subr_pool.c revision 1.260 1 /* $NetBSD: subr_pool.c,v 1.260 2019/10/16 15:27:38 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.260 2019/10/16 15:27:38 christos Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #include "opt_kleak.h"
43 #endif
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/bitops.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/vmem.h>
53 #include <sys/pool.h>
54 #include <sys/syslog.h>
55 #include <sys/debug.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61
62 #include <uvm/uvm_extern.h>
63
64 /*
65 * Pool resource management utility.
66 *
67 * Memory is allocated in pages which are split into pieces according to
68 * the pool item size. Each page is kept on one of three lists in the
69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 * for empty, full and partially-full pages respectively. The individual
71 * pool items are on a linked list headed by `ph_itemlist' in each page
72 * header. The memory for building the page list is either taken from
73 * the allocated pages themselves (for small pool items) or taken from
74 * an internal pool of page headers (`phpool').
75 */
76
77 /* List of all pools. Non static as needed by 'vmstat -m' */
78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
79
80 /* Private pool for page header structures */
81 #define PHPOOL_MAX 8
82 static struct pool phpool[PHPOOL_MAX];
83 #define PHPOOL_FREELIST_NELEM(idx) \
84 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
85
86 #if defined(DIAGNOSTIC) || defined(KASAN)
87 #define POOL_REDZONE
88 #endif
89
90 #ifdef POOL_REDZONE
91 # ifdef KASAN
92 # define POOL_REDZONE_SIZE 8
93 # else
94 # define POOL_REDZONE_SIZE 2
95 # endif
96 static void pool_redzone_init(struct pool *, size_t);
97 static void pool_redzone_fill(struct pool *, void *);
98 static void pool_redzone_check(struct pool *, void *);
99 static void pool_cache_redzone_check(pool_cache_t, void *);
100 #else
101 # define pool_redzone_init(pp, sz) __nothing
102 # define pool_redzone_fill(pp, ptr) __nothing
103 # define pool_redzone_check(pp, ptr) __nothing
104 # define pool_cache_redzone_check(pc, ptr) __nothing
105 #endif
106
107 #ifdef KLEAK
108 static void pool_kleak_fill(struct pool *, void *);
109 static void pool_cache_kleak_fill(pool_cache_t, void *);
110 #else
111 #define pool_kleak_fill(pp, ptr) __nothing
112 #define pool_cache_kleak_fill(pc, ptr) __nothing
113 #endif
114
115 #ifdef POOL_QUARANTINE
116 static void pool_quarantine_init(struct pool *);
117 static void pool_quarantine_flush(struct pool *);
118 static bool pool_put_quarantine(struct pool *, void *,
119 struct pool_pagelist *);
120 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
121 #else
122 #define pool_quarantine_init(a) __nothing
123 #define pool_quarantine_flush(a) __nothing
124 #define pool_put_quarantine(a, b, c) false
125 #define pool_cache_put_quarantine(a, b, c) false
126 #endif
127
128 #define pc_has_ctor(pc) \
129 (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
130 #define pc_has_dtor(pc) \
131 (pc->pc_dtor != (void (*)(void *, void *))nullop)
132
133 /*
134 * Pool backend allocators.
135 *
136 * Each pool has a backend allocator that handles allocation, deallocation,
137 * and any additional draining that might be needed.
138 *
139 * We provide two standard allocators:
140 *
141 * pool_allocator_kmem - the default when no allocator is specified
142 *
143 * pool_allocator_nointr - used for pools that will not be accessed
144 * in interrupt context.
145 */
146 void *pool_page_alloc(struct pool *, int);
147 void pool_page_free(struct pool *, void *);
148
149 static void *pool_page_alloc_meta(struct pool *, int);
150 static void pool_page_free_meta(struct pool *, void *);
151
152 struct pool_allocator pool_allocator_kmem = {
153 .pa_alloc = pool_page_alloc,
154 .pa_free = pool_page_free,
155 .pa_pagesz = 0
156 };
157
158 struct pool_allocator pool_allocator_nointr = {
159 .pa_alloc = pool_page_alloc,
160 .pa_free = pool_page_free,
161 .pa_pagesz = 0
162 };
163
164 struct pool_allocator pool_allocator_meta = {
165 .pa_alloc = pool_page_alloc_meta,
166 .pa_free = pool_page_free_meta,
167 .pa_pagesz = 0
168 };
169
170 #define POOL_ALLOCATOR_BIG_BASE 13
171 static struct pool_allocator pool_allocator_big[] = {
172 {
173 .pa_alloc = pool_page_alloc,
174 .pa_free = pool_page_free,
175 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
176 },
177 {
178 .pa_alloc = pool_page_alloc,
179 .pa_free = pool_page_free,
180 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
181 },
182 {
183 .pa_alloc = pool_page_alloc,
184 .pa_free = pool_page_free,
185 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
186 },
187 {
188 .pa_alloc = pool_page_alloc,
189 .pa_free = pool_page_free,
190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
191 },
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
211 }
212 };
213
214 static int pool_bigidx(size_t);
215
216 /* # of seconds to retain page after last use */
217 int pool_inactive_time = 10;
218
219 /* Next candidate for drainage (see pool_drain()) */
220 static struct pool *drainpp;
221
222 /* This lock protects both pool_head and drainpp. */
223 static kmutex_t pool_head_lock;
224 static kcondvar_t pool_busy;
225
226 /* This lock protects initialization of a potentially shared pool allocator */
227 static kmutex_t pool_allocator_lock;
228
229 static unsigned int poolid_counter = 0;
230
231 typedef uint32_t pool_item_bitmap_t;
232 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
233 #define BITMAP_MASK (BITMAP_SIZE - 1)
234 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
235
236 struct pool_item_header {
237 /* Page headers */
238 LIST_ENTRY(pool_item_header)
239 ph_pagelist; /* pool page list */
240 union {
241 /* !PR_PHINPAGE */
242 struct {
243 SPLAY_ENTRY(pool_item_header)
244 phu_node; /* off-page page headers */
245 } phu_offpage;
246 /* PR_PHINPAGE */
247 struct {
248 unsigned int phu_poolid;
249 } phu_onpage;
250 } ph_u1;
251 void * ph_page; /* this page's address */
252 uint32_t ph_time; /* last referenced */
253 uint16_t ph_nmissing; /* # of chunks in use */
254 uint16_t ph_off; /* start offset in page */
255 union {
256 /* !PR_USEBMAP */
257 struct {
258 LIST_HEAD(, pool_item)
259 phu_itemlist; /* chunk list for this page */
260 } phu_normal;
261 /* PR_USEBMAP */
262 struct {
263 pool_item_bitmap_t phu_bitmap[1];
264 } phu_notouch;
265 } ph_u2;
266 };
267 #define ph_node ph_u1.phu_offpage.phu_node
268 #define ph_poolid ph_u1.phu_onpage.phu_poolid
269 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
270 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
271
272 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
273
274 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
275 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
276
277 #if defined(DIAGNOSTIC) && !defined(KASAN)
278 #define POOL_CHECK_MAGIC
279 #endif
280
281 struct pool_item {
282 #ifdef POOL_CHECK_MAGIC
283 u_int pi_magic;
284 #endif
285 #define PI_MAGIC 0xdeaddeadU
286 /* Other entries use only this list entry */
287 LIST_ENTRY(pool_item) pi_list;
288 };
289
290 #define POOL_NEEDS_CATCHUP(pp) \
291 ((pp)->pr_nitems < (pp)->pr_minitems)
292 #define POOL_OBJ_TO_PAGE(pp, v) \
293 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
294
295 /*
296 * Pool cache management.
297 *
298 * Pool caches provide a way for constructed objects to be cached by the
299 * pool subsystem. This can lead to performance improvements by avoiding
300 * needless object construction/destruction; it is deferred until absolutely
301 * necessary.
302 *
303 * Caches are grouped into cache groups. Each cache group references up
304 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
305 * object from the pool, it calls the object's constructor and places it
306 * into a cache group. When a cache group frees an object back to the
307 * pool, it first calls the object's destructor. This allows the object
308 * to persist in constructed form while freed to the cache.
309 *
310 * The pool references each cache, so that when a pool is drained by the
311 * pagedaemon, it can drain each individual cache as well. Each time a
312 * cache is drained, the most idle cache group is freed to the pool in
313 * its entirety.
314 *
315 * Pool caches are layed on top of pools. By layering them, we can avoid
316 * the complexity of cache management for pools which would not benefit
317 * from it.
318 */
319
320 static struct pool pcg_normal_pool;
321 static struct pool pcg_large_pool;
322 static struct pool cache_pool;
323 static struct pool cache_cpu_pool;
324
325 /* List of all caches. */
326 TAILQ_HEAD(,pool_cache) pool_cache_head =
327 TAILQ_HEAD_INITIALIZER(pool_cache_head);
328
329 int pool_cache_disable; /* global disable for caching */
330 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
331
332 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
333 void *);
334 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
335 void **, paddr_t *, int);
336 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
337 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
338 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
339 static void pool_cache_transfer(pool_cache_t);
340
341 static int pool_catchup(struct pool *);
342 static void pool_prime_page(struct pool *, void *,
343 struct pool_item_header *);
344 static void pool_update_curpage(struct pool *);
345
346 static int pool_grow(struct pool *, int);
347 static void *pool_allocator_alloc(struct pool *, int);
348 static void pool_allocator_free(struct pool *, void *);
349
350 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
351 void (*)(const char *, ...) __printflike(1, 2));
352 static void pool_print1(struct pool *, const char *,
353 void (*)(const char *, ...) __printflike(1, 2));
354
355 static int pool_chk_page(struct pool *, const char *,
356 struct pool_item_header *);
357
358 /* -------------------------------------------------------------------------- */
359
360 static inline unsigned int
361 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
362 const void *v)
363 {
364 const char *cp = v;
365 unsigned int idx;
366
367 KASSERT(pp->pr_roflags & PR_USEBMAP);
368 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
369
370 if (__predict_false(idx >= pp->pr_itemsperpage)) {
371 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
372 pp->pr_itemsperpage);
373 }
374
375 return idx;
376 }
377
378 static inline void
379 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
380 void *obj)
381 {
382 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
383 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
384 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
385
386 if (__predict_false((*bitmap & mask) != 0)) {
387 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
388 }
389
390 *bitmap |= mask;
391 }
392
393 static inline void *
394 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
395 {
396 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
397 unsigned int idx;
398 int i;
399
400 for (i = 0; ; i++) {
401 int bit;
402
403 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
404 bit = ffs32(bitmap[i]);
405 if (bit) {
406 pool_item_bitmap_t mask;
407
408 bit--;
409 idx = (i * BITMAP_SIZE) + bit;
410 mask = 1U << bit;
411 KASSERT((bitmap[i] & mask) != 0);
412 bitmap[i] &= ~mask;
413 break;
414 }
415 }
416 KASSERT(idx < pp->pr_itemsperpage);
417 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
418 }
419
420 static inline void
421 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
422 {
423 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
424 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
425 int i;
426
427 for (i = 0; i < n; i++) {
428 bitmap[i] = (pool_item_bitmap_t)-1;
429 }
430 }
431
432 /* -------------------------------------------------------------------------- */
433
434 static inline void
435 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
436 void *obj)
437 {
438 struct pool_item *pi = obj;
439
440 #ifdef POOL_CHECK_MAGIC
441 pi->pi_magic = PI_MAGIC;
442 #endif
443
444 if (pp->pr_redzone) {
445 /*
446 * Mark the pool_item as valid. The rest is already
447 * invalid.
448 */
449 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
450 }
451
452 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
453 }
454
455 static inline void *
456 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
457 {
458 struct pool_item *pi;
459 void *v;
460
461 v = pi = LIST_FIRST(&ph->ph_itemlist);
462 if (__predict_false(v == NULL)) {
463 mutex_exit(&pp->pr_lock);
464 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
465 }
466 KASSERTMSG((pp->pr_nitems > 0),
467 "%s: [%s] nitems %u inconsistent on itemlist",
468 __func__, pp->pr_wchan, pp->pr_nitems);
469 #ifdef POOL_CHECK_MAGIC
470 KASSERTMSG((pi->pi_magic == PI_MAGIC),
471 "%s: [%s] free list modified: "
472 "magic=%x; page %p; item addr %p", __func__,
473 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
474 #endif
475
476 /*
477 * Remove from item list.
478 */
479 LIST_REMOVE(pi, pi_list);
480
481 return v;
482 }
483
484 /* -------------------------------------------------------------------------- */
485
486 static inline void
487 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
488 void *object)
489 {
490 if (__predict_false((void *)ph->ph_page != page)) {
491 panic("%s: [%s] item %p not part of pool", __func__,
492 pp->pr_wchan, object);
493 }
494 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
495 panic("%s: [%s] item %p below item space", __func__,
496 pp->pr_wchan, object);
497 }
498 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
499 panic("%s: [%s] item %p poolid %u != %u", __func__,
500 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
501 }
502 }
503
504 static inline void
505 pc_phinpage_check(pool_cache_t pc, void *object)
506 {
507 struct pool_item_header *ph;
508 struct pool *pp;
509 void *page;
510
511 pp = &pc->pc_pool;
512 page = POOL_OBJ_TO_PAGE(pp, object);
513 ph = (struct pool_item_header *)page;
514
515 pr_phinpage_check(pp, ph, page, object);
516 }
517
518 /* -------------------------------------------------------------------------- */
519
520 static inline int
521 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
522 {
523
524 /*
525 * We consider pool_item_header with smaller ph_page bigger. This
526 * unnatural ordering is for the benefit of pr_find_pagehead.
527 */
528 if (a->ph_page < b->ph_page)
529 return 1;
530 else if (a->ph_page > b->ph_page)
531 return -1;
532 else
533 return 0;
534 }
535
536 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
537 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
538
539 static inline struct pool_item_header *
540 pr_find_pagehead_noalign(struct pool *pp, void *v)
541 {
542 struct pool_item_header *ph, tmp;
543
544 tmp.ph_page = (void *)(uintptr_t)v;
545 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
546 if (ph == NULL) {
547 ph = SPLAY_ROOT(&pp->pr_phtree);
548 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
549 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
550 }
551 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
552 }
553
554 return ph;
555 }
556
557 /*
558 * Return the pool page header based on item address.
559 */
560 static inline struct pool_item_header *
561 pr_find_pagehead(struct pool *pp, void *v)
562 {
563 struct pool_item_header *ph, tmp;
564
565 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
566 ph = pr_find_pagehead_noalign(pp, v);
567 } else {
568 void *page = POOL_OBJ_TO_PAGE(pp, v);
569 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
570 ph = (struct pool_item_header *)page;
571 pr_phinpage_check(pp, ph, page, v);
572 } else {
573 tmp.ph_page = page;
574 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
575 }
576 }
577
578 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
579 ((char *)ph->ph_page <= (char *)v &&
580 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
581 return ph;
582 }
583
584 static void
585 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
586 {
587 struct pool_item_header *ph;
588
589 while ((ph = LIST_FIRST(pq)) != NULL) {
590 LIST_REMOVE(ph, ph_pagelist);
591 pool_allocator_free(pp, ph->ph_page);
592 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
593 pool_put(pp->pr_phpool, ph);
594 }
595 }
596
597 /*
598 * Remove a page from the pool.
599 */
600 static inline void
601 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
602 struct pool_pagelist *pq)
603 {
604
605 KASSERT(mutex_owned(&pp->pr_lock));
606
607 /*
608 * If the page was idle, decrement the idle page count.
609 */
610 if (ph->ph_nmissing == 0) {
611 KASSERT(pp->pr_nidle != 0);
612 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
613 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
614 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
615 pp->pr_nidle--;
616 }
617
618 pp->pr_nitems -= pp->pr_itemsperpage;
619
620 /*
621 * Unlink the page from the pool and queue it for release.
622 */
623 LIST_REMOVE(ph, ph_pagelist);
624 if (pp->pr_roflags & PR_PHINPAGE) {
625 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
626 panic("%s: [%s] ph %p poolid %u != %u",
627 __func__, pp->pr_wchan, ph, ph->ph_poolid,
628 pp->pr_poolid);
629 }
630 } else {
631 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
632 }
633 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
634
635 pp->pr_npages--;
636 pp->pr_npagefree++;
637
638 pool_update_curpage(pp);
639 }
640
641 /*
642 * Initialize all the pools listed in the "pools" link set.
643 */
644 void
645 pool_subsystem_init(void)
646 {
647 size_t size;
648 int idx;
649
650 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
651 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
652 cv_init(&pool_busy, "poolbusy");
653
654 /*
655 * Initialize private page header pool and cache magazine pool if we
656 * haven't done so yet.
657 */
658 for (idx = 0; idx < PHPOOL_MAX; idx++) {
659 static char phpool_names[PHPOOL_MAX][6+1+6+1];
660 int nelem;
661 size_t sz;
662
663 nelem = PHPOOL_FREELIST_NELEM(idx);
664 KASSERT(nelem != 0);
665 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
666 "phpool-%d", nelem);
667 sz = offsetof(struct pool_item_header,
668 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
669 pool_init(&phpool[idx], sz, 0, 0, 0,
670 phpool_names[idx], &pool_allocator_meta, IPL_VM);
671 }
672
673 size = sizeof(pcg_t) +
674 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
675 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
676 "pcgnormal", &pool_allocator_meta, IPL_VM);
677
678 size = sizeof(pcg_t) +
679 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
680 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
681 "pcglarge", &pool_allocator_meta, IPL_VM);
682
683 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
684 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
685
686 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
687 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
688 }
689
690 static inline bool
691 pool_init_is_phinpage(const struct pool *pp)
692 {
693 size_t pagesize;
694
695 if (pp->pr_roflags & PR_PHINPAGE) {
696 return true;
697 }
698 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
699 return false;
700 }
701
702 pagesize = pp->pr_alloc->pa_pagesz;
703
704 /*
705 * Threshold: the item size is below 1/16 of a page size, and below
706 * 8 times the page header size. The latter ensures we go off-page
707 * if the page header would make us waste a rather big item.
708 */
709 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
710 return true;
711 }
712
713 /* Put the header into the page if it doesn't waste any items. */
714 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
715 return true;
716 }
717
718 return false;
719 }
720
721 static inline bool
722 pool_init_is_usebmap(const struct pool *pp)
723 {
724 size_t bmapsize;
725
726 if (pp->pr_roflags & PR_NOTOUCH) {
727 return true;
728 }
729
730 /*
731 * If we're off-page, go with a bitmap.
732 */
733 if (!(pp->pr_roflags & PR_PHINPAGE)) {
734 return true;
735 }
736
737 /*
738 * If we're on-page, and the page header can already contain a bitmap
739 * big enough to cover all the items of the page, go with a bitmap.
740 */
741 bmapsize = roundup(PHSIZE, pp->pr_align) -
742 offsetof(struct pool_item_header, ph_bitmap[0]);
743 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
744 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
745 return true;
746 }
747
748 return false;
749 }
750
751 /*
752 * Initialize the given pool resource structure.
753 *
754 * We export this routine to allow other kernel parts to declare
755 * static pools that must be initialized before kmem(9) is available.
756 */
757 void
758 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
759 const char *wchan, struct pool_allocator *palloc, int ipl)
760 {
761 struct pool *pp1;
762 size_t prsize;
763 int itemspace, slack;
764
765 /* XXX ioff will be removed. */
766 KASSERT(ioff == 0);
767
768 #ifdef DEBUG
769 if (__predict_true(!cold))
770 mutex_enter(&pool_head_lock);
771 /*
772 * Check that the pool hasn't already been initialised and
773 * added to the list of all pools.
774 */
775 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
776 if (pp == pp1)
777 panic("%s: [%s] already initialised", __func__,
778 wchan);
779 }
780 if (__predict_true(!cold))
781 mutex_exit(&pool_head_lock);
782 #endif
783
784 if (palloc == NULL)
785 palloc = &pool_allocator_kmem;
786
787 if (!cold)
788 mutex_enter(&pool_allocator_lock);
789 if (palloc->pa_refcnt++ == 0) {
790 if (palloc->pa_pagesz == 0)
791 palloc->pa_pagesz = PAGE_SIZE;
792
793 TAILQ_INIT(&palloc->pa_list);
794
795 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
796 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
797 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
798 }
799 if (!cold)
800 mutex_exit(&pool_allocator_lock);
801
802 if (align == 0)
803 align = ALIGN(1);
804
805 prsize = size;
806 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
807 prsize = sizeof(struct pool_item);
808
809 prsize = roundup(prsize, align);
810 KASSERTMSG((prsize <= palloc->pa_pagesz),
811 "%s: [%s] pool item size (%zu) larger than page size (%u)",
812 __func__, wchan, prsize, palloc->pa_pagesz);
813
814 /*
815 * Initialize the pool structure.
816 */
817 LIST_INIT(&pp->pr_emptypages);
818 LIST_INIT(&pp->pr_fullpages);
819 LIST_INIT(&pp->pr_partpages);
820 pp->pr_cache = NULL;
821 pp->pr_curpage = NULL;
822 pp->pr_npages = 0;
823 pp->pr_minitems = 0;
824 pp->pr_minpages = 0;
825 pp->pr_maxpages = UINT_MAX;
826 pp->pr_roflags = flags;
827 pp->pr_flags = 0;
828 pp->pr_size = prsize;
829 pp->pr_reqsize = size;
830 pp->pr_align = align;
831 pp->pr_wchan = wchan;
832 pp->pr_alloc = palloc;
833 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
834 pp->pr_nitems = 0;
835 pp->pr_nout = 0;
836 pp->pr_hardlimit = UINT_MAX;
837 pp->pr_hardlimit_warning = NULL;
838 pp->pr_hardlimit_ratecap.tv_sec = 0;
839 pp->pr_hardlimit_ratecap.tv_usec = 0;
840 pp->pr_hardlimit_warning_last.tv_sec = 0;
841 pp->pr_hardlimit_warning_last.tv_usec = 0;
842 pp->pr_drain_hook = NULL;
843 pp->pr_drain_hook_arg = NULL;
844 pp->pr_freecheck = NULL;
845 pp->pr_redzone = false;
846 pool_redzone_init(pp, size);
847 pool_quarantine_init(pp);
848
849 /*
850 * Decide whether to put the page header off-page to avoid wasting too
851 * large a part of the page or too big an item. Off-page page headers
852 * go on a hash table, so we can match a returned item with its header
853 * based on the page address.
854 */
855 if (pool_init_is_phinpage(pp)) {
856 /* Use the beginning of the page for the page header */
857 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
858 pp->pr_itemoffset = roundup(PHSIZE, align);
859 pp->pr_roflags |= PR_PHINPAGE;
860 } else {
861 /* The page header will be taken from our page header pool */
862 itemspace = palloc->pa_pagesz;
863 pp->pr_itemoffset = 0;
864 SPLAY_INIT(&pp->pr_phtree);
865 }
866
867 pp->pr_itemsperpage = itemspace / pp->pr_size;
868 KASSERT(pp->pr_itemsperpage != 0);
869
870 /*
871 * Decide whether to use a bitmap or a linked list to manage freed
872 * items.
873 */
874 if (pool_init_is_usebmap(pp)) {
875 pp->pr_roflags |= PR_USEBMAP;
876 }
877
878 /*
879 * If we're off-page, then we're using a bitmap; choose the appropriate
880 * pool to allocate page headers, whose size varies depending on the
881 * bitmap. If we're on-page, nothing to do.
882 */
883 if (!(pp->pr_roflags & PR_PHINPAGE)) {
884 int idx;
885
886 KASSERT(pp->pr_roflags & PR_USEBMAP);
887
888 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
889 idx++) {
890 /* nothing */
891 }
892 if (idx >= PHPOOL_MAX) {
893 /*
894 * if you see this panic, consider to tweak
895 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
896 */
897 panic("%s: [%s] too large itemsperpage(%d) for "
898 "PR_USEBMAP", __func__,
899 pp->pr_wchan, pp->pr_itemsperpage);
900 }
901 pp->pr_phpool = &phpool[idx];
902 } else {
903 pp->pr_phpool = NULL;
904 }
905
906 /*
907 * Use the slack between the chunks and the page header
908 * for "cache coloring".
909 */
910 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
911 pp->pr_maxcolor = rounddown(slack, align);
912 pp->pr_curcolor = 0;
913
914 pp->pr_nget = 0;
915 pp->pr_nfail = 0;
916 pp->pr_nput = 0;
917 pp->pr_npagealloc = 0;
918 pp->pr_npagefree = 0;
919 pp->pr_hiwat = 0;
920 pp->pr_nidle = 0;
921 pp->pr_refcnt = 0;
922
923 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
924 cv_init(&pp->pr_cv, wchan);
925 pp->pr_ipl = ipl;
926
927 /* Insert into the list of all pools. */
928 if (!cold)
929 mutex_enter(&pool_head_lock);
930 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
931 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
932 break;
933 }
934 if (pp1 == NULL)
935 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
936 else
937 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
938 if (!cold)
939 mutex_exit(&pool_head_lock);
940
941 /* Insert this into the list of pools using this allocator. */
942 if (!cold)
943 mutex_enter(&palloc->pa_lock);
944 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
945 if (!cold)
946 mutex_exit(&palloc->pa_lock);
947 }
948
949 /*
950 * De-commision a pool resource.
951 */
952 void
953 pool_destroy(struct pool *pp)
954 {
955 struct pool_pagelist pq;
956 struct pool_item_header *ph;
957
958 pool_quarantine_flush(pp);
959
960 /* Remove from global pool list */
961 mutex_enter(&pool_head_lock);
962 while (pp->pr_refcnt != 0)
963 cv_wait(&pool_busy, &pool_head_lock);
964 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
965 if (drainpp == pp)
966 drainpp = NULL;
967 mutex_exit(&pool_head_lock);
968
969 /* Remove this pool from its allocator's list of pools. */
970 mutex_enter(&pp->pr_alloc->pa_lock);
971 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
972 mutex_exit(&pp->pr_alloc->pa_lock);
973
974 mutex_enter(&pool_allocator_lock);
975 if (--pp->pr_alloc->pa_refcnt == 0)
976 mutex_destroy(&pp->pr_alloc->pa_lock);
977 mutex_exit(&pool_allocator_lock);
978
979 mutex_enter(&pp->pr_lock);
980
981 KASSERT(pp->pr_cache == NULL);
982 KASSERTMSG((pp->pr_nout == 0),
983 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
984 pp->pr_nout);
985 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
986 KASSERT(LIST_EMPTY(&pp->pr_partpages));
987
988 /* Remove all pages */
989 LIST_INIT(&pq);
990 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
991 pr_rmpage(pp, ph, &pq);
992
993 mutex_exit(&pp->pr_lock);
994
995 pr_pagelist_free(pp, &pq);
996 cv_destroy(&pp->pr_cv);
997 mutex_destroy(&pp->pr_lock);
998 }
999
1000 void
1001 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1002 {
1003
1004 /* XXX no locking -- must be used just after pool_init() */
1005 KASSERTMSG((pp->pr_drain_hook == NULL),
1006 "%s: [%s] already set", __func__, pp->pr_wchan);
1007 pp->pr_drain_hook = fn;
1008 pp->pr_drain_hook_arg = arg;
1009 }
1010
1011 static struct pool_item_header *
1012 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1013 {
1014 struct pool_item_header *ph;
1015
1016 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1017 ph = storage;
1018 else
1019 ph = pool_get(pp->pr_phpool, flags);
1020
1021 return ph;
1022 }
1023
1024 /*
1025 * Grab an item from the pool.
1026 */
1027 void *
1028 pool_get(struct pool *pp, int flags)
1029 {
1030 struct pool_item_header *ph;
1031 void *v;
1032
1033 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1034 KASSERTMSG((pp->pr_itemsperpage != 0),
1035 "%s: [%s] pr_itemsperpage is zero, "
1036 "pool not initialized?", __func__, pp->pr_wchan);
1037 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1038 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1039 "%s: [%s] is IPL_NONE, but called from interrupt context",
1040 __func__, pp->pr_wchan);
1041 if (flags & PR_WAITOK) {
1042 ASSERT_SLEEPABLE();
1043 }
1044
1045 mutex_enter(&pp->pr_lock);
1046 startover:
1047 /*
1048 * Check to see if we've reached the hard limit. If we have,
1049 * and we can wait, then wait until an item has been returned to
1050 * the pool.
1051 */
1052 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1053 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1054 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1055 if (pp->pr_drain_hook != NULL) {
1056 /*
1057 * Since the drain hook is going to free things
1058 * back to the pool, unlock, call the hook, re-lock,
1059 * and check the hardlimit condition again.
1060 */
1061 mutex_exit(&pp->pr_lock);
1062 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1063 mutex_enter(&pp->pr_lock);
1064 if (pp->pr_nout < pp->pr_hardlimit)
1065 goto startover;
1066 }
1067
1068 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1069 /*
1070 * XXX: A warning isn't logged in this case. Should
1071 * it be?
1072 */
1073 pp->pr_flags |= PR_WANTED;
1074 do {
1075 cv_wait(&pp->pr_cv, &pp->pr_lock);
1076 } while (pp->pr_flags & PR_WANTED);
1077 goto startover;
1078 }
1079
1080 /*
1081 * Log a message that the hard limit has been hit.
1082 */
1083 if (pp->pr_hardlimit_warning != NULL &&
1084 ratecheck(&pp->pr_hardlimit_warning_last,
1085 &pp->pr_hardlimit_ratecap))
1086 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1087
1088 pp->pr_nfail++;
1089
1090 mutex_exit(&pp->pr_lock);
1091 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1092 return NULL;
1093 }
1094
1095 /*
1096 * The convention we use is that if `curpage' is not NULL, then
1097 * it points at a non-empty bucket. In particular, `curpage'
1098 * never points at a page header which has PR_PHINPAGE set and
1099 * has no items in its bucket.
1100 */
1101 if ((ph = pp->pr_curpage) == NULL) {
1102 int error;
1103
1104 KASSERTMSG((pp->pr_nitems == 0),
1105 "%s: [%s] curpage NULL, inconsistent nitems %u",
1106 __func__, pp->pr_wchan, pp->pr_nitems);
1107
1108 /*
1109 * Call the back-end page allocator for more memory.
1110 * Release the pool lock, as the back-end page allocator
1111 * may block.
1112 */
1113 error = pool_grow(pp, flags);
1114 if (error != 0) {
1115 /*
1116 * pool_grow aborts when another thread
1117 * is allocating a new page. Retry if it
1118 * waited for it.
1119 */
1120 if (error == ERESTART)
1121 goto startover;
1122
1123 /*
1124 * We were unable to allocate a page or item
1125 * header, but we released the lock during
1126 * allocation, so perhaps items were freed
1127 * back to the pool. Check for this case.
1128 */
1129 if (pp->pr_curpage != NULL)
1130 goto startover;
1131
1132 pp->pr_nfail++;
1133 mutex_exit(&pp->pr_lock);
1134 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
1135 return NULL;
1136 }
1137
1138 /* Start the allocation process over. */
1139 goto startover;
1140 }
1141 if (pp->pr_roflags & PR_USEBMAP) {
1142 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1143 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1144 v = pr_item_bitmap_get(pp, ph);
1145 } else {
1146 v = pr_item_linkedlist_get(pp, ph);
1147 }
1148 pp->pr_nitems--;
1149 pp->pr_nout++;
1150 if (ph->ph_nmissing == 0) {
1151 KASSERT(pp->pr_nidle > 0);
1152 pp->pr_nidle--;
1153
1154 /*
1155 * This page was previously empty. Move it to the list of
1156 * partially-full pages. This page is already curpage.
1157 */
1158 LIST_REMOVE(ph, ph_pagelist);
1159 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1160 }
1161 ph->ph_nmissing++;
1162 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1163 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1164 LIST_EMPTY(&ph->ph_itemlist)),
1165 "%s: [%s] nmissing (%u) inconsistent", __func__,
1166 pp->pr_wchan, ph->ph_nmissing);
1167 /*
1168 * This page is now full. Move it to the full list
1169 * and select a new current page.
1170 */
1171 LIST_REMOVE(ph, ph_pagelist);
1172 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1173 pool_update_curpage(pp);
1174 }
1175
1176 pp->pr_nget++;
1177
1178 /*
1179 * If we have a low water mark and we are now below that low
1180 * water mark, add more items to the pool.
1181 */
1182 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1183 /*
1184 * XXX: Should we log a warning? Should we set up a timeout
1185 * to try again in a second or so? The latter could break
1186 * a caller's assumptions about interrupt protection, etc.
1187 */
1188 }
1189
1190 mutex_exit(&pp->pr_lock);
1191 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1192 FREECHECK_OUT(&pp->pr_freecheck, v);
1193 pool_redzone_fill(pp, v);
1194 if (flags & PR_ZERO)
1195 memset(v, 0, pp->pr_reqsize);
1196 else
1197 pool_kleak_fill(pp, v);
1198 return v;
1199 }
1200
1201 /*
1202 * Internal version of pool_put(). Pool is already locked/entered.
1203 */
1204 static void
1205 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1206 {
1207 struct pool_item_header *ph;
1208
1209 KASSERT(mutex_owned(&pp->pr_lock));
1210 pool_redzone_check(pp, v);
1211 FREECHECK_IN(&pp->pr_freecheck, v);
1212 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1213
1214 KASSERTMSG((pp->pr_nout > 0),
1215 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1216
1217 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1218 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1219 }
1220
1221 /*
1222 * Return to item list.
1223 */
1224 if (pp->pr_roflags & PR_USEBMAP) {
1225 pr_item_bitmap_put(pp, ph, v);
1226 } else {
1227 pr_item_linkedlist_put(pp, ph, v);
1228 }
1229 KDASSERT(ph->ph_nmissing != 0);
1230 ph->ph_nmissing--;
1231 pp->pr_nput++;
1232 pp->pr_nitems++;
1233 pp->pr_nout--;
1234
1235 /* Cancel "pool empty" condition if it exists */
1236 if (pp->pr_curpage == NULL)
1237 pp->pr_curpage = ph;
1238
1239 if (pp->pr_flags & PR_WANTED) {
1240 pp->pr_flags &= ~PR_WANTED;
1241 cv_broadcast(&pp->pr_cv);
1242 }
1243
1244 /*
1245 * If this page is now empty, do one of two things:
1246 *
1247 * (1) If we have more pages than the page high water mark,
1248 * free the page back to the system. ONLY CONSIDER
1249 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1250 * CLAIM.
1251 *
1252 * (2) Otherwise, move the page to the empty page list.
1253 *
1254 * Either way, select a new current page (so we use a partially-full
1255 * page if one is available).
1256 */
1257 if (ph->ph_nmissing == 0) {
1258 pp->pr_nidle++;
1259 if (pp->pr_npages > pp->pr_minpages &&
1260 pp->pr_npages > pp->pr_maxpages) {
1261 pr_rmpage(pp, ph, pq);
1262 } else {
1263 LIST_REMOVE(ph, ph_pagelist);
1264 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1265
1266 /*
1267 * Update the timestamp on the page. A page must
1268 * be idle for some period of time before it can
1269 * be reclaimed by the pagedaemon. This minimizes
1270 * ping-pong'ing for memory.
1271 *
1272 * note for 64-bit time_t: truncating to 32-bit is not
1273 * a problem for our usage.
1274 */
1275 ph->ph_time = time_uptime;
1276 }
1277 pool_update_curpage(pp);
1278 }
1279
1280 /*
1281 * If the page was previously completely full, move it to the
1282 * partially-full list and make it the current page. The next
1283 * allocation will get the item from this page, instead of
1284 * further fragmenting the pool.
1285 */
1286 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1287 LIST_REMOVE(ph, ph_pagelist);
1288 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1289 pp->pr_curpage = ph;
1290 }
1291 }
1292
1293 void
1294 pool_put(struct pool *pp, void *v)
1295 {
1296 struct pool_pagelist pq;
1297
1298 LIST_INIT(&pq);
1299
1300 mutex_enter(&pp->pr_lock);
1301 if (!pool_put_quarantine(pp, v, &pq)) {
1302 pool_do_put(pp, v, &pq);
1303 }
1304 mutex_exit(&pp->pr_lock);
1305
1306 pr_pagelist_free(pp, &pq);
1307 }
1308
1309 /*
1310 * pool_grow: grow a pool by a page.
1311 *
1312 * => called with pool locked.
1313 * => unlock and relock the pool.
1314 * => return with pool locked.
1315 */
1316
1317 static int
1318 pool_grow(struct pool *pp, int flags)
1319 {
1320 struct pool_item_header *ph;
1321 char *storage;
1322
1323 /*
1324 * If there's a pool_grow in progress, wait for it to complete
1325 * and try again from the top.
1326 */
1327 if (pp->pr_flags & PR_GROWING) {
1328 if (flags & PR_WAITOK) {
1329 do {
1330 cv_wait(&pp->pr_cv, &pp->pr_lock);
1331 } while (pp->pr_flags & PR_GROWING);
1332 return ERESTART;
1333 } else {
1334 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1335 /*
1336 * This needs an unlock/relock dance so
1337 * that the other caller has a chance to
1338 * run and actually do the thing. Note
1339 * that this is effectively a busy-wait.
1340 */
1341 mutex_exit(&pp->pr_lock);
1342 mutex_enter(&pp->pr_lock);
1343 return ERESTART;
1344 }
1345 return EWOULDBLOCK;
1346 }
1347 }
1348 pp->pr_flags |= PR_GROWING;
1349 if (flags & PR_WAITOK)
1350 mutex_exit(&pp->pr_lock);
1351 else
1352 pp->pr_flags |= PR_GROWINGNOWAIT;
1353
1354 storage = pool_allocator_alloc(pp, flags);
1355 if (__predict_false(storage == NULL))
1356 goto out;
1357
1358 ph = pool_alloc_item_header(pp, storage, flags);
1359 if (__predict_false(ph == NULL)) {
1360 pool_allocator_free(pp, storage);
1361 goto out;
1362 }
1363
1364 if (flags & PR_WAITOK)
1365 mutex_enter(&pp->pr_lock);
1366 pool_prime_page(pp, storage, ph);
1367 pp->pr_npagealloc++;
1368 KASSERT(pp->pr_flags & PR_GROWING);
1369 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1370 /*
1371 * If anyone was waiting for pool_grow, notify them that we
1372 * may have just done it.
1373 */
1374 cv_broadcast(&pp->pr_cv);
1375 return 0;
1376 out:
1377 if (flags & PR_WAITOK)
1378 mutex_enter(&pp->pr_lock);
1379 KASSERT(pp->pr_flags & PR_GROWING);
1380 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1381 return ENOMEM;
1382 }
1383
1384 /*
1385 * Add N items to the pool.
1386 */
1387 int
1388 pool_prime(struct pool *pp, int n)
1389 {
1390 int newpages;
1391 int error = 0;
1392
1393 mutex_enter(&pp->pr_lock);
1394
1395 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1396
1397 while (newpages > 0) {
1398 error = pool_grow(pp, PR_NOWAIT);
1399 if (error) {
1400 if (error == ERESTART)
1401 continue;
1402 break;
1403 }
1404 pp->pr_minpages++;
1405 newpages--;
1406 }
1407
1408 if (pp->pr_minpages >= pp->pr_maxpages)
1409 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1410
1411 mutex_exit(&pp->pr_lock);
1412 return error;
1413 }
1414
1415 /*
1416 * Add a page worth of items to the pool.
1417 *
1418 * Note, we must be called with the pool descriptor LOCKED.
1419 */
1420 static void
1421 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1422 {
1423 const unsigned int align = pp->pr_align;
1424 struct pool_item *pi;
1425 void *cp = storage;
1426 int n;
1427
1428 KASSERT(mutex_owned(&pp->pr_lock));
1429 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1430 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1431 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1432
1433 /*
1434 * Insert page header.
1435 */
1436 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1437 LIST_INIT(&ph->ph_itemlist);
1438 ph->ph_page = storage;
1439 ph->ph_nmissing = 0;
1440 ph->ph_time = time_uptime;
1441 if (pp->pr_roflags & PR_PHINPAGE)
1442 ph->ph_poolid = pp->pr_poolid;
1443 else
1444 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1445
1446 pp->pr_nidle++;
1447
1448 /*
1449 * The item space starts after the on-page header, if any.
1450 */
1451 ph->ph_off = pp->pr_itemoffset;
1452
1453 /*
1454 * Color this page.
1455 */
1456 ph->ph_off += pp->pr_curcolor;
1457 cp = (char *)cp + ph->ph_off;
1458 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1459 pp->pr_curcolor = 0;
1460
1461 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1462
1463 /*
1464 * Insert remaining chunks on the bucket list.
1465 */
1466 n = pp->pr_itemsperpage;
1467 pp->pr_nitems += n;
1468
1469 if (pp->pr_roflags & PR_USEBMAP) {
1470 pr_item_bitmap_init(pp, ph);
1471 } else {
1472 while (n--) {
1473 pi = (struct pool_item *)cp;
1474
1475 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1476
1477 /* Insert on page list */
1478 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1479 #ifdef POOL_CHECK_MAGIC
1480 pi->pi_magic = PI_MAGIC;
1481 #endif
1482 cp = (char *)cp + pp->pr_size;
1483
1484 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1485 }
1486 }
1487
1488 /*
1489 * If the pool was depleted, point at the new page.
1490 */
1491 if (pp->pr_curpage == NULL)
1492 pp->pr_curpage = ph;
1493
1494 if (++pp->pr_npages > pp->pr_hiwat)
1495 pp->pr_hiwat = pp->pr_npages;
1496 }
1497
1498 /*
1499 * Used by pool_get() when nitems drops below the low water mark. This
1500 * is used to catch up pr_nitems with the low water mark.
1501 *
1502 * Note 1, we never wait for memory here, we let the caller decide what to do.
1503 *
1504 * Note 2, we must be called with the pool already locked, and we return
1505 * with it locked.
1506 */
1507 static int
1508 pool_catchup(struct pool *pp)
1509 {
1510 int error = 0;
1511
1512 while (POOL_NEEDS_CATCHUP(pp)) {
1513 error = pool_grow(pp, PR_NOWAIT);
1514 if (error) {
1515 if (error == ERESTART)
1516 continue;
1517 break;
1518 }
1519 }
1520 return error;
1521 }
1522
1523 static void
1524 pool_update_curpage(struct pool *pp)
1525 {
1526
1527 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1528 if (pp->pr_curpage == NULL) {
1529 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1530 }
1531 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1532 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1533 }
1534
1535 void
1536 pool_setlowat(struct pool *pp, int n)
1537 {
1538
1539 mutex_enter(&pp->pr_lock);
1540
1541 pp->pr_minitems = n;
1542 pp->pr_minpages = (n == 0)
1543 ? 0
1544 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1545
1546 /* Make sure we're caught up with the newly-set low water mark. */
1547 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1548 /*
1549 * XXX: Should we log a warning? Should we set up a timeout
1550 * to try again in a second or so? The latter could break
1551 * a caller's assumptions about interrupt protection, etc.
1552 */
1553 }
1554
1555 mutex_exit(&pp->pr_lock);
1556 }
1557
1558 void
1559 pool_sethiwat(struct pool *pp, int n)
1560 {
1561
1562 mutex_enter(&pp->pr_lock);
1563
1564 pp->pr_maxpages = (n == 0)
1565 ? 0
1566 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1567
1568 mutex_exit(&pp->pr_lock);
1569 }
1570
1571 void
1572 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1573 {
1574
1575 mutex_enter(&pp->pr_lock);
1576
1577 pp->pr_hardlimit = n;
1578 pp->pr_hardlimit_warning = warnmess;
1579 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1580 pp->pr_hardlimit_warning_last.tv_sec = 0;
1581 pp->pr_hardlimit_warning_last.tv_usec = 0;
1582
1583 /*
1584 * In-line version of pool_sethiwat(), because we don't want to
1585 * release the lock.
1586 */
1587 pp->pr_maxpages = (n == 0)
1588 ? 0
1589 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1590
1591 mutex_exit(&pp->pr_lock);
1592 }
1593
1594 /*
1595 * Release all complete pages that have not been used recently.
1596 *
1597 * Must not be called from interrupt context.
1598 */
1599 int
1600 pool_reclaim(struct pool *pp)
1601 {
1602 struct pool_item_header *ph, *phnext;
1603 struct pool_pagelist pq;
1604 uint32_t curtime;
1605 bool klock;
1606 int rv;
1607
1608 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1609
1610 if (pp->pr_drain_hook != NULL) {
1611 /*
1612 * The drain hook must be called with the pool unlocked.
1613 */
1614 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1615 }
1616
1617 /*
1618 * XXXSMP Because we do not want to cause non-MPSAFE code
1619 * to block.
1620 */
1621 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1622 pp->pr_ipl == IPL_SOFTSERIAL) {
1623 KERNEL_LOCK(1, NULL);
1624 klock = true;
1625 } else
1626 klock = false;
1627
1628 /* Reclaim items from the pool's cache (if any). */
1629 if (pp->pr_cache != NULL)
1630 pool_cache_invalidate(pp->pr_cache);
1631
1632 if (mutex_tryenter(&pp->pr_lock) == 0) {
1633 if (klock) {
1634 KERNEL_UNLOCK_ONE(NULL);
1635 }
1636 return 0;
1637 }
1638
1639 LIST_INIT(&pq);
1640
1641 curtime = time_uptime;
1642
1643 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1644 phnext = LIST_NEXT(ph, ph_pagelist);
1645
1646 /* Check our minimum page claim */
1647 if (pp->pr_npages <= pp->pr_minpages)
1648 break;
1649
1650 KASSERT(ph->ph_nmissing == 0);
1651 if (curtime - ph->ph_time < pool_inactive_time)
1652 continue;
1653
1654 /*
1655 * If freeing this page would put us below
1656 * the low water mark, stop now.
1657 */
1658 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1659 pp->pr_minitems)
1660 break;
1661
1662 pr_rmpage(pp, ph, &pq);
1663 }
1664
1665 mutex_exit(&pp->pr_lock);
1666
1667 if (LIST_EMPTY(&pq))
1668 rv = 0;
1669 else {
1670 pr_pagelist_free(pp, &pq);
1671 rv = 1;
1672 }
1673
1674 if (klock) {
1675 KERNEL_UNLOCK_ONE(NULL);
1676 }
1677
1678 return rv;
1679 }
1680
1681 /*
1682 * Drain pools, one at a time. The drained pool is returned within ppp.
1683 *
1684 * Note, must never be called from interrupt context.
1685 */
1686 bool
1687 pool_drain(struct pool **ppp)
1688 {
1689 bool reclaimed;
1690 struct pool *pp;
1691
1692 KASSERT(!TAILQ_EMPTY(&pool_head));
1693
1694 pp = NULL;
1695
1696 /* Find next pool to drain, and add a reference. */
1697 mutex_enter(&pool_head_lock);
1698 do {
1699 if (drainpp == NULL) {
1700 drainpp = TAILQ_FIRST(&pool_head);
1701 }
1702 if (drainpp != NULL) {
1703 pp = drainpp;
1704 drainpp = TAILQ_NEXT(pp, pr_poollist);
1705 }
1706 /*
1707 * Skip completely idle pools. We depend on at least
1708 * one pool in the system being active.
1709 */
1710 } while (pp == NULL || pp->pr_npages == 0);
1711 pp->pr_refcnt++;
1712 mutex_exit(&pool_head_lock);
1713
1714 /* Drain the cache (if any) and pool.. */
1715 reclaimed = pool_reclaim(pp);
1716
1717 /* Finally, unlock the pool. */
1718 mutex_enter(&pool_head_lock);
1719 pp->pr_refcnt--;
1720 cv_broadcast(&pool_busy);
1721 mutex_exit(&pool_head_lock);
1722
1723 if (ppp != NULL)
1724 *ppp = pp;
1725
1726 return reclaimed;
1727 }
1728
1729 /*
1730 * Calculate the total number of pages consumed by pools.
1731 */
1732 int
1733 pool_totalpages(void)
1734 {
1735
1736 mutex_enter(&pool_head_lock);
1737 int pages = pool_totalpages_locked();
1738 mutex_exit(&pool_head_lock);
1739
1740 return pages;
1741 }
1742
1743 int
1744 pool_totalpages_locked(void)
1745 {
1746 struct pool *pp;
1747 uint64_t total = 0;
1748
1749 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1750 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1751
1752 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1753 bytes -= (pp->pr_nout * pp->pr_size);
1754 total += bytes;
1755 }
1756
1757 return atop(total);
1758 }
1759
1760 /*
1761 * Diagnostic helpers.
1762 */
1763
1764 void
1765 pool_printall(const char *modif, void (*pr)(const char *, ...))
1766 {
1767 struct pool *pp;
1768
1769 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1770 pool_printit(pp, modif, pr);
1771 }
1772 }
1773
1774 void
1775 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1776 {
1777
1778 if (pp == NULL) {
1779 (*pr)("Must specify a pool to print.\n");
1780 return;
1781 }
1782
1783 pool_print1(pp, modif, pr);
1784 }
1785
1786 static void
1787 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1788 void (*pr)(const char *, ...))
1789 {
1790 struct pool_item_header *ph;
1791
1792 LIST_FOREACH(ph, pl, ph_pagelist) {
1793 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1794 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1795 #ifdef POOL_CHECK_MAGIC
1796 struct pool_item *pi;
1797 if (!(pp->pr_roflags & PR_USEBMAP)) {
1798 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1799 if (pi->pi_magic != PI_MAGIC) {
1800 (*pr)("\t\t\titem %p, magic 0x%x\n",
1801 pi, pi->pi_magic);
1802 }
1803 }
1804 }
1805 #endif
1806 }
1807 }
1808
1809 static void
1810 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1811 {
1812 struct pool_item_header *ph;
1813 pool_cache_t pc;
1814 pcg_t *pcg;
1815 pool_cache_cpu_t *cc;
1816 uint64_t cpuhit, cpumiss;
1817 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1818 char c;
1819
1820 while ((c = *modif++) != '\0') {
1821 if (c == 'l')
1822 print_log = 1;
1823 if (c == 'p')
1824 print_pagelist = 1;
1825 if (c == 'c')
1826 print_cache = 1;
1827 }
1828
1829 if ((pc = pp->pr_cache) != NULL) {
1830 (*pr)("POOL CACHE");
1831 } else {
1832 (*pr)("POOL");
1833 }
1834
1835 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1836 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1837 pp->pr_roflags);
1838 (*pr)("\talloc %p\n", pp->pr_alloc);
1839 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1840 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1841 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1842 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1843
1844 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1845 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1846 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1847 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1848
1849 if (print_pagelist == 0)
1850 goto skip_pagelist;
1851
1852 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1853 (*pr)("\n\tempty page list:\n");
1854 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1855 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1856 (*pr)("\n\tfull page list:\n");
1857 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1858 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1859 (*pr)("\n\tpartial-page list:\n");
1860 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1861
1862 if (pp->pr_curpage == NULL)
1863 (*pr)("\tno current page\n");
1864 else
1865 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1866
1867 skip_pagelist:
1868 if (print_log == 0)
1869 goto skip_log;
1870
1871 (*pr)("\n");
1872
1873 skip_log:
1874
1875 #define PR_GROUPLIST(pcg) \
1876 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1877 for (i = 0; i < pcg->pcg_size; i++) { \
1878 if (pcg->pcg_objects[i].pcgo_pa != \
1879 POOL_PADDR_INVALID) { \
1880 (*pr)("\t\t\t%p, 0x%llx\n", \
1881 pcg->pcg_objects[i].pcgo_va, \
1882 (unsigned long long) \
1883 pcg->pcg_objects[i].pcgo_pa); \
1884 } else { \
1885 (*pr)("\t\t\t%p\n", \
1886 pcg->pcg_objects[i].pcgo_va); \
1887 } \
1888 }
1889
1890 if (pc != NULL) {
1891 cpuhit = 0;
1892 cpumiss = 0;
1893 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1894 if ((cc = pc->pc_cpus[i]) == NULL)
1895 continue;
1896 cpuhit += cc->cc_hits;
1897 cpumiss += cc->cc_misses;
1898 }
1899 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1900 (*pr)("\tcache layer hits %llu misses %llu\n",
1901 pc->pc_hits, pc->pc_misses);
1902 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1903 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1904 pc->pc_contended);
1905 (*pr)("\tcache layer empty groups %u full groups %u\n",
1906 pc->pc_nempty, pc->pc_nfull);
1907 if (print_cache) {
1908 (*pr)("\tfull cache groups:\n");
1909 for (pcg = pc->pc_fullgroups; pcg != NULL;
1910 pcg = pcg->pcg_next) {
1911 PR_GROUPLIST(pcg);
1912 }
1913 (*pr)("\tempty cache groups:\n");
1914 for (pcg = pc->pc_emptygroups; pcg != NULL;
1915 pcg = pcg->pcg_next) {
1916 PR_GROUPLIST(pcg);
1917 }
1918 }
1919 }
1920 #undef PR_GROUPLIST
1921 }
1922
1923 static int
1924 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1925 {
1926 struct pool_item *pi;
1927 void *page;
1928 int n;
1929
1930 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1931 page = POOL_OBJ_TO_PAGE(pp, ph);
1932 if (page != ph->ph_page &&
1933 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1934 if (label != NULL)
1935 printf("%s: ", label);
1936 printf("pool(%p:%s): page inconsistency: page %p;"
1937 " at page head addr %p (p %p)\n", pp,
1938 pp->pr_wchan, ph->ph_page,
1939 ph, page);
1940 return 1;
1941 }
1942 }
1943
1944 if ((pp->pr_roflags & PR_USEBMAP) != 0)
1945 return 0;
1946
1947 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1948 pi != NULL;
1949 pi = LIST_NEXT(pi,pi_list), n++) {
1950
1951 #ifdef POOL_CHECK_MAGIC
1952 if (pi->pi_magic != PI_MAGIC) {
1953 if (label != NULL)
1954 printf("%s: ", label);
1955 printf("pool(%s): free list modified: magic=%x;"
1956 " page %p; item ordinal %d; addr %p\n",
1957 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1958 n, pi);
1959 panic("pool");
1960 }
1961 #endif
1962 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1963 continue;
1964 }
1965 page = POOL_OBJ_TO_PAGE(pp, pi);
1966 if (page == ph->ph_page)
1967 continue;
1968
1969 if (label != NULL)
1970 printf("%s: ", label);
1971 printf("pool(%p:%s): page inconsistency: page %p;"
1972 " item ordinal %d; addr %p (p %p)\n", pp,
1973 pp->pr_wchan, ph->ph_page,
1974 n, pi, page);
1975 return 1;
1976 }
1977 return 0;
1978 }
1979
1980
1981 int
1982 pool_chk(struct pool *pp, const char *label)
1983 {
1984 struct pool_item_header *ph;
1985 int r = 0;
1986
1987 mutex_enter(&pp->pr_lock);
1988 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1989 r = pool_chk_page(pp, label, ph);
1990 if (r) {
1991 goto out;
1992 }
1993 }
1994 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1995 r = pool_chk_page(pp, label, ph);
1996 if (r) {
1997 goto out;
1998 }
1999 }
2000 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2001 r = pool_chk_page(pp, label, ph);
2002 if (r) {
2003 goto out;
2004 }
2005 }
2006
2007 out:
2008 mutex_exit(&pp->pr_lock);
2009 return r;
2010 }
2011
2012 /*
2013 * pool_cache_init:
2014 *
2015 * Initialize a pool cache.
2016 */
2017 pool_cache_t
2018 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2019 const char *wchan, struct pool_allocator *palloc, int ipl,
2020 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2021 {
2022 pool_cache_t pc;
2023
2024 pc = pool_get(&cache_pool, PR_WAITOK);
2025 if (pc == NULL)
2026 return NULL;
2027
2028 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2029 palloc, ipl, ctor, dtor, arg);
2030
2031 return pc;
2032 }
2033
2034 /*
2035 * pool_cache_bootstrap:
2036 *
2037 * Kernel-private version of pool_cache_init(). The caller
2038 * provides initial storage.
2039 */
2040 void
2041 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2042 u_int align_offset, u_int flags, const char *wchan,
2043 struct pool_allocator *palloc, int ipl,
2044 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2045 void *arg)
2046 {
2047 CPU_INFO_ITERATOR cii;
2048 pool_cache_t pc1;
2049 struct cpu_info *ci;
2050 struct pool *pp;
2051
2052 pp = &pc->pc_pool;
2053 if (palloc == NULL && ipl == IPL_NONE) {
2054 if (size > PAGE_SIZE) {
2055 int bigidx = pool_bigidx(size);
2056
2057 palloc = &pool_allocator_big[bigidx];
2058 flags |= PR_NOALIGN;
2059 } else
2060 palloc = &pool_allocator_nointr;
2061 }
2062 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2063 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2064
2065 if (ctor == NULL) {
2066 ctor = (int (*)(void *, void *, int))(void *)nullop;
2067 }
2068 if (dtor == NULL) {
2069 dtor = (void (*)(void *, void *))(void *)nullop;
2070 }
2071
2072 pc->pc_emptygroups = NULL;
2073 pc->pc_fullgroups = NULL;
2074 pc->pc_partgroups = NULL;
2075 pc->pc_ctor = ctor;
2076 pc->pc_dtor = dtor;
2077 pc->pc_arg = arg;
2078 pc->pc_hits = 0;
2079 pc->pc_misses = 0;
2080 pc->pc_nempty = 0;
2081 pc->pc_npart = 0;
2082 pc->pc_nfull = 0;
2083 pc->pc_contended = 0;
2084 pc->pc_refcnt = 0;
2085 pc->pc_freecheck = NULL;
2086
2087 if ((flags & PR_LARGECACHE) != 0) {
2088 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2089 pc->pc_pcgpool = &pcg_large_pool;
2090 } else {
2091 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2092 pc->pc_pcgpool = &pcg_normal_pool;
2093 }
2094
2095 /* Allocate per-CPU caches. */
2096 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2097 pc->pc_ncpu = 0;
2098 if (ncpu < 2) {
2099 /* XXX For sparc: boot CPU is not attached yet. */
2100 pool_cache_cpu_init1(curcpu(), pc);
2101 } else {
2102 for (CPU_INFO_FOREACH(cii, ci)) {
2103 pool_cache_cpu_init1(ci, pc);
2104 }
2105 }
2106
2107 /* Add to list of all pools. */
2108 if (__predict_true(!cold))
2109 mutex_enter(&pool_head_lock);
2110 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2111 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2112 break;
2113 }
2114 if (pc1 == NULL)
2115 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2116 else
2117 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2118 if (__predict_true(!cold))
2119 mutex_exit(&pool_head_lock);
2120
2121 membar_sync();
2122 pp->pr_cache = pc;
2123 }
2124
2125 /*
2126 * pool_cache_destroy:
2127 *
2128 * Destroy a pool cache.
2129 */
2130 void
2131 pool_cache_destroy(pool_cache_t pc)
2132 {
2133
2134 pool_cache_bootstrap_destroy(pc);
2135 pool_put(&cache_pool, pc);
2136 }
2137
2138 /*
2139 * pool_cache_bootstrap_destroy:
2140 *
2141 * Destroy a pool cache.
2142 */
2143 void
2144 pool_cache_bootstrap_destroy(pool_cache_t pc)
2145 {
2146 struct pool *pp = &pc->pc_pool;
2147 u_int i;
2148
2149 /* Remove it from the global list. */
2150 mutex_enter(&pool_head_lock);
2151 while (pc->pc_refcnt != 0)
2152 cv_wait(&pool_busy, &pool_head_lock);
2153 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2154 mutex_exit(&pool_head_lock);
2155
2156 /* First, invalidate the entire cache. */
2157 pool_cache_invalidate(pc);
2158
2159 /* Disassociate it from the pool. */
2160 mutex_enter(&pp->pr_lock);
2161 pp->pr_cache = NULL;
2162 mutex_exit(&pp->pr_lock);
2163
2164 /* Destroy per-CPU data */
2165 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2166 pool_cache_invalidate_cpu(pc, i);
2167
2168 /* Finally, destroy it. */
2169 mutex_destroy(&pc->pc_lock);
2170 pool_destroy(pp);
2171 }
2172
2173 /*
2174 * pool_cache_cpu_init1:
2175 *
2176 * Called for each pool_cache whenever a new CPU is attached.
2177 */
2178 static void
2179 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2180 {
2181 pool_cache_cpu_t *cc;
2182 int index;
2183
2184 index = ci->ci_index;
2185
2186 KASSERT(index < __arraycount(pc->pc_cpus));
2187
2188 if ((cc = pc->pc_cpus[index]) != NULL) {
2189 KASSERT(cc->cc_cpuindex == index);
2190 return;
2191 }
2192
2193 /*
2194 * The first CPU is 'free'. This needs to be the case for
2195 * bootstrap - we may not be able to allocate yet.
2196 */
2197 if (pc->pc_ncpu == 0) {
2198 cc = &pc->pc_cpu0;
2199 pc->pc_ncpu = 1;
2200 } else {
2201 mutex_enter(&pc->pc_lock);
2202 pc->pc_ncpu++;
2203 mutex_exit(&pc->pc_lock);
2204 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2205 }
2206
2207 cc->cc_ipl = pc->pc_pool.pr_ipl;
2208 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2209 cc->cc_cache = pc;
2210 cc->cc_cpuindex = index;
2211 cc->cc_hits = 0;
2212 cc->cc_misses = 0;
2213 cc->cc_current = __UNCONST(&pcg_dummy);
2214 cc->cc_previous = __UNCONST(&pcg_dummy);
2215
2216 pc->pc_cpus[index] = cc;
2217 }
2218
2219 /*
2220 * pool_cache_cpu_init:
2221 *
2222 * Called whenever a new CPU is attached.
2223 */
2224 void
2225 pool_cache_cpu_init(struct cpu_info *ci)
2226 {
2227 pool_cache_t pc;
2228
2229 mutex_enter(&pool_head_lock);
2230 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2231 pc->pc_refcnt++;
2232 mutex_exit(&pool_head_lock);
2233
2234 pool_cache_cpu_init1(ci, pc);
2235
2236 mutex_enter(&pool_head_lock);
2237 pc->pc_refcnt--;
2238 cv_broadcast(&pool_busy);
2239 }
2240 mutex_exit(&pool_head_lock);
2241 }
2242
2243 /*
2244 * pool_cache_reclaim:
2245 *
2246 * Reclaim memory from a pool cache.
2247 */
2248 bool
2249 pool_cache_reclaim(pool_cache_t pc)
2250 {
2251
2252 return pool_reclaim(&pc->pc_pool);
2253 }
2254
2255 static void
2256 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2257 {
2258 (*pc->pc_dtor)(pc->pc_arg, object);
2259 pool_put(&pc->pc_pool, object);
2260 }
2261
2262 /*
2263 * pool_cache_destruct_object:
2264 *
2265 * Force destruction of an object and its release back into
2266 * the pool.
2267 */
2268 void
2269 pool_cache_destruct_object(pool_cache_t pc, void *object)
2270 {
2271
2272 FREECHECK_IN(&pc->pc_freecheck, object);
2273
2274 pool_cache_destruct_object1(pc, object);
2275 }
2276
2277 /*
2278 * pool_cache_invalidate_groups:
2279 *
2280 * Invalidate a chain of groups and destruct all objects.
2281 */
2282 static void
2283 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2284 {
2285 void *object;
2286 pcg_t *next;
2287 int i;
2288
2289 for (; pcg != NULL; pcg = next) {
2290 next = pcg->pcg_next;
2291
2292 for (i = 0; i < pcg->pcg_avail; i++) {
2293 object = pcg->pcg_objects[i].pcgo_va;
2294 pool_cache_destruct_object1(pc, object);
2295 }
2296
2297 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2298 pool_put(&pcg_large_pool, pcg);
2299 } else {
2300 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2301 pool_put(&pcg_normal_pool, pcg);
2302 }
2303 }
2304 }
2305
2306 /*
2307 * pool_cache_invalidate:
2308 *
2309 * Invalidate a pool cache (destruct and release all of the
2310 * cached objects). Does not reclaim objects from the pool.
2311 *
2312 * Note: For pool caches that provide constructed objects, there
2313 * is an assumption that another level of synchronization is occurring
2314 * between the input to the constructor and the cache invalidation.
2315 *
2316 * Invalidation is a costly process and should not be called from
2317 * interrupt context.
2318 */
2319 void
2320 pool_cache_invalidate(pool_cache_t pc)
2321 {
2322 uint64_t where;
2323 pcg_t *full, *empty, *part;
2324
2325 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2326
2327 if (ncpu < 2 || !mp_online) {
2328 /*
2329 * We might be called early enough in the boot process
2330 * for the CPU data structures to not be fully initialized.
2331 * In this case, transfer the content of the local CPU's
2332 * cache back into global cache as only this CPU is currently
2333 * running.
2334 */
2335 pool_cache_transfer(pc);
2336 } else {
2337 /*
2338 * Signal all CPUs that they must transfer their local
2339 * cache back to the global pool then wait for the xcall to
2340 * complete.
2341 */
2342 where = xc_broadcast(0, (xcfunc_t)(void *)pool_cache_transfer,
2343 pc, NULL);
2344 xc_wait(where);
2345 }
2346
2347 /* Empty pool caches, then invalidate objects */
2348 mutex_enter(&pc->pc_lock);
2349 full = pc->pc_fullgroups;
2350 empty = pc->pc_emptygroups;
2351 part = pc->pc_partgroups;
2352 pc->pc_fullgroups = NULL;
2353 pc->pc_emptygroups = NULL;
2354 pc->pc_partgroups = NULL;
2355 pc->pc_nfull = 0;
2356 pc->pc_nempty = 0;
2357 pc->pc_npart = 0;
2358 mutex_exit(&pc->pc_lock);
2359
2360 pool_cache_invalidate_groups(pc, full);
2361 pool_cache_invalidate_groups(pc, empty);
2362 pool_cache_invalidate_groups(pc, part);
2363 }
2364
2365 /*
2366 * pool_cache_invalidate_cpu:
2367 *
2368 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2369 * identified by its associated index.
2370 * It is caller's responsibility to ensure that no operation is
2371 * taking place on this pool cache while doing this invalidation.
2372 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2373 * pool cached objects from a CPU different from the one currently running
2374 * may result in an undefined behaviour.
2375 */
2376 static void
2377 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2378 {
2379 pool_cache_cpu_t *cc;
2380 pcg_t *pcg;
2381
2382 if ((cc = pc->pc_cpus[index]) == NULL)
2383 return;
2384
2385 if ((pcg = cc->cc_current) != &pcg_dummy) {
2386 pcg->pcg_next = NULL;
2387 pool_cache_invalidate_groups(pc, pcg);
2388 }
2389 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2390 pcg->pcg_next = NULL;
2391 pool_cache_invalidate_groups(pc, pcg);
2392 }
2393 if (cc != &pc->pc_cpu0)
2394 pool_put(&cache_cpu_pool, cc);
2395
2396 }
2397
2398 void
2399 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2400 {
2401
2402 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2403 }
2404
2405 void
2406 pool_cache_setlowat(pool_cache_t pc, int n)
2407 {
2408
2409 pool_setlowat(&pc->pc_pool, n);
2410 }
2411
2412 void
2413 pool_cache_sethiwat(pool_cache_t pc, int n)
2414 {
2415
2416 pool_sethiwat(&pc->pc_pool, n);
2417 }
2418
2419 void
2420 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2421 {
2422
2423 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2424 }
2425
2426 static bool __noinline
2427 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2428 paddr_t *pap, int flags)
2429 {
2430 pcg_t *pcg, *cur;
2431 uint64_t ncsw;
2432 pool_cache_t pc;
2433 void *object;
2434
2435 KASSERT(cc->cc_current->pcg_avail == 0);
2436 KASSERT(cc->cc_previous->pcg_avail == 0);
2437
2438 pc = cc->cc_cache;
2439 cc->cc_misses++;
2440
2441 /*
2442 * Nothing was available locally. Try and grab a group
2443 * from the cache.
2444 */
2445 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2446 ncsw = curlwp->l_ncsw;
2447 mutex_enter(&pc->pc_lock);
2448 pc->pc_contended++;
2449
2450 /*
2451 * If we context switched while locking, then
2452 * our view of the per-CPU data is invalid:
2453 * retry.
2454 */
2455 if (curlwp->l_ncsw != ncsw) {
2456 mutex_exit(&pc->pc_lock);
2457 return true;
2458 }
2459 }
2460
2461 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2462 /*
2463 * If there's a full group, release our empty
2464 * group back to the cache. Install the full
2465 * group as cc_current and return.
2466 */
2467 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2468 KASSERT(cur->pcg_avail == 0);
2469 cur->pcg_next = pc->pc_emptygroups;
2470 pc->pc_emptygroups = cur;
2471 pc->pc_nempty++;
2472 }
2473 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2474 cc->cc_current = pcg;
2475 pc->pc_fullgroups = pcg->pcg_next;
2476 pc->pc_hits++;
2477 pc->pc_nfull--;
2478 mutex_exit(&pc->pc_lock);
2479 return true;
2480 }
2481
2482 /*
2483 * Nothing available locally or in cache. Take the slow
2484 * path: fetch a new object from the pool and construct
2485 * it.
2486 */
2487 pc->pc_misses++;
2488 mutex_exit(&pc->pc_lock);
2489 splx(s);
2490
2491 object = pool_get(&pc->pc_pool, flags);
2492 *objectp = object;
2493 if (__predict_false(object == NULL)) {
2494 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2495 return false;
2496 }
2497
2498 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2499 pool_put(&pc->pc_pool, object);
2500 *objectp = NULL;
2501 return false;
2502 }
2503
2504 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2505
2506 if (pap != NULL) {
2507 #ifdef POOL_VTOPHYS
2508 *pap = POOL_VTOPHYS(object);
2509 #else
2510 *pap = POOL_PADDR_INVALID;
2511 #endif
2512 }
2513
2514 FREECHECK_OUT(&pc->pc_freecheck, object);
2515 pool_cache_kleak_fill(pc, object);
2516 return false;
2517 }
2518
2519 /*
2520 * pool_cache_get{,_paddr}:
2521 *
2522 * Get an object from a pool cache (optionally returning
2523 * the physical address of the object).
2524 */
2525 void *
2526 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2527 {
2528 pool_cache_cpu_t *cc;
2529 pcg_t *pcg;
2530 void *object;
2531 int s;
2532
2533 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2534 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2535 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2536 "%s: [%s] is IPL_NONE, but called from interrupt context",
2537 __func__, pc->pc_pool.pr_wchan);
2538
2539 if (flags & PR_WAITOK) {
2540 ASSERT_SLEEPABLE();
2541 }
2542
2543 /* Lock out interrupts and disable preemption. */
2544 s = splvm();
2545 while (/* CONSTCOND */ true) {
2546 /* Try and allocate an object from the current group. */
2547 cc = pc->pc_cpus[curcpu()->ci_index];
2548 KASSERT(cc->cc_cache == pc);
2549 pcg = cc->cc_current;
2550 if (__predict_true(pcg->pcg_avail > 0)) {
2551 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2552 if (__predict_false(pap != NULL))
2553 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2554 #if defined(DIAGNOSTIC)
2555 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2556 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2557 KASSERT(object != NULL);
2558 #endif
2559 cc->cc_hits++;
2560 splx(s);
2561 FREECHECK_OUT(&pc->pc_freecheck, object);
2562 pool_redzone_fill(&pc->pc_pool, object);
2563 pool_cache_kleak_fill(pc, object);
2564 return object;
2565 }
2566
2567 /*
2568 * That failed. If the previous group isn't empty, swap
2569 * it with the current group and allocate from there.
2570 */
2571 pcg = cc->cc_previous;
2572 if (__predict_true(pcg->pcg_avail > 0)) {
2573 cc->cc_previous = cc->cc_current;
2574 cc->cc_current = pcg;
2575 continue;
2576 }
2577
2578 /*
2579 * Can't allocate from either group: try the slow path.
2580 * If get_slow() allocated an object for us, or if
2581 * no more objects are available, it will return false.
2582 * Otherwise, we need to retry.
2583 */
2584 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2585 break;
2586 }
2587
2588 /*
2589 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2590 * pool_cache_get can fail even in the PR_WAITOK case, if the
2591 * constructor fails.
2592 */
2593 return object;
2594 }
2595
2596 static bool __noinline
2597 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2598 {
2599 struct lwp *l = curlwp;
2600 pcg_t *pcg, *cur;
2601 uint64_t ncsw;
2602 pool_cache_t pc;
2603
2604 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2605 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2606
2607 pc = cc->cc_cache;
2608 pcg = NULL;
2609 cc->cc_misses++;
2610 ncsw = l->l_ncsw;
2611
2612 /*
2613 * If there are no empty groups in the cache then allocate one
2614 * while still unlocked.
2615 */
2616 if (__predict_false(pc->pc_emptygroups == NULL)) {
2617 if (__predict_true(!pool_cache_disable)) {
2618 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2619 }
2620 /*
2621 * If pool_get() blocked, then our view of
2622 * the per-CPU data is invalid: retry.
2623 */
2624 if (__predict_false(l->l_ncsw != ncsw)) {
2625 if (pcg != NULL) {
2626 pool_put(pc->pc_pcgpool, pcg);
2627 }
2628 return true;
2629 }
2630 if (__predict_true(pcg != NULL)) {
2631 pcg->pcg_avail = 0;
2632 pcg->pcg_size = pc->pc_pcgsize;
2633 }
2634 }
2635
2636 /* Lock the cache. */
2637 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2638 mutex_enter(&pc->pc_lock);
2639 pc->pc_contended++;
2640
2641 /*
2642 * If we context switched while locking, then our view of
2643 * the per-CPU data is invalid: retry.
2644 */
2645 if (__predict_false(l->l_ncsw != ncsw)) {
2646 mutex_exit(&pc->pc_lock);
2647 if (pcg != NULL) {
2648 pool_put(pc->pc_pcgpool, pcg);
2649 }
2650 return true;
2651 }
2652 }
2653
2654 /* If there are no empty groups in the cache then allocate one. */
2655 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2656 pcg = pc->pc_emptygroups;
2657 pc->pc_emptygroups = pcg->pcg_next;
2658 pc->pc_nempty--;
2659 }
2660
2661 /*
2662 * If there's a empty group, release our full group back
2663 * to the cache. Install the empty group to the local CPU
2664 * and return.
2665 */
2666 if (pcg != NULL) {
2667 KASSERT(pcg->pcg_avail == 0);
2668 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2669 cc->cc_previous = pcg;
2670 } else {
2671 cur = cc->cc_current;
2672 if (__predict_true(cur != &pcg_dummy)) {
2673 KASSERT(cur->pcg_avail == cur->pcg_size);
2674 cur->pcg_next = pc->pc_fullgroups;
2675 pc->pc_fullgroups = cur;
2676 pc->pc_nfull++;
2677 }
2678 cc->cc_current = pcg;
2679 }
2680 pc->pc_hits++;
2681 mutex_exit(&pc->pc_lock);
2682 return true;
2683 }
2684
2685 /*
2686 * Nothing available locally or in cache, and we didn't
2687 * allocate an empty group. Take the slow path and destroy
2688 * the object here and now.
2689 */
2690 pc->pc_misses++;
2691 mutex_exit(&pc->pc_lock);
2692 splx(s);
2693 pool_cache_destruct_object(pc, object);
2694
2695 return false;
2696 }
2697
2698 /*
2699 * pool_cache_put{,_paddr}:
2700 *
2701 * Put an object back to the pool cache (optionally caching the
2702 * physical address of the object).
2703 */
2704 void
2705 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2706 {
2707 pool_cache_cpu_t *cc;
2708 pcg_t *pcg;
2709 int s;
2710
2711 KASSERT(object != NULL);
2712 pool_cache_redzone_check(pc, object);
2713 FREECHECK_IN(&pc->pc_freecheck, object);
2714
2715 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2716 pc_phinpage_check(pc, object);
2717 }
2718
2719 if (pool_cache_put_quarantine(pc, object, pa)) {
2720 return;
2721 }
2722
2723 /* Lock out interrupts and disable preemption. */
2724 s = splvm();
2725 while (/* CONSTCOND */ true) {
2726 /* If the current group isn't full, release it there. */
2727 cc = pc->pc_cpus[curcpu()->ci_index];
2728 KASSERT(cc->cc_cache == pc);
2729 pcg = cc->cc_current;
2730 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2731 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2732 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2733 pcg->pcg_avail++;
2734 cc->cc_hits++;
2735 splx(s);
2736 return;
2737 }
2738
2739 /*
2740 * That failed. If the previous group isn't full, swap
2741 * it with the current group and try again.
2742 */
2743 pcg = cc->cc_previous;
2744 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2745 cc->cc_previous = cc->cc_current;
2746 cc->cc_current = pcg;
2747 continue;
2748 }
2749
2750 /*
2751 * Can't free to either group: try the slow path.
2752 * If put_slow() releases the object for us, it
2753 * will return false. Otherwise we need to retry.
2754 */
2755 if (!pool_cache_put_slow(cc, s, object))
2756 break;
2757 }
2758 }
2759
2760 /*
2761 * pool_cache_transfer:
2762 *
2763 * Transfer objects from the per-CPU cache to the global cache.
2764 * Run within a cross-call thread.
2765 */
2766 static void
2767 pool_cache_transfer(pool_cache_t pc)
2768 {
2769 pool_cache_cpu_t *cc;
2770 pcg_t *prev, *cur, **list;
2771 int s;
2772
2773 s = splvm();
2774 mutex_enter(&pc->pc_lock);
2775 cc = pc->pc_cpus[curcpu()->ci_index];
2776 cur = cc->cc_current;
2777 cc->cc_current = __UNCONST(&pcg_dummy);
2778 prev = cc->cc_previous;
2779 cc->cc_previous = __UNCONST(&pcg_dummy);
2780 if (cur != &pcg_dummy) {
2781 if (cur->pcg_avail == cur->pcg_size) {
2782 list = &pc->pc_fullgroups;
2783 pc->pc_nfull++;
2784 } else if (cur->pcg_avail == 0) {
2785 list = &pc->pc_emptygroups;
2786 pc->pc_nempty++;
2787 } else {
2788 list = &pc->pc_partgroups;
2789 pc->pc_npart++;
2790 }
2791 cur->pcg_next = *list;
2792 *list = cur;
2793 }
2794 if (prev != &pcg_dummy) {
2795 if (prev->pcg_avail == prev->pcg_size) {
2796 list = &pc->pc_fullgroups;
2797 pc->pc_nfull++;
2798 } else if (prev->pcg_avail == 0) {
2799 list = &pc->pc_emptygroups;
2800 pc->pc_nempty++;
2801 } else {
2802 list = &pc->pc_partgroups;
2803 pc->pc_npart++;
2804 }
2805 prev->pcg_next = *list;
2806 *list = prev;
2807 }
2808 mutex_exit(&pc->pc_lock);
2809 splx(s);
2810 }
2811
2812 static int
2813 pool_bigidx(size_t size)
2814 {
2815 int i;
2816
2817 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2818 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2819 return i;
2820 }
2821 panic("pool item size %zu too large, use a custom allocator", size);
2822 }
2823
2824 static void *
2825 pool_allocator_alloc(struct pool *pp, int flags)
2826 {
2827 struct pool_allocator *pa = pp->pr_alloc;
2828 void *res;
2829
2830 res = (*pa->pa_alloc)(pp, flags);
2831 if (res == NULL && (flags & PR_WAITOK) == 0) {
2832 /*
2833 * We only run the drain hook here if PR_NOWAIT.
2834 * In other cases, the hook will be run in
2835 * pool_reclaim().
2836 */
2837 if (pp->pr_drain_hook != NULL) {
2838 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2839 res = (*pa->pa_alloc)(pp, flags);
2840 }
2841 }
2842 return res;
2843 }
2844
2845 static void
2846 pool_allocator_free(struct pool *pp, void *v)
2847 {
2848 struct pool_allocator *pa = pp->pr_alloc;
2849
2850 if (pp->pr_redzone) {
2851 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2852 }
2853 (*pa->pa_free)(pp, v);
2854 }
2855
2856 void *
2857 pool_page_alloc(struct pool *pp, int flags)
2858 {
2859 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2860 vmem_addr_t va;
2861 int ret;
2862
2863 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2864 vflags | VM_INSTANTFIT, &va);
2865
2866 return ret ? NULL : (void *)va;
2867 }
2868
2869 void
2870 pool_page_free(struct pool *pp, void *v)
2871 {
2872
2873 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2874 }
2875
2876 static void *
2877 pool_page_alloc_meta(struct pool *pp, int flags)
2878 {
2879 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2880 vmem_addr_t va;
2881 int ret;
2882
2883 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2884 vflags | VM_INSTANTFIT, &va);
2885
2886 return ret ? NULL : (void *)va;
2887 }
2888
2889 static void
2890 pool_page_free_meta(struct pool *pp, void *v)
2891 {
2892
2893 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2894 }
2895
2896 #ifdef KLEAK
2897 static void
2898 pool_kleak_fill(struct pool *pp, void *p)
2899 {
2900 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2901 return;
2902 }
2903 kleak_fill_area(p, pp->pr_size);
2904 }
2905
2906 static void
2907 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2908 {
2909 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2910 return;
2911 }
2912 pool_kleak_fill(&pc->pc_pool, p);
2913 }
2914 #endif
2915
2916 #ifdef POOL_QUARANTINE
2917 static void
2918 pool_quarantine_init(struct pool *pp)
2919 {
2920 pp->pr_quar.rotor = 0;
2921 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2922 }
2923
2924 static void
2925 pool_quarantine_flush(struct pool *pp)
2926 {
2927 pool_quar_t *quar = &pp->pr_quar;
2928 struct pool_pagelist pq;
2929 size_t i;
2930
2931 LIST_INIT(&pq);
2932
2933 mutex_enter(&pp->pr_lock);
2934 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2935 if (quar->list[i] == 0)
2936 continue;
2937 pool_do_put(pp, (void *)quar->list[i], &pq);
2938 }
2939 mutex_exit(&pp->pr_lock);
2940
2941 pr_pagelist_free(pp, &pq);
2942 }
2943
2944 static bool
2945 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2946 {
2947 pool_quar_t *quar = &pp->pr_quar;
2948 uintptr_t old;
2949
2950 if (pp->pr_roflags & PR_NOTOUCH) {
2951 return false;
2952 }
2953
2954 pool_redzone_check(pp, v);
2955
2956 old = quar->list[quar->rotor];
2957 quar->list[quar->rotor] = (uintptr_t)v;
2958 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2959 if (old != 0) {
2960 pool_do_put(pp, (void *)old, pq);
2961 }
2962
2963 return true;
2964 }
2965
2966 static bool
2967 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
2968 {
2969 pool_cache_destruct_object(pc, p);
2970 return true;
2971 }
2972 #endif
2973
2974 #ifdef POOL_REDZONE
2975 #if defined(_LP64)
2976 # define PRIME 0x9e37fffffffc0000UL
2977 #else /* defined(_LP64) */
2978 # define PRIME 0x9e3779b1
2979 #endif /* defined(_LP64) */
2980 #define STATIC_BYTE 0xFE
2981 CTASSERT(POOL_REDZONE_SIZE > 1);
2982
2983 #ifndef KASAN
2984 static inline uint8_t
2985 pool_pattern_generate(const void *p)
2986 {
2987 return (uint8_t)(((uintptr_t)p) * PRIME
2988 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2989 }
2990 #endif
2991
2992 static void
2993 pool_redzone_init(struct pool *pp, size_t requested_size)
2994 {
2995 size_t redzsz;
2996 size_t nsz;
2997
2998 #ifdef KASAN
2999 redzsz = requested_size;
3000 kasan_add_redzone(&redzsz);
3001 redzsz -= requested_size;
3002 #else
3003 redzsz = POOL_REDZONE_SIZE;
3004 #endif
3005
3006 if (pp->pr_roflags & PR_NOTOUCH) {
3007 pp->pr_redzone = false;
3008 return;
3009 }
3010
3011 /*
3012 * We may have extended the requested size earlier; check if
3013 * there's naturally space in the padding for a red zone.
3014 */
3015 if (pp->pr_size - requested_size >= redzsz) {
3016 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3017 pp->pr_redzone = true;
3018 return;
3019 }
3020
3021 /*
3022 * No space in the natural padding; check if we can extend a
3023 * bit the size of the pool.
3024 */
3025 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3026 if (nsz <= pp->pr_alloc->pa_pagesz) {
3027 /* Ok, we can */
3028 pp->pr_size = nsz;
3029 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3030 pp->pr_redzone = true;
3031 } else {
3032 /* No space for a red zone... snif :'( */
3033 pp->pr_redzone = false;
3034 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3035 }
3036 }
3037
3038 static void
3039 pool_redzone_fill(struct pool *pp, void *p)
3040 {
3041 if (!pp->pr_redzone)
3042 return;
3043 #ifdef KASAN
3044 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3045 KASAN_POOL_REDZONE);
3046 #else
3047 uint8_t *cp, pat;
3048 const uint8_t *ep;
3049
3050 cp = (uint8_t *)p + pp->pr_reqsize;
3051 ep = cp + POOL_REDZONE_SIZE;
3052
3053 /*
3054 * We really don't want the first byte of the red zone to be '\0';
3055 * an off-by-one in a string may not be properly detected.
3056 */
3057 pat = pool_pattern_generate(cp);
3058 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3059 cp++;
3060
3061 while (cp < ep) {
3062 *cp = pool_pattern_generate(cp);
3063 cp++;
3064 }
3065 #endif
3066 }
3067
3068 static void
3069 pool_redzone_check(struct pool *pp, void *p)
3070 {
3071 if (!pp->pr_redzone)
3072 return;
3073 #ifdef KASAN
3074 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3075 #else
3076 uint8_t *cp, pat, expected;
3077 const uint8_t *ep;
3078
3079 cp = (uint8_t *)p + pp->pr_reqsize;
3080 ep = cp + POOL_REDZONE_SIZE;
3081
3082 pat = pool_pattern_generate(cp);
3083 expected = (pat == '\0') ? STATIC_BYTE: pat;
3084 if (__predict_false(expected != *cp)) {
3085 printf("%s: %p: 0x%02x != 0x%02x\n",
3086 __func__, cp, *cp, expected);
3087 }
3088 cp++;
3089
3090 while (cp < ep) {
3091 expected = pool_pattern_generate(cp);
3092 if (__predict_false(*cp != expected)) {
3093 printf("%s: %p: 0x%02x != 0x%02x\n",
3094 __func__, cp, *cp, expected);
3095 }
3096 cp++;
3097 }
3098 #endif
3099 }
3100
3101 static void
3102 pool_cache_redzone_check(pool_cache_t pc, void *p)
3103 {
3104 #ifdef KASAN
3105 /* If there is a ctor/dtor, leave the data as valid. */
3106 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3107 return;
3108 }
3109 #endif
3110 pool_redzone_check(&pc->pc_pool, p);
3111 }
3112
3113 #endif /* POOL_REDZONE */
3114
3115 #if defined(DDB)
3116 static bool
3117 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3118 {
3119
3120 return (uintptr_t)ph->ph_page <= addr &&
3121 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3122 }
3123
3124 static bool
3125 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3126 {
3127
3128 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3129 }
3130
3131 static bool
3132 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3133 {
3134 int i;
3135
3136 if (pcg == NULL) {
3137 return false;
3138 }
3139 for (i = 0; i < pcg->pcg_avail; i++) {
3140 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3141 return true;
3142 }
3143 }
3144 return false;
3145 }
3146
3147 static bool
3148 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3149 {
3150
3151 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3152 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3153 pool_item_bitmap_t *bitmap =
3154 ph->ph_bitmap + (idx / BITMAP_SIZE);
3155 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3156
3157 return (*bitmap & mask) == 0;
3158 } else {
3159 struct pool_item *pi;
3160
3161 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3162 if (pool_in_item(pp, pi, addr)) {
3163 return false;
3164 }
3165 }
3166 return true;
3167 }
3168 }
3169
3170 void
3171 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3172 {
3173 struct pool *pp;
3174
3175 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3176 struct pool_item_header *ph;
3177 uintptr_t item;
3178 bool allocated = true;
3179 bool incache = false;
3180 bool incpucache = false;
3181 char cpucachestr[32];
3182
3183 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3184 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3185 if (pool_in_page(pp, ph, addr)) {
3186 goto found;
3187 }
3188 }
3189 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3190 if (pool_in_page(pp, ph, addr)) {
3191 allocated =
3192 pool_allocated(pp, ph, addr);
3193 goto found;
3194 }
3195 }
3196 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3197 if (pool_in_page(pp, ph, addr)) {
3198 allocated = false;
3199 goto found;
3200 }
3201 }
3202 continue;
3203 } else {
3204 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3205 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3206 continue;
3207 }
3208 allocated = pool_allocated(pp, ph, addr);
3209 }
3210 found:
3211 if (allocated && pp->pr_cache) {
3212 pool_cache_t pc = pp->pr_cache;
3213 struct pool_cache_group *pcg;
3214 int i;
3215
3216 for (pcg = pc->pc_fullgroups; pcg != NULL;
3217 pcg = pcg->pcg_next) {
3218 if (pool_in_cg(pp, pcg, addr)) {
3219 incache = true;
3220 goto print;
3221 }
3222 }
3223 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3224 pool_cache_cpu_t *cc;
3225
3226 if ((cc = pc->pc_cpus[i]) == NULL) {
3227 continue;
3228 }
3229 if (pool_in_cg(pp, cc->cc_current, addr) ||
3230 pool_in_cg(pp, cc->cc_previous, addr)) {
3231 struct cpu_info *ci =
3232 cpu_lookup(i);
3233
3234 incpucache = true;
3235 snprintf(cpucachestr,
3236 sizeof(cpucachestr),
3237 "cached by CPU %u",
3238 ci->ci_index);
3239 goto print;
3240 }
3241 }
3242 }
3243 print:
3244 item = (uintptr_t)ph->ph_page + ph->ph_off;
3245 item = item + rounddown(addr - item, pp->pr_size);
3246 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3247 (void *)addr, item, (size_t)(addr - item),
3248 pp->pr_wchan,
3249 incpucache ? cpucachestr :
3250 incache ? "cached" : allocated ? "allocated" : "free");
3251 }
3252 }
3253 #endif /* defined(DDB) */
3254
3255 static int
3256 pool_sysctl(SYSCTLFN_ARGS)
3257 {
3258 struct pool_sysctl data;
3259 struct pool *pp;
3260 struct pool_cache *pc;
3261 pool_cache_cpu_t *cc;
3262 int error;
3263 size_t i, written;
3264
3265 if (oldp == NULL) {
3266 *oldlenp = 0;
3267 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3268 *oldlenp += sizeof(data);
3269 return 0;
3270 }
3271
3272 memset(&data, 0, sizeof(data));
3273 error = 0;
3274 written = 0;
3275 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3276 if (written + sizeof(data) > *oldlenp)
3277 break;
3278 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3279 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3280 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3281 #define COPY(field) data.field = pp->field
3282 COPY(pr_size);
3283
3284 COPY(pr_itemsperpage);
3285 COPY(pr_nitems);
3286 COPY(pr_nout);
3287 COPY(pr_hardlimit);
3288 COPY(pr_npages);
3289 COPY(pr_minpages);
3290 COPY(pr_maxpages);
3291
3292 COPY(pr_nget);
3293 COPY(pr_nfail);
3294 COPY(pr_nput);
3295 COPY(pr_npagealloc);
3296 COPY(pr_npagefree);
3297 COPY(pr_hiwat);
3298 COPY(pr_nidle);
3299 #undef COPY
3300
3301 data.pr_cache_nmiss_pcpu = 0;
3302 data.pr_cache_nhit_pcpu = 0;
3303 if (pp->pr_cache) {
3304 pc = pp->pr_cache;
3305 data.pr_cache_meta_size = pc->pc_pcgsize;
3306 data.pr_cache_nfull = pc->pc_nfull;
3307 data.pr_cache_npartial = pc->pc_npart;
3308 data.pr_cache_nempty = pc->pc_nempty;
3309 data.pr_cache_ncontended = pc->pc_contended;
3310 data.pr_cache_nmiss_global = pc->pc_misses;
3311 data.pr_cache_nhit_global = pc->pc_hits;
3312 for (i = 0; i < pc->pc_ncpu; ++i) {
3313 cc = pc->pc_cpus[i];
3314 if (cc == NULL)
3315 continue;
3316 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3317 data.pr_cache_nhit_pcpu += cc->cc_hits;
3318 }
3319 } else {
3320 data.pr_cache_meta_size = 0;
3321 data.pr_cache_nfull = 0;
3322 data.pr_cache_npartial = 0;
3323 data.pr_cache_nempty = 0;
3324 data.pr_cache_ncontended = 0;
3325 data.pr_cache_nmiss_global = 0;
3326 data.pr_cache_nhit_global = 0;
3327 }
3328
3329 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3330 if (error)
3331 break;
3332 written += sizeof(data);
3333 oldp = (char *)oldp + sizeof(data);
3334 }
3335
3336 *oldlenp = written;
3337 return error;
3338 }
3339
3340 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3341 {
3342 const struct sysctlnode *rnode = NULL;
3343
3344 sysctl_createv(clog, 0, NULL, &rnode,
3345 CTLFLAG_PERMANENT,
3346 CTLTYPE_STRUCT, "pool",
3347 SYSCTL_DESCR("Get pool statistics"),
3348 pool_sysctl, 0, NULL, 0,
3349 CTL_KERN, CTL_CREATE, CTL_EOL);
3350 }
3351