 panic("pool item size %zu too large, use a custom allocator", size);
2752 }
2753
2754 static void *
2755 pool_allocator_alloc(struct pool *pp, int flags)
2756 {
2757 struct pool_allocator *pa = pp->pr_alloc;
2758 void *res;
2759
2760 res = (*pa->pa_alloc)(pp, flags);
2761 if (res == NULL && (flags & PR_WAITOK) == 0) {
2762 /*
2763 * We only run the drain hook here if PR_NOWAIT.
2764 * In other cases, the hook will be run in
2765 * pool_reclaim().
2766 */
2767 if (pp->pr_drain_hook != NULL) {
2768 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2769 res = (*pa->pa_alloc)(pp, flags);
2770 }
2771 }
2772 return res;
2773 }
2774
2775 static void
2776 pool_allocator_free(struct pool *pp, void *v)
2777 {
2778 struct pool_allocator *pa = pp->pr_alloc;
2779
2780 if (pp->pr_redzone) {
2781 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
2782 }
2783 (*pa->pa_free)(pp, v);
2784 }
2785
2786 void *
2787 pool_page_alloc(struct pool *pp, int flags)
2788 {
2789 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2790 vmem_addr_t va;
2791 int ret;
2792
2793 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2794 vflags | VM_INSTANTFIT, &va);
2795
2796 return ret ? NULL : (void *)va;
2797 }
2798
2799 void
2800 pool_page_free(struct pool *pp, void *v)
2801 {
2802
2803 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2804 }
2805
2806 static void *
2807 pool_page_alloc_meta(struct pool *pp, int flags)
2808 {
2809 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2810 vmem_addr_t va;
2811 int ret;
2812
2813 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2814 vflags | VM_INSTANTFIT, &va);
2815
2816 return ret ? NULL : (void *)va;
2817 }
2818
2819 static void
2820 pool_page_free_meta(struct pool *pp, void *v)
2821 {
2822
2823 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2824 }
2825
2826 #ifdef KLEAK
2827 static void
2828 pool_kleak_fill(struct pool *pp, void *p)
2829 {
2830 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2831 return;
2832 }
2833 kleak_fill_area(p, pp->pr_size);
2834 }
2835
2836 static void
2837 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2838 {
2839 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2840 return;
2841 }
2842 pool_kleak_fill(&pc->pc_pool, p);
2843 }
2844 #endif
2845
2846 #ifdef POOL_REDZONE
2847 #if defined(_LP64)
2848 # define PRIME 0x9e37fffffffc0000UL
2849 #else /* defined(_LP64) */
2850 # define PRIME 0x9e3779b1
2851 #endif /* defined(_LP64) */
2852 #define STATIC_BYTE 0xFE
2853 CTASSERT(POOL_REDZONE_SIZE > 1);
2854
2855 #ifndef KASAN
2856 static inline uint8_t
2857 pool_pattern_generate(const void *p)
2858 {
2859 return (uint8_t)(((uintptr_t)p) * PRIME
2860 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2861 }
2862 #endif
2863
2864 static void
2865 pool_redzone_init(struct pool *pp, size_t requested_size)
2866 {
2867 size_t redzsz;
2868 size_t nsz;
2869
2870 #ifdef KASAN
2871 redzsz = requested_size;
2872 kasan_add_redzone(&redzsz);
2873 redzsz -= requested_size;
2874 #else
2875 redzsz = POOL_REDZONE_SIZE;
2876 #endif
2877
2878 if (pp->pr_roflags & PR_NOTOUCH) {
2879 pp->pr_redzone = false;
2880 return;
2881 }
2882
2883 /*
2884 * We may have extended the requested size earlier; check if
2885 * there's naturally space in the padding for a red zone.
2886 */
2887 if (pp->pr_size - requested_size >= redzsz) {
2888 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2889 pp->pr_redzone = true;
2890 return;
2891 }
2892
2893 /*
2894 * No space in the natural padding; check if we can extend a
2895 * bit the size of the pool.
2896 */
2897 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2898 if (nsz <= pp->pr_alloc->pa_pagesz) {
2899 /* Ok, we can */
2900 pp->pr_size = nsz;
2901 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2902 pp->pr_redzone = true;
2903 } else {
2904 /* No space for a red zone... snif :'( */
2905 pp->pr_redzone = false;
2906 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2907 }
2908 }
2909
2910 static void
2911 pool_redzone_fill(struct pool *pp, void *p)
2912 {
2913 if (!pp->pr_redzone)
2914 return;
2915 #ifdef KASAN
2916 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
2917 #else
2918 uint8_t *cp, pat;
2919 const uint8_t *ep;
2920
2921 cp = (uint8_t *)p + pp->pr_reqsize;
2922 ep = cp + POOL_REDZONE_SIZE;
2923
2924 /*
2925 * We really don't want the first byte of the red zone to be '\0';
2926 * an off-by-one in a string may not be properly detected.
2927 */
2928 pat = pool_pattern_generate(cp);
2929 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2930 cp++;
2931
2932 while (cp < ep) {
2933 *cp = pool_pattern_generate(cp);
2934 cp++;
2935 }
2936 #endif
2937 }
2938
2939 static void
2940 pool_redzone_check(struct pool *pp, void *p)
2941 {
2942 if (!pp->pr_redzone)
2943 return;
2944 #ifdef KASAN
2945 kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
2946 #else
2947 uint8_t *cp, pat, expected;
2948 const uint8_t *ep;
2949
2950 cp = (uint8_t *)p + pp->pr_reqsize;
2951 ep = cp + POOL_REDZONE_SIZE;
2952
2953 pat = pool_pattern_generate(cp);
2954 expected = (pat == '\0') ? STATIC_BYTE: pat;
2955 if (__predict_false(expected != *cp)) {
2956 printf("%s: %p: 0x%02x != 0x%02x\n",
2957 __func__, cp, *cp, expected);
2958 }
2959 cp++;
2960
2961 while (cp < ep) {
2962 expected = pool_pattern_generate(cp);
2963 if (__predict_false(*cp != expected)) {
2964 printf("%s: %p: 0x%02x != 0x%02x\n",
2965 __func__, cp, *cp, expected);
2966 }
2967 cp++;
2968 }
2969 #endif
2970 }
2971
2972 static void
2973 pool_cache_redzone_check(pool_cache_t pc, void *p)
2974 {
2975 #ifdef KASAN
2976 /* If there is a ctor/dtor, leave the data as valid. */
2977 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2978 return;
2979 }
2980 #endif
2981 pool_redzone_check(&pc->pc_pool, p);
2982 }
2983
2984 #endif /* POOL_REDZONE */
2985
2986
2987 #ifdef POOL_SUBPAGE
2988 /* Sub-page allocator, for machines with large hardware pages. */
2989 void *
2990 pool_subpage_alloc(struct pool *pp, int flags)
2991 {
2992 return pool_get(&psppool, flags);
2993 }
2994
2995 void
2996 pool_subpage_free(struct pool *pp, void *v)
2997 {
2998 pool_put(&psppool, v);
2999 }
3000
3001 #endif /* POOL_SUBPAGE */
3002
3003 #if defined(DDB)
3004 static bool
3005 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3006 {
3007
3008 return (uintptr_t)ph->ph_page <= addr &&
3009 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3010 }
3011
3012 static bool
3013 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3014 {
3015
3016 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3017 }
3018
3019 static bool
3020 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3021 {
3022 int i;
3023
3024 if (pcg == NULL) {
3025 return false;
3026 }
3027 for (i = 0; i < pcg->pcg_avail; i++) {
3028 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3029 return true;
3030 }
3031 }
3032 return false;
3033 }
3034
3035 static bool
3036 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3037 {
3038
3039 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
3040 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3041 pool_item_bitmap_t *bitmap =
3042 ph->ph_bitmap + (idx / BITMAP_SIZE);
3043 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3044
3045 return (*bitmap & mask) == 0;
3046 } else {
3047 struct pool_item *pi;
3048
3049 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3050 if (pool_in_item(pp, pi, addr)) {
3051 return false;
3052 }
3053 }
3054 return true;
3055 }
3056 }
3057
3058 void
3059 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3060 {
3061 struct pool *pp;
3062
3063 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3064 struct pool_item_header *ph;
3065 uintptr_t item;
3066 bool allocated = true;
3067 bool incache = false;
3068 bool incpucache = false;
3069 char cpucachestr[32];
3070
3071 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3072 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3073 if (pool_in_page(pp, ph, addr)) {
3074 goto found;
3075 }
3076 }
3077 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3078 if (pool_in_page(pp, ph, addr)) {
3079 allocated =
3080 pool_allocated(pp, ph, addr);
3081 goto found;
3082 }
3083 }
3084 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3085 if (pool_in_page(pp, ph, addr)) {
3086 allocated = false;
3087 goto found;
3088 }
3089 }
3090 continue;
3091 } else {
3092 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3093 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3094 continue;
3095 }
3096 allocated = pool_allocated(pp, ph, addr);
3097 }
3098 found:
3099 if (allocated && pp->pr_cache) {
3100 pool_cache_t pc = pp->pr_cache;
3101 struct pool_cache_group *pcg;
3102 int i;
3103
3104 for (pcg = pc->pc_fullgroups; pcg != NULL;
3105 pcg = pcg->pcg_next) {
3106 if (pool_in_cg(pp, pcg, addr)) {
3107 incache = true;
3108 goto print;
3109 }
3110 }
3111 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3112 pool_cache_cpu_t *cc;
3113
3114 if ((cc = pc->pc_cpus[i]) == NULL) {
3115 continue;
3116 }
3117 if (pool_in_cg(pp, cc->cc_current, addr) ||
3118 pool_in_cg(pp, cc->cc_previous, addr)) {
3119 struct cpu_info *ci =
3120 cpu_lookup(i);
3121
3122 incpucache = true;
3123 snprintf(cpucachestr,
3124 sizeof(cpucachestr),
3125 "cached by CPU %u",
3126 ci->ci_index);
3127 goto print;
3128 }
3129 }
3130 }
3131 print:
3132 item = (uintptr_t)ph->ph_page + ph->ph_off;
3133 item = item + rounddown(addr - item, pp->pr_size);
3134 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3135 (void *)addr, item, (size_t)(addr - item),
3136 pp->pr_wchan,
3137 incpucache ? cpucachestr :
3138 incache ? "cached" : allocated ? "allocated" : "free");
3139 }
3140 }
3141 #endif /* defined(DDB) */
3142
3143 static int
3144 pool_sysctl(SYSCTLFN_ARGS)
3145 {
3146 struct pool_sysctl data;
3147 struct pool *pp;
3148 struct pool_cache *pc;
3149 pool_cache_cpu_t *cc;
3150 int error;
3151 size_t i, written;
3152
3153 if (oldp == NULL) {
3154 *oldlenp = 0;
3155 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3156 *oldlenp += sizeof(data);
3157 return 0;
3158 }
3159
3160 memset(&data, 0, sizeof(data));
3161 error = 0;
3162 written = 0;
3163 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3164 if (written + sizeof(data) > *oldlenp)
3165 break;
3166 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3167 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3168 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3169 #define COPY(field) data.field = pp->field
3170 COPY(pr_size);
3171
3172 COPY(pr_itemsperpage);
3173 COPY(pr_nitems);
3174 COPY(pr_nout);
3175 COPY(pr_hardlimit);
3176 COPY(pr_npages);
3177 COPY(pr_minpages);
3178 COPY(pr_maxpages);
3179
3180 COPY(pr_nget);
3181 COPY(pr_nfail);
3182 COPY(pr_nput);
3183 COPY(pr_npagealloc);
3184 COPY(pr_npagefree);
3185 COPY(pr_hiwat);
3186 COPY(pr_nidle);
3187 #undef COPY
3188
3189 data.pr_cache_nmiss_pcpu = 0;
3190 data.pr_cache_nhit_pcpu = 0;
3191 if (pp->pr_cache) {
3192 pc = pp->pr_cache;
3193 data.pr_cache_meta_size = pc->pc_pcgsize;
3194 data.pr_cache_nfull = pc->pc_nfull;
3195 data.pr_cache_npartial = pc->pc_npart;
3196 data.pr_cache_nempty = pc->pc_nempty;
3197 data.pr_cache_ncontended = pc->pc_contended;
3198 data.pr_cache_nmiss_global = pc->pc_misses;
3199 data.pr_cache_nhit_global = pc->pc_hits;
3200 for (i = 0; i < pc->pc_ncpu; ++i) {
3201 cc = pc->pc_cpus[i];
3202 if (cc == NULL)
3203 continue;
3204 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3205 data.pr_cache_nhit_pcpu += cc->cc_hits;
3206 }
3207 } else {
3208 data.pr_cache_meta_size = 0;
3209 data.pr_cache_nfull = 0;
3210 data.pr_cache_npartial = 0;
3211 data.pr_cache_nempty = 0;
3212 data.pr_cache_ncontended = 0;
3213 data.pr_cache_nmiss_global = 0;
3214 data.pr_cache_nhit_global = 0;
3215 }
3216
3217 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3218 if (error)
3219 break;
3220 written += sizeof(data);
3221 oldp = (char *)oldp + sizeof(data);
3222 }
3223
3224 *oldlenp = written;
3225 return error;
3226 }
3227
3228 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3229 {
3230 const struct sysctlnode *rnode = NULL;
3231
3232 sysctl_createv(clog, 0, NULL, &rnode,
3233 CTLFLAG_PERMANENT,
3234 CTLTYPE_STRUCT, "pool",
3235 SYSCTL_DESCR("Get pool statistics"),
3236 pool_sysctl, 0, NULL, 0,
3237 CTL_KERN, CTL_CREATE, CTL_EOL);
3238 }
3239