Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.245
      1 /*	$NetBSD: subr_pool.c,v 1.245 2019/03/27 18:27:46 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.245 2019/03/27 18:27:46 maxv Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_kleak.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/sysctl.h>
     47 #include <sys/bitops.h>
     48 #include <sys/proc.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmem.h>
     52 #include <sys/pool.h>
     53 #include <sys/syslog.h>
     54 #include <sys/debug.h>
     55 #include <sys/lockdebug.h>
     56 #include <sys/xcall.h>
     57 #include <sys/cpu.h>
     58 #include <sys/atomic.h>
     59 #include <sys/asan.h>
     60 
     61 #include <uvm/uvm_extern.h>
     62 
     63 /*
     64  * Pool resource management utility.
     65  *
     66  * Memory is allocated in pages which are split into pieces according to
     67  * the pool item size. Each page is kept on one of three lists in the
     68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69  * for empty, full and partially-full pages respectively. The individual
     70  * pool items are on a linked list headed by `ph_itemlist' in each page
     71  * header. The memory for building the page list is either taken from
     72  * the allocated pages themselves (for small pool items) or taken from
     73  * an internal pool of page headers (`phpool').
     74  */
     75 
     76 /* List of all pools. Non static as needed by 'vmstat -m' */
     77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     78 
     79 /* Private pool for page header structures */
     80 #define	PHPOOL_MAX	8
     81 static struct pool phpool[PHPOOL_MAX];
     82 #define	PHPOOL_FREELIST_NELEM(idx) \
     83 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     84 
     85 #if defined(KASAN)
     86 #define POOL_REDZONE
     87 #endif
     88 
     89 #ifdef POOL_REDZONE
     90 # ifdef KASAN
     91 #  define POOL_REDZONE_SIZE 8
     92 # else
     93 #  define POOL_REDZONE_SIZE 2
     94 # endif
     95 static void pool_redzone_init(struct pool *, size_t);
     96 static void pool_redzone_fill(struct pool *, void *);
     97 static void pool_redzone_check(struct pool *, void *);
     98 static void pool_cache_redzone_check(pool_cache_t, void *);
     99 #else
    100 # define pool_redzone_init(pp, sz)		__nothing
    101 # define pool_redzone_fill(pp, ptr)		__nothing
    102 # define pool_redzone_check(pp, ptr)		__nothing
    103 # define pool_cache_redzone_check(pc, ptr)	__nothing
    104 #endif
    105 
    106 #ifdef KLEAK
    107 static void pool_kleak_fill(struct pool *, void *);
    108 static void pool_cache_kleak_fill(pool_cache_t, void *);
    109 #else
    110 #define pool_kleak_fill(pp, ptr)	__nothing
    111 #define pool_cache_kleak_fill(pc, ptr)	__nothing
    112 #endif
    113 
    114 #define pc_has_ctor(pc) \
    115 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    116 #define pc_has_dtor(pc) \
    117 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    118 
    119 static void *pool_page_alloc_meta(struct pool *, int);
    120 static void pool_page_free_meta(struct pool *, void *);
    121 
    122 /* allocator for pool metadata */
    123 struct pool_allocator pool_allocator_meta = {
    124 	.pa_alloc = pool_page_alloc_meta,
    125 	.pa_free = pool_page_free_meta,
    126 	.pa_pagesz = 0
    127 };
    128 
    129 #define POOL_ALLOCATOR_BIG_BASE 13
    130 extern struct pool_allocator pool_allocator_big[];
    131 static int pool_bigidx(size_t);
    132 
    133 /* # of seconds to retain page after last use */
    134 int pool_inactive_time = 10;
    135 
    136 /* Next candidate for drainage (see pool_drain()) */
    137 static struct pool *drainpp;
    138 
    139 /* This lock protects both pool_head and drainpp. */
    140 static kmutex_t pool_head_lock;
    141 static kcondvar_t pool_busy;
    142 
    143 /* This lock protects initialization of a potentially shared pool allocator */
    144 static kmutex_t pool_allocator_lock;
    145 
    146 static unsigned int poolid_counter = 0;
    147 
    148 typedef uint32_t pool_item_bitmap_t;
    149 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    150 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    151 
    152 struct pool_item_header {
    153 	/* Page headers */
    154 	LIST_ENTRY(pool_item_header)
    155 				ph_pagelist;	/* pool page list */
    156 	union {
    157 		/* !PR_PHINPAGE */
    158 		struct {
    159 			SPLAY_ENTRY(pool_item_header)
    160 				phu_node;	/* off-page page headers */
    161 		} phu_offpage;
    162 		/* PR_PHINPAGE */
    163 		struct {
    164 			unsigned int phu_poolid;
    165 		} phu_onpage;
    166 	} ph_u1;
    167 	void *			ph_page;	/* this page's address */
    168 	uint32_t		ph_time;	/* last referenced */
    169 	uint16_t		ph_nmissing;	/* # of chunks in use */
    170 	uint16_t		ph_off;		/* start offset in page */
    171 	union {
    172 		/* !PR_USEBMAP */
    173 		struct {
    174 			LIST_HEAD(, pool_item)
    175 				phu_itemlist;	/* chunk list for this page */
    176 		} phu_normal;
    177 		/* PR_USEBMAP */
    178 		struct {
    179 			pool_item_bitmap_t phu_bitmap[1];
    180 		} phu_notouch;
    181 	} ph_u2;
    182 };
    183 #define ph_node		ph_u1.phu_offpage.phu_node
    184 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    185 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    186 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    187 
    188 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    189 
    190 #if defined(DIAGNOSTIC) && !defined(KASAN)
    191 #define POOL_CHECK_MAGIC
    192 #endif
    193 
    194 struct pool_item {
    195 #ifdef POOL_CHECK_MAGIC
    196 	u_int pi_magic;
    197 #endif
    198 #define	PI_MAGIC 0xdeaddeadU
    199 	/* Other entries use only this list entry */
    200 	LIST_ENTRY(pool_item)	pi_list;
    201 };
    202 
    203 #define	POOL_NEEDS_CATCHUP(pp)						\
    204 	((pp)->pr_nitems < (pp)->pr_minitems)
    205 
    206 /*
    207  * Pool cache management.
    208  *
    209  * Pool caches provide a way for constructed objects to be cached by the
    210  * pool subsystem.  This can lead to performance improvements by avoiding
    211  * needless object construction/destruction; it is deferred until absolutely
    212  * necessary.
    213  *
    214  * Caches are grouped into cache groups.  Each cache group references up
    215  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    216  * object from the pool, it calls the object's constructor and places it
    217  * into a cache group.  When a cache group frees an object back to the
    218  * pool, it first calls the object's destructor.  This allows the object
    219  * to persist in constructed form while freed to the cache.
    220  *
    221  * The pool references each cache, so that when a pool is drained by the
    222  * pagedaemon, it can drain each individual cache as well.  Each time a
    223  * cache is drained, the most idle cache group is freed to the pool in
    224  * its entirety.
    225  *
    226  * Pool caches are layed on top of pools.  By layering them, we can avoid
    227  * the complexity of cache management for pools which would not benefit
    228  * from it.
    229  */
    230 
    231 static struct pool pcg_normal_pool;
    232 static struct pool pcg_large_pool;
    233 static struct pool cache_pool;
    234 static struct pool cache_cpu_pool;
    235 
    236 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    237 
    238 /* List of all caches. */
    239 TAILQ_HEAD(,pool_cache) pool_cache_head =
    240     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    241 
    242 int pool_cache_disable;		/* global disable for caching */
    243 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    244 
    245 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    246 				    void *);
    247 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    248 				    void **, paddr_t *, int);
    249 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    250 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    251 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    252 static void	pool_cache_transfer(pool_cache_t);
    253 
    254 static int	pool_catchup(struct pool *);
    255 static void	pool_prime_page(struct pool *, void *,
    256 		    struct pool_item_header *);
    257 static void	pool_update_curpage(struct pool *);
    258 
    259 static int	pool_grow(struct pool *, int);
    260 static void	*pool_allocator_alloc(struct pool *, int);
    261 static void	pool_allocator_free(struct pool *, void *);
    262 
    263 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    264 	void (*)(const char *, ...) __printflike(1, 2));
    265 static void pool_print1(struct pool *, const char *,
    266 	void (*)(const char *, ...) __printflike(1, 2));
    267 
    268 static int pool_chk_page(struct pool *, const char *,
    269 			 struct pool_item_header *);
    270 
    271 /* -------------------------------------------------------------------------- */
    272 
    273 static inline unsigned int
    274 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    275     const void *v)
    276 {
    277 	const char *cp = v;
    278 	unsigned int idx;
    279 
    280 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    281 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    282 
    283 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    284 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    285 		    pp->pr_itemsperpage);
    286 	}
    287 
    288 	return idx;
    289 }
    290 
    291 static inline void
    292 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    293     void *obj)
    294 {
    295 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    296 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    297 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    298 
    299 	if (__predict_false((*bitmap & mask) != 0)) {
    300 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    301 	}
    302 
    303 	*bitmap |= mask;
    304 }
    305 
    306 static inline void *
    307 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    308 {
    309 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    310 	unsigned int idx;
    311 	int i;
    312 
    313 	for (i = 0; ; i++) {
    314 		int bit;
    315 
    316 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    317 		bit = ffs32(bitmap[i]);
    318 		if (bit) {
    319 			pool_item_bitmap_t mask;
    320 
    321 			bit--;
    322 			idx = (i * BITMAP_SIZE) + bit;
    323 			mask = 1U << bit;
    324 			KASSERT((bitmap[i] & mask) != 0);
    325 			bitmap[i] &= ~mask;
    326 			break;
    327 		}
    328 	}
    329 	KASSERT(idx < pp->pr_itemsperpage);
    330 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    331 }
    332 
    333 static inline void
    334 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    335 {
    336 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    337 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    338 	int i;
    339 
    340 	for (i = 0; i < n; i++) {
    341 		bitmap[i] = (pool_item_bitmap_t)-1;
    342 	}
    343 }
    344 
    345 /* -------------------------------------------------------------------------- */
    346 
    347 static inline void
    348 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    349     void *obj)
    350 {
    351 	struct pool_item *pi = obj;
    352 
    353 #ifdef POOL_CHECK_MAGIC
    354 	pi->pi_magic = PI_MAGIC;
    355 #endif
    356 
    357 	if (pp->pr_redzone) {
    358 		/*
    359 		 * Mark the pool_item as valid. The rest is already
    360 		 * invalid.
    361 		 */
    362 		kasan_mark(pi, sizeof(*pi), sizeof(*pi));
    363 	}
    364 
    365 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    366 }
    367 
    368 static inline void *
    369 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    370 {
    371 	struct pool_item *pi;
    372 	void *v;
    373 
    374 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    375 	if (__predict_false(v == NULL)) {
    376 		mutex_exit(&pp->pr_lock);
    377 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    378 	}
    379 	KASSERTMSG((pp->pr_nitems > 0),
    380 	    "%s: [%s] nitems %u inconsistent on itemlist",
    381 	    __func__, pp->pr_wchan, pp->pr_nitems);
    382 #ifdef POOL_CHECK_MAGIC
    383 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    384 	    "%s: [%s] free list modified: "
    385 	    "magic=%x; page %p; item addr %p", __func__,
    386 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    387 #endif
    388 
    389 	/*
    390 	 * Remove from item list.
    391 	 */
    392 	LIST_REMOVE(pi, pi_list);
    393 
    394 	return v;
    395 }
    396 
    397 /* -------------------------------------------------------------------------- */
    398 
    399 static inline int
    400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    401 {
    402 
    403 	/*
    404 	 * We consider pool_item_header with smaller ph_page bigger. This
    405 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    406 	 */
    407 	if (a->ph_page < b->ph_page)
    408 		return 1;
    409 	else if (a->ph_page > b->ph_page)
    410 		return -1;
    411 	else
    412 		return 0;
    413 }
    414 
    415 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    416 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    417 
    418 static inline struct pool_item_header *
    419 pr_find_pagehead_noalign(struct pool *pp, void *v)
    420 {
    421 	struct pool_item_header *ph, tmp;
    422 
    423 	tmp.ph_page = (void *)(uintptr_t)v;
    424 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    425 	if (ph == NULL) {
    426 		ph = SPLAY_ROOT(&pp->pr_phtree);
    427 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    428 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    429 		}
    430 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    431 	}
    432 
    433 	return ph;
    434 }
    435 
    436 /*
    437  * Return the pool page header based on item address.
    438  */
    439 static inline struct pool_item_header *
    440 pr_find_pagehead(struct pool *pp, void *v)
    441 {
    442 	struct pool_item_header *ph, tmp;
    443 
    444 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    445 		ph = pr_find_pagehead_noalign(pp, v);
    446 	} else {
    447 		void *page =
    448 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    449 
    450 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    451 			ph = (struct pool_item_header *)page;
    452 			if (__predict_false((void *)ph->ph_page != page)) {
    453 				panic("%s: [%s] item %p not part of pool",
    454 				    __func__, pp->pr_wchan, v);
    455 			}
    456 			if (__predict_false((char *)v < (char *)page +
    457 			    ph->ph_off)) {
    458 				panic("%s: [%s] item %p below item space",
    459 				    __func__, pp->pr_wchan, v);
    460 			}
    461 			if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    462 				panic("%s: [%s] item %p poolid %u != %u",
    463 				    __func__, pp->pr_wchan, v, ph->ph_poolid,
    464 				    pp->pr_poolid);
    465 			}
    466 		} else {
    467 			tmp.ph_page = page;
    468 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    469 		}
    470 	}
    471 
    472 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    473 	    ((char *)ph->ph_page <= (char *)v &&
    474 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    475 	return ph;
    476 }
    477 
    478 static void
    479 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    480 {
    481 	struct pool_item_header *ph;
    482 
    483 	while ((ph = LIST_FIRST(pq)) != NULL) {
    484 		LIST_REMOVE(ph, ph_pagelist);
    485 		pool_allocator_free(pp, ph->ph_page);
    486 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    487 			pool_put(pp->pr_phpool, ph);
    488 	}
    489 }
    490 
    491 /*
    492  * Remove a page from the pool.
    493  */
    494 static inline void
    495 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    496      struct pool_pagelist *pq)
    497 {
    498 
    499 	KASSERT(mutex_owned(&pp->pr_lock));
    500 
    501 	/*
    502 	 * If the page was idle, decrement the idle page count.
    503 	 */
    504 	if (ph->ph_nmissing == 0) {
    505 		KASSERT(pp->pr_nidle != 0);
    506 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    507 		    "nitems=%u < itemsperpage=%u",
    508 		    pp->pr_nitems, pp->pr_itemsperpage);
    509 		pp->pr_nidle--;
    510 	}
    511 
    512 	pp->pr_nitems -= pp->pr_itemsperpage;
    513 
    514 	/*
    515 	 * Unlink the page from the pool and queue it for release.
    516 	 */
    517 	LIST_REMOVE(ph, ph_pagelist);
    518 	if (pp->pr_roflags & PR_PHINPAGE) {
    519 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    520 			panic("%s: [%s] ph %p poolid %u != %u",
    521 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    522 			    pp->pr_poolid);
    523 		}
    524 	} else {
    525 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    526 	}
    527 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    528 
    529 	pp->pr_npages--;
    530 	pp->pr_npagefree++;
    531 
    532 	pool_update_curpage(pp);
    533 }
    534 
    535 /*
    536  * Initialize all the pools listed in the "pools" link set.
    537  */
    538 void
    539 pool_subsystem_init(void)
    540 {
    541 	size_t size;
    542 	int idx;
    543 
    544 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    545 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    546 	cv_init(&pool_busy, "poolbusy");
    547 
    548 	/*
    549 	 * Initialize private page header pool and cache magazine pool if we
    550 	 * haven't done so yet.
    551 	 */
    552 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    553 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    554 		int nelem;
    555 		size_t sz;
    556 
    557 		nelem = PHPOOL_FREELIST_NELEM(idx);
    558 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    559 		    "phpool-%d", nelem);
    560 		sz = sizeof(struct pool_item_header);
    561 		if (nelem) {
    562 			sz = offsetof(struct pool_item_header,
    563 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    564 		}
    565 		pool_init(&phpool[idx], sz, 0, 0, 0,
    566 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    567 	}
    568 
    569 	size = sizeof(pcg_t) +
    570 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    571 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    572 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    573 
    574 	size = sizeof(pcg_t) +
    575 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    576 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    577 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    578 
    579 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    580 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    581 
    582 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    583 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    584 }
    585 
    586 static inline bool
    587 pool_init_is_phinpage(const struct pool *pp)
    588 {
    589 	size_t pagesize;
    590 
    591 	if (pp->pr_roflags & PR_PHINPAGE) {
    592 		return true;
    593 	}
    594 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    595 		return false;
    596 	}
    597 
    598 	pagesize = pp->pr_alloc->pa_pagesz;
    599 
    600 	/*
    601 	 * Threshold: the item size is below 1/16 of a page size, and below
    602 	 * 8 times the page header size. The latter ensures we go off-page
    603 	 * if the page header would make us waste a rather big item.
    604 	 */
    605 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    606 		return true;
    607 	}
    608 
    609 	/* Put the header into the page if it doesn't waste any items. */
    610 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    611 		return true;
    612 	}
    613 
    614 	return false;
    615 }
    616 
    617 static inline bool
    618 pool_init_is_usebmap(const struct pool *pp)
    619 {
    620 	size_t bmapsize;
    621 
    622 	if (pp->pr_roflags & PR_NOTOUCH) {
    623 		return true;
    624 	}
    625 
    626 	/*
    627 	 * If we're on-page, and the page header can already contain a bitmap
    628 	 * big enough to cover all the items of the page, go with a bitmap.
    629 	 */
    630 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    631 		return false;
    632 	}
    633 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    634 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    635 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    636 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    637 		return true;
    638 	}
    639 
    640 	return false;
    641 }
    642 
    643 /*
    644  * Initialize the given pool resource structure.
    645  *
    646  * We export this routine to allow other kernel parts to declare
    647  * static pools that must be initialized before kmem(9) is available.
    648  */
    649 void
    650 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    651     const char *wchan, struct pool_allocator *palloc, int ipl)
    652 {
    653 	struct pool *pp1;
    654 	size_t prsize;
    655 	int itemspace, slack;
    656 
    657 	/* XXX ioff will be removed. */
    658 	KASSERT(ioff == 0);
    659 
    660 #ifdef DEBUG
    661 	if (__predict_true(!cold))
    662 		mutex_enter(&pool_head_lock);
    663 	/*
    664 	 * Check that the pool hasn't already been initialised and
    665 	 * added to the list of all pools.
    666 	 */
    667 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    668 		if (pp == pp1)
    669 			panic("%s: [%s] already initialised", __func__,
    670 			    wchan);
    671 	}
    672 	if (__predict_true(!cold))
    673 		mutex_exit(&pool_head_lock);
    674 #endif
    675 
    676 	if (palloc == NULL)
    677 		palloc = &pool_allocator_kmem;
    678 
    679 	if (!cold)
    680 		mutex_enter(&pool_allocator_lock);
    681 	if (palloc->pa_refcnt++ == 0) {
    682 		if (palloc->pa_pagesz == 0)
    683 			palloc->pa_pagesz = PAGE_SIZE;
    684 
    685 		TAILQ_INIT(&palloc->pa_list);
    686 
    687 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    688 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    689 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    690 	}
    691 	if (!cold)
    692 		mutex_exit(&pool_allocator_lock);
    693 
    694 	if (align == 0)
    695 		align = ALIGN(1);
    696 
    697 	prsize = size;
    698 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    699 		prsize = sizeof(struct pool_item);
    700 
    701 	prsize = roundup(prsize, align);
    702 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    703 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    704 	    __func__, wchan, prsize, palloc->pa_pagesz);
    705 
    706 	/*
    707 	 * Initialize the pool structure.
    708 	 */
    709 	LIST_INIT(&pp->pr_emptypages);
    710 	LIST_INIT(&pp->pr_fullpages);
    711 	LIST_INIT(&pp->pr_partpages);
    712 	pp->pr_cache = NULL;
    713 	pp->pr_curpage = NULL;
    714 	pp->pr_npages = 0;
    715 	pp->pr_minitems = 0;
    716 	pp->pr_minpages = 0;
    717 	pp->pr_maxpages = UINT_MAX;
    718 	pp->pr_roflags = flags;
    719 	pp->pr_flags = 0;
    720 	pp->pr_size = prsize;
    721 	pp->pr_reqsize = size;
    722 	pp->pr_align = align;
    723 	pp->pr_wchan = wchan;
    724 	pp->pr_alloc = palloc;
    725 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    726 	pp->pr_nitems = 0;
    727 	pp->pr_nout = 0;
    728 	pp->pr_hardlimit = UINT_MAX;
    729 	pp->pr_hardlimit_warning = NULL;
    730 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    731 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    732 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    733 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    734 	pp->pr_drain_hook = NULL;
    735 	pp->pr_drain_hook_arg = NULL;
    736 	pp->pr_freecheck = NULL;
    737 	pool_redzone_init(pp, size);
    738 
    739 	/*
    740 	 * Decide whether to put the page header off-page to avoid wasting too
    741 	 * large a part of the page or too big an item. Off-page page headers
    742 	 * go on a hash table, so we can match a returned item with its header
    743 	 * based on the page address.
    744 	 */
    745 	if (pool_init_is_phinpage(pp)) {
    746 		/* Use the beginning of the page for the page header */
    747 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    748 		pp->pr_itemoffset = roundup(PHSIZE, align);
    749 		pp->pr_roflags |= PR_PHINPAGE;
    750 	} else {
    751 		/* The page header will be taken from our page header pool */
    752 		itemspace = palloc->pa_pagesz;
    753 		pp->pr_itemoffset = 0;
    754 		SPLAY_INIT(&pp->pr_phtree);
    755 	}
    756 
    757 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    758 	KASSERT(pp->pr_itemsperpage != 0);
    759 
    760 	/*
    761 	 * Decide whether to use a bitmap or a linked list to manage freed
    762 	 * items.
    763 	 */
    764 	if (pool_init_is_usebmap(pp)) {
    765 		pp->pr_roflags |= PR_USEBMAP;
    766 	}
    767 
    768 	/*
    769 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    770 	 * allocate page headers, whose size varies depending on the bitmap. If
    771 	 * we're just off-page, take the first pool, no extra size. If we're
    772 	 * on-page, nothing to do.
    773 	 */
    774 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    775 		int idx;
    776 
    777 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    778 		    idx++) {
    779 			/* nothing */
    780 		}
    781 		if (idx >= PHPOOL_MAX) {
    782 			/*
    783 			 * if you see this panic, consider to tweak
    784 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    785 			 */
    786 			panic("%s: [%s] too large itemsperpage(%d) for "
    787 			    "PR_USEBMAP", __func__,
    788 			    pp->pr_wchan, pp->pr_itemsperpage);
    789 		}
    790 		pp->pr_phpool = &phpool[idx];
    791 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    792 		pp->pr_phpool = &phpool[0];
    793 	} else {
    794 		pp->pr_phpool = NULL;
    795 	}
    796 
    797 	/*
    798 	 * Use the slack between the chunks and the page header
    799 	 * for "cache coloring".
    800 	 */
    801 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    802 	pp->pr_maxcolor = rounddown(slack, align);
    803 	pp->pr_curcolor = 0;
    804 
    805 	pp->pr_nget = 0;
    806 	pp->pr_nfail = 0;
    807 	pp->pr_nput = 0;
    808 	pp->pr_npagealloc = 0;
    809 	pp->pr_npagefree = 0;
    810 	pp->pr_hiwat = 0;
    811 	pp->pr_nidle = 0;
    812 	pp->pr_refcnt = 0;
    813 
    814 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    815 	cv_init(&pp->pr_cv, wchan);
    816 	pp->pr_ipl = ipl;
    817 
    818 	/* Insert into the list of all pools. */
    819 	if (!cold)
    820 		mutex_enter(&pool_head_lock);
    821 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    822 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    823 			break;
    824 	}
    825 	if (pp1 == NULL)
    826 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    827 	else
    828 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    829 	if (!cold)
    830 		mutex_exit(&pool_head_lock);
    831 
    832 	/* Insert this into the list of pools using this allocator. */
    833 	if (!cold)
    834 		mutex_enter(&palloc->pa_lock);
    835 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    836 	if (!cold)
    837 		mutex_exit(&palloc->pa_lock);
    838 }
    839 
    840 /*
    841  * De-commision a pool resource.
    842  */
    843 void
    844 pool_destroy(struct pool *pp)
    845 {
    846 	struct pool_pagelist pq;
    847 	struct pool_item_header *ph;
    848 
    849 	/* Remove from global pool list */
    850 	mutex_enter(&pool_head_lock);
    851 	while (pp->pr_refcnt != 0)
    852 		cv_wait(&pool_busy, &pool_head_lock);
    853 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    854 	if (drainpp == pp)
    855 		drainpp = NULL;
    856 	mutex_exit(&pool_head_lock);
    857 
    858 	/* Remove this pool from its allocator's list of pools. */
    859 	mutex_enter(&pp->pr_alloc->pa_lock);
    860 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    861 	mutex_exit(&pp->pr_alloc->pa_lock);
    862 
    863 	mutex_enter(&pool_allocator_lock);
    864 	if (--pp->pr_alloc->pa_refcnt == 0)
    865 		mutex_destroy(&pp->pr_alloc->pa_lock);
    866 	mutex_exit(&pool_allocator_lock);
    867 
    868 	mutex_enter(&pp->pr_lock);
    869 
    870 	KASSERT(pp->pr_cache == NULL);
    871 	KASSERTMSG((pp->pr_nout == 0),
    872 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    873 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    874 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    875 
    876 	/* Remove all pages */
    877 	LIST_INIT(&pq);
    878 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    879 		pr_rmpage(pp, ph, &pq);
    880 
    881 	mutex_exit(&pp->pr_lock);
    882 
    883 	pr_pagelist_free(pp, &pq);
    884 	cv_destroy(&pp->pr_cv);
    885 	mutex_destroy(&pp->pr_lock);
    886 }
    887 
    888 void
    889 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    890 {
    891 
    892 	/* XXX no locking -- must be used just after pool_init() */
    893 	KASSERTMSG((pp->pr_drain_hook == NULL),
    894 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    895 	pp->pr_drain_hook = fn;
    896 	pp->pr_drain_hook_arg = arg;
    897 }
    898 
    899 static struct pool_item_header *
    900 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    901 {
    902 	struct pool_item_header *ph;
    903 
    904 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    905 		ph = storage;
    906 	else
    907 		ph = pool_get(pp->pr_phpool, flags);
    908 
    909 	return ph;
    910 }
    911 
    912 /*
    913  * Grab an item from the pool.
    914  */
    915 void *
    916 pool_get(struct pool *pp, int flags)
    917 {
    918 	struct pool_item_header *ph;
    919 	void *v;
    920 
    921 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    922 	KASSERTMSG((pp->pr_itemsperpage != 0),
    923 	    "%s: [%s] pr_itemsperpage is zero, "
    924 	    "pool not initialized?", __func__, pp->pr_wchan);
    925 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    926 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    927 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    928 	    __func__, pp->pr_wchan);
    929 	if (flags & PR_WAITOK) {
    930 		ASSERT_SLEEPABLE();
    931 	}
    932 
    933 	mutex_enter(&pp->pr_lock);
    934  startover:
    935 	/*
    936 	 * Check to see if we've reached the hard limit.  If we have,
    937 	 * and we can wait, then wait until an item has been returned to
    938 	 * the pool.
    939 	 */
    940 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    941 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    942 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    943 		if (pp->pr_drain_hook != NULL) {
    944 			/*
    945 			 * Since the drain hook is going to free things
    946 			 * back to the pool, unlock, call the hook, re-lock,
    947 			 * and check the hardlimit condition again.
    948 			 */
    949 			mutex_exit(&pp->pr_lock);
    950 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    951 			mutex_enter(&pp->pr_lock);
    952 			if (pp->pr_nout < pp->pr_hardlimit)
    953 				goto startover;
    954 		}
    955 
    956 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    957 			/*
    958 			 * XXX: A warning isn't logged in this case.  Should
    959 			 * it be?
    960 			 */
    961 			pp->pr_flags |= PR_WANTED;
    962 			do {
    963 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    964 			} while (pp->pr_flags & PR_WANTED);
    965 			goto startover;
    966 		}
    967 
    968 		/*
    969 		 * Log a message that the hard limit has been hit.
    970 		 */
    971 		if (pp->pr_hardlimit_warning != NULL &&
    972 		    ratecheck(&pp->pr_hardlimit_warning_last,
    973 			      &pp->pr_hardlimit_ratecap))
    974 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    975 
    976 		pp->pr_nfail++;
    977 
    978 		mutex_exit(&pp->pr_lock);
    979 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    980 		return NULL;
    981 	}
    982 
    983 	/*
    984 	 * The convention we use is that if `curpage' is not NULL, then
    985 	 * it points at a non-empty bucket. In particular, `curpage'
    986 	 * never points at a page header which has PR_PHINPAGE set and
    987 	 * has no items in its bucket.
    988 	 */
    989 	if ((ph = pp->pr_curpage) == NULL) {
    990 		int error;
    991 
    992 		KASSERTMSG((pp->pr_nitems == 0),
    993 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    994 		    __func__, pp->pr_wchan, pp->pr_nitems);
    995 
    996 		/*
    997 		 * Call the back-end page allocator for more memory.
    998 		 * Release the pool lock, as the back-end page allocator
    999 		 * may block.
   1000 		 */
   1001 		error = pool_grow(pp, flags);
   1002 		if (error != 0) {
   1003 			/*
   1004 			 * pool_grow aborts when another thread
   1005 			 * is allocating a new page. Retry if it
   1006 			 * waited for it.
   1007 			 */
   1008 			if (error == ERESTART)
   1009 				goto startover;
   1010 
   1011 			/*
   1012 			 * We were unable to allocate a page or item
   1013 			 * header, but we released the lock during
   1014 			 * allocation, so perhaps items were freed
   1015 			 * back to the pool.  Check for this case.
   1016 			 */
   1017 			if (pp->pr_curpage != NULL)
   1018 				goto startover;
   1019 
   1020 			pp->pr_nfail++;
   1021 			mutex_exit(&pp->pr_lock);
   1022 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1023 			return NULL;
   1024 		}
   1025 
   1026 		/* Start the allocation process over. */
   1027 		goto startover;
   1028 	}
   1029 	if (pp->pr_roflags & PR_USEBMAP) {
   1030 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1031 		    "%s: %s: page empty", __func__, pp->pr_wchan);
   1032 		v = pr_item_bitmap_get(pp, ph);
   1033 	} else {
   1034 		v = pr_item_linkedlist_get(pp, ph);
   1035 	}
   1036 	pp->pr_nitems--;
   1037 	pp->pr_nout++;
   1038 	if (ph->ph_nmissing == 0) {
   1039 		KASSERT(pp->pr_nidle > 0);
   1040 		pp->pr_nidle--;
   1041 
   1042 		/*
   1043 		 * This page was previously empty.  Move it to the list of
   1044 		 * partially-full pages.  This page is already curpage.
   1045 		 */
   1046 		LIST_REMOVE(ph, ph_pagelist);
   1047 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1048 	}
   1049 	ph->ph_nmissing++;
   1050 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1051 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1052 			LIST_EMPTY(&ph->ph_itemlist)),
   1053 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1054 			pp->pr_wchan, ph->ph_nmissing);
   1055 		/*
   1056 		 * This page is now full.  Move it to the full list
   1057 		 * and select a new current page.
   1058 		 */
   1059 		LIST_REMOVE(ph, ph_pagelist);
   1060 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1061 		pool_update_curpage(pp);
   1062 	}
   1063 
   1064 	pp->pr_nget++;
   1065 
   1066 	/*
   1067 	 * If we have a low water mark and we are now below that low
   1068 	 * water mark, add more items to the pool.
   1069 	 */
   1070 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1071 		/*
   1072 		 * XXX: Should we log a warning?  Should we set up a timeout
   1073 		 * to try again in a second or so?  The latter could break
   1074 		 * a caller's assumptions about interrupt protection, etc.
   1075 		 */
   1076 	}
   1077 
   1078 	mutex_exit(&pp->pr_lock);
   1079 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1080 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1081 	pool_redzone_fill(pp, v);
   1082 	if (flags & PR_ZERO)
   1083 		memset(v, 0, pp->pr_reqsize);
   1084 	else
   1085 		pool_kleak_fill(pp, v);
   1086 	return v;
   1087 }
   1088 
   1089 /*
   1090  * Internal version of pool_put().  Pool is already locked/entered.
   1091  */
   1092 static void
   1093 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1094 {
   1095 	struct pool_item_header *ph;
   1096 
   1097 	KASSERT(mutex_owned(&pp->pr_lock));
   1098 	pool_redzone_check(pp, v);
   1099 	FREECHECK_IN(&pp->pr_freecheck, v);
   1100 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1101 
   1102 	KASSERTMSG((pp->pr_nout > 0),
   1103 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1104 
   1105 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1106 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1107 	}
   1108 
   1109 	/*
   1110 	 * Return to item list.
   1111 	 */
   1112 	if (pp->pr_roflags & PR_USEBMAP) {
   1113 		pr_item_bitmap_put(pp, ph, v);
   1114 	} else {
   1115 		pr_item_linkedlist_put(pp, ph, v);
   1116 	}
   1117 	KDASSERT(ph->ph_nmissing != 0);
   1118 	ph->ph_nmissing--;
   1119 	pp->pr_nput++;
   1120 	pp->pr_nitems++;
   1121 	pp->pr_nout--;
   1122 
   1123 	/* Cancel "pool empty" condition if it exists */
   1124 	if (pp->pr_curpage == NULL)
   1125 		pp->pr_curpage = ph;
   1126 
   1127 	if (pp->pr_flags & PR_WANTED) {
   1128 		pp->pr_flags &= ~PR_WANTED;
   1129 		cv_broadcast(&pp->pr_cv);
   1130 	}
   1131 
   1132 	/*
   1133 	 * If this page is now empty, do one of two things:
   1134 	 *
   1135 	 *	(1) If we have more pages than the page high water mark,
   1136 	 *	    free the page back to the system.  ONLY CONSIDER
   1137 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1138 	 *	    CLAIM.
   1139 	 *
   1140 	 *	(2) Otherwise, move the page to the empty page list.
   1141 	 *
   1142 	 * Either way, select a new current page (so we use a partially-full
   1143 	 * page if one is available).
   1144 	 */
   1145 	if (ph->ph_nmissing == 0) {
   1146 		pp->pr_nidle++;
   1147 		if (pp->pr_npages > pp->pr_minpages &&
   1148 		    pp->pr_npages > pp->pr_maxpages) {
   1149 			pr_rmpage(pp, ph, pq);
   1150 		} else {
   1151 			LIST_REMOVE(ph, ph_pagelist);
   1152 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1153 
   1154 			/*
   1155 			 * Update the timestamp on the page.  A page must
   1156 			 * be idle for some period of time before it can
   1157 			 * be reclaimed by the pagedaemon.  This minimizes
   1158 			 * ping-pong'ing for memory.
   1159 			 *
   1160 			 * note for 64-bit time_t: truncating to 32-bit is not
   1161 			 * a problem for our usage.
   1162 			 */
   1163 			ph->ph_time = time_uptime;
   1164 		}
   1165 		pool_update_curpage(pp);
   1166 	}
   1167 
   1168 	/*
   1169 	 * If the page was previously completely full, move it to the
   1170 	 * partially-full list and make it the current page.  The next
   1171 	 * allocation will get the item from this page, instead of
   1172 	 * further fragmenting the pool.
   1173 	 */
   1174 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1175 		LIST_REMOVE(ph, ph_pagelist);
   1176 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1177 		pp->pr_curpage = ph;
   1178 	}
   1179 }
   1180 
   1181 void
   1182 pool_put(struct pool *pp, void *v)
   1183 {
   1184 	struct pool_pagelist pq;
   1185 
   1186 	LIST_INIT(&pq);
   1187 
   1188 	mutex_enter(&pp->pr_lock);
   1189 	pool_do_put(pp, v, &pq);
   1190 	mutex_exit(&pp->pr_lock);
   1191 
   1192 	pr_pagelist_free(pp, &pq);
   1193 }
   1194 
   1195 /*
   1196  * pool_grow: grow a pool by a page.
   1197  *
   1198  * => called with pool locked.
   1199  * => unlock and relock the pool.
   1200  * => return with pool locked.
   1201  */
   1202 
   1203 static int
   1204 pool_grow(struct pool *pp, int flags)
   1205 {
   1206 	struct pool_item_header *ph;
   1207 	char *storage;
   1208 
   1209 	/*
   1210 	 * If there's a pool_grow in progress, wait for it to complete
   1211 	 * and try again from the top.
   1212 	 */
   1213 	if (pp->pr_flags & PR_GROWING) {
   1214 		if (flags & PR_WAITOK) {
   1215 			do {
   1216 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1217 			} while (pp->pr_flags & PR_GROWING);
   1218 			return ERESTART;
   1219 		} else {
   1220 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1221 				/*
   1222 				 * This needs an unlock/relock dance so
   1223 				 * that the other caller has a chance to
   1224 				 * run and actually do the thing.  Note
   1225 				 * that this is effectively a busy-wait.
   1226 				 */
   1227 				mutex_exit(&pp->pr_lock);
   1228 				mutex_enter(&pp->pr_lock);
   1229 				return ERESTART;
   1230 			}
   1231 			return EWOULDBLOCK;
   1232 		}
   1233 	}
   1234 	pp->pr_flags |= PR_GROWING;
   1235 	if (flags & PR_WAITOK)
   1236 		mutex_exit(&pp->pr_lock);
   1237 	else
   1238 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1239 
   1240 	storage = pool_allocator_alloc(pp, flags);
   1241 	if (__predict_false(storage == NULL))
   1242 		goto out;
   1243 
   1244 	ph = pool_alloc_item_header(pp, storage, flags);
   1245 	if (__predict_false(ph == NULL)) {
   1246 		pool_allocator_free(pp, storage);
   1247 		goto out;
   1248 	}
   1249 
   1250 	if (flags & PR_WAITOK)
   1251 		mutex_enter(&pp->pr_lock);
   1252 	pool_prime_page(pp, storage, ph);
   1253 	pp->pr_npagealloc++;
   1254 	KASSERT(pp->pr_flags & PR_GROWING);
   1255 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1256 	/*
   1257 	 * If anyone was waiting for pool_grow, notify them that we
   1258 	 * may have just done it.
   1259 	 */
   1260 	cv_broadcast(&pp->pr_cv);
   1261 	return 0;
   1262 out:
   1263 	if (flags & PR_WAITOK)
   1264 		mutex_enter(&pp->pr_lock);
   1265 	KASSERT(pp->pr_flags & PR_GROWING);
   1266 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1267 	return ENOMEM;
   1268 }
   1269 
   1270 /*
   1271  * Add N items to the pool.
   1272  */
   1273 int
   1274 pool_prime(struct pool *pp, int n)
   1275 {
   1276 	int newpages;
   1277 	int error = 0;
   1278 
   1279 	mutex_enter(&pp->pr_lock);
   1280 
   1281 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1282 
   1283 	while (newpages > 0) {
   1284 		error = pool_grow(pp, PR_NOWAIT);
   1285 		if (error) {
   1286 			if (error == ERESTART)
   1287 				continue;
   1288 			break;
   1289 		}
   1290 		pp->pr_minpages++;
   1291 		newpages--;
   1292 	}
   1293 
   1294 	if (pp->pr_minpages >= pp->pr_maxpages)
   1295 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1296 
   1297 	mutex_exit(&pp->pr_lock);
   1298 	return error;
   1299 }
   1300 
   1301 /*
   1302  * Add a page worth of items to the pool.
   1303  *
   1304  * Note, we must be called with the pool descriptor LOCKED.
   1305  */
   1306 static void
   1307 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1308 {
   1309 	const unsigned int align = pp->pr_align;
   1310 	struct pool_item *pi;
   1311 	void *cp = storage;
   1312 	int n;
   1313 
   1314 	KASSERT(mutex_owned(&pp->pr_lock));
   1315 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1316 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1317 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1318 
   1319 	/*
   1320 	 * Insert page header.
   1321 	 */
   1322 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1323 	LIST_INIT(&ph->ph_itemlist);
   1324 	ph->ph_page = storage;
   1325 	ph->ph_nmissing = 0;
   1326 	ph->ph_time = time_uptime;
   1327 	if (pp->pr_roflags & PR_PHINPAGE)
   1328 		ph->ph_poolid = pp->pr_poolid;
   1329 	else
   1330 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1331 
   1332 	pp->pr_nidle++;
   1333 
   1334 	/*
   1335 	 * The item space starts after the on-page header, if any.
   1336 	 */
   1337 	ph->ph_off = pp->pr_itemoffset;
   1338 
   1339 	/*
   1340 	 * Color this page.
   1341 	 */
   1342 	ph->ph_off += pp->pr_curcolor;
   1343 	cp = (char *)cp + ph->ph_off;
   1344 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1345 		pp->pr_curcolor = 0;
   1346 
   1347 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1348 
   1349 	/*
   1350 	 * Insert remaining chunks on the bucket list.
   1351 	 */
   1352 	n = pp->pr_itemsperpage;
   1353 	pp->pr_nitems += n;
   1354 
   1355 	if (pp->pr_roflags & PR_USEBMAP) {
   1356 		pr_item_bitmap_init(pp, ph);
   1357 	} else {
   1358 		while (n--) {
   1359 			pi = (struct pool_item *)cp;
   1360 
   1361 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1362 
   1363 			/* Insert on page list */
   1364 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1365 #ifdef POOL_CHECK_MAGIC
   1366 			pi->pi_magic = PI_MAGIC;
   1367 #endif
   1368 			cp = (char *)cp + pp->pr_size;
   1369 
   1370 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1371 		}
   1372 	}
   1373 
   1374 	/*
   1375 	 * If the pool was depleted, point at the new page.
   1376 	 */
   1377 	if (pp->pr_curpage == NULL)
   1378 		pp->pr_curpage = ph;
   1379 
   1380 	if (++pp->pr_npages > pp->pr_hiwat)
   1381 		pp->pr_hiwat = pp->pr_npages;
   1382 }
   1383 
   1384 /*
   1385  * Used by pool_get() when nitems drops below the low water mark.  This
   1386  * is used to catch up pr_nitems with the low water mark.
   1387  *
   1388  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1389  *
   1390  * Note 2, we must be called with the pool already locked, and we return
   1391  * with it locked.
   1392  */
   1393 static int
   1394 pool_catchup(struct pool *pp)
   1395 {
   1396 	int error = 0;
   1397 
   1398 	while (POOL_NEEDS_CATCHUP(pp)) {
   1399 		error = pool_grow(pp, PR_NOWAIT);
   1400 		if (error) {
   1401 			if (error == ERESTART)
   1402 				continue;
   1403 			break;
   1404 		}
   1405 	}
   1406 	return error;
   1407 }
   1408 
   1409 static void
   1410 pool_update_curpage(struct pool *pp)
   1411 {
   1412 
   1413 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1414 	if (pp->pr_curpage == NULL) {
   1415 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1416 	}
   1417 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1418 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1419 }
   1420 
   1421 void
   1422 pool_setlowat(struct pool *pp, int n)
   1423 {
   1424 
   1425 	mutex_enter(&pp->pr_lock);
   1426 
   1427 	pp->pr_minitems = n;
   1428 	pp->pr_minpages = (n == 0)
   1429 		? 0
   1430 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1431 
   1432 	/* Make sure we're caught up with the newly-set low water mark. */
   1433 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1434 		/*
   1435 		 * XXX: Should we log a warning?  Should we set up a timeout
   1436 		 * to try again in a second or so?  The latter could break
   1437 		 * a caller's assumptions about interrupt protection, etc.
   1438 		 */
   1439 	}
   1440 
   1441 	mutex_exit(&pp->pr_lock);
   1442 }
   1443 
   1444 void
   1445 pool_sethiwat(struct pool *pp, int n)
   1446 {
   1447 
   1448 	mutex_enter(&pp->pr_lock);
   1449 
   1450 	pp->pr_maxpages = (n == 0)
   1451 		? 0
   1452 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1453 
   1454 	mutex_exit(&pp->pr_lock);
   1455 }
   1456 
   1457 void
   1458 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1459 {
   1460 
   1461 	mutex_enter(&pp->pr_lock);
   1462 
   1463 	pp->pr_hardlimit = n;
   1464 	pp->pr_hardlimit_warning = warnmess;
   1465 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1466 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1467 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1468 
   1469 	/*
   1470 	 * In-line version of pool_sethiwat(), because we don't want to
   1471 	 * release the lock.
   1472 	 */
   1473 	pp->pr_maxpages = (n == 0)
   1474 		? 0
   1475 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1476 
   1477 	mutex_exit(&pp->pr_lock);
   1478 }
   1479 
   1480 /*
   1481  * Release all complete pages that have not been used recently.
   1482  *
   1483  * Must not be called from interrupt context.
   1484  */
   1485 int
   1486 pool_reclaim(struct pool *pp)
   1487 {
   1488 	struct pool_item_header *ph, *phnext;
   1489 	struct pool_pagelist pq;
   1490 	uint32_t curtime;
   1491 	bool klock;
   1492 	int rv;
   1493 
   1494 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1495 
   1496 	if (pp->pr_drain_hook != NULL) {
   1497 		/*
   1498 		 * The drain hook must be called with the pool unlocked.
   1499 		 */
   1500 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1501 	}
   1502 
   1503 	/*
   1504 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1505 	 * to block.
   1506 	 */
   1507 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1508 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1509 		KERNEL_LOCK(1, NULL);
   1510 		klock = true;
   1511 	} else
   1512 		klock = false;
   1513 
   1514 	/* Reclaim items from the pool's cache (if any). */
   1515 	if (pp->pr_cache != NULL)
   1516 		pool_cache_invalidate(pp->pr_cache);
   1517 
   1518 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1519 		if (klock) {
   1520 			KERNEL_UNLOCK_ONE(NULL);
   1521 		}
   1522 		return 0;
   1523 	}
   1524 
   1525 	LIST_INIT(&pq);
   1526 
   1527 	curtime = time_uptime;
   1528 
   1529 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1530 		phnext = LIST_NEXT(ph, ph_pagelist);
   1531 
   1532 		/* Check our minimum page claim */
   1533 		if (pp->pr_npages <= pp->pr_minpages)
   1534 			break;
   1535 
   1536 		KASSERT(ph->ph_nmissing == 0);
   1537 		if (curtime - ph->ph_time < pool_inactive_time)
   1538 			continue;
   1539 
   1540 		/*
   1541 		 * If freeing this page would put us below
   1542 		 * the low water mark, stop now.
   1543 		 */
   1544 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1545 		    pp->pr_minitems)
   1546 			break;
   1547 
   1548 		pr_rmpage(pp, ph, &pq);
   1549 	}
   1550 
   1551 	mutex_exit(&pp->pr_lock);
   1552 
   1553 	if (LIST_EMPTY(&pq))
   1554 		rv = 0;
   1555 	else {
   1556 		pr_pagelist_free(pp, &pq);
   1557 		rv = 1;
   1558 	}
   1559 
   1560 	if (klock) {
   1561 		KERNEL_UNLOCK_ONE(NULL);
   1562 	}
   1563 
   1564 	return rv;
   1565 }
   1566 
   1567 /*
   1568  * Drain pools, one at a time. The drained pool is returned within ppp.
   1569  *
   1570  * Note, must never be called from interrupt context.
   1571  */
   1572 bool
   1573 pool_drain(struct pool **ppp)
   1574 {
   1575 	bool reclaimed;
   1576 	struct pool *pp;
   1577 
   1578 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1579 
   1580 	pp = NULL;
   1581 
   1582 	/* Find next pool to drain, and add a reference. */
   1583 	mutex_enter(&pool_head_lock);
   1584 	do {
   1585 		if (drainpp == NULL) {
   1586 			drainpp = TAILQ_FIRST(&pool_head);
   1587 		}
   1588 		if (drainpp != NULL) {
   1589 			pp = drainpp;
   1590 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1591 		}
   1592 		/*
   1593 		 * Skip completely idle pools.  We depend on at least
   1594 		 * one pool in the system being active.
   1595 		 */
   1596 	} while (pp == NULL || pp->pr_npages == 0);
   1597 	pp->pr_refcnt++;
   1598 	mutex_exit(&pool_head_lock);
   1599 
   1600 	/* Drain the cache (if any) and pool.. */
   1601 	reclaimed = pool_reclaim(pp);
   1602 
   1603 	/* Finally, unlock the pool. */
   1604 	mutex_enter(&pool_head_lock);
   1605 	pp->pr_refcnt--;
   1606 	cv_broadcast(&pool_busy);
   1607 	mutex_exit(&pool_head_lock);
   1608 
   1609 	if (ppp != NULL)
   1610 		*ppp = pp;
   1611 
   1612 	return reclaimed;
   1613 }
   1614 
   1615 /*
   1616  * Calculate the total number of pages consumed by pools.
   1617  */
   1618 int
   1619 pool_totalpages(void)
   1620 {
   1621 	struct pool *pp;
   1622 	uint64_t total = 0;
   1623 
   1624 	mutex_enter(&pool_head_lock);
   1625 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1626 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1627 
   1628 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1629 			bytes -= (pp->pr_nout * pp->pr_size);
   1630 		total += bytes;
   1631 	}
   1632 	mutex_exit(&pool_head_lock);
   1633 
   1634 	return atop(total);
   1635 }
   1636 
   1637 /*
   1638  * Diagnostic helpers.
   1639  */
   1640 
   1641 void
   1642 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1643 {
   1644 	struct pool *pp;
   1645 
   1646 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1647 		pool_printit(pp, modif, pr);
   1648 	}
   1649 }
   1650 
   1651 void
   1652 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1653 {
   1654 
   1655 	if (pp == NULL) {
   1656 		(*pr)("Must specify a pool to print.\n");
   1657 		return;
   1658 	}
   1659 
   1660 	pool_print1(pp, modif, pr);
   1661 }
   1662 
   1663 static void
   1664 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1665     void (*pr)(const char *, ...))
   1666 {
   1667 	struct pool_item_header *ph;
   1668 
   1669 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1670 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1671 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1672 #ifdef POOL_CHECK_MAGIC
   1673 		struct pool_item *pi;
   1674 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1675 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1676 				if (pi->pi_magic != PI_MAGIC) {
   1677 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1678 					    pi, pi->pi_magic);
   1679 				}
   1680 			}
   1681 		}
   1682 #endif
   1683 	}
   1684 }
   1685 
   1686 static void
   1687 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1688 {
   1689 	struct pool_item_header *ph;
   1690 	pool_cache_t pc;
   1691 	pcg_t *pcg;
   1692 	pool_cache_cpu_t *cc;
   1693 	uint64_t cpuhit, cpumiss;
   1694 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1695 	char c;
   1696 
   1697 	while ((c = *modif++) != '\0') {
   1698 		if (c == 'l')
   1699 			print_log = 1;
   1700 		if (c == 'p')
   1701 			print_pagelist = 1;
   1702 		if (c == 'c')
   1703 			print_cache = 1;
   1704 	}
   1705 
   1706 	if ((pc = pp->pr_cache) != NULL) {
   1707 		(*pr)("POOL CACHE");
   1708 	} else {
   1709 		(*pr)("POOL");
   1710 	}
   1711 
   1712 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1713 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1714 	    pp->pr_roflags);
   1715 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1716 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1717 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1718 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1719 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1720 
   1721 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1722 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1723 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1724 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1725 
   1726 	if (print_pagelist == 0)
   1727 		goto skip_pagelist;
   1728 
   1729 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1730 		(*pr)("\n\tempty page list:\n");
   1731 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1732 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1733 		(*pr)("\n\tfull page list:\n");
   1734 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1735 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1736 		(*pr)("\n\tpartial-page list:\n");
   1737 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1738 
   1739 	if (pp->pr_curpage == NULL)
   1740 		(*pr)("\tno current page\n");
   1741 	else
   1742 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1743 
   1744  skip_pagelist:
   1745 	if (print_log == 0)
   1746 		goto skip_log;
   1747 
   1748 	(*pr)("\n");
   1749 
   1750  skip_log:
   1751 
   1752 #define PR_GROUPLIST(pcg)						\
   1753 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1754 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1755 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1756 		    POOL_PADDR_INVALID) {				\
   1757 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1758 			    pcg->pcg_objects[i].pcgo_va,		\
   1759 			    (unsigned long long)			\
   1760 			    pcg->pcg_objects[i].pcgo_pa);		\
   1761 		} else {						\
   1762 			(*pr)("\t\t\t%p\n",				\
   1763 			    pcg->pcg_objects[i].pcgo_va);		\
   1764 		}							\
   1765 	}
   1766 
   1767 	if (pc != NULL) {
   1768 		cpuhit = 0;
   1769 		cpumiss = 0;
   1770 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1771 			if ((cc = pc->pc_cpus[i]) == NULL)
   1772 				continue;
   1773 			cpuhit += cc->cc_hits;
   1774 			cpumiss += cc->cc_misses;
   1775 		}
   1776 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1777 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1778 		    pc->pc_hits, pc->pc_misses);
   1779 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1780 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1781 		    pc->pc_contended);
   1782 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1783 		    pc->pc_nempty, pc->pc_nfull);
   1784 		if (print_cache) {
   1785 			(*pr)("\tfull cache groups:\n");
   1786 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1787 			    pcg = pcg->pcg_next) {
   1788 				PR_GROUPLIST(pcg);
   1789 			}
   1790 			(*pr)("\tempty cache groups:\n");
   1791 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1792 			    pcg = pcg->pcg_next) {
   1793 				PR_GROUPLIST(pcg);
   1794 			}
   1795 		}
   1796 	}
   1797 #undef PR_GROUPLIST
   1798 }
   1799 
   1800 static int
   1801 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1802 {
   1803 	struct pool_item *pi;
   1804 	void *page;
   1805 	int n;
   1806 
   1807 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1808 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1809 		if (page != ph->ph_page &&
   1810 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1811 			if (label != NULL)
   1812 				printf("%s: ", label);
   1813 			printf("pool(%p:%s): page inconsistency: page %p;"
   1814 			       " at page head addr %p (p %p)\n", pp,
   1815 				pp->pr_wchan, ph->ph_page,
   1816 				ph, page);
   1817 			return 1;
   1818 		}
   1819 	}
   1820 
   1821 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1822 		return 0;
   1823 
   1824 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1825 	     pi != NULL;
   1826 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1827 
   1828 #ifdef POOL_CHECK_MAGIC
   1829 		if (pi->pi_magic != PI_MAGIC) {
   1830 			if (label != NULL)
   1831 				printf("%s: ", label);
   1832 			printf("pool(%s): free list modified: magic=%x;"
   1833 			       " page %p; item ordinal %d; addr %p\n",
   1834 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1835 				n, pi);
   1836 			panic("pool");
   1837 		}
   1838 #endif
   1839 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1840 			continue;
   1841 		}
   1842 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1843 		if (page == ph->ph_page)
   1844 			continue;
   1845 
   1846 		if (label != NULL)
   1847 			printf("%s: ", label);
   1848 		printf("pool(%p:%s): page inconsistency: page %p;"
   1849 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1850 			pp->pr_wchan, ph->ph_page,
   1851 			n, pi, page);
   1852 		return 1;
   1853 	}
   1854 	return 0;
   1855 }
   1856 
   1857 
   1858 int
   1859 pool_chk(struct pool *pp, const char *label)
   1860 {
   1861 	struct pool_item_header *ph;
   1862 	int r = 0;
   1863 
   1864 	mutex_enter(&pp->pr_lock);
   1865 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1866 		r = pool_chk_page(pp, label, ph);
   1867 		if (r) {
   1868 			goto out;
   1869 		}
   1870 	}
   1871 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1872 		r = pool_chk_page(pp, label, ph);
   1873 		if (r) {
   1874 			goto out;
   1875 		}
   1876 	}
   1877 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1878 		r = pool_chk_page(pp, label, ph);
   1879 		if (r) {
   1880 			goto out;
   1881 		}
   1882 	}
   1883 
   1884 out:
   1885 	mutex_exit(&pp->pr_lock);
   1886 	return r;
   1887 }
   1888 
   1889 /*
   1890  * pool_cache_init:
   1891  *
   1892  *	Initialize a pool cache.
   1893  */
   1894 pool_cache_t
   1895 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1896     const char *wchan, struct pool_allocator *palloc, int ipl,
   1897     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1898 {
   1899 	pool_cache_t pc;
   1900 
   1901 	pc = pool_get(&cache_pool, PR_WAITOK);
   1902 	if (pc == NULL)
   1903 		return NULL;
   1904 
   1905 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1906 	   palloc, ipl, ctor, dtor, arg);
   1907 
   1908 	return pc;
   1909 }
   1910 
   1911 /*
   1912  * pool_cache_bootstrap:
   1913  *
   1914  *	Kernel-private version of pool_cache_init().  The caller
   1915  *	provides initial storage.
   1916  */
   1917 void
   1918 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1919     u_int align_offset, u_int flags, const char *wchan,
   1920     struct pool_allocator *palloc, int ipl,
   1921     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1922     void *arg)
   1923 {
   1924 	CPU_INFO_ITERATOR cii;
   1925 	pool_cache_t pc1;
   1926 	struct cpu_info *ci;
   1927 	struct pool *pp;
   1928 
   1929 	pp = &pc->pc_pool;
   1930 	if (palloc == NULL && ipl == IPL_NONE) {
   1931 		if (size > PAGE_SIZE) {
   1932 			int bigidx = pool_bigidx(size);
   1933 
   1934 			palloc = &pool_allocator_big[bigidx];
   1935 		} else
   1936 			palloc = &pool_allocator_nointr;
   1937 	}
   1938 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1939 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1940 
   1941 	if (ctor == NULL) {
   1942 		ctor = (int (*)(void *, void *, int))nullop;
   1943 	}
   1944 	if (dtor == NULL) {
   1945 		dtor = (void (*)(void *, void *))nullop;
   1946 	}
   1947 
   1948 	pc->pc_emptygroups = NULL;
   1949 	pc->pc_fullgroups = NULL;
   1950 	pc->pc_partgroups = NULL;
   1951 	pc->pc_ctor = ctor;
   1952 	pc->pc_dtor = dtor;
   1953 	pc->pc_arg  = arg;
   1954 	pc->pc_hits  = 0;
   1955 	pc->pc_misses = 0;
   1956 	pc->pc_nempty = 0;
   1957 	pc->pc_npart = 0;
   1958 	pc->pc_nfull = 0;
   1959 	pc->pc_contended = 0;
   1960 	pc->pc_refcnt = 0;
   1961 	pc->pc_freecheck = NULL;
   1962 
   1963 	if ((flags & PR_LARGECACHE) != 0) {
   1964 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1965 		pc->pc_pcgpool = &pcg_large_pool;
   1966 	} else {
   1967 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1968 		pc->pc_pcgpool = &pcg_normal_pool;
   1969 	}
   1970 
   1971 	/* Allocate per-CPU caches. */
   1972 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1973 	pc->pc_ncpu = 0;
   1974 	if (ncpu < 2) {
   1975 		/* XXX For sparc: boot CPU is not attached yet. */
   1976 		pool_cache_cpu_init1(curcpu(), pc);
   1977 	} else {
   1978 		for (CPU_INFO_FOREACH(cii, ci)) {
   1979 			pool_cache_cpu_init1(ci, pc);
   1980 		}
   1981 	}
   1982 
   1983 	/* Add to list of all pools. */
   1984 	if (__predict_true(!cold))
   1985 		mutex_enter(&pool_head_lock);
   1986 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1987 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1988 			break;
   1989 	}
   1990 	if (pc1 == NULL)
   1991 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1992 	else
   1993 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1994 	if (__predict_true(!cold))
   1995 		mutex_exit(&pool_head_lock);
   1996 
   1997 	membar_sync();
   1998 	pp->pr_cache = pc;
   1999 }
   2000 
   2001 /*
   2002  * pool_cache_destroy:
   2003  *
   2004  *	Destroy a pool cache.
   2005  */
   2006 void
   2007 pool_cache_destroy(pool_cache_t pc)
   2008 {
   2009 
   2010 	pool_cache_bootstrap_destroy(pc);
   2011 	pool_put(&cache_pool, pc);
   2012 }
   2013 
   2014 /*
   2015  * pool_cache_bootstrap_destroy:
   2016  *
   2017  *	Destroy a pool cache.
   2018  */
   2019 void
   2020 pool_cache_bootstrap_destroy(pool_cache_t pc)
   2021 {
   2022 	struct pool *pp = &pc->pc_pool;
   2023 	u_int i;
   2024 
   2025 	/* Remove it from the global list. */
   2026 	mutex_enter(&pool_head_lock);
   2027 	while (pc->pc_refcnt != 0)
   2028 		cv_wait(&pool_busy, &pool_head_lock);
   2029 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2030 	mutex_exit(&pool_head_lock);
   2031 
   2032 	/* First, invalidate the entire cache. */
   2033 	pool_cache_invalidate(pc);
   2034 
   2035 	/* Disassociate it from the pool. */
   2036 	mutex_enter(&pp->pr_lock);
   2037 	pp->pr_cache = NULL;
   2038 	mutex_exit(&pp->pr_lock);
   2039 
   2040 	/* Destroy per-CPU data */
   2041 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2042 		pool_cache_invalidate_cpu(pc, i);
   2043 
   2044 	/* Finally, destroy it. */
   2045 	mutex_destroy(&pc->pc_lock);
   2046 	pool_destroy(pp);
   2047 }
   2048 
   2049 /*
   2050  * pool_cache_cpu_init1:
   2051  *
   2052  *	Called for each pool_cache whenever a new CPU is attached.
   2053  */
   2054 static void
   2055 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2056 {
   2057 	pool_cache_cpu_t *cc;
   2058 	int index;
   2059 
   2060 	index = ci->ci_index;
   2061 
   2062 	KASSERT(index < __arraycount(pc->pc_cpus));
   2063 
   2064 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2065 		KASSERT(cc->cc_cpuindex == index);
   2066 		return;
   2067 	}
   2068 
   2069 	/*
   2070 	 * The first CPU is 'free'.  This needs to be the case for
   2071 	 * bootstrap - we may not be able to allocate yet.
   2072 	 */
   2073 	if (pc->pc_ncpu == 0) {
   2074 		cc = &pc->pc_cpu0;
   2075 		pc->pc_ncpu = 1;
   2076 	} else {
   2077 		mutex_enter(&pc->pc_lock);
   2078 		pc->pc_ncpu++;
   2079 		mutex_exit(&pc->pc_lock);
   2080 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2081 	}
   2082 
   2083 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2084 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2085 	cc->cc_cache = pc;
   2086 	cc->cc_cpuindex = index;
   2087 	cc->cc_hits = 0;
   2088 	cc->cc_misses = 0;
   2089 	cc->cc_current = __UNCONST(&pcg_dummy);
   2090 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2091 
   2092 	pc->pc_cpus[index] = cc;
   2093 }
   2094 
   2095 /*
   2096  * pool_cache_cpu_init:
   2097  *
   2098  *	Called whenever a new CPU is attached.
   2099  */
   2100 void
   2101 pool_cache_cpu_init(struct cpu_info *ci)
   2102 {
   2103 	pool_cache_t pc;
   2104 
   2105 	mutex_enter(&pool_head_lock);
   2106 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2107 		pc->pc_refcnt++;
   2108 		mutex_exit(&pool_head_lock);
   2109 
   2110 		pool_cache_cpu_init1(ci, pc);
   2111 
   2112 		mutex_enter(&pool_head_lock);
   2113 		pc->pc_refcnt--;
   2114 		cv_broadcast(&pool_busy);
   2115 	}
   2116 	mutex_exit(&pool_head_lock);
   2117 }
   2118 
   2119 /*
   2120  * pool_cache_reclaim:
   2121  *
   2122  *	Reclaim memory from a pool cache.
   2123  */
   2124 bool
   2125 pool_cache_reclaim(pool_cache_t pc)
   2126 {
   2127 
   2128 	return pool_reclaim(&pc->pc_pool);
   2129 }
   2130 
   2131 static void
   2132 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2133 {
   2134 	if (pc->pc_pool.pr_redzone) {
   2135 		/*
   2136 		 * The object is marked as invalid. Temporarily mark it as
   2137 		 * valid for the destructor. pool_put below will re-mark it
   2138 		 * as invalid.
   2139 		 */
   2140 		kasan_mark(object, pc->pc_pool.pr_reqsize,
   2141 		    pc->pc_pool.pr_reqsize_with_redzone);
   2142 	}
   2143 
   2144 	(*pc->pc_dtor)(pc->pc_arg, object);
   2145 	pool_put(&pc->pc_pool, object);
   2146 }
   2147 
   2148 /*
   2149  * pool_cache_destruct_object:
   2150  *
   2151  *	Force destruction of an object and its release back into
   2152  *	the pool.
   2153  */
   2154 void
   2155 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2156 {
   2157 
   2158 	FREECHECK_IN(&pc->pc_freecheck, object);
   2159 
   2160 	pool_cache_destruct_object1(pc, object);
   2161 }
   2162 
   2163 /*
   2164  * pool_cache_invalidate_groups:
   2165  *
   2166  *	Invalidate a chain of groups and destruct all objects.
   2167  */
   2168 static void
   2169 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2170 {
   2171 	void *object;
   2172 	pcg_t *next;
   2173 	int i;
   2174 
   2175 	for (; pcg != NULL; pcg = next) {
   2176 		next = pcg->pcg_next;
   2177 
   2178 		for (i = 0; i < pcg->pcg_avail; i++) {
   2179 			object = pcg->pcg_objects[i].pcgo_va;
   2180 			pool_cache_destruct_object1(pc, object);
   2181 		}
   2182 
   2183 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2184 			pool_put(&pcg_large_pool, pcg);
   2185 		} else {
   2186 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2187 			pool_put(&pcg_normal_pool, pcg);
   2188 		}
   2189 	}
   2190 }
   2191 
   2192 /*
   2193  * pool_cache_invalidate:
   2194  *
   2195  *	Invalidate a pool cache (destruct and release all of the
   2196  *	cached objects).  Does not reclaim objects from the pool.
   2197  *
   2198  *	Note: For pool caches that provide constructed objects, there
   2199  *	is an assumption that another level of synchronization is occurring
   2200  *	between the input to the constructor and the cache invalidation.
   2201  *
   2202  *	Invalidation is a costly process and should not be called from
   2203  *	interrupt context.
   2204  */
   2205 void
   2206 pool_cache_invalidate(pool_cache_t pc)
   2207 {
   2208 	uint64_t where;
   2209 	pcg_t *full, *empty, *part;
   2210 
   2211 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2212 
   2213 	if (ncpu < 2 || !mp_online) {
   2214 		/*
   2215 		 * We might be called early enough in the boot process
   2216 		 * for the CPU data structures to not be fully initialized.
   2217 		 * In this case, transfer the content of the local CPU's
   2218 		 * cache back into global cache as only this CPU is currently
   2219 		 * running.
   2220 		 */
   2221 		pool_cache_transfer(pc);
   2222 	} else {
   2223 		/*
   2224 		 * Signal all CPUs that they must transfer their local
   2225 		 * cache back to the global pool then wait for the xcall to
   2226 		 * complete.
   2227 		 */
   2228 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2229 		    pc, NULL);
   2230 		xc_wait(where);
   2231 	}
   2232 
   2233 	/* Empty pool caches, then invalidate objects */
   2234 	mutex_enter(&pc->pc_lock);
   2235 	full = pc->pc_fullgroups;
   2236 	empty = pc->pc_emptygroups;
   2237 	part = pc->pc_partgroups;
   2238 	pc->pc_fullgroups = NULL;
   2239 	pc->pc_emptygroups = NULL;
   2240 	pc->pc_partgroups = NULL;
   2241 	pc->pc_nfull = 0;
   2242 	pc->pc_nempty = 0;
   2243 	pc->pc_npart = 0;
   2244 	mutex_exit(&pc->pc_lock);
   2245 
   2246 	pool_cache_invalidate_groups(pc, full);
   2247 	pool_cache_invalidate_groups(pc, empty);
   2248 	pool_cache_invalidate_groups(pc, part);
   2249 }
   2250 
   2251 /*
   2252  * pool_cache_invalidate_cpu:
   2253  *
   2254  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2255  *	identified by its associated index.
   2256  *	It is caller's responsibility to ensure that no operation is
   2257  *	taking place on this pool cache while doing this invalidation.
   2258  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2259  *	pool cached objects from a CPU different from the one currently running
   2260  *	may result in an undefined behaviour.
   2261  */
   2262 static void
   2263 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2264 {
   2265 	pool_cache_cpu_t *cc;
   2266 	pcg_t *pcg;
   2267 
   2268 	if ((cc = pc->pc_cpus[index]) == NULL)
   2269 		return;
   2270 
   2271 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2272 		pcg->pcg_next = NULL;
   2273 		pool_cache_invalidate_groups(pc, pcg);
   2274 	}
   2275 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2276 		pcg->pcg_next = NULL;
   2277 		pool_cache_invalidate_groups(pc, pcg);
   2278 	}
   2279 	if (cc != &pc->pc_cpu0)
   2280 		pool_put(&cache_cpu_pool, cc);
   2281 
   2282 }
   2283 
   2284 void
   2285 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2286 {
   2287 
   2288 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2289 }
   2290 
   2291 void
   2292 pool_cache_setlowat(pool_cache_t pc, int n)
   2293 {
   2294 
   2295 	pool_setlowat(&pc->pc_pool, n);
   2296 }
   2297 
   2298 void
   2299 pool_cache_sethiwat(pool_cache_t pc, int n)
   2300 {
   2301 
   2302 	pool_sethiwat(&pc->pc_pool, n);
   2303 }
   2304 
   2305 void
   2306 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2307 {
   2308 
   2309 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2310 }
   2311 
   2312 static bool __noinline
   2313 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2314 		    paddr_t *pap, int flags)
   2315 {
   2316 	pcg_t *pcg, *cur;
   2317 	uint64_t ncsw;
   2318 	pool_cache_t pc;
   2319 	void *object;
   2320 
   2321 	KASSERT(cc->cc_current->pcg_avail == 0);
   2322 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2323 
   2324 	pc = cc->cc_cache;
   2325 	cc->cc_misses++;
   2326 
   2327 	/*
   2328 	 * Nothing was available locally.  Try and grab a group
   2329 	 * from the cache.
   2330 	 */
   2331 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2332 		ncsw = curlwp->l_ncsw;
   2333 		mutex_enter(&pc->pc_lock);
   2334 		pc->pc_contended++;
   2335 
   2336 		/*
   2337 		 * If we context switched while locking, then
   2338 		 * our view of the per-CPU data is invalid:
   2339 		 * retry.
   2340 		 */
   2341 		if (curlwp->l_ncsw != ncsw) {
   2342 			mutex_exit(&pc->pc_lock);
   2343 			return true;
   2344 		}
   2345 	}
   2346 
   2347 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2348 		/*
   2349 		 * If there's a full group, release our empty
   2350 		 * group back to the cache.  Install the full
   2351 		 * group as cc_current and return.
   2352 		 */
   2353 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2354 			KASSERT(cur->pcg_avail == 0);
   2355 			cur->pcg_next = pc->pc_emptygroups;
   2356 			pc->pc_emptygroups = cur;
   2357 			pc->pc_nempty++;
   2358 		}
   2359 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2360 		cc->cc_current = pcg;
   2361 		pc->pc_fullgroups = pcg->pcg_next;
   2362 		pc->pc_hits++;
   2363 		pc->pc_nfull--;
   2364 		mutex_exit(&pc->pc_lock);
   2365 		return true;
   2366 	}
   2367 
   2368 	/*
   2369 	 * Nothing available locally or in cache.  Take the slow
   2370 	 * path: fetch a new object from the pool and construct
   2371 	 * it.
   2372 	 */
   2373 	pc->pc_misses++;
   2374 	mutex_exit(&pc->pc_lock);
   2375 	splx(s);
   2376 
   2377 	object = pool_get(&pc->pc_pool, flags);
   2378 	*objectp = object;
   2379 	if (__predict_false(object == NULL)) {
   2380 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2381 		return false;
   2382 	}
   2383 
   2384 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2385 		pool_put(&pc->pc_pool, object);
   2386 		*objectp = NULL;
   2387 		return false;
   2388 	}
   2389 
   2390 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2391 
   2392 	if (pap != NULL) {
   2393 #ifdef POOL_VTOPHYS
   2394 		*pap = POOL_VTOPHYS(object);
   2395 #else
   2396 		*pap = POOL_PADDR_INVALID;
   2397 #endif
   2398 	}
   2399 
   2400 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2401 	pool_redzone_fill(&pc->pc_pool, object);
   2402 	pool_cache_kleak_fill(pc, object);
   2403 	return false;
   2404 }
   2405 
   2406 /*
   2407  * pool_cache_get{,_paddr}:
   2408  *
   2409  *	Get an object from a pool cache (optionally returning
   2410  *	the physical address of the object).
   2411  */
   2412 void *
   2413 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2414 {
   2415 	pool_cache_cpu_t *cc;
   2416 	pcg_t *pcg;
   2417 	void *object;
   2418 	int s;
   2419 
   2420 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2421 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2422 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2423 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2424 	    __func__, pc->pc_pool.pr_wchan);
   2425 
   2426 	if (flags & PR_WAITOK) {
   2427 		ASSERT_SLEEPABLE();
   2428 	}
   2429 
   2430 	/* Lock out interrupts and disable preemption. */
   2431 	s = splvm();
   2432 	while (/* CONSTCOND */ true) {
   2433 		/* Try and allocate an object from the current group. */
   2434 		cc = pc->pc_cpus[curcpu()->ci_index];
   2435 		KASSERT(cc->cc_cache == pc);
   2436 	 	pcg = cc->cc_current;
   2437 		if (__predict_true(pcg->pcg_avail > 0)) {
   2438 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2439 			if (__predict_false(pap != NULL))
   2440 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2441 #if defined(DIAGNOSTIC)
   2442 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2443 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2444 			KASSERT(object != NULL);
   2445 #endif
   2446 			cc->cc_hits++;
   2447 			splx(s);
   2448 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2449 			pool_redzone_fill(&pc->pc_pool, object);
   2450 			pool_cache_kleak_fill(pc, object);
   2451 			return object;
   2452 		}
   2453 
   2454 		/*
   2455 		 * That failed.  If the previous group isn't empty, swap
   2456 		 * it with the current group and allocate from there.
   2457 		 */
   2458 		pcg = cc->cc_previous;
   2459 		if (__predict_true(pcg->pcg_avail > 0)) {
   2460 			cc->cc_previous = cc->cc_current;
   2461 			cc->cc_current = pcg;
   2462 			continue;
   2463 		}
   2464 
   2465 		/*
   2466 		 * Can't allocate from either group: try the slow path.
   2467 		 * If get_slow() allocated an object for us, or if
   2468 		 * no more objects are available, it will return false.
   2469 		 * Otherwise, we need to retry.
   2470 		 */
   2471 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2472 			break;
   2473 	}
   2474 
   2475 	/*
   2476 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2477 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2478 	 * constructor fails.
   2479 	 */
   2480 	return object;
   2481 }
   2482 
   2483 static bool __noinline
   2484 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2485 {
   2486 	struct lwp *l = curlwp;
   2487 	pcg_t *pcg, *cur;
   2488 	uint64_t ncsw;
   2489 	pool_cache_t pc;
   2490 
   2491 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2492 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2493 
   2494 	pc = cc->cc_cache;
   2495 	pcg = NULL;
   2496 	cc->cc_misses++;
   2497 	ncsw = l->l_ncsw;
   2498 
   2499 	/*
   2500 	 * If there are no empty groups in the cache then allocate one
   2501 	 * while still unlocked.
   2502 	 */
   2503 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2504 		if (__predict_true(!pool_cache_disable)) {
   2505 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2506 		}
   2507 		/*
   2508 		 * If pool_get() blocked, then our view of
   2509 		 * the per-CPU data is invalid: retry.
   2510 		 */
   2511 		if (__predict_false(l->l_ncsw != ncsw)) {
   2512 			if (pcg != NULL) {
   2513 				pool_put(pc->pc_pcgpool, pcg);
   2514 			}
   2515 			return true;
   2516 		}
   2517 		if (__predict_true(pcg != NULL)) {
   2518 			pcg->pcg_avail = 0;
   2519 			pcg->pcg_size = pc->pc_pcgsize;
   2520 		}
   2521 	}
   2522 
   2523 	/* Lock the cache. */
   2524 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2525 		mutex_enter(&pc->pc_lock);
   2526 		pc->pc_contended++;
   2527 
   2528 		/*
   2529 		 * If we context switched while locking, then our view of
   2530 		 * the per-CPU data is invalid: retry.
   2531 		 */
   2532 		if (__predict_false(l->l_ncsw != ncsw)) {
   2533 			mutex_exit(&pc->pc_lock);
   2534 			if (pcg != NULL) {
   2535 				pool_put(pc->pc_pcgpool, pcg);
   2536 			}
   2537 			return true;
   2538 		}
   2539 	}
   2540 
   2541 	/* If there are no empty groups in the cache then allocate one. */
   2542 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2543 		pcg = pc->pc_emptygroups;
   2544 		pc->pc_emptygroups = pcg->pcg_next;
   2545 		pc->pc_nempty--;
   2546 	}
   2547 
   2548 	/*
   2549 	 * If there's a empty group, release our full group back
   2550 	 * to the cache.  Install the empty group to the local CPU
   2551 	 * and return.
   2552 	 */
   2553 	if (pcg != NULL) {
   2554 		KASSERT(pcg->pcg_avail == 0);
   2555 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2556 			cc->cc_previous = pcg;
   2557 		} else {
   2558 			cur = cc->cc_current;
   2559 			if (__predict_true(cur != &pcg_dummy)) {
   2560 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2561 				cur->pcg_next = pc->pc_fullgroups;
   2562 				pc->pc_fullgroups = cur;
   2563 				pc->pc_nfull++;
   2564 			}
   2565 			cc->cc_current = pcg;
   2566 		}
   2567 		pc->pc_hits++;
   2568 		mutex_exit(&pc->pc_lock);
   2569 		return true;
   2570 	}
   2571 
   2572 	/*
   2573 	 * Nothing available locally or in cache, and we didn't
   2574 	 * allocate an empty group.  Take the slow path and destroy
   2575 	 * the object here and now.
   2576 	 */
   2577 	pc->pc_misses++;
   2578 	mutex_exit(&pc->pc_lock);
   2579 	splx(s);
   2580 	pool_cache_destruct_object(pc, object);
   2581 
   2582 	return false;
   2583 }
   2584 
   2585 /*
   2586  * pool_cache_put{,_paddr}:
   2587  *
   2588  *	Put an object back to the pool cache (optionally caching the
   2589  *	physical address of the object).
   2590  */
   2591 void
   2592 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2593 {
   2594 	pool_cache_cpu_t *cc;
   2595 	pcg_t *pcg;
   2596 	int s;
   2597 
   2598 	KASSERT(object != NULL);
   2599 	pool_cache_redzone_check(pc, object);
   2600 	FREECHECK_IN(&pc->pc_freecheck, object);
   2601 
   2602 	/* Lock out interrupts and disable preemption. */
   2603 	s = splvm();
   2604 	while (/* CONSTCOND */ true) {
   2605 		/* If the current group isn't full, release it there. */
   2606 		cc = pc->pc_cpus[curcpu()->ci_index];
   2607 		KASSERT(cc->cc_cache == pc);
   2608 	 	pcg = cc->cc_current;
   2609 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2610 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2611 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2612 			pcg->pcg_avail++;
   2613 			cc->cc_hits++;
   2614 			splx(s);
   2615 			return;
   2616 		}
   2617 
   2618 		/*
   2619 		 * That failed.  If the previous group isn't full, swap
   2620 		 * it with the current group and try again.
   2621 		 */
   2622 		pcg = cc->cc_previous;
   2623 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2624 			cc->cc_previous = cc->cc_current;
   2625 			cc->cc_current = pcg;
   2626 			continue;
   2627 		}
   2628 
   2629 		/*
   2630 		 * Can't free to either group: try the slow path.
   2631 		 * If put_slow() releases the object for us, it
   2632 		 * will return false.  Otherwise we need to retry.
   2633 		 */
   2634 		if (!pool_cache_put_slow(cc, s, object))
   2635 			break;
   2636 	}
   2637 }
   2638 
   2639 /*
   2640  * pool_cache_transfer:
   2641  *
   2642  *	Transfer objects from the per-CPU cache to the global cache.
   2643  *	Run within a cross-call thread.
   2644  */
   2645 static void
   2646 pool_cache_transfer(pool_cache_t pc)
   2647 {
   2648 	pool_cache_cpu_t *cc;
   2649 	pcg_t *prev, *cur, **list;
   2650 	int s;
   2651 
   2652 	s = splvm();
   2653 	mutex_enter(&pc->pc_lock);
   2654 	cc = pc->pc_cpus[curcpu()->ci_index];
   2655 	cur = cc->cc_current;
   2656 	cc->cc_current = __UNCONST(&pcg_dummy);
   2657 	prev = cc->cc_previous;
   2658 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2659 	if (cur != &pcg_dummy) {
   2660 		if (cur->pcg_avail == cur->pcg_size) {
   2661 			list = &pc->pc_fullgroups;
   2662 			pc->pc_nfull++;
   2663 		} else if (cur->pcg_avail == 0) {
   2664 			list = &pc->pc_emptygroups;
   2665 			pc->pc_nempty++;
   2666 		} else {
   2667 			list = &pc->pc_partgroups;
   2668 			pc->pc_npart++;
   2669 		}
   2670 		cur->pcg_next = *list;
   2671 		*list = cur;
   2672 	}
   2673 	if (prev != &pcg_dummy) {
   2674 		if (prev->pcg_avail == prev->pcg_size) {
   2675 			list = &pc->pc_fullgroups;
   2676 			pc->pc_nfull++;
   2677 		} else if (prev->pcg_avail == 0) {
   2678 			list = &pc->pc_emptygroups;
   2679 			pc->pc_nempty++;
   2680 		} else {
   2681 			list = &pc->pc_partgroups;
   2682 			pc->pc_npart++;
   2683 		}
   2684 		prev->pcg_next = *list;
   2685 		*list = prev;
   2686 	}
   2687 	mutex_exit(&pc->pc_lock);
   2688 	splx(s);
   2689 }
   2690 
   2691 /*
   2692  * Pool backend allocators.
   2693  *
   2694  * Each pool has a backend allocator that handles allocation, deallocation,
   2695  * and any additional draining that might be needed.
   2696  *
   2697  * We provide two standard allocators:
   2698  *
   2699  *	pool_allocator_kmem - the default when no allocator is specified
   2700  *
   2701  *	pool_allocator_nointr - used for pools that will not be accessed
   2702  *	in interrupt context.
   2703  */
   2704 void	*pool_page_alloc(struct pool *, int);
   2705 void	pool_page_free(struct pool *, void *);
   2706 
   2707 struct pool_allocator pool_allocator_kmem = {
   2708 	.pa_alloc = pool_page_alloc,
   2709 	.pa_free = pool_page_free,
   2710 	.pa_pagesz = 0
   2711 };
   2712 
   2713 struct pool_allocator pool_allocator_nointr = {
   2714 	.pa_alloc = pool_page_alloc,
   2715 	.pa_free = pool_page_free,
   2716 	.pa_pagesz = 0
   2717 };
   2718 
   2719 struct pool_allocator pool_allocator_big[] = {
   2720 	{
   2721 		.pa_alloc = pool_page_alloc,
   2722 		.pa_free = pool_page_free,
   2723 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2724 	},
   2725 	{
   2726 		.pa_alloc = pool_page_alloc,
   2727 		.pa_free = pool_page_free,
   2728 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2729 	},
   2730 	{
   2731 		.pa_alloc = pool_page_alloc,
   2732 		.pa_free = pool_page_free,
   2733 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2734 	},
   2735 	{
   2736 		.pa_alloc = pool_page_alloc,
   2737 		.pa_free = pool_page_free,
   2738 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2739 	},
   2740 	{
   2741 		.pa_alloc = pool_page_alloc,
   2742 		.pa_free = pool_page_free,
   2743 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2744 	},
   2745 	{
   2746 		.pa_alloc = pool_page_alloc,
   2747 		.pa_free = pool_page_free,
   2748 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2749 	},
   2750 	{
   2751 		.pa_alloc = pool_page_alloc,
   2752 		.pa_free = pool_page_free,
   2753 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2754 	},
   2755 	{
   2756 		.pa_alloc = pool_page_alloc,
   2757 		.pa_free = pool_page_free,
   2758 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2759 	}
   2760 };
   2761 
   2762 static int
   2763 pool_bigidx(size_t size)
   2764 {
   2765 	int i;
   2766 
   2767 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2768 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2769 			return i;
   2770 	}
   2771 	panic("pool item size %zu too large, use a custom allocator", size);
   2772 }
   2773 
   2774 static void *
   2775 pool_allocator_alloc(struct pool *pp, int flags)
   2776 {
   2777 	struct pool_allocator *pa = pp->pr_alloc;
   2778 	void *res;
   2779 
   2780 	res = (*pa->pa_alloc)(pp, flags);
   2781 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2782 		/*
   2783 		 * We only run the drain hook here if PR_NOWAIT.
   2784 		 * In other cases, the hook will be run in
   2785 		 * pool_reclaim().
   2786 		 */
   2787 		if (pp->pr_drain_hook != NULL) {
   2788 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2789 			res = (*pa->pa_alloc)(pp, flags);
   2790 		}
   2791 	}
   2792 	return res;
   2793 }
   2794 
   2795 static void
   2796 pool_allocator_free(struct pool *pp, void *v)
   2797 {
   2798 	struct pool_allocator *pa = pp->pr_alloc;
   2799 
   2800 	if (pp->pr_redzone) {
   2801 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
   2802 	}
   2803 	(*pa->pa_free)(pp, v);
   2804 }
   2805 
   2806 void *
   2807 pool_page_alloc(struct pool *pp, int flags)
   2808 {
   2809 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2810 	vmem_addr_t va;
   2811 	int ret;
   2812 
   2813 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2814 	    vflags | VM_INSTANTFIT, &va);
   2815 
   2816 	return ret ? NULL : (void *)va;
   2817 }
   2818 
   2819 void
   2820 pool_page_free(struct pool *pp, void *v)
   2821 {
   2822 
   2823 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2824 }
   2825 
   2826 static void *
   2827 pool_page_alloc_meta(struct pool *pp, int flags)
   2828 {
   2829 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2830 	vmem_addr_t va;
   2831 	int ret;
   2832 
   2833 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2834 	    vflags | VM_INSTANTFIT, &va);
   2835 
   2836 	return ret ? NULL : (void *)va;
   2837 }
   2838 
   2839 static void
   2840 pool_page_free_meta(struct pool *pp, void *v)
   2841 {
   2842 
   2843 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2844 }
   2845 
   2846 #ifdef KLEAK
   2847 static void
   2848 pool_kleak_fill(struct pool *pp, void *p)
   2849 {
   2850 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2851 		return;
   2852 	}
   2853 	kleak_fill_area(p, pp->pr_size);
   2854 }
   2855 
   2856 static void
   2857 pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2858 {
   2859 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2860 		return;
   2861 	}
   2862 	pool_kleak_fill(&pc->pc_pool, p);
   2863 }
   2864 #endif
   2865 
   2866 #ifdef POOL_REDZONE
   2867 #if defined(_LP64)
   2868 # define PRIME 0x9e37fffffffc0000UL
   2869 #else /* defined(_LP64) */
   2870 # define PRIME 0x9e3779b1
   2871 #endif /* defined(_LP64) */
   2872 #define STATIC_BYTE	0xFE
   2873 CTASSERT(POOL_REDZONE_SIZE > 1);
   2874 
   2875 #ifndef KASAN
   2876 static inline uint8_t
   2877 pool_pattern_generate(const void *p)
   2878 {
   2879 	return (uint8_t)(((uintptr_t)p) * PRIME
   2880 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2881 }
   2882 #endif
   2883 
   2884 static void
   2885 pool_redzone_init(struct pool *pp, size_t requested_size)
   2886 {
   2887 	size_t redzsz;
   2888 	size_t nsz;
   2889 
   2890 #ifdef KASAN
   2891 	redzsz = requested_size;
   2892 	kasan_add_redzone(&redzsz);
   2893 	redzsz -= requested_size;
   2894 #else
   2895 	redzsz = POOL_REDZONE_SIZE;
   2896 #endif
   2897 
   2898 	if (pp->pr_roflags & PR_NOTOUCH) {
   2899 		pp->pr_redzone = false;
   2900 		return;
   2901 	}
   2902 
   2903 	/*
   2904 	 * We may have extended the requested size earlier; check if
   2905 	 * there's naturally space in the padding for a red zone.
   2906 	 */
   2907 	if (pp->pr_size - requested_size >= redzsz) {
   2908 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2909 		pp->pr_redzone = true;
   2910 		return;
   2911 	}
   2912 
   2913 	/*
   2914 	 * No space in the natural padding; check if we can extend a
   2915 	 * bit the size of the pool.
   2916 	 */
   2917 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2918 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2919 		/* Ok, we can */
   2920 		pp->pr_size = nsz;
   2921 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2922 		pp->pr_redzone = true;
   2923 	} else {
   2924 		/* No space for a red zone... snif :'( */
   2925 		pp->pr_redzone = false;
   2926 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2927 	}
   2928 }
   2929 
   2930 static void
   2931 pool_redzone_fill(struct pool *pp, void *p)
   2932 {
   2933 	if (!pp->pr_redzone)
   2934 		return;
   2935 #ifdef KASAN
   2936 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
   2937 #else
   2938 	uint8_t *cp, pat;
   2939 	const uint8_t *ep;
   2940 
   2941 	cp = (uint8_t *)p + pp->pr_reqsize;
   2942 	ep = cp + POOL_REDZONE_SIZE;
   2943 
   2944 	/*
   2945 	 * We really don't want the first byte of the red zone to be '\0';
   2946 	 * an off-by-one in a string may not be properly detected.
   2947 	 */
   2948 	pat = pool_pattern_generate(cp);
   2949 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2950 	cp++;
   2951 
   2952 	while (cp < ep) {
   2953 		*cp = pool_pattern_generate(cp);
   2954 		cp++;
   2955 	}
   2956 #endif
   2957 }
   2958 
   2959 static void
   2960 pool_redzone_check(struct pool *pp, void *p)
   2961 {
   2962 	if (!pp->pr_redzone)
   2963 		return;
   2964 #ifdef KASAN
   2965 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
   2966 #else
   2967 	uint8_t *cp, pat, expected;
   2968 	const uint8_t *ep;
   2969 
   2970 	cp = (uint8_t *)p + pp->pr_reqsize;
   2971 	ep = cp + POOL_REDZONE_SIZE;
   2972 
   2973 	pat = pool_pattern_generate(cp);
   2974 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2975 	if (__predict_false(expected != *cp)) {
   2976 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2977 		   __func__, cp, *cp, expected);
   2978 	}
   2979 	cp++;
   2980 
   2981 	while (cp < ep) {
   2982 		expected = pool_pattern_generate(cp);
   2983 		if (__predict_false(*cp != expected)) {
   2984 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2985 			   __func__, cp, *cp, expected);
   2986 		}
   2987 		cp++;
   2988 	}
   2989 #endif
   2990 }
   2991 
   2992 static void
   2993 pool_cache_redzone_check(pool_cache_t pc, void *p)
   2994 {
   2995 #ifdef KASAN
   2996 	/* If there is a ctor/dtor, leave the data as valid. */
   2997 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2998 		return;
   2999 	}
   3000 #endif
   3001 	pool_redzone_check(&pc->pc_pool, p);
   3002 }
   3003 
   3004 #endif /* POOL_REDZONE */
   3005 
   3006 #if defined(DDB)
   3007 static bool
   3008 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3009 {
   3010 
   3011 	return (uintptr_t)ph->ph_page <= addr &&
   3012 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3013 }
   3014 
   3015 static bool
   3016 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3017 {
   3018 
   3019 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3020 }
   3021 
   3022 static bool
   3023 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3024 {
   3025 	int i;
   3026 
   3027 	if (pcg == NULL) {
   3028 		return false;
   3029 	}
   3030 	for (i = 0; i < pcg->pcg_avail; i++) {
   3031 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3032 			return true;
   3033 		}
   3034 	}
   3035 	return false;
   3036 }
   3037 
   3038 static bool
   3039 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3040 {
   3041 
   3042 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3043 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3044 		pool_item_bitmap_t *bitmap =
   3045 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3046 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3047 
   3048 		return (*bitmap & mask) == 0;
   3049 	} else {
   3050 		struct pool_item *pi;
   3051 
   3052 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3053 			if (pool_in_item(pp, pi, addr)) {
   3054 				return false;
   3055 			}
   3056 		}
   3057 		return true;
   3058 	}
   3059 }
   3060 
   3061 void
   3062 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3063 {
   3064 	struct pool *pp;
   3065 
   3066 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3067 		struct pool_item_header *ph;
   3068 		uintptr_t item;
   3069 		bool allocated = true;
   3070 		bool incache = false;
   3071 		bool incpucache = false;
   3072 		char cpucachestr[32];
   3073 
   3074 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3075 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3076 				if (pool_in_page(pp, ph, addr)) {
   3077 					goto found;
   3078 				}
   3079 			}
   3080 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3081 				if (pool_in_page(pp, ph, addr)) {
   3082 					allocated =
   3083 					    pool_allocated(pp, ph, addr);
   3084 					goto found;
   3085 				}
   3086 			}
   3087 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3088 				if (pool_in_page(pp, ph, addr)) {
   3089 					allocated = false;
   3090 					goto found;
   3091 				}
   3092 			}
   3093 			continue;
   3094 		} else {
   3095 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3096 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3097 				continue;
   3098 			}
   3099 			allocated = pool_allocated(pp, ph, addr);
   3100 		}
   3101 found:
   3102 		if (allocated && pp->pr_cache) {
   3103 			pool_cache_t pc = pp->pr_cache;
   3104 			struct pool_cache_group *pcg;
   3105 			int i;
   3106 
   3107 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3108 			    pcg = pcg->pcg_next) {
   3109 				if (pool_in_cg(pp, pcg, addr)) {
   3110 					incache = true;
   3111 					goto print;
   3112 				}
   3113 			}
   3114 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3115 				pool_cache_cpu_t *cc;
   3116 
   3117 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3118 					continue;
   3119 				}
   3120 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3121 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3122 					struct cpu_info *ci =
   3123 					    cpu_lookup(i);
   3124 
   3125 					incpucache = true;
   3126 					snprintf(cpucachestr,
   3127 					    sizeof(cpucachestr),
   3128 					    "cached by CPU %u",
   3129 					    ci->ci_index);
   3130 					goto print;
   3131 				}
   3132 			}
   3133 		}
   3134 print:
   3135 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3136 		item = item + rounddown(addr - item, pp->pr_size);
   3137 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3138 		    (void *)addr, item, (size_t)(addr - item),
   3139 		    pp->pr_wchan,
   3140 		    incpucache ? cpucachestr :
   3141 		    incache ? "cached" : allocated ? "allocated" : "free");
   3142 	}
   3143 }
   3144 #endif /* defined(DDB) */
   3145 
   3146 static int
   3147 pool_sysctl(SYSCTLFN_ARGS)
   3148 {
   3149 	struct pool_sysctl data;
   3150 	struct pool *pp;
   3151 	struct pool_cache *pc;
   3152 	pool_cache_cpu_t *cc;
   3153 	int error;
   3154 	size_t i, written;
   3155 
   3156 	if (oldp == NULL) {
   3157 		*oldlenp = 0;
   3158 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3159 			*oldlenp += sizeof(data);
   3160 		return 0;
   3161 	}
   3162 
   3163 	memset(&data, 0, sizeof(data));
   3164 	error = 0;
   3165 	written = 0;
   3166 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3167 		if (written + sizeof(data) > *oldlenp)
   3168 			break;
   3169 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3170 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3171 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3172 #define COPY(field) data.field = pp->field
   3173 		COPY(pr_size);
   3174 
   3175 		COPY(pr_itemsperpage);
   3176 		COPY(pr_nitems);
   3177 		COPY(pr_nout);
   3178 		COPY(pr_hardlimit);
   3179 		COPY(pr_npages);
   3180 		COPY(pr_minpages);
   3181 		COPY(pr_maxpages);
   3182 
   3183 		COPY(pr_nget);
   3184 		COPY(pr_nfail);
   3185 		COPY(pr_nput);
   3186 		COPY(pr_npagealloc);
   3187 		COPY(pr_npagefree);
   3188 		COPY(pr_hiwat);
   3189 		COPY(pr_nidle);
   3190 #undef COPY
   3191 
   3192 		data.pr_cache_nmiss_pcpu = 0;
   3193 		data.pr_cache_nhit_pcpu = 0;
   3194 		if (pp->pr_cache) {
   3195 			pc = pp->pr_cache;
   3196 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3197 			data.pr_cache_nfull = pc->pc_nfull;
   3198 			data.pr_cache_npartial = pc->pc_npart;
   3199 			data.pr_cache_nempty = pc->pc_nempty;
   3200 			data.pr_cache_ncontended = pc->pc_contended;
   3201 			data.pr_cache_nmiss_global = pc->pc_misses;
   3202 			data.pr_cache_nhit_global = pc->pc_hits;
   3203 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3204 				cc = pc->pc_cpus[i];
   3205 				if (cc == NULL)
   3206 					continue;
   3207 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3208 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3209 			}
   3210 		} else {
   3211 			data.pr_cache_meta_size = 0;
   3212 			data.pr_cache_nfull = 0;
   3213 			data.pr_cache_npartial = 0;
   3214 			data.pr_cache_nempty = 0;
   3215 			data.pr_cache_ncontended = 0;
   3216 			data.pr_cache_nmiss_global = 0;
   3217 			data.pr_cache_nhit_global = 0;
   3218 		}
   3219 
   3220 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3221 		if (error)
   3222 			break;
   3223 		written += sizeof(data);
   3224 		oldp = (char *)oldp + sizeof(data);
   3225 	}
   3226 
   3227 	*oldlenp = written;
   3228 	return error;
   3229 }
   3230 
   3231 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3232 {
   3233 	const struct sysctlnode *rnode = NULL;
   3234 
   3235 	sysctl_createv(clog, 0, NULL, &rnode,
   3236 		       CTLFLAG_PERMANENT,
   3237 		       CTLTYPE_STRUCT, "pool",
   3238 		       SYSCTL_DESCR("Get pool statistics"),
   3239 		       pool_sysctl, 0, NULL, 0,
   3240 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3241 }
   3242