subr_pool.c revision 1.25 1 /* $NetBSD: subr_pool.c,v 1.25 1999/05/10 21:13:05 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/pool.h>
51 #include <sys/syslog.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_kern.h>
55
56 #include <uvm/uvm.h>
57
58 /*
59 * Pool resource management utility.
60 *
61 * Memory is allocated in pages which are split into pieces according
62 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
63 * in the pool structure and the individual pool items are on a linked list
64 * headed by `ph_itemlist' in each page header. The memory for building
65 * the page list is either taken from the allocated pages themselves (for
66 * small pool items) or taken from an internal pool of page headers (`phpool').
67 */
68
69 /* List of all pools */
70 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
71
72 /* Private pool for page header structures */
73 static struct pool phpool;
74
75 /* # of seconds to retain page after last use */
76 int pool_inactive_time = 10;
77
78 /* Next candidate for drainage (see pool_drain()) */
79 static struct pool *drainpp;
80
81 /* This spin lock protects both pool_head and drainpp. */
82 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
83
84 struct pool_item_header {
85 /* Page headers */
86 TAILQ_ENTRY(pool_item_header)
87 ph_pagelist; /* pool page list */
88 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
89 LIST_ENTRY(pool_item_header)
90 ph_hashlist; /* Off-page page headers */
91 int ph_nmissing; /* # of chunks in use */
92 caddr_t ph_page; /* this page's address */
93 struct timeval ph_time; /* last referenced */
94 };
95
96 struct pool_item {
97 #ifdef DIAGNOSTIC
98 int pi_magic;
99 #define PI_MAGIC 0xdeadbeef
100 #endif
101 /* Other entries use only this list entry */
102 TAILQ_ENTRY(pool_item) pi_list;
103 };
104
105
106 #define PR_HASH_INDEX(pp,addr) \
107 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
108
109
110
111 static struct pool_item_header
112 *pr_find_pagehead __P((struct pool *, caddr_t));
113 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
114 static int pool_catchup __P((struct pool *));
115 static void pool_prime_page __P((struct pool *, caddr_t));
116 static void *pool_page_alloc __P((unsigned long, int, int));
117 static void pool_page_free __P((void *, unsigned long, int));
118
119 static void pool_print1 __P((struct pool *, const char *,
120 void (*)(const char *, ...)));
121
122 /*
123 * Pool log entry. An array of these is allocated in pool_create().
124 */
125 struct pool_log {
126 const char *pl_file;
127 long pl_line;
128 int pl_action;
129 #define PRLOG_GET 1
130 #define PRLOG_PUT 2
131 void *pl_addr;
132 };
133
134 /* Number of entries in pool log buffers */
135 #ifndef POOL_LOGSIZE
136 #define POOL_LOGSIZE 10
137 #endif
138
139 int pool_logsize = POOL_LOGSIZE;
140
141 #ifdef DIAGNOSTIC
142 static void pr_log __P((struct pool *, void *, int, const char *, long));
143 static void pr_printlog __P((struct pool *, struct pool_item *,
144 void (*)(const char *, ...)));
145 static void pr_enter __P((struct pool *, const char *, long));
146 static void pr_leave __P((struct pool *));
147 static void pr_enter_check __P((struct pool *,
148 void (*)(const char *, ...)));
149
150 static __inline__ void
151 pr_log(pp, v, action, file, line)
152 struct pool *pp;
153 void *v;
154 int action;
155 const char *file;
156 long line;
157 {
158 int n = pp->pr_curlogentry;
159 struct pool_log *pl;
160
161 if ((pp->pr_roflags & PR_LOGGING) == 0)
162 return;
163
164 /*
165 * Fill in the current entry. Wrap around and overwrite
166 * the oldest entry if necessary.
167 */
168 pl = &pp->pr_log[n];
169 pl->pl_file = file;
170 pl->pl_line = line;
171 pl->pl_action = action;
172 pl->pl_addr = v;
173 if (++n >= pp->pr_logsize)
174 n = 0;
175 pp->pr_curlogentry = n;
176 }
177
178 static void
179 pr_printlog(pp, pi, pr)
180 struct pool *pp;
181 struct pool_item *pi;
182 void (*pr) __P((const char *, ...));
183 {
184 int i = pp->pr_logsize;
185 int n = pp->pr_curlogentry;
186
187 if ((pp->pr_roflags & PR_LOGGING) == 0)
188 return;
189
190 /*
191 * Print all entries in this pool's log.
192 */
193 while (i-- > 0) {
194 struct pool_log *pl = &pp->pr_log[n];
195 if (pl->pl_action != 0) {
196 if (pi == NULL || pi == pl->pl_addr) {
197 (*pr)("\tlog entry %d:\n", i);
198 (*pr)("\t\taction = %s, addr = %p\n",
199 pl->pl_action == PRLOG_GET ? "get" : "put",
200 pl->pl_addr);
201 (*pr)("\t\tfile: %s at line %lu\n",
202 pl->pl_file, pl->pl_line);
203 }
204 }
205 if (++n >= pp->pr_logsize)
206 n = 0;
207 }
208 }
209
210 static __inline__ void
211 pr_enter(pp, file, line)
212 struct pool *pp;
213 const char *file;
214 long line;
215 {
216
217 if (pp->pr_entered_file != NULL) {
218 printf("pool %s: reentrancy at file %s line %ld\n",
219 pp->pr_wchan, file, line);
220 printf(" previous entry at file %s line %ld\n",
221 pp->pr_entered_file, pp->pr_entered_line);
222 panic("pr_enter");
223 }
224
225 pp->pr_entered_file = file;
226 pp->pr_entered_line = line;
227 }
228
229 static __inline__ void
230 pr_leave(pp)
231 struct pool *pp;
232 {
233
234 if (pp->pr_entered_file == NULL) {
235 printf("pool %s not entered?\n", pp->pr_wchan);
236 panic("pr_leave");
237 }
238
239 pp->pr_entered_file = NULL;
240 pp->pr_entered_line = 0;
241 }
242
243 static __inline__ void
244 pr_enter_check(pp, pr)
245 struct pool *pp;
246 void (*pr) __P((const char *, ...));
247 {
248
249 if (pp->pr_entered_file != NULL)
250 (*pr)("\n\tcurrently entered from file %s line %ld\n",
251 pp->pr_entered_file, pp->pr_entered_line);
252 }
253 #else
254 #define pr_log(pp, v, action, file, line)
255 #define pr_printlog(pp, pi, pr)
256 #define pr_enter(pp, file, line)
257 #define pr_leave(pp)
258 #define pr_enter_check(pp, pr)
259 #endif /* DIAGNOSTIC */
260
261 /*
262 * Return the pool page header based on page address.
263 */
264 static __inline__ struct pool_item_header *
265 pr_find_pagehead(pp, page)
266 struct pool *pp;
267 caddr_t page;
268 {
269 struct pool_item_header *ph;
270
271 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
272 return ((struct pool_item_header *)(page + pp->pr_phoffset));
273
274 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
275 ph != NULL;
276 ph = LIST_NEXT(ph, ph_hashlist)) {
277 if (ph->ph_page == page)
278 return (ph);
279 }
280 return (NULL);
281 }
282
283 /*
284 * Remove a page from the pool.
285 */
286 static __inline__ void
287 pr_rmpage(pp, ph)
288 struct pool *pp;
289 struct pool_item_header *ph;
290 {
291
292 /*
293 * If the page was idle, decrement the idle page count.
294 */
295 if (ph->ph_nmissing == 0) {
296 #ifdef DIAGNOSTIC
297 if (pp->pr_nidle == 0)
298 panic("pr_rmpage: nidle inconsistent");
299 if (pp->pr_nitems < pp->pr_itemsperpage)
300 panic("pr_rmpage: nitems inconsistent");
301 #endif
302 pp->pr_nidle--;
303 }
304
305 pp->pr_nitems -= pp->pr_itemsperpage;
306
307 /*
308 * Unlink a page from the pool and release it.
309 */
310 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
311 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
312 pp->pr_npages--;
313 pp->pr_npagefree++;
314
315 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
316 LIST_REMOVE(ph, ph_hashlist);
317 pool_put(&phpool, ph);
318 }
319
320 if (pp->pr_curpage == ph) {
321 /*
322 * Find a new non-empty page header, if any.
323 * Start search from the page head, to increase the
324 * chance for "high water" pages to be freed.
325 */
326 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
327 ph = TAILQ_NEXT(ph, ph_pagelist))
328 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
329 break;
330
331 pp->pr_curpage = ph;
332 }
333 }
334
335 /*
336 * Allocate and initialize a pool.
337 */
338 struct pool *
339 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
340 size_t size;
341 u_int align;
342 u_int ioff;
343 int nitems;
344 const char *wchan;
345 size_t pagesz;
346 void *(*alloc) __P((unsigned long, int, int));
347 void (*release) __P((void *, unsigned long, int));
348 int mtype;
349 {
350 struct pool *pp;
351 int flags;
352
353 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
354 if (pp == NULL)
355 return (NULL);
356
357 flags = PR_FREEHEADER;
358 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
359 alloc, release, mtype);
360
361 if (nitems != 0) {
362 if (pool_prime(pp, nitems, NULL) != 0) {
363 pool_destroy(pp);
364 return (NULL);
365 }
366 }
367
368 return (pp);
369 }
370
371 /*
372 * Initialize the given pool resource structure.
373 *
374 * We export this routine to allow other kernel parts to declare
375 * static pools that must be initialized before malloc() is available.
376 */
377 void
378 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
379 struct pool *pp;
380 size_t size;
381 u_int align;
382 u_int ioff;
383 int flags;
384 const char *wchan;
385 size_t pagesz;
386 void *(*alloc) __P((unsigned long, int, int));
387 void (*release) __P((void *, unsigned long, int));
388 int mtype;
389 {
390 int off, slack, i;
391
392 #ifdef POOL_DIAGNOSTIC
393 /*
394 * Always log if POOL_DIAGNOSTIC is defined.
395 */
396 if (pool_logsize != 0)
397 flags |= PR_LOGGING;
398 #endif
399
400 /*
401 * Check arguments and construct default values.
402 */
403 if (!powerof2(pagesz) || pagesz > PAGE_SIZE)
404 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
405
406 if (alloc == NULL && release == NULL) {
407 alloc = pool_page_alloc;
408 release = pool_page_free;
409 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
410 } else if ((alloc != NULL && release != NULL) == 0) {
411 /* If you specifiy one, must specify both. */
412 panic("pool_init: must specify alloc and release together");
413 }
414
415 if (pagesz == 0)
416 pagesz = PAGE_SIZE;
417
418 if (align == 0)
419 align = ALIGN(1);
420
421 if (size < sizeof(struct pool_item))
422 size = sizeof(struct pool_item);
423
424 /*
425 * Initialize the pool structure.
426 */
427 TAILQ_INIT(&pp->pr_pagelist);
428 pp->pr_curpage = NULL;
429 pp->pr_npages = 0;
430 pp->pr_minitems = 0;
431 pp->pr_minpages = 0;
432 pp->pr_maxpages = UINT_MAX;
433 pp->pr_roflags = flags;
434 pp->pr_flags = 0;
435 pp->pr_size = ALIGN(size);
436 pp->pr_align = align;
437 pp->pr_wchan = wchan;
438 pp->pr_mtype = mtype;
439 pp->pr_alloc = alloc;
440 pp->pr_free = release;
441 pp->pr_pagesz = pagesz;
442 pp->pr_pagemask = ~(pagesz - 1);
443 pp->pr_pageshift = ffs(pagesz) - 1;
444 pp->pr_nitems = 0;
445 pp->pr_nout = 0;
446 pp->pr_hardlimit = UINT_MAX;
447 pp->pr_hardlimit_warning = NULL;
448 pp->pr_hardlimit_ratecap = 0;
449 memset(&pp->pr_hardlimit_warning_last, 0,
450 sizeof(pp->pr_hardlimit_warning_last));
451
452 /*
453 * Decide whether to put the page header off page to avoid
454 * wasting too large a part of the page. Off-page page headers
455 * go on a hash table, so we can match a returned item
456 * with its header based on the page address.
457 * We use 1/16 of the page size as the threshold (XXX: tune)
458 */
459 if (pp->pr_size < pagesz/16) {
460 /* Use the end of the page for the page header */
461 pp->pr_roflags |= PR_PHINPAGE;
462 pp->pr_phoffset = off =
463 pagesz - ALIGN(sizeof(struct pool_item_header));
464 } else {
465 /* The page header will be taken from our page header pool */
466 pp->pr_phoffset = 0;
467 off = pagesz;
468 for (i = 0; i < PR_HASHTABSIZE; i++) {
469 LIST_INIT(&pp->pr_hashtab[i]);
470 }
471 }
472
473 /*
474 * Alignment is to take place at `ioff' within the item. This means
475 * we must reserve up to `align - 1' bytes on the page to allow
476 * appropriate positioning of each item.
477 *
478 * Silently enforce `0 <= ioff < align'.
479 */
480 pp->pr_itemoffset = ioff = ioff % align;
481 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
482
483 /*
484 * Use the slack between the chunks and the page header
485 * for "cache coloring".
486 */
487 slack = off - pp->pr_itemsperpage * pp->pr_size;
488 pp->pr_maxcolor = (slack / align) * align;
489 pp->pr_curcolor = 0;
490
491 pp->pr_nget = 0;
492 pp->pr_nfail = 0;
493 pp->pr_nput = 0;
494 pp->pr_npagealloc = 0;
495 pp->pr_npagefree = 0;
496 pp->pr_hiwat = 0;
497 pp->pr_nidle = 0;
498
499 if (flags & PR_LOGGING) {
500 if (kmem_map == NULL ||
501 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
502 M_TEMP, M_NOWAIT)) == NULL)
503 pp->pr_roflags &= ~PR_LOGGING;
504 pp->pr_curlogentry = 0;
505 pp->pr_logsize = pool_logsize;
506 }
507
508 pp->pr_entered_file = NULL;
509 pp->pr_entered_line = 0;
510
511 simple_lock_init(&pp->pr_slock);
512
513 /*
514 * Initialize private page header pool if we haven't done so yet.
515 * XXX LOCKING.
516 */
517 if (phpool.pr_size == 0) {
518 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
519 0, "phpool", 0, 0, 0, 0);
520 }
521
522 /* Insert into the list of all pools. */
523 simple_lock(&pool_head_slock);
524 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
525 simple_unlock(&pool_head_slock);
526 }
527
528 /*
529 * De-commision a pool resource.
530 */
531 void
532 pool_destroy(pp)
533 struct pool *pp;
534 {
535 struct pool_item_header *ph;
536
537 #ifdef DIAGNOSTIC
538 if (pp->pr_nout != 0) {
539 pr_printlog(pp, NULL, printf);
540 panic("pool_destroy: pool busy: still out: %u\n",
541 pp->pr_nout);
542 }
543 #endif
544
545 /* Remove all pages */
546 if ((pp->pr_roflags & PR_STATIC) == 0)
547 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
548 pr_rmpage(pp, ph);
549
550 /* Remove from global pool list */
551 simple_lock(&pool_head_slock);
552 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
553 /* XXX Only clear this if we were drainpp? */
554 drainpp = NULL;
555 simple_unlock(&pool_head_slock);
556
557 if ((pp->pr_roflags & PR_LOGGING) != 0)
558 free(pp->pr_log, M_TEMP);
559
560 if (pp->pr_roflags & PR_FREEHEADER)
561 free(pp, M_POOL);
562 }
563
564
565 /*
566 * Grab an item from the pool; must be called at appropriate spl level
567 */
568 void *
569 _pool_get(pp, flags, file, line)
570 struct pool *pp;
571 int flags;
572 const char *file;
573 long line;
574 {
575 void *v;
576 struct pool_item *pi;
577 struct pool_item_header *ph;
578
579 #ifdef DIAGNOSTIC
580 if ((pp->pr_roflags & PR_STATIC) && (flags & PR_MALLOCOK)) {
581 pr_printlog(pp, NULL, printf);
582 panic("pool_get: static");
583 }
584 #endif
585
586 if (curproc == NULL && (flags & PR_WAITOK) != 0)
587 panic("pool_get: must have NOWAIT");
588
589 simple_lock(&pp->pr_slock);
590 pr_enter(pp, file, line);
591
592 startover:
593 /*
594 * Check to see if we've reached the hard limit. If we have,
595 * and we can wait, then wait until an item has been returned to
596 * the pool.
597 */
598 #ifdef DIAGNOSTIC
599 if (pp->pr_nout > pp->pr_hardlimit) {
600 pr_leave(pp);
601 simple_unlock(&pp->pr_slock);
602 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
603 }
604 #endif
605 if (pp->pr_nout == pp->pr_hardlimit) {
606 if (flags & PR_WAITOK) {
607 /*
608 * XXX: A warning isn't logged in this case. Should
609 * it be?
610 */
611 pp->pr_flags |= PR_WANTED;
612 pr_leave(pp);
613 simple_unlock(&pp->pr_slock);
614 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
615 simple_lock(&pp->pr_slock);
616 pr_enter(pp, file, line);
617 goto startover;
618 }
619 if (pp->pr_hardlimit_warning != NULL) {
620 /*
621 * Log a message that the hard limit has been hit.
622 */
623 struct timeval curtime, logdiff;
624 int s = splclock();
625 curtime = mono_time;
626 splx(s);
627 timersub(&curtime, &pp->pr_hardlimit_warning_last,
628 &logdiff);
629 if (logdiff.tv_sec >= pp->pr_hardlimit_ratecap) {
630 pp->pr_hardlimit_warning_last = curtime;
631 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
632 }
633 }
634
635 if (flags & PR_URGENT)
636 panic("pool_get: urgent");
637
638 pp->pr_nfail++;
639
640 pr_leave(pp);
641 simple_unlock(&pp->pr_slock);
642 return (NULL);
643 }
644
645 /*
646 * The convention we use is that if `curpage' is not NULL, then
647 * it points at a non-empty bucket. In particular, `curpage'
648 * never points at a page header which has PR_PHINPAGE set and
649 * has no items in its bucket.
650 */
651 if ((ph = pp->pr_curpage) == NULL) {
652 void *v;
653
654 #ifdef DIAGNOSTIC
655 if (pp->pr_nitems != 0) {
656 simple_unlock(&pp->pr_slock);
657 printf("pool_get: %s: curpage NULL, nitems %u\n",
658 pp->pr_wchan, pp->pr_nitems);
659 panic("pool_get: nitems inconsistent\n");
660 }
661 #endif
662
663 /*
664 * Call the back-end page allocator for more memory.
665 * Release the pool lock, as the back-end page allocator
666 * may block.
667 */
668 pr_leave(pp);
669 simple_unlock(&pp->pr_slock);
670 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
671 simple_lock(&pp->pr_slock);
672 pr_enter(pp, file, line);
673
674 if (v == NULL) {
675 /*
676 * We were unable to allocate a page, but
677 * we released the lock during allocation,
678 * so perhaps items were freed back to the
679 * pool. Check for this case.
680 */
681 if (pp->pr_curpage != NULL)
682 goto startover;
683
684 if (flags & PR_URGENT)
685 panic("pool_get: urgent");
686
687 if ((flags & PR_WAITOK) == 0) {
688 pp->pr_nfail++;
689 pr_leave(pp);
690 simple_unlock(&pp->pr_slock);
691 return (NULL);
692 }
693
694 /*
695 * Wait for items to be returned to this pool.
696 *
697 * XXX: we actually want to wait just until
698 * the page allocator has memory again. Depending
699 * on this pool's usage, we might get stuck here
700 * for a long time.
701 *
702 * XXX: maybe we should wake up once a second and
703 * try again?
704 */
705 pp->pr_flags |= PR_WANTED;
706 pr_leave(pp);
707 simple_unlock(&pp->pr_slock);
708 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
709 simple_lock(&pp->pr_slock);
710 pr_enter(pp, file, line);
711 goto startover;
712 }
713
714 /* We have more memory; add it to the pool */
715 pp->pr_npagealloc++;
716 pool_prime_page(pp, v);
717
718 /* Start the allocation process over. */
719 goto startover;
720 }
721
722 if ((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL) {
723 pr_leave(pp);
724 simple_unlock(&pp->pr_slock);
725 panic("pool_get: %s: page empty", pp->pr_wchan);
726 }
727 #ifdef DIAGNOSTIC
728 if (pp->pr_nitems == 0) {
729 pr_leave(pp);
730 simple_unlock(&pp->pr_slock);
731 printf("pool_get: %s: items on itemlist, nitems %u\n",
732 pp->pr_wchan, pp->pr_nitems);
733 panic("pool_get: nitems inconsistent\n");
734 }
735 #endif
736 pr_log(pp, v, PRLOG_GET, file, line);
737
738 #ifdef DIAGNOSTIC
739 if (pi->pi_magic != PI_MAGIC) {
740 pr_printlog(pp, pi, printf);
741 panic("pool_get(%s): free list modified: magic=%x; page %p;"
742 " item addr %p\n",
743 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
744 }
745 #endif
746
747 /*
748 * Remove from item list.
749 */
750 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
751 pp->pr_nitems--;
752 pp->pr_nout++;
753 if (ph->ph_nmissing == 0) {
754 #ifdef DIAGNOSTIC
755 if (pp->pr_nidle == 0)
756 panic("pool_get: nidle inconsistent");
757 #endif
758 pp->pr_nidle--;
759 }
760 ph->ph_nmissing++;
761 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
762 #ifdef DIAGNOSTIC
763 if (ph->ph_nmissing != pp->pr_itemsperpage) {
764 pr_leave(pp);
765 simple_unlock(&pp->pr_slock);
766 panic("pool_get: %s: nmissing inconsistent",
767 pp->pr_wchan);
768 }
769 #endif
770 /*
771 * Find a new non-empty page header, if any.
772 * Start search from the page head, to increase
773 * the chance for "high water" pages to be freed.
774 *
775 * Migrate empty pages to the end of the list. This
776 * will speed the update of curpage as pages become
777 * idle. Empty pages intermingled with idle pages
778 * is no big deal. As soon as a page becomes un-empty,
779 * it will move back to the head of the list.
780 */
781 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
782 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
783 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
784 ph = TAILQ_NEXT(ph, ph_pagelist))
785 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
786 break;
787
788 pp->pr_curpage = ph;
789 }
790
791 pp->pr_nget++;
792
793 /*
794 * If we have a low water mark and we are now below that low
795 * water mark, add more items to the pool.
796 */
797 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
798 /*
799 * XXX: Should we log a warning? Should we set up a timeout
800 * to try again in a second or so? The latter could break
801 * a caller's assumptions about interrupt protection, etc.
802 */
803 }
804
805 pr_leave(pp);
806 simple_unlock(&pp->pr_slock);
807 return (v);
808 }
809
810 /*
811 * Return resource to the pool; must be called at appropriate spl level
812 */
813 void
814 _pool_put(pp, v, file, line)
815 struct pool *pp;
816 void *v;
817 const char *file;
818 long line;
819 {
820 struct pool_item *pi = v;
821 struct pool_item_header *ph;
822 caddr_t page;
823 int s;
824
825 page = (caddr_t)((u_long)v & pp->pr_pagemask);
826
827 simple_lock(&pp->pr_slock);
828 pr_enter(pp, file, line);
829
830 pr_log(pp, v, PRLOG_PUT, file, line);
831
832 if ((ph = pr_find_pagehead(pp, page)) == NULL) {
833 pr_printlog(pp, NULL, printf);
834 panic("pool_put: %s: page header missing", pp->pr_wchan);
835 }
836
837 /*
838 * Return to item list.
839 */
840 #ifdef DIAGNOSTIC
841 /* XXX Should fill the item. */
842 pi->pi_magic = PI_MAGIC;
843 #endif
844 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
845 ph->ph_nmissing--;
846 pp->pr_nput++;
847 pp->pr_nitems++;
848 pp->pr_nout--;
849
850 /* Cancel "pool empty" condition if it exists */
851 if (pp->pr_curpage == NULL)
852 pp->pr_curpage = ph;
853
854 if (pp->pr_flags & PR_WANTED) {
855 pp->pr_flags &= ~PR_WANTED;
856 if (ph->ph_nmissing == 0)
857 pp->pr_nidle++;
858 pr_leave(pp);
859 simple_unlock(&pp->pr_slock);
860 wakeup((caddr_t)pp);
861 return;
862 }
863
864 /*
865 * If this page is now complete, do one of two things:
866 *
867 * (1) If we have more pages than the page high water
868 * mark, free the page back to the system.
869 *
870 * (2) Move it to the end of the page list, so that
871 * we minimize our chances of fragmenting the
872 * pool. Idle pages migrate to the end (along with
873 * completely empty pages, so that we find un-empty
874 * pages more quickly when we update curpage) of the
875 * list so they can be more easily swept up by
876 * the pagedaemon when pages are scarce.
877 */
878 if (ph->ph_nmissing == 0) {
879 pp->pr_nidle++;
880 if (pp->pr_npages > pp->pr_maxpages) {
881 pr_rmpage(pp, ph);
882 } else {
883 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
884 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
885
886 /*
887 * Update the timestamp on the page. A page must
888 * be idle for some period of time before it can
889 * be reclaimed by the pagedaemon. This minimizes
890 * ping-pong'ing for memory.
891 */
892 s = splclock();
893 ph->ph_time = mono_time;
894 splx(s);
895
896 /*
897 * Update the current page pointer. Just look for
898 * the first page with any free items.
899 *
900 * XXX: Maybe we want an option to look for the
901 * page with the fewest available items, to minimize
902 * fragmentation?
903 */
904 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
905 ph = TAILQ_NEXT(ph, ph_pagelist))
906 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
907 break;
908
909 pp->pr_curpage = ph;
910 }
911 }
912 /*
913 * If the page has just become un-empty, move it to the head of
914 * the list, and make it the current page. The next allocation
915 * will get the item from this page, instead of further fragmenting
916 * the pool.
917 */
918 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
919 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
920 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
921 pp->pr_curpage = ph;
922 }
923
924 pr_leave(pp);
925 simple_unlock(&pp->pr_slock);
926
927 }
928
929 /*
930 * Add N items to the pool.
931 */
932 int
933 pool_prime(pp, n, storage)
934 struct pool *pp;
935 int n;
936 caddr_t storage;
937 {
938 caddr_t cp;
939 int newnitems, newpages;
940
941 #ifdef DIAGNOSTIC
942 if (storage && !(pp->pr_roflags & PR_STATIC))
943 panic("pool_prime: static");
944 /* !storage && static caught below */
945 #endif
946
947 simple_lock(&pp->pr_slock);
948
949 newnitems = pp->pr_minitems + n;
950 newpages =
951 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
952 - pp->pr_minpages;
953
954 while (newpages-- > 0) {
955 if (pp->pr_roflags & PR_STATIC) {
956 cp = storage;
957 storage += pp->pr_pagesz;
958 } else {
959 simple_unlock(&pp->pr_slock);
960 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
961 simple_lock(&pp->pr_slock);
962 }
963
964 if (cp == NULL) {
965 simple_unlock(&pp->pr_slock);
966 return (ENOMEM);
967 }
968
969 pool_prime_page(pp, cp);
970 pp->pr_minpages++;
971 }
972
973 pp->pr_minitems = newnitems;
974
975 if (pp->pr_minpages >= pp->pr_maxpages)
976 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
977
978 simple_unlock(&pp->pr_slock);
979 return (0);
980 }
981
982 /*
983 * Add a page worth of items to the pool.
984 *
985 * Note, we must be called with the pool descriptor LOCKED.
986 */
987 static void
988 pool_prime_page(pp, storage)
989 struct pool *pp;
990 caddr_t storage;
991 {
992 struct pool_item *pi;
993 struct pool_item_header *ph;
994 caddr_t cp = storage;
995 unsigned int align = pp->pr_align;
996 unsigned int ioff = pp->pr_itemoffset;
997 int n;
998
999 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1000 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1001 } else {
1002 ph = pool_get(&phpool, PR_URGENT);
1003 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1004 ph, ph_hashlist);
1005 }
1006
1007 /*
1008 * Insert page header.
1009 */
1010 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1011 TAILQ_INIT(&ph->ph_itemlist);
1012 ph->ph_page = storage;
1013 ph->ph_nmissing = 0;
1014 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1015
1016 pp->pr_nidle++;
1017
1018 /*
1019 * Color this page.
1020 */
1021 cp = (caddr_t)(cp + pp->pr_curcolor);
1022 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1023 pp->pr_curcolor = 0;
1024
1025 /*
1026 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1027 */
1028 if (ioff != 0)
1029 cp = (caddr_t)(cp + (align - ioff));
1030
1031 /*
1032 * Insert remaining chunks on the bucket list.
1033 */
1034 n = pp->pr_itemsperpage;
1035 pp->pr_nitems += n;
1036
1037 while (n--) {
1038 pi = (struct pool_item *)cp;
1039
1040 /* Insert on page list */
1041 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1042 #ifdef DIAGNOSTIC
1043 pi->pi_magic = PI_MAGIC;
1044 #endif
1045 cp = (caddr_t)(cp + pp->pr_size);
1046 }
1047
1048 /*
1049 * If the pool was depleted, point at the new page.
1050 */
1051 if (pp->pr_curpage == NULL)
1052 pp->pr_curpage = ph;
1053
1054 if (++pp->pr_npages > pp->pr_hiwat)
1055 pp->pr_hiwat = pp->pr_npages;
1056 }
1057
1058 /*
1059 * Like pool_prime(), except this is used by pool_get() when nitems
1060 * drops below the low water mark. This is used to catch up nitmes
1061 * with the low water mark.
1062 *
1063 * Note 1, we never wait for memory here, we let the caller decide what to do.
1064 *
1065 * Note 2, this doesn't work with static pools.
1066 *
1067 * Note 3, we must be called with the pool already locked, and we return
1068 * with it locked.
1069 */
1070 static int
1071 pool_catchup(pp)
1072 struct pool *pp;
1073 {
1074 caddr_t cp;
1075 int error = 0;
1076
1077 if (pp->pr_roflags & PR_STATIC) {
1078 /*
1079 * We dropped below the low water mark, and this is not a
1080 * good thing. Log a warning.
1081 *
1082 * XXX: rate-limit this?
1083 */
1084 printf("WARNING: static pool `%s' dropped below low water "
1085 "mark\n", pp->pr_wchan);
1086 return (0);
1087 }
1088
1089 while (pp->pr_nitems < pp->pr_minitems) {
1090 /*
1091 * Call the page back-end allocator for more memory.
1092 *
1093 * XXX: We never wait, so should we bother unlocking
1094 * the pool descriptor?
1095 */
1096 simple_unlock(&pp->pr_slock);
1097 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1098 simple_lock(&pp->pr_slock);
1099 if (cp == NULL) {
1100 error = ENOMEM;
1101 break;
1102 }
1103 pool_prime_page(pp, cp);
1104 }
1105
1106 return (error);
1107 }
1108
1109 void
1110 pool_setlowat(pp, n)
1111 pool_handle_t pp;
1112 int n;
1113 {
1114 int error;
1115
1116 simple_lock(&pp->pr_slock);
1117
1118 pp->pr_minitems = n;
1119 pp->pr_minpages = (n == 0)
1120 ? 0
1121 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1122
1123 /* Make sure we're caught up with the newly-set low water mark. */
1124 if ((error = pool_catchup(pp)) != 0) {
1125 /*
1126 * XXX: Should we log a warning? Should we set up a timeout
1127 * to try again in a second or so? The latter could break
1128 * a caller's assumptions about interrupt protection, etc.
1129 */
1130 }
1131
1132 simple_unlock(&pp->pr_slock);
1133 }
1134
1135 void
1136 pool_sethiwat(pp, n)
1137 pool_handle_t pp;
1138 int n;
1139 {
1140
1141 simple_lock(&pp->pr_slock);
1142
1143 pp->pr_maxpages = (n == 0)
1144 ? 0
1145 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1146
1147 simple_unlock(&pp->pr_slock);
1148 }
1149
1150 void
1151 pool_sethardlimit(pp, n, warnmess, ratecap)
1152 pool_handle_t pp;
1153 int n;
1154 const char *warnmess;
1155 int ratecap;
1156 {
1157
1158 simple_lock(&pp->pr_slock);
1159
1160 pp->pr_hardlimit = n;
1161 pp->pr_hardlimit_warning = warnmess;
1162 pp->pr_hardlimit_ratecap = ratecap;
1163 memset(&pp->pr_hardlimit_warning_last, 0,
1164 sizeof(pp->pr_hardlimit_warning_last));
1165
1166 /*
1167 * In-line version of pool_sethiwat(), because we don't want to
1168 * release the lock.
1169 */
1170 pp->pr_maxpages = (n == 0)
1171 ? 0
1172 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173
1174 simple_unlock(&pp->pr_slock);
1175 }
1176
1177 /*
1178 * Default page allocator.
1179 */
1180 static void *
1181 pool_page_alloc(sz, flags, mtype)
1182 unsigned long sz;
1183 int flags;
1184 int mtype;
1185 {
1186 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1187
1188 return ((void *)uvm_km_alloc_poolpage(waitok));
1189 }
1190
1191 static void
1192 pool_page_free(v, sz, mtype)
1193 void *v;
1194 unsigned long sz;
1195 int mtype;
1196 {
1197
1198 uvm_km_free_poolpage((vaddr_t)v);
1199 }
1200
1201 /*
1202 * Alternate pool page allocator for pools that know they will
1203 * never be accessed in interrupt context.
1204 */
1205 void *
1206 pool_page_alloc_nointr(sz, flags, mtype)
1207 unsigned long sz;
1208 int flags;
1209 int mtype;
1210 {
1211 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1212
1213 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1214 waitok));
1215 }
1216
1217 void
1218 pool_page_free_nointr(v, sz, mtype)
1219 void *v;
1220 unsigned long sz;
1221 int mtype;
1222 {
1223
1224 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1225 }
1226
1227
1228 /*
1229 * Release all complete pages that have not been used recently.
1230 */
1231 void
1232 _pool_reclaim(pp, file, line)
1233 pool_handle_t pp;
1234 const char *file;
1235 long line;
1236 {
1237 struct pool_item_header *ph, *phnext;
1238 struct timeval curtime;
1239 int s;
1240
1241 if (pp->pr_roflags & PR_STATIC)
1242 return;
1243
1244 if (simple_lock_try(&pp->pr_slock) == 0)
1245 return;
1246 pr_enter(pp, file, line);
1247
1248 s = splclock();
1249 curtime = mono_time;
1250 splx(s);
1251
1252 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1253 phnext = TAILQ_NEXT(ph, ph_pagelist);
1254
1255 /* Check our minimum page claim */
1256 if (pp->pr_npages <= pp->pr_minpages)
1257 break;
1258
1259 if (ph->ph_nmissing == 0) {
1260 struct timeval diff;
1261 timersub(&curtime, &ph->ph_time, &diff);
1262 if (diff.tv_sec < pool_inactive_time)
1263 continue;
1264
1265 /*
1266 * If freeing this page would put us below
1267 * the low water mark, stop now.
1268 */
1269 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1270 pp->pr_minitems)
1271 break;
1272
1273 pr_rmpage(pp, ph);
1274 }
1275 }
1276
1277 pr_leave(pp);
1278 simple_unlock(&pp->pr_slock);
1279 }
1280
1281
1282 /*
1283 * Drain pools, one at a time.
1284 *
1285 * Note, we must never be called from an interrupt context.
1286 */
1287 void
1288 pool_drain(arg)
1289 void *arg;
1290 {
1291 struct pool *pp;
1292 int s;
1293
1294 s = splimp();
1295 simple_lock(&pool_head_slock);
1296
1297 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1298 goto out;
1299
1300 pp = drainpp;
1301 drainpp = TAILQ_NEXT(pp, pr_poollist);
1302
1303 pool_reclaim(pp);
1304
1305 out:
1306 simple_unlock(&pool_head_slock);
1307 splx(s);
1308 }
1309
1310
1311 /*
1312 * Diagnostic helpers.
1313 */
1314 void
1315 pool_print(pp, modif)
1316 struct pool *pp;
1317 const char *modif;
1318 {
1319 int s;
1320
1321 s = splimp();
1322 if (simple_lock_try(&pp->pr_slock) == 0) {
1323 printf("pool %s is locked; try again later\n",
1324 pp->pr_wchan);
1325 splx(s);
1326 return;
1327 }
1328 pool_print1(pp, modif, printf);
1329 simple_unlock(&pp->pr_slock);
1330 splx(s);
1331 }
1332
1333 void
1334 pool_printit(pp, modif, pr)
1335 struct pool *pp;
1336 const char *modif;
1337 void (*pr) __P((const char *, ...));
1338 {
1339 int didlock = 0;
1340
1341 if (pp == NULL) {
1342 (*pr)("Must specify a pool to print.\n");
1343 return;
1344 }
1345
1346 /*
1347 * Called from DDB; interrupts should be blocked, and all
1348 * other processors should be paused. We can skip locking
1349 * the pool in this case.
1350 *
1351 * We do a simple_lock_try() just to print the lock
1352 * status, however.
1353 */
1354
1355 if (simple_lock_try(&pp->pr_slock) == 0)
1356 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1357 else
1358 didlock = 1;
1359
1360 pool_print1(pp, modif, pr);
1361
1362 if (didlock)
1363 simple_unlock(&pp->pr_slock);
1364 }
1365
1366 static void
1367 pool_print1(pp, modif, pr)
1368 struct pool *pp;
1369 const char *modif;
1370 void (*pr) __P((const char *, ...));
1371 {
1372 struct pool_item_header *ph;
1373 #ifdef DIAGNOSTIC
1374 struct pool_item *pi;
1375 #endif
1376 int print_log = 0, print_pagelist = 0;
1377 char c;
1378
1379 while ((c = *modif++) != '\0') {
1380 if (c == 'l')
1381 print_log = 1;
1382 if (c == 'p')
1383 print_pagelist = 1;
1384 modif++;
1385 }
1386
1387 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1388 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1389 pp->pr_roflags);
1390 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1391 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1392 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1393 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1394 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1395 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1396
1397 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1398 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1399 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1400 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1401
1402 if (print_pagelist == 0)
1403 goto skip_pagelist;
1404
1405 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1406 (*pr)("\n\tpage list:\n");
1407 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1408 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1409 ph->ph_page, ph->ph_nmissing,
1410 (u_long)ph->ph_time.tv_sec,
1411 (u_long)ph->ph_time.tv_usec);
1412 #ifdef DIAGNOSTIC
1413 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1414 pi = TAILQ_NEXT(pi, pi_list)) {
1415 if (pi->pi_magic != PI_MAGIC) {
1416 (*pr)("\t\t\titem %p, magic 0x%x\n",
1417 pi, pi->pi_magic);
1418 }
1419 }
1420 #endif
1421 }
1422 if (pp->pr_curpage == NULL)
1423 (*pr)("\tno current page\n");
1424 else
1425 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1426
1427 skip_pagelist:
1428
1429 if (print_log == 0)
1430 goto skip_log;
1431
1432 (*pr)("\n");
1433 if ((pp->pr_roflags & PR_LOGGING) == 0)
1434 (*pr)("\tno log\n");
1435 else
1436 pr_printlog(pp, NULL, pr);
1437
1438 skip_log:
1439
1440 pr_enter_check(pp, pr);
1441 }
1442
1443 int
1444 pool_chk(pp, label)
1445 struct pool *pp;
1446 char *label;
1447 {
1448 struct pool_item_header *ph;
1449 int r = 0;
1450
1451 simple_lock(&pp->pr_slock);
1452
1453 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1454 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1455
1456 struct pool_item *pi;
1457 int n;
1458 caddr_t page;
1459
1460 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1461 if (page != ph->ph_page &&
1462 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1463 if (label != NULL)
1464 printf("%s: ", label);
1465 printf("pool(%p:%s): page inconsistency: page %p;"
1466 " at page head addr %p (p %p)\n", pp,
1467 pp->pr_wchan, ph->ph_page,
1468 ph, page);
1469 r++;
1470 goto out;
1471 }
1472
1473 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1474 pi != NULL;
1475 pi = TAILQ_NEXT(pi,pi_list), n++) {
1476
1477 #ifdef DIAGNOSTIC
1478 if (pi->pi_magic != PI_MAGIC) {
1479 if (label != NULL)
1480 printf("%s: ", label);
1481 printf("pool(%s): free list modified: magic=%x;"
1482 " page %p; item ordinal %d;"
1483 " addr %p (p %p)\n",
1484 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1485 n, pi, page);
1486 panic("pool");
1487 }
1488 #endif
1489 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1490 if (page == ph->ph_page)
1491 continue;
1492
1493 if (label != NULL)
1494 printf("%s: ", label);
1495 printf("pool(%p:%s): page inconsistency: page %p;"
1496 " item ordinal %d; addr %p (p %p)\n", pp,
1497 pp->pr_wchan, ph->ph_page,
1498 n, pi, page);
1499 r++;
1500 goto out;
1501 }
1502 }
1503 out:
1504 simple_unlock(&pp->pr_slock);
1505 return (r);
1506 }
1507