Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.252.2.1
      1 /*	$NetBSD: subr_pool.c,v 1.252.2.1 2019/08/18 09:52:12 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.252.2.1 2019/08/18 09:52:12 martin Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_pool.h"
     42 #include "opt_kleak.h"
     43 #endif
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/sysctl.h>
     48 #include <sys/bitops.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/vmem.h>
     53 #include <sys/pool.h>
     54 #include <sys/syslog.h>
     55 #include <sys/debug.h>
     56 #include <sys/lockdebug.h>
     57 #include <sys/xcall.h>
     58 #include <sys/cpu.h>
     59 #include <sys/atomic.h>
     60 #include <sys/asan.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 /*
     65  * Pool resource management utility.
     66  *
     67  * Memory is allocated in pages which are split into pieces according to
     68  * the pool item size. Each page is kept on one of three lists in the
     69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70  * for empty, full and partially-full pages respectively. The individual
     71  * pool items are on a linked list headed by `ph_itemlist' in each page
     72  * header. The memory for building the page list is either taken from
     73  * the allocated pages themselves (for small pool items) or taken from
     74  * an internal pool of page headers (`phpool').
     75  */
     76 
     77 /* List of all pools. Non static as needed by 'vmstat -m' */
     78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79 
     80 /* Private pool for page header structures */
     81 #define	PHPOOL_MAX	8
     82 static struct pool phpool[PHPOOL_MAX];
     83 #define	PHPOOL_FREELIST_NELEM(idx) \
     84 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     85 
     86 #if defined(KASAN)
     87 #define POOL_REDZONE
     88 #endif
     89 
     90 #ifdef POOL_REDZONE
     91 # ifdef KASAN
     92 #  define POOL_REDZONE_SIZE 8
     93 # else
     94 #  define POOL_REDZONE_SIZE 2
     95 # endif
     96 static void pool_redzone_init(struct pool *, size_t);
     97 static void pool_redzone_fill(struct pool *, void *);
     98 static void pool_redzone_check(struct pool *, void *);
     99 static void pool_cache_redzone_check(pool_cache_t, void *);
    100 #else
    101 # define pool_redzone_init(pp, sz)		__nothing
    102 # define pool_redzone_fill(pp, ptr)		__nothing
    103 # define pool_redzone_check(pp, ptr)		__nothing
    104 # define pool_cache_redzone_check(pc, ptr)	__nothing
    105 #endif
    106 
    107 #ifdef KLEAK
    108 static void pool_kleak_fill(struct pool *, void *);
    109 static void pool_cache_kleak_fill(pool_cache_t, void *);
    110 #else
    111 #define pool_kleak_fill(pp, ptr)	__nothing
    112 #define pool_cache_kleak_fill(pc, ptr)	__nothing
    113 #endif
    114 
    115 #ifdef POOL_QUARANTINE
    116 static void pool_quarantine_init(struct pool *);
    117 static void pool_quarantine_flush(struct pool *);
    118 static bool pool_put_quarantine(struct pool *, void *,
    119     struct pool_pagelist *);
    120 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
    121 #else
    122 #define pool_quarantine_init(a)			__nothing
    123 #define pool_quarantine_flush(a)		__nothing
    124 #define pool_put_quarantine(a, b, c)		false
    125 #define pool_cache_put_quarantine(a, b, c)	false
    126 #endif
    127 
    128 #define pc_has_ctor(pc) \
    129 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    130 #define pc_has_dtor(pc) \
    131 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    132 
    133 static void *pool_page_alloc_meta(struct pool *, int);
    134 static void pool_page_free_meta(struct pool *, void *);
    135 
    136 /* allocator for pool metadata */
    137 struct pool_allocator pool_allocator_meta = {
    138 	.pa_alloc = pool_page_alloc_meta,
    139 	.pa_free = pool_page_free_meta,
    140 	.pa_pagesz = 0
    141 };
    142 
    143 #define POOL_ALLOCATOR_BIG_BASE 13
    144 extern struct pool_allocator pool_allocator_big[];
    145 static int pool_bigidx(size_t);
    146 
    147 /* # of seconds to retain page after last use */
    148 int pool_inactive_time = 10;
    149 
    150 /* Next candidate for drainage (see pool_drain()) */
    151 static struct pool *drainpp;
    152 
    153 /* This lock protects both pool_head and drainpp. */
    154 static kmutex_t pool_head_lock;
    155 static kcondvar_t pool_busy;
    156 
    157 /* This lock protects initialization of a potentially shared pool allocator */
    158 static kmutex_t pool_allocator_lock;
    159 
    160 static unsigned int poolid_counter = 0;
    161 
    162 typedef uint32_t pool_item_bitmap_t;
    163 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    164 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    165 
    166 struct pool_item_header {
    167 	/* Page headers */
    168 	LIST_ENTRY(pool_item_header)
    169 				ph_pagelist;	/* pool page list */
    170 	union {
    171 		/* !PR_PHINPAGE */
    172 		struct {
    173 			SPLAY_ENTRY(pool_item_header)
    174 				phu_node;	/* off-page page headers */
    175 		} phu_offpage;
    176 		/* PR_PHINPAGE */
    177 		struct {
    178 			unsigned int phu_poolid;
    179 		} phu_onpage;
    180 	} ph_u1;
    181 	void *			ph_page;	/* this page's address */
    182 	uint32_t		ph_time;	/* last referenced */
    183 	uint16_t		ph_nmissing;	/* # of chunks in use */
    184 	uint16_t		ph_off;		/* start offset in page */
    185 	union {
    186 		/* !PR_USEBMAP */
    187 		struct {
    188 			LIST_HEAD(, pool_item)
    189 				phu_itemlist;	/* chunk list for this page */
    190 		} phu_normal;
    191 		/* PR_USEBMAP */
    192 		struct {
    193 			pool_item_bitmap_t phu_bitmap[1];
    194 		} phu_notouch;
    195 	} ph_u2;
    196 };
    197 #define ph_node		ph_u1.phu_offpage.phu_node
    198 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    199 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    200 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    201 
    202 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    203 
    204 #if defined(DIAGNOSTIC) && !defined(KASAN)
    205 #define POOL_CHECK_MAGIC
    206 #endif
    207 
    208 struct pool_item {
    209 #ifdef POOL_CHECK_MAGIC
    210 	u_int pi_magic;
    211 #endif
    212 #define	PI_MAGIC 0xdeaddeadU
    213 	/* Other entries use only this list entry */
    214 	LIST_ENTRY(pool_item)	pi_list;
    215 };
    216 
    217 #define	POOL_NEEDS_CATCHUP(pp)						\
    218 	((pp)->pr_nitems < (pp)->pr_minitems)
    219 #define	POOL_OBJ_TO_PAGE(pp, v)						\
    220 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    221 
    222 /*
    223  * Pool cache management.
    224  *
    225  * Pool caches provide a way for constructed objects to be cached by the
    226  * pool subsystem.  This can lead to performance improvements by avoiding
    227  * needless object construction/destruction; it is deferred until absolutely
    228  * necessary.
    229  *
    230  * Caches are grouped into cache groups.  Each cache group references up
    231  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    232  * object from the pool, it calls the object's constructor and places it
    233  * into a cache group.  When a cache group frees an object back to the
    234  * pool, it first calls the object's destructor.  This allows the object
    235  * to persist in constructed form while freed to the cache.
    236  *
    237  * The pool references each cache, so that when a pool is drained by the
    238  * pagedaemon, it can drain each individual cache as well.  Each time a
    239  * cache is drained, the most idle cache group is freed to the pool in
    240  * its entirety.
    241  *
    242  * Pool caches are layed on top of pools.  By layering them, we can avoid
    243  * the complexity of cache management for pools which would not benefit
    244  * from it.
    245  */
    246 
    247 static struct pool pcg_normal_pool;
    248 static struct pool pcg_large_pool;
    249 static struct pool cache_pool;
    250 static struct pool cache_cpu_pool;
    251 
    252 /* List of all caches. */
    253 TAILQ_HEAD(,pool_cache) pool_cache_head =
    254     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    255 
    256 int pool_cache_disable;		/* global disable for caching */
    257 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    258 
    259 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    260 				    void *);
    261 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    262 				    void **, paddr_t *, int);
    263 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    264 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    265 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    266 static void	pool_cache_transfer(pool_cache_t);
    267 
    268 static int	pool_catchup(struct pool *);
    269 static void	pool_prime_page(struct pool *, void *,
    270 		    struct pool_item_header *);
    271 static void	pool_update_curpage(struct pool *);
    272 
    273 static int	pool_grow(struct pool *, int);
    274 static void	*pool_allocator_alloc(struct pool *, int);
    275 static void	pool_allocator_free(struct pool *, void *);
    276 
    277 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    278 	void (*)(const char *, ...) __printflike(1, 2));
    279 static void pool_print1(struct pool *, const char *,
    280 	void (*)(const char *, ...) __printflike(1, 2));
    281 
    282 static int pool_chk_page(struct pool *, const char *,
    283 			 struct pool_item_header *);
    284 
    285 /* -------------------------------------------------------------------------- */
    286 
    287 static inline unsigned int
    288 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    289     const void *v)
    290 {
    291 	const char *cp = v;
    292 	unsigned int idx;
    293 
    294 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    295 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    296 
    297 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    298 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    299 		    pp->pr_itemsperpage);
    300 	}
    301 
    302 	return idx;
    303 }
    304 
    305 static inline void
    306 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    307     void *obj)
    308 {
    309 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    310 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    311 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    312 
    313 	if (__predict_false((*bitmap & mask) != 0)) {
    314 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    315 	}
    316 
    317 	*bitmap |= mask;
    318 }
    319 
    320 static inline void *
    321 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    322 {
    323 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    324 	unsigned int idx;
    325 	int i;
    326 
    327 	for (i = 0; ; i++) {
    328 		int bit;
    329 
    330 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    331 		bit = ffs32(bitmap[i]);
    332 		if (bit) {
    333 			pool_item_bitmap_t mask;
    334 
    335 			bit--;
    336 			idx = (i * BITMAP_SIZE) + bit;
    337 			mask = 1U << bit;
    338 			KASSERT((bitmap[i] & mask) != 0);
    339 			bitmap[i] &= ~mask;
    340 			break;
    341 		}
    342 	}
    343 	KASSERT(idx < pp->pr_itemsperpage);
    344 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    345 }
    346 
    347 static inline void
    348 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    349 {
    350 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    351 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    352 	int i;
    353 
    354 	for (i = 0; i < n; i++) {
    355 		bitmap[i] = (pool_item_bitmap_t)-1;
    356 	}
    357 }
    358 
    359 /* -------------------------------------------------------------------------- */
    360 
    361 static inline void
    362 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    363     void *obj)
    364 {
    365 	struct pool_item *pi = obj;
    366 
    367 #ifdef POOL_CHECK_MAGIC
    368 	pi->pi_magic = PI_MAGIC;
    369 #endif
    370 
    371 	if (pp->pr_redzone) {
    372 		/*
    373 		 * Mark the pool_item as valid. The rest is already
    374 		 * invalid.
    375 		 */
    376 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    377 	}
    378 
    379 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    380 }
    381 
    382 static inline void *
    383 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    384 {
    385 	struct pool_item *pi;
    386 	void *v;
    387 
    388 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    389 	if (__predict_false(v == NULL)) {
    390 		mutex_exit(&pp->pr_lock);
    391 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    392 	}
    393 	KASSERTMSG((pp->pr_nitems > 0),
    394 	    "%s: [%s] nitems %u inconsistent on itemlist",
    395 	    __func__, pp->pr_wchan, pp->pr_nitems);
    396 #ifdef POOL_CHECK_MAGIC
    397 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    398 	    "%s: [%s] free list modified: "
    399 	    "magic=%x; page %p; item addr %p", __func__,
    400 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    401 #endif
    402 
    403 	/*
    404 	 * Remove from item list.
    405 	 */
    406 	LIST_REMOVE(pi, pi_list);
    407 
    408 	return v;
    409 }
    410 
    411 /* -------------------------------------------------------------------------- */
    412 
    413 static inline void
    414 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    415     void *object)
    416 {
    417 	if (__predict_false((void *)ph->ph_page != page)) {
    418 		panic("%s: [%s] item %p not part of pool", __func__,
    419 		    pp->pr_wchan, object);
    420 	}
    421 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    422 		panic("%s: [%s] item %p below item space", __func__,
    423 		    pp->pr_wchan, object);
    424 	}
    425 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    426 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    427 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    428 	}
    429 }
    430 
    431 static inline void
    432 pc_phinpage_check(pool_cache_t pc, void *object)
    433 {
    434 	struct pool_item_header *ph;
    435 	struct pool *pp;
    436 	void *page;
    437 
    438 	pp = &pc->pc_pool;
    439 	page = POOL_OBJ_TO_PAGE(pp, object);
    440 	ph = (struct pool_item_header *)page;
    441 
    442 	pr_phinpage_check(pp, ph, page, object);
    443 }
    444 
    445 /* -------------------------------------------------------------------------- */
    446 
    447 static inline int
    448 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    449 {
    450 
    451 	/*
    452 	 * We consider pool_item_header with smaller ph_page bigger. This
    453 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    454 	 */
    455 	if (a->ph_page < b->ph_page)
    456 		return 1;
    457 	else if (a->ph_page > b->ph_page)
    458 		return -1;
    459 	else
    460 		return 0;
    461 }
    462 
    463 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    464 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    465 
    466 static inline struct pool_item_header *
    467 pr_find_pagehead_noalign(struct pool *pp, void *v)
    468 {
    469 	struct pool_item_header *ph, tmp;
    470 
    471 	tmp.ph_page = (void *)(uintptr_t)v;
    472 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    473 	if (ph == NULL) {
    474 		ph = SPLAY_ROOT(&pp->pr_phtree);
    475 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    476 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    477 		}
    478 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    479 	}
    480 
    481 	return ph;
    482 }
    483 
    484 /*
    485  * Return the pool page header based on item address.
    486  */
    487 static inline struct pool_item_header *
    488 pr_find_pagehead(struct pool *pp, void *v)
    489 {
    490 	struct pool_item_header *ph, tmp;
    491 
    492 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    493 		ph = pr_find_pagehead_noalign(pp, v);
    494 	} else {
    495 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    496 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    497 			ph = (struct pool_item_header *)page;
    498 			pr_phinpage_check(pp, ph, page, v);
    499 		} else {
    500 			tmp.ph_page = page;
    501 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    502 		}
    503 	}
    504 
    505 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    506 	    ((char *)ph->ph_page <= (char *)v &&
    507 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    508 	return ph;
    509 }
    510 
    511 static void
    512 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    513 {
    514 	struct pool_item_header *ph;
    515 
    516 	while ((ph = LIST_FIRST(pq)) != NULL) {
    517 		LIST_REMOVE(ph, ph_pagelist);
    518 		pool_allocator_free(pp, ph->ph_page);
    519 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    520 			pool_put(pp->pr_phpool, ph);
    521 	}
    522 }
    523 
    524 /*
    525  * Remove a page from the pool.
    526  */
    527 static inline void
    528 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    529      struct pool_pagelist *pq)
    530 {
    531 
    532 	KASSERT(mutex_owned(&pp->pr_lock));
    533 
    534 	/*
    535 	 * If the page was idle, decrement the idle page count.
    536 	 */
    537 	if (ph->ph_nmissing == 0) {
    538 		KASSERT(pp->pr_nidle != 0);
    539 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    540 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    541 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    542 		pp->pr_nidle--;
    543 	}
    544 
    545 	pp->pr_nitems -= pp->pr_itemsperpage;
    546 
    547 	/*
    548 	 * Unlink the page from the pool and queue it for release.
    549 	 */
    550 	LIST_REMOVE(ph, ph_pagelist);
    551 	if (pp->pr_roflags & PR_PHINPAGE) {
    552 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    553 			panic("%s: [%s] ph %p poolid %u != %u",
    554 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    555 			    pp->pr_poolid);
    556 		}
    557 	} else {
    558 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    559 	}
    560 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    561 
    562 	pp->pr_npages--;
    563 	pp->pr_npagefree++;
    564 
    565 	pool_update_curpage(pp);
    566 }
    567 
    568 /*
    569  * Initialize all the pools listed in the "pools" link set.
    570  */
    571 void
    572 pool_subsystem_init(void)
    573 {
    574 	size_t size;
    575 	int idx;
    576 
    577 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    578 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    579 	cv_init(&pool_busy, "poolbusy");
    580 
    581 	/*
    582 	 * Initialize private page header pool and cache magazine pool if we
    583 	 * haven't done so yet.
    584 	 */
    585 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    586 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    587 		int nelem;
    588 		size_t sz;
    589 
    590 		nelem = PHPOOL_FREELIST_NELEM(idx);
    591 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    592 		    "phpool-%d", nelem);
    593 		sz = sizeof(struct pool_item_header);
    594 		if (nelem) {
    595 			sz = offsetof(struct pool_item_header,
    596 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    597 		}
    598 		pool_init(&phpool[idx], sz, 0, 0, 0,
    599 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    600 	}
    601 
    602 	size = sizeof(pcg_t) +
    603 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    604 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    605 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    606 
    607 	size = sizeof(pcg_t) +
    608 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    609 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    610 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    611 
    612 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    613 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    614 
    615 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    616 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    617 }
    618 
    619 static inline bool
    620 pool_init_is_phinpage(const struct pool *pp)
    621 {
    622 	size_t pagesize;
    623 
    624 	if (pp->pr_roflags & PR_PHINPAGE) {
    625 		return true;
    626 	}
    627 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    628 		return false;
    629 	}
    630 
    631 	pagesize = pp->pr_alloc->pa_pagesz;
    632 
    633 	/*
    634 	 * Threshold: the item size is below 1/16 of a page size, and below
    635 	 * 8 times the page header size. The latter ensures we go off-page
    636 	 * if the page header would make us waste a rather big item.
    637 	 */
    638 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    639 		return true;
    640 	}
    641 
    642 	/* Put the header into the page if it doesn't waste any items. */
    643 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    644 		return true;
    645 	}
    646 
    647 	return false;
    648 }
    649 
    650 static inline bool
    651 pool_init_is_usebmap(const struct pool *pp)
    652 {
    653 	size_t bmapsize;
    654 
    655 	if (pp->pr_roflags & PR_NOTOUCH) {
    656 		return true;
    657 	}
    658 
    659 	/*
    660 	 * If we're on-page, and the page header can already contain a bitmap
    661 	 * big enough to cover all the items of the page, go with a bitmap.
    662 	 */
    663 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    664 		return false;
    665 	}
    666 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    667 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    668 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    669 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    670 		return true;
    671 	}
    672 
    673 	return false;
    674 }
    675 
    676 /*
    677  * Initialize the given pool resource structure.
    678  *
    679  * We export this routine to allow other kernel parts to declare
    680  * static pools that must be initialized before kmem(9) is available.
    681  */
    682 void
    683 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    684     const char *wchan, struct pool_allocator *palloc, int ipl)
    685 {
    686 	struct pool *pp1;
    687 	size_t prsize;
    688 	int itemspace, slack;
    689 
    690 	/* XXX ioff will be removed. */
    691 	KASSERT(ioff == 0);
    692 
    693 #ifdef DEBUG
    694 	if (__predict_true(!cold))
    695 		mutex_enter(&pool_head_lock);
    696 	/*
    697 	 * Check that the pool hasn't already been initialised and
    698 	 * added to the list of all pools.
    699 	 */
    700 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    701 		if (pp == pp1)
    702 			panic("%s: [%s] already initialised", __func__,
    703 			    wchan);
    704 	}
    705 	if (__predict_true(!cold))
    706 		mutex_exit(&pool_head_lock);
    707 #endif
    708 
    709 	if (palloc == NULL)
    710 		palloc = &pool_allocator_kmem;
    711 
    712 	if (!cold)
    713 		mutex_enter(&pool_allocator_lock);
    714 	if (palloc->pa_refcnt++ == 0) {
    715 		if (palloc->pa_pagesz == 0)
    716 			palloc->pa_pagesz = PAGE_SIZE;
    717 
    718 		TAILQ_INIT(&palloc->pa_list);
    719 
    720 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    721 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    722 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    723 	}
    724 	if (!cold)
    725 		mutex_exit(&pool_allocator_lock);
    726 
    727 	if (align == 0)
    728 		align = ALIGN(1);
    729 
    730 	prsize = size;
    731 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    732 		prsize = sizeof(struct pool_item);
    733 
    734 	prsize = roundup(prsize, align);
    735 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    736 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    737 	    __func__, wchan, prsize, palloc->pa_pagesz);
    738 
    739 	/*
    740 	 * Initialize the pool structure.
    741 	 */
    742 	LIST_INIT(&pp->pr_emptypages);
    743 	LIST_INIT(&pp->pr_fullpages);
    744 	LIST_INIT(&pp->pr_partpages);
    745 	pp->pr_cache = NULL;
    746 	pp->pr_curpage = NULL;
    747 	pp->pr_npages = 0;
    748 	pp->pr_minitems = 0;
    749 	pp->pr_minpages = 0;
    750 	pp->pr_maxpages = UINT_MAX;
    751 	pp->pr_roflags = flags;
    752 	pp->pr_flags = 0;
    753 	pp->pr_size = prsize;
    754 	pp->pr_reqsize = size;
    755 	pp->pr_align = align;
    756 	pp->pr_wchan = wchan;
    757 	pp->pr_alloc = palloc;
    758 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    759 	pp->pr_nitems = 0;
    760 	pp->pr_nout = 0;
    761 	pp->pr_hardlimit = UINT_MAX;
    762 	pp->pr_hardlimit_warning = NULL;
    763 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    764 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    765 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    766 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    767 	pp->pr_drain_hook = NULL;
    768 	pp->pr_drain_hook_arg = NULL;
    769 	pp->pr_freecheck = NULL;
    770 	pp->pr_redzone = false;
    771 	pool_redzone_init(pp, size);
    772 	pool_quarantine_init(pp);
    773 
    774 	/*
    775 	 * Decide whether to put the page header off-page to avoid wasting too
    776 	 * large a part of the page or too big an item. Off-page page headers
    777 	 * go on a hash table, so we can match a returned item with its header
    778 	 * based on the page address.
    779 	 */
    780 	if (pool_init_is_phinpage(pp)) {
    781 		/* Use the beginning of the page for the page header */
    782 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    783 		pp->pr_itemoffset = roundup(PHSIZE, align);
    784 		pp->pr_roflags |= PR_PHINPAGE;
    785 	} else {
    786 		/* The page header will be taken from our page header pool */
    787 		itemspace = palloc->pa_pagesz;
    788 		pp->pr_itemoffset = 0;
    789 		SPLAY_INIT(&pp->pr_phtree);
    790 	}
    791 
    792 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    793 	KASSERT(pp->pr_itemsperpage != 0);
    794 
    795 	/*
    796 	 * Decide whether to use a bitmap or a linked list to manage freed
    797 	 * items.
    798 	 */
    799 	if (pool_init_is_usebmap(pp)) {
    800 		pp->pr_roflags |= PR_USEBMAP;
    801 	}
    802 
    803 	/*
    804 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    805 	 * allocate page headers, whose size varies depending on the bitmap. If
    806 	 * we're just off-page, take the first pool, no extra size. If we're
    807 	 * on-page, nothing to do.
    808 	 */
    809 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    810 		int idx;
    811 
    812 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    813 		    idx++) {
    814 			/* nothing */
    815 		}
    816 		if (idx >= PHPOOL_MAX) {
    817 			/*
    818 			 * if you see this panic, consider to tweak
    819 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    820 			 */
    821 			panic("%s: [%s] too large itemsperpage(%d) for "
    822 			    "PR_USEBMAP", __func__,
    823 			    pp->pr_wchan, pp->pr_itemsperpage);
    824 		}
    825 		pp->pr_phpool = &phpool[idx];
    826 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    827 		pp->pr_phpool = &phpool[0];
    828 	} else {
    829 		pp->pr_phpool = NULL;
    830 	}
    831 
    832 	/*
    833 	 * Use the slack between the chunks and the page header
    834 	 * for "cache coloring".
    835 	 */
    836 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    837 	pp->pr_maxcolor = rounddown(slack, align);
    838 	pp->pr_curcolor = 0;
    839 
    840 	pp->pr_nget = 0;
    841 	pp->pr_nfail = 0;
    842 	pp->pr_nput = 0;
    843 	pp->pr_npagealloc = 0;
    844 	pp->pr_npagefree = 0;
    845 	pp->pr_hiwat = 0;
    846 	pp->pr_nidle = 0;
    847 	pp->pr_refcnt = 0;
    848 
    849 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    850 	cv_init(&pp->pr_cv, wchan);
    851 	pp->pr_ipl = ipl;
    852 
    853 	/* Insert into the list of all pools. */
    854 	if (!cold)
    855 		mutex_enter(&pool_head_lock);
    856 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    857 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    858 			break;
    859 	}
    860 	if (pp1 == NULL)
    861 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    862 	else
    863 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    864 	if (!cold)
    865 		mutex_exit(&pool_head_lock);
    866 
    867 	/* Insert this into the list of pools using this allocator. */
    868 	if (!cold)
    869 		mutex_enter(&palloc->pa_lock);
    870 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    871 	if (!cold)
    872 		mutex_exit(&palloc->pa_lock);
    873 }
    874 
    875 /*
    876  * De-commision a pool resource.
    877  */
    878 void
    879 pool_destroy(struct pool *pp)
    880 {
    881 	struct pool_pagelist pq;
    882 	struct pool_item_header *ph;
    883 
    884 	pool_quarantine_flush(pp);
    885 
    886 	/* Remove from global pool list */
    887 	mutex_enter(&pool_head_lock);
    888 	while (pp->pr_refcnt != 0)
    889 		cv_wait(&pool_busy, &pool_head_lock);
    890 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    891 	if (drainpp == pp)
    892 		drainpp = NULL;
    893 	mutex_exit(&pool_head_lock);
    894 
    895 	/* Remove this pool from its allocator's list of pools. */
    896 	mutex_enter(&pp->pr_alloc->pa_lock);
    897 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    898 	mutex_exit(&pp->pr_alloc->pa_lock);
    899 
    900 	mutex_enter(&pool_allocator_lock);
    901 	if (--pp->pr_alloc->pa_refcnt == 0)
    902 		mutex_destroy(&pp->pr_alloc->pa_lock);
    903 	mutex_exit(&pool_allocator_lock);
    904 
    905 	mutex_enter(&pp->pr_lock);
    906 
    907 	KASSERT(pp->pr_cache == NULL);
    908 	KASSERTMSG((pp->pr_nout == 0),
    909 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
    910 	    pp->pr_nout);
    911 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    912 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    913 
    914 	/* Remove all pages */
    915 	LIST_INIT(&pq);
    916 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    917 		pr_rmpage(pp, ph, &pq);
    918 
    919 	mutex_exit(&pp->pr_lock);
    920 
    921 	pr_pagelist_free(pp, &pq);
    922 	cv_destroy(&pp->pr_cv);
    923 	mutex_destroy(&pp->pr_lock);
    924 }
    925 
    926 void
    927 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    928 {
    929 
    930 	/* XXX no locking -- must be used just after pool_init() */
    931 	KASSERTMSG((pp->pr_drain_hook == NULL),
    932 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    933 	pp->pr_drain_hook = fn;
    934 	pp->pr_drain_hook_arg = arg;
    935 }
    936 
    937 static struct pool_item_header *
    938 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    939 {
    940 	struct pool_item_header *ph;
    941 
    942 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    943 		ph = storage;
    944 	else
    945 		ph = pool_get(pp->pr_phpool, flags);
    946 
    947 	return ph;
    948 }
    949 
    950 /*
    951  * Grab an item from the pool.
    952  */
    953 void *
    954 pool_get(struct pool *pp, int flags)
    955 {
    956 	struct pool_item_header *ph;
    957 	void *v;
    958 
    959 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    960 	KASSERTMSG((pp->pr_itemsperpage != 0),
    961 	    "%s: [%s] pr_itemsperpage is zero, "
    962 	    "pool not initialized?", __func__, pp->pr_wchan);
    963 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    964 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    965 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    966 	    __func__, pp->pr_wchan);
    967 	if (flags & PR_WAITOK) {
    968 		ASSERT_SLEEPABLE();
    969 	}
    970 
    971 	mutex_enter(&pp->pr_lock);
    972  startover:
    973 	/*
    974 	 * Check to see if we've reached the hard limit.  If we have,
    975 	 * and we can wait, then wait until an item has been returned to
    976 	 * the pool.
    977 	 */
    978 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    979 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    980 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    981 		if (pp->pr_drain_hook != NULL) {
    982 			/*
    983 			 * Since the drain hook is going to free things
    984 			 * back to the pool, unlock, call the hook, re-lock,
    985 			 * and check the hardlimit condition again.
    986 			 */
    987 			mutex_exit(&pp->pr_lock);
    988 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    989 			mutex_enter(&pp->pr_lock);
    990 			if (pp->pr_nout < pp->pr_hardlimit)
    991 				goto startover;
    992 		}
    993 
    994 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    995 			/*
    996 			 * XXX: A warning isn't logged in this case.  Should
    997 			 * it be?
    998 			 */
    999 			pp->pr_flags |= PR_WANTED;
   1000 			do {
   1001 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1002 			} while (pp->pr_flags & PR_WANTED);
   1003 			goto startover;
   1004 		}
   1005 
   1006 		/*
   1007 		 * Log a message that the hard limit has been hit.
   1008 		 */
   1009 		if (pp->pr_hardlimit_warning != NULL &&
   1010 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1011 			      &pp->pr_hardlimit_ratecap))
   1012 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1013 
   1014 		pp->pr_nfail++;
   1015 
   1016 		mutex_exit(&pp->pr_lock);
   1017 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1018 		return NULL;
   1019 	}
   1020 
   1021 	/*
   1022 	 * The convention we use is that if `curpage' is not NULL, then
   1023 	 * it points at a non-empty bucket. In particular, `curpage'
   1024 	 * never points at a page header which has PR_PHINPAGE set and
   1025 	 * has no items in its bucket.
   1026 	 */
   1027 	if ((ph = pp->pr_curpage) == NULL) {
   1028 		int error;
   1029 
   1030 		KASSERTMSG((pp->pr_nitems == 0),
   1031 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1032 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1033 
   1034 		/*
   1035 		 * Call the back-end page allocator for more memory.
   1036 		 * Release the pool lock, as the back-end page allocator
   1037 		 * may block.
   1038 		 */
   1039 		error = pool_grow(pp, flags);
   1040 		if (error != 0) {
   1041 			/*
   1042 			 * pool_grow aborts when another thread
   1043 			 * is allocating a new page. Retry if it
   1044 			 * waited for it.
   1045 			 */
   1046 			if (error == ERESTART)
   1047 				goto startover;
   1048 
   1049 			/*
   1050 			 * We were unable to allocate a page or item
   1051 			 * header, but we released the lock during
   1052 			 * allocation, so perhaps items were freed
   1053 			 * back to the pool.  Check for this case.
   1054 			 */
   1055 			if (pp->pr_curpage != NULL)
   1056 				goto startover;
   1057 
   1058 			pp->pr_nfail++;
   1059 			mutex_exit(&pp->pr_lock);
   1060 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1061 			return NULL;
   1062 		}
   1063 
   1064 		/* Start the allocation process over. */
   1065 		goto startover;
   1066 	}
   1067 	if (pp->pr_roflags & PR_USEBMAP) {
   1068 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1069 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1070 		v = pr_item_bitmap_get(pp, ph);
   1071 	} else {
   1072 		v = pr_item_linkedlist_get(pp, ph);
   1073 	}
   1074 	pp->pr_nitems--;
   1075 	pp->pr_nout++;
   1076 	if (ph->ph_nmissing == 0) {
   1077 		KASSERT(pp->pr_nidle > 0);
   1078 		pp->pr_nidle--;
   1079 
   1080 		/*
   1081 		 * This page was previously empty.  Move it to the list of
   1082 		 * partially-full pages.  This page is already curpage.
   1083 		 */
   1084 		LIST_REMOVE(ph, ph_pagelist);
   1085 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1086 	}
   1087 	ph->ph_nmissing++;
   1088 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1089 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1090 			LIST_EMPTY(&ph->ph_itemlist)),
   1091 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1092 			pp->pr_wchan, ph->ph_nmissing);
   1093 		/*
   1094 		 * This page is now full.  Move it to the full list
   1095 		 * and select a new current page.
   1096 		 */
   1097 		LIST_REMOVE(ph, ph_pagelist);
   1098 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1099 		pool_update_curpage(pp);
   1100 	}
   1101 
   1102 	pp->pr_nget++;
   1103 
   1104 	/*
   1105 	 * If we have a low water mark and we are now below that low
   1106 	 * water mark, add more items to the pool.
   1107 	 */
   1108 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1109 		/*
   1110 		 * XXX: Should we log a warning?  Should we set up a timeout
   1111 		 * to try again in a second or so?  The latter could break
   1112 		 * a caller's assumptions about interrupt protection, etc.
   1113 		 */
   1114 	}
   1115 
   1116 	mutex_exit(&pp->pr_lock);
   1117 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1118 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1119 	pool_redzone_fill(pp, v);
   1120 	if (flags & PR_ZERO)
   1121 		memset(v, 0, pp->pr_reqsize);
   1122 	else
   1123 		pool_kleak_fill(pp, v);
   1124 	return v;
   1125 }
   1126 
   1127 /*
   1128  * Internal version of pool_put().  Pool is already locked/entered.
   1129  */
   1130 static void
   1131 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1132 {
   1133 	struct pool_item_header *ph;
   1134 
   1135 	KASSERT(mutex_owned(&pp->pr_lock));
   1136 	pool_redzone_check(pp, v);
   1137 	FREECHECK_IN(&pp->pr_freecheck, v);
   1138 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1139 
   1140 	KASSERTMSG((pp->pr_nout > 0),
   1141 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1142 
   1143 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1144 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1145 	}
   1146 
   1147 	/*
   1148 	 * Return to item list.
   1149 	 */
   1150 	if (pp->pr_roflags & PR_USEBMAP) {
   1151 		pr_item_bitmap_put(pp, ph, v);
   1152 	} else {
   1153 		pr_item_linkedlist_put(pp, ph, v);
   1154 	}
   1155 	KDASSERT(ph->ph_nmissing != 0);
   1156 	ph->ph_nmissing--;
   1157 	pp->pr_nput++;
   1158 	pp->pr_nitems++;
   1159 	pp->pr_nout--;
   1160 
   1161 	/* Cancel "pool empty" condition if it exists */
   1162 	if (pp->pr_curpage == NULL)
   1163 		pp->pr_curpage = ph;
   1164 
   1165 	if (pp->pr_flags & PR_WANTED) {
   1166 		pp->pr_flags &= ~PR_WANTED;
   1167 		cv_broadcast(&pp->pr_cv);
   1168 	}
   1169 
   1170 	/*
   1171 	 * If this page is now empty, do one of two things:
   1172 	 *
   1173 	 *	(1) If we have more pages than the page high water mark,
   1174 	 *	    free the page back to the system.  ONLY CONSIDER
   1175 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1176 	 *	    CLAIM.
   1177 	 *
   1178 	 *	(2) Otherwise, move the page to the empty page list.
   1179 	 *
   1180 	 * Either way, select a new current page (so we use a partially-full
   1181 	 * page if one is available).
   1182 	 */
   1183 	if (ph->ph_nmissing == 0) {
   1184 		pp->pr_nidle++;
   1185 		if (pp->pr_npages > pp->pr_minpages &&
   1186 		    pp->pr_npages > pp->pr_maxpages) {
   1187 			pr_rmpage(pp, ph, pq);
   1188 		} else {
   1189 			LIST_REMOVE(ph, ph_pagelist);
   1190 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1191 
   1192 			/*
   1193 			 * Update the timestamp on the page.  A page must
   1194 			 * be idle for some period of time before it can
   1195 			 * be reclaimed by the pagedaemon.  This minimizes
   1196 			 * ping-pong'ing for memory.
   1197 			 *
   1198 			 * note for 64-bit time_t: truncating to 32-bit is not
   1199 			 * a problem for our usage.
   1200 			 */
   1201 			ph->ph_time = time_uptime;
   1202 		}
   1203 		pool_update_curpage(pp);
   1204 	}
   1205 
   1206 	/*
   1207 	 * If the page was previously completely full, move it to the
   1208 	 * partially-full list and make it the current page.  The next
   1209 	 * allocation will get the item from this page, instead of
   1210 	 * further fragmenting the pool.
   1211 	 */
   1212 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1213 		LIST_REMOVE(ph, ph_pagelist);
   1214 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1215 		pp->pr_curpage = ph;
   1216 	}
   1217 }
   1218 
   1219 void
   1220 pool_put(struct pool *pp, void *v)
   1221 {
   1222 	struct pool_pagelist pq;
   1223 
   1224 	LIST_INIT(&pq);
   1225 
   1226 	mutex_enter(&pp->pr_lock);
   1227 	if (!pool_put_quarantine(pp, v, &pq)) {
   1228 		pool_do_put(pp, v, &pq);
   1229 	}
   1230 	mutex_exit(&pp->pr_lock);
   1231 
   1232 	pr_pagelist_free(pp, &pq);
   1233 }
   1234 
   1235 /*
   1236  * pool_grow: grow a pool by a page.
   1237  *
   1238  * => called with pool locked.
   1239  * => unlock and relock the pool.
   1240  * => return with pool locked.
   1241  */
   1242 
   1243 static int
   1244 pool_grow(struct pool *pp, int flags)
   1245 {
   1246 	struct pool_item_header *ph;
   1247 	char *storage;
   1248 
   1249 	/*
   1250 	 * If there's a pool_grow in progress, wait for it to complete
   1251 	 * and try again from the top.
   1252 	 */
   1253 	if (pp->pr_flags & PR_GROWING) {
   1254 		if (flags & PR_WAITOK) {
   1255 			do {
   1256 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1257 			} while (pp->pr_flags & PR_GROWING);
   1258 			return ERESTART;
   1259 		} else {
   1260 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1261 				/*
   1262 				 * This needs an unlock/relock dance so
   1263 				 * that the other caller has a chance to
   1264 				 * run and actually do the thing.  Note
   1265 				 * that this is effectively a busy-wait.
   1266 				 */
   1267 				mutex_exit(&pp->pr_lock);
   1268 				mutex_enter(&pp->pr_lock);
   1269 				return ERESTART;
   1270 			}
   1271 			return EWOULDBLOCK;
   1272 		}
   1273 	}
   1274 	pp->pr_flags |= PR_GROWING;
   1275 	if (flags & PR_WAITOK)
   1276 		mutex_exit(&pp->pr_lock);
   1277 	else
   1278 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1279 
   1280 	storage = pool_allocator_alloc(pp, flags);
   1281 	if (__predict_false(storage == NULL))
   1282 		goto out;
   1283 
   1284 	ph = pool_alloc_item_header(pp, storage, flags);
   1285 	if (__predict_false(ph == NULL)) {
   1286 		pool_allocator_free(pp, storage);
   1287 		goto out;
   1288 	}
   1289 
   1290 	if (flags & PR_WAITOK)
   1291 		mutex_enter(&pp->pr_lock);
   1292 	pool_prime_page(pp, storage, ph);
   1293 	pp->pr_npagealloc++;
   1294 	KASSERT(pp->pr_flags & PR_GROWING);
   1295 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1296 	/*
   1297 	 * If anyone was waiting for pool_grow, notify them that we
   1298 	 * may have just done it.
   1299 	 */
   1300 	cv_broadcast(&pp->pr_cv);
   1301 	return 0;
   1302 out:
   1303 	if (flags & PR_WAITOK)
   1304 		mutex_enter(&pp->pr_lock);
   1305 	KASSERT(pp->pr_flags & PR_GROWING);
   1306 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1307 	return ENOMEM;
   1308 }
   1309 
   1310 /*
   1311  * Add N items to the pool.
   1312  */
   1313 int
   1314 pool_prime(struct pool *pp, int n)
   1315 {
   1316 	int newpages;
   1317 	int error = 0;
   1318 
   1319 	mutex_enter(&pp->pr_lock);
   1320 
   1321 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1322 
   1323 	while (newpages > 0) {
   1324 		error = pool_grow(pp, PR_NOWAIT);
   1325 		if (error) {
   1326 			if (error == ERESTART)
   1327 				continue;
   1328 			break;
   1329 		}
   1330 		pp->pr_minpages++;
   1331 		newpages--;
   1332 	}
   1333 
   1334 	if (pp->pr_minpages >= pp->pr_maxpages)
   1335 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1336 
   1337 	mutex_exit(&pp->pr_lock);
   1338 	return error;
   1339 }
   1340 
   1341 /*
   1342  * Add a page worth of items to the pool.
   1343  *
   1344  * Note, we must be called with the pool descriptor LOCKED.
   1345  */
   1346 static void
   1347 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1348 {
   1349 	const unsigned int align = pp->pr_align;
   1350 	struct pool_item *pi;
   1351 	void *cp = storage;
   1352 	int n;
   1353 
   1354 	KASSERT(mutex_owned(&pp->pr_lock));
   1355 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1356 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1357 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1358 
   1359 	/*
   1360 	 * Insert page header.
   1361 	 */
   1362 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1363 	LIST_INIT(&ph->ph_itemlist);
   1364 	ph->ph_page = storage;
   1365 	ph->ph_nmissing = 0;
   1366 	ph->ph_time = time_uptime;
   1367 	if (pp->pr_roflags & PR_PHINPAGE)
   1368 		ph->ph_poolid = pp->pr_poolid;
   1369 	else
   1370 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1371 
   1372 	pp->pr_nidle++;
   1373 
   1374 	/*
   1375 	 * The item space starts after the on-page header, if any.
   1376 	 */
   1377 	ph->ph_off = pp->pr_itemoffset;
   1378 
   1379 	/*
   1380 	 * Color this page.
   1381 	 */
   1382 	ph->ph_off += pp->pr_curcolor;
   1383 	cp = (char *)cp + ph->ph_off;
   1384 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1385 		pp->pr_curcolor = 0;
   1386 
   1387 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1388 
   1389 	/*
   1390 	 * Insert remaining chunks on the bucket list.
   1391 	 */
   1392 	n = pp->pr_itemsperpage;
   1393 	pp->pr_nitems += n;
   1394 
   1395 	if (pp->pr_roflags & PR_USEBMAP) {
   1396 		pr_item_bitmap_init(pp, ph);
   1397 	} else {
   1398 		while (n--) {
   1399 			pi = (struct pool_item *)cp;
   1400 
   1401 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1402 
   1403 			/* Insert on page list */
   1404 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1405 #ifdef POOL_CHECK_MAGIC
   1406 			pi->pi_magic = PI_MAGIC;
   1407 #endif
   1408 			cp = (char *)cp + pp->pr_size;
   1409 
   1410 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1411 		}
   1412 	}
   1413 
   1414 	/*
   1415 	 * If the pool was depleted, point at the new page.
   1416 	 */
   1417 	if (pp->pr_curpage == NULL)
   1418 		pp->pr_curpage = ph;
   1419 
   1420 	if (++pp->pr_npages > pp->pr_hiwat)
   1421 		pp->pr_hiwat = pp->pr_npages;
   1422 }
   1423 
   1424 /*
   1425  * Used by pool_get() when nitems drops below the low water mark.  This
   1426  * is used to catch up pr_nitems with the low water mark.
   1427  *
   1428  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1429  *
   1430  * Note 2, we must be called with the pool already locked, and we return
   1431  * with it locked.
   1432  */
   1433 static int
   1434 pool_catchup(struct pool *pp)
   1435 {
   1436 	int error = 0;
   1437 
   1438 	while (POOL_NEEDS_CATCHUP(pp)) {
   1439 		error = pool_grow(pp, PR_NOWAIT);
   1440 		if (error) {
   1441 			if (error == ERESTART)
   1442 				continue;
   1443 			break;
   1444 		}
   1445 	}
   1446 	return error;
   1447 }
   1448 
   1449 static void
   1450 pool_update_curpage(struct pool *pp)
   1451 {
   1452 
   1453 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1454 	if (pp->pr_curpage == NULL) {
   1455 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1456 	}
   1457 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1458 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1459 }
   1460 
   1461 void
   1462 pool_setlowat(struct pool *pp, int n)
   1463 {
   1464 
   1465 	mutex_enter(&pp->pr_lock);
   1466 
   1467 	pp->pr_minitems = n;
   1468 	pp->pr_minpages = (n == 0)
   1469 		? 0
   1470 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1471 
   1472 	/* Make sure we're caught up with the newly-set low water mark. */
   1473 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1474 		/*
   1475 		 * XXX: Should we log a warning?  Should we set up a timeout
   1476 		 * to try again in a second or so?  The latter could break
   1477 		 * a caller's assumptions about interrupt protection, etc.
   1478 		 */
   1479 	}
   1480 
   1481 	mutex_exit(&pp->pr_lock);
   1482 }
   1483 
   1484 void
   1485 pool_sethiwat(struct pool *pp, int n)
   1486 {
   1487 
   1488 	mutex_enter(&pp->pr_lock);
   1489 
   1490 	pp->pr_maxpages = (n == 0)
   1491 		? 0
   1492 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1493 
   1494 	mutex_exit(&pp->pr_lock);
   1495 }
   1496 
   1497 void
   1498 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1499 {
   1500 
   1501 	mutex_enter(&pp->pr_lock);
   1502 
   1503 	pp->pr_hardlimit = n;
   1504 	pp->pr_hardlimit_warning = warnmess;
   1505 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1506 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1507 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1508 
   1509 	/*
   1510 	 * In-line version of pool_sethiwat(), because we don't want to
   1511 	 * release the lock.
   1512 	 */
   1513 	pp->pr_maxpages = (n == 0)
   1514 		? 0
   1515 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1516 
   1517 	mutex_exit(&pp->pr_lock);
   1518 }
   1519 
   1520 /*
   1521  * Release all complete pages that have not been used recently.
   1522  *
   1523  * Must not be called from interrupt context.
   1524  */
   1525 int
   1526 pool_reclaim(struct pool *pp)
   1527 {
   1528 	struct pool_item_header *ph, *phnext;
   1529 	struct pool_pagelist pq;
   1530 	uint32_t curtime;
   1531 	bool klock;
   1532 	int rv;
   1533 
   1534 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1535 
   1536 	if (pp->pr_drain_hook != NULL) {
   1537 		/*
   1538 		 * The drain hook must be called with the pool unlocked.
   1539 		 */
   1540 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1541 	}
   1542 
   1543 	/*
   1544 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1545 	 * to block.
   1546 	 */
   1547 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1548 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1549 		KERNEL_LOCK(1, NULL);
   1550 		klock = true;
   1551 	} else
   1552 		klock = false;
   1553 
   1554 	/* Reclaim items from the pool's cache (if any). */
   1555 	if (pp->pr_cache != NULL)
   1556 		pool_cache_invalidate(pp->pr_cache);
   1557 
   1558 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1559 		if (klock) {
   1560 			KERNEL_UNLOCK_ONE(NULL);
   1561 		}
   1562 		return 0;
   1563 	}
   1564 
   1565 	LIST_INIT(&pq);
   1566 
   1567 	curtime = time_uptime;
   1568 
   1569 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1570 		phnext = LIST_NEXT(ph, ph_pagelist);
   1571 
   1572 		/* Check our minimum page claim */
   1573 		if (pp->pr_npages <= pp->pr_minpages)
   1574 			break;
   1575 
   1576 		KASSERT(ph->ph_nmissing == 0);
   1577 		if (curtime - ph->ph_time < pool_inactive_time)
   1578 			continue;
   1579 
   1580 		/*
   1581 		 * If freeing this page would put us below
   1582 		 * the low water mark, stop now.
   1583 		 */
   1584 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1585 		    pp->pr_minitems)
   1586 			break;
   1587 
   1588 		pr_rmpage(pp, ph, &pq);
   1589 	}
   1590 
   1591 	mutex_exit(&pp->pr_lock);
   1592 
   1593 	if (LIST_EMPTY(&pq))
   1594 		rv = 0;
   1595 	else {
   1596 		pr_pagelist_free(pp, &pq);
   1597 		rv = 1;
   1598 	}
   1599 
   1600 	if (klock) {
   1601 		KERNEL_UNLOCK_ONE(NULL);
   1602 	}
   1603 
   1604 	return rv;
   1605 }
   1606 
   1607 /*
   1608  * Drain pools, one at a time. The drained pool is returned within ppp.
   1609  *
   1610  * Note, must never be called from interrupt context.
   1611  */
   1612 bool
   1613 pool_drain(struct pool **ppp)
   1614 {
   1615 	bool reclaimed;
   1616 	struct pool *pp;
   1617 
   1618 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1619 
   1620 	pp = NULL;
   1621 
   1622 	/* Find next pool to drain, and add a reference. */
   1623 	mutex_enter(&pool_head_lock);
   1624 	do {
   1625 		if (drainpp == NULL) {
   1626 			drainpp = TAILQ_FIRST(&pool_head);
   1627 		}
   1628 		if (drainpp != NULL) {
   1629 			pp = drainpp;
   1630 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1631 		}
   1632 		/*
   1633 		 * Skip completely idle pools.  We depend on at least
   1634 		 * one pool in the system being active.
   1635 		 */
   1636 	} while (pp == NULL || pp->pr_npages == 0);
   1637 	pp->pr_refcnt++;
   1638 	mutex_exit(&pool_head_lock);
   1639 
   1640 	/* Drain the cache (if any) and pool.. */
   1641 	reclaimed = pool_reclaim(pp);
   1642 
   1643 	/* Finally, unlock the pool. */
   1644 	mutex_enter(&pool_head_lock);
   1645 	pp->pr_refcnt--;
   1646 	cv_broadcast(&pool_busy);
   1647 	mutex_exit(&pool_head_lock);
   1648 
   1649 	if (ppp != NULL)
   1650 		*ppp = pp;
   1651 
   1652 	return reclaimed;
   1653 }
   1654 
   1655 /*
   1656  * Calculate the total number of pages consumed by pools.
   1657  */
   1658 int
   1659 pool_totalpages(void)
   1660 {
   1661 
   1662 	mutex_enter(&pool_head_lock);
   1663 	int pages = pool_totalpages_locked();
   1664 	mutex_exit(&pool_head_lock);
   1665 
   1666 	return pages;
   1667 }
   1668 
   1669 int
   1670 pool_totalpages_locked(void)
   1671 {
   1672 	struct pool *pp;
   1673 	uint64_t total = 0;
   1674 
   1675 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1676 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1677 
   1678 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1679 			bytes -= (pp->pr_nout * pp->pr_size);
   1680 		total += bytes;
   1681 	}
   1682 
   1683 	return atop(total);
   1684 }
   1685 
   1686 /*
   1687  * Diagnostic helpers.
   1688  */
   1689 
   1690 void
   1691 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1692 {
   1693 	struct pool *pp;
   1694 
   1695 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1696 		pool_printit(pp, modif, pr);
   1697 	}
   1698 }
   1699 
   1700 void
   1701 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1702 {
   1703 
   1704 	if (pp == NULL) {
   1705 		(*pr)("Must specify a pool to print.\n");
   1706 		return;
   1707 	}
   1708 
   1709 	pool_print1(pp, modif, pr);
   1710 }
   1711 
   1712 static void
   1713 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1714     void (*pr)(const char *, ...))
   1715 {
   1716 	struct pool_item_header *ph;
   1717 
   1718 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1719 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1720 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1721 #ifdef POOL_CHECK_MAGIC
   1722 		struct pool_item *pi;
   1723 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1724 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1725 				if (pi->pi_magic != PI_MAGIC) {
   1726 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1727 					    pi, pi->pi_magic);
   1728 				}
   1729 			}
   1730 		}
   1731 #endif
   1732 	}
   1733 }
   1734 
   1735 static void
   1736 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1737 {
   1738 	struct pool_item_header *ph;
   1739 	pool_cache_t pc;
   1740 	pcg_t *pcg;
   1741 	pool_cache_cpu_t *cc;
   1742 	uint64_t cpuhit, cpumiss;
   1743 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1744 	char c;
   1745 
   1746 	while ((c = *modif++) != '\0') {
   1747 		if (c == 'l')
   1748 			print_log = 1;
   1749 		if (c == 'p')
   1750 			print_pagelist = 1;
   1751 		if (c == 'c')
   1752 			print_cache = 1;
   1753 	}
   1754 
   1755 	if ((pc = pp->pr_cache) != NULL) {
   1756 		(*pr)("POOL CACHE");
   1757 	} else {
   1758 		(*pr)("POOL");
   1759 	}
   1760 
   1761 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1762 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1763 	    pp->pr_roflags);
   1764 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1765 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1766 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1767 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1768 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1769 
   1770 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1771 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1772 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1773 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1774 
   1775 	if (print_pagelist == 0)
   1776 		goto skip_pagelist;
   1777 
   1778 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1779 		(*pr)("\n\tempty page list:\n");
   1780 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1781 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1782 		(*pr)("\n\tfull page list:\n");
   1783 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1784 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1785 		(*pr)("\n\tpartial-page list:\n");
   1786 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1787 
   1788 	if (pp->pr_curpage == NULL)
   1789 		(*pr)("\tno current page\n");
   1790 	else
   1791 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1792 
   1793  skip_pagelist:
   1794 	if (print_log == 0)
   1795 		goto skip_log;
   1796 
   1797 	(*pr)("\n");
   1798 
   1799  skip_log:
   1800 
   1801 #define PR_GROUPLIST(pcg)						\
   1802 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1803 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1804 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1805 		    POOL_PADDR_INVALID) {				\
   1806 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1807 			    pcg->pcg_objects[i].pcgo_va,		\
   1808 			    (unsigned long long)			\
   1809 			    pcg->pcg_objects[i].pcgo_pa);		\
   1810 		} else {						\
   1811 			(*pr)("\t\t\t%p\n",				\
   1812 			    pcg->pcg_objects[i].pcgo_va);		\
   1813 		}							\
   1814 	}
   1815 
   1816 	if (pc != NULL) {
   1817 		cpuhit = 0;
   1818 		cpumiss = 0;
   1819 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1820 			if ((cc = pc->pc_cpus[i]) == NULL)
   1821 				continue;
   1822 			cpuhit += cc->cc_hits;
   1823 			cpumiss += cc->cc_misses;
   1824 		}
   1825 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1826 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1827 		    pc->pc_hits, pc->pc_misses);
   1828 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1829 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1830 		    pc->pc_contended);
   1831 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1832 		    pc->pc_nempty, pc->pc_nfull);
   1833 		if (print_cache) {
   1834 			(*pr)("\tfull cache groups:\n");
   1835 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1836 			    pcg = pcg->pcg_next) {
   1837 				PR_GROUPLIST(pcg);
   1838 			}
   1839 			(*pr)("\tempty cache groups:\n");
   1840 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1841 			    pcg = pcg->pcg_next) {
   1842 				PR_GROUPLIST(pcg);
   1843 			}
   1844 		}
   1845 	}
   1846 #undef PR_GROUPLIST
   1847 }
   1848 
   1849 static int
   1850 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1851 {
   1852 	struct pool_item *pi;
   1853 	void *page;
   1854 	int n;
   1855 
   1856 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1857 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1858 		if (page != ph->ph_page &&
   1859 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1860 			if (label != NULL)
   1861 				printf("%s: ", label);
   1862 			printf("pool(%p:%s): page inconsistency: page %p;"
   1863 			       " at page head addr %p (p %p)\n", pp,
   1864 				pp->pr_wchan, ph->ph_page,
   1865 				ph, page);
   1866 			return 1;
   1867 		}
   1868 	}
   1869 
   1870 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1871 		return 0;
   1872 
   1873 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1874 	     pi != NULL;
   1875 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1876 
   1877 #ifdef POOL_CHECK_MAGIC
   1878 		if (pi->pi_magic != PI_MAGIC) {
   1879 			if (label != NULL)
   1880 				printf("%s: ", label);
   1881 			printf("pool(%s): free list modified: magic=%x;"
   1882 			       " page %p; item ordinal %d; addr %p\n",
   1883 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1884 				n, pi);
   1885 			panic("pool");
   1886 		}
   1887 #endif
   1888 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1889 			continue;
   1890 		}
   1891 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1892 		if (page == ph->ph_page)
   1893 			continue;
   1894 
   1895 		if (label != NULL)
   1896 			printf("%s: ", label);
   1897 		printf("pool(%p:%s): page inconsistency: page %p;"
   1898 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1899 			pp->pr_wchan, ph->ph_page,
   1900 			n, pi, page);
   1901 		return 1;
   1902 	}
   1903 	return 0;
   1904 }
   1905 
   1906 
   1907 int
   1908 pool_chk(struct pool *pp, const char *label)
   1909 {
   1910 	struct pool_item_header *ph;
   1911 	int r = 0;
   1912 
   1913 	mutex_enter(&pp->pr_lock);
   1914 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1915 		r = pool_chk_page(pp, label, ph);
   1916 		if (r) {
   1917 			goto out;
   1918 		}
   1919 	}
   1920 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1921 		r = pool_chk_page(pp, label, ph);
   1922 		if (r) {
   1923 			goto out;
   1924 		}
   1925 	}
   1926 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1927 		r = pool_chk_page(pp, label, ph);
   1928 		if (r) {
   1929 			goto out;
   1930 		}
   1931 	}
   1932 
   1933 out:
   1934 	mutex_exit(&pp->pr_lock);
   1935 	return r;
   1936 }
   1937 
   1938 /*
   1939  * pool_cache_init:
   1940  *
   1941  *	Initialize a pool cache.
   1942  */
   1943 pool_cache_t
   1944 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1945     const char *wchan, struct pool_allocator *palloc, int ipl,
   1946     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1947 {
   1948 	pool_cache_t pc;
   1949 
   1950 	pc = pool_get(&cache_pool, PR_WAITOK);
   1951 	if (pc == NULL)
   1952 		return NULL;
   1953 
   1954 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1955 	   palloc, ipl, ctor, dtor, arg);
   1956 
   1957 	return pc;
   1958 }
   1959 
   1960 /*
   1961  * pool_cache_bootstrap:
   1962  *
   1963  *	Kernel-private version of pool_cache_init().  The caller
   1964  *	provides initial storage.
   1965  */
   1966 void
   1967 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1968     u_int align_offset, u_int flags, const char *wchan,
   1969     struct pool_allocator *palloc, int ipl,
   1970     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1971     void *arg)
   1972 {
   1973 	CPU_INFO_ITERATOR cii;
   1974 	pool_cache_t pc1;
   1975 	struct cpu_info *ci;
   1976 	struct pool *pp;
   1977 
   1978 	pp = &pc->pc_pool;
   1979 	if (palloc == NULL && ipl == IPL_NONE) {
   1980 		if (size > PAGE_SIZE) {
   1981 			int bigidx = pool_bigidx(size);
   1982 
   1983 			palloc = &pool_allocator_big[bigidx];
   1984 			flags |= PR_NOALIGN;
   1985 		} else
   1986 			palloc = &pool_allocator_nointr;
   1987 	}
   1988 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1989 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1990 
   1991 	if (ctor == NULL) {
   1992 		ctor = (int (*)(void *, void *, int))nullop;
   1993 	}
   1994 	if (dtor == NULL) {
   1995 		dtor = (void (*)(void *, void *))nullop;
   1996 	}
   1997 
   1998 	pc->pc_emptygroups = NULL;
   1999 	pc->pc_fullgroups = NULL;
   2000 	pc->pc_partgroups = NULL;
   2001 	pc->pc_ctor = ctor;
   2002 	pc->pc_dtor = dtor;
   2003 	pc->pc_arg  = arg;
   2004 	pc->pc_hits  = 0;
   2005 	pc->pc_misses = 0;
   2006 	pc->pc_nempty = 0;
   2007 	pc->pc_npart = 0;
   2008 	pc->pc_nfull = 0;
   2009 	pc->pc_contended = 0;
   2010 	pc->pc_refcnt = 0;
   2011 	pc->pc_freecheck = NULL;
   2012 
   2013 	if ((flags & PR_LARGECACHE) != 0) {
   2014 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2015 		pc->pc_pcgpool = &pcg_large_pool;
   2016 	} else {
   2017 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2018 		pc->pc_pcgpool = &pcg_normal_pool;
   2019 	}
   2020 
   2021 	/* Allocate per-CPU caches. */
   2022 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2023 	pc->pc_ncpu = 0;
   2024 	if (ncpu < 2) {
   2025 		/* XXX For sparc: boot CPU is not attached yet. */
   2026 		pool_cache_cpu_init1(curcpu(), pc);
   2027 	} else {
   2028 		for (CPU_INFO_FOREACH(cii, ci)) {
   2029 			pool_cache_cpu_init1(ci, pc);
   2030 		}
   2031 	}
   2032 
   2033 	/* Add to list of all pools. */
   2034 	if (__predict_true(!cold))
   2035 		mutex_enter(&pool_head_lock);
   2036 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2037 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2038 			break;
   2039 	}
   2040 	if (pc1 == NULL)
   2041 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2042 	else
   2043 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2044 	if (__predict_true(!cold))
   2045 		mutex_exit(&pool_head_lock);
   2046 
   2047 	membar_sync();
   2048 	pp->pr_cache = pc;
   2049 }
   2050 
   2051 /*
   2052  * pool_cache_destroy:
   2053  *
   2054  *	Destroy a pool cache.
   2055  */
   2056 void
   2057 pool_cache_destroy(pool_cache_t pc)
   2058 {
   2059 
   2060 	pool_cache_bootstrap_destroy(pc);
   2061 	pool_put(&cache_pool, pc);
   2062 }
   2063 
   2064 /*
   2065  * pool_cache_bootstrap_destroy:
   2066  *
   2067  *	Destroy a pool cache.
   2068  */
   2069 void
   2070 pool_cache_bootstrap_destroy(pool_cache_t pc)
   2071 {
   2072 	struct pool *pp = &pc->pc_pool;
   2073 	u_int i;
   2074 
   2075 	/* Remove it from the global list. */
   2076 	mutex_enter(&pool_head_lock);
   2077 	while (pc->pc_refcnt != 0)
   2078 		cv_wait(&pool_busy, &pool_head_lock);
   2079 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2080 	mutex_exit(&pool_head_lock);
   2081 
   2082 	/* First, invalidate the entire cache. */
   2083 	pool_cache_invalidate(pc);
   2084 
   2085 	/* Disassociate it from the pool. */
   2086 	mutex_enter(&pp->pr_lock);
   2087 	pp->pr_cache = NULL;
   2088 	mutex_exit(&pp->pr_lock);
   2089 
   2090 	/* Destroy per-CPU data */
   2091 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2092 		pool_cache_invalidate_cpu(pc, i);
   2093 
   2094 	/* Finally, destroy it. */
   2095 	mutex_destroy(&pc->pc_lock);
   2096 	pool_destroy(pp);
   2097 }
   2098 
   2099 /*
   2100  * pool_cache_cpu_init1:
   2101  *
   2102  *	Called for each pool_cache whenever a new CPU is attached.
   2103  */
   2104 static void
   2105 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2106 {
   2107 	pool_cache_cpu_t *cc;
   2108 	int index;
   2109 
   2110 	index = ci->ci_index;
   2111 
   2112 	KASSERT(index < __arraycount(pc->pc_cpus));
   2113 
   2114 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2115 		KASSERT(cc->cc_cpuindex == index);
   2116 		return;
   2117 	}
   2118 
   2119 	/*
   2120 	 * The first CPU is 'free'.  This needs to be the case for
   2121 	 * bootstrap - we may not be able to allocate yet.
   2122 	 */
   2123 	if (pc->pc_ncpu == 0) {
   2124 		cc = &pc->pc_cpu0;
   2125 		pc->pc_ncpu = 1;
   2126 	} else {
   2127 		mutex_enter(&pc->pc_lock);
   2128 		pc->pc_ncpu++;
   2129 		mutex_exit(&pc->pc_lock);
   2130 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2131 	}
   2132 
   2133 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2134 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2135 	cc->cc_cache = pc;
   2136 	cc->cc_cpuindex = index;
   2137 	cc->cc_hits = 0;
   2138 	cc->cc_misses = 0;
   2139 	cc->cc_current = __UNCONST(&pcg_dummy);
   2140 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2141 
   2142 	pc->pc_cpus[index] = cc;
   2143 }
   2144 
   2145 /*
   2146  * pool_cache_cpu_init:
   2147  *
   2148  *	Called whenever a new CPU is attached.
   2149  */
   2150 void
   2151 pool_cache_cpu_init(struct cpu_info *ci)
   2152 {
   2153 	pool_cache_t pc;
   2154 
   2155 	mutex_enter(&pool_head_lock);
   2156 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2157 		pc->pc_refcnt++;
   2158 		mutex_exit(&pool_head_lock);
   2159 
   2160 		pool_cache_cpu_init1(ci, pc);
   2161 
   2162 		mutex_enter(&pool_head_lock);
   2163 		pc->pc_refcnt--;
   2164 		cv_broadcast(&pool_busy);
   2165 	}
   2166 	mutex_exit(&pool_head_lock);
   2167 }
   2168 
   2169 /*
   2170  * pool_cache_reclaim:
   2171  *
   2172  *	Reclaim memory from a pool cache.
   2173  */
   2174 bool
   2175 pool_cache_reclaim(pool_cache_t pc)
   2176 {
   2177 
   2178 	return pool_reclaim(&pc->pc_pool);
   2179 }
   2180 
   2181 static void
   2182 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2183 {
   2184 	(*pc->pc_dtor)(pc->pc_arg, object);
   2185 	pool_put(&pc->pc_pool, object);
   2186 }
   2187 
   2188 /*
   2189  * pool_cache_destruct_object:
   2190  *
   2191  *	Force destruction of an object and its release back into
   2192  *	the pool.
   2193  */
   2194 void
   2195 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2196 {
   2197 
   2198 	FREECHECK_IN(&pc->pc_freecheck, object);
   2199 
   2200 	pool_cache_destruct_object1(pc, object);
   2201 }
   2202 
   2203 /*
   2204  * pool_cache_invalidate_groups:
   2205  *
   2206  *	Invalidate a chain of groups and destruct all objects.
   2207  */
   2208 static void
   2209 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2210 {
   2211 	void *object;
   2212 	pcg_t *next;
   2213 	int i;
   2214 
   2215 	for (; pcg != NULL; pcg = next) {
   2216 		next = pcg->pcg_next;
   2217 
   2218 		for (i = 0; i < pcg->pcg_avail; i++) {
   2219 			object = pcg->pcg_objects[i].pcgo_va;
   2220 			pool_cache_destruct_object1(pc, object);
   2221 		}
   2222 
   2223 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2224 			pool_put(&pcg_large_pool, pcg);
   2225 		} else {
   2226 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2227 			pool_put(&pcg_normal_pool, pcg);
   2228 		}
   2229 	}
   2230 }
   2231 
   2232 /*
   2233  * pool_cache_invalidate:
   2234  *
   2235  *	Invalidate a pool cache (destruct and release all of the
   2236  *	cached objects).  Does not reclaim objects from the pool.
   2237  *
   2238  *	Note: For pool caches that provide constructed objects, there
   2239  *	is an assumption that another level of synchronization is occurring
   2240  *	between the input to the constructor and the cache invalidation.
   2241  *
   2242  *	Invalidation is a costly process and should not be called from
   2243  *	interrupt context.
   2244  */
   2245 void
   2246 pool_cache_invalidate(pool_cache_t pc)
   2247 {
   2248 	uint64_t where;
   2249 	pcg_t *full, *empty, *part;
   2250 
   2251 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2252 
   2253 	if (ncpu < 2 || !mp_online) {
   2254 		/*
   2255 		 * We might be called early enough in the boot process
   2256 		 * for the CPU data structures to not be fully initialized.
   2257 		 * In this case, transfer the content of the local CPU's
   2258 		 * cache back into global cache as only this CPU is currently
   2259 		 * running.
   2260 		 */
   2261 		pool_cache_transfer(pc);
   2262 	} else {
   2263 		/*
   2264 		 * Signal all CPUs that they must transfer their local
   2265 		 * cache back to the global pool then wait for the xcall to
   2266 		 * complete.
   2267 		 */
   2268 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2269 		    pc, NULL);
   2270 		xc_wait(where);
   2271 	}
   2272 
   2273 	/* Empty pool caches, then invalidate objects */
   2274 	mutex_enter(&pc->pc_lock);
   2275 	full = pc->pc_fullgroups;
   2276 	empty = pc->pc_emptygroups;
   2277 	part = pc->pc_partgroups;
   2278 	pc->pc_fullgroups = NULL;
   2279 	pc->pc_emptygroups = NULL;
   2280 	pc->pc_partgroups = NULL;
   2281 	pc->pc_nfull = 0;
   2282 	pc->pc_nempty = 0;
   2283 	pc->pc_npart = 0;
   2284 	mutex_exit(&pc->pc_lock);
   2285 
   2286 	pool_cache_invalidate_groups(pc, full);
   2287 	pool_cache_invalidate_groups(pc, empty);
   2288 	pool_cache_invalidate_groups(pc, part);
   2289 }
   2290 
   2291 /*
   2292  * pool_cache_invalidate_cpu:
   2293  *
   2294  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2295  *	identified by its associated index.
   2296  *	It is caller's responsibility to ensure that no operation is
   2297  *	taking place on this pool cache while doing this invalidation.
   2298  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2299  *	pool cached objects from a CPU different from the one currently running
   2300  *	may result in an undefined behaviour.
   2301  */
   2302 static void
   2303 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2304 {
   2305 	pool_cache_cpu_t *cc;
   2306 	pcg_t *pcg;
   2307 
   2308 	if ((cc = pc->pc_cpus[index]) == NULL)
   2309 		return;
   2310 
   2311 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2312 		pcg->pcg_next = NULL;
   2313 		pool_cache_invalidate_groups(pc, pcg);
   2314 	}
   2315 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2316 		pcg->pcg_next = NULL;
   2317 		pool_cache_invalidate_groups(pc, pcg);
   2318 	}
   2319 	if (cc != &pc->pc_cpu0)
   2320 		pool_put(&cache_cpu_pool, cc);
   2321 
   2322 }
   2323 
   2324 void
   2325 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2326 {
   2327 
   2328 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2329 }
   2330 
   2331 void
   2332 pool_cache_setlowat(pool_cache_t pc, int n)
   2333 {
   2334 
   2335 	pool_setlowat(&pc->pc_pool, n);
   2336 }
   2337 
   2338 void
   2339 pool_cache_sethiwat(pool_cache_t pc, int n)
   2340 {
   2341 
   2342 	pool_sethiwat(&pc->pc_pool, n);
   2343 }
   2344 
   2345 void
   2346 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2347 {
   2348 
   2349 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2350 }
   2351 
   2352 static bool __noinline
   2353 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2354 		    paddr_t *pap, int flags)
   2355 {
   2356 	pcg_t *pcg, *cur;
   2357 	uint64_t ncsw;
   2358 	pool_cache_t pc;
   2359 	void *object;
   2360 
   2361 	KASSERT(cc->cc_current->pcg_avail == 0);
   2362 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2363 
   2364 	pc = cc->cc_cache;
   2365 	cc->cc_misses++;
   2366 
   2367 	/*
   2368 	 * Nothing was available locally.  Try and grab a group
   2369 	 * from the cache.
   2370 	 */
   2371 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2372 		ncsw = curlwp->l_ncsw;
   2373 		mutex_enter(&pc->pc_lock);
   2374 		pc->pc_contended++;
   2375 
   2376 		/*
   2377 		 * If we context switched while locking, then
   2378 		 * our view of the per-CPU data is invalid:
   2379 		 * retry.
   2380 		 */
   2381 		if (curlwp->l_ncsw != ncsw) {
   2382 			mutex_exit(&pc->pc_lock);
   2383 			return true;
   2384 		}
   2385 	}
   2386 
   2387 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2388 		/*
   2389 		 * If there's a full group, release our empty
   2390 		 * group back to the cache.  Install the full
   2391 		 * group as cc_current and return.
   2392 		 */
   2393 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2394 			KASSERT(cur->pcg_avail == 0);
   2395 			cur->pcg_next = pc->pc_emptygroups;
   2396 			pc->pc_emptygroups = cur;
   2397 			pc->pc_nempty++;
   2398 		}
   2399 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2400 		cc->cc_current = pcg;
   2401 		pc->pc_fullgroups = pcg->pcg_next;
   2402 		pc->pc_hits++;
   2403 		pc->pc_nfull--;
   2404 		mutex_exit(&pc->pc_lock);
   2405 		return true;
   2406 	}
   2407 
   2408 	/*
   2409 	 * Nothing available locally or in cache.  Take the slow
   2410 	 * path: fetch a new object from the pool and construct
   2411 	 * it.
   2412 	 */
   2413 	pc->pc_misses++;
   2414 	mutex_exit(&pc->pc_lock);
   2415 	splx(s);
   2416 
   2417 	object = pool_get(&pc->pc_pool, flags);
   2418 	*objectp = object;
   2419 	if (__predict_false(object == NULL)) {
   2420 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2421 		return false;
   2422 	}
   2423 
   2424 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2425 		pool_put(&pc->pc_pool, object);
   2426 		*objectp = NULL;
   2427 		return false;
   2428 	}
   2429 
   2430 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2431 
   2432 	if (pap != NULL) {
   2433 #ifdef POOL_VTOPHYS
   2434 		*pap = POOL_VTOPHYS(object);
   2435 #else
   2436 		*pap = POOL_PADDR_INVALID;
   2437 #endif
   2438 	}
   2439 
   2440 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2441 	pool_cache_kleak_fill(pc, object);
   2442 	return false;
   2443 }
   2444 
   2445 /*
   2446  * pool_cache_get{,_paddr}:
   2447  *
   2448  *	Get an object from a pool cache (optionally returning
   2449  *	the physical address of the object).
   2450  */
   2451 void *
   2452 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2453 {
   2454 	pool_cache_cpu_t *cc;
   2455 	pcg_t *pcg;
   2456 	void *object;
   2457 	int s;
   2458 
   2459 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2460 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2461 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2462 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2463 	    __func__, pc->pc_pool.pr_wchan);
   2464 
   2465 	if (flags & PR_WAITOK) {
   2466 		ASSERT_SLEEPABLE();
   2467 	}
   2468 
   2469 	/* Lock out interrupts and disable preemption. */
   2470 	s = splvm();
   2471 	while (/* CONSTCOND */ true) {
   2472 		/* Try and allocate an object from the current group. */
   2473 		cc = pc->pc_cpus[curcpu()->ci_index];
   2474 		KASSERT(cc->cc_cache == pc);
   2475 	 	pcg = cc->cc_current;
   2476 		if (__predict_true(pcg->pcg_avail > 0)) {
   2477 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2478 			if (__predict_false(pap != NULL))
   2479 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2480 #if defined(DIAGNOSTIC)
   2481 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2482 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2483 			KASSERT(object != NULL);
   2484 #endif
   2485 			cc->cc_hits++;
   2486 			splx(s);
   2487 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2488 			pool_redzone_fill(&pc->pc_pool, object);
   2489 			pool_cache_kleak_fill(pc, object);
   2490 			return object;
   2491 		}
   2492 
   2493 		/*
   2494 		 * That failed.  If the previous group isn't empty, swap
   2495 		 * it with the current group and allocate from there.
   2496 		 */
   2497 		pcg = cc->cc_previous;
   2498 		if (__predict_true(pcg->pcg_avail > 0)) {
   2499 			cc->cc_previous = cc->cc_current;
   2500 			cc->cc_current = pcg;
   2501 			continue;
   2502 		}
   2503 
   2504 		/*
   2505 		 * Can't allocate from either group: try the slow path.
   2506 		 * If get_slow() allocated an object for us, or if
   2507 		 * no more objects are available, it will return false.
   2508 		 * Otherwise, we need to retry.
   2509 		 */
   2510 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2511 			break;
   2512 	}
   2513 
   2514 	/*
   2515 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2516 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2517 	 * constructor fails.
   2518 	 */
   2519 	return object;
   2520 }
   2521 
   2522 static bool __noinline
   2523 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2524 {
   2525 	struct lwp *l = curlwp;
   2526 	pcg_t *pcg, *cur;
   2527 	uint64_t ncsw;
   2528 	pool_cache_t pc;
   2529 
   2530 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2531 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2532 
   2533 	pc = cc->cc_cache;
   2534 	pcg = NULL;
   2535 	cc->cc_misses++;
   2536 	ncsw = l->l_ncsw;
   2537 
   2538 	/*
   2539 	 * If there are no empty groups in the cache then allocate one
   2540 	 * while still unlocked.
   2541 	 */
   2542 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2543 		if (__predict_true(!pool_cache_disable)) {
   2544 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2545 		}
   2546 		/*
   2547 		 * If pool_get() blocked, then our view of
   2548 		 * the per-CPU data is invalid: retry.
   2549 		 */
   2550 		if (__predict_false(l->l_ncsw != ncsw)) {
   2551 			if (pcg != NULL) {
   2552 				pool_put(pc->pc_pcgpool, pcg);
   2553 			}
   2554 			return true;
   2555 		}
   2556 		if (__predict_true(pcg != NULL)) {
   2557 			pcg->pcg_avail = 0;
   2558 			pcg->pcg_size = pc->pc_pcgsize;
   2559 		}
   2560 	}
   2561 
   2562 	/* Lock the cache. */
   2563 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2564 		mutex_enter(&pc->pc_lock);
   2565 		pc->pc_contended++;
   2566 
   2567 		/*
   2568 		 * If we context switched while locking, then our view of
   2569 		 * the per-CPU data is invalid: retry.
   2570 		 */
   2571 		if (__predict_false(l->l_ncsw != ncsw)) {
   2572 			mutex_exit(&pc->pc_lock);
   2573 			if (pcg != NULL) {
   2574 				pool_put(pc->pc_pcgpool, pcg);
   2575 			}
   2576 			return true;
   2577 		}
   2578 	}
   2579 
   2580 	/* If there are no empty groups in the cache then allocate one. */
   2581 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2582 		pcg = pc->pc_emptygroups;
   2583 		pc->pc_emptygroups = pcg->pcg_next;
   2584 		pc->pc_nempty--;
   2585 	}
   2586 
   2587 	/*
   2588 	 * If there's a empty group, release our full group back
   2589 	 * to the cache.  Install the empty group to the local CPU
   2590 	 * and return.
   2591 	 */
   2592 	if (pcg != NULL) {
   2593 		KASSERT(pcg->pcg_avail == 0);
   2594 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2595 			cc->cc_previous = pcg;
   2596 		} else {
   2597 			cur = cc->cc_current;
   2598 			if (__predict_true(cur != &pcg_dummy)) {
   2599 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2600 				cur->pcg_next = pc->pc_fullgroups;
   2601 				pc->pc_fullgroups = cur;
   2602 				pc->pc_nfull++;
   2603 			}
   2604 			cc->cc_current = pcg;
   2605 		}
   2606 		pc->pc_hits++;
   2607 		mutex_exit(&pc->pc_lock);
   2608 		return true;
   2609 	}
   2610 
   2611 	/*
   2612 	 * Nothing available locally or in cache, and we didn't
   2613 	 * allocate an empty group.  Take the slow path and destroy
   2614 	 * the object here and now.
   2615 	 */
   2616 	pc->pc_misses++;
   2617 	mutex_exit(&pc->pc_lock);
   2618 	splx(s);
   2619 	pool_cache_destruct_object(pc, object);
   2620 
   2621 	return false;
   2622 }
   2623 
   2624 /*
   2625  * pool_cache_put{,_paddr}:
   2626  *
   2627  *	Put an object back to the pool cache (optionally caching the
   2628  *	physical address of the object).
   2629  */
   2630 void
   2631 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2632 {
   2633 	pool_cache_cpu_t *cc;
   2634 	pcg_t *pcg;
   2635 	int s;
   2636 
   2637 	KASSERT(object != NULL);
   2638 	pool_cache_redzone_check(pc, object);
   2639 	FREECHECK_IN(&pc->pc_freecheck, object);
   2640 
   2641 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2642 		pc_phinpage_check(pc, object);
   2643 	}
   2644 
   2645 	if (pool_cache_put_quarantine(pc, object, pa)) {
   2646 		return;
   2647 	}
   2648 
   2649 	/* Lock out interrupts and disable preemption. */
   2650 	s = splvm();
   2651 	while (/* CONSTCOND */ true) {
   2652 		/* If the current group isn't full, release it there. */
   2653 		cc = pc->pc_cpus[curcpu()->ci_index];
   2654 		KASSERT(cc->cc_cache == pc);
   2655 	 	pcg = cc->cc_current;
   2656 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2657 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2658 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2659 			pcg->pcg_avail++;
   2660 			cc->cc_hits++;
   2661 			splx(s);
   2662 			return;
   2663 		}
   2664 
   2665 		/*
   2666 		 * That failed.  If the previous group isn't full, swap
   2667 		 * it with the current group and try again.
   2668 		 */
   2669 		pcg = cc->cc_previous;
   2670 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2671 			cc->cc_previous = cc->cc_current;
   2672 			cc->cc_current = pcg;
   2673 			continue;
   2674 		}
   2675 
   2676 		/*
   2677 		 * Can't free to either group: try the slow path.
   2678 		 * If put_slow() releases the object for us, it
   2679 		 * will return false.  Otherwise we need to retry.
   2680 		 */
   2681 		if (!pool_cache_put_slow(cc, s, object))
   2682 			break;
   2683 	}
   2684 }
   2685 
   2686 /*
   2687  * pool_cache_transfer:
   2688  *
   2689  *	Transfer objects from the per-CPU cache to the global cache.
   2690  *	Run within a cross-call thread.
   2691  */
   2692 static void
   2693 pool_cache_transfer(pool_cache_t pc)
   2694 {
   2695 	pool_cache_cpu_t *cc;
   2696 	pcg_t *prev, *cur, **list;
   2697 	int s;
   2698 
   2699 	s = splvm();
   2700 	mutex_enter(&pc->pc_lock);
   2701 	cc = pc->pc_cpus[curcpu()->ci_index];
   2702 	cur = cc->cc_current;
   2703 	cc->cc_current = __UNCONST(&pcg_dummy);
   2704 	prev = cc->cc_previous;
   2705 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2706 	if (cur != &pcg_dummy) {
   2707 		if (cur->pcg_avail == cur->pcg_size) {
   2708 			list = &pc->pc_fullgroups;
   2709 			pc->pc_nfull++;
   2710 		} else if (cur->pcg_avail == 0) {
   2711 			list = &pc->pc_emptygroups;
   2712 			pc->pc_nempty++;
   2713 		} else {
   2714 			list = &pc->pc_partgroups;
   2715 			pc->pc_npart++;
   2716 		}
   2717 		cur->pcg_next = *list;
   2718 		*list = cur;
   2719 	}
   2720 	if (prev != &pcg_dummy) {
   2721 		if (prev->pcg_avail == prev->pcg_size) {
   2722 			list = &pc->pc_fullgroups;
   2723 			pc->pc_nfull++;
   2724 		} else if (prev->pcg_avail == 0) {
   2725 			list = &pc->pc_emptygroups;
   2726 			pc->pc_nempty++;
   2727 		} else {
   2728 			list = &pc->pc_partgroups;
   2729 			pc->pc_npart++;
   2730 		}
   2731 		prev->pcg_next = *list;
   2732 		*list = prev;
   2733 	}
   2734 	mutex_exit(&pc->pc_lock);
   2735 	splx(s);
   2736 }
   2737 
   2738 /*
   2739  * Pool backend allocators.
   2740  *
   2741  * Each pool has a backend allocator that handles allocation, deallocation,
   2742  * and any additional draining that might be needed.
   2743  *
   2744  * We provide two standard allocators:
   2745  *
   2746  *	pool_allocator_kmem - the default when no allocator is specified
   2747  *
   2748  *	pool_allocator_nointr - used for pools that will not be accessed
   2749  *	in interrupt context.
   2750  */
   2751 void	*pool_page_alloc(struct pool *, int);
   2752 void	pool_page_free(struct pool *, void *);
   2753 
   2754 struct pool_allocator pool_allocator_kmem = {
   2755 	.pa_alloc = pool_page_alloc,
   2756 	.pa_free = pool_page_free,
   2757 	.pa_pagesz = 0
   2758 };
   2759 
   2760 struct pool_allocator pool_allocator_nointr = {
   2761 	.pa_alloc = pool_page_alloc,
   2762 	.pa_free = pool_page_free,
   2763 	.pa_pagesz = 0
   2764 };
   2765 
   2766 struct pool_allocator pool_allocator_big[] = {
   2767 	{
   2768 		.pa_alloc = pool_page_alloc,
   2769 		.pa_free = pool_page_free,
   2770 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2771 	},
   2772 	{
   2773 		.pa_alloc = pool_page_alloc,
   2774 		.pa_free = pool_page_free,
   2775 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2776 	},
   2777 	{
   2778 		.pa_alloc = pool_page_alloc,
   2779 		.pa_free = pool_page_free,
   2780 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2781 	},
   2782 	{
   2783 		.pa_alloc = pool_page_alloc,
   2784 		.pa_free = pool_page_free,
   2785 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2786 	},
   2787 	{
   2788 		.pa_alloc = pool_page_alloc,
   2789 		.pa_free = pool_page_free,
   2790 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2791 	},
   2792 	{
   2793 		.pa_alloc = pool_page_alloc,
   2794 		.pa_free = pool_page_free,
   2795 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2796 	},
   2797 	{
   2798 		.pa_alloc = pool_page_alloc,
   2799 		.pa_free = pool_page_free,
   2800 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2801 	},
   2802 	{
   2803 		.pa_alloc = pool_page_alloc,
   2804 		.pa_free = pool_page_free,
   2805 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2806 	}
   2807 };
   2808 
   2809 static int
   2810 pool_bigidx(size_t size)
   2811 {
   2812 	int i;
   2813 
   2814 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2815 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2816 			return i;
   2817 	}
   2818 	panic("pool item size %zu too large, use a custom allocator", size);
   2819 }
   2820 
   2821 static void *
   2822 pool_allocator_alloc(struct pool *pp, int flags)
   2823 {
   2824 	struct pool_allocator *pa = pp->pr_alloc;
   2825 	void *res;
   2826 
   2827 	res = (*pa->pa_alloc)(pp, flags);
   2828 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2829 		/*
   2830 		 * We only run the drain hook here if PR_NOWAIT.
   2831 		 * In other cases, the hook will be run in
   2832 		 * pool_reclaim().
   2833 		 */
   2834 		if (pp->pr_drain_hook != NULL) {
   2835 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2836 			res = (*pa->pa_alloc)(pp, flags);
   2837 		}
   2838 	}
   2839 	return res;
   2840 }
   2841 
   2842 static void
   2843 pool_allocator_free(struct pool *pp, void *v)
   2844 {
   2845 	struct pool_allocator *pa = pp->pr_alloc;
   2846 
   2847 	if (pp->pr_redzone) {
   2848 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2849 	}
   2850 	(*pa->pa_free)(pp, v);
   2851 }
   2852 
   2853 void *
   2854 pool_page_alloc(struct pool *pp, int flags)
   2855 {
   2856 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2857 	vmem_addr_t va;
   2858 	int ret;
   2859 
   2860 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2861 	    vflags | VM_INSTANTFIT, &va);
   2862 
   2863 	return ret ? NULL : (void *)va;
   2864 }
   2865 
   2866 void
   2867 pool_page_free(struct pool *pp, void *v)
   2868 {
   2869 
   2870 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2871 }
   2872 
   2873 static void *
   2874 pool_page_alloc_meta(struct pool *pp, int flags)
   2875 {
   2876 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2877 	vmem_addr_t va;
   2878 	int ret;
   2879 
   2880 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2881 	    vflags | VM_INSTANTFIT, &va);
   2882 
   2883 	return ret ? NULL : (void *)va;
   2884 }
   2885 
   2886 static void
   2887 pool_page_free_meta(struct pool *pp, void *v)
   2888 {
   2889 
   2890 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2891 }
   2892 
   2893 #ifdef KLEAK
   2894 static void
   2895 pool_kleak_fill(struct pool *pp, void *p)
   2896 {
   2897 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2898 		return;
   2899 	}
   2900 	kleak_fill_area(p, pp->pr_size);
   2901 }
   2902 
   2903 static void
   2904 pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2905 {
   2906 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2907 		return;
   2908 	}
   2909 	pool_kleak_fill(&pc->pc_pool, p);
   2910 }
   2911 #endif
   2912 
   2913 #ifdef POOL_QUARANTINE
   2914 static void
   2915 pool_quarantine_init(struct pool *pp)
   2916 {
   2917 	pp->pr_quar.rotor = 0;
   2918 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2919 }
   2920 
   2921 static void
   2922 pool_quarantine_flush(struct pool *pp)
   2923 {
   2924 	pool_quar_t *quar = &pp->pr_quar;
   2925 	struct pool_pagelist pq;
   2926 	size_t i;
   2927 
   2928 	LIST_INIT(&pq);
   2929 
   2930 	mutex_enter(&pp->pr_lock);
   2931 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2932 		if (quar->list[i] == 0)
   2933 			continue;
   2934 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2935 	}
   2936 	mutex_exit(&pp->pr_lock);
   2937 
   2938 	pr_pagelist_free(pp, &pq);
   2939 }
   2940 
   2941 static bool
   2942 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2943 {
   2944 	pool_quar_t *quar = &pp->pr_quar;
   2945 	uintptr_t old;
   2946 
   2947 	if (pp->pr_roflags & PR_NOTOUCH) {
   2948 		return false;
   2949 	}
   2950 
   2951 	pool_redzone_check(pp, v);
   2952 
   2953 	old = quar->list[quar->rotor];
   2954 	quar->list[quar->rotor] = (uintptr_t)v;
   2955 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2956 	if (old != 0) {
   2957 		pool_do_put(pp, (void *)old, pq);
   2958 	}
   2959 
   2960 	return true;
   2961 }
   2962 
   2963 static bool
   2964 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
   2965 {
   2966 	pool_cache_destruct_object(pc, p);
   2967 	return true;
   2968 }
   2969 #endif
   2970 
   2971 #ifdef POOL_REDZONE
   2972 #if defined(_LP64)
   2973 # define PRIME 0x9e37fffffffc0000UL
   2974 #else /* defined(_LP64) */
   2975 # define PRIME 0x9e3779b1
   2976 #endif /* defined(_LP64) */
   2977 #define STATIC_BYTE	0xFE
   2978 CTASSERT(POOL_REDZONE_SIZE > 1);
   2979 
   2980 #ifndef KASAN
   2981 static inline uint8_t
   2982 pool_pattern_generate(const void *p)
   2983 {
   2984 	return (uint8_t)(((uintptr_t)p) * PRIME
   2985 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2986 }
   2987 #endif
   2988 
   2989 static void
   2990 pool_redzone_init(struct pool *pp, size_t requested_size)
   2991 {
   2992 	size_t redzsz;
   2993 	size_t nsz;
   2994 
   2995 #ifdef KASAN
   2996 	redzsz = requested_size;
   2997 	kasan_add_redzone(&redzsz);
   2998 	redzsz -= requested_size;
   2999 #else
   3000 	redzsz = POOL_REDZONE_SIZE;
   3001 #endif
   3002 
   3003 	if (pp->pr_roflags & PR_NOTOUCH) {
   3004 		pp->pr_redzone = false;
   3005 		return;
   3006 	}
   3007 
   3008 	/*
   3009 	 * We may have extended the requested size earlier; check if
   3010 	 * there's naturally space in the padding for a red zone.
   3011 	 */
   3012 	if (pp->pr_size - requested_size >= redzsz) {
   3013 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3014 		pp->pr_redzone = true;
   3015 		return;
   3016 	}
   3017 
   3018 	/*
   3019 	 * No space in the natural padding; check if we can extend a
   3020 	 * bit the size of the pool.
   3021 	 */
   3022 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3023 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3024 		/* Ok, we can */
   3025 		pp->pr_size = nsz;
   3026 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3027 		pp->pr_redzone = true;
   3028 	} else {
   3029 		/* No space for a red zone... snif :'( */
   3030 		pp->pr_redzone = false;
   3031 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3032 	}
   3033 }
   3034 
   3035 static void
   3036 pool_redzone_fill(struct pool *pp, void *p)
   3037 {
   3038 	if (!pp->pr_redzone)
   3039 		return;
   3040 #ifdef KASAN
   3041 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3042 	    KASAN_POOL_REDZONE);
   3043 #else
   3044 	uint8_t *cp, pat;
   3045 	const uint8_t *ep;
   3046 
   3047 	cp = (uint8_t *)p + pp->pr_reqsize;
   3048 	ep = cp + POOL_REDZONE_SIZE;
   3049 
   3050 	/*
   3051 	 * We really don't want the first byte of the red zone to be '\0';
   3052 	 * an off-by-one in a string may not be properly detected.
   3053 	 */
   3054 	pat = pool_pattern_generate(cp);
   3055 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3056 	cp++;
   3057 
   3058 	while (cp < ep) {
   3059 		*cp = pool_pattern_generate(cp);
   3060 		cp++;
   3061 	}
   3062 #endif
   3063 }
   3064 
   3065 static void
   3066 pool_redzone_check(struct pool *pp, void *p)
   3067 {
   3068 	if (!pp->pr_redzone)
   3069 		return;
   3070 #ifdef KASAN
   3071 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3072 #else
   3073 	uint8_t *cp, pat, expected;
   3074 	const uint8_t *ep;
   3075 
   3076 	cp = (uint8_t *)p + pp->pr_reqsize;
   3077 	ep = cp + POOL_REDZONE_SIZE;
   3078 
   3079 	pat = pool_pattern_generate(cp);
   3080 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3081 	if (__predict_false(expected != *cp)) {
   3082 		printf("%s: %p: 0x%02x != 0x%02x\n",
   3083 		   __func__, cp, *cp, expected);
   3084 	}
   3085 	cp++;
   3086 
   3087 	while (cp < ep) {
   3088 		expected = pool_pattern_generate(cp);
   3089 		if (__predict_false(*cp != expected)) {
   3090 			printf("%s: %p: 0x%02x != 0x%02x\n",
   3091 			   __func__, cp, *cp, expected);
   3092 		}
   3093 		cp++;
   3094 	}
   3095 #endif
   3096 }
   3097 
   3098 static void
   3099 pool_cache_redzone_check(pool_cache_t pc, void *p)
   3100 {
   3101 #ifdef KASAN
   3102 	/* If there is a ctor+dtor, leave the data as valid. */
   3103 	if (__predict_false(pc_has_ctor(pc) && pc_has_dtor(pc))) {
   3104 		return;
   3105 	}
   3106 #endif
   3107 	pool_redzone_check(&pc->pc_pool, p);
   3108 }
   3109 
   3110 #endif /* POOL_REDZONE */
   3111 
   3112 #if defined(DDB)
   3113 static bool
   3114 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3115 {
   3116 
   3117 	return (uintptr_t)ph->ph_page <= addr &&
   3118 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3119 }
   3120 
   3121 static bool
   3122 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3123 {
   3124 
   3125 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3126 }
   3127 
   3128 static bool
   3129 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3130 {
   3131 	int i;
   3132 
   3133 	if (pcg == NULL) {
   3134 		return false;
   3135 	}
   3136 	for (i = 0; i < pcg->pcg_avail; i++) {
   3137 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3138 			return true;
   3139 		}
   3140 	}
   3141 	return false;
   3142 }
   3143 
   3144 static bool
   3145 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3146 {
   3147 
   3148 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3149 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3150 		pool_item_bitmap_t *bitmap =
   3151 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3152 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3153 
   3154 		return (*bitmap & mask) == 0;
   3155 	} else {
   3156 		struct pool_item *pi;
   3157 
   3158 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3159 			if (pool_in_item(pp, pi, addr)) {
   3160 				return false;
   3161 			}
   3162 		}
   3163 		return true;
   3164 	}
   3165 }
   3166 
   3167 void
   3168 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3169 {
   3170 	struct pool *pp;
   3171 
   3172 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3173 		struct pool_item_header *ph;
   3174 		uintptr_t item;
   3175 		bool allocated = true;
   3176 		bool incache = false;
   3177 		bool incpucache = false;
   3178 		char cpucachestr[32];
   3179 
   3180 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3181 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3182 				if (pool_in_page(pp, ph, addr)) {
   3183 					goto found;
   3184 				}
   3185 			}
   3186 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3187 				if (pool_in_page(pp, ph, addr)) {
   3188 					allocated =
   3189 					    pool_allocated(pp, ph, addr);
   3190 					goto found;
   3191 				}
   3192 			}
   3193 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3194 				if (pool_in_page(pp, ph, addr)) {
   3195 					allocated = false;
   3196 					goto found;
   3197 				}
   3198 			}
   3199 			continue;
   3200 		} else {
   3201 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3202 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3203 				continue;
   3204 			}
   3205 			allocated = pool_allocated(pp, ph, addr);
   3206 		}
   3207 found:
   3208 		if (allocated && pp->pr_cache) {
   3209 			pool_cache_t pc = pp->pr_cache;
   3210 			struct pool_cache_group *pcg;
   3211 			int i;
   3212 
   3213 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3214 			    pcg = pcg->pcg_next) {
   3215 				if (pool_in_cg(pp, pcg, addr)) {
   3216 					incache = true;
   3217 					goto print;
   3218 				}
   3219 			}
   3220 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3221 				pool_cache_cpu_t *cc;
   3222 
   3223 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3224 					continue;
   3225 				}
   3226 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3227 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3228 					struct cpu_info *ci =
   3229 					    cpu_lookup(i);
   3230 
   3231 					incpucache = true;
   3232 					snprintf(cpucachestr,
   3233 					    sizeof(cpucachestr),
   3234 					    "cached by CPU %u",
   3235 					    ci->ci_index);
   3236 					goto print;
   3237 				}
   3238 			}
   3239 		}
   3240 print:
   3241 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3242 		item = item + rounddown(addr - item, pp->pr_size);
   3243 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3244 		    (void *)addr, item, (size_t)(addr - item),
   3245 		    pp->pr_wchan,
   3246 		    incpucache ? cpucachestr :
   3247 		    incache ? "cached" : allocated ? "allocated" : "free");
   3248 	}
   3249 }
   3250 #endif /* defined(DDB) */
   3251 
   3252 static int
   3253 pool_sysctl(SYSCTLFN_ARGS)
   3254 {
   3255 	struct pool_sysctl data;
   3256 	struct pool *pp;
   3257 	struct pool_cache *pc;
   3258 	pool_cache_cpu_t *cc;
   3259 	int error;
   3260 	size_t i, written;
   3261 
   3262 	if (oldp == NULL) {
   3263 		*oldlenp = 0;
   3264 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3265 			*oldlenp += sizeof(data);
   3266 		return 0;
   3267 	}
   3268 
   3269 	memset(&data, 0, sizeof(data));
   3270 	error = 0;
   3271 	written = 0;
   3272 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3273 		if (written + sizeof(data) > *oldlenp)
   3274 			break;
   3275 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3276 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3277 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3278 #define COPY(field) data.field = pp->field
   3279 		COPY(pr_size);
   3280 
   3281 		COPY(pr_itemsperpage);
   3282 		COPY(pr_nitems);
   3283 		COPY(pr_nout);
   3284 		COPY(pr_hardlimit);
   3285 		COPY(pr_npages);
   3286 		COPY(pr_minpages);
   3287 		COPY(pr_maxpages);
   3288 
   3289 		COPY(pr_nget);
   3290 		COPY(pr_nfail);
   3291 		COPY(pr_nput);
   3292 		COPY(pr_npagealloc);
   3293 		COPY(pr_npagefree);
   3294 		COPY(pr_hiwat);
   3295 		COPY(pr_nidle);
   3296 #undef COPY
   3297 
   3298 		data.pr_cache_nmiss_pcpu = 0;
   3299 		data.pr_cache_nhit_pcpu = 0;
   3300 		if (pp->pr_cache) {
   3301 			pc = pp->pr_cache;
   3302 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3303 			data.pr_cache_nfull = pc->pc_nfull;
   3304 			data.pr_cache_npartial = pc->pc_npart;
   3305 			data.pr_cache_nempty = pc->pc_nempty;
   3306 			data.pr_cache_ncontended = pc->pc_contended;
   3307 			data.pr_cache_nmiss_global = pc->pc_misses;
   3308 			data.pr_cache_nhit_global = pc->pc_hits;
   3309 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3310 				cc = pc->pc_cpus[i];
   3311 				if (cc == NULL)
   3312 					continue;
   3313 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3314 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3315 			}
   3316 		} else {
   3317 			data.pr_cache_meta_size = 0;
   3318 			data.pr_cache_nfull = 0;
   3319 			data.pr_cache_npartial = 0;
   3320 			data.pr_cache_nempty = 0;
   3321 			data.pr_cache_ncontended = 0;
   3322 			data.pr_cache_nmiss_global = 0;
   3323 			data.pr_cache_nhit_global = 0;
   3324 		}
   3325 
   3326 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3327 		if (error)
   3328 			break;
   3329 		written += sizeof(data);
   3330 		oldp = (char *)oldp + sizeof(data);
   3331 	}
   3332 
   3333 	*oldlenp = written;
   3334 	return error;
   3335 }
   3336 
   3337 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3338 {
   3339 	const struct sysctlnode *rnode = NULL;
   3340 
   3341 	sysctl_createv(clog, 0, NULL, &rnode,
   3342 		       CTLFLAG_PERMANENT,
   3343 		       CTLTYPE_STRUCT, "pool",
   3344 		       SYSCTL_DESCR("Get pool statistics"),
   3345 		       pool_sysctl, 0, NULL, 0,
   3346 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3347 }
   3348