subr_pool.c revision 1.241 1 /* $NetBSD: subr_pool.c,v 1.241 2019/03/17 15:33:50 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.241 2019/03/17 15:33:50 maxv Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60
61 #include <uvm/uvm_extern.h>
62
63 /*
64 * Pool resource management utility.
65 *
66 * Memory is allocated in pages which are split into pieces according to
67 * the pool item size. Each page is kept on one of three lists in the
68 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 * for empty, full and partially-full pages respectively. The individual
70 * pool items are on a linked list headed by `ph_itemlist' in each page
71 * header. The memory for building the page list is either taken from
72 * the allocated pages themselves (for small pool items) or taken from
73 * an internal pool of page headers (`phpool').
74 */
75
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78
79 /* Private pool for page header structures */
80 #define PHPOOL_MAX 8
81 static struct pool phpool[PHPOOL_MAX];
82 #define PHPOOL_FREELIST_NELEM(idx) \
83 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 # define POOL_REDZONE_SIZE 8
97 # else
98 # define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 static void pool_cache_redzone_check(pool_cache_t, void *);
104 #else
105 # define pool_redzone_init(pp, sz) __nothing
106 # define pool_redzone_fill(pp, ptr) __nothing
107 # define pool_redzone_check(pp, ptr) __nothing
108 # define pool_cache_redzone_check(pc, ptr) __nothing
109 #endif
110
111 #ifdef KLEAK
112 static void pool_kleak_fill(struct pool *, void *);
113 static void pool_cache_kleak_fill(pool_cache_t, void *);
114 #else
115 #define pool_kleak_fill(pp, ptr) __nothing
116 #define pool_cache_kleak_fill(pc, ptr) __nothing
117 #endif
118
119 #define pc_has_ctor(pc) \
120 (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
121 #define pc_has_dtor(pc) \
122 (pc->pc_dtor != (void (*)(void *, void *))nullop)
123
124 static void *pool_page_alloc_meta(struct pool *, int);
125 static void pool_page_free_meta(struct pool *, void *);
126
127 /* allocator for pool metadata */
128 struct pool_allocator pool_allocator_meta = {
129 .pa_alloc = pool_page_alloc_meta,
130 .pa_free = pool_page_free_meta,
131 .pa_pagesz = 0
132 };
133
134 #define POOL_ALLOCATOR_BIG_BASE 13
135 extern struct pool_allocator pool_allocator_big[];
136 static int pool_bigidx(size_t);
137
138 /* # of seconds to retain page after last use */
139 int pool_inactive_time = 10;
140
141 /* Next candidate for drainage (see pool_drain()) */
142 static struct pool *drainpp;
143
144 /* This lock protects both pool_head and drainpp. */
145 static kmutex_t pool_head_lock;
146 static kcondvar_t pool_busy;
147
148 /* This lock protects initialization of a potentially shared pool allocator */
149 static kmutex_t pool_allocator_lock;
150
151 typedef uint32_t pool_item_bitmap_t;
152 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
153 #define BITMAP_MASK (BITMAP_SIZE - 1)
154
155 struct pool_item_header {
156 /* Page headers */
157 LIST_ENTRY(pool_item_header)
158 ph_pagelist; /* pool page list */
159 SPLAY_ENTRY(pool_item_header)
160 ph_node; /* Off-page page headers */
161 void * ph_page; /* this page's address */
162 uint32_t ph_time; /* last referenced */
163 uint16_t ph_nmissing; /* # of chunks in use */
164 uint16_t ph_off; /* start offset in page */
165 union {
166 /* !PR_NOTOUCH */
167 struct {
168 LIST_HEAD(, pool_item)
169 phu_itemlist; /* chunk list for this page */
170 } phu_normal;
171 /* PR_NOTOUCH */
172 struct {
173 pool_item_bitmap_t phu_bitmap[1];
174 } phu_notouch;
175 } ph_u;
176 };
177 #define ph_itemlist ph_u.phu_normal.phu_itemlist
178 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
179
180 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
181
182 #if defined(DIAGNOSTIC) && !defined(KASAN)
183 #define POOL_CHECK_MAGIC
184 #endif
185
186 struct pool_item {
187 #ifdef POOL_CHECK_MAGIC
188 u_int pi_magic;
189 #endif
190 #define PI_MAGIC 0xdeaddeadU
191 /* Other entries use only this list entry */
192 LIST_ENTRY(pool_item) pi_list;
193 };
194
195 #define POOL_NEEDS_CATCHUP(pp) \
196 ((pp)->pr_nitems < (pp)->pr_minitems)
197
198 /*
199 * Pool cache management.
200 *
201 * Pool caches provide a way for constructed objects to be cached by the
202 * pool subsystem. This can lead to performance improvements by avoiding
203 * needless object construction/destruction; it is deferred until absolutely
204 * necessary.
205 *
206 * Caches are grouped into cache groups. Each cache group references up
207 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
208 * object from the pool, it calls the object's constructor and places it
209 * into a cache group. When a cache group frees an object back to the
210 * pool, it first calls the object's destructor. This allows the object
211 * to persist in constructed form while freed to the cache.
212 *
213 * The pool references each cache, so that when a pool is drained by the
214 * pagedaemon, it can drain each individual cache as well. Each time a
215 * cache is drained, the most idle cache group is freed to the pool in
216 * its entirety.
217 *
218 * Pool caches are layed on top of pools. By layering them, we can avoid
219 * the complexity of cache management for pools which would not benefit
220 * from it.
221 */
222
223 static struct pool pcg_normal_pool;
224 static struct pool pcg_large_pool;
225 static struct pool cache_pool;
226 static struct pool cache_cpu_pool;
227
228 pool_cache_t pnbuf_cache; /* pathname buffer cache */
229
230 /* List of all caches. */
231 TAILQ_HEAD(,pool_cache) pool_cache_head =
232 TAILQ_HEAD_INITIALIZER(pool_cache_head);
233
234 int pool_cache_disable; /* global disable for caching */
235 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
236
237 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
238 void *);
239 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
240 void **, paddr_t *, int);
241 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
242 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
243 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
244 static void pool_cache_transfer(pool_cache_t);
245
246 static int pool_catchup(struct pool *);
247 static void pool_prime_page(struct pool *, void *,
248 struct pool_item_header *);
249 static void pool_update_curpage(struct pool *);
250
251 static int pool_grow(struct pool *, int);
252 static void *pool_allocator_alloc(struct pool *, int);
253 static void pool_allocator_free(struct pool *, void *);
254
255 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
256 void (*)(const char *, ...) __printflike(1, 2));
257 static void pool_print1(struct pool *, const char *,
258 void (*)(const char *, ...) __printflike(1, 2));
259
260 static int pool_chk_page(struct pool *, const char *,
261 struct pool_item_header *);
262
263 /* -------------------------------------------------------------------------- */
264
265 static inline unsigned int
266 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
267 const void *v)
268 {
269 const char *cp = v;
270 unsigned int idx;
271
272 KASSERT(pp->pr_roflags & PR_NOTOUCH);
273 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
274
275 if (__predict_false(idx >= pp->pr_itemsperpage)) {
276 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
277 pp->pr_itemsperpage);
278 }
279
280 return idx;
281 }
282
283 static inline void
284 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
285 void *obj)
286 {
287 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
288 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
289 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
290
291 if (__predict_false((*bitmap & mask) != 0)) {
292 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
293 }
294
295 *bitmap |= mask;
296 }
297
298 static inline void *
299 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
300 {
301 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
302 unsigned int idx;
303 int i;
304
305 for (i = 0; ; i++) {
306 int bit;
307
308 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
309 bit = ffs32(bitmap[i]);
310 if (bit) {
311 pool_item_bitmap_t mask;
312
313 bit--;
314 idx = (i * BITMAP_SIZE) + bit;
315 mask = 1U << bit;
316 KASSERT((bitmap[i] & mask) != 0);
317 bitmap[i] &= ~mask;
318 break;
319 }
320 }
321 KASSERT(idx < pp->pr_itemsperpage);
322 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
323 }
324
325 static inline void
326 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
327 {
328 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
329 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
330 int i;
331
332 for (i = 0; i < n; i++) {
333 bitmap[i] = (pool_item_bitmap_t)-1;
334 }
335 }
336
337 /* -------------------------------------------------------------------------- */
338
339 static inline void
340 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
341 void *obj)
342 {
343 struct pool_item *pi = obj;
344
345 #ifdef POOL_CHECK_MAGIC
346 pi->pi_magic = PI_MAGIC;
347 #endif
348
349 if (pp->pr_redzone) {
350 /*
351 * Mark the pool_item as valid. The rest is already
352 * invalid.
353 */
354 kasan_mark(pi, sizeof(*pi), sizeof(*pi));
355 }
356
357 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
358 }
359
360 static inline void *
361 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
362 {
363 struct pool_item *pi;
364 void *v;
365
366 v = pi = LIST_FIRST(&ph->ph_itemlist);
367 if (__predict_false(v == NULL)) {
368 mutex_exit(&pp->pr_lock);
369 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
370 }
371 KASSERTMSG((pp->pr_nitems > 0),
372 "%s: [%s] nitems %u inconsistent on itemlist",
373 __func__, pp->pr_wchan, pp->pr_nitems);
374 #ifdef POOL_CHECK_MAGIC
375 KASSERTMSG((pi->pi_magic == PI_MAGIC),
376 "%s: [%s] free list modified: "
377 "magic=%x; page %p; item addr %p", __func__,
378 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
379 #endif
380
381 /*
382 * Remove from item list.
383 */
384 LIST_REMOVE(pi, pi_list);
385
386 return v;
387 }
388
389 /* -------------------------------------------------------------------------- */
390
391 static inline int
392 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
393 {
394
395 /*
396 * We consider pool_item_header with smaller ph_page bigger. This
397 * unnatural ordering is for the benefit of pr_find_pagehead.
398 */
399 if (a->ph_page < b->ph_page)
400 return 1;
401 else if (a->ph_page > b->ph_page)
402 return -1;
403 else
404 return 0;
405 }
406
407 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
408 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
409
410 static inline struct pool_item_header *
411 pr_find_pagehead_noalign(struct pool *pp, void *v)
412 {
413 struct pool_item_header *ph, tmp;
414
415 tmp.ph_page = (void *)(uintptr_t)v;
416 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
417 if (ph == NULL) {
418 ph = SPLAY_ROOT(&pp->pr_phtree);
419 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
420 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
421 }
422 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
423 }
424
425 return ph;
426 }
427
428 /*
429 * Return the pool page header based on item address.
430 */
431 static inline struct pool_item_header *
432 pr_find_pagehead(struct pool *pp, void *v)
433 {
434 struct pool_item_header *ph, tmp;
435
436 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
437 ph = pr_find_pagehead_noalign(pp, v);
438 } else {
439 void *page =
440 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
441
442 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
443 ph = (struct pool_item_header *)page;
444 if (__predict_false((void *)ph->ph_page != page)) {
445 panic("%s: [%s] item %p not part of pool",
446 __func__, pp->pr_wchan, v);
447 }
448 if (__predict_false((char *)v < (char *)page +
449 ph->ph_off)) {
450 panic("%s: [%s] item %p below item space",
451 __func__, pp->pr_wchan, v);
452 }
453 } else {
454 tmp.ph_page = page;
455 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
456 }
457 }
458
459 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
460 ((char *)ph->ph_page <= (char *)v &&
461 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
462 return ph;
463 }
464
465 static void
466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
467 {
468 struct pool_item_header *ph;
469
470 while ((ph = LIST_FIRST(pq)) != NULL) {
471 LIST_REMOVE(ph, ph_pagelist);
472 pool_allocator_free(pp, ph->ph_page);
473 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
474 pool_put(pp->pr_phpool, ph);
475 }
476 }
477
478 /*
479 * Remove a page from the pool.
480 */
481 static inline void
482 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
483 struct pool_pagelist *pq)
484 {
485
486 KASSERT(mutex_owned(&pp->pr_lock));
487
488 /*
489 * If the page was idle, decrement the idle page count.
490 */
491 if (ph->ph_nmissing == 0) {
492 KASSERT(pp->pr_nidle != 0);
493 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
494 "nitems=%u < itemsperpage=%u",
495 pp->pr_nitems, pp->pr_itemsperpage);
496 pp->pr_nidle--;
497 }
498
499 pp->pr_nitems -= pp->pr_itemsperpage;
500
501 /*
502 * Unlink the page from the pool and queue it for release.
503 */
504 LIST_REMOVE(ph, ph_pagelist);
505 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
506 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
507 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
508
509 pp->pr_npages--;
510 pp->pr_npagefree++;
511
512 pool_update_curpage(pp);
513 }
514
515 /*
516 * Initialize all the pools listed in the "pools" link set.
517 */
518 void
519 pool_subsystem_init(void)
520 {
521 size_t size;
522 int idx;
523
524 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
525 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
526 cv_init(&pool_busy, "poolbusy");
527
528 /*
529 * Initialize private page header pool and cache magazine pool if we
530 * haven't done so yet.
531 */
532 for (idx = 0; idx < PHPOOL_MAX; idx++) {
533 static char phpool_names[PHPOOL_MAX][6+1+6+1];
534 int nelem;
535 size_t sz;
536
537 nelem = PHPOOL_FREELIST_NELEM(idx);
538 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
539 "phpool-%d", nelem);
540 sz = sizeof(struct pool_item_header);
541 if (nelem) {
542 sz = offsetof(struct pool_item_header,
543 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
544 }
545 pool_init(&phpool[idx], sz, 0, 0, 0,
546 phpool_names[idx], &pool_allocator_meta, IPL_VM);
547 }
548 #ifdef POOL_SUBPAGE
549 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
550 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
551 #endif
552
553 size = sizeof(pcg_t) +
554 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
555 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
556 "pcgnormal", &pool_allocator_meta, IPL_VM);
557
558 size = sizeof(pcg_t) +
559 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
560 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
561 "pcglarge", &pool_allocator_meta, IPL_VM);
562
563 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
564 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
565
566 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
567 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
568 }
569
570 static inline bool
571 pool_init_is_phinpage(const struct pool *pp)
572 {
573 size_t pagesize;
574
575 if (pp->pr_roflags & PR_PHINPAGE) {
576 return true;
577 }
578 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
579 return false;
580 }
581
582 pagesize = pp->pr_alloc->pa_pagesz;
583
584 /*
585 * Threshold: the item size is below 1/16 of a page size, and below
586 * 8 times the page header size. The latter ensures we go off-page
587 * if the page header would make us waste a rather big item.
588 */
589 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
590 return true;
591 }
592
593 /* Put the header into the page if it doesn't waste any items. */
594 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
595 return true;
596 }
597
598 return false;
599 }
600
601 /*
602 * Initialize the given pool resource structure.
603 *
604 * We export this routine to allow other kernel parts to declare
605 * static pools that must be initialized before kmem(9) is available.
606 */
607 void
608 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
609 const char *wchan, struct pool_allocator *palloc, int ipl)
610 {
611 struct pool *pp1;
612 size_t prsize;
613 int itemspace, slack;
614
615 /* XXX ioff will be removed. */
616 KASSERT(ioff == 0);
617
618 #ifdef DEBUG
619 if (__predict_true(!cold))
620 mutex_enter(&pool_head_lock);
621 /*
622 * Check that the pool hasn't already been initialised and
623 * added to the list of all pools.
624 */
625 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
626 if (pp == pp1)
627 panic("%s: [%s] already initialised", __func__,
628 wchan);
629 }
630 if (__predict_true(!cold))
631 mutex_exit(&pool_head_lock);
632 #endif
633
634 if (palloc == NULL)
635 palloc = &pool_allocator_kmem;
636 #ifdef POOL_SUBPAGE
637 if (size > palloc->pa_pagesz) {
638 if (palloc == &pool_allocator_kmem)
639 palloc = &pool_allocator_kmem_fullpage;
640 else if (palloc == &pool_allocator_nointr)
641 palloc = &pool_allocator_nointr_fullpage;
642 }
643 #endif /* POOL_SUBPAGE */
644 if (!cold)
645 mutex_enter(&pool_allocator_lock);
646 if (palloc->pa_refcnt++ == 0) {
647 if (palloc->pa_pagesz == 0)
648 palloc->pa_pagesz = PAGE_SIZE;
649
650 TAILQ_INIT(&palloc->pa_list);
651
652 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
653 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
654 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
655 }
656 if (!cold)
657 mutex_exit(&pool_allocator_lock);
658
659 if (align == 0)
660 align = ALIGN(1);
661
662 prsize = size;
663 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
664 prsize = sizeof(struct pool_item);
665
666 prsize = roundup(prsize, align);
667 KASSERTMSG((prsize <= palloc->pa_pagesz),
668 "%s: [%s] pool item size (%zu) larger than page size (%u)",
669 __func__, wchan, prsize, palloc->pa_pagesz);
670
671 /*
672 * Initialize the pool structure.
673 */
674 LIST_INIT(&pp->pr_emptypages);
675 LIST_INIT(&pp->pr_fullpages);
676 LIST_INIT(&pp->pr_partpages);
677 pp->pr_cache = NULL;
678 pp->pr_curpage = NULL;
679 pp->pr_npages = 0;
680 pp->pr_minitems = 0;
681 pp->pr_minpages = 0;
682 pp->pr_maxpages = UINT_MAX;
683 pp->pr_roflags = flags;
684 pp->pr_flags = 0;
685 pp->pr_size = prsize;
686 pp->pr_reqsize = size;
687 pp->pr_align = align;
688 pp->pr_wchan = wchan;
689 pp->pr_alloc = palloc;
690 pp->pr_nitems = 0;
691 pp->pr_nout = 0;
692 pp->pr_hardlimit = UINT_MAX;
693 pp->pr_hardlimit_warning = NULL;
694 pp->pr_hardlimit_ratecap.tv_sec = 0;
695 pp->pr_hardlimit_ratecap.tv_usec = 0;
696 pp->pr_hardlimit_warning_last.tv_sec = 0;
697 pp->pr_hardlimit_warning_last.tv_usec = 0;
698 pp->pr_drain_hook = NULL;
699 pp->pr_drain_hook_arg = NULL;
700 pp->pr_freecheck = NULL;
701 pool_redzone_init(pp, size);
702
703 /*
704 * Decide whether to put the page header off-page to avoid wasting too
705 * large a part of the page or too big an item. Off-page page headers
706 * go on a hash table, so we can match a returned item with its header
707 * based on the page address.
708 */
709 if (pool_init_is_phinpage(pp)) {
710 /* Use the beginning of the page for the page header */
711 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
712 pp->pr_itemoffset = roundup(PHSIZE, align);
713 pp->pr_roflags |= PR_PHINPAGE;
714 } else {
715 /* The page header will be taken from our page header pool */
716 itemspace = palloc->pa_pagesz;
717 pp->pr_itemoffset = 0;
718 SPLAY_INIT(&pp->pr_phtree);
719 }
720
721 pp->pr_itemsperpage = itemspace / pp->pr_size;
722 KASSERT(pp->pr_itemsperpage != 0);
723 if ((pp->pr_roflags & PR_NOTOUCH)) {
724 int idx;
725
726 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
727 idx++) {
728 /* nothing */
729 }
730 if (idx >= PHPOOL_MAX) {
731 /*
732 * if you see this panic, consider to tweak
733 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
734 */
735 panic("%s: [%s] too large itemsperpage(%d) for "
736 "PR_NOTOUCH", __func__,
737 pp->pr_wchan, pp->pr_itemsperpage);
738 }
739 pp->pr_phpool = &phpool[idx];
740 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
741 pp->pr_phpool = &phpool[0];
742 }
743 #if defined(DIAGNOSTIC)
744 else {
745 pp->pr_phpool = NULL;
746 }
747 #endif
748
749 /*
750 * Use the slack between the chunks and the page header
751 * for "cache coloring".
752 */
753 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
754 pp->pr_maxcolor = rounddown(slack, align);
755 pp->pr_curcolor = 0;
756
757 pp->pr_nget = 0;
758 pp->pr_nfail = 0;
759 pp->pr_nput = 0;
760 pp->pr_npagealloc = 0;
761 pp->pr_npagefree = 0;
762 pp->pr_hiwat = 0;
763 pp->pr_nidle = 0;
764 pp->pr_refcnt = 0;
765
766 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
767 cv_init(&pp->pr_cv, wchan);
768 pp->pr_ipl = ipl;
769
770 /* Insert into the list of all pools. */
771 if (!cold)
772 mutex_enter(&pool_head_lock);
773 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
774 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
775 break;
776 }
777 if (pp1 == NULL)
778 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
779 else
780 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
781 if (!cold)
782 mutex_exit(&pool_head_lock);
783
784 /* Insert this into the list of pools using this allocator. */
785 if (!cold)
786 mutex_enter(&palloc->pa_lock);
787 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
788 if (!cold)
789 mutex_exit(&palloc->pa_lock);
790 }
791
792 /*
793 * De-commision a pool resource.
794 */
795 void
796 pool_destroy(struct pool *pp)
797 {
798 struct pool_pagelist pq;
799 struct pool_item_header *ph;
800
801 /* Remove from global pool list */
802 mutex_enter(&pool_head_lock);
803 while (pp->pr_refcnt != 0)
804 cv_wait(&pool_busy, &pool_head_lock);
805 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
806 if (drainpp == pp)
807 drainpp = NULL;
808 mutex_exit(&pool_head_lock);
809
810 /* Remove this pool from its allocator's list of pools. */
811 mutex_enter(&pp->pr_alloc->pa_lock);
812 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
813 mutex_exit(&pp->pr_alloc->pa_lock);
814
815 mutex_enter(&pool_allocator_lock);
816 if (--pp->pr_alloc->pa_refcnt == 0)
817 mutex_destroy(&pp->pr_alloc->pa_lock);
818 mutex_exit(&pool_allocator_lock);
819
820 mutex_enter(&pp->pr_lock);
821
822 KASSERT(pp->pr_cache == NULL);
823 KASSERTMSG((pp->pr_nout == 0),
824 "%s: pool busy: still out: %u", __func__, pp->pr_nout);
825 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
826 KASSERT(LIST_EMPTY(&pp->pr_partpages));
827
828 /* Remove all pages */
829 LIST_INIT(&pq);
830 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
831 pr_rmpage(pp, ph, &pq);
832
833 mutex_exit(&pp->pr_lock);
834
835 pr_pagelist_free(pp, &pq);
836 cv_destroy(&pp->pr_cv);
837 mutex_destroy(&pp->pr_lock);
838 }
839
840 void
841 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
842 {
843
844 /* XXX no locking -- must be used just after pool_init() */
845 KASSERTMSG((pp->pr_drain_hook == NULL),
846 "%s: [%s] already set", __func__, pp->pr_wchan);
847 pp->pr_drain_hook = fn;
848 pp->pr_drain_hook_arg = arg;
849 }
850
851 static struct pool_item_header *
852 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
853 {
854 struct pool_item_header *ph;
855
856 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
857 ph = storage;
858 else
859 ph = pool_get(pp->pr_phpool, flags);
860
861 return ph;
862 }
863
864 /*
865 * Grab an item from the pool.
866 */
867 void *
868 pool_get(struct pool *pp, int flags)
869 {
870 struct pool_item_header *ph;
871 void *v;
872
873 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
874 KASSERTMSG((pp->pr_itemsperpage != 0),
875 "%s: [%s] pr_itemsperpage is zero, "
876 "pool not initialized?", __func__, pp->pr_wchan);
877 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
878 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
879 "%s: [%s] is IPL_NONE, but called from interrupt context",
880 __func__, pp->pr_wchan);
881 if (flags & PR_WAITOK) {
882 ASSERT_SLEEPABLE();
883 }
884
885 mutex_enter(&pp->pr_lock);
886 startover:
887 /*
888 * Check to see if we've reached the hard limit. If we have,
889 * and we can wait, then wait until an item has been returned to
890 * the pool.
891 */
892 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
893 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
894 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
895 if (pp->pr_drain_hook != NULL) {
896 /*
897 * Since the drain hook is going to free things
898 * back to the pool, unlock, call the hook, re-lock,
899 * and check the hardlimit condition again.
900 */
901 mutex_exit(&pp->pr_lock);
902 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
903 mutex_enter(&pp->pr_lock);
904 if (pp->pr_nout < pp->pr_hardlimit)
905 goto startover;
906 }
907
908 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
909 /*
910 * XXX: A warning isn't logged in this case. Should
911 * it be?
912 */
913 pp->pr_flags |= PR_WANTED;
914 do {
915 cv_wait(&pp->pr_cv, &pp->pr_lock);
916 } while (pp->pr_flags & PR_WANTED);
917 goto startover;
918 }
919
920 /*
921 * Log a message that the hard limit has been hit.
922 */
923 if (pp->pr_hardlimit_warning != NULL &&
924 ratecheck(&pp->pr_hardlimit_warning_last,
925 &pp->pr_hardlimit_ratecap))
926 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
927
928 pp->pr_nfail++;
929
930 mutex_exit(&pp->pr_lock);
931 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
932 return NULL;
933 }
934
935 /*
936 * The convention we use is that if `curpage' is not NULL, then
937 * it points at a non-empty bucket. In particular, `curpage'
938 * never points at a page header which has PR_PHINPAGE set and
939 * has no items in its bucket.
940 */
941 if ((ph = pp->pr_curpage) == NULL) {
942 int error;
943
944 KASSERTMSG((pp->pr_nitems == 0),
945 "%s: [%s] curpage NULL, inconsistent nitems %u",
946 __func__, pp->pr_wchan, pp->pr_nitems);
947
948 /*
949 * Call the back-end page allocator for more memory.
950 * Release the pool lock, as the back-end page allocator
951 * may block.
952 */
953 error = pool_grow(pp, flags);
954 if (error != 0) {
955 /*
956 * pool_grow aborts when another thread
957 * is allocating a new page. Retry if it
958 * waited for it.
959 */
960 if (error == ERESTART)
961 goto startover;
962
963 /*
964 * We were unable to allocate a page or item
965 * header, but we released the lock during
966 * allocation, so perhaps items were freed
967 * back to the pool. Check for this case.
968 */
969 if (pp->pr_curpage != NULL)
970 goto startover;
971
972 pp->pr_nfail++;
973 mutex_exit(&pp->pr_lock);
974 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
975 return NULL;
976 }
977
978 /* Start the allocation process over. */
979 goto startover;
980 }
981 if (pp->pr_roflags & PR_NOTOUCH) {
982 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
983 "%s: %s: page empty", __func__, pp->pr_wchan);
984 v = pr_item_bitmap_get(pp, ph);
985 } else {
986 v = pr_item_linkedlist_get(pp, ph);
987 }
988 pp->pr_nitems--;
989 pp->pr_nout++;
990 if (ph->ph_nmissing == 0) {
991 KASSERT(pp->pr_nidle > 0);
992 pp->pr_nidle--;
993
994 /*
995 * This page was previously empty. Move it to the list of
996 * partially-full pages. This page is already curpage.
997 */
998 LIST_REMOVE(ph, ph_pagelist);
999 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1000 }
1001 ph->ph_nmissing++;
1002 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1003 KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
1004 LIST_EMPTY(&ph->ph_itemlist)),
1005 "%s: [%s] nmissing (%u) inconsistent", __func__,
1006 pp->pr_wchan, ph->ph_nmissing);
1007 /*
1008 * This page is now full. Move it to the full list
1009 * and select a new current page.
1010 */
1011 LIST_REMOVE(ph, ph_pagelist);
1012 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1013 pool_update_curpage(pp);
1014 }
1015
1016 pp->pr_nget++;
1017
1018 /*
1019 * If we have a low water mark and we are now below that low
1020 * water mark, add more items to the pool.
1021 */
1022 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1023 /*
1024 * XXX: Should we log a warning? Should we set up a timeout
1025 * to try again in a second or so? The latter could break
1026 * a caller's assumptions about interrupt protection, etc.
1027 */
1028 }
1029
1030 mutex_exit(&pp->pr_lock);
1031 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1032 FREECHECK_OUT(&pp->pr_freecheck, v);
1033 pool_redzone_fill(pp, v);
1034 if (flags & PR_ZERO)
1035 memset(v, 0, pp->pr_reqsize);
1036 else
1037 pool_kleak_fill(pp, v);
1038 return v;
1039 }
1040
1041 /*
1042 * Internal version of pool_put(). Pool is already locked/entered.
1043 */
1044 static void
1045 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1046 {
1047 struct pool_item_header *ph;
1048
1049 KASSERT(mutex_owned(&pp->pr_lock));
1050 pool_redzone_check(pp, v);
1051 FREECHECK_IN(&pp->pr_freecheck, v);
1052 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1053
1054 KASSERTMSG((pp->pr_nout > 0),
1055 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1056
1057 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1058 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1059 }
1060
1061 /*
1062 * Return to item list.
1063 */
1064 if (pp->pr_roflags & PR_NOTOUCH) {
1065 pr_item_bitmap_put(pp, ph, v);
1066 } else {
1067 pr_item_linkedlist_put(pp, ph, v);
1068 }
1069 KDASSERT(ph->ph_nmissing != 0);
1070 ph->ph_nmissing--;
1071 pp->pr_nput++;
1072 pp->pr_nitems++;
1073 pp->pr_nout--;
1074
1075 /* Cancel "pool empty" condition if it exists */
1076 if (pp->pr_curpage == NULL)
1077 pp->pr_curpage = ph;
1078
1079 if (pp->pr_flags & PR_WANTED) {
1080 pp->pr_flags &= ~PR_WANTED;
1081 cv_broadcast(&pp->pr_cv);
1082 }
1083
1084 /*
1085 * If this page is now empty, do one of two things:
1086 *
1087 * (1) If we have more pages than the page high water mark,
1088 * free the page back to the system. ONLY CONSIDER
1089 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1090 * CLAIM.
1091 *
1092 * (2) Otherwise, move the page to the empty page list.
1093 *
1094 * Either way, select a new current page (so we use a partially-full
1095 * page if one is available).
1096 */
1097 if (ph->ph_nmissing == 0) {
1098 pp->pr_nidle++;
1099 if (pp->pr_npages > pp->pr_minpages &&
1100 pp->pr_npages > pp->pr_maxpages) {
1101 pr_rmpage(pp, ph, pq);
1102 } else {
1103 LIST_REMOVE(ph, ph_pagelist);
1104 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1105
1106 /*
1107 * Update the timestamp on the page. A page must
1108 * be idle for some period of time before it can
1109 * be reclaimed by the pagedaemon. This minimizes
1110 * ping-pong'ing for memory.
1111 *
1112 * note for 64-bit time_t: truncating to 32-bit is not
1113 * a problem for our usage.
1114 */
1115 ph->ph_time = time_uptime;
1116 }
1117 pool_update_curpage(pp);
1118 }
1119
1120 /*
1121 * If the page was previously completely full, move it to the
1122 * partially-full list and make it the current page. The next
1123 * allocation will get the item from this page, instead of
1124 * further fragmenting the pool.
1125 */
1126 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1127 LIST_REMOVE(ph, ph_pagelist);
1128 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1129 pp->pr_curpage = ph;
1130 }
1131 }
1132
1133 void
1134 pool_put(struct pool *pp, void *v)
1135 {
1136 struct pool_pagelist pq;
1137
1138 LIST_INIT(&pq);
1139
1140 mutex_enter(&pp->pr_lock);
1141 pool_do_put(pp, v, &pq);
1142 mutex_exit(&pp->pr_lock);
1143
1144 pr_pagelist_free(pp, &pq);
1145 }
1146
1147 /*
1148 * pool_grow: grow a pool by a page.
1149 *
1150 * => called with pool locked.
1151 * => unlock and relock the pool.
1152 * => return with pool locked.
1153 */
1154
1155 static int
1156 pool_grow(struct pool *pp, int flags)
1157 {
1158 struct pool_item_header *ph;
1159 char *storage;
1160
1161 /*
1162 * If there's a pool_grow in progress, wait for it to complete
1163 * and try again from the top.
1164 */
1165 if (pp->pr_flags & PR_GROWING) {
1166 if (flags & PR_WAITOK) {
1167 do {
1168 cv_wait(&pp->pr_cv, &pp->pr_lock);
1169 } while (pp->pr_flags & PR_GROWING);
1170 return ERESTART;
1171 } else {
1172 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1173 /*
1174 * This needs an unlock/relock dance so
1175 * that the other caller has a chance to
1176 * run and actually do the thing. Note
1177 * that this is effectively a busy-wait.
1178 */
1179 mutex_exit(&pp->pr_lock);
1180 mutex_enter(&pp->pr_lock);
1181 return ERESTART;
1182 }
1183 return EWOULDBLOCK;
1184 }
1185 }
1186 pp->pr_flags |= PR_GROWING;
1187 if (flags & PR_WAITOK)
1188 mutex_exit(&pp->pr_lock);
1189 else
1190 pp->pr_flags |= PR_GROWINGNOWAIT;
1191
1192 storage = pool_allocator_alloc(pp, flags);
1193 if (__predict_false(storage == NULL))
1194 goto out;
1195
1196 ph = pool_alloc_item_header(pp, storage, flags);
1197 if (__predict_false(ph == NULL)) {
1198 pool_allocator_free(pp, storage);
1199 goto out;
1200 }
1201
1202 if (flags & PR_WAITOK)
1203 mutex_enter(&pp->pr_lock);
1204 pool_prime_page(pp, storage, ph);
1205 pp->pr_npagealloc++;
1206 KASSERT(pp->pr_flags & PR_GROWING);
1207 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1208 /*
1209 * If anyone was waiting for pool_grow, notify them that we
1210 * may have just done it.
1211 */
1212 cv_broadcast(&pp->pr_cv);
1213 return 0;
1214 out:
1215 if (flags & PR_WAITOK)
1216 mutex_enter(&pp->pr_lock);
1217 KASSERT(pp->pr_flags & PR_GROWING);
1218 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1219 return ENOMEM;
1220 }
1221
1222 /*
1223 * Add N items to the pool.
1224 */
1225 int
1226 pool_prime(struct pool *pp, int n)
1227 {
1228 int newpages;
1229 int error = 0;
1230
1231 mutex_enter(&pp->pr_lock);
1232
1233 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1234
1235 while (newpages > 0) {
1236 error = pool_grow(pp, PR_NOWAIT);
1237 if (error) {
1238 if (error == ERESTART)
1239 continue;
1240 break;
1241 }
1242 pp->pr_minpages++;
1243 newpages--;
1244 }
1245
1246 if (pp->pr_minpages >= pp->pr_maxpages)
1247 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1248
1249 mutex_exit(&pp->pr_lock);
1250 return error;
1251 }
1252
1253 /*
1254 * Add a page worth of items to the pool.
1255 *
1256 * Note, we must be called with the pool descriptor LOCKED.
1257 */
1258 static void
1259 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1260 {
1261 const unsigned int align = pp->pr_align;
1262 struct pool_item *pi;
1263 void *cp = storage;
1264 int n;
1265
1266 KASSERT(mutex_owned(&pp->pr_lock));
1267 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1268 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1269 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1270
1271 /*
1272 * Insert page header.
1273 */
1274 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1275 LIST_INIT(&ph->ph_itemlist);
1276 ph->ph_page = storage;
1277 ph->ph_nmissing = 0;
1278 ph->ph_time = time_uptime;
1279 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1280 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1281
1282 pp->pr_nidle++;
1283
1284 /*
1285 * The item space starts after the on-page header, if any.
1286 */
1287 ph->ph_off = pp->pr_itemoffset;
1288
1289 /*
1290 * Color this page.
1291 */
1292 ph->ph_off += pp->pr_curcolor;
1293 cp = (char *)cp + ph->ph_off;
1294 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1295 pp->pr_curcolor = 0;
1296
1297 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1298
1299 /*
1300 * Insert remaining chunks on the bucket list.
1301 */
1302 n = pp->pr_itemsperpage;
1303 pp->pr_nitems += n;
1304
1305 if (pp->pr_roflags & PR_NOTOUCH) {
1306 pr_item_bitmap_init(pp, ph);
1307 } else {
1308 while (n--) {
1309 pi = (struct pool_item *)cp;
1310
1311 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1312
1313 /* Insert on page list */
1314 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1315 #ifdef POOL_CHECK_MAGIC
1316 pi->pi_magic = PI_MAGIC;
1317 #endif
1318 cp = (char *)cp + pp->pr_size;
1319
1320 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1321 }
1322 }
1323
1324 /*
1325 * If the pool was depleted, point at the new page.
1326 */
1327 if (pp->pr_curpage == NULL)
1328 pp->pr_curpage = ph;
1329
1330 if (++pp->pr_npages > pp->pr_hiwat)
1331 pp->pr_hiwat = pp->pr_npages;
1332 }
1333
1334 /*
1335 * Used by pool_get() when nitems drops below the low water mark. This
1336 * is used to catch up pr_nitems with the low water mark.
1337 *
1338 * Note 1, we never wait for memory here, we let the caller decide what to do.
1339 *
1340 * Note 2, we must be called with the pool already locked, and we return
1341 * with it locked.
1342 */
1343 static int
1344 pool_catchup(struct pool *pp)
1345 {
1346 int error = 0;
1347
1348 while (POOL_NEEDS_CATCHUP(pp)) {
1349 error = pool_grow(pp, PR_NOWAIT);
1350 if (error) {
1351 if (error == ERESTART)
1352 continue;
1353 break;
1354 }
1355 }
1356 return error;
1357 }
1358
1359 static void
1360 pool_update_curpage(struct pool *pp)
1361 {
1362
1363 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1364 if (pp->pr_curpage == NULL) {
1365 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1366 }
1367 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1368 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1369 }
1370
1371 void
1372 pool_setlowat(struct pool *pp, int n)
1373 {
1374
1375 mutex_enter(&pp->pr_lock);
1376
1377 pp->pr_minitems = n;
1378 pp->pr_minpages = (n == 0)
1379 ? 0
1380 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1381
1382 /* Make sure we're caught up with the newly-set low water mark. */
1383 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1384 /*
1385 * XXX: Should we log a warning? Should we set up a timeout
1386 * to try again in a second or so? The latter could break
1387 * a caller's assumptions about interrupt protection, etc.
1388 */
1389 }
1390
1391 mutex_exit(&pp->pr_lock);
1392 }
1393
1394 void
1395 pool_sethiwat(struct pool *pp, int n)
1396 {
1397
1398 mutex_enter(&pp->pr_lock);
1399
1400 pp->pr_maxpages = (n == 0)
1401 ? 0
1402 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1403
1404 mutex_exit(&pp->pr_lock);
1405 }
1406
1407 void
1408 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1409 {
1410
1411 mutex_enter(&pp->pr_lock);
1412
1413 pp->pr_hardlimit = n;
1414 pp->pr_hardlimit_warning = warnmess;
1415 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1416 pp->pr_hardlimit_warning_last.tv_sec = 0;
1417 pp->pr_hardlimit_warning_last.tv_usec = 0;
1418
1419 /*
1420 * In-line version of pool_sethiwat(), because we don't want to
1421 * release the lock.
1422 */
1423 pp->pr_maxpages = (n == 0)
1424 ? 0
1425 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1426
1427 mutex_exit(&pp->pr_lock);
1428 }
1429
1430 /*
1431 * Release all complete pages that have not been used recently.
1432 *
1433 * Must not be called from interrupt context.
1434 */
1435 int
1436 pool_reclaim(struct pool *pp)
1437 {
1438 struct pool_item_header *ph, *phnext;
1439 struct pool_pagelist pq;
1440 uint32_t curtime;
1441 bool klock;
1442 int rv;
1443
1444 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1445
1446 if (pp->pr_drain_hook != NULL) {
1447 /*
1448 * The drain hook must be called with the pool unlocked.
1449 */
1450 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1451 }
1452
1453 /*
1454 * XXXSMP Because we do not want to cause non-MPSAFE code
1455 * to block.
1456 */
1457 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1458 pp->pr_ipl == IPL_SOFTSERIAL) {
1459 KERNEL_LOCK(1, NULL);
1460 klock = true;
1461 } else
1462 klock = false;
1463
1464 /* Reclaim items from the pool's cache (if any). */
1465 if (pp->pr_cache != NULL)
1466 pool_cache_invalidate(pp->pr_cache);
1467
1468 if (mutex_tryenter(&pp->pr_lock) == 0) {
1469 if (klock) {
1470 KERNEL_UNLOCK_ONE(NULL);
1471 }
1472 return 0;
1473 }
1474
1475 LIST_INIT(&pq);
1476
1477 curtime = time_uptime;
1478
1479 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1480 phnext = LIST_NEXT(ph, ph_pagelist);
1481
1482 /* Check our minimum page claim */
1483 if (pp->pr_npages <= pp->pr_minpages)
1484 break;
1485
1486 KASSERT(ph->ph_nmissing == 0);
1487 if (curtime - ph->ph_time < pool_inactive_time)
1488 continue;
1489
1490 /*
1491 * If freeing this page would put us below
1492 * the low water mark, stop now.
1493 */
1494 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1495 pp->pr_minitems)
1496 break;
1497
1498 pr_rmpage(pp, ph, &pq);
1499 }
1500
1501 mutex_exit(&pp->pr_lock);
1502
1503 if (LIST_EMPTY(&pq))
1504 rv = 0;
1505 else {
1506 pr_pagelist_free(pp, &pq);
1507 rv = 1;
1508 }
1509
1510 if (klock) {
1511 KERNEL_UNLOCK_ONE(NULL);
1512 }
1513
1514 return rv;
1515 }
1516
1517 /*
1518 * Drain pools, one at a time. The drained pool is returned within ppp.
1519 *
1520 * Note, must never be called from interrupt context.
1521 */
1522 bool
1523 pool_drain(struct pool **ppp)
1524 {
1525 bool reclaimed;
1526 struct pool *pp;
1527
1528 KASSERT(!TAILQ_EMPTY(&pool_head));
1529
1530 pp = NULL;
1531
1532 /* Find next pool to drain, and add a reference. */
1533 mutex_enter(&pool_head_lock);
1534 do {
1535 if (drainpp == NULL) {
1536 drainpp = TAILQ_FIRST(&pool_head);
1537 }
1538 if (drainpp != NULL) {
1539 pp = drainpp;
1540 drainpp = TAILQ_NEXT(pp, pr_poollist);
1541 }
1542 /*
1543 * Skip completely idle pools. We depend on at least
1544 * one pool in the system being active.
1545 */
1546 } while (pp == NULL || pp->pr_npages == 0);
1547 pp->pr_refcnt++;
1548 mutex_exit(&pool_head_lock);
1549
1550 /* Drain the cache (if any) and pool.. */
1551 reclaimed = pool_reclaim(pp);
1552
1553 /* Finally, unlock the pool. */
1554 mutex_enter(&pool_head_lock);
1555 pp->pr_refcnt--;
1556 cv_broadcast(&pool_busy);
1557 mutex_exit(&pool_head_lock);
1558
1559 if (ppp != NULL)
1560 *ppp = pp;
1561
1562 return reclaimed;
1563 }
1564
1565 /*
1566 * Calculate the total number of pages consumed by pools.
1567 */
1568 int
1569 pool_totalpages(void)
1570 {
1571 struct pool *pp;
1572 uint64_t total = 0;
1573
1574 mutex_enter(&pool_head_lock);
1575 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1576 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1577
1578 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1579 bytes -= (pp->pr_nout * pp->pr_size);
1580 total += bytes;
1581 }
1582 mutex_exit(&pool_head_lock);
1583
1584 return atop(total);
1585 }
1586
1587 /*
1588 * Diagnostic helpers.
1589 */
1590
1591 void
1592 pool_printall(const char *modif, void (*pr)(const char *, ...))
1593 {
1594 struct pool *pp;
1595
1596 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1597 pool_printit(pp, modif, pr);
1598 }
1599 }
1600
1601 void
1602 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1603 {
1604
1605 if (pp == NULL) {
1606 (*pr)("Must specify a pool to print.\n");
1607 return;
1608 }
1609
1610 pool_print1(pp, modif, pr);
1611 }
1612
1613 static void
1614 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1615 void (*pr)(const char *, ...))
1616 {
1617 struct pool_item_header *ph;
1618
1619 LIST_FOREACH(ph, pl, ph_pagelist) {
1620 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1621 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1622 #ifdef POOL_CHECK_MAGIC
1623 struct pool_item *pi;
1624 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1625 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1626 if (pi->pi_magic != PI_MAGIC) {
1627 (*pr)("\t\t\titem %p, magic 0x%x\n",
1628 pi, pi->pi_magic);
1629 }
1630 }
1631 }
1632 #endif
1633 }
1634 }
1635
1636 static void
1637 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1638 {
1639 struct pool_item_header *ph;
1640 pool_cache_t pc;
1641 pcg_t *pcg;
1642 pool_cache_cpu_t *cc;
1643 uint64_t cpuhit, cpumiss;
1644 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1645 char c;
1646
1647 while ((c = *modif++) != '\0') {
1648 if (c == 'l')
1649 print_log = 1;
1650 if (c == 'p')
1651 print_pagelist = 1;
1652 if (c == 'c')
1653 print_cache = 1;
1654 }
1655
1656 if ((pc = pp->pr_cache) != NULL) {
1657 (*pr)("POOL CACHE");
1658 } else {
1659 (*pr)("POOL");
1660 }
1661
1662 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1663 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1664 pp->pr_roflags);
1665 (*pr)("\talloc %p\n", pp->pr_alloc);
1666 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1667 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1668 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1669 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1670
1671 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1672 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1673 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1674 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1675
1676 if (print_pagelist == 0)
1677 goto skip_pagelist;
1678
1679 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1680 (*pr)("\n\tempty page list:\n");
1681 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1682 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1683 (*pr)("\n\tfull page list:\n");
1684 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1685 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1686 (*pr)("\n\tpartial-page list:\n");
1687 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1688
1689 if (pp->pr_curpage == NULL)
1690 (*pr)("\tno current page\n");
1691 else
1692 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1693
1694 skip_pagelist:
1695 if (print_log == 0)
1696 goto skip_log;
1697
1698 (*pr)("\n");
1699
1700 skip_log:
1701
1702 #define PR_GROUPLIST(pcg) \
1703 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1704 for (i = 0; i < pcg->pcg_size; i++) { \
1705 if (pcg->pcg_objects[i].pcgo_pa != \
1706 POOL_PADDR_INVALID) { \
1707 (*pr)("\t\t\t%p, 0x%llx\n", \
1708 pcg->pcg_objects[i].pcgo_va, \
1709 (unsigned long long) \
1710 pcg->pcg_objects[i].pcgo_pa); \
1711 } else { \
1712 (*pr)("\t\t\t%p\n", \
1713 pcg->pcg_objects[i].pcgo_va); \
1714 } \
1715 }
1716
1717 if (pc != NULL) {
1718 cpuhit = 0;
1719 cpumiss = 0;
1720 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1721 if ((cc = pc->pc_cpus[i]) == NULL)
1722 continue;
1723 cpuhit += cc->cc_hits;
1724 cpumiss += cc->cc_misses;
1725 }
1726 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1727 (*pr)("\tcache layer hits %llu misses %llu\n",
1728 pc->pc_hits, pc->pc_misses);
1729 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1730 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1731 pc->pc_contended);
1732 (*pr)("\tcache layer empty groups %u full groups %u\n",
1733 pc->pc_nempty, pc->pc_nfull);
1734 if (print_cache) {
1735 (*pr)("\tfull cache groups:\n");
1736 for (pcg = pc->pc_fullgroups; pcg != NULL;
1737 pcg = pcg->pcg_next) {
1738 PR_GROUPLIST(pcg);
1739 }
1740 (*pr)("\tempty cache groups:\n");
1741 for (pcg = pc->pc_emptygroups; pcg != NULL;
1742 pcg = pcg->pcg_next) {
1743 PR_GROUPLIST(pcg);
1744 }
1745 }
1746 }
1747 #undef PR_GROUPLIST
1748 }
1749
1750 static int
1751 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1752 {
1753 struct pool_item *pi;
1754 void *page;
1755 int n;
1756
1757 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1758 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1759 if (page != ph->ph_page &&
1760 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1761 if (label != NULL)
1762 printf("%s: ", label);
1763 printf("pool(%p:%s): page inconsistency: page %p;"
1764 " at page head addr %p (p %p)\n", pp,
1765 pp->pr_wchan, ph->ph_page,
1766 ph, page);
1767 return 1;
1768 }
1769 }
1770
1771 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1772 return 0;
1773
1774 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1775 pi != NULL;
1776 pi = LIST_NEXT(pi,pi_list), n++) {
1777
1778 #ifdef POOL_CHECK_MAGIC
1779 if (pi->pi_magic != PI_MAGIC) {
1780 if (label != NULL)
1781 printf("%s: ", label);
1782 printf("pool(%s): free list modified: magic=%x;"
1783 " page %p; item ordinal %d; addr %p\n",
1784 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1785 n, pi);
1786 panic("pool");
1787 }
1788 #endif
1789 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1790 continue;
1791 }
1792 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1793 if (page == ph->ph_page)
1794 continue;
1795
1796 if (label != NULL)
1797 printf("%s: ", label);
1798 printf("pool(%p:%s): page inconsistency: page %p;"
1799 " item ordinal %d; addr %p (p %p)\n", pp,
1800 pp->pr_wchan, ph->ph_page,
1801 n, pi, page);
1802 return 1;
1803 }
1804 return 0;
1805 }
1806
1807
1808 int
1809 pool_chk(struct pool *pp, const char *label)
1810 {
1811 struct pool_item_header *ph;
1812 int r = 0;
1813
1814 mutex_enter(&pp->pr_lock);
1815 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1816 r = pool_chk_page(pp, label, ph);
1817 if (r) {
1818 goto out;
1819 }
1820 }
1821 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1822 r = pool_chk_page(pp, label, ph);
1823 if (r) {
1824 goto out;
1825 }
1826 }
1827 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1828 r = pool_chk_page(pp, label, ph);
1829 if (r) {
1830 goto out;
1831 }
1832 }
1833
1834 out:
1835 mutex_exit(&pp->pr_lock);
1836 return r;
1837 }
1838
1839 /*
1840 * pool_cache_init:
1841 *
1842 * Initialize a pool cache.
1843 */
1844 pool_cache_t
1845 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1846 const char *wchan, struct pool_allocator *palloc, int ipl,
1847 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1848 {
1849 pool_cache_t pc;
1850
1851 pc = pool_get(&cache_pool, PR_WAITOK);
1852 if (pc == NULL)
1853 return NULL;
1854
1855 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1856 palloc, ipl, ctor, dtor, arg);
1857
1858 return pc;
1859 }
1860
1861 /*
1862 * pool_cache_bootstrap:
1863 *
1864 * Kernel-private version of pool_cache_init(). The caller
1865 * provides initial storage.
1866 */
1867 void
1868 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1869 u_int align_offset, u_int flags, const char *wchan,
1870 struct pool_allocator *palloc, int ipl,
1871 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1872 void *arg)
1873 {
1874 CPU_INFO_ITERATOR cii;
1875 pool_cache_t pc1;
1876 struct cpu_info *ci;
1877 struct pool *pp;
1878
1879 pp = &pc->pc_pool;
1880 if (palloc == NULL && ipl == IPL_NONE) {
1881 if (size > PAGE_SIZE) {
1882 int bigidx = pool_bigidx(size);
1883
1884 palloc = &pool_allocator_big[bigidx];
1885 } else
1886 palloc = &pool_allocator_nointr;
1887 }
1888 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1889 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1890
1891 if (ctor == NULL) {
1892 ctor = (int (*)(void *, void *, int))nullop;
1893 }
1894 if (dtor == NULL) {
1895 dtor = (void (*)(void *, void *))nullop;
1896 }
1897
1898 pc->pc_emptygroups = NULL;
1899 pc->pc_fullgroups = NULL;
1900 pc->pc_partgroups = NULL;
1901 pc->pc_ctor = ctor;
1902 pc->pc_dtor = dtor;
1903 pc->pc_arg = arg;
1904 pc->pc_hits = 0;
1905 pc->pc_misses = 0;
1906 pc->pc_nempty = 0;
1907 pc->pc_npart = 0;
1908 pc->pc_nfull = 0;
1909 pc->pc_contended = 0;
1910 pc->pc_refcnt = 0;
1911 pc->pc_freecheck = NULL;
1912
1913 if ((flags & PR_LARGECACHE) != 0) {
1914 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1915 pc->pc_pcgpool = &pcg_large_pool;
1916 } else {
1917 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1918 pc->pc_pcgpool = &pcg_normal_pool;
1919 }
1920
1921 /* Allocate per-CPU caches. */
1922 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1923 pc->pc_ncpu = 0;
1924 if (ncpu < 2) {
1925 /* XXX For sparc: boot CPU is not attached yet. */
1926 pool_cache_cpu_init1(curcpu(), pc);
1927 } else {
1928 for (CPU_INFO_FOREACH(cii, ci)) {
1929 pool_cache_cpu_init1(ci, pc);
1930 }
1931 }
1932
1933 /* Add to list of all pools. */
1934 if (__predict_true(!cold))
1935 mutex_enter(&pool_head_lock);
1936 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1937 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1938 break;
1939 }
1940 if (pc1 == NULL)
1941 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1942 else
1943 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1944 if (__predict_true(!cold))
1945 mutex_exit(&pool_head_lock);
1946
1947 membar_sync();
1948 pp->pr_cache = pc;
1949 }
1950
1951 /*
1952 * pool_cache_destroy:
1953 *
1954 * Destroy a pool cache.
1955 */
1956 void
1957 pool_cache_destroy(pool_cache_t pc)
1958 {
1959
1960 pool_cache_bootstrap_destroy(pc);
1961 pool_put(&cache_pool, pc);
1962 }
1963
1964 /*
1965 * pool_cache_bootstrap_destroy:
1966 *
1967 * Destroy a pool cache.
1968 */
1969 void
1970 pool_cache_bootstrap_destroy(pool_cache_t pc)
1971 {
1972 struct pool *pp = &pc->pc_pool;
1973 u_int i;
1974
1975 /* Remove it from the global list. */
1976 mutex_enter(&pool_head_lock);
1977 while (pc->pc_refcnt != 0)
1978 cv_wait(&pool_busy, &pool_head_lock);
1979 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1980 mutex_exit(&pool_head_lock);
1981
1982 /* First, invalidate the entire cache. */
1983 pool_cache_invalidate(pc);
1984
1985 /* Disassociate it from the pool. */
1986 mutex_enter(&pp->pr_lock);
1987 pp->pr_cache = NULL;
1988 mutex_exit(&pp->pr_lock);
1989
1990 /* Destroy per-CPU data */
1991 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1992 pool_cache_invalidate_cpu(pc, i);
1993
1994 /* Finally, destroy it. */
1995 mutex_destroy(&pc->pc_lock);
1996 pool_destroy(pp);
1997 }
1998
1999 /*
2000 * pool_cache_cpu_init1:
2001 *
2002 * Called for each pool_cache whenever a new CPU is attached.
2003 */
2004 static void
2005 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2006 {
2007 pool_cache_cpu_t *cc;
2008 int index;
2009
2010 index = ci->ci_index;
2011
2012 KASSERT(index < __arraycount(pc->pc_cpus));
2013
2014 if ((cc = pc->pc_cpus[index]) != NULL) {
2015 KASSERT(cc->cc_cpuindex == index);
2016 return;
2017 }
2018
2019 /*
2020 * The first CPU is 'free'. This needs to be the case for
2021 * bootstrap - we may not be able to allocate yet.
2022 */
2023 if (pc->pc_ncpu == 0) {
2024 cc = &pc->pc_cpu0;
2025 pc->pc_ncpu = 1;
2026 } else {
2027 mutex_enter(&pc->pc_lock);
2028 pc->pc_ncpu++;
2029 mutex_exit(&pc->pc_lock);
2030 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2031 }
2032
2033 cc->cc_ipl = pc->pc_pool.pr_ipl;
2034 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2035 cc->cc_cache = pc;
2036 cc->cc_cpuindex = index;
2037 cc->cc_hits = 0;
2038 cc->cc_misses = 0;
2039 cc->cc_current = __UNCONST(&pcg_dummy);
2040 cc->cc_previous = __UNCONST(&pcg_dummy);
2041
2042 pc->pc_cpus[index] = cc;
2043 }
2044
2045 /*
2046 * pool_cache_cpu_init:
2047 *
2048 * Called whenever a new CPU is attached.
2049 */
2050 void
2051 pool_cache_cpu_init(struct cpu_info *ci)
2052 {
2053 pool_cache_t pc;
2054
2055 mutex_enter(&pool_head_lock);
2056 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2057 pc->pc_refcnt++;
2058 mutex_exit(&pool_head_lock);
2059
2060 pool_cache_cpu_init1(ci, pc);
2061
2062 mutex_enter(&pool_head_lock);
2063 pc->pc_refcnt--;
2064 cv_broadcast(&pool_busy);
2065 }
2066 mutex_exit(&pool_head_lock);
2067 }
2068
2069 /*
2070 * pool_cache_reclaim:
2071 *
2072 * Reclaim memory from a pool cache.
2073 */
2074 bool
2075 pool_cache_reclaim(pool_cache_t pc)
2076 {
2077
2078 return pool_reclaim(&pc->pc_pool);
2079 }
2080
2081 static void
2082 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2083 {
2084 if (pc->pc_pool.pr_redzone) {
2085 /*
2086 * The object is marked as invalid. Temporarily mark it as
2087 * valid for the destructor. pool_put below will re-mark it
2088 * as invalid.
2089 */
2090 kasan_mark(object, pc->pc_pool.pr_reqsize,
2091 pc->pc_pool.pr_reqsize_with_redzone);
2092 }
2093
2094 (*pc->pc_dtor)(pc->pc_arg, object);
2095 pool_put(&pc->pc_pool, object);
2096 }
2097
2098 /*
2099 * pool_cache_destruct_object:
2100 *
2101 * Force destruction of an object and its release back into
2102 * the pool.
2103 */
2104 void
2105 pool_cache_destruct_object(pool_cache_t pc, void *object)
2106 {
2107
2108 FREECHECK_IN(&pc->pc_freecheck, object);
2109
2110 pool_cache_destruct_object1(pc, object);
2111 }
2112
2113 /*
2114 * pool_cache_invalidate_groups:
2115 *
2116 * Invalidate a chain of groups and destruct all objects.
2117 */
2118 static void
2119 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2120 {
2121 void *object;
2122 pcg_t *next;
2123 int i;
2124
2125 for (; pcg != NULL; pcg = next) {
2126 next = pcg->pcg_next;
2127
2128 for (i = 0; i < pcg->pcg_avail; i++) {
2129 object = pcg->pcg_objects[i].pcgo_va;
2130 pool_cache_destruct_object1(pc, object);
2131 }
2132
2133 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2134 pool_put(&pcg_large_pool, pcg);
2135 } else {
2136 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2137 pool_put(&pcg_normal_pool, pcg);
2138 }
2139 }
2140 }
2141
2142 /*
2143 * pool_cache_invalidate:
2144 *
2145 * Invalidate a pool cache (destruct and release all of the
2146 * cached objects). Does not reclaim objects from the pool.
2147 *
2148 * Note: For pool caches that provide constructed objects, there
2149 * is an assumption that another level of synchronization is occurring
2150 * between the input to the constructor and the cache invalidation.
2151 *
2152 * Invalidation is a costly process and should not be called from
2153 * interrupt context.
2154 */
2155 void
2156 pool_cache_invalidate(pool_cache_t pc)
2157 {
2158 uint64_t where;
2159 pcg_t *full, *empty, *part;
2160
2161 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2162
2163 if (ncpu < 2 || !mp_online) {
2164 /*
2165 * We might be called early enough in the boot process
2166 * for the CPU data structures to not be fully initialized.
2167 * In this case, transfer the content of the local CPU's
2168 * cache back into global cache as only this CPU is currently
2169 * running.
2170 */
2171 pool_cache_transfer(pc);
2172 } else {
2173 /*
2174 * Signal all CPUs that they must transfer their local
2175 * cache back to the global pool then wait for the xcall to
2176 * complete.
2177 */
2178 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2179 pc, NULL);
2180 xc_wait(where);
2181 }
2182
2183 /* Empty pool caches, then invalidate objects */
2184 mutex_enter(&pc->pc_lock);
2185 full = pc->pc_fullgroups;
2186 empty = pc->pc_emptygroups;
2187 part = pc->pc_partgroups;
2188 pc->pc_fullgroups = NULL;
2189 pc->pc_emptygroups = NULL;
2190 pc->pc_partgroups = NULL;
2191 pc->pc_nfull = 0;
2192 pc->pc_nempty = 0;
2193 pc->pc_npart = 0;
2194 mutex_exit(&pc->pc_lock);
2195
2196 pool_cache_invalidate_groups(pc, full);
2197 pool_cache_invalidate_groups(pc, empty);
2198 pool_cache_invalidate_groups(pc, part);
2199 }
2200
2201 /*
2202 * pool_cache_invalidate_cpu:
2203 *
2204 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2205 * identified by its associated index.
2206 * It is caller's responsibility to ensure that no operation is
2207 * taking place on this pool cache while doing this invalidation.
2208 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2209 * pool cached objects from a CPU different from the one currently running
2210 * may result in an undefined behaviour.
2211 */
2212 static void
2213 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2214 {
2215 pool_cache_cpu_t *cc;
2216 pcg_t *pcg;
2217
2218 if ((cc = pc->pc_cpus[index]) == NULL)
2219 return;
2220
2221 if ((pcg = cc->cc_current) != &pcg_dummy) {
2222 pcg->pcg_next = NULL;
2223 pool_cache_invalidate_groups(pc, pcg);
2224 }
2225 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2226 pcg->pcg_next = NULL;
2227 pool_cache_invalidate_groups(pc, pcg);
2228 }
2229 if (cc != &pc->pc_cpu0)
2230 pool_put(&cache_cpu_pool, cc);
2231
2232 }
2233
2234 void
2235 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2236 {
2237
2238 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2239 }
2240
2241 void
2242 pool_cache_setlowat(pool_cache_t pc, int n)
2243 {
2244
2245 pool_setlowat(&pc->pc_pool, n);
2246 }
2247
2248 void
2249 pool_cache_sethiwat(pool_cache_t pc, int n)
2250 {
2251
2252 pool_sethiwat(&pc->pc_pool, n);
2253 }
2254
2255 void
2256 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2257 {
2258
2259 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2260 }
2261
2262 static bool __noinline
2263 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2264 paddr_t *pap, int flags)
2265 {
2266 pcg_t *pcg, *cur;
2267 uint64_t ncsw;
2268 pool_cache_t pc;
2269 void *object;
2270
2271 KASSERT(cc->cc_current->pcg_avail == 0);
2272 KASSERT(cc->cc_previous->pcg_avail == 0);
2273
2274 pc = cc->cc_cache;
2275 cc->cc_misses++;
2276
2277 /*
2278 * Nothing was available locally. Try and grab a group
2279 * from the cache.
2280 */
2281 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2282 ncsw = curlwp->l_ncsw;
2283 mutex_enter(&pc->pc_lock);
2284 pc->pc_contended++;
2285
2286 /*
2287 * If we context switched while locking, then
2288 * our view of the per-CPU data is invalid:
2289 * retry.
2290 */
2291 if (curlwp->l_ncsw != ncsw) {
2292 mutex_exit(&pc->pc_lock);
2293 return true;
2294 }
2295 }
2296
2297 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2298 /*
2299 * If there's a full group, release our empty
2300 * group back to the cache. Install the full
2301 * group as cc_current and return.
2302 */
2303 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2304 KASSERT(cur->pcg_avail == 0);
2305 cur->pcg_next = pc->pc_emptygroups;
2306 pc->pc_emptygroups = cur;
2307 pc->pc_nempty++;
2308 }
2309 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2310 cc->cc_current = pcg;
2311 pc->pc_fullgroups = pcg->pcg_next;
2312 pc->pc_hits++;
2313 pc->pc_nfull--;
2314 mutex_exit(&pc->pc_lock);
2315 return true;
2316 }
2317
2318 /*
2319 * Nothing available locally or in cache. Take the slow
2320 * path: fetch a new object from the pool and construct
2321 * it.
2322 */
2323 pc->pc_misses++;
2324 mutex_exit(&pc->pc_lock);
2325 splx(s);
2326
2327 object = pool_get(&pc->pc_pool, flags);
2328 *objectp = object;
2329 if (__predict_false(object == NULL)) {
2330 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2331 return false;
2332 }
2333
2334 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2335 pool_put(&pc->pc_pool, object);
2336 *objectp = NULL;
2337 return false;
2338 }
2339
2340 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2341
2342 if (pap != NULL) {
2343 #ifdef POOL_VTOPHYS
2344 *pap = POOL_VTOPHYS(object);
2345 #else
2346 *pap = POOL_PADDR_INVALID;
2347 #endif
2348 }
2349
2350 FREECHECK_OUT(&pc->pc_freecheck, object);
2351 pool_redzone_fill(&pc->pc_pool, object);
2352 pool_cache_kleak_fill(pc, object);
2353 return false;
2354 }
2355
2356 /*
2357 * pool_cache_get{,_paddr}:
2358 *
2359 * Get an object from a pool cache (optionally returning
2360 * the physical address of the object).
2361 */
2362 void *
2363 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2364 {
2365 pool_cache_cpu_t *cc;
2366 pcg_t *pcg;
2367 void *object;
2368 int s;
2369
2370 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2371 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2372 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2373 "%s: [%s] is IPL_NONE, but called from interrupt context",
2374 __func__, pc->pc_pool.pr_wchan);
2375
2376 if (flags & PR_WAITOK) {
2377 ASSERT_SLEEPABLE();
2378 }
2379
2380 /* Lock out interrupts and disable preemption. */
2381 s = splvm();
2382 while (/* CONSTCOND */ true) {
2383 /* Try and allocate an object from the current group. */
2384 cc = pc->pc_cpus[curcpu()->ci_index];
2385 KASSERT(cc->cc_cache == pc);
2386 pcg = cc->cc_current;
2387 if (__predict_true(pcg->pcg_avail > 0)) {
2388 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2389 if (__predict_false(pap != NULL))
2390 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2391 #if defined(DIAGNOSTIC)
2392 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2393 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2394 KASSERT(object != NULL);
2395 #endif
2396 cc->cc_hits++;
2397 splx(s);
2398 FREECHECK_OUT(&pc->pc_freecheck, object);
2399 pool_redzone_fill(&pc->pc_pool, object);
2400 pool_cache_kleak_fill(pc, object);
2401 return object;
2402 }
2403
2404 /*
2405 * That failed. If the previous group isn't empty, swap
2406 * it with the current group and allocate from there.
2407 */
2408 pcg = cc->cc_previous;
2409 if (__predict_true(pcg->pcg_avail > 0)) {
2410 cc->cc_previous = cc->cc_current;
2411 cc->cc_current = pcg;
2412 continue;
2413 }
2414
2415 /*
2416 * Can't allocate from either group: try the slow path.
2417 * If get_slow() allocated an object for us, or if
2418 * no more objects are available, it will return false.
2419 * Otherwise, we need to retry.
2420 */
2421 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2422 break;
2423 }
2424
2425 /*
2426 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2427 * pool_cache_get can fail even in the PR_WAITOK case, if the
2428 * constructor fails.
2429 */
2430 return object;
2431 }
2432
2433 static bool __noinline
2434 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2435 {
2436 struct lwp *l = curlwp;
2437 pcg_t *pcg, *cur;
2438 uint64_t ncsw;
2439 pool_cache_t pc;
2440
2441 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2442 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2443
2444 pc = cc->cc_cache;
2445 pcg = NULL;
2446 cc->cc_misses++;
2447 ncsw = l->l_ncsw;
2448
2449 /*
2450 * If there are no empty groups in the cache then allocate one
2451 * while still unlocked.
2452 */
2453 if (__predict_false(pc->pc_emptygroups == NULL)) {
2454 if (__predict_true(!pool_cache_disable)) {
2455 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2456 }
2457 /*
2458 * If pool_get() blocked, then our view of
2459 * the per-CPU data is invalid: retry.
2460 */
2461 if (__predict_false(l->l_ncsw != ncsw)) {
2462 if (pcg != NULL) {
2463 pool_put(pc->pc_pcgpool, pcg);
2464 }
2465 return true;
2466 }
2467 if (__predict_true(pcg != NULL)) {
2468 pcg->pcg_avail = 0;
2469 pcg->pcg_size = pc->pc_pcgsize;
2470 }
2471 }
2472
2473 /* Lock the cache. */
2474 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2475 mutex_enter(&pc->pc_lock);
2476 pc->pc_contended++;
2477
2478 /*
2479 * If we context switched while locking, then our view of
2480 * the per-CPU data is invalid: retry.
2481 */
2482 if (__predict_false(l->l_ncsw != ncsw)) {
2483 mutex_exit(&pc->pc_lock);
2484 if (pcg != NULL) {
2485 pool_put(pc->pc_pcgpool, pcg);
2486 }
2487 return true;
2488 }
2489 }
2490
2491 /* If there are no empty groups in the cache then allocate one. */
2492 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2493 pcg = pc->pc_emptygroups;
2494 pc->pc_emptygroups = pcg->pcg_next;
2495 pc->pc_nempty--;
2496 }
2497
2498 /*
2499 * If there's a empty group, release our full group back
2500 * to the cache. Install the empty group to the local CPU
2501 * and return.
2502 */
2503 if (pcg != NULL) {
2504 KASSERT(pcg->pcg_avail == 0);
2505 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2506 cc->cc_previous = pcg;
2507 } else {
2508 cur = cc->cc_current;
2509 if (__predict_true(cur != &pcg_dummy)) {
2510 KASSERT(cur->pcg_avail == cur->pcg_size);
2511 cur->pcg_next = pc->pc_fullgroups;
2512 pc->pc_fullgroups = cur;
2513 pc->pc_nfull++;
2514 }
2515 cc->cc_current = pcg;
2516 }
2517 pc->pc_hits++;
2518 mutex_exit(&pc->pc_lock);
2519 return true;
2520 }
2521
2522 /*
2523 * Nothing available locally or in cache, and we didn't
2524 * allocate an empty group. Take the slow path and destroy
2525 * the object here and now.
2526 */
2527 pc->pc_misses++;
2528 mutex_exit(&pc->pc_lock);
2529 splx(s);
2530 pool_cache_destruct_object(pc, object);
2531
2532 return false;
2533 }
2534
2535 /*
2536 * pool_cache_put{,_paddr}:
2537 *
2538 * Put an object back to the pool cache (optionally caching the
2539 * physical address of the object).
2540 */
2541 void
2542 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2543 {
2544 pool_cache_cpu_t *cc;
2545 pcg_t *pcg;
2546 int s;
2547
2548 KASSERT(object != NULL);
2549 pool_cache_redzone_check(pc, object);
2550 FREECHECK_IN(&pc->pc_freecheck, object);
2551
2552 /* Lock out interrupts and disable preemption. */
2553 s = splvm();
2554 while (/* CONSTCOND */ true) {
2555 /* If the current group isn't full, release it there. */
2556 cc = pc->pc_cpus[curcpu()->ci_index];
2557 KASSERT(cc->cc_cache == pc);
2558 pcg = cc->cc_current;
2559 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2560 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2561 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2562 pcg->pcg_avail++;
2563 cc->cc_hits++;
2564 splx(s);
2565 return;
2566 }
2567
2568 /*
2569 * That failed. If the previous group isn't full, swap
2570 * it with the current group and try again.
2571 */
2572 pcg = cc->cc_previous;
2573 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2574 cc->cc_previous = cc->cc_current;
2575 cc->cc_current = pcg;
2576 continue;
2577 }
2578
2579 /*
2580 * Can't free to either group: try the slow path.
2581 * If put_slow() releases the object for us, it
2582 * will return false. Otherwise we need to retry.
2583 */
2584 if (!pool_cache_put_slow(cc, s, object))
2585 break;
2586 }
2587 }
2588
2589 /*
2590 * pool_cache_transfer:
2591 *
2592 * Transfer objects from the per-CPU cache to the global cache.
2593 * Run within a cross-call thread.
2594 */
2595 static void
2596 pool_cache_transfer(pool_cache_t pc)
2597 {
2598 pool_cache_cpu_t *cc;
2599 pcg_t *prev, *cur, **list;
2600 int s;
2601
2602 s = splvm();
2603 mutex_enter(&pc->pc_lock);
2604 cc = pc->pc_cpus[curcpu()->ci_index];
2605 cur = cc->cc_current;
2606 cc->cc_current = __UNCONST(&pcg_dummy);
2607 prev = cc->cc_previous;
2608 cc->cc_previous = __UNCONST(&pcg_dummy);
2609 if (cur != &pcg_dummy) {
2610 if (cur->pcg_avail == cur->pcg_size) {
2611 list = &pc->pc_fullgroups;
2612 pc->pc_nfull++;
2613 } else if (cur->pcg_avail == 0) {
2614 list = &pc->pc_emptygroups;
2615 pc->pc_nempty++;
2616 } else {
2617 list = &pc->pc_partgroups;
2618 pc->pc_npart++;
2619 }
2620 cur->pcg_next = *list;
2621 *list = cur;
2622 }
2623 if (prev != &pcg_dummy) {
2624 if (prev->pcg_avail == prev->pcg_size) {
2625 list = &pc->pc_fullgroups;
2626 pc->pc_nfull++;
2627 } else if (prev->pcg_avail == 0) {
2628 list = &pc->pc_emptygroups;
2629 pc->pc_nempty++;
2630 } else {
2631 list = &pc->pc_partgroups;
2632 pc->pc_npart++;
2633 }
2634 prev->pcg_next = *list;
2635 *list = prev;
2636 }
2637 mutex_exit(&pc->pc_lock);
2638 splx(s);
2639 }
2640
2641 /*
2642 * Pool backend allocators.
2643 *
2644 * Each pool has a backend allocator that handles allocation, deallocation,
2645 * and any additional draining that might be needed.
2646 *
2647 * We provide two standard allocators:
2648 *
2649 * pool_allocator_kmem - the default when no allocator is specified
2650 *
2651 * pool_allocator_nointr - used for pools that will not be accessed
2652 * in interrupt context.
2653 */
2654 void *pool_page_alloc(struct pool *, int);
2655 void pool_page_free(struct pool *, void *);
2656
2657 #ifdef POOL_SUBPAGE
2658 struct pool_allocator pool_allocator_kmem_fullpage = {
2659 .pa_alloc = pool_page_alloc,
2660 .pa_free = pool_page_free,
2661 .pa_pagesz = 0
2662 };
2663 #else
2664 struct pool_allocator pool_allocator_kmem = {
2665 .pa_alloc = pool_page_alloc,
2666 .pa_free = pool_page_free,
2667 .pa_pagesz = 0
2668 };
2669 #endif
2670
2671 #ifdef POOL_SUBPAGE
2672 struct pool_allocator pool_allocator_nointr_fullpage = {
2673 .pa_alloc = pool_page_alloc,
2674 .pa_free = pool_page_free,
2675 .pa_pagesz = 0
2676 };
2677 #else
2678 struct pool_allocator pool_allocator_nointr = {
2679 .pa_alloc = pool_page_alloc,
2680 .pa_free = pool_page_free,
2681 .pa_pagesz = 0
2682 };
2683 #endif
2684
2685 #ifdef POOL_SUBPAGE
2686 void *pool_subpage_alloc(struct pool *, int);
2687 void pool_subpage_free(struct pool *, void *);
2688
2689 struct pool_allocator pool_allocator_kmem = {
2690 .pa_alloc = pool_subpage_alloc,
2691 .pa_free = pool_subpage_free,
2692 .pa_pagesz = POOL_SUBPAGE
2693 };
2694
2695 struct pool_allocator pool_allocator_nointr = {
2696 .pa_alloc = pool_subpage_alloc,
2697 .pa_free = pool_subpage_free,
2698 .pa_pagesz = POOL_SUBPAGE
2699 };
2700 #endif /* POOL_SUBPAGE */
2701
2702 struct pool_allocator pool_allocator_big[] = {
2703 {
2704 .pa_alloc = pool_page_alloc,
2705 .pa_free = pool_page_free,
2706 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2707 },
2708 {
2709 .pa_alloc = pool_page_alloc,
2710 .pa_free = pool_page_free,
2711 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2712 },
2713 {
2714 .pa_alloc = pool_page_alloc,
2715 .pa_free = pool_page_free,
2716 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2717 },
2718 {
2719 .pa_alloc = pool_page_alloc,
2720 .pa_free = pool_page_free,
2721 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2722 },
2723 {
2724 .pa_alloc = pool_page_alloc,
2725 .pa_free = pool_page_free,
2726 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2727 },
2728 {
2729 .pa_alloc = pool_page_alloc,
2730 .pa_free = pool_page_free,
2731 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2732 },
2733 {
2734 .pa_alloc = pool_page_alloc,
2735 .pa_free = pool_page_free,
2736 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2737 },
2738 {
2739 .pa_alloc = pool_page_alloc,
2740 .pa_free = pool_page_free,
2741 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2742 }
2743 };
2744
2745 static int
2746 pool_bigidx(size_t size)
2747 {
2748 int i;
2749
2750 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2751 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2752 return i;
2753 }
2754 panic("pool item size %zu too large, use a custom allocator", size);
2755 }
2756
2757 static void *
2758 pool_allocator_alloc(struct pool *pp, int flags)
2759 {
2760 struct pool_allocator *pa = pp->pr_alloc;
2761 void *res;
2762
2763 res = (*pa->pa_alloc)(pp, flags);
2764 if (res == NULL && (flags & PR_WAITOK) == 0) {
2765 /*
2766 * We only run the drain hook here if PR_NOWAIT.
2767 * In other cases, the hook will be run in
2768 * pool_reclaim().
2769 */
2770 if (pp->pr_drain_hook != NULL) {
2771 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2772 res = (*pa->pa_alloc)(pp, flags);
2773 }
2774 }
2775 return res;
2776 }
2777
2778 static void
2779 pool_allocator_free(struct pool *pp, void *v)
2780 {
2781 struct pool_allocator *pa = pp->pr_alloc;
2782
2783 if (pp->pr_redzone) {
2784 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
2785 }
2786 (*pa->pa_free)(pp, v);
2787 }
2788
2789 void *
2790 pool_page_alloc(struct pool *pp, int flags)
2791 {
2792 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2793 vmem_addr_t va;
2794 int ret;
2795
2796 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2797 vflags | VM_INSTANTFIT, &va);
2798
2799 return ret ? NULL : (void *)va;
2800 }
2801
2802 void
2803 pool_page_free(struct pool *pp, void *v)
2804 {
2805
2806 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2807 }
2808
2809 static void *
2810 pool_page_alloc_meta(struct pool *pp, int flags)
2811 {
2812 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2813 vmem_addr_t va;
2814 int ret;
2815
2816 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2817 vflags | VM_INSTANTFIT, &va);
2818
2819 return ret ? NULL : (void *)va;
2820 }
2821
2822 static void
2823 pool_page_free_meta(struct pool *pp, void *v)
2824 {
2825
2826 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2827 }
2828
2829 #ifdef KLEAK
2830 static void
2831 pool_kleak_fill(struct pool *pp, void *p)
2832 {
2833 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2834 return;
2835 }
2836 kleak_fill_area(p, pp->pr_size);
2837 }
2838
2839 static void
2840 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2841 {
2842 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2843 return;
2844 }
2845 pool_kleak_fill(&pc->pc_pool, p);
2846 }
2847 #endif
2848
2849 #ifdef POOL_REDZONE
2850 #if defined(_LP64)
2851 # define PRIME 0x9e37fffffffc0000UL
2852 #else /* defined(_LP64) */
2853 # define PRIME 0x9e3779b1
2854 #endif /* defined(_LP64) */
2855 #define STATIC_BYTE 0xFE
2856 CTASSERT(POOL_REDZONE_SIZE > 1);
2857
2858 #ifndef KASAN
2859 static inline uint8_t
2860 pool_pattern_generate(const void *p)
2861 {
2862 return (uint8_t)(((uintptr_t)p) * PRIME
2863 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2864 }
2865 #endif
2866
2867 static void
2868 pool_redzone_init(struct pool *pp, size_t requested_size)
2869 {
2870 size_t redzsz;
2871 size_t nsz;
2872
2873 #ifdef KASAN
2874 redzsz = requested_size;
2875 kasan_add_redzone(&redzsz);
2876 redzsz -= requested_size;
2877 #else
2878 redzsz = POOL_REDZONE_SIZE;
2879 #endif
2880
2881 if (pp->pr_roflags & PR_NOTOUCH) {
2882 pp->pr_redzone = false;
2883 return;
2884 }
2885
2886 /*
2887 * We may have extended the requested size earlier; check if
2888 * there's naturally space in the padding for a red zone.
2889 */
2890 if (pp->pr_size - requested_size >= redzsz) {
2891 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2892 pp->pr_redzone = true;
2893 return;
2894 }
2895
2896 /*
2897 * No space in the natural padding; check if we can extend a
2898 * bit the size of the pool.
2899 */
2900 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2901 if (nsz <= pp->pr_alloc->pa_pagesz) {
2902 /* Ok, we can */
2903 pp->pr_size = nsz;
2904 pp->pr_reqsize_with_redzone = requested_size + redzsz;
2905 pp->pr_redzone = true;
2906 } else {
2907 /* No space for a red zone... snif :'( */
2908 pp->pr_redzone = false;
2909 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2910 }
2911 }
2912
2913 static void
2914 pool_redzone_fill(struct pool *pp, void *p)
2915 {
2916 if (!pp->pr_redzone)
2917 return;
2918 #ifdef KASAN
2919 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
2920 #else
2921 uint8_t *cp, pat;
2922 const uint8_t *ep;
2923
2924 cp = (uint8_t *)p + pp->pr_reqsize;
2925 ep = cp + POOL_REDZONE_SIZE;
2926
2927 /*
2928 * We really don't want the first byte of the red zone to be '\0';
2929 * an off-by-one in a string may not be properly detected.
2930 */
2931 pat = pool_pattern_generate(cp);
2932 *cp = (pat == '\0') ? STATIC_BYTE: pat;
2933 cp++;
2934
2935 while (cp < ep) {
2936 *cp = pool_pattern_generate(cp);
2937 cp++;
2938 }
2939 #endif
2940 }
2941
2942 static void
2943 pool_redzone_check(struct pool *pp, void *p)
2944 {
2945 if (!pp->pr_redzone)
2946 return;
2947 #ifdef KASAN
2948 kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
2949 #else
2950 uint8_t *cp, pat, expected;
2951 const uint8_t *ep;
2952
2953 cp = (uint8_t *)p + pp->pr_reqsize;
2954 ep = cp + POOL_REDZONE_SIZE;
2955
2956 pat = pool_pattern_generate(cp);
2957 expected = (pat == '\0') ? STATIC_BYTE: pat;
2958 if (__predict_false(expected != *cp)) {
2959 printf("%s: %p: 0x%02x != 0x%02x\n",
2960 __func__, cp, *cp, expected);
2961 }
2962 cp++;
2963
2964 while (cp < ep) {
2965 expected = pool_pattern_generate(cp);
2966 if (__predict_false(*cp != expected)) {
2967 printf("%s: %p: 0x%02x != 0x%02x\n",
2968 __func__, cp, *cp, expected);
2969 }
2970 cp++;
2971 }
2972 #endif
2973 }
2974
2975 static void
2976 pool_cache_redzone_check(pool_cache_t pc, void *p)
2977 {
2978 #ifdef KASAN
2979 /* If there is a ctor/dtor, leave the data as valid. */
2980 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2981 return;
2982 }
2983 #endif
2984 pool_redzone_check(&pc->pc_pool, p);
2985 }
2986
2987 #endif /* POOL_REDZONE */
2988
2989
2990 #ifdef POOL_SUBPAGE
2991 /* Sub-page allocator, for machines with large hardware pages. */
2992 void *
2993 pool_subpage_alloc(struct pool *pp, int flags)
2994 {
2995 return pool_get(&psppool, flags);
2996 }
2997
2998 void
2999 pool_subpage_free(struct pool *pp, void *v)
3000 {
3001 pool_put(&psppool, v);
3002 }
3003
3004 #endif /* POOL_SUBPAGE */
3005
3006 #if defined(DDB)
3007 static bool
3008 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3009 {
3010
3011 return (uintptr_t)ph->ph_page <= addr &&
3012 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3013 }
3014
3015 static bool
3016 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3017 {
3018
3019 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3020 }
3021
3022 static bool
3023 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3024 {
3025 int i;
3026
3027 if (pcg == NULL) {
3028 return false;
3029 }
3030 for (i = 0; i < pcg->pcg_avail; i++) {
3031 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3032 return true;
3033 }
3034 }
3035 return false;
3036 }
3037
3038 static bool
3039 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3040 {
3041
3042 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
3043 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3044 pool_item_bitmap_t *bitmap =
3045 ph->ph_bitmap + (idx / BITMAP_SIZE);
3046 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3047
3048 return (*bitmap & mask) == 0;
3049 } else {
3050 struct pool_item *pi;
3051
3052 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3053 if (pool_in_item(pp, pi, addr)) {
3054 return false;
3055 }
3056 }
3057 return true;
3058 }
3059 }
3060
3061 void
3062 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3063 {
3064 struct pool *pp;
3065
3066 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3067 struct pool_item_header *ph;
3068 uintptr_t item;
3069 bool allocated = true;
3070 bool incache = false;
3071 bool incpucache = false;
3072 char cpucachestr[32];
3073
3074 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3075 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3076 if (pool_in_page(pp, ph, addr)) {
3077 goto found;
3078 }
3079 }
3080 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3081 if (pool_in_page(pp, ph, addr)) {
3082 allocated =
3083 pool_allocated(pp, ph, addr);
3084 goto found;
3085 }
3086 }
3087 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3088 if (pool_in_page(pp, ph, addr)) {
3089 allocated = false;
3090 goto found;
3091 }
3092 }
3093 continue;
3094 } else {
3095 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3096 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3097 continue;
3098 }
3099 allocated = pool_allocated(pp, ph, addr);
3100 }
3101 found:
3102 if (allocated && pp->pr_cache) {
3103 pool_cache_t pc = pp->pr_cache;
3104 struct pool_cache_group *pcg;
3105 int i;
3106
3107 for (pcg = pc->pc_fullgroups; pcg != NULL;
3108 pcg = pcg->pcg_next) {
3109 if (pool_in_cg(pp, pcg, addr)) {
3110 incache = true;
3111 goto print;
3112 }
3113 }
3114 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3115 pool_cache_cpu_t *cc;
3116
3117 if ((cc = pc->pc_cpus[i]) == NULL) {
3118 continue;
3119 }
3120 if (pool_in_cg(pp, cc->cc_current, addr) ||
3121 pool_in_cg(pp, cc->cc_previous, addr)) {
3122 struct cpu_info *ci =
3123 cpu_lookup(i);
3124
3125 incpucache = true;
3126 snprintf(cpucachestr,
3127 sizeof(cpucachestr),
3128 "cached by CPU %u",
3129 ci->ci_index);
3130 goto print;
3131 }
3132 }
3133 }
3134 print:
3135 item = (uintptr_t)ph->ph_page + ph->ph_off;
3136 item = item + rounddown(addr - item, pp->pr_size);
3137 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3138 (void *)addr, item, (size_t)(addr - item),
3139 pp->pr_wchan,
3140 incpucache ? cpucachestr :
3141 incache ? "cached" : allocated ? "allocated" : "free");
3142 }
3143 }
3144 #endif /* defined(DDB) */
3145
3146 static int
3147 pool_sysctl(SYSCTLFN_ARGS)
3148 {
3149 struct pool_sysctl data;
3150 struct pool *pp;
3151 struct pool_cache *pc;
3152 pool_cache_cpu_t *cc;
3153 int error;
3154 size_t i, written;
3155
3156 if (oldp == NULL) {
3157 *oldlenp = 0;
3158 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3159 *oldlenp += sizeof(data);
3160 return 0;
3161 }
3162
3163 memset(&data, 0, sizeof(data));
3164 error = 0;
3165 written = 0;
3166 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3167 if (written + sizeof(data) > *oldlenp)
3168 break;
3169 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3170 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3171 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3172 #define COPY(field) data.field = pp->field
3173 COPY(pr_size);
3174
3175 COPY(pr_itemsperpage);
3176 COPY(pr_nitems);
3177 COPY(pr_nout);
3178 COPY(pr_hardlimit);
3179 COPY(pr_npages);
3180 COPY(pr_minpages);
3181 COPY(pr_maxpages);
3182
3183 COPY(pr_nget);
3184 COPY(pr_nfail);
3185 COPY(pr_nput);
3186 COPY(pr_npagealloc);
3187 COPY(pr_npagefree);
3188 COPY(pr_hiwat);
3189 COPY(pr_nidle);
3190 #undef COPY
3191
3192 data.pr_cache_nmiss_pcpu = 0;
3193 data.pr_cache_nhit_pcpu = 0;
3194 if (pp->pr_cache) {
3195 pc = pp->pr_cache;
3196 data.pr_cache_meta_size = pc->pc_pcgsize;
3197 data.pr_cache_nfull = pc->pc_nfull;
3198 data.pr_cache_npartial = pc->pc_npart;
3199 data.pr_cache_nempty = pc->pc_nempty;
3200 data.pr_cache_ncontended = pc->pc_contended;
3201 data.pr_cache_nmiss_global = pc->pc_misses;
3202 data.pr_cache_nhit_global = pc->pc_hits;
3203 for (i = 0; i < pc->pc_ncpu; ++i) {
3204 cc = pc->pc_cpus[i];
3205 if (cc == NULL)
3206 continue;
3207 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3208 data.pr_cache_nhit_pcpu += cc->cc_hits;
3209 }
3210 } else {
3211 data.pr_cache_meta_size = 0;
3212 data.pr_cache_nfull = 0;
3213 data.pr_cache_npartial = 0;
3214 data.pr_cache_nempty = 0;
3215 data.pr_cache_ncontended = 0;
3216 data.pr_cache_nmiss_global = 0;
3217 data.pr_cache_nhit_global = 0;
3218 }
3219
3220 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3221 if (error)
3222 break;
3223 written += sizeof(data);
3224 oldp = (char *)oldp + sizeof(data);
3225 }
3226
3227 *oldlenp = written;
3228 return error;
3229 }
3230
3231 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3232 {
3233 const struct sysctlnode *rnode = NULL;
3234
3235 sysctl_createv(clog, 0, NULL, &rnode,
3236 CTLFLAG_PERMANENT,
3237 CTLTYPE_STRUCT, "pool",
3238 SYSCTL_DESCR("Get pool statistics"),
3239 pool_sysctl, 0, NULL, 0,
3240 CTL_KERN, CTL_CREATE, CTL_EOL);
3241 }
3242