Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.246
      1 /*	$NetBSD: subr_pool.c,v 1.246 2019/03/28 18:12:24 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.246 2019/03/28 18:12:24 maxv Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_kleak.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/sysctl.h>
     47 #include <sys/bitops.h>
     48 #include <sys/proc.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmem.h>
     52 #include <sys/pool.h>
     53 #include <sys/syslog.h>
     54 #include <sys/debug.h>
     55 #include <sys/lockdebug.h>
     56 #include <sys/xcall.h>
     57 #include <sys/cpu.h>
     58 #include <sys/atomic.h>
     59 #include <sys/asan.h>
     60 
     61 #include <uvm/uvm_extern.h>
     62 
     63 /*
     64  * Pool resource management utility.
     65  *
     66  * Memory is allocated in pages which are split into pieces according to
     67  * the pool item size. Each page is kept on one of three lists in the
     68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69  * for empty, full and partially-full pages respectively. The individual
     70  * pool items are on a linked list headed by `ph_itemlist' in each page
     71  * header. The memory for building the page list is either taken from
     72  * the allocated pages themselves (for small pool items) or taken from
     73  * an internal pool of page headers (`phpool').
     74  */
     75 
     76 /* List of all pools. Non static as needed by 'vmstat -m' */
     77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     78 
     79 /* Private pool for page header structures */
     80 #define	PHPOOL_MAX	8
     81 static struct pool phpool[PHPOOL_MAX];
     82 #define	PHPOOL_FREELIST_NELEM(idx) \
     83 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     84 
     85 #if defined(KASAN)
     86 #define POOL_REDZONE
     87 #endif
     88 
     89 #ifdef POOL_REDZONE
     90 # ifdef KASAN
     91 #  define POOL_REDZONE_SIZE 8
     92 # else
     93 #  define POOL_REDZONE_SIZE 2
     94 # endif
     95 static void pool_redzone_init(struct pool *, size_t);
     96 static void pool_redzone_fill(struct pool *, void *);
     97 static void pool_redzone_check(struct pool *, void *);
     98 static void pool_cache_redzone_check(pool_cache_t, void *);
     99 #else
    100 # define pool_redzone_init(pp, sz)		__nothing
    101 # define pool_redzone_fill(pp, ptr)		__nothing
    102 # define pool_redzone_check(pp, ptr)		__nothing
    103 # define pool_cache_redzone_check(pc, ptr)	__nothing
    104 #endif
    105 
    106 #ifdef KLEAK
    107 static void pool_kleak_fill(struct pool *, void *);
    108 static void pool_cache_kleak_fill(pool_cache_t, void *);
    109 #else
    110 #define pool_kleak_fill(pp, ptr)	__nothing
    111 #define pool_cache_kleak_fill(pc, ptr)	__nothing
    112 #endif
    113 
    114 #define pc_has_ctor(pc) \
    115 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    116 #define pc_has_dtor(pc) \
    117 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    118 
    119 static void *pool_page_alloc_meta(struct pool *, int);
    120 static void pool_page_free_meta(struct pool *, void *);
    121 
    122 /* allocator for pool metadata */
    123 struct pool_allocator pool_allocator_meta = {
    124 	.pa_alloc = pool_page_alloc_meta,
    125 	.pa_free = pool_page_free_meta,
    126 	.pa_pagesz = 0
    127 };
    128 
    129 #define POOL_ALLOCATOR_BIG_BASE 13
    130 extern struct pool_allocator pool_allocator_big[];
    131 static int pool_bigidx(size_t);
    132 
    133 /* # of seconds to retain page after last use */
    134 int pool_inactive_time = 10;
    135 
    136 /* Next candidate for drainage (see pool_drain()) */
    137 static struct pool *drainpp;
    138 
    139 /* This lock protects both pool_head and drainpp. */
    140 static kmutex_t pool_head_lock;
    141 static kcondvar_t pool_busy;
    142 
    143 /* This lock protects initialization of a potentially shared pool allocator */
    144 static kmutex_t pool_allocator_lock;
    145 
    146 static unsigned int poolid_counter = 0;
    147 
    148 typedef uint32_t pool_item_bitmap_t;
    149 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    150 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    151 
    152 struct pool_item_header {
    153 	/* Page headers */
    154 	LIST_ENTRY(pool_item_header)
    155 				ph_pagelist;	/* pool page list */
    156 	union {
    157 		/* !PR_PHINPAGE */
    158 		struct {
    159 			SPLAY_ENTRY(pool_item_header)
    160 				phu_node;	/* off-page page headers */
    161 		} phu_offpage;
    162 		/* PR_PHINPAGE */
    163 		struct {
    164 			unsigned int phu_poolid;
    165 		} phu_onpage;
    166 	} ph_u1;
    167 	void *			ph_page;	/* this page's address */
    168 	uint32_t		ph_time;	/* last referenced */
    169 	uint16_t		ph_nmissing;	/* # of chunks in use */
    170 	uint16_t		ph_off;		/* start offset in page */
    171 	union {
    172 		/* !PR_USEBMAP */
    173 		struct {
    174 			LIST_HEAD(, pool_item)
    175 				phu_itemlist;	/* chunk list for this page */
    176 		} phu_normal;
    177 		/* PR_USEBMAP */
    178 		struct {
    179 			pool_item_bitmap_t phu_bitmap[1];
    180 		} phu_notouch;
    181 	} ph_u2;
    182 };
    183 #define ph_node		ph_u1.phu_offpage.phu_node
    184 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    185 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    186 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    187 
    188 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    189 
    190 #if defined(DIAGNOSTIC) && !defined(KASAN)
    191 #define POOL_CHECK_MAGIC
    192 #endif
    193 
    194 struct pool_item {
    195 #ifdef POOL_CHECK_MAGIC
    196 	u_int pi_magic;
    197 #endif
    198 #define	PI_MAGIC 0xdeaddeadU
    199 	/* Other entries use only this list entry */
    200 	LIST_ENTRY(pool_item)	pi_list;
    201 };
    202 
    203 #define	POOL_NEEDS_CATCHUP(pp)						\
    204 	((pp)->pr_nitems < (pp)->pr_minitems)
    205 
    206 /*
    207  * Pool cache management.
    208  *
    209  * Pool caches provide a way for constructed objects to be cached by the
    210  * pool subsystem.  This can lead to performance improvements by avoiding
    211  * needless object construction/destruction; it is deferred until absolutely
    212  * necessary.
    213  *
    214  * Caches are grouped into cache groups.  Each cache group references up
    215  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    216  * object from the pool, it calls the object's constructor and places it
    217  * into a cache group.  When a cache group frees an object back to the
    218  * pool, it first calls the object's destructor.  This allows the object
    219  * to persist in constructed form while freed to the cache.
    220  *
    221  * The pool references each cache, so that when a pool is drained by the
    222  * pagedaemon, it can drain each individual cache as well.  Each time a
    223  * cache is drained, the most idle cache group is freed to the pool in
    224  * its entirety.
    225  *
    226  * Pool caches are layed on top of pools.  By layering them, we can avoid
    227  * the complexity of cache management for pools which would not benefit
    228  * from it.
    229  */
    230 
    231 static struct pool pcg_normal_pool;
    232 static struct pool pcg_large_pool;
    233 static struct pool cache_pool;
    234 static struct pool cache_cpu_pool;
    235 
    236 /* List of all caches. */
    237 TAILQ_HEAD(,pool_cache) pool_cache_head =
    238     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    239 
    240 int pool_cache_disable;		/* global disable for caching */
    241 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    242 
    243 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    244 				    void *);
    245 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    246 				    void **, paddr_t *, int);
    247 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    248 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    249 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    250 static void	pool_cache_transfer(pool_cache_t);
    251 
    252 static int	pool_catchup(struct pool *);
    253 static void	pool_prime_page(struct pool *, void *,
    254 		    struct pool_item_header *);
    255 static void	pool_update_curpage(struct pool *);
    256 
    257 static int	pool_grow(struct pool *, int);
    258 static void	*pool_allocator_alloc(struct pool *, int);
    259 static void	pool_allocator_free(struct pool *, void *);
    260 
    261 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    262 	void (*)(const char *, ...) __printflike(1, 2));
    263 static void pool_print1(struct pool *, const char *,
    264 	void (*)(const char *, ...) __printflike(1, 2));
    265 
    266 static int pool_chk_page(struct pool *, const char *,
    267 			 struct pool_item_header *);
    268 
    269 /* -------------------------------------------------------------------------- */
    270 
    271 static inline unsigned int
    272 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    273     const void *v)
    274 {
    275 	const char *cp = v;
    276 	unsigned int idx;
    277 
    278 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    279 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    280 
    281 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    282 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    283 		    pp->pr_itemsperpage);
    284 	}
    285 
    286 	return idx;
    287 }
    288 
    289 static inline void
    290 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    291     void *obj)
    292 {
    293 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    294 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    295 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    296 
    297 	if (__predict_false((*bitmap & mask) != 0)) {
    298 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    299 	}
    300 
    301 	*bitmap |= mask;
    302 }
    303 
    304 static inline void *
    305 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    306 {
    307 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    308 	unsigned int idx;
    309 	int i;
    310 
    311 	for (i = 0; ; i++) {
    312 		int bit;
    313 
    314 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    315 		bit = ffs32(bitmap[i]);
    316 		if (bit) {
    317 			pool_item_bitmap_t mask;
    318 
    319 			bit--;
    320 			idx = (i * BITMAP_SIZE) + bit;
    321 			mask = 1U << bit;
    322 			KASSERT((bitmap[i] & mask) != 0);
    323 			bitmap[i] &= ~mask;
    324 			break;
    325 		}
    326 	}
    327 	KASSERT(idx < pp->pr_itemsperpage);
    328 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    329 }
    330 
    331 static inline void
    332 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    333 {
    334 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    335 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    336 	int i;
    337 
    338 	for (i = 0; i < n; i++) {
    339 		bitmap[i] = (pool_item_bitmap_t)-1;
    340 	}
    341 }
    342 
    343 /* -------------------------------------------------------------------------- */
    344 
    345 static inline void
    346 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    347     void *obj)
    348 {
    349 	struct pool_item *pi = obj;
    350 
    351 #ifdef POOL_CHECK_MAGIC
    352 	pi->pi_magic = PI_MAGIC;
    353 #endif
    354 
    355 	if (pp->pr_redzone) {
    356 		/*
    357 		 * Mark the pool_item as valid. The rest is already
    358 		 * invalid.
    359 		 */
    360 		kasan_mark(pi, sizeof(*pi), sizeof(*pi));
    361 	}
    362 
    363 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    364 }
    365 
    366 static inline void *
    367 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    368 {
    369 	struct pool_item *pi;
    370 	void *v;
    371 
    372 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    373 	if (__predict_false(v == NULL)) {
    374 		mutex_exit(&pp->pr_lock);
    375 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    376 	}
    377 	KASSERTMSG((pp->pr_nitems > 0),
    378 	    "%s: [%s] nitems %u inconsistent on itemlist",
    379 	    __func__, pp->pr_wchan, pp->pr_nitems);
    380 #ifdef POOL_CHECK_MAGIC
    381 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    382 	    "%s: [%s] free list modified: "
    383 	    "magic=%x; page %p; item addr %p", __func__,
    384 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    385 #endif
    386 
    387 	/*
    388 	 * Remove from item list.
    389 	 */
    390 	LIST_REMOVE(pi, pi_list);
    391 
    392 	return v;
    393 }
    394 
    395 /* -------------------------------------------------------------------------- */
    396 
    397 static inline int
    398 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    399 {
    400 
    401 	/*
    402 	 * We consider pool_item_header with smaller ph_page bigger. This
    403 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    404 	 */
    405 	if (a->ph_page < b->ph_page)
    406 		return 1;
    407 	else if (a->ph_page > b->ph_page)
    408 		return -1;
    409 	else
    410 		return 0;
    411 }
    412 
    413 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    414 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    415 
    416 static inline struct pool_item_header *
    417 pr_find_pagehead_noalign(struct pool *pp, void *v)
    418 {
    419 	struct pool_item_header *ph, tmp;
    420 
    421 	tmp.ph_page = (void *)(uintptr_t)v;
    422 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    423 	if (ph == NULL) {
    424 		ph = SPLAY_ROOT(&pp->pr_phtree);
    425 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    426 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    427 		}
    428 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    429 	}
    430 
    431 	return ph;
    432 }
    433 
    434 /*
    435  * Return the pool page header based on item address.
    436  */
    437 static inline struct pool_item_header *
    438 pr_find_pagehead(struct pool *pp, void *v)
    439 {
    440 	struct pool_item_header *ph, tmp;
    441 
    442 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    443 		ph = pr_find_pagehead_noalign(pp, v);
    444 	} else {
    445 		void *page =
    446 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    447 
    448 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    449 			ph = (struct pool_item_header *)page;
    450 			if (__predict_false((void *)ph->ph_page != page)) {
    451 				panic("%s: [%s] item %p not part of pool",
    452 				    __func__, pp->pr_wchan, v);
    453 			}
    454 			if (__predict_false((char *)v < (char *)page +
    455 			    ph->ph_off)) {
    456 				panic("%s: [%s] item %p below item space",
    457 				    __func__, pp->pr_wchan, v);
    458 			}
    459 			if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    460 				panic("%s: [%s] item %p poolid %u != %u",
    461 				    __func__, pp->pr_wchan, v, ph->ph_poolid,
    462 				    pp->pr_poolid);
    463 			}
    464 		} else {
    465 			tmp.ph_page = page;
    466 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    467 		}
    468 	}
    469 
    470 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    471 	    ((char *)ph->ph_page <= (char *)v &&
    472 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    473 	return ph;
    474 }
    475 
    476 static void
    477 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    478 {
    479 	struct pool_item_header *ph;
    480 
    481 	while ((ph = LIST_FIRST(pq)) != NULL) {
    482 		LIST_REMOVE(ph, ph_pagelist);
    483 		pool_allocator_free(pp, ph->ph_page);
    484 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    485 			pool_put(pp->pr_phpool, ph);
    486 	}
    487 }
    488 
    489 /*
    490  * Remove a page from the pool.
    491  */
    492 static inline void
    493 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    494      struct pool_pagelist *pq)
    495 {
    496 
    497 	KASSERT(mutex_owned(&pp->pr_lock));
    498 
    499 	/*
    500 	 * If the page was idle, decrement the idle page count.
    501 	 */
    502 	if (ph->ph_nmissing == 0) {
    503 		KASSERT(pp->pr_nidle != 0);
    504 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    505 		    "nitems=%u < itemsperpage=%u",
    506 		    pp->pr_nitems, pp->pr_itemsperpage);
    507 		pp->pr_nidle--;
    508 	}
    509 
    510 	pp->pr_nitems -= pp->pr_itemsperpage;
    511 
    512 	/*
    513 	 * Unlink the page from the pool and queue it for release.
    514 	 */
    515 	LIST_REMOVE(ph, ph_pagelist);
    516 	if (pp->pr_roflags & PR_PHINPAGE) {
    517 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    518 			panic("%s: [%s] ph %p poolid %u != %u",
    519 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    520 			    pp->pr_poolid);
    521 		}
    522 	} else {
    523 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    524 	}
    525 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    526 
    527 	pp->pr_npages--;
    528 	pp->pr_npagefree++;
    529 
    530 	pool_update_curpage(pp);
    531 }
    532 
    533 /*
    534  * Initialize all the pools listed in the "pools" link set.
    535  */
    536 void
    537 pool_subsystem_init(void)
    538 {
    539 	size_t size;
    540 	int idx;
    541 
    542 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    543 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    544 	cv_init(&pool_busy, "poolbusy");
    545 
    546 	/*
    547 	 * Initialize private page header pool and cache magazine pool if we
    548 	 * haven't done so yet.
    549 	 */
    550 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    551 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    552 		int nelem;
    553 		size_t sz;
    554 
    555 		nelem = PHPOOL_FREELIST_NELEM(idx);
    556 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    557 		    "phpool-%d", nelem);
    558 		sz = sizeof(struct pool_item_header);
    559 		if (nelem) {
    560 			sz = offsetof(struct pool_item_header,
    561 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    562 		}
    563 		pool_init(&phpool[idx], sz, 0, 0, 0,
    564 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    565 	}
    566 
    567 	size = sizeof(pcg_t) +
    568 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    569 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    570 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    571 
    572 	size = sizeof(pcg_t) +
    573 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    574 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    575 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    576 
    577 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    578 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    579 
    580 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    581 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    582 }
    583 
    584 static inline bool
    585 pool_init_is_phinpage(const struct pool *pp)
    586 {
    587 	size_t pagesize;
    588 
    589 	if (pp->pr_roflags & PR_PHINPAGE) {
    590 		return true;
    591 	}
    592 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    593 		return false;
    594 	}
    595 
    596 	pagesize = pp->pr_alloc->pa_pagesz;
    597 
    598 	/*
    599 	 * Threshold: the item size is below 1/16 of a page size, and below
    600 	 * 8 times the page header size. The latter ensures we go off-page
    601 	 * if the page header would make us waste a rather big item.
    602 	 */
    603 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    604 		return true;
    605 	}
    606 
    607 	/* Put the header into the page if it doesn't waste any items. */
    608 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    609 		return true;
    610 	}
    611 
    612 	return false;
    613 }
    614 
    615 static inline bool
    616 pool_init_is_usebmap(const struct pool *pp)
    617 {
    618 	size_t bmapsize;
    619 
    620 	if (pp->pr_roflags & PR_NOTOUCH) {
    621 		return true;
    622 	}
    623 
    624 	/*
    625 	 * If we're on-page, and the page header can already contain a bitmap
    626 	 * big enough to cover all the items of the page, go with a bitmap.
    627 	 */
    628 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    629 		return false;
    630 	}
    631 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    632 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    633 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    634 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    635 		return true;
    636 	}
    637 
    638 	return false;
    639 }
    640 
    641 /*
    642  * Initialize the given pool resource structure.
    643  *
    644  * We export this routine to allow other kernel parts to declare
    645  * static pools that must be initialized before kmem(9) is available.
    646  */
    647 void
    648 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    649     const char *wchan, struct pool_allocator *palloc, int ipl)
    650 {
    651 	struct pool *pp1;
    652 	size_t prsize;
    653 	int itemspace, slack;
    654 
    655 	/* XXX ioff will be removed. */
    656 	KASSERT(ioff == 0);
    657 
    658 #ifdef DEBUG
    659 	if (__predict_true(!cold))
    660 		mutex_enter(&pool_head_lock);
    661 	/*
    662 	 * Check that the pool hasn't already been initialised and
    663 	 * added to the list of all pools.
    664 	 */
    665 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    666 		if (pp == pp1)
    667 			panic("%s: [%s] already initialised", __func__,
    668 			    wchan);
    669 	}
    670 	if (__predict_true(!cold))
    671 		mutex_exit(&pool_head_lock);
    672 #endif
    673 
    674 	if (palloc == NULL)
    675 		palloc = &pool_allocator_kmem;
    676 
    677 	if (!cold)
    678 		mutex_enter(&pool_allocator_lock);
    679 	if (palloc->pa_refcnt++ == 0) {
    680 		if (palloc->pa_pagesz == 0)
    681 			palloc->pa_pagesz = PAGE_SIZE;
    682 
    683 		TAILQ_INIT(&palloc->pa_list);
    684 
    685 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    686 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    687 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    688 	}
    689 	if (!cold)
    690 		mutex_exit(&pool_allocator_lock);
    691 
    692 	if (align == 0)
    693 		align = ALIGN(1);
    694 
    695 	prsize = size;
    696 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    697 		prsize = sizeof(struct pool_item);
    698 
    699 	prsize = roundup(prsize, align);
    700 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    701 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    702 	    __func__, wchan, prsize, palloc->pa_pagesz);
    703 
    704 	/*
    705 	 * Initialize the pool structure.
    706 	 */
    707 	LIST_INIT(&pp->pr_emptypages);
    708 	LIST_INIT(&pp->pr_fullpages);
    709 	LIST_INIT(&pp->pr_partpages);
    710 	pp->pr_cache = NULL;
    711 	pp->pr_curpage = NULL;
    712 	pp->pr_npages = 0;
    713 	pp->pr_minitems = 0;
    714 	pp->pr_minpages = 0;
    715 	pp->pr_maxpages = UINT_MAX;
    716 	pp->pr_roflags = flags;
    717 	pp->pr_flags = 0;
    718 	pp->pr_size = prsize;
    719 	pp->pr_reqsize = size;
    720 	pp->pr_align = align;
    721 	pp->pr_wchan = wchan;
    722 	pp->pr_alloc = palloc;
    723 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    724 	pp->pr_nitems = 0;
    725 	pp->pr_nout = 0;
    726 	pp->pr_hardlimit = UINT_MAX;
    727 	pp->pr_hardlimit_warning = NULL;
    728 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    729 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    730 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    731 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    732 	pp->pr_drain_hook = NULL;
    733 	pp->pr_drain_hook_arg = NULL;
    734 	pp->pr_freecheck = NULL;
    735 	pool_redzone_init(pp, size);
    736 
    737 	/*
    738 	 * Decide whether to put the page header off-page to avoid wasting too
    739 	 * large a part of the page or too big an item. Off-page page headers
    740 	 * go on a hash table, so we can match a returned item with its header
    741 	 * based on the page address.
    742 	 */
    743 	if (pool_init_is_phinpage(pp)) {
    744 		/* Use the beginning of the page for the page header */
    745 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    746 		pp->pr_itemoffset = roundup(PHSIZE, align);
    747 		pp->pr_roflags |= PR_PHINPAGE;
    748 	} else {
    749 		/* The page header will be taken from our page header pool */
    750 		itemspace = palloc->pa_pagesz;
    751 		pp->pr_itemoffset = 0;
    752 		SPLAY_INIT(&pp->pr_phtree);
    753 	}
    754 
    755 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    756 	KASSERT(pp->pr_itemsperpage != 0);
    757 
    758 	/*
    759 	 * Decide whether to use a bitmap or a linked list to manage freed
    760 	 * items.
    761 	 */
    762 	if (pool_init_is_usebmap(pp)) {
    763 		pp->pr_roflags |= PR_USEBMAP;
    764 	}
    765 
    766 	/*
    767 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    768 	 * allocate page headers, whose size varies depending on the bitmap. If
    769 	 * we're just off-page, take the first pool, no extra size. If we're
    770 	 * on-page, nothing to do.
    771 	 */
    772 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    773 		int idx;
    774 
    775 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    776 		    idx++) {
    777 			/* nothing */
    778 		}
    779 		if (idx >= PHPOOL_MAX) {
    780 			/*
    781 			 * if you see this panic, consider to tweak
    782 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    783 			 */
    784 			panic("%s: [%s] too large itemsperpage(%d) for "
    785 			    "PR_USEBMAP", __func__,
    786 			    pp->pr_wchan, pp->pr_itemsperpage);
    787 		}
    788 		pp->pr_phpool = &phpool[idx];
    789 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    790 		pp->pr_phpool = &phpool[0];
    791 	} else {
    792 		pp->pr_phpool = NULL;
    793 	}
    794 
    795 	/*
    796 	 * Use the slack between the chunks and the page header
    797 	 * for "cache coloring".
    798 	 */
    799 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    800 	pp->pr_maxcolor = rounddown(slack, align);
    801 	pp->pr_curcolor = 0;
    802 
    803 	pp->pr_nget = 0;
    804 	pp->pr_nfail = 0;
    805 	pp->pr_nput = 0;
    806 	pp->pr_npagealloc = 0;
    807 	pp->pr_npagefree = 0;
    808 	pp->pr_hiwat = 0;
    809 	pp->pr_nidle = 0;
    810 	pp->pr_refcnt = 0;
    811 
    812 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    813 	cv_init(&pp->pr_cv, wchan);
    814 	pp->pr_ipl = ipl;
    815 
    816 	/* Insert into the list of all pools. */
    817 	if (!cold)
    818 		mutex_enter(&pool_head_lock);
    819 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    820 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    821 			break;
    822 	}
    823 	if (pp1 == NULL)
    824 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    825 	else
    826 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    827 	if (!cold)
    828 		mutex_exit(&pool_head_lock);
    829 
    830 	/* Insert this into the list of pools using this allocator. */
    831 	if (!cold)
    832 		mutex_enter(&palloc->pa_lock);
    833 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    834 	if (!cold)
    835 		mutex_exit(&palloc->pa_lock);
    836 }
    837 
    838 /*
    839  * De-commision a pool resource.
    840  */
    841 void
    842 pool_destroy(struct pool *pp)
    843 {
    844 	struct pool_pagelist pq;
    845 	struct pool_item_header *ph;
    846 
    847 	/* Remove from global pool list */
    848 	mutex_enter(&pool_head_lock);
    849 	while (pp->pr_refcnt != 0)
    850 		cv_wait(&pool_busy, &pool_head_lock);
    851 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    852 	if (drainpp == pp)
    853 		drainpp = NULL;
    854 	mutex_exit(&pool_head_lock);
    855 
    856 	/* Remove this pool from its allocator's list of pools. */
    857 	mutex_enter(&pp->pr_alloc->pa_lock);
    858 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    859 	mutex_exit(&pp->pr_alloc->pa_lock);
    860 
    861 	mutex_enter(&pool_allocator_lock);
    862 	if (--pp->pr_alloc->pa_refcnt == 0)
    863 		mutex_destroy(&pp->pr_alloc->pa_lock);
    864 	mutex_exit(&pool_allocator_lock);
    865 
    866 	mutex_enter(&pp->pr_lock);
    867 
    868 	KASSERT(pp->pr_cache == NULL);
    869 	KASSERTMSG((pp->pr_nout == 0),
    870 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    871 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    872 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    873 
    874 	/* Remove all pages */
    875 	LIST_INIT(&pq);
    876 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    877 		pr_rmpage(pp, ph, &pq);
    878 
    879 	mutex_exit(&pp->pr_lock);
    880 
    881 	pr_pagelist_free(pp, &pq);
    882 	cv_destroy(&pp->pr_cv);
    883 	mutex_destroy(&pp->pr_lock);
    884 }
    885 
    886 void
    887 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    888 {
    889 
    890 	/* XXX no locking -- must be used just after pool_init() */
    891 	KASSERTMSG((pp->pr_drain_hook == NULL),
    892 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    893 	pp->pr_drain_hook = fn;
    894 	pp->pr_drain_hook_arg = arg;
    895 }
    896 
    897 static struct pool_item_header *
    898 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    899 {
    900 	struct pool_item_header *ph;
    901 
    902 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    903 		ph = storage;
    904 	else
    905 		ph = pool_get(pp->pr_phpool, flags);
    906 
    907 	return ph;
    908 }
    909 
    910 /*
    911  * Grab an item from the pool.
    912  */
    913 void *
    914 pool_get(struct pool *pp, int flags)
    915 {
    916 	struct pool_item_header *ph;
    917 	void *v;
    918 
    919 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    920 	KASSERTMSG((pp->pr_itemsperpage != 0),
    921 	    "%s: [%s] pr_itemsperpage is zero, "
    922 	    "pool not initialized?", __func__, pp->pr_wchan);
    923 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    924 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    925 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    926 	    __func__, pp->pr_wchan);
    927 	if (flags & PR_WAITOK) {
    928 		ASSERT_SLEEPABLE();
    929 	}
    930 
    931 	mutex_enter(&pp->pr_lock);
    932  startover:
    933 	/*
    934 	 * Check to see if we've reached the hard limit.  If we have,
    935 	 * and we can wait, then wait until an item has been returned to
    936 	 * the pool.
    937 	 */
    938 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    939 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    940 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    941 		if (pp->pr_drain_hook != NULL) {
    942 			/*
    943 			 * Since the drain hook is going to free things
    944 			 * back to the pool, unlock, call the hook, re-lock,
    945 			 * and check the hardlimit condition again.
    946 			 */
    947 			mutex_exit(&pp->pr_lock);
    948 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    949 			mutex_enter(&pp->pr_lock);
    950 			if (pp->pr_nout < pp->pr_hardlimit)
    951 				goto startover;
    952 		}
    953 
    954 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    955 			/*
    956 			 * XXX: A warning isn't logged in this case.  Should
    957 			 * it be?
    958 			 */
    959 			pp->pr_flags |= PR_WANTED;
    960 			do {
    961 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    962 			} while (pp->pr_flags & PR_WANTED);
    963 			goto startover;
    964 		}
    965 
    966 		/*
    967 		 * Log a message that the hard limit has been hit.
    968 		 */
    969 		if (pp->pr_hardlimit_warning != NULL &&
    970 		    ratecheck(&pp->pr_hardlimit_warning_last,
    971 			      &pp->pr_hardlimit_ratecap))
    972 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    973 
    974 		pp->pr_nfail++;
    975 
    976 		mutex_exit(&pp->pr_lock);
    977 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    978 		return NULL;
    979 	}
    980 
    981 	/*
    982 	 * The convention we use is that if `curpage' is not NULL, then
    983 	 * it points at a non-empty bucket. In particular, `curpage'
    984 	 * never points at a page header which has PR_PHINPAGE set and
    985 	 * has no items in its bucket.
    986 	 */
    987 	if ((ph = pp->pr_curpage) == NULL) {
    988 		int error;
    989 
    990 		KASSERTMSG((pp->pr_nitems == 0),
    991 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    992 		    __func__, pp->pr_wchan, pp->pr_nitems);
    993 
    994 		/*
    995 		 * Call the back-end page allocator for more memory.
    996 		 * Release the pool lock, as the back-end page allocator
    997 		 * may block.
    998 		 */
    999 		error = pool_grow(pp, flags);
   1000 		if (error != 0) {
   1001 			/*
   1002 			 * pool_grow aborts when another thread
   1003 			 * is allocating a new page. Retry if it
   1004 			 * waited for it.
   1005 			 */
   1006 			if (error == ERESTART)
   1007 				goto startover;
   1008 
   1009 			/*
   1010 			 * We were unable to allocate a page or item
   1011 			 * header, but we released the lock during
   1012 			 * allocation, so perhaps items were freed
   1013 			 * back to the pool.  Check for this case.
   1014 			 */
   1015 			if (pp->pr_curpage != NULL)
   1016 				goto startover;
   1017 
   1018 			pp->pr_nfail++;
   1019 			mutex_exit(&pp->pr_lock);
   1020 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1021 			return NULL;
   1022 		}
   1023 
   1024 		/* Start the allocation process over. */
   1025 		goto startover;
   1026 	}
   1027 	if (pp->pr_roflags & PR_USEBMAP) {
   1028 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1029 		    "%s: %s: page empty", __func__, pp->pr_wchan);
   1030 		v = pr_item_bitmap_get(pp, ph);
   1031 	} else {
   1032 		v = pr_item_linkedlist_get(pp, ph);
   1033 	}
   1034 	pp->pr_nitems--;
   1035 	pp->pr_nout++;
   1036 	if (ph->ph_nmissing == 0) {
   1037 		KASSERT(pp->pr_nidle > 0);
   1038 		pp->pr_nidle--;
   1039 
   1040 		/*
   1041 		 * This page was previously empty.  Move it to the list of
   1042 		 * partially-full pages.  This page is already curpage.
   1043 		 */
   1044 		LIST_REMOVE(ph, ph_pagelist);
   1045 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1046 	}
   1047 	ph->ph_nmissing++;
   1048 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1049 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1050 			LIST_EMPTY(&ph->ph_itemlist)),
   1051 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1052 			pp->pr_wchan, ph->ph_nmissing);
   1053 		/*
   1054 		 * This page is now full.  Move it to the full list
   1055 		 * and select a new current page.
   1056 		 */
   1057 		LIST_REMOVE(ph, ph_pagelist);
   1058 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1059 		pool_update_curpage(pp);
   1060 	}
   1061 
   1062 	pp->pr_nget++;
   1063 
   1064 	/*
   1065 	 * If we have a low water mark and we are now below that low
   1066 	 * water mark, add more items to the pool.
   1067 	 */
   1068 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1069 		/*
   1070 		 * XXX: Should we log a warning?  Should we set up a timeout
   1071 		 * to try again in a second or so?  The latter could break
   1072 		 * a caller's assumptions about interrupt protection, etc.
   1073 		 */
   1074 	}
   1075 
   1076 	mutex_exit(&pp->pr_lock);
   1077 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1078 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1079 	pool_redzone_fill(pp, v);
   1080 	if (flags & PR_ZERO)
   1081 		memset(v, 0, pp->pr_reqsize);
   1082 	else
   1083 		pool_kleak_fill(pp, v);
   1084 	return v;
   1085 }
   1086 
   1087 /*
   1088  * Internal version of pool_put().  Pool is already locked/entered.
   1089  */
   1090 static void
   1091 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1092 {
   1093 	struct pool_item_header *ph;
   1094 
   1095 	KASSERT(mutex_owned(&pp->pr_lock));
   1096 	pool_redzone_check(pp, v);
   1097 	FREECHECK_IN(&pp->pr_freecheck, v);
   1098 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1099 
   1100 	KASSERTMSG((pp->pr_nout > 0),
   1101 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1102 
   1103 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1104 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1105 	}
   1106 
   1107 	/*
   1108 	 * Return to item list.
   1109 	 */
   1110 	if (pp->pr_roflags & PR_USEBMAP) {
   1111 		pr_item_bitmap_put(pp, ph, v);
   1112 	} else {
   1113 		pr_item_linkedlist_put(pp, ph, v);
   1114 	}
   1115 	KDASSERT(ph->ph_nmissing != 0);
   1116 	ph->ph_nmissing--;
   1117 	pp->pr_nput++;
   1118 	pp->pr_nitems++;
   1119 	pp->pr_nout--;
   1120 
   1121 	/* Cancel "pool empty" condition if it exists */
   1122 	if (pp->pr_curpage == NULL)
   1123 		pp->pr_curpage = ph;
   1124 
   1125 	if (pp->pr_flags & PR_WANTED) {
   1126 		pp->pr_flags &= ~PR_WANTED;
   1127 		cv_broadcast(&pp->pr_cv);
   1128 	}
   1129 
   1130 	/*
   1131 	 * If this page is now empty, do one of two things:
   1132 	 *
   1133 	 *	(1) If we have more pages than the page high water mark,
   1134 	 *	    free the page back to the system.  ONLY CONSIDER
   1135 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1136 	 *	    CLAIM.
   1137 	 *
   1138 	 *	(2) Otherwise, move the page to the empty page list.
   1139 	 *
   1140 	 * Either way, select a new current page (so we use a partially-full
   1141 	 * page if one is available).
   1142 	 */
   1143 	if (ph->ph_nmissing == 0) {
   1144 		pp->pr_nidle++;
   1145 		if (pp->pr_npages > pp->pr_minpages &&
   1146 		    pp->pr_npages > pp->pr_maxpages) {
   1147 			pr_rmpage(pp, ph, pq);
   1148 		} else {
   1149 			LIST_REMOVE(ph, ph_pagelist);
   1150 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1151 
   1152 			/*
   1153 			 * Update the timestamp on the page.  A page must
   1154 			 * be idle for some period of time before it can
   1155 			 * be reclaimed by the pagedaemon.  This minimizes
   1156 			 * ping-pong'ing for memory.
   1157 			 *
   1158 			 * note for 64-bit time_t: truncating to 32-bit is not
   1159 			 * a problem for our usage.
   1160 			 */
   1161 			ph->ph_time = time_uptime;
   1162 		}
   1163 		pool_update_curpage(pp);
   1164 	}
   1165 
   1166 	/*
   1167 	 * If the page was previously completely full, move it to the
   1168 	 * partially-full list and make it the current page.  The next
   1169 	 * allocation will get the item from this page, instead of
   1170 	 * further fragmenting the pool.
   1171 	 */
   1172 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1173 		LIST_REMOVE(ph, ph_pagelist);
   1174 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1175 		pp->pr_curpage = ph;
   1176 	}
   1177 }
   1178 
   1179 void
   1180 pool_put(struct pool *pp, void *v)
   1181 {
   1182 	struct pool_pagelist pq;
   1183 
   1184 	LIST_INIT(&pq);
   1185 
   1186 	mutex_enter(&pp->pr_lock);
   1187 	pool_do_put(pp, v, &pq);
   1188 	mutex_exit(&pp->pr_lock);
   1189 
   1190 	pr_pagelist_free(pp, &pq);
   1191 }
   1192 
   1193 /*
   1194  * pool_grow: grow a pool by a page.
   1195  *
   1196  * => called with pool locked.
   1197  * => unlock and relock the pool.
   1198  * => return with pool locked.
   1199  */
   1200 
   1201 static int
   1202 pool_grow(struct pool *pp, int flags)
   1203 {
   1204 	struct pool_item_header *ph;
   1205 	char *storage;
   1206 
   1207 	/*
   1208 	 * If there's a pool_grow in progress, wait for it to complete
   1209 	 * and try again from the top.
   1210 	 */
   1211 	if (pp->pr_flags & PR_GROWING) {
   1212 		if (flags & PR_WAITOK) {
   1213 			do {
   1214 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1215 			} while (pp->pr_flags & PR_GROWING);
   1216 			return ERESTART;
   1217 		} else {
   1218 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1219 				/*
   1220 				 * This needs an unlock/relock dance so
   1221 				 * that the other caller has a chance to
   1222 				 * run and actually do the thing.  Note
   1223 				 * that this is effectively a busy-wait.
   1224 				 */
   1225 				mutex_exit(&pp->pr_lock);
   1226 				mutex_enter(&pp->pr_lock);
   1227 				return ERESTART;
   1228 			}
   1229 			return EWOULDBLOCK;
   1230 		}
   1231 	}
   1232 	pp->pr_flags |= PR_GROWING;
   1233 	if (flags & PR_WAITOK)
   1234 		mutex_exit(&pp->pr_lock);
   1235 	else
   1236 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1237 
   1238 	storage = pool_allocator_alloc(pp, flags);
   1239 	if (__predict_false(storage == NULL))
   1240 		goto out;
   1241 
   1242 	ph = pool_alloc_item_header(pp, storage, flags);
   1243 	if (__predict_false(ph == NULL)) {
   1244 		pool_allocator_free(pp, storage);
   1245 		goto out;
   1246 	}
   1247 
   1248 	if (flags & PR_WAITOK)
   1249 		mutex_enter(&pp->pr_lock);
   1250 	pool_prime_page(pp, storage, ph);
   1251 	pp->pr_npagealloc++;
   1252 	KASSERT(pp->pr_flags & PR_GROWING);
   1253 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1254 	/*
   1255 	 * If anyone was waiting for pool_grow, notify them that we
   1256 	 * may have just done it.
   1257 	 */
   1258 	cv_broadcast(&pp->pr_cv);
   1259 	return 0;
   1260 out:
   1261 	if (flags & PR_WAITOK)
   1262 		mutex_enter(&pp->pr_lock);
   1263 	KASSERT(pp->pr_flags & PR_GROWING);
   1264 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1265 	return ENOMEM;
   1266 }
   1267 
   1268 /*
   1269  * Add N items to the pool.
   1270  */
   1271 int
   1272 pool_prime(struct pool *pp, int n)
   1273 {
   1274 	int newpages;
   1275 	int error = 0;
   1276 
   1277 	mutex_enter(&pp->pr_lock);
   1278 
   1279 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1280 
   1281 	while (newpages > 0) {
   1282 		error = pool_grow(pp, PR_NOWAIT);
   1283 		if (error) {
   1284 			if (error == ERESTART)
   1285 				continue;
   1286 			break;
   1287 		}
   1288 		pp->pr_minpages++;
   1289 		newpages--;
   1290 	}
   1291 
   1292 	if (pp->pr_minpages >= pp->pr_maxpages)
   1293 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1294 
   1295 	mutex_exit(&pp->pr_lock);
   1296 	return error;
   1297 }
   1298 
   1299 /*
   1300  * Add a page worth of items to the pool.
   1301  *
   1302  * Note, we must be called with the pool descriptor LOCKED.
   1303  */
   1304 static void
   1305 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1306 {
   1307 	const unsigned int align = pp->pr_align;
   1308 	struct pool_item *pi;
   1309 	void *cp = storage;
   1310 	int n;
   1311 
   1312 	KASSERT(mutex_owned(&pp->pr_lock));
   1313 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1314 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1315 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1316 
   1317 	/*
   1318 	 * Insert page header.
   1319 	 */
   1320 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1321 	LIST_INIT(&ph->ph_itemlist);
   1322 	ph->ph_page = storage;
   1323 	ph->ph_nmissing = 0;
   1324 	ph->ph_time = time_uptime;
   1325 	if (pp->pr_roflags & PR_PHINPAGE)
   1326 		ph->ph_poolid = pp->pr_poolid;
   1327 	else
   1328 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1329 
   1330 	pp->pr_nidle++;
   1331 
   1332 	/*
   1333 	 * The item space starts after the on-page header, if any.
   1334 	 */
   1335 	ph->ph_off = pp->pr_itemoffset;
   1336 
   1337 	/*
   1338 	 * Color this page.
   1339 	 */
   1340 	ph->ph_off += pp->pr_curcolor;
   1341 	cp = (char *)cp + ph->ph_off;
   1342 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1343 		pp->pr_curcolor = 0;
   1344 
   1345 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1346 
   1347 	/*
   1348 	 * Insert remaining chunks on the bucket list.
   1349 	 */
   1350 	n = pp->pr_itemsperpage;
   1351 	pp->pr_nitems += n;
   1352 
   1353 	if (pp->pr_roflags & PR_USEBMAP) {
   1354 		pr_item_bitmap_init(pp, ph);
   1355 	} else {
   1356 		while (n--) {
   1357 			pi = (struct pool_item *)cp;
   1358 
   1359 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1360 
   1361 			/* Insert on page list */
   1362 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1363 #ifdef POOL_CHECK_MAGIC
   1364 			pi->pi_magic = PI_MAGIC;
   1365 #endif
   1366 			cp = (char *)cp + pp->pr_size;
   1367 
   1368 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1369 		}
   1370 	}
   1371 
   1372 	/*
   1373 	 * If the pool was depleted, point at the new page.
   1374 	 */
   1375 	if (pp->pr_curpage == NULL)
   1376 		pp->pr_curpage = ph;
   1377 
   1378 	if (++pp->pr_npages > pp->pr_hiwat)
   1379 		pp->pr_hiwat = pp->pr_npages;
   1380 }
   1381 
   1382 /*
   1383  * Used by pool_get() when nitems drops below the low water mark.  This
   1384  * is used to catch up pr_nitems with the low water mark.
   1385  *
   1386  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1387  *
   1388  * Note 2, we must be called with the pool already locked, and we return
   1389  * with it locked.
   1390  */
   1391 static int
   1392 pool_catchup(struct pool *pp)
   1393 {
   1394 	int error = 0;
   1395 
   1396 	while (POOL_NEEDS_CATCHUP(pp)) {
   1397 		error = pool_grow(pp, PR_NOWAIT);
   1398 		if (error) {
   1399 			if (error == ERESTART)
   1400 				continue;
   1401 			break;
   1402 		}
   1403 	}
   1404 	return error;
   1405 }
   1406 
   1407 static void
   1408 pool_update_curpage(struct pool *pp)
   1409 {
   1410 
   1411 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1412 	if (pp->pr_curpage == NULL) {
   1413 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1414 	}
   1415 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1416 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1417 }
   1418 
   1419 void
   1420 pool_setlowat(struct pool *pp, int n)
   1421 {
   1422 
   1423 	mutex_enter(&pp->pr_lock);
   1424 
   1425 	pp->pr_minitems = n;
   1426 	pp->pr_minpages = (n == 0)
   1427 		? 0
   1428 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1429 
   1430 	/* Make sure we're caught up with the newly-set low water mark. */
   1431 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1432 		/*
   1433 		 * XXX: Should we log a warning?  Should we set up a timeout
   1434 		 * to try again in a second or so?  The latter could break
   1435 		 * a caller's assumptions about interrupt protection, etc.
   1436 		 */
   1437 	}
   1438 
   1439 	mutex_exit(&pp->pr_lock);
   1440 }
   1441 
   1442 void
   1443 pool_sethiwat(struct pool *pp, int n)
   1444 {
   1445 
   1446 	mutex_enter(&pp->pr_lock);
   1447 
   1448 	pp->pr_maxpages = (n == 0)
   1449 		? 0
   1450 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1451 
   1452 	mutex_exit(&pp->pr_lock);
   1453 }
   1454 
   1455 void
   1456 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1457 {
   1458 
   1459 	mutex_enter(&pp->pr_lock);
   1460 
   1461 	pp->pr_hardlimit = n;
   1462 	pp->pr_hardlimit_warning = warnmess;
   1463 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1464 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1465 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1466 
   1467 	/*
   1468 	 * In-line version of pool_sethiwat(), because we don't want to
   1469 	 * release the lock.
   1470 	 */
   1471 	pp->pr_maxpages = (n == 0)
   1472 		? 0
   1473 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1474 
   1475 	mutex_exit(&pp->pr_lock);
   1476 }
   1477 
   1478 /*
   1479  * Release all complete pages that have not been used recently.
   1480  *
   1481  * Must not be called from interrupt context.
   1482  */
   1483 int
   1484 pool_reclaim(struct pool *pp)
   1485 {
   1486 	struct pool_item_header *ph, *phnext;
   1487 	struct pool_pagelist pq;
   1488 	uint32_t curtime;
   1489 	bool klock;
   1490 	int rv;
   1491 
   1492 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1493 
   1494 	if (pp->pr_drain_hook != NULL) {
   1495 		/*
   1496 		 * The drain hook must be called with the pool unlocked.
   1497 		 */
   1498 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1499 	}
   1500 
   1501 	/*
   1502 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1503 	 * to block.
   1504 	 */
   1505 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1506 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1507 		KERNEL_LOCK(1, NULL);
   1508 		klock = true;
   1509 	} else
   1510 		klock = false;
   1511 
   1512 	/* Reclaim items from the pool's cache (if any). */
   1513 	if (pp->pr_cache != NULL)
   1514 		pool_cache_invalidate(pp->pr_cache);
   1515 
   1516 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1517 		if (klock) {
   1518 			KERNEL_UNLOCK_ONE(NULL);
   1519 		}
   1520 		return 0;
   1521 	}
   1522 
   1523 	LIST_INIT(&pq);
   1524 
   1525 	curtime = time_uptime;
   1526 
   1527 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1528 		phnext = LIST_NEXT(ph, ph_pagelist);
   1529 
   1530 		/* Check our minimum page claim */
   1531 		if (pp->pr_npages <= pp->pr_minpages)
   1532 			break;
   1533 
   1534 		KASSERT(ph->ph_nmissing == 0);
   1535 		if (curtime - ph->ph_time < pool_inactive_time)
   1536 			continue;
   1537 
   1538 		/*
   1539 		 * If freeing this page would put us below
   1540 		 * the low water mark, stop now.
   1541 		 */
   1542 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1543 		    pp->pr_minitems)
   1544 			break;
   1545 
   1546 		pr_rmpage(pp, ph, &pq);
   1547 	}
   1548 
   1549 	mutex_exit(&pp->pr_lock);
   1550 
   1551 	if (LIST_EMPTY(&pq))
   1552 		rv = 0;
   1553 	else {
   1554 		pr_pagelist_free(pp, &pq);
   1555 		rv = 1;
   1556 	}
   1557 
   1558 	if (klock) {
   1559 		KERNEL_UNLOCK_ONE(NULL);
   1560 	}
   1561 
   1562 	return rv;
   1563 }
   1564 
   1565 /*
   1566  * Drain pools, one at a time. The drained pool is returned within ppp.
   1567  *
   1568  * Note, must never be called from interrupt context.
   1569  */
   1570 bool
   1571 pool_drain(struct pool **ppp)
   1572 {
   1573 	bool reclaimed;
   1574 	struct pool *pp;
   1575 
   1576 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1577 
   1578 	pp = NULL;
   1579 
   1580 	/* Find next pool to drain, and add a reference. */
   1581 	mutex_enter(&pool_head_lock);
   1582 	do {
   1583 		if (drainpp == NULL) {
   1584 			drainpp = TAILQ_FIRST(&pool_head);
   1585 		}
   1586 		if (drainpp != NULL) {
   1587 			pp = drainpp;
   1588 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1589 		}
   1590 		/*
   1591 		 * Skip completely idle pools.  We depend on at least
   1592 		 * one pool in the system being active.
   1593 		 */
   1594 	} while (pp == NULL || pp->pr_npages == 0);
   1595 	pp->pr_refcnt++;
   1596 	mutex_exit(&pool_head_lock);
   1597 
   1598 	/* Drain the cache (if any) and pool.. */
   1599 	reclaimed = pool_reclaim(pp);
   1600 
   1601 	/* Finally, unlock the pool. */
   1602 	mutex_enter(&pool_head_lock);
   1603 	pp->pr_refcnt--;
   1604 	cv_broadcast(&pool_busy);
   1605 	mutex_exit(&pool_head_lock);
   1606 
   1607 	if (ppp != NULL)
   1608 		*ppp = pp;
   1609 
   1610 	return reclaimed;
   1611 }
   1612 
   1613 /*
   1614  * Calculate the total number of pages consumed by pools.
   1615  */
   1616 int
   1617 pool_totalpages(void)
   1618 {
   1619 	struct pool *pp;
   1620 	uint64_t total = 0;
   1621 
   1622 	mutex_enter(&pool_head_lock);
   1623 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1624 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1625 
   1626 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1627 			bytes -= (pp->pr_nout * pp->pr_size);
   1628 		total += bytes;
   1629 	}
   1630 	mutex_exit(&pool_head_lock);
   1631 
   1632 	return atop(total);
   1633 }
   1634 
   1635 /*
   1636  * Diagnostic helpers.
   1637  */
   1638 
   1639 void
   1640 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1641 {
   1642 	struct pool *pp;
   1643 
   1644 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1645 		pool_printit(pp, modif, pr);
   1646 	}
   1647 }
   1648 
   1649 void
   1650 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1651 {
   1652 
   1653 	if (pp == NULL) {
   1654 		(*pr)("Must specify a pool to print.\n");
   1655 		return;
   1656 	}
   1657 
   1658 	pool_print1(pp, modif, pr);
   1659 }
   1660 
   1661 static void
   1662 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1663     void (*pr)(const char *, ...))
   1664 {
   1665 	struct pool_item_header *ph;
   1666 
   1667 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1668 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1669 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1670 #ifdef POOL_CHECK_MAGIC
   1671 		struct pool_item *pi;
   1672 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1673 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1674 				if (pi->pi_magic != PI_MAGIC) {
   1675 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1676 					    pi, pi->pi_magic);
   1677 				}
   1678 			}
   1679 		}
   1680 #endif
   1681 	}
   1682 }
   1683 
   1684 static void
   1685 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1686 {
   1687 	struct pool_item_header *ph;
   1688 	pool_cache_t pc;
   1689 	pcg_t *pcg;
   1690 	pool_cache_cpu_t *cc;
   1691 	uint64_t cpuhit, cpumiss;
   1692 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1693 	char c;
   1694 
   1695 	while ((c = *modif++) != '\0') {
   1696 		if (c == 'l')
   1697 			print_log = 1;
   1698 		if (c == 'p')
   1699 			print_pagelist = 1;
   1700 		if (c == 'c')
   1701 			print_cache = 1;
   1702 	}
   1703 
   1704 	if ((pc = pp->pr_cache) != NULL) {
   1705 		(*pr)("POOL CACHE");
   1706 	} else {
   1707 		(*pr)("POOL");
   1708 	}
   1709 
   1710 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1711 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1712 	    pp->pr_roflags);
   1713 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1714 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1715 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1716 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1717 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1718 
   1719 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1720 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1721 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1722 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1723 
   1724 	if (print_pagelist == 0)
   1725 		goto skip_pagelist;
   1726 
   1727 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1728 		(*pr)("\n\tempty page list:\n");
   1729 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1730 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1731 		(*pr)("\n\tfull page list:\n");
   1732 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1733 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1734 		(*pr)("\n\tpartial-page list:\n");
   1735 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1736 
   1737 	if (pp->pr_curpage == NULL)
   1738 		(*pr)("\tno current page\n");
   1739 	else
   1740 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1741 
   1742  skip_pagelist:
   1743 	if (print_log == 0)
   1744 		goto skip_log;
   1745 
   1746 	(*pr)("\n");
   1747 
   1748  skip_log:
   1749 
   1750 #define PR_GROUPLIST(pcg)						\
   1751 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1752 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1753 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1754 		    POOL_PADDR_INVALID) {				\
   1755 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1756 			    pcg->pcg_objects[i].pcgo_va,		\
   1757 			    (unsigned long long)			\
   1758 			    pcg->pcg_objects[i].pcgo_pa);		\
   1759 		} else {						\
   1760 			(*pr)("\t\t\t%p\n",				\
   1761 			    pcg->pcg_objects[i].pcgo_va);		\
   1762 		}							\
   1763 	}
   1764 
   1765 	if (pc != NULL) {
   1766 		cpuhit = 0;
   1767 		cpumiss = 0;
   1768 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1769 			if ((cc = pc->pc_cpus[i]) == NULL)
   1770 				continue;
   1771 			cpuhit += cc->cc_hits;
   1772 			cpumiss += cc->cc_misses;
   1773 		}
   1774 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1775 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1776 		    pc->pc_hits, pc->pc_misses);
   1777 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1778 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1779 		    pc->pc_contended);
   1780 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1781 		    pc->pc_nempty, pc->pc_nfull);
   1782 		if (print_cache) {
   1783 			(*pr)("\tfull cache groups:\n");
   1784 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1785 			    pcg = pcg->pcg_next) {
   1786 				PR_GROUPLIST(pcg);
   1787 			}
   1788 			(*pr)("\tempty cache groups:\n");
   1789 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1790 			    pcg = pcg->pcg_next) {
   1791 				PR_GROUPLIST(pcg);
   1792 			}
   1793 		}
   1794 	}
   1795 #undef PR_GROUPLIST
   1796 }
   1797 
   1798 static int
   1799 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1800 {
   1801 	struct pool_item *pi;
   1802 	void *page;
   1803 	int n;
   1804 
   1805 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1806 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1807 		if (page != ph->ph_page &&
   1808 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1809 			if (label != NULL)
   1810 				printf("%s: ", label);
   1811 			printf("pool(%p:%s): page inconsistency: page %p;"
   1812 			       " at page head addr %p (p %p)\n", pp,
   1813 				pp->pr_wchan, ph->ph_page,
   1814 				ph, page);
   1815 			return 1;
   1816 		}
   1817 	}
   1818 
   1819 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1820 		return 0;
   1821 
   1822 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1823 	     pi != NULL;
   1824 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1825 
   1826 #ifdef POOL_CHECK_MAGIC
   1827 		if (pi->pi_magic != PI_MAGIC) {
   1828 			if (label != NULL)
   1829 				printf("%s: ", label);
   1830 			printf("pool(%s): free list modified: magic=%x;"
   1831 			       " page %p; item ordinal %d; addr %p\n",
   1832 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1833 				n, pi);
   1834 			panic("pool");
   1835 		}
   1836 #endif
   1837 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1838 			continue;
   1839 		}
   1840 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1841 		if (page == ph->ph_page)
   1842 			continue;
   1843 
   1844 		if (label != NULL)
   1845 			printf("%s: ", label);
   1846 		printf("pool(%p:%s): page inconsistency: page %p;"
   1847 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1848 			pp->pr_wchan, ph->ph_page,
   1849 			n, pi, page);
   1850 		return 1;
   1851 	}
   1852 	return 0;
   1853 }
   1854 
   1855 
   1856 int
   1857 pool_chk(struct pool *pp, const char *label)
   1858 {
   1859 	struct pool_item_header *ph;
   1860 	int r = 0;
   1861 
   1862 	mutex_enter(&pp->pr_lock);
   1863 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1864 		r = pool_chk_page(pp, label, ph);
   1865 		if (r) {
   1866 			goto out;
   1867 		}
   1868 	}
   1869 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1870 		r = pool_chk_page(pp, label, ph);
   1871 		if (r) {
   1872 			goto out;
   1873 		}
   1874 	}
   1875 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1876 		r = pool_chk_page(pp, label, ph);
   1877 		if (r) {
   1878 			goto out;
   1879 		}
   1880 	}
   1881 
   1882 out:
   1883 	mutex_exit(&pp->pr_lock);
   1884 	return r;
   1885 }
   1886 
   1887 /*
   1888  * pool_cache_init:
   1889  *
   1890  *	Initialize a pool cache.
   1891  */
   1892 pool_cache_t
   1893 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1894     const char *wchan, struct pool_allocator *palloc, int ipl,
   1895     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1896 {
   1897 	pool_cache_t pc;
   1898 
   1899 	pc = pool_get(&cache_pool, PR_WAITOK);
   1900 	if (pc == NULL)
   1901 		return NULL;
   1902 
   1903 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1904 	   palloc, ipl, ctor, dtor, arg);
   1905 
   1906 	return pc;
   1907 }
   1908 
   1909 /*
   1910  * pool_cache_bootstrap:
   1911  *
   1912  *	Kernel-private version of pool_cache_init().  The caller
   1913  *	provides initial storage.
   1914  */
   1915 void
   1916 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1917     u_int align_offset, u_int flags, const char *wchan,
   1918     struct pool_allocator *palloc, int ipl,
   1919     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1920     void *arg)
   1921 {
   1922 	CPU_INFO_ITERATOR cii;
   1923 	pool_cache_t pc1;
   1924 	struct cpu_info *ci;
   1925 	struct pool *pp;
   1926 
   1927 	pp = &pc->pc_pool;
   1928 	if (palloc == NULL && ipl == IPL_NONE) {
   1929 		if (size > PAGE_SIZE) {
   1930 			int bigidx = pool_bigidx(size);
   1931 
   1932 			palloc = &pool_allocator_big[bigidx];
   1933 		} else
   1934 			palloc = &pool_allocator_nointr;
   1935 	}
   1936 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1937 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1938 
   1939 	if (ctor == NULL) {
   1940 		ctor = (int (*)(void *, void *, int))nullop;
   1941 	}
   1942 	if (dtor == NULL) {
   1943 		dtor = (void (*)(void *, void *))nullop;
   1944 	}
   1945 
   1946 	pc->pc_emptygroups = NULL;
   1947 	pc->pc_fullgroups = NULL;
   1948 	pc->pc_partgroups = NULL;
   1949 	pc->pc_ctor = ctor;
   1950 	pc->pc_dtor = dtor;
   1951 	pc->pc_arg  = arg;
   1952 	pc->pc_hits  = 0;
   1953 	pc->pc_misses = 0;
   1954 	pc->pc_nempty = 0;
   1955 	pc->pc_npart = 0;
   1956 	pc->pc_nfull = 0;
   1957 	pc->pc_contended = 0;
   1958 	pc->pc_refcnt = 0;
   1959 	pc->pc_freecheck = NULL;
   1960 
   1961 	if ((flags & PR_LARGECACHE) != 0) {
   1962 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1963 		pc->pc_pcgpool = &pcg_large_pool;
   1964 	} else {
   1965 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1966 		pc->pc_pcgpool = &pcg_normal_pool;
   1967 	}
   1968 
   1969 	/* Allocate per-CPU caches. */
   1970 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1971 	pc->pc_ncpu = 0;
   1972 	if (ncpu < 2) {
   1973 		/* XXX For sparc: boot CPU is not attached yet. */
   1974 		pool_cache_cpu_init1(curcpu(), pc);
   1975 	} else {
   1976 		for (CPU_INFO_FOREACH(cii, ci)) {
   1977 			pool_cache_cpu_init1(ci, pc);
   1978 		}
   1979 	}
   1980 
   1981 	/* Add to list of all pools. */
   1982 	if (__predict_true(!cold))
   1983 		mutex_enter(&pool_head_lock);
   1984 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1985 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1986 			break;
   1987 	}
   1988 	if (pc1 == NULL)
   1989 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1990 	else
   1991 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1992 	if (__predict_true(!cold))
   1993 		mutex_exit(&pool_head_lock);
   1994 
   1995 	membar_sync();
   1996 	pp->pr_cache = pc;
   1997 }
   1998 
   1999 /*
   2000  * pool_cache_destroy:
   2001  *
   2002  *	Destroy a pool cache.
   2003  */
   2004 void
   2005 pool_cache_destroy(pool_cache_t pc)
   2006 {
   2007 
   2008 	pool_cache_bootstrap_destroy(pc);
   2009 	pool_put(&cache_pool, pc);
   2010 }
   2011 
   2012 /*
   2013  * pool_cache_bootstrap_destroy:
   2014  *
   2015  *	Destroy a pool cache.
   2016  */
   2017 void
   2018 pool_cache_bootstrap_destroy(pool_cache_t pc)
   2019 {
   2020 	struct pool *pp = &pc->pc_pool;
   2021 	u_int i;
   2022 
   2023 	/* Remove it from the global list. */
   2024 	mutex_enter(&pool_head_lock);
   2025 	while (pc->pc_refcnt != 0)
   2026 		cv_wait(&pool_busy, &pool_head_lock);
   2027 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2028 	mutex_exit(&pool_head_lock);
   2029 
   2030 	/* First, invalidate the entire cache. */
   2031 	pool_cache_invalidate(pc);
   2032 
   2033 	/* Disassociate it from the pool. */
   2034 	mutex_enter(&pp->pr_lock);
   2035 	pp->pr_cache = NULL;
   2036 	mutex_exit(&pp->pr_lock);
   2037 
   2038 	/* Destroy per-CPU data */
   2039 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2040 		pool_cache_invalidate_cpu(pc, i);
   2041 
   2042 	/* Finally, destroy it. */
   2043 	mutex_destroy(&pc->pc_lock);
   2044 	pool_destroy(pp);
   2045 }
   2046 
   2047 /*
   2048  * pool_cache_cpu_init1:
   2049  *
   2050  *	Called for each pool_cache whenever a new CPU is attached.
   2051  */
   2052 static void
   2053 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2054 {
   2055 	pool_cache_cpu_t *cc;
   2056 	int index;
   2057 
   2058 	index = ci->ci_index;
   2059 
   2060 	KASSERT(index < __arraycount(pc->pc_cpus));
   2061 
   2062 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2063 		KASSERT(cc->cc_cpuindex == index);
   2064 		return;
   2065 	}
   2066 
   2067 	/*
   2068 	 * The first CPU is 'free'.  This needs to be the case for
   2069 	 * bootstrap - we may not be able to allocate yet.
   2070 	 */
   2071 	if (pc->pc_ncpu == 0) {
   2072 		cc = &pc->pc_cpu0;
   2073 		pc->pc_ncpu = 1;
   2074 	} else {
   2075 		mutex_enter(&pc->pc_lock);
   2076 		pc->pc_ncpu++;
   2077 		mutex_exit(&pc->pc_lock);
   2078 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2079 	}
   2080 
   2081 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2082 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2083 	cc->cc_cache = pc;
   2084 	cc->cc_cpuindex = index;
   2085 	cc->cc_hits = 0;
   2086 	cc->cc_misses = 0;
   2087 	cc->cc_current = __UNCONST(&pcg_dummy);
   2088 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2089 
   2090 	pc->pc_cpus[index] = cc;
   2091 }
   2092 
   2093 /*
   2094  * pool_cache_cpu_init:
   2095  *
   2096  *	Called whenever a new CPU is attached.
   2097  */
   2098 void
   2099 pool_cache_cpu_init(struct cpu_info *ci)
   2100 {
   2101 	pool_cache_t pc;
   2102 
   2103 	mutex_enter(&pool_head_lock);
   2104 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2105 		pc->pc_refcnt++;
   2106 		mutex_exit(&pool_head_lock);
   2107 
   2108 		pool_cache_cpu_init1(ci, pc);
   2109 
   2110 		mutex_enter(&pool_head_lock);
   2111 		pc->pc_refcnt--;
   2112 		cv_broadcast(&pool_busy);
   2113 	}
   2114 	mutex_exit(&pool_head_lock);
   2115 }
   2116 
   2117 /*
   2118  * pool_cache_reclaim:
   2119  *
   2120  *	Reclaim memory from a pool cache.
   2121  */
   2122 bool
   2123 pool_cache_reclaim(pool_cache_t pc)
   2124 {
   2125 
   2126 	return pool_reclaim(&pc->pc_pool);
   2127 }
   2128 
   2129 static void
   2130 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2131 {
   2132 	if (pc->pc_pool.pr_redzone) {
   2133 		/*
   2134 		 * The object is marked as invalid. Temporarily mark it as
   2135 		 * valid for the destructor. pool_put below will re-mark it
   2136 		 * as invalid.
   2137 		 */
   2138 		kasan_mark(object, pc->pc_pool.pr_reqsize,
   2139 		    pc->pc_pool.pr_reqsize_with_redzone);
   2140 	}
   2141 
   2142 	(*pc->pc_dtor)(pc->pc_arg, object);
   2143 	pool_put(&pc->pc_pool, object);
   2144 }
   2145 
   2146 /*
   2147  * pool_cache_destruct_object:
   2148  *
   2149  *	Force destruction of an object and its release back into
   2150  *	the pool.
   2151  */
   2152 void
   2153 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2154 {
   2155 
   2156 	FREECHECK_IN(&pc->pc_freecheck, object);
   2157 
   2158 	pool_cache_destruct_object1(pc, object);
   2159 }
   2160 
   2161 /*
   2162  * pool_cache_invalidate_groups:
   2163  *
   2164  *	Invalidate a chain of groups and destruct all objects.
   2165  */
   2166 static void
   2167 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2168 {
   2169 	void *object;
   2170 	pcg_t *next;
   2171 	int i;
   2172 
   2173 	for (; pcg != NULL; pcg = next) {
   2174 		next = pcg->pcg_next;
   2175 
   2176 		for (i = 0; i < pcg->pcg_avail; i++) {
   2177 			object = pcg->pcg_objects[i].pcgo_va;
   2178 			pool_cache_destruct_object1(pc, object);
   2179 		}
   2180 
   2181 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2182 			pool_put(&pcg_large_pool, pcg);
   2183 		} else {
   2184 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2185 			pool_put(&pcg_normal_pool, pcg);
   2186 		}
   2187 	}
   2188 }
   2189 
   2190 /*
   2191  * pool_cache_invalidate:
   2192  *
   2193  *	Invalidate a pool cache (destruct and release all of the
   2194  *	cached objects).  Does not reclaim objects from the pool.
   2195  *
   2196  *	Note: For pool caches that provide constructed objects, there
   2197  *	is an assumption that another level of synchronization is occurring
   2198  *	between the input to the constructor and the cache invalidation.
   2199  *
   2200  *	Invalidation is a costly process and should not be called from
   2201  *	interrupt context.
   2202  */
   2203 void
   2204 pool_cache_invalidate(pool_cache_t pc)
   2205 {
   2206 	uint64_t where;
   2207 	pcg_t *full, *empty, *part;
   2208 
   2209 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2210 
   2211 	if (ncpu < 2 || !mp_online) {
   2212 		/*
   2213 		 * We might be called early enough in the boot process
   2214 		 * for the CPU data structures to not be fully initialized.
   2215 		 * In this case, transfer the content of the local CPU's
   2216 		 * cache back into global cache as only this CPU is currently
   2217 		 * running.
   2218 		 */
   2219 		pool_cache_transfer(pc);
   2220 	} else {
   2221 		/*
   2222 		 * Signal all CPUs that they must transfer their local
   2223 		 * cache back to the global pool then wait for the xcall to
   2224 		 * complete.
   2225 		 */
   2226 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2227 		    pc, NULL);
   2228 		xc_wait(where);
   2229 	}
   2230 
   2231 	/* Empty pool caches, then invalidate objects */
   2232 	mutex_enter(&pc->pc_lock);
   2233 	full = pc->pc_fullgroups;
   2234 	empty = pc->pc_emptygroups;
   2235 	part = pc->pc_partgroups;
   2236 	pc->pc_fullgroups = NULL;
   2237 	pc->pc_emptygroups = NULL;
   2238 	pc->pc_partgroups = NULL;
   2239 	pc->pc_nfull = 0;
   2240 	pc->pc_nempty = 0;
   2241 	pc->pc_npart = 0;
   2242 	mutex_exit(&pc->pc_lock);
   2243 
   2244 	pool_cache_invalidate_groups(pc, full);
   2245 	pool_cache_invalidate_groups(pc, empty);
   2246 	pool_cache_invalidate_groups(pc, part);
   2247 }
   2248 
   2249 /*
   2250  * pool_cache_invalidate_cpu:
   2251  *
   2252  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2253  *	identified by its associated index.
   2254  *	It is caller's responsibility to ensure that no operation is
   2255  *	taking place on this pool cache while doing this invalidation.
   2256  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2257  *	pool cached objects from a CPU different from the one currently running
   2258  *	may result in an undefined behaviour.
   2259  */
   2260 static void
   2261 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2262 {
   2263 	pool_cache_cpu_t *cc;
   2264 	pcg_t *pcg;
   2265 
   2266 	if ((cc = pc->pc_cpus[index]) == NULL)
   2267 		return;
   2268 
   2269 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2270 		pcg->pcg_next = NULL;
   2271 		pool_cache_invalidate_groups(pc, pcg);
   2272 	}
   2273 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2274 		pcg->pcg_next = NULL;
   2275 		pool_cache_invalidate_groups(pc, pcg);
   2276 	}
   2277 	if (cc != &pc->pc_cpu0)
   2278 		pool_put(&cache_cpu_pool, cc);
   2279 
   2280 }
   2281 
   2282 void
   2283 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2284 {
   2285 
   2286 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2287 }
   2288 
   2289 void
   2290 pool_cache_setlowat(pool_cache_t pc, int n)
   2291 {
   2292 
   2293 	pool_setlowat(&pc->pc_pool, n);
   2294 }
   2295 
   2296 void
   2297 pool_cache_sethiwat(pool_cache_t pc, int n)
   2298 {
   2299 
   2300 	pool_sethiwat(&pc->pc_pool, n);
   2301 }
   2302 
   2303 void
   2304 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2305 {
   2306 
   2307 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2308 }
   2309 
   2310 static bool __noinline
   2311 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2312 		    paddr_t *pap, int flags)
   2313 {
   2314 	pcg_t *pcg, *cur;
   2315 	uint64_t ncsw;
   2316 	pool_cache_t pc;
   2317 	void *object;
   2318 
   2319 	KASSERT(cc->cc_current->pcg_avail == 0);
   2320 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2321 
   2322 	pc = cc->cc_cache;
   2323 	cc->cc_misses++;
   2324 
   2325 	/*
   2326 	 * Nothing was available locally.  Try and grab a group
   2327 	 * from the cache.
   2328 	 */
   2329 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2330 		ncsw = curlwp->l_ncsw;
   2331 		mutex_enter(&pc->pc_lock);
   2332 		pc->pc_contended++;
   2333 
   2334 		/*
   2335 		 * If we context switched while locking, then
   2336 		 * our view of the per-CPU data is invalid:
   2337 		 * retry.
   2338 		 */
   2339 		if (curlwp->l_ncsw != ncsw) {
   2340 			mutex_exit(&pc->pc_lock);
   2341 			return true;
   2342 		}
   2343 	}
   2344 
   2345 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2346 		/*
   2347 		 * If there's a full group, release our empty
   2348 		 * group back to the cache.  Install the full
   2349 		 * group as cc_current and return.
   2350 		 */
   2351 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2352 			KASSERT(cur->pcg_avail == 0);
   2353 			cur->pcg_next = pc->pc_emptygroups;
   2354 			pc->pc_emptygroups = cur;
   2355 			pc->pc_nempty++;
   2356 		}
   2357 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2358 		cc->cc_current = pcg;
   2359 		pc->pc_fullgroups = pcg->pcg_next;
   2360 		pc->pc_hits++;
   2361 		pc->pc_nfull--;
   2362 		mutex_exit(&pc->pc_lock);
   2363 		return true;
   2364 	}
   2365 
   2366 	/*
   2367 	 * Nothing available locally or in cache.  Take the slow
   2368 	 * path: fetch a new object from the pool and construct
   2369 	 * it.
   2370 	 */
   2371 	pc->pc_misses++;
   2372 	mutex_exit(&pc->pc_lock);
   2373 	splx(s);
   2374 
   2375 	object = pool_get(&pc->pc_pool, flags);
   2376 	*objectp = object;
   2377 	if (__predict_false(object == NULL)) {
   2378 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2379 		return false;
   2380 	}
   2381 
   2382 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2383 		pool_put(&pc->pc_pool, object);
   2384 		*objectp = NULL;
   2385 		return false;
   2386 	}
   2387 
   2388 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2389 
   2390 	if (pap != NULL) {
   2391 #ifdef POOL_VTOPHYS
   2392 		*pap = POOL_VTOPHYS(object);
   2393 #else
   2394 		*pap = POOL_PADDR_INVALID;
   2395 #endif
   2396 	}
   2397 
   2398 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2399 	pool_redzone_fill(&pc->pc_pool, object);
   2400 	pool_cache_kleak_fill(pc, object);
   2401 	return false;
   2402 }
   2403 
   2404 /*
   2405  * pool_cache_get{,_paddr}:
   2406  *
   2407  *	Get an object from a pool cache (optionally returning
   2408  *	the physical address of the object).
   2409  */
   2410 void *
   2411 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2412 {
   2413 	pool_cache_cpu_t *cc;
   2414 	pcg_t *pcg;
   2415 	void *object;
   2416 	int s;
   2417 
   2418 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2419 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2420 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2421 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2422 	    __func__, pc->pc_pool.pr_wchan);
   2423 
   2424 	if (flags & PR_WAITOK) {
   2425 		ASSERT_SLEEPABLE();
   2426 	}
   2427 
   2428 	/* Lock out interrupts and disable preemption. */
   2429 	s = splvm();
   2430 	while (/* CONSTCOND */ true) {
   2431 		/* Try and allocate an object from the current group. */
   2432 		cc = pc->pc_cpus[curcpu()->ci_index];
   2433 		KASSERT(cc->cc_cache == pc);
   2434 	 	pcg = cc->cc_current;
   2435 		if (__predict_true(pcg->pcg_avail > 0)) {
   2436 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2437 			if (__predict_false(pap != NULL))
   2438 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2439 #if defined(DIAGNOSTIC)
   2440 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2441 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2442 			KASSERT(object != NULL);
   2443 #endif
   2444 			cc->cc_hits++;
   2445 			splx(s);
   2446 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2447 			pool_redzone_fill(&pc->pc_pool, object);
   2448 			pool_cache_kleak_fill(pc, object);
   2449 			return object;
   2450 		}
   2451 
   2452 		/*
   2453 		 * That failed.  If the previous group isn't empty, swap
   2454 		 * it with the current group and allocate from there.
   2455 		 */
   2456 		pcg = cc->cc_previous;
   2457 		if (__predict_true(pcg->pcg_avail > 0)) {
   2458 			cc->cc_previous = cc->cc_current;
   2459 			cc->cc_current = pcg;
   2460 			continue;
   2461 		}
   2462 
   2463 		/*
   2464 		 * Can't allocate from either group: try the slow path.
   2465 		 * If get_slow() allocated an object for us, or if
   2466 		 * no more objects are available, it will return false.
   2467 		 * Otherwise, we need to retry.
   2468 		 */
   2469 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2470 			break;
   2471 	}
   2472 
   2473 	/*
   2474 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2475 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2476 	 * constructor fails.
   2477 	 */
   2478 	return object;
   2479 }
   2480 
   2481 static bool __noinline
   2482 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2483 {
   2484 	struct lwp *l = curlwp;
   2485 	pcg_t *pcg, *cur;
   2486 	uint64_t ncsw;
   2487 	pool_cache_t pc;
   2488 
   2489 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2490 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2491 
   2492 	pc = cc->cc_cache;
   2493 	pcg = NULL;
   2494 	cc->cc_misses++;
   2495 	ncsw = l->l_ncsw;
   2496 
   2497 	/*
   2498 	 * If there are no empty groups in the cache then allocate one
   2499 	 * while still unlocked.
   2500 	 */
   2501 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2502 		if (__predict_true(!pool_cache_disable)) {
   2503 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2504 		}
   2505 		/*
   2506 		 * If pool_get() blocked, then our view of
   2507 		 * the per-CPU data is invalid: retry.
   2508 		 */
   2509 		if (__predict_false(l->l_ncsw != ncsw)) {
   2510 			if (pcg != NULL) {
   2511 				pool_put(pc->pc_pcgpool, pcg);
   2512 			}
   2513 			return true;
   2514 		}
   2515 		if (__predict_true(pcg != NULL)) {
   2516 			pcg->pcg_avail = 0;
   2517 			pcg->pcg_size = pc->pc_pcgsize;
   2518 		}
   2519 	}
   2520 
   2521 	/* Lock the cache. */
   2522 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2523 		mutex_enter(&pc->pc_lock);
   2524 		pc->pc_contended++;
   2525 
   2526 		/*
   2527 		 * If we context switched while locking, then our view of
   2528 		 * the per-CPU data is invalid: retry.
   2529 		 */
   2530 		if (__predict_false(l->l_ncsw != ncsw)) {
   2531 			mutex_exit(&pc->pc_lock);
   2532 			if (pcg != NULL) {
   2533 				pool_put(pc->pc_pcgpool, pcg);
   2534 			}
   2535 			return true;
   2536 		}
   2537 	}
   2538 
   2539 	/* If there are no empty groups in the cache then allocate one. */
   2540 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2541 		pcg = pc->pc_emptygroups;
   2542 		pc->pc_emptygroups = pcg->pcg_next;
   2543 		pc->pc_nempty--;
   2544 	}
   2545 
   2546 	/*
   2547 	 * If there's a empty group, release our full group back
   2548 	 * to the cache.  Install the empty group to the local CPU
   2549 	 * and return.
   2550 	 */
   2551 	if (pcg != NULL) {
   2552 		KASSERT(pcg->pcg_avail == 0);
   2553 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2554 			cc->cc_previous = pcg;
   2555 		} else {
   2556 			cur = cc->cc_current;
   2557 			if (__predict_true(cur != &pcg_dummy)) {
   2558 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2559 				cur->pcg_next = pc->pc_fullgroups;
   2560 				pc->pc_fullgroups = cur;
   2561 				pc->pc_nfull++;
   2562 			}
   2563 			cc->cc_current = pcg;
   2564 		}
   2565 		pc->pc_hits++;
   2566 		mutex_exit(&pc->pc_lock);
   2567 		return true;
   2568 	}
   2569 
   2570 	/*
   2571 	 * Nothing available locally or in cache, and we didn't
   2572 	 * allocate an empty group.  Take the slow path and destroy
   2573 	 * the object here and now.
   2574 	 */
   2575 	pc->pc_misses++;
   2576 	mutex_exit(&pc->pc_lock);
   2577 	splx(s);
   2578 	pool_cache_destruct_object(pc, object);
   2579 
   2580 	return false;
   2581 }
   2582 
   2583 /*
   2584  * pool_cache_put{,_paddr}:
   2585  *
   2586  *	Put an object back to the pool cache (optionally caching the
   2587  *	physical address of the object).
   2588  */
   2589 void
   2590 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2591 {
   2592 	pool_cache_cpu_t *cc;
   2593 	pcg_t *pcg;
   2594 	int s;
   2595 
   2596 	KASSERT(object != NULL);
   2597 	pool_cache_redzone_check(pc, object);
   2598 	FREECHECK_IN(&pc->pc_freecheck, object);
   2599 
   2600 	/* Lock out interrupts and disable preemption. */
   2601 	s = splvm();
   2602 	while (/* CONSTCOND */ true) {
   2603 		/* If the current group isn't full, release it there. */
   2604 		cc = pc->pc_cpus[curcpu()->ci_index];
   2605 		KASSERT(cc->cc_cache == pc);
   2606 	 	pcg = cc->cc_current;
   2607 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2608 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2609 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2610 			pcg->pcg_avail++;
   2611 			cc->cc_hits++;
   2612 			splx(s);
   2613 			return;
   2614 		}
   2615 
   2616 		/*
   2617 		 * That failed.  If the previous group isn't full, swap
   2618 		 * it with the current group and try again.
   2619 		 */
   2620 		pcg = cc->cc_previous;
   2621 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2622 			cc->cc_previous = cc->cc_current;
   2623 			cc->cc_current = pcg;
   2624 			continue;
   2625 		}
   2626 
   2627 		/*
   2628 		 * Can't free to either group: try the slow path.
   2629 		 * If put_slow() releases the object for us, it
   2630 		 * will return false.  Otherwise we need to retry.
   2631 		 */
   2632 		if (!pool_cache_put_slow(cc, s, object))
   2633 			break;
   2634 	}
   2635 }
   2636 
   2637 /*
   2638  * pool_cache_transfer:
   2639  *
   2640  *	Transfer objects from the per-CPU cache to the global cache.
   2641  *	Run within a cross-call thread.
   2642  */
   2643 static void
   2644 pool_cache_transfer(pool_cache_t pc)
   2645 {
   2646 	pool_cache_cpu_t *cc;
   2647 	pcg_t *prev, *cur, **list;
   2648 	int s;
   2649 
   2650 	s = splvm();
   2651 	mutex_enter(&pc->pc_lock);
   2652 	cc = pc->pc_cpus[curcpu()->ci_index];
   2653 	cur = cc->cc_current;
   2654 	cc->cc_current = __UNCONST(&pcg_dummy);
   2655 	prev = cc->cc_previous;
   2656 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2657 	if (cur != &pcg_dummy) {
   2658 		if (cur->pcg_avail == cur->pcg_size) {
   2659 			list = &pc->pc_fullgroups;
   2660 			pc->pc_nfull++;
   2661 		} else if (cur->pcg_avail == 0) {
   2662 			list = &pc->pc_emptygroups;
   2663 			pc->pc_nempty++;
   2664 		} else {
   2665 			list = &pc->pc_partgroups;
   2666 			pc->pc_npart++;
   2667 		}
   2668 		cur->pcg_next = *list;
   2669 		*list = cur;
   2670 	}
   2671 	if (prev != &pcg_dummy) {
   2672 		if (prev->pcg_avail == prev->pcg_size) {
   2673 			list = &pc->pc_fullgroups;
   2674 			pc->pc_nfull++;
   2675 		} else if (prev->pcg_avail == 0) {
   2676 			list = &pc->pc_emptygroups;
   2677 			pc->pc_nempty++;
   2678 		} else {
   2679 			list = &pc->pc_partgroups;
   2680 			pc->pc_npart++;
   2681 		}
   2682 		prev->pcg_next = *list;
   2683 		*list = prev;
   2684 	}
   2685 	mutex_exit(&pc->pc_lock);
   2686 	splx(s);
   2687 }
   2688 
   2689 /*
   2690  * Pool backend allocators.
   2691  *
   2692  * Each pool has a backend allocator that handles allocation, deallocation,
   2693  * and any additional draining that might be needed.
   2694  *
   2695  * We provide two standard allocators:
   2696  *
   2697  *	pool_allocator_kmem - the default when no allocator is specified
   2698  *
   2699  *	pool_allocator_nointr - used for pools that will not be accessed
   2700  *	in interrupt context.
   2701  */
   2702 void	*pool_page_alloc(struct pool *, int);
   2703 void	pool_page_free(struct pool *, void *);
   2704 
   2705 struct pool_allocator pool_allocator_kmem = {
   2706 	.pa_alloc = pool_page_alloc,
   2707 	.pa_free = pool_page_free,
   2708 	.pa_pagesz = 0
   2709 };
   2710 
   2711 struct pool_allocator pool_allocator_nointr = {
   2712 	.pa_alloc = pool_page_alloc,
   2713 	.pa_free = pool_page_free,
   2714 	.pa_pagesz = 0
   2715 };
   2716 
   2717 struct pool_allocator pool_allocator_big[] = {
   2718 	{
   2719 		.pa_alloc = pool_page_alloc,
   2720 		.pa_free = pool_page_free,
   2721 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2722 	},
   2723 	{
   2724 		.pa_alloc = pool_page_alloc,
   2725 		.pa_free = pool_page_free,
   2726 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2727 	},
   2728 	{
   2729 		.pa_alloc = pool_page_alloc,
   2730 		.pa_free = pool_page_free,
   2731 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2732 	},
   2733 	{
   2734 		.pa_alloc = pool_page_alloc,
   2735 		.pa_free = pool_page_free,
   2736 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2737 	},
   2738 	{
   2739 		.pa_alloc = pool_page_alloc,
   2740 		.pa_free = pool_page_free,
   2741 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2742 	},
   2743 	{
   2744 		.pa_alloc = pool_page_alloc,
   2745 		.pa_free = pool_page_free,
   2746 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2747 	},
   2748 	{
   2749 		.pa_alloc = pool_page_alloc,
   2750 		.pa_free = pool_page_free,
   2751 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2752 	},
   2753 	{
   2754 		.pa_alloc = pool_page_alloc,
   2755 		.pa_free = pool_page_free,
   2756 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2757 	}
   2758 };
   2759 
   2760 static int
   2761 pool_bigidx(size_t size)
   2762 {
   2763 	int i;
   2764 
   2765 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2766 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2767 			return i;
   2768 	}
   2769 	panic("pool item size %zu too large, use a custom allocator", size);
   2770 }
   2771 
   2772 static void *
   2773 pool_allocator_alloc(struct pool *pp, int flags)
   2774 {
   2775 	struct pool_allocator *pa = pp->pr_alloc;
   2776 	void *res;
   2777 
   2778 	res = (*pa->pa_alloc)(pp, flags);
   2779 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2780 		/*
   2781 		 * We only run the drain hook here if PR_NOWAIT.
   2782 		 * In other cases, the hook will be run in
   2783 		 * pool_reclaim().
   2784 		 */
   2785 		if (pp->pr_drain_hook != NULL) {
   2786 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2787 			res = (*pa->pa_alloc)(pp, flags);
   2788 		}
   2789 	}
   2790 	return res;
   2791 }
   2792 
   2793 static void
   2794 pool_allocator_free(struct pool *pp, void *v)
   2795 {
   2796 	struct pool_allocator *pa = pp->pr_alloc;
   2797 
   2798 	if (pp->pr_redzone) {
   2799 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
   2800 	}
   2801 	(*pa->pa_free)(pp, v);
   2802 }
   2803 
   2804 void *
   2805 pool_page_alloc(struct pool *pp, int flags)
   2806 {
   2807 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2808 	vmem_addr_t va;
   2809 	int ret;
   2810 
   2811 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2812 	    vflags | VM_INSTANTFIT, &va);
   2813 
   2814 	return ret ? NULL : (void *)va;
   2815 }
   2816 
   2817 void
   2818 pool_page_free(struct pool *pp, void *v)
   2819 {
   2820 
   2821 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2822 }
   2823 
   2824 static void *
   2825 pool_page_alloc_meta(struct pool *pp, int flags)
   2826 {
   2827 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2828 	vmem_addr_t va;
   2829 	int ret;
   2830 
   2831 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2832 	    vflags | VM_INSTANTFIT, &va);
   2833 
   2834 	return ret ? NULL : (void *)va;
   2835 }
   2836 
   2837 static void
   2838 pool_page_free_meta(struct pool *pp, void *v)
   2839 {
   2840 
   2841 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2842 }
   2843 
   2844 #ifdef KLEAK
   2845 static void
   2846 pool_kleak_fill(struct pool *pp, void *p)
   2847 {
   2848 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2849 		return;
   2850 	}
   2851 	kleak_fill_area(p, pp->pr_size);
   2852 }
   2853 
   2854 static void
   2855 pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2856 {
   2857 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2858 		return;
   2859 	}
   2860 	pool_kleak_fill(&pc->pc_pool, p);
   2861 }
   2862 #endif
   2863 
   2864 #ifdef POOL_REDZONE
   2865 #if defined(_LP64)
   2866 # define PRIME 0x9e37fffffffc0000UL
   2867 #else /* defined(_LP64) */
   2868 # define PRIME 0x9e3779b1
   2869 #endif /* defined(_LP64) */
   2870 #define STATIC_BYTE	0xFE
   2871 CTASSERT(POOL_REDZONE_SIZE > 1);
   2872 
   2873 #ifndef KASAN
   2874 static inline uint8_t
   2875 pool_pattern_generate(const void *p)
   2876 {
   2877 	return (uint8_t)(((uintptr_t)p) * PRIME
   2878 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2879 }
   2880 #endif
   2881 
   2882 static void
   2883 pool_redzone_init(struct pool *pp, size_t requested_size)
   2884 {
   2885 	size_t redzsz;
   2886 	size_t nsz;
   2887 
   2888 #ifdef KASAN
   2889 	redzsz = requested_size;
   2890 	kasan_add_redzone(&redzsz);
   2891 	redzsz -= requested_size;
   2892 #else
   2893 	redzsz = POOL_REDZONE_SIZE;
   2894 #endif
   2895 
   2896 	if (pp->pr_roflags & PR_NOTOUCH) {
   2897 		pp->pr_redzone = false;
   2898 		return;
   2899 	}
   2900 
   2901 	/*
   2902 	 * We may have extended the requested size earlier; check if
   2903 	 * there's naturally space in the padding for a red zone.
   2904 	 */
   2905 	if (pp->pr_size - requested_size >= redzsz) {
   2906 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2907 		pp->pr_redzone = true;
   2908 		return;
   2909 	}
   2910 
   2911 	/*
   2912 	 * No space in the natural padding; check if we can extend a
   2913 	 * bit the size of the pool.
   2914 	 */
   2915 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2916 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2917 		/* Ok, we can */
   2918 		pp->pr_size = nsz;
   2919 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2920 		pp->pr_redzone = true;
   2921 	} else {
   2922 		/* No space for a red zone... snif :'( */
   2923 		pp->pr_redzone = false;
   2924 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2925 	}
   2926 }
   2927 
   2928 static void
   2929 pool_redzone_fill(struct pool *pp, void *p)
   2930 {
   2931 	if (!pp->pr_redzone)
   2932 		return;
   2933 #ifdef KASAN
   2934 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
   2935 #else
   2936 	uint8_t *cp, pat;
   2937 	const uint8_t *ep;
   2938 
   2939 	cp = (uint8_t *)p + pp->pr_reqsize;
   2940 	ep = cp + POOL_REDZONE_SIZE;
   2941 
   2942 	/*
   2943 	 * We really don't want the first byte of the red zone to be '\0';
   2944 	 * an off-by-one in a string may not be properly detected.
   2945 	 */
   2946 	pat = pool_pattern_generate(cp);
   2947 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2948 	cp++;
   2949 
   2950 	while (cp < ep) {
   2951 		*cp = pool_pattern_generate(cp);
   2952 		cp++;
   2953 	}
   2954 #endif
   2955 }
   2956 
   2957 static void
   2958 pool_redzone_check(struct pool *pp, void *p)
   2959 {
   2960 	if (!pp->pr_redzone)
   2961 		return;
   2962 #ifdef KASAN
   2963 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
   2964 #else
   2965 	uint8_t *cp, pat, expected;
   2966 	const uint8_t *ep;
   2967 
   2968 	cp = (uint8_t *)p + pp->pr_reqsize;
   2969 	ep = cp + POOL_REDZONE_SIZE;
   2970 
   2971 	pat = pool_pattern_generate(cp);
   2972 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2973 	if (__predict_false(expected != *cp)) {
   2974 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2975 		   __func__, cp, *cp, expected);
   2976 	}
   2977 	cp++;
   2978 
   2979 	while (cp < ep) {
   2980 		expected = pool_pattern_generate(cp);
   2981 		if (__predict_false(*cp != expected)) {
   2982 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2983 			   __func__, cp, *cp, expected);
   2984 		}
   2985 		cp++;
   2986 	}
   2987 #endif
   2988 }
   2989 
   2990 static void
   2991 pool_cache_redzone_check(pool_cache_t pc, void *p)
   2992 {
   2993 #ifdef KASAN
   2994 	/* If there is a ctor/dtor, leave the data as valid. */
   2995 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2996 		return;
   2997 	}
   2998 #endif
   2999 	pool_redzone_check(&pc->pc_pool, p);
   3000 }
   3001 
   3002 #endif /* POOL_REDZONE */
   3003 
   3004 #if defined(DDB)
   3005 static bool
   3006 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3007 {
   3008 
   3009 	return (uintptr_t)ph->ph_page <= addr &&
   3010 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3011 }
   3012 
   3013 static bool
   3014 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3015 {
   3016 
   3017 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3018 }
   3019 
   3020 static bool
   3021 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3022 {
   3023 	int i;
   3024 
   3025 	if (pcg == NULL) {
   3026 		return false;
   3027 	}
   3028 	for (i = 0; i < pcg->pcg_avail; i++) {
   3029 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3030 			return true;
   3031 		}
   3032 	}
   3033 	return false;
   3034 }
   3035 
   3036 static bool
   3037 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3038 {
   3039 
   3040 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3041 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3042 		pool_item_bitmap_t *bitmap =
   3043 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3044 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3045 
   3046 		return (*bitmap & mask) == 0;
   3047 	} else {
   3048 		struct pool_item *pi;
   3049 
   3050 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3051 			if (pool_in_item(pp, pi, addr)) {
   3052 				return false;
   3053 			}
   3054 		}
   3055 		return true;
   3056 	}
   3057 }
   3058 
   3059 void
   3060 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3061 {
   3062 	struct pool *pp;
   3063 
   3064 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3065 		struct pool_item_header *ph;
   3066 		uintptr_t item;
   3067 		bool allocated = true;
   3068 		bool incache = false;
   3069 		bool incpucache = false;
   3070 		char cpucachestr[32];
   3071 
   3072 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3073 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3074 				if (pool_in_page(pp, ph, addr)) {
   3075 					goto found;
   3076 				}
   3077 			}
   3078 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3079 				if (pool_in_page(pp, ph, addr)) {
   3080 					allocated =
   3081 					    pool_allocated(pp, ph, addr);
   3082 					goto found;
   3083 				}
   3084 			}
   3085 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3086 				if (pool_in_page(pp, ph, addr)) {
   3087 					allocated = false;
   3088 					goto found;
   3089 				}
   3090 			}
   3091 			continue;
   3092 		} else {
   3093 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3094 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3095 				continue;
   3096 			}
   3097 			allocated = pool_allocated(pp, ph, addr);
   3098 		}
   3099 found:
   3100 		if (allocated && pp->pr_cache) {
   3101 			pool_cache_t pc = pp->pr_cache;
   3102 			struct pool_cache_group *pcg;
   3103 			int i;
   3104 
   3105 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3106 			    pcg = pcg->pcg_next) {
   3107 				if (pool_in_cg(pp, pcg, addr)) {
   3108 					incache = true;
   3109 					goto print;
   3110 				}
   3111 			}
   3112 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3113 				pool_cache_cpu_t *cc;
   3114 
   3115 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3116 					continue;
   3117 				}
   3118 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3119 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3120 					struct cpu_info *ci =
   3121 					    cpu_lookup(i);
   3122 
   3123 					incpucache = true;
   3124 					snprintf(cpucachestr,
   3125 					    sizeof(cpucachestr),
   3126 					    "cached by CPU %u",
   3127 					    ci->ci_index);
   3128 					goto print;
   3129 				}
   3130 			}
   3131 		}
   3132 print:
   3133 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3134 		item = item + rounddown(addr - item, pp->pr_size);
   3135 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3136 		    (void *)addr, item, (size_t)(addr - item),
   3137 		    pp->pr_wchan,
   3138 		    incpucache ? cpucachestr :
   3139 		    incache ? "cached" : allocated ? "allocated" : "free");
   3140 	}
   3141 }
   3142 #endif /* defined(DDB) */
   3143 
   3144 static int
   3145 pool_sysctl(SYSCTLFN_ARGS)
   3146 {
   3147 	struct pool_sysctl data;
   3148 	struct pool *pp;
   3149 	struct pool_cache *pc;
   3150 	pool_cache_cpu_t *cc;
   3151 	int error;
   3152 	size_t i, written;
   3153 
   3154 	if (oldp == NULL) {
   3155 		*oldlenp = 0;
   3156 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3157 			*oldlenp += sizeof(data);
   3158 		return 0;
   3159 	}
   3160 
   3161 	memset(&data, 0, sizeof(data));
   3162 	error = 0;
   3163 	written = 0;
   3164 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3165 		if (written + sizeof(data) > *oldlenp)
   3166 			break;
   3167 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3168 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3169 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3170 #define COPY(field) data.field = pp->field
   3171 		COPY(pr_size);
   3172 
   3173 		COPY(pr_itemsperpage);
   3174 		COPY(pr_nitems);
   3175 		COPY(pr_nout);
   3176 		COPY(pr_hardlimit);
   3177 		COPY(pr_npages);
   3178 		COPY(pr_minpages);
   3179 		COPY(pr_maxpages);
   3180 
   3181 		COPY(pr_nget);
   3182 		COPY(pr_nfail);
   3183 		COPY(pr_nput);
   3184 		COPY(pr_npagealloc);
   3185 		COPY(pr_npagefree);
   3186 		COPY(pr_hiwat);
   3187 		COPY(pr_nidle);
   3188 #undef COPY
   3189 
   3190 		data.pr_cache_nmiss_pcpu = 0;
   3191 		data.pr_cache_nhit_pcpu = 0;
   3192 		if (pp->pr_cache) {
   3193 			pc = pp->pr_cache;
   3194 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3195 			data.pr_cache_nfull = pc->pc_nfull;
   3196 			data.pr_cache_npartial = pc->pc_npart;
   3197 			data.pr_cache_nempty = pc->pc_nempty;
   3198 			data.pr_cache_ncontended = pc->pc_contended;
   3199 			data.pr_cache_nmiss_global = pc->pc_misses;
   3200 			data.pr_cache_nhit_global = pc->pc_hits;
   3201 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3202 				cc = pc->pc_cpus[i];
   3203 				if (cc == NULL)
   3204 					continue;
   3205 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3206 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3207 			}
   3208 		} else {
   3209 			data.pr_cache_meta_size = 0;
   3210 			data.pr_cache_nfull = 0;
   3211 			data.pr_cache_npartial = 0;
   3212 			data.pr_cache_nempty = 0;
   3213 			data.pr_cache_ncontended = 0;
   3214 			data.pr_cache_nmiss_global = 0;
   3215 			data.pr_cache_nhit_global = 0;
   3216 		}
   3217 
   3218 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3219 		if (error)
   3220 			break;
   3221 		written += sizeof(data);
   3222 		oldp = (char *)oldp + sizeof(data);
   3223 	}
   3224 
   3225 	*oldlenp = written;
   3226 	return error;
   3227 }
   3228 
   3229 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3230 {
   3231 	const struct sysctlnode *rnode = NULL;
   3232 
   3233 	sysctl_createv(clog, 0, NULL, &rnode,
   3234 		       CTLFLAG_PERMANENT,
   3235 		       CTLTYPE_STRUCT, "pool",
   3236 		       SYSCTL_DESCR("Get pool statistics"),
   3237 		       pool_sysctl, 0, NULL, 0,
   3238 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3239 }
   3240