Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.250
      1 /*	$NetBSD: subr_pool.c,v 1.250 2019/05/09 08:16:14 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.250 2019/05/09 08:16:14 skrll Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_pool.h"
     42 #include "opt_kleak.h"
     43 #endif
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/sysctl.h>
     48 #include <sys/bitops.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/vmem.h>
     53 #include <sys/pool.h>
     54 #include <sys/syslog.h>
     55 #include <sys/debug.h>
     56 #include <sys/lockdebug.h>
     57 #include <sys/xcall.h>
     58 #include <sys/cpu.h>
     59 #include <sys/atomic.h>
     60 #include <sys/asan.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 /*
     65  * Pool resource management utility.
     66  *
     67  * Memory is allocated in pages which are split into pieces according to
     68  * the pool item size. Each page is kept on one of three lists in the
     69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70  * for empty, full and partially-full pages respectively. The individual
     71  * pool items are on a linked list headed by `ph_itemlist' in each page
     72  * header. The memory for building the page list is either taken from
     73  * the allocated pages themselves (for small pool items) or taken from
     74  * an internal pool of page headers (`phpool').
     75  */
     76 
     77 /* List of all pools. Non static as needed by 'vmstat -m' */
     78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79 
     80 /* Private pool for page header structures */
     81 #define	PHPOOL_MAX	8
     82 static struct pool phpool[PHPOOL_MAX];
     83 #define	PHPOOL_FREELIST_NELEM(idx) \
     84 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     85 
     86 #if defined(KASAN)
     87 #define POOL_REDZONE
     88 #endif
     89 
     90 #ifdef POOL_REDZONE
     91 # ifdef KASAN
     92 #  define POOL_REDZONE_SIZE 8
     93 # else
     94 #  define POOL_REDZONE_SIZE 2
     95 # endif
     96 static void pool_redzone_init(struct pool *, size_t);
     97 static void pool_redzone_fill(struct pool *, void *);
     98 static void pool_redzone_check(struct pool *, void *);
     99 static void pool_cache_redzone_check(pool_cache_t, void *);
    100 #else
    101 # define pool_redzone_init(pp, sz)		__nothing
    102 # define pool_redzone_fill(pp, ptr)		__nothing
    103 # define pool_redzone_check(pp, ptr)		__nothing
    104 # define pool_cache_redzone_check(pc, ptr)	__nothing
    105 #endif
    106 
    107 #ifdef KLEAK
    108 static void pool_kleak_fill(struct pool *, void *);
    109 static void pool_cache_kleak_fill(pool_cache_t, void *);
    110 #else
    111 #define pool_kleak_fill(pp, ptr)	__nothing
    112 #define pool_cache_kleak_fill(pc, ptr)	__nothing
    113 #endif
    114 
    115 #ifdef POOL_QUARANTINE
    116 static void pool_quarantine_init(struct pool *);
    117 static void pool_quarantine_flush(struct pool *);
    118 static bool pool_put_quarantine(struct pool *, void *,
    119     struct pool_pagelist *);
    120 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
    121 #else
    122 #define pool_quarantine_init(a)			__nothing
    123 #define pool_quarantine_flush(a)		__nothing
    124 #define pool_put_quarantine(a, b, c)		false
    125 #define pool_cache_put_quarantine(a, b, c)	false
    126 #endif
    127 
    128 #define pc_has_ctor(pc) \
    129 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    130 #define pc_has_dtor(pc) \
    131 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    132 
    133 static void *pool_page_alloc_meta(struct pool *, int);
    134 static void pool_page_free_meta(struct pool *, void *);
    135 
    136 /* allocator for pool metadata */
    137 struct pool_allocator pool_allocator_meta = {
    138 	.pa_alloc = pool_page_alloc_meta,
    139 	.pa_free = pool_page_free_meta,
    140 	.pa_pagesz = 0
    141 };
    142 
    143 #define POOL_ALLOCATOR_BIG_BASE 13
    144 extern struct pool_allocator pool_allocator_big[];
    145 static int pool_bigidx(size_t);
    146 
    147 /* # of seconds to retain page after last use */
    148 int pool_inactive_time = 10;
    149 
    150 /* Next candidate for drainage (see pool_drain()) */
    151 static struct pool *drainpp;
    152 
    153 /* This lock protects both pool_head and drainpp. */
    154 static kmutex_t pool_head_lock;
    155 static kcondvar_t pool_busy;
    156 
    157 /* This lock protects initialization of a potentially shared pool allocator */
    158 static kmutex_t pool_allocator_lock;
    159 
    160 static unsigned int poolid_counter = 0;
    161 
    162 typedef uint32_t pool_item_bitmap_t;
    163 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    164 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    165 
    166 struct pool_item_header {
    167 	/* Page headers */
    168 	LIST_ENTRY(pool_item_header)
    169 				ph_pagelist;	/* pool page list */
    170 	union {
    171 		/* !PR_PHINPAGE */
    172 		struct {
    173 			SPLAY_ENTRY(pool_item_header)
    174 				phu_node;	/* off-page page headers */
    175 		} phu_offpage;
    176 		/* PR_PHINPAGE */
    177 		struct {
    178 			unsigned int phu_poolid;
    179 		} phu_onpage;
    180 	} ph_u1;
    181 	void *			ph_page;	/* this page's address */
    182 	uint32_t		ph_time;	/* last referenced */
    183 	uint16_t		ph_nmissing;	/* # of chunks in use */
    184 	uint16_t		ph_off;		/* start offset in page */
    185 	union {
    186 		/* !PR_USEBMAP */
    187 		struct {
    188 			LIST_HEAD(, pool_item)
    189 				phu_itemlist;	/* chunk list for this page */
    190 		} phu_normal;
    191 		/* PR_USEBMAP */
    192 		struct {
    193 			pool_item_bitmap_t phu_bitmap[1];
    194 		} phu_notouch;
    195 	} ph_u2;
    196 };
    197 #define ph_node		ph_u1.phu_offpage.phu_node
    198 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    199 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    200 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    201 
    202 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    203 
    204 #if defined(DIAGNOSTIC) && !defined(KASAN)
    205 #define POOL_CHECK_MAGIC
    206 #endif
    207 
    208 struct pool_item {
    209 #ifdef POOL_CHECK_MAGIC
    210 	u_int pi_magic;
    211 #endif
    212 #define	PI_MAGIC 0xdeaddeadU
    213 	/* Other entries use only this list entry */
    214 	LIST_ENTRY(pool_item)	pi_list;
    215 };
    216 
    217 #define	POOL_NEEDS_CATCHUP(pp)						\
    218 	((pp)->pr_nitems < (pp)->pr_minitems)
    219 
    220 /*
    221  * Pool cache management.
    222  *
    223  * Pool caches provide a way for constructed objects to be cached by the
    224  * pool subsystem.  This can lead to performance improvements by avoiding
    225  * needless object construction/destruction; it is deferred until absolutely
    226  * necessary.
    227  *
    228  * Caches are grouped into cache groups.  Each cache group references up
    229  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    230  * object from the pool, it calls the object's constructor and places it
    231  * into a cache group.  When a cache group frees an object back to the
    232  * pool, it first calls the object's destructor.  This allows the object
    233  * to persist in constructed form while freed to the cache.
    234  *
    235  * The pool references each cache, so that when a pool is drained by the
    236  * pagedaemon, it can drain each individual cache as well.  Each time a
    237  * cache is drained, the most idle cache group is freed to the pool in
    238  * its entirety.
    239  *
    240  * Pool caches are layed on top of pools.  By layering them, we can avoid
    241  * the complexity of cache management for pools which would not benefit
    242  * from it.
    243  */
    244 
    245 static struct pool pcg_normal_pool;
    246 static struct pool pcg_large_pool;
    247 static struct pool cache_pool;
    248 static struct pool cache_cpu_pool;
    249 
    250 /* List of all caches. */
    251 TAILQ_HEAD(,pool_cache) pool_cache_head =
    252     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    253 
    254 int pool_cache_disable;		/* global disable for caching */
    255 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    256 
    257 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    258 				    void *);
    259 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    260 				    void **, paddr_t *, int);
    261 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    262 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    263 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    264 static void	pool_cache_transfer(pool_cache_t);
    265 
    266 static int	pool_catchup(struct pool *);
    267 static void	pool_prime_page(struct pool *, void *,
    268 		    struct pool_item_header *);
    269 static void	pool_update_curpage(struct pool *);
    270 
    271 static int	pool_grow(struct pool *, int);
    272 static void	*pool_allocator_alloc(struct pool *, int);
    273 static void	pool_allocator_free(struct pool *, void *);
    274 
    275 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    276 	void (*)(const char *, ...) __printflike(1, 2));
    277 static void pool_print1(struct pool *, const char *,
    278 	void (*)(const char *, ...) __printflike(1, 2));
    279 
    280 static int pool_chk_page(struct pool *, const char *,
    281 			 struct pool_item_header *);
    282 
    283 /* -------------------------------------------------------------------------- */
    284 
    285 static inline unsigned int
    286 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    287     const void *v)
    288 {
    289 	const char *cp = v;
    290 	unsigned int idx;
    291 
    292 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    293 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    294 
    295 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    296 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    297 		    pp->pr_itemsperpage);
    298 	}
    299 
    300 	return idx;
    301 }
    302 
    303 static inline void
    304 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    305     void *obj)
    306 {
    307 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    308 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    309 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    310 
    311 	if (__predict_false((*bitmap & mask) != 0)) {
    312 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    313 	}
    314 
    315 	*bitmap |= mask;
    316 }
    317 
    318 static inline void *
    319 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    320 {
    321 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    322 	unsigned int idx;
    323 	int i;
    324 
    325 	for (i = 0; ; i++) {
    326 		int bit;
    327 
    328 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    329 		bit = ffs32(bitmap[i]);
    330 		if (bit) {
    331 			pool_item_bitmap_t mask;
    332 
    333 			bit--;
    334 			idx = (i * BITMAP_SIZE) + bit;
    335 			mask = 1U << bit;
    336 			KASSERT((bitmap[i] & mask) != 0);
    337 			bitmap[i] &= ~mask;
    338 			break;
    339 		}
    340 	}
    341 	KASSERT(idx < pp->pr_itemsperpage);
    342 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    343 }
    344 
    345 static inline void
    346 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    347 {
    348 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    349 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    350 	int i;
    351 
    352 	for (i = 0; i < n; i++) {
    353 		bitmap[i] = (pool_item_bitmap_t)-1;
    354 	}
    355 }
    356 
    357 /* -------------------------------------------------------------------------- */
    358 
    359 static inline void
    360 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    361     void *obj)
    362 {
    363 	struct pool_item *pi = obj;
    364 
    365 #ifdef POOL_CHECK_MAGIC
    366 	pi->pi_magic = PI_MAGIC;
    367 #endif
    368 
    369 	if (pp->pr_redzone) {
    370 		/*
    371 		 * Mark the pool_item as valid. The rest is already
    372 		 * invalid.
    373 		 */
    374 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    375 	}
    376 
    377 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    378 }
    379 
    380 static inline void *
    381 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    382 {
    383 	struct pool_item *pi;
    384 	void *v;
    385 
    386 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    387 	if (__predict_false(v == NULL)) {
    388 		mutex_exit(&pp->pr_lock);
    389 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    390 	}
    391 	KASSERTMSG((pp->pr_nitems > 0),
    392 	    "%s: [%s] nitems %u inconsistent on itemlist",
    393 	    __func__, pp->pr_wchan, pp->pr_nitems);
    394 #ifdef POOL_CHECK_MAGIC
    395 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    396 	    "%s: [%s] free list modified: "
    397 	    "magic=%x; page %p; item addr %p", __func__,
    398 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    399 #endif
    400 
    401 	/*
    402 	 * Remove from item list.
    403 	 */
    404 	LIST_REMOVE(pi, pi_list);
    405 
    406 	return v;
    407 }
    408 
    409 /* -------------------------------------------------------------------------- */
    410 
    411 static inline int
    412 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    413 {
    414 
    415 	/*
    416 	 * We consider pool_item_header with smaller ph_page bigger. This
    417 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    418 	 */
    419 	if (a->ph_page < b->ph_page)
    420 		return 1;
    421 	else if (a->ph_page > b->ph_page)
    422 		return -1;
    423 	else
    424 		return 0;
    425 }
    426 
    427 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    428 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    429 
    430 static inline struct pool_item_header *
    431 pr_find_pagehead_noalign(struct pool *pp, void *v)
    432 {
    433 	struct pool_item_header *ph, tmp;
    434 
    435 	tmp.ph_page = (void *)(uintptr_t)v;
    436 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    437 	if (ph == NULL) {
    438 		ph = SPLAY_ROOT(&pp->pr_phtree);
    439 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    440 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    441 		}
    442 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    443 	}
    444 
    445 	return ph;
    446 }
    447 
    448 /*
    449  * Return the pool page header based on item address.
    450  */
    451 static inline struct pool_item_header *
    452 pr_find_pagehead(struct pool *pp, void *v)
    453 {
    454 	struct pool_item_header *ph, tmp;
    455 
    456 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    457 		ph = pr_find_pagehead_noalign(pp, v);
    458 	} else {
    459 		void *page =
    460 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    461 
    462 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    463 			ph = (struct pool_item_header *)page;
    464 			if (__predict_false((void *)ph->ph_page != page)) {
    465 				panic("%s: [%s] item %p not part of pool",
    466 				    __func__, pp->pr_wchan, v);
    467 			}
    468 			if (__predict_false((char *)v < (char *)page +
    469 			    ph->ph_off)) {
    470 				panic("%s: [%s] item %p below item space",
    471 				    __func__, pp->pr_wchan, v);
    472 			}
    473 			if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    474 				panic("%s: [%s] item %p poolid %u != %u",
    475 				    __func__, pp->pr_wchan, v, ph->ph_poolid,
    476 				    pp->pr_poolid);
    477 			}
    478 		} else {
    479 			tmp.ph_page = page;
    480 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    481 		}
    482 	}
    483 
    484 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    485 	    ((char *)ph->ph_page <= (char *)v &&
    486 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    487 	return ph;
    488 }
    489 
    490 static void
    491 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    492 {
    493 	struct pool_item_header *ph;
    494 
    495 	while ((ph = LIST_FIRST(pq)) != NULL) {
    496 		LIST_REMOVE(ph, ph_pagelist);
    497 		pool_allocator_free(pp, ph->ph_page);
    498 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    499 			pool_put(pp->pr_phpool, ph);
    500 	}
    501 }
    502 
    503 /*
    504  * Remove a page from the pool.
    505  */
    506 static inline void
    507 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    508      struct pool_pagelist *pq)
    509 {
    510 
    511 	KASSERT(mutex_owned(&pp->pr_lock));
    512 
    513 	/*
    514 	 * If the page was idle, decrement the idle page count.
    515 	 */
    516 	if (ph->ph_nmissing == 0) {
    517 		KASSERT(pp->pr_nidle != 0);
    518 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    519 		    "nitems=%u < itemsperpage=%u",
    520 		    pp->pr_nitems, pp->pr_itemsperpage);
    521 		pp->pr_nidle--;
    522 	}
    523 
    524 	pp->pr_nitems -= pp->pr_itemsperpage;
    525 
    526 	/*
    527 	 * Unlink the page from the pool and queue it for release.
    528 	 */
    529 	LIST_REMOVE(ph, ph_pagelist);
    530 	if (pp->pr_roflags & PR_PHINPAGE) {
    531 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    532 			panic("%s: [%s] ph %p poolid %u != %u",
    533 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    534 			    pp->pr_poolid);
    535 		}
    536 	} else {
    537 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    538 	}
    539 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    540 
    541 	pp->pr_npages--;
    542 	pp->pr_npagefree++;
    543 
    544 	pool_update_curpage(pp);
    545 }
    546 
    547 /*
    548  * Initialize all the pools listed in the "pools" link set.
    549  */
    550 void
    551 pool_subsystem_init(void)
    552 {
    553 	size_t size;
    554 	int idx;
    555 
    556 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    557 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    558 	cv_init(&pool_busy, "poolbusy");
    559 
    560 	/*
    561 	 * Initialize private page header pool and cache magazine pool if we
    562 	 * haven't done so yet.
    563 	 */
    564 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    565 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    566 		int nelem;
    567 		size_t sz;
    568 
    569 		nelem = PHPOOL_FREELIST_NELEM(idx);
    570 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    571 		    "phpool-%d", nelem);
    572 		sz = sizeof(struct pool_item_header);
    573 		if (nelem) {
    574 			sz = offsetof(struct pool_item_header,
    575 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    576 		}
    577 		pool_init(&phpool[idx], sz, 0, 0, 0,
    578 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    579 	}
    580 
    581 	size = sizeof(pcg_t) +
    582 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    583 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    584 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    585 
    586 	size = sizeof(pcg_t) +
    587 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    588 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    589 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    590 
    591 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    592 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    593 
    594 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    595 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    596 }
    597 
    598 static inline bool
    599 pool_init_is_phinpage(const struct pool *pp)
    600 {
    601 	size_t pagesize;
    602 
    603 	if (pp->pr_roflags & PR_PHINPAGE) {
    604 		return true;
    605 	}
    606 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    607 		return false;
    608 	}
    609 
    610 	pagesize = pp->pr_alloc->pa_pagesz;
    611 
    612 	/*
    613 	 * Threshold: the item size is below 1/16 of a page size, and below
    614 	 * 8 times the page header size. The latter ensures we go off-page
    615 	 * if the page header would make us waste a rather big item.
    616 	 */
    617 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    618 		return true;
    619 	}
    620 
    621 	/* Put the header into the page if it doesn't waste any items. */
    622 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    623 		return true;
    624 	}
    625 
    626 	return false;
    627 }
    628 
    629 static inline bool
    630 pool_init_is_usebmap(const struct pool *pp)
    631 {
    632 	size_t bmapsize;
    633 
    634 	if (pp->pr_roflags & PR_NOTOUCH) {
    635 		return true;
    636 	}
    637 
    638 	/*
    639 	 * If we're on-page, and the page header can already contain a bitmap
    640 	 * big enough to cover all the items of the page, go with a bitmap.
    641 	 */
    642 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    643 		return false;
    644 	}
    645 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    646 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    647 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    648 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    649 		return true;
    650 	}
    651 
    652 	return false;
    653 }
    654 
    655 /*
    656  * Initialize the given pool resource structure.
    657  *
    658  * We export this routine to allow other kernel parts to declare
    659  * static pools that must be initialized before kmem(9) is available.
    660  */
    661 void
    662 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    663     const char *wchan, struct pool_allocator *palloc, int ipl)
    664 {
    665 	struct pool *pp1;
    666 	size_t prsize;
    667 	int itemspace, slack;
    668 
    669 	/* XXX ioff will be removed. */
    670 	KASSERT(ioff == 0);
    671 
    672 #ifdef DEBUG
    673 	if (__predict_true(!cold))
    674 		mutex_enter(&pool_head_lock);
    675 	/*
    676 	 * Check that the pool hasn't already been initialised and
    677 	 * added to the list of all pools.
    678 	 */
    679 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    680 		if (pp == pp1)
    681 			panic("%s: [%s] already initialised", __func__,
    682 			    wchan);
    683 	}
    684 	if (__predict_true(!cold))
    685 		mutex_exit(&pool_head_lock);
    686 #endif
    687 
    688 	if (palloc == NULL)
    689 		palloc = &pool_allocator_kmem;
    690 
    691 	if (!cold)
    692 		mutex_enter(&pool_allocator_lock);
    693 	if (palloc->pa_refcnt++ == 0) {
    694 		if (palloc->pa_pagesz == 0)
    695 			palloc->pa_pagesz = PAGE_SIZE;
    696 
    697 		TAILQ_INIT(&palloc->pa_list);
    698 
    699 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    700 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    701 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    702 	}
    703 	if (!cold)
    704 		mutex_exit(&pool_allocator_lock);
    705 
    706 	if (align == 0)
    707 		align = ALIGN(1);
    708 
    709 	prsize = size;
    710 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    711 		prsize = sizeof(struct pool_item);
    712 
    713 	prsize = roundup(prsize, align);
    714 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    715 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    716 	    __func__, wchan, prsize, palloc->pa_pagesz);
    717 
    718 	/*
    719 	 * Initialize the pool structure.
    720 	 */
    721 	LIST_INIT(&pp->pr_emptypages);
    722 	LIST_INIT(&pp->pr_fullpages);
    723 	LIST_INIT(&pp->pr_partpages);
    724 	pp->pr_cache = NULL;
    725 	pp->pr_curpage = NULL;
    726 	pp->pr_npages = 0;
    727 	pp->pr_minitems = 0;
    728 	pp->pr_minpages = 0;
    729 	pp->pr_maxpages = UINT_MAX;
    730 	pp->pr_roflags = flags;
    731 	pp->pr_flags = 0;
    732 	pp->pr_size = prsize;
    733 	pp->pr_reqsize = size;
    734 	pp->pr_align = align;
    735 	pp->pr_wchan = wchan;
    736 	pp->pr_alloc = palloc;
    737 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    738 	pp->pr_nitems = 0;
    739 	pp->pr_nout = 0;
    740 	pp->pr_hardlimit = UINT_MAX;
    741 	pp->pr_hardlimit_warning = NULL;
    742 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    743 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    744 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    745 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    746 	pp->pr_drain_hook = NULL;
    747 	pp->pr_drain_hook_arg = NULL;
    748 	pp->pr_freecheck = NULL;
    749 	pool_redzone_init(pp, size);
    750 	pool_quarantine_init(pp);
    751 
    752 	/*
    753 	 * Decide whether to put the page header off-page to avoid wasting too
    754 	 * large a part of the page or too big an item. Off-page page headers
    755 	 * go on a hash table, so we can match a returned item with its header
    756 	 * based on the page address.
    757 	 */
    758 	if (pool_init_is_phinpage(pp)) {
    759 		/* Use the beginning of the page for the page header */
    760 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    761 		pp->pr_itemoffset = roundup(PHSIZE, align);
    762 		pp->pr_roflags |= PR_PHINPAGE;
    763 	} else {
    764 		/* The page header will be taken from our page header pool */
    765 		itemspace = palloc->pa_pagesz;
    766 		pp->pr_itemoffset = 0;
    767 		SPLAY_INIT(&pp->pr_phtree);
    768 	}
    769 
    770 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    771 	KASSERT(pp->pr_itemsperpage != 0);
    772 
    773 	/*
    774 	 * Decide whether to use a bitmap or a linked list to manage freed
    775 	 * items.
    776 	 */
    777 	if (pool_init_is_usebmap(pp)) {
    778 		pp->pr_roflags |= PR_USEBMAP;
    779 	}
    780 
    781 	/*
    782 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    783 	 * allocate page headers, whose size varies depending on the bitmap. If
    784 	 * we're just off-page, take the first pool, no extra size. If we're
    785 	 * on-page, nothing to do.
    786 	 */
    787 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    788 		int idx;
    789 
    790 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    791 		    idx++) {
    792 			/* nothing */
    793 		}
    794 		if (idx >= PHPOOL_MAX) {
    795 			/*
    796 			 * if you see this panic, consider to tweak
    797 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    798 			 */
    799 			panic("%s: [%s] too large itemsperpage(%d) for "
    800 			    "PR_USEBMAP", __func__,
    801 			    pp->pr_wchan, pp->pr_itemsperpage);
    802 		}
    803 		pp->pr_phpool = &phpool[idx];
    804 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    805 		pp->pr_phpool = &phpool[0];
    806 	} else {
    807 		pp->pr_phpool = NULL;
    808 	}
    809 
    810 	/*
    811 	 * Use the slack between the chunks and the page header
    812 	 * for "cache coloring".
    813 	 */
    814 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    815 	pp->pr_maxcolor = rounddown(slack, align);
    816 	pp->pr_curcolor = 0;
    817 
    818 	pp->pr_nget = 0;
    819 	pp->pr_nfail = 0;
    820 	pp->pr_nput = 0;
    821 	pp->pr_npagealloc = 0;
    822 	pp->pr_npagefree = 0;
    823 	pp->pr_hiwat = 0;
    824 	pp->pr_nidle = 0;
    825 	pp->pr_refcnt = 0;
    826 
    827 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    828 	cv_init(&pp->pr_cv, wchan);
    829 	pp->pr_ipl = ipl;
    830 
    831 	/* Insert into the list of all pools. */
    832 	if (!cold)
    833 		mutex_enter(&pool_head_lock);
    834 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    835 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    836 			break;
    837 	}
    838 	if (pp1 == NULL)
    839 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    840 	else
    841 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    842 	if (!cold)
    843 		mutex_exit(&pool_head_lock);
    844 
    845 	/* Insert this into the list of pools using this allocator. */
    846 	if (!cold)
    847 		mutex_enter(&palloc->pa_lock);
    848 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    849 	if (!cold)
    850 		mutex_exit(&palloc->pa_lock);
    851 }
    852 
    853 /*
    854  * De-commision a pool resource.
    855  */
    856 void
    857 pool_destroy(struct pool *pp)
    858 {
    859 	struct pool_pagelist pq;
    860 	struct pool_item_header *ph;
    861 
    862 	pool_quarantine_flush(pp);
    863 
    864 	/* Remove from global pool list */
    865 	mutex_enter(&pool_head_lock);
    866 	while (pp->pr_refcnt != 0)
    867 		cv_wait(&pool_busy, &pool_head_lock);
    868 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    869 	if (drainpp == pp)
    870 		drainpp = NULL;
    871 	mutex_exit(&pool_head_lock);
    872 
    873 	/* Remove this pool from its allocator's list of pools. */
    874 	mutex_enter(&pp->pr_alloc->pa_lock);
    875 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    876 	mutex_exit(&pp->pr_alloc->pa_lock);
    877 
    878 	mutex_enter(&pool_allocator_lock);
    879 	if (--pp->pr_alloc->pa_refcnt == 0)
    880 		mutex_destroy(&pp->pr_alloc->pa_lock);
    881 	mutex_exit(&pool_allocator_lock);
    882 
    883 	mutex_enter(&pp->pr_lock);
    884 
    885 	KASSERT(pp->pr_cache == NULL);
    886 	KASSERTMSG((pp->pr_nout == 0),
    887 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    888 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    889 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    890 
    891 	/* Remove all pages */
    892 	LIST_INIT(&pq);
    893 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    894 		pr_rmpage(pp, ph, &pq);
    895 
    896 	mutex_exit(&pp->pr_lock);
    897 
    898 	pr_pagelist_free(pp, &pq);
    899 	cv_destroy(&pp->pr_cv);
    900 	mutex_destroy(&pp->pr_lock);
    901 }
    902 
    903 void
    904 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    905 {
    906 
    907 	/* XXX no locking -- must be used just after pool_init() */
    908 	KASSERTMSG((pp->pr_drain_hook == NULL),
    909 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    910 	pp->pr_drain_hook = fn;
    911 	pp->pr_drain_hook_arg = arg;
    912 }
    913 
    914 static struct pool_item_header *
    915 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    916 {
    917 	struct pool_item_header *ph;
    918 
    919 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    920 		ph = storage;
    921 	else
    922 		ph = pool_get(pp->pr_phpool, flags);
    923 
    924 	return ph;
    925 }
    926 
    927 /*
    928  * Grab an item from the pool.
    929  */
    930 void *
    931 pool_get(struct pool *pp, int flags)
    932 {
    933 	struct pool_item_header *ph;
    934 	void *v;
    935 
    936 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    937 	KASSERTMSG((pp->pr_itemsperpage != 0),
    938 	    "%s: [%s] pr_itemsperpage is zero, "
    939 	    "pool not initialized?", __func__, pp->pr_wchan);
    940 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    941 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    942 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    943 	    __func__, pp->pr_wchan);
    944 	if (flags & PR_WAITOK) {
    945 		ASSERT_SLEEPABLE();
    946 	}
    947 
    948 	mutex_enter(&pp->pr_lock);
    949  startover:
    950 	/*
    951 	 * Check to see if we've reached the hard limit.  If we have,
    952 	 * and we can wait, then wait until an item has been returned to
    953 	 * the pool.
    954 	 */
    955 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    956 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    957 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    958 		if (pp->pr_drain_hook != NULL) {
    959 			/*
    960 			 * Since the drain hook is going to free things
    961 			 * back to the pool, unlock, call the hook, re-lock,
    962 			 * and check the hardlimit condition again.
    963 			 */
    964 			mutex_exit(&pp->pr_lock);
    965 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    966 			mutex_enter(&pp->pr_lock);
    967 			if (pp->pr_nout < pp->pr_hardlimit)
    968 				goto startover;
    969 		}
    970 
    971 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    972 			/*
    973 			 * XXX: A warning isn't logged in this case.  Should
    974 			 * it be?
    975 			 */
    976 			pp->pr_flags |= PR_WANTED;
    977 			do {
    978 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    979 			} while (pp->pr_flags & PR_WANTED);
    980 			goto startover;
    981 		}
    982 
    983 		/*
    984 		 * Log a message that the hard limit has been hit.
    985 		 */
    986 		if (pp->pr_hardlimit_warning != NULL &&
    987 		    ratecheck(&pp->pr_hardlimit_warning_last,
    988 			      &pp->pr_hardlimit_ratecap))
    989 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    990 
    991 		pp->pr_nfail++;
    992 
    993 		mutex_exit(&pp->pr_lock);
    994 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    995 		return NULL;
    996 	}
    997 
    998 	/*
    999 	 * The convention we use is that if `curpage' is not NULL, then
   1000 	 * it points at a non-empty bucket. In particular, `curpage'
   1001 	 * never points at a page header which has PR_PHINPAGE set and
   1002 	 * has no items in its bucket.
   1003 	 */
   1004 	if ((ph = pp->pr_curpage) == NULL) {
   1005 		int error;
   1006 
   1007 		KASSERTMSG((pp->pr_nitems == 0),
   1008 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1009 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1010 
   1011 		/*
   1012 		 * Call the back-end page allocator for more memory.
   1013 		 * Release the pool lock, as the back-end page allocator
   1014 		 * may block.
   1015 		 */
   1016 		error = pool_grow(pp, flags);
   1017 		if (error != 0) {
   1018 			/*
   1019 			 * pool_grow aborts when another thread
   1020 			 * is allocating a new page. Retry if it
   1021 			 * waited for it.
   1022 			 */
   1023 			if (error == ERESTART)
   1024 				goto startover;
   1025 
   1026 			/*
   1027 			 * We were unable to allocate a page or item
   1028 			 * header, but we released the lock during
   1029 			 * allocation, so perhaps items were freed
   1030 			 * back to the pool.  Check for this case.
   1031 			 */
   1032 			if (pp->pr_curpage != NULL)
   1033 				goto startover;
   1034 
   1035 			pp->pr_nfail++;
   1036 			mutex_exit(&pp->pr_lock);
   1037 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1038 			return NULL;
   1039 		}
   1040 
   1041 		/* Start the allocation process over. */
   1042 		goto startover;
   1043 	}
   1044 	if (pp->pr_roflags & PR_USEBMAP) {
   1045 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1046 		    "%s: %s: page empty", __func__, pp->pr_wchan);
   1047 		v = pr_item_bitmap_get(pp, ph);
   1048 	} else {
   1049 		v = pr_item_linkedlist_get(pp, ph);
   1050 	}
   1051 	pp->pr_nitems--;
   1052 	pp->pr_nout++;
   1053 	if (ph->ph_nmissing == 0) {
   1054 		KASSERT(pp->pr_nidle > 0);
   1055 		pp->pr_nidle--;
   1056 
   1057 		/*
   1058 		 * This page was previously empty.  Move it to the list of
   1059 		 * partially-full pages.  This page is already curpage.
   1060 		 */
   1061 		LIST_REMOVE(ph, ph_pagelist);
   1062 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1063 	}
   1064 	ph->ph_nmissing++;
   1065 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1066 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1067 			LIST_EMPTY(&ph->ph_itemlist)),
   1068 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1069 			pp->pr_wchan, ph->ph_nmissing);
   1070 		/*
   1071 		 * This page is now full.  Move it to the full list
   1072 		 * and select a new current page.
   1073 		 */
   1074 		LIST_REMOVE(ph, ph_pagelist);
   1075 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1076 		pool_update_curpage(pp);
   1077 	}
   1078 
   1079 	pp->pr_nget++;
   1080 
   1081 	/*
   1082 	 * If we have a low water mark and we are now below that low
   1083 	 * water mark, add more items to the pool.
   1084 	 */
   1085 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1086 		/*
   1087 		 * XXX: Should we log a warning?  Should we set up a timeout
   1088 		 * to try again in a second or so?  The latter could break
   1089 		 * a caller's assumptions about interrupt protection, etc.
   1090 		 */
   1091 	}
   1092 
   1093 	mutex_exit(&pp->pr_lock);
   1094 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1095 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1096 	pool_redzone_fill(pp, v);
   1097 	if (flags & PR_ZERO)
   1098 		memset(v, 0, pp->pr_reqsize);
   1099 	else
   1100 		pool_kleak_fill(pp, v);
   1101 	return v;
   1102 }
   1103 
   1104 /*
   1105  * Internal version of pool_put().  Pool is already locked/entered.
   1106  */
   1107 static void
   1108 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1109 {
   1110 	struct pool_item_header *ph;
   1111 
   1112 	KASSERT(mutex_owned(&pp->pr_lock));
   1113 	pool_redzone_check(pp, v);
   1114 	FREECHECK_IN(&pp->pr_freecheck, v);
   1115 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1116 
   1117 	KASSERTMSG((pp->pr_nout > 0),
   1118 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1119 
   1120 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1121 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1122 	}
   1123 
   1124 	/*
   1125 	 * Return to item list.
   1126 	 */
   1127 	if (pp->pr_roflags & PR_USEBMAP) {
   1128 		pr_item_bitmap_put(pp, ph, v);
   1129 	} else {
   1130 		pr_item_linkedlist_put(pp, ph, v);
   1131 	}
   1132 	KDASSERT(ph->ph_nmissing != 0);
   1133 	ph->ph_nmissing--;
   1134 	pp->pr_nput++;
   1135 	pp->pr_nitems++;
   1136 	pp->pr_nout--;
   1137 
   1138 	/* Cancel "pool empty" condition if it exists */
   1139 	if (pp->pr_curpage == NULL)
   1140 		pp->pr_curpage = ph;
   1141 
   1142 	if (pp->pr_flags & PR_WANTED) {
   1143 		pp->pr_flags &= ~PR_WANTED;
   1144 		cv_broadcast(&pp->pr_cv);
   1145 	}
   1146 
   1147 	/*
   1148 	 * If this page is now empty, do one of two things:
   1149 	 *
   1150 	 *	(1) If we have more pages than the page high water mark,
   1151 	 *	    free the page back to the system.  ONLY CONSIDER
   1152 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1153 	 *	    CLAIM.
   1154 	 *
   1155 	 *	(2) Otherwise, move the page to the empty page list.
   1156 	 *
   1157 	 * Either way, select a new current page (so we use a partially-full
   1158 	 * page if one is available).
   1159 	 */
   1160 	if (ph->ph_nmissing == 0) {
   1161 		pp->pr_nidle++;
   1162 		if (pp->pr_npages > pp->pr_minpages &&
   1163 		    pp->pr_npages > pp->pr_maxpages) {
   1164 			pr_rmpage(pp, ph, pq);
   1165 		} else {
   1166 			LIST_REMOVE(ph, ph_pagelist);
   1167 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1168 
   1169 			/*
   1170 			 * Update the timestamp on the page.  A page must
   1171 			 * be idle for some period of time before it can
   1172 			 * be reclaimed by the pagedaemon.  This minimizes
   1173 			 * ping-pong'ing for memory.
   1174 			 *
   1175 			 * note for 64-bit time_t: truncating to 32-bit is not
   1176 			 * a problem for our usage.
   1177 			 */
   1178 			ph->ph_time = time_uptime;
   1179 		}
   1180 		pool_update_curpage(pp);
   1181 	}
   1182 
   1183 	/*
   1184 	 * If the page was previously completely full, move it to the
   1185 	 * partially-full list and make it the current page.  The next
   1186 	 * allocation will get the item from this page, instead of
   1187 	 * further fragmenting the pool.
   1188 	 */
   1189 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1190 		LIST_REMOVE(ph, ph_pagelist);
   1191 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1192 		pp->pr_curpage = ph;
   1193 	}
   1194 }
   1195 
   1196 void
   1197 pool_put(struct pool *pp, void *v)
   1198 {
   1199 	struct pool_pagelist pq;
   1200 
   1201 	LIST_INIT(&pq);
   1202 
   1203 	mutex_enter(&pp->pr_lock);
   1204 	if (!pool_put_quarantine(pp, v, &pq)) {
   1205 		pool_do_put(pp, v, &pq);
   1206 	}
   1207 	mutex_exit(&pp->pr_lock);
   1208 
   1209 	pr_pagelist_free(pp, &pq);
   1210 }
   1211 
   1212 /*
   1213  * pool_grow: grow a pool by a page.
   1214  *
   1215  * => called with pool locked.
   1216  * => unlock and relock the pool.
   1217  * => return with pool locked.
   1218  */
   1219 
   1220 static int
   1221 pool_grow(struct pool *pp, int flags)
   1222 {
   1223 	struct pool_item_header *ph;
   1224 	char *storage;
   1225 
   1226 	/*
   1227 	 * If there's a pool_grow in progress, wait for it to complete
   1228 	 * and try again from the top.
   1229 	 */
   1230 	if (pp->pr_flags & PR_GROWING) {
   1231 		if (flags & PR_WAITOK) {
   1232 			do {
   1233 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1234 			} while (pp->pr_flags & PR_GROWING);
   1235 			return ERESTART;
   1236 		} else {
   1237 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1238 				/*
   1239 				 * This needs an unlock/relock dance so
   1240 				 * that the other caller has a chance to
   1241 				 * run and actually do the thing.  Note
   1242 				 * that this is effectively a busy-wait.
   1243 				 */
   1244 				mutex_exit(&pp->pr_lock);
   1245 				mutex_enter(&pp->pr_lock);
   1246 				return ERESTART;
   1247 			}
   1248 			return EWOULDBLOCK;
   1249 		}
   1250 	}
   1251 	pp->pr_flags |= PR_GROWING;
   1252 	if (flags & PR_WAITOK)
   1253 		mutex_exit(&pp->pr_lock);
   1254 	else
   1255 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1256 
   1257 	storage = pool_allocator_alloc(pp, flags);
   1258 	if (__predict_false(storage == NULL))
   1259 		goto out;
   1260 
   1261 	ph = pool_alloc_item_header(pp, storage, flags);
   1262 	if (__predict_false(ph == NULL)) {
   1263 		pool_allocator_free(pp, storage);
   1264 		goto out;
   1265 	}
   1266 
   1267 	if (flags & PR_WAITOK)
   1268 		mutex_enter(&pp->pr_lock);
   1269 	pool_prime_page(pp, storage, ph);
   1270 	pp->pr_npagealloc++;
   1271 	KASSERT(pp->pr_flags & PR_GROWING);
   1272 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1273 	/*
   1274 	 * If anyone was waiting for pool_grow, notify them that we
   1275 	 * may have just done it.
   1276 	 */
   1277 	cv_broadcast(&pp->pr_cv);
   1278 	return 0;
   1279 out:
   1280 	if (flags & PR_WAITOK)
   1281 		mutex_enter(&pp->pr_lock);
   1282 	KASSERT(pp->pr_flags & PR_GROWING);
   1283 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1284 	return ENOMEM;
   1285 }
   1286 
   1287 /*
   1288  * Add N items to the pool.
   1289  */
   1290 int
   1291 pool_prime(struct pool *pp, int n)
   1292 {
   1293 	int newpages;
   1294 	int error = 0;
   1295 
   1296 	mutex_enter(&pp->pr_lock);
   1297 
   1298 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1299 
   1300 	while (newpages > 0) {
   1301 		error = pool_grow(pp, PR_NOWAIT);
   1302 		if (error) {
   1303 			if (error == ERESTART)
   1304 				continue;
   1305 			break;
   1306 		}
   1307 		pp->pr_minpages++;
   1308 		newpages--;
   1309 	}
   1310 
   1311 	if (pp->pr_minpages >= pp->pr_maxpages)
   1312 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1313 
   1314 	mutex_exit(&pp->pr_lock);
   1315 	return error;
   1316 }
   1317 
   1318 /*
   1319  * Add a page worth of items to the pool.
   1320  *
   1321  * Note, we must be called with the pool descriptor LOCKED.
   1322  */
   1323 static void
   1324 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1325 {
   1326 	const unsigned int align = pp->pr_align;
   1327 	struct pool_item *pi;
   1328 	void *cp = storage;
   1329 	int n;
   1330 
   1331 	KASSERT(mutex_owned(&pp->pr_lock));
   1332 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1333 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1334 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1335 
   1336 	/*
   1337 	 * Insert page header.
   1338 	 */
   1339 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1340 	LIST_INIT(&ph->ph_itemlist);
   1341 	ph->ph_page = storage;
   1342 	ph->ph_nmissing = 0;
   1343 	ph->ph_time = time_uptime;
   1344 	if (pp->pr_roflags & PR_PHINPAGE)
   1345 		ph->ph_poolid = pp->pr_poolid;
   1346 	else
   1347 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1348 
   1349 	pp->pr_nidle++;
   1350 
   1351 	/*
   1352 	 * The item space starts after the on-page header, if any.
   1353 	 */
   1354 	ph->ph_off = pp->pr_itemoffset;
   1355 
   1356 	/*
   1357 	 * Color this page.
   1358 	 */
   1359 	ph->ph_off += pp->pr_curcolor;
   1360 	cp = (char *)cp + ph->ph_off;
   1361 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1362 		pp->pr_curcolor = 0;
   1363 
   1364 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1365 
   1366 	/*
   1367 	 * Insert remaining chunks on the bucket list.
   1368 	 */
   1369 	n = pp->pr_itemsperpage;
   1370 	pp->pr_nitems += n;
   1371 
   1372 	if (pp->pr_roflags & PR_USEBMAP) {
   1373 		pr_item_bitmap_init(pp, ph);
   1374 	} else {
   1375 		while (n--) {
   1376 			pi = (struct pool_item *)cp;
   1377 
   1378 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1379 
   1380 			/* Insert on page list */
   1381 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1382 #ifdef POOL_CHECK_MAGIC
   1383 			pi->pi_magic = PI_MAGIC;
   1384 #endif
   1385 			cp = (char *)cp + pp->pr_size;
   1386 
   1387 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1388 		}
   1389 	}
   1390 
   1391 	/*
   1392 	 * If the pool was depleted, point at the new page.
   1393 	 */
   1394 	if (pp->pr_curpage == NULL)
   1395 		pp->pr_curpage = ph;
   1396 
   1397 	if (++pp->pr_npages > pp->pr_hiwat)
   1398 		pp->pr_hiwat = pp->pr_npages;
   1399 }
   1400 
   1401 /*
   1402  * Used by pool_get() when nitems drops below the low water mark.  This
   1403  * is used to catch up pr_nitems with the low water mark.
   1404  *
   1405  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1406  *
   1407  * Note 2, we must be called with the pool already locked, and we return
   1408  * with it locked.
   1409  */
   1410 static int
   1411 pool_catchup(struct pool *pp)
   1412 {
   1413 	int error = 0;
   1414 
   1415 	while (POOL_NEEDS_CATCHUP(pp)) {
   1416 		error = pool_grow(pp, PR_NOWAIT);
   1417 		if (error) {
   1418 			if (error == ERESTART)
   1419 				continue;
   1420 			break;
   1421 		}
   1422 	}
   1423 	return error;
   1424 }
   1425 
   1426 static void
   1427 pool_update_curpage(struct pool *pp)
   1428 {
   1429 
   1430 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1431 	if (pp->pr_curpage == NULL) {
   1432 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1433 	}
   1434 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1435 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1436 }
   1437 
   1438 void
   1439 pool_setlowat(struct pool *pp, int n)
   1440 {
   1441 
   1442 	mutex_enter(&pp->pr_lock);
   1443 
   1444 	pp->pr_minitems = n;
   1445 	pp->pr_minpages = (n == 0)
   1446 		? 0
   1447 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1448 
   1449 	/* Make sure we're caught up with the newly-set low water mark. */
   1450 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1451 		/*
   1452 		 * XXX: Should we log a warning?  Should we set up a timeout
   1453 		 * to try again in a second or so?  The latter could break
   1454 		 * a caller's assumptions about interrupt protection, etc.
   1455 		 */
   1456 	}
   1457 
   1458 	mutex_exit(&pp->pr_lock);
   1459 }
   1460 
   1461 void
   1462 pool_sethiwat(struct pool *pp, int n)
   1463 {
   1464 
   1465 	mutex_enter(&pp->pr_lock);
   1466 
   1467 	pp->pr_maxpages = (n == 0)
   1468 		? 0
   1469 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1470 
   1471 	mutex_exit(&pp->pr_lock);
   1472 }
   1473 
   1474 void
   1475 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1476 {
   1477 
   1478 	mutex_enter(&pp->pr_lock);
   1479 
   1480 	pp->pr_hardlimit = n;
   1481 	pp->pr_hardlimit_warning = warnmess;
   1482 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1483 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1484 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1485 
   1486 	/*
   1487 	 * In-line version of pool_sethiwat(), because we don't want to
   1488 	 * release the lock.
   1489 	 */
   1490 	pp->pr_maxpages = (n == 0)
   1491 		? 0
   1492 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1493 
   1494 	mutex_exit(&pp->pr_lock);
   1495 }
   1496 
   1497 /*
   1498  * Release all complete pages that have not been used recently.
   1499  *
   1500  * Must not be called from interrupt context.
   1501  */
   1502 int
   1503 pool_reclaim(struct pool *pp)
   1504 {
   1505 	struct pool_item_header *ph, *phnext;
   1506 	struct pool_pagelist pq;
   1507 	uint32_t curtime;
   1508 	bool klock;
   1509 	int rv;
   1510 
   1511 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1512 
   1513 	if (pp->pr_drain_hook != NULL) {
   1514 		/*
   1515 		 * The drain hook must be called with the pool unlocked.
   1516 		 */
   1517 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1518 	}
   1519 
   1520 	/*
   1521 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1522 	 * to block.
   1523 	 */
   1524 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1525 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1526 		KERNEL_LOCK(1, NULL);
   1527 		klock = true;
   1528 	} else
   1529 		klock = false;
   1530 
   1531 	/* Reclaim items from the pool's cache (if any). */
   1532 	if (pp->pr_cache != NULL)
   1533 		pool_cache_invalidate(pp->pr_cache);
   1534 
   1535 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1536 		if (klock) {
   1537 			KERNEL_UNLOCK_ONE(NULL);
   1538 		}
   1539 		return 0;
   1540 	}
   1541 
   1542 	LIST_INIT(&pq);
   1543 
   1544 	curtime = time_uptime;
   1545 
   1546 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1547 		phnext = LIST_NEXT(ph, ph_pagelist);
   1548 
   1549 		/* Check our minimum page claim */
   1550 		if (pp->pr_npages <= pp->pr_minpages)
   1551 			break;
   1552 
   1553 		KASSERT(ph->ph_nmissing == 0);
   1554 		if (curtime - ph->ph_time < pool_inactive_time)
   1555 			continue;
   1556 
   1557 		/*
   1558 		 * If freeing this page would put us below
   1559 		 * the low water mark, stop now.
   1560 		 */
   1561 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1562 		    pp->pr_minitems)
   1563 			break;
   1564 
   1565 		pr_rmpage(pp, ph, &pq);
   1566 	}
   1567 
   1568 	mutex_exit(&pp->pr_lock);
   1569 
   1570 	if (LIST_EMPTY(&pq))
   1571 		rv = 0;
   1572 	else {
   1573 		pr_pagelist_free(pp, &pq);
   1574 		rv = 1;
   1575 	}
   1576 
   1577 	if (klock) {
   1578 		KERNEL_UNLOCK_ONE(NULL);
   1579 	}
   1580 
   1581 	return rv;
   1582 }
   1583 
   1584 /*
   1585  * Drain pools, one at a time. The drained pool is returned within ppp.
   1586  *
   1587  * Note, must never be called from interrupt context.
   1588  */
   1589 bool
   1590 pool_drain(struct pool **ppp)
   1591 {
   1592 	bool reclaimed;
   1593 	struct pool *pp;
   1594 
   1595 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1596 
   1597 	pp = NULL;
   1598 
   1599 	/* Find next pool to drain, and add a reference. */
   1600 	mutex_enter(&pool_head_lock);
   1601 	do {
   1602 		if (drainpp == NULL) {
   1603 			drainpp = TAILQ_FIRST(&pool_head);
   1604 		}
   1605 		if (drainpp != NULL) {
   1606 			pp = drainpp;
   1607 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1608 		}
   1609 		/*
   1610 		 * Skip completely idle pools.  We depend on at least
   1611 		 * one pool in the system being active.
   1612 		 */
   1613 	} while (pp == NULL || pp->pr_npages == 0);
   1614 	pp->pr_refcnt++;
   1615 	mutex_exit(&pool_head_lock);
   1616 
   1617 	/* Drain the cache (if any) and pool.. */
   1618 	reclaimed = pool_reclaim(pp);
   1619 
   1620 	/* Finally, unlock the pool. */
   1621 	mutex_enter(&pool_head_lock);
   1622 	pp->pr_refcnt--;
   1623 	cv_broadcast(&pool_busy);
   1624 	mutex_exit(&pool_head_lock);
   1625 
   1626 	if (ppp != NULL)
   1627 		*ppp = pp;
   1628 
   1629 	return reclaimed;
   1630 }
   1631 
   1632 /*
   1633  * Calculate the total number of pages consumed by pools.
   1634  */
   1635 int
   1636 pool_totalpages(void)
   1637 {
   1638 
   1639 	mutex_enter(&pool_head_lock);
   1640 	int pages = pool_totalpages_locked();
   1641 	mutex_exit(&pool_head_lock);
   1642 
   1643 	return pages;
   1644 }
   1645 
   1646 int
   1647 pool_totalpages_locked(void)
   1648 {
   1649 	struct pool *pp;
   1650 	uint64_t total = 0;
   1651 
   1652 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1653 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1654 
   1655 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1656 			bytes -= (pp->pr_nout * pp->pr_size);
   1657 		total += bytes;
   1658 	}
   1659 
   1660 	return atop(total);
   1661 }
   1662 
   1663 /*
   1664  * Diagnostic helpers.
   1665  */
   1666 
   1667 void
   1668 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1669 {
   1670 	struct pool *pp;
   1671 
   1672 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1673 		pool_printit(pp, modif, pr);
   1674 	}
   1675 }
   1676 
   1677 void
   1678 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1679 {
   1680 
   1681 	if (pp == NULL) {
   1682 		(*pr)("Must specify a pool to print.\n");
   1683 		return;
   1684 	}
   1685 
   1686 	pool_print1(pp, modif, pr);
   1687 }
   1688 
   1689 static void
   1690 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1691     void (*pr)(const char *, ...))
   1692 {
   1693 	struct pool_item_header *ph;
   1694 
   1695 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1696 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1697 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1698 #ifdef POOL_CHECK_MAGIC
   1699 		struct pool_item *pi;
   1700 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1701 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1702 				if (pi->pi_magic != PI_MAGIC) {
   1703 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1704 					    pi, pi->pi_magic);
   1705 				}
   1706 			}
   1707 		}
   1708 #endif
   1709 	}
   1710 }
   1711 
   1712 static void
   1713 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1714 {
   1715 	struct pool_item_header *ph;
   1716 	pool_cache_t pc;
   1717 	pcg_t *pcg;
   1718 	pool_cache_cpu_t *cc;
   1719 	uint64_t cpuhit, cpumiss;
   1720 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1721 	char c;
   1722 
   1723 	while ((c = *modif++) != '\0') {
   1724 		if (c == 'l')
   1725 			print_log = 1;
   1726 		if (c == 'p')
   1727 			print_pagelist = 1;
   1728 		if (c == 'c')
   1729 			print_cache = 1;
   1730 	}
   1731 
   1732 	if ((pc = pp->pr_cache) != NULL) {
   1733 		(*pr)("POOL CACHE");
   1734 	} else {
   1735 		(*pr)("POOL");
   1736 	}
   1737 
   1738 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1739 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1740 	    pp->pr_roflags);
   1741 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1742 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1743 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1744 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1745 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1746 
   1747 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1748 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1749 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1750 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1751 
   1752 	if (print_pagelist == 0)
   1753 		goto skip_pagelist;
   1754 
   1755 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1756 		(*pr)("\n\tempty page list:\n");
   1757 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1758 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1759 		(*pr)("\n\tfull page list:\n");
   1760 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1761 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1762 		(*pr)("\n\tpartial-page list:\n");
   1763 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1764 
   1765 	if (pp->pr_curpage == NULL)
   1766 		(*pr)("\tno current page\n");
   1767 	else
   1768 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1769 
   1770  skip_pagelist:
   1771 	if (print_log == 0)
   1772 		goto skip_log;
   1773 
   1774 	(*pr)("\n");
   1775 
   1776  skip_log:
   1777 
   1778 #define PR_GROUPLIST(pcg)						\
   1779 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1780 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1781 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1782 		    POOL_PADDR_INVALID) {				\
   1783 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1784 			    pcg->pcg_objects[i].pcgo_va,		\
   1785 			    (unsigned long long)			\
   1786 			    pcg->pcg_objects[i].pcgo_pa);		\
   1787 		} else {						\
   1788 			(*pr)("\t\t\t%p\n",				\
   1789 			    pcg->pcg_objects[i].pcgo_va);		\
   1790 		}							\
   1791 	}
   1792 
   1793 	if (pc != NULL) {
   1794 		cpuhit = 0;
   1795 		cpumiss = 0;
   1796 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1797 			if ((cc = pc->pc_cpus[i]) == NULL)
   1798 				continue;
   1799 			cpuhit += cc->cc_hits;
   1800 			cpumiss += cc->cc_misses;
   1801 		}
   1802 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1803 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1804 		    pc->pc_hits, pc->pc_misses);
   1805 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1806 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1807 		    pc->pc_contended);
   1808 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1809 		    pc->pc_nempty, pc->pc_nfull);
   1810 		if (print_cache) {
   1811 			(*pr)("\tfull cache groups:\n");
   1812 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1813 			    pcg = pcg->pcg_next) {
   1814 				PR_GROUPLIST(pcg);
   1815 			}
   1816 			(*pr)("\tempty cache groups:\n");
   1817 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1818 			    pcg = pcg->pcg_next) {
   1819 				PR_GROUPLIST(pcg);
   1820 			}
   1821 		}
   1822 	}
   1823 #undef PR_GROUPLIST
   1824 }
   1825 
   1826 static int
   1827 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1828 {
   1829 	struct pool_item *pi;
   1830 	void *page;
   1831 	int n;
   1832 
   1833 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1834 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1835 		if (page != ph->ph_page &&
   1836 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1837 			if (label != NULL)
   1838 				printf("%s: ", label);
   1839 			printf("pool(%p:%s): page inconsistency: page %p;"
   1840 			       " at page head addr %p (p %p)\n", pp,
   1841 				pp->pr_wchan, ph->ph_page,
   1842 				ph, page);
   1843 			return 1;
   1844 		}
   1845 	}
   1846 
   1847 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1848 		return 0;
   1849 
   1850 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1851 	     pi != NULL;
   1852 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1853 
   1854 #ifdef POOL_CHECK_MAGIC
   1855 		if (pi->pi_magic != PI_MAGIC) {
   1856 			if (label != NULL)
   1857 				printf("%s: ", label);
   1858 			printf("pool(%s): free list modified: magic=%x;"
   1859 			       " page %p; item ordinal %d; addr %p\n",
   1860 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1861 				n, pi);
   1862 			panic("pool");
   1863 		}
   1864 #endif
   1865 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1866 			continue;
   1867 		}
   1868 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1869 		if (page == ph->ph_page)
   1870 			continue;
   1871 
   1872 		if (label != NULL)
   1873 			printf("%s: ", label);
   1874 		printf("pool(%p:%s): page inconsistency: page %p;"
   1875 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1876 			pp->pr_wchan, ph->ph_page,
   1877 			n, pi, page);
   1878 		return 1;
   1879 	}
   1880 	return 0;
   1881 }
   1882 
   1883 
   1884 int
   1885 pool_chk(struct pool *pp, const char *label)
   1886 {
   1887 	struct pool_item_header *ph;
   1888 	int r = 0;
   1889 
   1890 	mutex_enter(&pp->pr_lock);
   1891 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1892 		r = pool_chk_page(pp, label, ph);
   1893 		if (r) {
   1894 			goto out;
   1895 		}
   1896 	}
   1897 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1898 		r = pool_chk_page(pp, label, ph);
   1899 		if (r) {
   1900 			goto out;
   1901 		}
   1902 	}
   1903 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1904 		r = pool_chk_page(pp, label, ph);
   1905 		if (r) {
   1906 			goto out;
   1907 		}
   1908 	}
   1909 
   1910 out:
   1911 	mutex_exit(&pp->pr_lock);
   1912 	return r;
   1913 }
   1914 
   1915 /*
   1916  * pool_cache_init:
   1917  *
   1918  *	Initialize a pool cache.
   1919  */
   1920 pool_cache_t
   1921 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1922     const char *wchan, struct pool_allocator *palloc, int ipl,
   1923     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1924 {
   1925 	pool_cache_t pc;
   1926 
   1927 	pc = pool_get(&cache_pool, PR_WAITOK);
   1928 	if (pc == NULL)
   1929 		return NULL;
   1930 
   1931 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1932 	   palloc, ipl, ctor, dtor, arg);
   1933 
   1934 	return pc;
   1935 }
   1936 
   1937 /*
   1938  * pool_cache_bootstrap:
   1939  *
   1940  *	Kernel-private version of pool_cache_init().  The caller
   1941  *	provides initial storage.
   1942  */
   1943 void
   1944 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1945     u_int align_offset, u_int flags, const char *wchan,
   1946     struct pool_allocator *palloc, int ipl,
   1947     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1948     void *arg)
   1949 {
   1950 	CPU_INFO_ITERATOR cii;
   1951 	pool_cache_t pc1;
   1952 	struct cpu_info *ci;
   1953 	struct pool *pp;
   1954 
   1955 	pp = &pc->pc_pool;
   1956 	if (palloc == NULL && ipl == IPL_NONE) {
   1957 		if (size > PAGE_SIZE) {
   1958 			int bigidx = pool_bigidx(size);
   1959 
   1960 			palloc = &pool_allocator_big[bigidx];
   1961 		} else
   1962 			palloc = &pool_allocator_nointr;
   1963 	}
   1964 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1965 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1966 
   1967 	if (ctor == NULL) {
   1968 		ctor = (int (*)(void *, void *, int))nullop;
   1969 	}
   1970 	if (dtor == NULL) {
   1971 		dtor = (void (*)(void *, void *))nullop;
   1972 	}
   1973 
   1974 	pc->pc_emptygroups = NULL;
   1975 	pc->pc_fullgroups = NULL;
   1976 	pc->pc_partgroups = NULL;
   1977 	pc->pc_ctor = ctor;
   1978 	pc->pc_dtor = dtor;
   1979 	pc->pc_arg  = arg;
   1980 	pc->pc_hits  = 0;
   1981 	pc->pc_misses = 0;
   1982 	pc->pc_nempty = 0;
   1983 	pc->pc_npart = 0;
   1984 	pc->pc_nfull = 0;
   1985 	pc->pc_contended = 0;
   1986 	pc->pc_refcnt = 0;
   1987 	pc->pc_freecheck = NULL;
   1988 
   1989 	if ((flags & PR_LARGECACHE) != 0) {
   1990 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1991 		pc->pc_pcgpool = &pcg_large_pool;
   1992 	} else {
   1993 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1994 		pc->pc_pcgpool = &pcg_normal_pool;
   1995 	}
   1996 
   1997 	/* Allocate per-CPU caches. */
   1998 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1999 	pc->pc_ncpu = 0;
   2000 	if (ncpu < 2) {
   2001 		/* XXX For sparc: boot CPU is not attached yet. */
   2002 		pool_cache_cpu_init1(curcpu(), pc);
   2003 	} else {
   2004 		for (CPU_INFO_FOREACH(cii, ci)) {
   2005 			pool_cache_cpu_init1(ci, pc);
   2006 		}
   2007 	}
   2008 
   2009 	/* Add to list of all pools. */
   2010 	if (__predict_true(!cold))
   2011 		mutex_enter(&pool_head_lock);
   2012 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2013 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2014 			break;
   2015 	}
   2016 	if (pc1 == NULL)
   2017 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2018 	else
   2019 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2020 	if (__predict_true(!cold))
   2021 		mutex_exit(&pool_head_lock);
   2022 
   2023 	membar_sync();
   2024 	pp->pr_cache = pc;
   2025 }
   2026 
   2027 /*
   2028  * pool_cache_destroy:
   2029  *
   2030  *	Destroy a pool cache.
   2031  */
   2032 void
   2033 pool_cache_destroy(pool_cache_t pc)
   2034 {
   2035 
   2036 	pool_cache_bootstrap_destroy(pc);
   2037 	pool_put(&cache_pool, pc);
   2038 }
   2039 
   2040 /*
   2041  * pool_cache_bootstrap_destroy:
   2042  *
   2043  *	Destroy a pool cache.
   2044  */
   2045 void
   2046 pool_cache_bootstrap_destroy(pool_cache_t pc)
   2047 {
   2048 	struct pool *pp = &pc->pc_pool;
   2049 	u_int i;
   2050 
   2051 	/* Remove it from the global list. */
   2052 	mutex_enter(&pool_head_lock);
   2053 	while (pc->pc_refcnt != 0)
   2054 		cv_wait(&pool_busy, &pool_head_lock);
   2055 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2056 	mutex_exit(&pool_head_lock);
   2057 
   2058 	/* First, invalidate the entire cache. */
   2059 	pool_cache_invalidate(pc);
   2060 
   2061 	/* Disassociate it from the pool. */
   2062 	mutex_enter(&pp->pr_lock);
   2063 	pp->pr_cache = NULL;
   2064 	mutex_exit(&pp->pr_lock);
   2065 
   2066 	/* Destroy per-CPU data */
   2067 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2068 		pool_cache_invalidate_cpu(pc, i);
   2069 
   2070 	/* Finally, destroy it. */
   2071 	mutex_destroy(&pc->pc_lock);
   2072 	pool_destroy(pp);
   2073 }
   2074 
   2075 /*
   2076  * pool_cache_cpu_init1:
   2077  *
   2078  *	Called for each pool_cache whenever a new CPU is attached.
   2079  */
   2080 static void
   2081 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2082 {
   2083 	pool_cache_cpu_t *cc;
   2084 	int index;
   2085 
   2086 	index = ci->ci_index;
   2087 
   2088 	KASSERT(index < __arraycount(pc->pc_cpus));
   2089 
   2090 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2091 		KASSERT(cc->cc_cpuindex == index);
   2092 		return;
   2093 	}
   2094 
   2095 	/*
   2096 	 * The first CPU is 'free'.  This needs to be the case for
   2097 	 * bootstrap - we may not be able to allocate yet.
   2098 	 */
   2099 	if (pc->pc_ncpu == 0) {
   2100 		cc = &pc->pc_cpu0;
   2101 		pc->pc_ncpu = 1;
   2102 	} else {
   2103 		mutex_enter(&pc->pc_lock);
   2104 		pc->pc_ncpu++;
   2105 		mutex_exit(&pc->pc_lock);
   2106 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2107 	}
   2108 
   2109 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2110 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2111 	cc->cc_cache = pc;
   2112 	cc->cc_cpuindex = index;
   2113 	cc->cc_hits = 0;
   2114 	cc->cc_misses = 0;
   2115 	cc->cc_current = __UNCONST(&pcg_dummy);
   2116 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2117 
   2118 	pc->pc_cpus[index] = cc;
   2119 }
   2120 
   2121 /*
   2122  * pool_cache_cpu_init:
   2123  *
   2124  *	Called whenever a new CPU is attached.
   2125  */
   2126 void
   2127 pool_cache_cpu_init(struct cpu_info *ci)
   2128 {
   2129 	pool_cache_t pc;
   2130 
   2131 	mutex_enter(&pool_head_lock);
   2132 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2133 		pc->pc_refcnt++;
   2134 		mutex_exit(&pool_head_lock);
   2135 
   2136 		pool_cache_cpu_init1(ci, pc);
   2137 
   2138 		mutex_enter(&pool_head_lock);
   2139 		pc->pc_refcnt--;
   2140 		cv_broadcast(&pool_busy);
   2141 	}
   2142 	mutex_exit(&pool_head_lock);
   2143 }
   2144 
   2145 /*
   2146  * pool_cache_reclaim:
   2147  *
   2148  *	Reclaim memory from a pool cache.
   2149  */
   2150 bool
   2151 pool_cache_reclaim(pool_cache_t pc)
   2152 {
   2153 
   2154 	return pool_reclaim(&pc->pc_pool);
   2155 }
   2156 
   2157 static void
   2158 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2159 {
   2160 	(*pc->pc_dtor)(pc->pc_arg, object);
   2161 	pool_put(&pc->pc_pool, object);
   2162 }
   2163 
   2164 /*
   2165  * pool_cache_destruct_object:
   2166  *
   2167  *	Force destruction of an object and its release back into
   2168  *	the pool.
   2169  */
   2170 void
   2171 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2172 {
   2173 
   2174 	FREECHECK_IN(&pc->pc_freecheck, object);
   2175 
   2176 	pool_cache_destruct_object1(pc, object);
   2177 }
   2178 
   2179 /*
   2180  * pool_cache_invalidate_groups:
   2181  *
   2182  *	Invalidate a chain of groups and destruct all objects.
   2183  */
   2184 static void
   2185 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2186 {
   2187 	void *object;
   2188 	pcg_t *next;
   2189 	int i;
   2190 
   2191 	for (; pcg != NULL; pcg = next) {
   2192 		next = pcg->pcg_next;
   2193 
   2194 		for (i = 0; i < pcg->pcg_avail; i++) {
   2195 			object = pcg->pcg_objects[i].pcgo_va;
   2196 			pool_cache_destruct_object1(pc, object);
   2197 		}
   2198 
   2199 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2200 			pool_put(&pcg_large_pool, pcg);
   2201 		} else {
   2202 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2203 			pool_put(&pcg_normal_pool, pcg);
   2204 		}
   2205 	}
   2206 }
   2207 
   2208 /*
   2209  * pool_cache_invalidate:
   2210  *
   2211  *	Invalidate a pool cache (destruct and release all of the
   2212  *	cached objects).  Does not reclaim objects from the pool.
   2213  *
   2214  *	Note: For pool caches that provide constructed objects, there
   2215  *	is an assumption that another level of synchronization is occurring
   2216  *	between the input to the constructor and the cache invalidation.
   2217  *
   2218  *	Invalidation is a costly process and should not be called from
   2219  *	interrupt context.
   2220  */
   2221 void
   2222 pool_cache_invalidate(pool_cache_t pc)
   2223 {
   2224 	uint64_t where;
   2225 	pcg_t *full, *empty, *part;
   2226 
   2227 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2228 
   2229 	if (ncpu < 2 || !mp_online) {
   2230 		/*
   2231 		 * We might be called early enough in the boot process
   2232 		 * for the CPU data structures to not be fully initialized.
   2233 		 * In this case, transfer the content of the local CPU's
   2234 		 * cache back into global cache as only this CPU is currently
   2235 		 * running.
   2236 		 */
   2237 		pool_cache_transfer(pc);
   2238 	} else {
   2239 		/*
   2240 		 * Signal all CPUs that they must transfer their local
   2241 		 * cache back to the global pool then wait for the xcall to
   2242 		 * complete.
   2243 		 */
   2244 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2245 		    pc, NULL);
   2246 		xc_wait(where);
   2247 	}
   2248 
   2249 	/* Empty pool caches, then invalidate objects */
   2250 	mutex_enter(&pc->pc_lock);
   2251 	full = pc->pc_fullgroups;
   2252 	empty = pc->pc_emptygroups;
   2253 	part = pc->pc_partgroups;
   2254 	pc->pc_fullgroups = NULL;
   2255 	pc->pc_emptygroups = NULL;
   2256 	pc->pc_partgroups = NULL;
   2257 	pc->pc_nfull = 0;
   2258 	pc->pc_nempty = 0;
   2259 	pc->pc_npart = 0;
   2260 	mutex_exit(&pc->pc_lock);
   2261 
   2262 	pool_cache_invalidate_groups(pc, full);
   2263 	pool_cache_invalidate_groups(pc, empty);
   2264 	pool_cache_invalidate_groups(pc, part);
   2265 }
   2266 
   2267 /*
   2268  * pool_cache_invalidate_cpu:
   2269  *
   2270  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2271  *	identified by its associated index.
   2272  *	It is caller's responsibility to ensure that no operation is
   2273  *	taking place on this pool cache while doing this invalidation.
   2274  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2275  *	pool cached objects from a CPU different from the one currently running
   2276  *	may result in an undefined behaviour.
   2277  */
   2278 static void
   2279 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2280 {
   2281 	pool_cache_cpu_t *cc;
   2282 	pcg_t *pcg;
   2283 
   2284 	if ((cc = pc->pc_cpus[index]) == NULL)
   2285 		return;
   2286 
   2287 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2288 		pcg->pcg_next = NULL;
   2289 		pool_cache_invalidate_groups(pc, pcg);
   2290 	}
   2291 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2292 		pcg->pcg_next = NULL;
   2293 		pool_cache_invalidate_groups(pc, pcg);
   2294 	}
   2295 	if (cc != &pc->pc_cpu0)
   2296 		pool_put(&cache_cpu_pool, cc);
   2297 
   2298 }
   2299 
   2300 void
   2301 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2302 {
   2303 
   2304 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2305 }
   2306 
   2307 void
   2308 pool_cache_setlowat(pool_cache_t pc, int n)
   2309 {
   2310 
   2311 	pool_setlowat(&pc->pc_pool, n);
   2312 }
   2313 
   2314 void
   2315 pool_cache_sethiwat(pool_cache_t pc, int n)
   2316 {
   2317 
   2318 	pool_sethiwat(&pc->pc_pool, n);
   2319 }
   2320 
   2321 void
   2322 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2323 {
   2324 
   2325 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2326 }
   2327 
   2328 static bool __noinline
   2329 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2330 		    paddr_t *pap, int flags)
   2331 {
   2332 	pcg_t *pcg, *cur;
   2333 	uint64_t ncsw;
   2334 	pool_cache_t pc;
   2335 	void *object;
   2336 
   2337 	KASSERT(cc->cc_current->pcg_avail == 0);
   2338 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2339 
   2340 	pc = cc->cc_cache;
   2341 	cc->cc_misses++;
   2342 
   2343 	/*
   2344 	 * Nothing was available locally.  Try and grab a group
   2345 	 * from the cache.
   2346 	 */
   2347 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2348 		ncsw = curlwp->l_ncsw;
   2349 		mutex_enter(&pc->pc_lock);
   2350 		pc->pc_contended++;
   2351 
   2352 		/*
   2353 		 * If we context switched while locking, then
   2354 		 * our view of the per-CPU data is invalid:
   2355 		 * retry.
   2356 		 */
   2357 		if (curlwp->l_ncsw != ncsw) {
   2358 			mutex_exit(&pc->pc_lock);
   2359 			return true;
   2360 		}
   2361 	}
   2362 
   2363 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2364 		/*
   2365 		 * If there's a full group, release our empty
   2366 		 * group back to the cache.  Install the full
   2367 		 * group as cc_current and return.
   2368 		 */
   2369 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2370 			KASSERT(cur->pcg_avail == 0);
   2371 			cur->pcg_next = pc->pc_emptygroups;
   2372 			pc->pc_emptygroups = cur;
   2373 			pc->pc_nempty++;
   2374 		}
   2375 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2376 		cc->cc_current = pcg;
   2377 		pc->pc_fullgroups = pcg->pcg_next;
   2378 		pc->pc_hits++;
   2379 		pc->pc_nfull--;
   2380 		mutex_exit(&pc->pc_lock);
   2381 		return true;
   2382 	}
   2383 
   2384 	/*
   2385 	 * Nothing available locally or in cache.  Take the slow
   2386 	 * path: fetch a new object from the pool and construct
   2387 	 * it.
   2388 	 */
   2389 	pc->pc_misses++;
   2390 	mutex_exit(&pc->pc_lock);
   2391 	splx(s);
   2392 
   2393 	object = pool_get(&pc->pc_pool, flags);
   2394 	*objectp = object;
   2395 	if (__predict_false(object == NULL)) {
   2396 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2397 		return false;
   2398 	}
   2399 
   2400 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2401 		pool_put(&pc->pc_pool, object);
   2402 		*objectp = NULL;
   2403 		return false;
   2404 	}
   2405 
   2406 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2407 
   2408 	if (pap != NULL) {
   2409 #ifdef POOL_VTOPHYS
   2410 		*pap = POOL_VTOPHYS(object);
   2411 #else
   2412 		*pap = POOL_PADDR_INVALID;
   2413 #endif
   2414 	}
   2415 
   2416 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2417 	pool_cache_kleak_fill(pc, object);
   2418 	return false;
   2419 }
   2420 
   2421 /*
   2422  * pool_cache_get{,_paddr}:
   2423  *
   2424  *	Get an object from a pool cache (optionally returning
   2425  *	the physical address of the object).
   2426  */
   2427 void *
   2428 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2429 {
   2430 	pool_cache_cpu_t *cc;
   2431 	pcg_t *pcg;
   2432 	void *object;
   2433 	int s;
   2434 
   2435 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2436 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2437 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2438 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2439 	    __func__, pc->pc_pool.pr_wchan);
   2440 
   2441 	if (flags & PR_WAITOK) {
   2442 		ASSERT_SLEEPABLE();
   2443 	}
   2444 
   2445 	/* Lock out interrupts and disable preemption. */
   2446 	s = splvm();
   2447 	while (/* CONSTCOND */ true) {
   2448 		/* Try and allocate an object from the current group. */
   2449 		cc = pc->pc_cpus[curcpu()->ci_index];
   2450 		KASSERT(cc->cc_cache == pc);
   2451 	 	pcg = cc->cc_current;
   2452 		if (__predict_true(pcg->pcg_avail > 0)) {
   2453 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2454 			if (__predict_false(pap != NULL))
   2455 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2456 #if defined(DIAGNOSTIC)
   2457 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2458 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2459 			KASSERT(object != NULL);
   2460 #endif
   2461 			cc->cc_hits++;
   2462 			splx(s);
   2463 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2464 			pool_redzone_fill(&pc->pc_pool, object);
   2465 			pool_cache_kleak_fill(pc, object);
   2466 			return object;
   2467 		}
   2468 
   2469 		/*
   2470 		 * That failed.  If the previous group isn't empty, swap
   2471 		 * it with the current group and allocate from there.
   2472 		 */
   2473 		pcg = cc->cc_previous;
   2474 		if (__predict_true(pcg->pcg_avail > 0)) {
   2475 			cc->cc_previous = cc->cc_current;
   2476 			cc->cc_current = pcg;
   2477 			continue;
   2478 		}
   2479 
   2480 		/*
   2481 		 * Can't allocate from either group: try the slow path.
   2482 		 * If get_slow() allocated an object for us, or if
   2483 		 * no more objects are available, it will return false.
   2484 		 * Otherwise, we need to retry.
   2485 		 */
   2486 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2487 			break;
   2488 	}
   2489 
   2490 	/*
   2491 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2492 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2493 	 * constructor fails.
   2494 	 */
   2495 	return object;
   2496 }
   2497 
   2498 static bool __noinline
   2499 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2500 {
   2501 	struct lwp *l = curlwp;
   2502 	pcg_t *pcg, *cur;
   2503 	uint64_t ncsw;
   2504 	pool_cache_t pc;
   2505 
   2506 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2507 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2508 
   2509 	pc = cc->cc_cache;
   2510 	pcg = NULL;
   2511 	cc->cc_misses++;
   2512 	ncsw = l->l_ncsw;
   2513 
   2514 	/*
   2515 	 * If there are no empty groups in the cache then allocate one
   2516 	 * while still unlocked.
   2517 	 */
   2518 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2519 		if (__predict_true(!pool_cache_disable)) {
   2520 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2521 		}
   2522 		/*
   2523 		 * If pool_get() blocked, then our view of
   2524 		 * the per-CPU data is invalid: retry.
   2525 		 */
   2526 		if (__predict_false(l->l_ncsw != ncsw)) {
   2527 			if (pcg != NULL) {
   2528 				pool_put(pc->pc_pcgpool, pcg);
   2529 			}
   2530 			return true;
   2531 		}
   2532 		if (__predict_true(pcg != NULL)) {
   2533 			pcg->pcg_avail = 0;
   2534 			pcg->pcg_size = pc->pc_pcgsize;
   2535 		}
   2536 	}
   2537 
   2538 	/* Lock the cache. */
   2539 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2540 		mutex_enter(&pc->pc_lock);
   2541 		pc->pc_contended++;
   2542 
   2543 		/*
   2544 		 * If we context switched while locking, then our view of
   2545 		 * the per-CPU data is invalid: retry.
   2546 		 */
   2547 		if (__predict_false(l->l_ncsw != ncsw)) {
   2548 			mutex_exit(&pc->pc_lock);
   2549 			if (pcg != NULL) {
   2550 				pool_put(pc->pc_pcgpool, pcg);
   2551 			}
   2552 			return true;
   2553 		}
   2554 	}
   2555 
   2556 	/* If there are no empty groups in the cache then allocate one. */
   2557 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2558 		pcg = pc->pc_emptygroups;
   2559 		pc->pc_emptygroups = pcg->pcg_next;
   2560 		pc->pc_nempty--;
   2561 	}
   2562 
   2563 	/*
   2564 	 * If there's a empty group, release our full group back
   2565 	 * to the cache.  Install the empty group to the local CPU
   2566 	 * and return.
   2567 	 */
   2568 	if (pcg != NULL) {
   2569 		KASSERT(pcg->pcg_avail == 0);
   2570 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2571 			cc->cc_previous = pcg;
   2572 		} else {
   2573 			cur = cc->cc_current;
   2574 			if (__predict_true(cur != &pcg_dummy)) {
   2575 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2576 				cur->pcg_next = pc->pc_fullgroups;
   2577 				pc->pc_fullgroups = cur;
   2578 				pc->pc_nfull++;
   2579 			}
   2580 			cc->cc_current = pcg;
   2581 		}
   2582 		pc->pc_hits++;
   2583 		mutex_exit(&pc->pc_lock);
   2584 		return true;
   2585 	}
   2586 
   2587 	/*
   2588 	 * Nothing available locally or in cache, and we didn't
   2589 	 * allocate an empty group.  Take the slow path and destroy
   2590 	 * the object here and now.
   2591 	 */
   2592 	pc->pc_misses++;
   2593 	mutex_exit(&pc->pc_lock);
   2594 	splx(s);
   2595 	pool_cache_destruct_object(pc, object);
   2596 
   2597 	return false;
   2598 }
   2599 
   2600 /*
   2601  * pool_cache_put{,_paddr}:
   2602  *
   2603  *	Put an object back to the pool cache (optionally caching the
   2604  *	physical address of the object).
   2605  */
   2606 void
   2607 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2608 {
   2609 	pool_cache_cpu_t *cc;
   2610 	pcg_t *pcg;
   2611 	int s;
   2612 
   2613 	KASSERT(object != NULL);
   2614 	pool_cache_redzone_check(pc, object);
   2615 	FREECHECK_IN(&pc->pc_freecheck, object);
   2616 
   2617 	if (pool_cache_put_quarantine(pc, object, pa)) {
   2618 		return;
   2619 	}
   2620 
   2621 	/* Lock out interrupts and disable preemption. */
   2622 	s = splvm();
   2623 	while (/* CONSTCOND */ true) {
   2624 		/* If the current group isn't full, release it there. */
   2625 		cc = pc->pc_cpus[curcpu()->ci_index];
   2626 		KASSERT(cc->cc_cache == pc);
   2627 	 	pcg = cc->cc_current;
   2628 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2629 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2630 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2631 			pcg->pcg_avail++;
   2632 			cc->cc_hits++;
   2633 			splx(s);
   2634 			return;
   2635 		}
   2636 
   2637 		/*
   2638 		 * That failed.  If the previous group isn't full, swap
   2639 		 * it with the current group and try again.
   2640 		 */
   2641 		pcg = cc->cc_previous;
   2642 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2643 			cc->cc_previous = cc->cc_current;
   2644 			cc->cc_current = pcg;
   2645 			continue;
   2646 		}
   2647 
   2648 		/*
   2649 		 * Can't free to either group: try the slow path.
   2650 		 * If put_slow() releases the object for us, it
   2651 		 * will return false.  Otherwise we need to retry.
   2652 		 */
   2653 		if (!pool_cache_put_slow(cc, s, object))
   2654 			break;
   2655 	}
   2656 }
   2657 
   2658 /*
   2659  * pool_cache_transfer:
   2660  *
   2661  *	Transfer objects from the per-CPU cache to the global cache.
   2662  *	Run within a cross-call thread.
   2663  */
   2664 static void
   2665 pool_cache_transfer(pool_cache_t pc)
   2666 {
   2667 	pool_cache_cpu_t *cc;
   2668 	pcg_t *prev, *cur, **list;
   2669 	int s;
   2670 
   2671 	s = splvm();
   2672 	mutex_enter(&pc->pc_lock);
   2673 	cc = pc->pc_cpus[curcpu()->ci_index];
   2674 	cur = cc->cc_current;
   2675 	cc->cc_current = __UNCONST(&pcg_dummy);
   2676 	prev = cc->cc_previous;
   2677 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2678 	if (cur != &pcg_dummy) {
   2679 		if (cur->pcg_avail == cur->pcg_size) {
   2680 			list = &pc->pc_fullgroups;
   2681 			pc->pc_nfull++;
   2682 		} else if (cur->pcg_avail == 0) {
   2683 			list = &pc->pc_emptygroups;
   2684 			pc->pc_nempty++;
   2685 		} else {
   2686 			list = &pc->pc_partgroups;
   2687 			pc->pc_npart++;
   2688 		}
   2689 		cur->pcg_next = *list;
   2690 		*list = cur;
   2691 	}
   2692 	if (prev != &pcg_dummy) {
   2693 		if (prev->pcg_avail == prev->pcg_size) {
   2694 			list = &pc->pc_fullgroups;
   2695 			pc->pc_nfull++;
   2696 		} else if (prev->pcg_avail == 0) {
   2697 			list = &pc->pc_emptygroups;
   2698 			pc->pc_nempty++;
   2699 		} else {
   2700 			list = &pc->pc_partgroups;
   2701 			pc->pc_npart++;
   2702 		}
   2703 		prev->pcg_next = *list;
   2704 		*list = prev;
   2705 	}
   2706 	mutex_exit(&pc->pc_lock);
   2707 	splx(s);
   2708 }
   2709 
   2710 /*
   2711  * Pool backend allocators.
   2712  *
   2713  * Each pool has a backend allocator that handles allocation, deallocation,
   2714  * and any additional draining that might be needed.
   2715  *
   2716  * We provide two standard allocators:
   2717  *
   2718  *	pool_allocator_kmem - the default when no allocator is specified
   2719  *
   2720  *	pool_allocator_nointr - used for pools that will not be accessed
   2721  *	in interrupt context.
   2722  */
   2723 void	*pool_page_alloc(struct pool *, int);
   2724 void	pool_page_free(struct pool *, void *);
   2725 
   2726 struct pool_allocator pool_allocator_kmem = {
   2727 	.pa_alloc = pool_page_alloc,
   2728 	.pa_free = pool_page_free,
   2729 	.pa_pagesz = 0
   2730 };
   2731 
   2732 struct pool_allocator pool_allocator_nointr = {
   2733 	.pa_alloc = pool_page_alloc,
   2734 	.pa_free = pool_page_free,
   2735 	.pa_pagesz = 0
   2736 };
   2737 
   2738 struct pool_allocator pool_allocator_big[] = {
   2739 	{
   2740 		.pa_alloc = pool_page_alloc,
   2741 		.pa_free = pool_page_free,
   2742 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2743 	},
   2744 	{
   2745 		.pa_alloc = pool_page_alloc,
   2746 		.pa_free = pool_page_free,
   2747 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2748 	},
   2749 	{
   2750 		.pa_alloc = pool_page_alloc,
   2751 		.pa_free = pool_page_free,
   2752 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2753 	},
   2754 	{
   2755 		.pa_alloc = pool_page_alloc,
   2756 		.pa_free = pool_page_free,
   2757 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2758 	},
   2759 	{
   2760 		.pa_alloc = pool_page_alloc,
   2761 		.pa_free = pool_page_free,
   2762 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2763 	},
   2764 	{
   2765 		.pa_alloc = pool_page_alloc,
   2766 		.pa_free = pool_page_free,
   2767 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2768 	},
   2769 	{
   2770 		.pa_alloc = pool_page_alloc,
   2771 		.pa_free = pool_page_free,
   2772 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2773 	},
   2774 	{
   2775 		.pa_alloc = pool_page_alloc,
   2776 		.pa_free = pool_page_free,
   2777 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2778 	}
   2779 };
   2780 
   2781 static int
   2782 pool_bigidx(size_t size)
   2783 {
   2784 	int i;
   2785 
   2786 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2787 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2788 			return i;
   2789 	}
   2790 	panic("pool item size %zu too large, use a custom allocator", size);
   2791 }
   2792 
   2793 static void *
   2794 pool_allocator_alloc(struct pool *pp, int flags)
   2795 {
   2796 	struct pool_allocator *pa = pp->pr_alloc;
   2797 	void *res;
   2798 
   2799 	res = (*pa->pa_alloc)(pp, flags);
   2800 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2801 		/*
   2802 		 * We only run the drain hook here if PR_NOWAIT.
   2803 		 * In other cases, the hook will be run in
   2804 		 * pool_reclaim().
   2805 		 */
   2806 		if (pp->pr_drain_hook != NULL) {
   2807 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2808 			res = (*pa->pa_alloc)(pp, flags);
   2809 		}
   2810 	}
   2811 	return res;
   2812 }
   2813 
   2814 static void
   2815 pool_allocator_free(struct pool *pp, void *v)
   2816 {
   2817 	struct pool_allocator *pa = pp->pr_alloc;
   2818 
   2819 	if (pp->pr_redzone) {
   2820 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2821 	}
   2822 	(*pa->pa_free)(pp, v);
   2823 }
   2824 
   2825 void *
   2826 pool_page_alloc(struct pool *pp, int flags)
   2827 {
   2828 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2829 	vmem_addr_t va;
   2830 	int ret;
   2831 
   2832 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2833 	    vflags | VM_INSTANTFIT, &va);
   2834 
   2835 	return ret ? NULL : (void *)va;
   2836 }
   2837 
   2838 void
   2839 pool_page_free(struct pool *pp, void *v)
   2840 {
   2841 
   2842 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2843 }
   2844 
   2845 static void *
   2846 pool_page_alloc_meta(struct pool *pp, int flags)
   2847 {
   2848 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2849 	vmem_addr_t va;
   2850 	int ret;
   2851 
   2852 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2853 	    vflags | VM_INSTANTFIT, &va);
   2854 
   2855 	return ret ? NULL : (void *)va;
   2856 }
   2857 
   2858 static void
   2859 pool_page_free_meta(struct pool *pp, void *v)
   2860 {
   2861 
   2862 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2863 }
   2864 
   2865 #ifdef KLEAK
   2866 static void
   2867 pool_kleak_fill(struct pool *pp, void *p)
   2868 {
   2869 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2870 		return;
   2871 	}
   2872 	kleak_fill_area(p, pp->pr_size);
   2873 }
   2874 
   2875 static void
   2876 pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2877 {
   2878 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2879 		return;
   2880 	}
   2881 	pool_kleak_fill(&pc->pc_pool, p);
   2882 }
   2883 #endif
   2884 
   2885 #ifdef POOL_QUARANTINE
   2886 static void
   2887 pool_quarantine_init(struct pool *pp)
   2888 {
   2889 	pp->pr_quar.rotor = 0;
   2890 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2891 }
   2892 
   2893 static void
   2894 pool_quarantine_flush(struct pool *pp)
   2895 {
   2896 	pool_quar_t *quar = &pp->pr_quar;
   2897 	struct pool_pagelist pq;
   2898 	size_t i;
   2899 
   2900 	LIST_INIT(&pq);
   2901 
   2902 	mutex_enter(&pp->pr_lock);
   2903 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2904 		if (quar->list[i] == 0)
   2905 			continue;
   2906 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2907 	}
   2908 	mutex_exit(&pp->pr_lock);
   2909 
   2910 	pr_pagelist_free(pp, &pq);
   2911 }
   2912 
   2913 static bool
   2914 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2915 {
   2916 	pool_quar_t *quar = &pp->pr_quar;
   2917 	uintptr_t old;
   2918 
   2919 	if (pp->pr_roflags & PR_NOTOUCH) {
   2920 		return false;
   2921 	}
   2922 
   2923 	pool_redzone_check(pp, v);
   2924 
   2925 	old = quar->list[quar->rotor];
   2926 	quar->list[quar->rotor] = (uintptr_t)v;
   2927 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2928 	if (old != 0) {
   2929 		pool_do_put(pp, (void *)old, pq);
   2930 	}
   2931 
   2932 	return true;
   2933 }
   2934 
   2935 static bool
   2936 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
   2937 {
   2938 	pool_cache_destruct_object(pc, p);
   2939 	return true;
   2940 }
   2941 #endif
   2942 
   2943 #ifdef POOL_REDZONE
   2944 #if defined(_LP64)
   2945 # define PRIME 0x9e37fffffffc0000UL
   2946 #else /* defined(_LP64) */
   2947 # define PRIME 0x9e3779b1
   2948 #endif /* defined(_LP64) */
   2949 #define STATIC_BYTE	0xFE
   2950 CTASSERT(POOL_REDZONE_SIZE > 1);
   2951 
   2952 #ifndef KASAN
   2953 static inline uint8_t
   2954 pool_pattern_generate(const void *p)
   2955 {
   2956 	return (uint8_t)(((uintptr_t)p) * PRIME
   2957 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2958 }
   2959 #endif
   2960 
   2961 static void
   2962 pool_redzone_init(struct pool *pp, size_t requested_size)
   2963 {
   2964 	size_t redzsz;
   2965 	size_t nsz;
   2966 
   2967 #ifdef KASAN
   2968 	redzsz = requested_size;
   2969 	kasan_add_redzone(&redzsz);
   2970 	redzsz -= requested_size;
   2971 #else
   2972 	redzsz = POOL_REDZONE_SIZE;
   2973 #endif
   2974 
   2975 	if (pp->pr_roflags & PR_NOTOUCH) {
   2976 		pp->pr_redzone = false;
   2977 		return;
   2978 	}
   2979 
   2980 	/*
   2981 	 * We may have extended the requested size earlier; check if
   2982 	 * there's naturally space in the padding for a red zone.
   2983 	 */
   2984 	if (pp->pr_size - requested_size >= redzsz) {
   2985 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2986 		pp->pr_redzone = true;
   2987 		return;
   2988 	}
   2989 
   2990 	/*
   2991 	 * No space in the natural padding; check if we can extend a
   2992 	 * bit the size of the pool.
   2993 	 */
   2994 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2995 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2996 		/* Ok, we can */
   2997 		pp->pr_size = nsz;
   2998 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2999 		pp->pr_redzone = true;
   3000 	} else {
   3001 		/* No space for a red zone... snif :'( */
   3002 		pp->pr_redzone = false;
   3003 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3004 	}
   3005 }
   3006 
   3007 static void
   3008 pool_redzone_fill(struct pool *pp, void *p)
   3009 {
   3010 	if (!pp->pr_redzone)
   3011 		return;
   3012 #ifdef KASAN
   3013 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3014 	    KASAN_POOL_REDZONE);
   3015 #else
   3016 	uint8_t *cp, pat;
   3017 	const uint8_t *ep;
   3018 
   3019 	cp = (uint8_t *)p + pp->pr_reqsize;
   3020 	ep = cp + POOL_REDZONE_SIZE;
   3021 
   3022 	/*
   3023 	 * We really don't want the first byte of the red zone to be '\0';
   3024 	 * an off-by-one in a string may not be properly detected.
   3025 	 */
   3026 	pat = pool_pattern_generate(cp);
   3027 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3028 	cp++;
   3029 
   3030 	while (cp < ep) {
   3031 		*cp = pool_pattern_generate(cp);
   3032 		cp++;
   3033 	}
   3034 #endif
   3035 }
   3036 
   3037 static void
   3038 pool_redzone_check(struct pool *pp, void *p)
   3039 {
   3040 	if (!pp->pr_redzone)
   3041 		return;
   3042 #ifdef KASAN
   3043 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3044 #else
   3045 	uint8_t *cp, pat, expected;
   3046 	const uint8_t *ep;
   3047 
   3048 	cp = (uint8_t *)p + pp->pr_reqsize;
   3049 	ep = cp + POOL_REDZONE_SIZE;
   3050 
   3051 	pat = pool_pattern_generate(cp);
   3052 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3053 	if (__predict_false(expected != *cp)) {
   3054 		printf("%s: %p: 0x%02x != 0x%02x\n",
   3055 		   __func__, cp, *cp, expected);
   3056 	}
   3057 	cp++;
   3058 
   3059 	while (cp < ep) {
   3060 		expected = pool_pattern_generate(cp);
   3061 		if (__predict_false(*cp != expected)) {
   3062 			printf("%s: %p: 0x%02x != 0x%02x\n",
   3063 			   __func__, cp, *cp, expected);
   3064 		}
   3065 		cp++;
   3066 	}
   3067 #endif
   3068 }
   3069 
   3070 static void
   3071 pool_cache_redzone_check(pool_cache_t pc, void *p)
   3072 {
   3073 #ifdef KASAN
   3074 	/* If there is a ctor/dtor, leave the data as valid. */
   3075 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3076 		return;
   3077 	}
   3078 #endif
   3079 	pool_redzone_check(&pc->pc_pool, p);
   3080 }
   3081 
   3082 #endif /* POOL_REDZONE */
   3083 
   3084 #if defined(DDB)
   3085 static bool
   3086 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3087 {
   3088 
   3089 	return (uintptr_t)ph->ph_page <= addr &&
   3090 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3091 }
   3092 
   3093 static bool
   3094 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3095 {
   3096 
   3097 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3098 }
   3099 
   3100 static bool
   3101 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3102 {
   3103 	int i;
   3104 
   3105 	if (pcg == NULL) {
   3106 		return false;
   3107 	}
   3108 	for (i = 0; i < pcg->pcg_avail; i++) {
   3109 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3110 			return true;
   3111 		}
   3112 	}
   3113 	return false;
   3114 }
   3115 
   3116 static bool
   3117 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3118 {
   3119 
   3120 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3121 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3122 		pool_item_bitmap_t *bitmap =
   3123 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3124 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3125 
   3126 		return (*bitmap & mask) == 0;
   3127 	} else {
   3128 		struct pool_item *pi;
   3129 
   3130 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3131 			if (pool_in_item(pp, pi, addr)) {
   3132 				return false;
   3133 			}
   3134 		}
   3135 		return true;
   3136 	}
   3137 }
   3138 
   3139 void
   3140 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3141 {
   3142 	struct pool *pp;
   3143 
   3144 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3145 		struct pool_item_header *ph;
   3146 		uintptr_t item;
   3147 		bool allocated = true;
   3148 		bool incache = false;
   3149 		bool incpucache = false;
   3150 		char cpucachestr[32];
   3151 
   3152 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3153 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3154 				if (pool_in_page(pp, ph, addr)) {
   3155 					goto found;
   3156 				}
   3157 			}
   3158 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3159 				if (pool_in_page(pp, ph, addr)) {
   3160 					allocated =
   3161 					    pool_allocated(pp, ph, addr);
   3162 					goto found;
   3163 				}
   3164 			}
   3165 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3166 				if (pool_in_page(pp, ph, addr)) {
   3167 					allocated = false;
   3168 					goto found;
   3169 				}
   3170 			}
   3171 			continue;
   3172 		} else {
   3173 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3174 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3175 				continue;
   3176 			}
   3177 			allocated = pool_allocated(pp, ph, addr);
   3178 		}
   3179 found:
   3180 		if (allocated && pp->pr_cache) {
   3181 			pool_cache_t pc = pp->pr_cache;
   3182 			struct pool_cache_group *pcg;
   3183 			int i;
   3184 
   3185 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3186 			    pcg = pcg->pcg_next) {
   3187 				if (pool_in_cg(pp, pcg, addr)) {
   3188 					incache = true;
   3189 					goto print;
   3190 				}
   3191 			}
   3192 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3193 				pool_cache_cpu_t *cc;
   3194 
   3195 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3196 					continue;
   3197 				}
   3198 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3199 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3200 					struct cpu_info *ci =
   3201 					    cpu_lookup(i);
   3202 
   3203 					incpucache = true;
   3204 					snprintf(cpucachestr,
   3205 					    sizeof(cpucachestr),
   3206 					    "cached by CPU %u",
   3207 					    ci->ci_index);
   3208 					goto print;
   3209 				}
   3210 			}
   3211 		}
   3212 print:
   3213 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3214 		item = item + rounddown(addr - item, pp->pr_size);
   3215 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3216 		    (void *)addr, item, (size_t)(addr - item),
   3217 		    pp->pr_wchan,
   3218 		    incpucache ? cpucachestr :
   3219 		    incache ? "cached" : allocated ? "allocated" : "free");
   3220 	}
   3221 }
   3222 #endif /* defined(DDB) */
   3223 
   3224 static int
   3225 pool_sysctl(SYSCTLFN_ARGS)
   3226 {
   3227 	struct pool_sysctl data;
   3228 	struct pool *pp;
   3229 	struct pool_cache *pc;
   3230 	pool_cache_cpu_t *cc;
   3231 	int error;
   3232 	size_t i, written;
   3233 
   3234 	if (oldp == NULL) {
   3235 		*oldlenp = 0;
   3236 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3237 			*oldlenp += sizeof(data);
   3238 		return 0;
   3239 	}
   3240 
   3241 	memset(&data, 0, sizeof(data));
   3242 	error = 0;
   3243 	written = 0;
   3244 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3245 		if (written + sizeof(data) > *oldlenp)
   3246 			break;
   3247 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3248 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3249 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3250 #define COPY(field) data.field = pp->field
   3251 		COPY(pr_size);
   3252 
   3253 		COPY(pr_itemsperpage);
   3254 		COPY(pr_nitems);
   3255 		COPY(pr_nout);
   3256 		COPY(pr_hardlimit);
   3257 		COPY(pr_npages);
   3258 		COPY(pr_minpages);
   3259 		COPY(pr_maxpages);
   3260 
   3261 		COPY(pr_nget);
   3262 		COPY(pr_nfail);
   3263 		COPY(pr_nput);
   3264 		COPY(pr_npagealloc);
   3265 		COPY(pr_npagefree);
   3266 		COPY(pr_hiwat);
   3267 		COPY(pr_nidle);
   3268 #undef COPY
   3269 
   3270 		data.pr_cache_nmiss_pcpu = 0;
   3271 		data.pr_cache_nhit_pcpu = 0;
   3272 		if (pp->pr_cache) {
   3273 			pc = pp->pr_cache;
   3274 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3275 			data.pr_cache_nfull = pc->pc_nfull;
   3276 			data.pr_cache_npartial = pc->pc_npart;
   3277 			data.pr_cache_nempty = pc->pc_nempty;
   3278 			data.pr_cache_ncontended = pc->pc_contended;
   3279 			data.pr_cache_nmiss_global = pc->pc_misses;
   3280 			data.pr_cache_nhit_global = pc->pc_hits;
   3281 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3282 				cc = pc->pc_cpus[i];
   3283 				if (cc == NULL)
   3284 					continue;
   3285 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3286 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3287 			}
   3288 		} else {
   3289 			data.pr_cache_meta_size = 0;
   3290 			data.pr_cache_nfull = 0;
   3291 			data.pr_cache_npartial = 0;
   3292 			data.pr_cache_nempty = 0;
   3293 			data.pr_cache_ncontended = 0;
   3294 			data.pr_cache_nmiss_global = 0;
   3295 			data.pr_cache_nhit_global = 0;
   3296 		}
   3297 
   3298 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3299 		if (error)
   3300 			break;
   3301 		written += sizeof(data);
   3302 		oldp = (char *)oldp + sizeof(data);
   3303 	}
   3304 
   3305 	*oldlenp = written;
   3306 	return error;
   3307 }
   3308 
   3309 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3310 {
   3311 	const struct sysctlnode *rnode = NULL;
   3312 
   3313 	sysctl_createv(clog, 0, NULL, &rnode,
   3314 		       CTLFLAG_PERMANENT,
   3315 		       CTLTYPE_STRUCT, "pool",
   3316 		       SYSCTL_DESCR("Get pool statistics"),
   3317 		       pool_sysctl, 0, NULL, 0,
   3318 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3319 }
   3320