Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.264.2.2
      1 /*	$NetBSD: subr_pool.c,v 1.264.2.2 2020/02/29 20:21:03 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.264.2.2 2020/02/29 20:21:03 ad Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_pool.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/sysctl.h>
     47 #include <sys/bitops.h>
     48 #include <sys/proc.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmem.h>
     52 #include <sys/pool.h>
     53 #include <sys/syslog.h>
     54 #include <sys/debug.h>
     55 #include <sys/lockdebug.h>
     56 #include <sys/xcall.h>
     57 #include <sys/cpu.h>
     58 #include <sys/atomic.h>
     59 #include <sys/asan.h>
     60 #include <sys/msan.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 /*
     65  * Pool resource management utility.
     66  *
     67  * Memory is allocated in pages which are split into pieces according to
     68  * the pool item size. Each page is kept on one of three lists in the
     69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70  * for empty, full and partially-full pages respectively. The individual
     71  * pool items are on a linked list headed by `ph_itemlist' in each page
     72  * header. The memory for building the page list is either taken from
     73  * the allocated pages themselves (for small pool items) or taken from
     74  * an internal pool of page headers (`phpool').
     75  */
     76 
     77 /* List of all pools. Non static as needed by 'vmstat -m' */
     78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79 
     80 /* Private pool for page header structures */
     81 #define	PHPOOL_MAX	8
     82 static struct pool phpool[PHPOOL_MAX];
     83 #define	PHPOOL_FREELIST_NELEM(idx) \
     84 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
     85 
     86 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
     87 #define POOL_REDZONE
     88 #endif
     89 
     90 #ifdef POOL_REDZONE
     91 # ifdef KASAN
     92 #  define POOL_REDZONE_SIZE 8
     93 # else
     94 #  define POOL_REDZONE_SIZE 2
     95 # endif
     96 static void pool_redzone_init(struct pool *, size_t);
     97 static void pool_redzone_fill(struct pool *, void *);
     98 static void pool_redzone_check(struct pool *, void *);
     99 static void pool_cache_redzone_check(pool_cache_t, void *);
    100 #else
    101 # define pool_redzone_init(pp, sz)		__nothing
    102 # define pool_redzone_fill(pp, ptr)		__nothing
    103 # define pool_redzone_check(pp, ptr)		__nothing
    104 # define pool_cache_redzone_check(pc, ptr)	__nothing
    105 #endif
    106 
    107 #ifdef KMSAN
    108 static inline void pool_get_kmsan(struct pool *, void *);
    109 static inline void pool_put_kmsan(struct pool *, void *);
    110 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
    111 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
    112 #else
    113 #define pool_get_kmsan(pp, ptr)		__nothing
    114 #define pool_put_kmsan(pp, ptr)		__nothing
    115 #define pool_cache_get_kmsan(pc, ptr)	__nothing
    116 #define pool_cache_put_kmsan(pc, ptr)	__nothing
    117 #endif
    118 
    119 #ifdef POOL_QUARANTINE
    120 static void pool_quarantine_init(struct pool *);
    121 static void pool_quarantine_flush(struct pool *);
    122 static bool pool_put_quarantine(struct pool *, void *,
    123     struct pool_pagelist *);
    124 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
    125 #else
    126 #define pool_quarantine_init(a)			__nothing
    127 #define pool_quarantine_flush(a)		__nothing
    128 #define pool_put_quarantine(a, b, c)		false
    129 #define pool_cache_put_quarantine(a, b, c)	false
    130 #endif
    131 
    132 #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
    133 #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
    134 
    135 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
    136 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
    137 
    138 /*
    139  * Pool backend allocators.
    140  *
    141  * Each pool has a backend allocator that handles allocation, deallocation,
    142  * and any additional draining that might be needed.
    143  *
    144  * We provide two standard allocators:
    145  *
    146  *	pool_allocator_kmem - the default when no allocator is specified
    147  *
    148  *	pool_allocator_nointr - used for pools that will not be accessed
    149  *	in interrupt context.
    150  */
    151 void *pool_page_alloc(struct pool *, int);
    152 void pool_page_free(struct pool *, void *);
    153 
    154 static void *pool_page_alloc_meta(struct pool *, int);
    155 static void pool_page_free_meta(struct pool *, void *);
    156 
    157 struct pool_allocator pool_allocator_kmem = {
    158 	.pa_alloc = pool_page_alloc,
    159 	.pa_free = pool_page_free,
    160 	.pa_pagesz = 0
    161 };
    162 
    163 struct pool_allocator pool_allocator_nointr = {
    164 	.pa_alloc = pool_page_alloc,
    165 	.pa_free = pool_page_free,
    166 	.pa_pagesz = 0
    167 };
    168 
    169 struct pool_allocator pool_allocator_meta = {
    170 	.pa_alloc = pool_page_alloc_meta,
    171 	.pa_free = pool_page_free_meta,
    172 	.pa_pagesz = 0
    173 };
    174 
    175 #define POOL_ALLOCATOR_BIG_BASE 13
    176 static struct pool_allocator pool_allocator_big[] = {
    177 	{
    178 		.pa_alloc = pool_page_alloc,
    179 		.pa_free = pool_page_free,
    180 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
    181 	},
    182 	{
    183 		.pa_alloc = pool_page_alloc,
    184 		.pa_free = pool_page_free,
    185 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
    186 	},
    187 	{
    188 		.pa_alloc = pool_page_alloc,
    189 		.pa_free = pool_page_free,
    190 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
    191 	},
    192 	{
    193 		.pa_alloc = pool_page_alloc,
    194 		.pa_free = pool_page_free,
    195 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
    196 	},
    197 	{
    198 		.pa_alloc = pool_page_alloc,
    199 		.pa_free = pool_page_free,
    200 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
    201 	},
    202 	{
    203 		.pa_alloc = pool_page_alloc,
    204 		.pa_free = pool_page_free,
    205 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
    206 	},
    207 	{
    208 		.pa_alloc = pool_page_alloc,
    209 		.pa_free = pool_page_free,
    210 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
    211 	},
    212 	{
    213 		.pa_alloc = pool_page_alloc,
    214 		.pa_free = pool_page_free,
    215 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
    216 	}
    217 };
    218 
    219 static int pool_bigidx(size_t);
    220 
    221 /* # of seconds to retain page after last use */
    222 int pool_inactive_time = 10;
    223 
    224 /* Next candidate for drainage (see pool_drain()) */
    225 static struct pool *drainpp;
    226 
    227 /* This lock protects both pool_head and drainpp. */
    228 static kmutex_t pool_head_lock;
    229 static kcondvar_t pool_busy;
    230 
    231 /* This lock protects initialization of a potentially shared pool allocator */
    232 static kmutex_t pool_allocator_lock;
    233 
    234 static unsigned int poolid_counter = 0;
    235 
    236 typedef uint32_t pool_item_bitmap_t;
    237 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    238 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    239 #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
    240 
    241 struct pool_item_header {
    242 	/* Page headers */
    243 	LIST_ENTRY(pool_item_header)
    244 				ph_pagelist;	/* pool page list */
    245 	union {
    246 		/* !PR_PHINPAGE */
    247 		struct {
    248 			SPLAY_ENTRY(pool_item_header)
    249 				phu_node;	/* off-page page headers */
    250 		} phu_offpage;
    251 		/* PR_PHINPAGE */
    252 		struct {
    253 			unsigned int phu_poolid;
    254 		} phu_onpage;
    255 	} ph_u1;
    256 	void *			ph_page;	/* this page's address */
    257 	uint32_t		ph_time;	/* last referenced */
    258 	uint16_t		ph_nmissing;	/* # of chunks in use */
    259 	uint16_t		ph_off;		/* start offset in page */
    260 	union {
    261 		/* !PR_USEBMAP */
    262 		struct {
    263 			LIST_HEAD(, pool_item)
    264 				phu_itemlist;	/* chunk list for this page */
    265 		} phu_normal;
    266 		/* PR_USEBMAP */
    267 		struct {
    268 			pool_item_bitmap_t phu_bitmap[1];
    269 		} phu_notouch;
    270 	} ph_u2;
    271 };
    272 #define ph_node		ph_u1.phu_offpage.phu_node
    273 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    274 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    275 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    276 
    277 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    278 
    279 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
    280     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
    281 
    282 #if defined(DIAGNOSTIC) && !defined(KASAN)
    283 #define POOL_CHECK_MAGIC
    284 #endif
    285 
    286 struct pool_item {
    287 #ifdef POOL_CHECK_MAGIC
    288 	u_int pi_magic;
    289 #endif
    290 #define	PI_MAGIC 0xdeaddeadU
    291 	/* Other entries use only this list entry */
    292 	LIST_ENTRY(pool_item)	pi_list;
    293 };
    294 
    295 #define	POOL_NEEDS_CATCHUP(pp)						\
    296 	((pp)->pr_nitems < (pp)->pr_minitems)
    297 #define	POOL_OBJ_TO_PAGE(pp, v)						\
    298 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    299 
    300 /*
    301  * Pool cache management.
    302  *
    303  * Pool caches provide a way for constructed objects to be cached by the
    304  * pool subsystem.  This can lead to performance improvements by avoiding
    305  * needless object construction/destruction; it is deferred until absolutely
    306  * necessary.
    307  *
    308  * Caches are grouped into cache groups.  Each cache group references up
    309  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    310  * object from the pool, it calls the object's constructor and places it
    311  * into a cache group.  When a cache group frees an object back to the
    312  * pool, it first calls the object's destructor.  This allows the object
    313  * to persist in constructed form while freed to the cache.
    314  *
    315  * The pool references each cache, so that when a pool is drained by the
    316  * pagedaemon, it can drain each individual cache as well.  Each time a
    317  * cache is drained, the most idle cache group is freed to the pool in
    318  * its entirety.
    319  *
    320  * Pool caches are layed on top of pools.  By layering them, we can avoid
    321  * the complexity of cache management for pools which would not benefit
    322  * from it.
    323  */
    324 
    325 static struct pool pcg_normal_pool;
    326 static struct pool pcg_large_pool;
    327 static struct pool cache_pool;
    328 static struct pool cache_cpu_pool;
    329 
    330 /* List of all caches. */
    331 TAILQ_HEAD(,pool_cache) pool_cache_head =
    332     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    333 
    334 int pool_cache_disable;		/* global disable for caching */
    335 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    336 
    337 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    338 				    void *);
    339 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    340 				    void **, paddr_t *, int);
    341 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    342 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    343 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    344 static void	pool_cache_transfer(pool_cache_t);
    345 
    346 static int	pool_catchup(struct pool *);
    347 static void	pool_prime_page(struct pool *, void *,
    348 		    struct pool_item_header *);
    349 static void	pool_update_curpage(struct pool *);
    350 
    351 static int	pool_grow(struct pool *, int);
    352 static void	*pool_allocator_alloc(struct pool *, int);
    353 static void	pool_allocator_free(struct pool *, void *);
    354 
    355 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    356 	void (*)(const char *, ...) __printflike(1, 2));
    357 static void pool_print1(struct pool *, const char *,
    358 	void (*)(const char *, ...) __printflike(1, 2));
    359 
    360 static int pool_chk_page(struct pool *, const char *,
    361 			 struct pool_item_header *);
    362 
    363 /* -------------------------------------------------------------------------- */
    364 
    365 static inline unsigned int
    366 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    367     const void *v)
    368 {
    369 	const char *cp = v;
    370 	unsigned int idx;
    371 
    372 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    373 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    374 
    375 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    376 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    377 		    pp->pr_itemsperpage);
    378 	}
    379 
    380 	return idx;
    381 }
    382 
    383 static inline void
    384 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    385     void *obj)
    386 {
    387 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    388 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    389 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    390 
    391 	if (__predict_false((*bitmap & mask) != 0)) {
    392 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    393 	}
    394 
    395 	*bitmap |= mask;
    396 }
    397 
    398 static inline void *
    399 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    400 {
    401 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    402 	unsigned int idx;
    403 	int i;
    404 
    405 	for (i = 0; ; i++) {
    406 		int bit;
    407 
    408 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    409 		bit = ffs32(bitmap[i]);
    410 		if (bit) {
    411 			pool_item_bitmap_t mask;
    412 
    413 			bit--;
    414 			idx = (i * BITMAP_SIZE) + bit;
    415 			mask = 1U << bit;
    416 			KASSERT((bitmap[i] & mask) != 0);
    417 			bitmap[i] &= ~mask;
    418 			break;
    419 		}
    420 	}
    421 	KASSERT(idx < pp->pr_itemsperpage);
    422 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    423 }
    424 
    425 static inline void
    426 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    427 {
    428 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    429 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    430 	int i;
    431 
    432 	for (i = 0; i < n; i++) {
    433 		bitmap[i] = (pool_item_bitmap_t)-1;
    434 	}
    435 }
    436 
    437 /* -------------------------------------------------------------------------- */
    438 
    439 static inline void
    440 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    441     void *obj)
    442 {
    443 	struct pool_item *pi = obj;
    444 
    445 #ifdef POOL_CHECK_MAGIC
    446 	pi->pi_magic = PI_MAGIC;
    447 #endif
    448 
    449 	if (pp->pr_redzone) {
    450 		/*
    451 		 * Mark the pool_item as valid. The rest is already
    452 		 * invalid.
    453 		 */
    454 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    455 	}
    456 
    457 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    458 }
    459 
    460 static inline void *
    461 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    462 {
    463 	struct pool_item *pi;
    464 	void *v;
    465 
    466 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    467 	if (__predict_false(v == NULL)) {
    468 		mutex_exit(&pp->pr_lock);
    469 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    470 	}
    471 	KASSERTMSG((pp->pr_nitems > 0),
    472 	    "%s: [%s] nitems %u inconsistent on itemlist",
    473 	    __func__, pp->pr_wchan, pp->pr_nitems);
    474 #ifdef POOL_CHECK_MAGIC
    475 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    476 	    "%s: [%s] free list modified: "
    477 	    "magic=%x; page %p; item addr %p", __func__,
    478 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    479 #endif
    480 
    481 	/*
    482 	 * Remove from item list.
    483 	 */
    484 	LIST_REMOVE(pi, pi_list);
    485 
    486 	return v;
    487 }
    488 
    489 /* -------------------------------------------------------------------------- */
    490 
    491 static inline void
    492 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    493     void *object)
    494 {
    495 	if (__predict_false((void *)ph->ph_page != page)) {
    496 		panic("%s: [%s] item %p not part of pool", __func__,
    497 		    pp->pr_wchan, object);
    498 	}
    499 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    500 		panic("%s: [%s] item %p below item space", __func__,
    501 		    pp->pr_wchan, object);
    502 	}
    503 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    504 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    505 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    506 	}
    507 }
    508 
    509 static inline void
    510 pc_phinpage_check(pool_cache_t pc, void *object)
    511 {
    512 	struct pool_item_header *ph;
    513 	struct pool *pp;
    514 	void *page;
    515 
    516 	pp = &pc->pc_pool;
    517 	page = POOL_OBJ_TO_PAGE(pp, object);
    518 	ph = (struct pool_item_header *)page;
    519 
    520 	pr_phinpage_check(pp, ph, page, object);
    521 }
    522 
    523 /* -------------------------------------------------------------------------- */
    524 
    525 static inline int
    526 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    527 {
    528 
    529 	/*
    530 	 * We consider pool_item_header with smaller ph_page bigger. This
    531 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    532 	 */
    533 	if (a->ph_page < b->ph_page)
    534 		return 1;
    535 	else if (a->ph_page > b->ph_page)
    536 		return -1;
    537 	else
    538 		return 0;
    539 }
    540 
    541 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    542 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    543 
    544 static inline struct pool_item_header *
    545 pr_find_pagehead_noalign(struct pool *pp, void *v)
    546 {
    547 	struct pool_item_header *ph, tmp;
    548 
    549 	tmp.ph_page = (void *)(uintptr_t)v;
    550 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    551 	if (ph == NULL) {
    552 		ph = SPLAY_ROOT(&pp->pr_phtree);
    553 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    554 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    555 		}
    556 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    557 	}
    558 
    559 	return ph;
    560 }
    561 
    562 /*
    563  * Return the pool page header based on item address.
    564  */
    565 static inline struct pool_item_header *
    566 pr_find_pagehead(struct pool *pp, void *v)
    567 {
    568 	struct pool_item_header *ph, tmp;
    569 
    570 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    571 		ph = pr_find_pagehead_noalign(pp, v);
    572 	} else {
    573 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    574 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    575 			ph = (struct pool_item_header *)page;
    576 			pr_phinpage_check(pp, ph, page, v);
    577 		} else {
    578 			tmp.ph_page = page;
    579 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    580 		}
    581 	}
    582 
    583 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    584 	    ((char *)ph->ph_page <= (char *)v &&
    585 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    586 	return ph;
    587 }
    588 
    589 static void
    590 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    591 {
    592 	struct pool_item_header *ph;
    593 
    594 	while ((ph = LIST_FIRST(pq)) != NULL) {
    595 		LIST_REMOVE(ph, ph_pagelist);
    596 		pool_allocator_free(pp, ph->ph_page);
    597 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    598 			pool_put(pp->pr_phpool, ph);
    599 	}
    600 }
    601 
    602 /*
    603  * Remove a page from the pool.
    604  */
    605 static inline void
    606 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    607      struct pool_pagelist *pq)
    608 {
    609 
    610 	KASSERT(mutex_owned(&pp->pr_lock));
    611 
    612 	/*
    613 	 * If the page was idle, decrement the idle page count.
    614 	 */
    615 	if (ph->ph_nmissing == 0) {
    616 		KASSERT(pp->pr_nidle != 0);
    617 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    618 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    619 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    620 		pp->pr_nidle--;
    621 	}
    622 
    623 	pp->pr_nitems -= pp->pr_itemsperpage;
    624 
    625 	/*
    626 	 * Unlink the page from the pool and queue it for release.
    627 	 */
    628 	LIST_REMOVE(ph, ph_pagelist);
    629 	if (pp->pr_roflags & PR_PHINPAGE) {
    630 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    631 			panic("%s: [%s] ph %p poolid %u != %u",
    632 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    633 			    pp->pr_poolid);
    634 		}
    635 	} else {
    636 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    637 	}
    638 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    639 
    640 	pp->pr_npages--;
    641 	pp->pr_npagefree++;
    642 
    643 	pool_update_curpage(pp);
    644 }
    645 
    646 /*
    647  * Initialize all the pools listed in the "pools" link set.
    648  */
    649 void
    650 pool_subsystem_init(void)
    651 {
    652 	size_t size;
    653 	int idx;
    654 
    655 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    656 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    657 	cv_init(&pool_busy, "poolbusy");
    658 
    659 	/*
    660 	 * Initialize private page header pool and cache magazine pool if we
    661 	 * haven't done so yet.
    662 	 */
    663 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    664 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    665 		int nelem;
    666 		size_t sz;
    667 
    668 		nelem = PHPOOL_FREELIST_NELEM(idx);
    669 		KASSERT(nelem != 0);
    670 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    671 		    "phpool-%d", nelem);
    672 		sz = offsetof(struct pool_item_header,
    673 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    674 		pool_init(&phpool[idx], sz, 0, 0, 0,
    675 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    676 	}
    677 
    678 	size = sizeof(pcg_t) +
    679 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    680 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    681 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    682 
    683 	size = sizeof(pcg_t) +
    684 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    685 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    686 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    687 
    688 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    689 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    690 
    691 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    692 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    693 }
    694 
    695 static inline bool
    696 pool_init_is_phinpage(const struct pool *pp)
    697 {
    698 	size_t pagesize;
    699 
    700 	if (pp->pr_roflags & PR_PHINPAGE) {
    701 		return true;
    702 	}
    703 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    704 		return false;
    705 	}
    706 
    707 	pagesize = pp->pr_alloc->pa_pagesz;
    708 
    709 	/*
    710 	 * Threshold: the item size is below 1/16 of a page size, and below
    711 	 * 8 times the page header size. The latter ensures we go off-page
    712 	 * if the page header would make us waste a rather big item.
    713 	 */
    714 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    715 		return true;
    716 	}
    717 
    718 	/* Put the header into the page if it doesn't waste any items. */
    719 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    720 		return true;
    721 	}
    722 
    723 	return false;
    724 }
    725 
    726 static inline bool
    727 pool_init_is_usebmap(const struct pool *pp)
    728 {
    729 	size_t bmapsize;
    730 
    731 	if (pp->pr_roflags & PR_NOTOUCH) {
    732 		return true;
    733 	}
    734 
    735 	/*
    736 	 * If we're off-page, go with a bitmap.
    737 	 */
    738 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    739 		return true;
    740 	}
    741 
    742 	/*
    743 	 * If we're on-page, and the page header can already contain a bitmap
    744 	 * big enough to cover all the items of the page, go with a bitmap.
    745 	 */
    746 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    747 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    748 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    749 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    750 		return true;
    751 	}
    752 
    753 	return false;
    754 }
    755 
    756 /*
    757  * Initialize the given pool resource structure.
    758  *
    759  * We export this routine to allow other kernel parts to declare
    760  * static pools that must be initialized before kmem(9) is available.
    761  */
    762 void
    763 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    764     const char *wchan, struct pool_allocator *palloc, int ipl)
    765 {
    766 	struct pool *pp1;
    767 	size_t prsize;
    768 	int itemspace, slack;
    769 
    770 	/* XXX ioff will be removed. */
    771 	KASSERT(ioff == 0);
    772 
    773 #ifdef DEBUG
    774 	if (__predict_true(!cold))
    775 		mutex_enter(&pool_head_lock);
    776 	/*
    777 	 * Check that the pool hasn't already been initialised and
    778 	 * added to the list of all pools.
    779 	 */
    780 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    781 		if (pp == pp1)
    782 			panic("%s: [%s] already initialised", __func__,
    783 			    wchan);
    784 	}
    785 	if (__predict_true(!cold))
    786 		mutex_exit(&pool_head_lock);
    787 #endif
    788 
    789 	if (palloc == NULL)
    790 		palloc = &pool_allocator_kmem;
    791 
    792 	if (!cold)
    793 		mutex_enter(&pool_allocator_lock);
    794 	if (palloc->pa_refcnt++ == 0) {
    795 		if (palloc->pa_pagesz == 0)
    796 			palloc->pa_pagesz = PAGE_SIZE;
    797 
    798 		TAILQ_INIT(&palloc->pa_list);
    799 
    800 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    801 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    802 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    803 	}
    804 	if (!cold)
    805 		mutex_exit(&pool_allocator_lock);
    806 
    807 	if (align == 0)
    808 		align = ALIGN(1);
    809 
    810 	prsize = size;
    811 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    812 		prsize = sizeof(struct pool_item);
    813 
    814 	prsize = roundup(prsize, align);
    815 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    816 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    817 	    __func__, wchan, prsize, palloc->pa_pagesz);
    818 
    819 	/*
    820 	 * Initialize the pool structure.
    821 	 */
    822 	LIST_INIT(&pp->pr_emptypages);
    823 	LIST_INIT(&pp->pr_fullpages);
    824 	LIST_INIT(&pp->pr_partpages);
    825 	pp->pr_cache = NULL;
    826 	pp->pr_curpage = NULL;
    827 	pp->pr_npages = 0;
    828 	pp->pr_minitems = 0;
    829 	pp->pr_minpages = 0;
    830 	pp->pr_maxpages = UINT_MAX;
    831 	pp->pr_roflags = flags;
    832 	pp->pr_flags = 0;
    833 	pp->pr_size = prsize;
    834 	pp->pr_reqsize = size;
    835 	pp->pr_align = align;
    836 	pp->pr_wchan = wchan;
    837 	pp->pr_alloc = palloc;
    838 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    839 	pp->pr_nitems = 0;
    840 	pp->pr_nout = 0;
    841 	pp->pr_hardlimit = UINT_MAX;
    842 	pp->pr_hardlimit_warning = NULL;
    843 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    844 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    845 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    846 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    847 	pp->pr_drain_hook = NULL;
    848 	pp->pr_drain_hook_arg = NULL;
    849 	pp->pr_freecheck = NULL;
    850 	pp->pr_redzone = false;
    851 	pool_redzone_init(pp, size);
    852 	pool_quarantine_init(pp);
    853 
    854 	/*
    855 	 * Decide whether to put the page header off-page to avoid wasting too
    856 	 * large a part of the page or too big an item. Off-page page headers
    857 	 * go on a hash table, so we can match a returned item with its header
    858 	 * based on the page address.
    859 	 */
    860 	if (pool_init_is_phinpage(pp)) {
    861 		/* Use the beginning of the page for the page header */
    862 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    863 		pp->pr_itemoffset = roundup(PHSIZE, align);
    864 		pp->pr_roflags |= PR_PHINPAGE;
    865 	} else {
    866 		/* The page header will be taken from our page header pool */
    867 		itemspace = palloc->pa_pagesz;
    868 		pp->pr_itemoffset = 0;
    869 		SPLAY_INIT(&pp->pr_phtree);
    870 	}
    871 
    872 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    873 	KASSERT(pp->pr_itemsperpage != 0);
    874 
    875 	/*
    876 	 * Decide whether to use a bitmap or a linked list to manage freed
    877 	 * items.
    878 	 */
    879 	if (pool_init_is_usebmap(pp)) {
    880 		pp->pr_roflags |= PR_USEBMAP;
    881 	}
    882 
    883 	/*
    884 	 * If we're off-page, then we're using a bitmap; choose the appropriate
    885 	 * pool to allocate page headers, whose size varies depending on the
    886 	 * bitmap. If we're on-page, nothing to do.
    887 	 */
    888 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    889 		int idx;
    890 
    891 		KASSERT(pp->pr_roflags & PR_USEBMAP);
    892 
    893 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    894 		    idx++) {
    895 			/* nothing */
    896 		}
    897 		if (idx >= PHPOOL_MAX) {
    898 			/*
    899 			 * if you see this panic, consider to tweak
    900 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    901 			 */
    902 			panic("%s: [%s] too large itemsperpage(%d) for "
    903 			    "PR_USEBMAP", __func__,
    904 			    pp->pr_wchan, pp->pr_itemsperpage);
    905 		}
    906 		pp->pr_phpool = &phpool[idx];
    907 	} else {
    908 		pp->pr_phpool = NULL;
    909 	}
    910 
    911 	/*
    912 	 * Use the slack between the chunks and the page header
    913 	 * for "cache coloring".
    914 	 */
    915 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    916 	pp->pr_maxcolor = rounddown(slack, align);
    917 	pp->pr_curcolor = 0;
    918 
    919 	pp->pr_nget = 0;
    920 	pp->pr_nfail = 0;
    921 	pp->pr_nput = 0;
    922 	pp->pr_npagealloc = 0;
    923 	pp->pr_npagefree = 0;
    924 	pp->pr_hiwat = 0;
    925 	pp->pr_nidle = 0;
    926 	pp->pr_refcnt = 0;
    927 
    928 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    929 	cv_init(&pp->pr_cv, wchan);
    930 	pp->pr_ipl = ipl;
    931 
    932 	/* Insert into the list of all pools. */
    933 	if (!cold)
    934 		mutex_enter(&pool_head_lock);
    935 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    936 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    937 			break;
    938 	}
    939 	if (pp1 == NULL)
    940 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    941 	else
    942 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    943 	if (!cold)
    944 		mutex_exit(&pool_head_lock);
    945 
    946 	/* Insert this into the list of pools using this allocator. */
    947 	if (!cold)
    948 		mutex_enter(&palloc->pa_lock);
    949 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    950 	if (!cold)
    951 		mutex_exit(&palloc->pa_lock);
    952 }
    953 
    954 /*
    955  * De-commision a pool resource.
    956  */
    957 void
    958 pool_destroy(struct pool *pp)
    959 {
    960 	struct pool_pagelist pq;
    961 	struct pool_item_header *ph;
    962 
    963 	pool_quarantine_flush(pp);
    964 
    965 	/* Remove from global pool list */
    966 	mutex_enter(&pool_head_lock);
    967 	while (pp->pr_refcnt != 0)
    968 		cv_wait(&pool_busy, &pool_head_lock);
    969 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    970 	if (drainpp == pp)
    971 		drainpp = NULL;
    972 	mutex_exit(&pool_head_lock);
    973 
    974 	/* Remove this pool from its allocator's list of pools. */
    975 	mutex_enter(&pp->pr_alloc->pa_lock);
    976 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    977 	mutex_exit(&pp->pr_alloc->pa_lock);
    978 
    979 	mutex_enter(&pool_allocator_lock);
    980 	if (--pp->pr_alloc->pa_refcnt == 0)
    981 		mutex_destroy(&pp->pr_alloc->pa_lock);
    982 	mutex_exit(&pool_allocator_lock);
    983 
    984 	mutex_enter(&pp->pr_lock);
    985 
    986 	KASSERT(pp->pr_cache == NULL);
    987 	KASSERTMSG((pp->pr_nout == 0),
    988 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
    989 	    pp->pr_nout);
    990 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    991 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    992 
    993 	/* Remove all pages */
    994 	LIST_INIT(&pq);
    995 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    996 		pr_rmpage(pp, ph, &pq);
    997 
    998 	mutex_exit(&pp->pr_lock);
    999 
   1000 	pr_pagelist_free(pp, &pq);
   1001 	cv_destroy(&pp->pr_cv);
   1002 	mutex_destroy(&pp->pr_lock);
   1003 }
   1004 
   1005 void
   1006 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
   1007 {
   1008 
   1009 	/* XXX no locking -- must be used just after pool_init() */
   1010 	KASSERTMSG((pp->pr_drain_hook == NULL),
   1011 	    "%s: [%s] already set", __func__, pp->pr_wchan);
   1012 	pp->pr_drain_hook = fn;
   1013 	pp->pr_drain_hook_arg = arg;
   1014 }
   1015 
   1016 static struct pool_item_header *
   1017 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
   1018 {
   1019 	struct pool_item_header *ph;
   1020 
   1021 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
   1022 		ph = storage;
   1023 	else
   1024 		ph = pool_get(pp->pr_phpool, flags);
   1025 
   1026 	return ph;
   1027 }
   1028 
   1029 /*
   1030  * Grab an item from the pool.
   1031  */
   1032 void *
   1033 pool_get(struct pool *pp, int flags)
   1034 {
   1035 	struct pool_item_header *ph;
   1036 	void *v;
   1037 
   1038 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   1039 	KASSERTMSG((pp->pr_itemsperpage != 0),
   1040 	    "%s: [%s] pr_itemsperpage is zero, "
   1041 	    "pool not initialized?", __func__, pp->pr_wchan);
   1042 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
   1043 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
   1044 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   1045 	    __func__, pp->pr_wchan);
   1046 	if (flags & PR_WAITOK) {
   1047 		ASSERT_SLEEPABLE();
   1048 	}
   1049 
   1050 	mutex_enter(&pp->pr_lock);
   1051  startover:
   1052 	/*
   1053 	 * Check to see if we've reached the hard limit.  If we have,
   1054 	 * and we can wait, then wait until an item has been returned to
   1055 	 * the pool.
   1056 	 */
   1057 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
   1058 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
   1059 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1060 		if (pp->pr_drain_hook != NULL) {
   1061 			/*
   1062 			 * Since the drain hook is going to free things
   1063 			 * back to the pool, unlock, call the hook, re-lock,
   1064 			 * and check the hardlimit condition again.
   1065 			 */
   1066 			mutex_exit(&pp->pr_lock);
   1067 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1068 			mutex_enter(&pp->pr_lock);
   1069 			if (pp->pr_nout < pp->pr_hardlimit)
   1070 				goto startover;
   1071 		}
   1072 
   1073 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1074 			/*
   1075 			 * XXX: A warning isn't logged in this case.  Should
   1076 			 * it be?
   1077 			 */
   1078 			pp->pr_flags |= PR_WANTED;
   1079 			do {
   1080 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1081 			} while (pp->pr_flags & PR_WANTED);
   1082 			goto startover;
   1083 		}
   1084 
   1085 		/*
   1086 		 * Log a message that the hard limit has been hit.
   1087 		 */
   1088 		if (pp->pr_hardlimit_warning != NULL &&
   1089 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1090 			      &pp->pr_hardlimit_ratecap))
   1091 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1092 
   1093 		pp->pr_nfail++;
   1094 
   1095 		mutex_exit(&pp->pr_lock);
   1096 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1097 		return NULL;
   1098 	}
   1099 
   1100 	/*
   1101 	 * The convention we use is that if `curpage' is not NULL, then
   1102 	 * it points at a non-empty bucket. In particular, `curpage'
   1103 	 * never points at a page header which has PR_PHINPAGE set and
   1104 	 * has no items in its bucket.
   1105 	 */
   1106 	if ((ph = pp->pr_curpage) == NULL) {
   1107 		int error;
   1108 
   1109 		KASSERTMSG((pp->pr_nitems == 0),
   1110 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1111 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1112 
   1113 		/*
   1114 		 * Call the back-end page allocator for more memory.
   1115 		 * Release the pool lock, as the back-end page allocator
   1116 		 * may block.
   1117 		 */
   1118 		error = pool_grow(pp, flags);
   1119 		if (error != 0) {
   1120 			/*
   1121 			 * pool_grow aborts when another thread
   1122 			 * is allocating a new page. Retry if it
   1123 			 * waited for it.
   1124 			 */
   1125 			if (error == ERESTART)
   1126 				goto startover;
   1127 
   1128 			/*
   1129 			 * We were unable to allocate a page or item
   1130 			 * header, but we released the lock during
   1131 			 * allocation, so perhaps items were freed
   1132 			 * back to the pool.  Check for this case.
   1133 			 */
   1134 			if (pp->pr_curpage != NULL)
   1135 				goto startover;
   1136 
   1137 			pp->pr_nfail++;
   1138 			mutex_exit(&pp->pr_lock);
   1139 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1140 			return NULL;
   1141 		}
   1142 
   1143 		/* Start the allocation process over. */
   1144 		goto startover;
   1145 	}
   1146 	if (pp->pr_roflags & PR_USEBMAP) {
   1147 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1148 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1149 		v = pr_item_bitmap_get(pp, ph);
   1150 	} else {
   1151 		v = pr_item_linkedlist_get(pp, ph);
   1152 	}
   1153 	pp->pr_nitems--;
   1154 	pp->pr_nout++;
   1155 	if (ph->ph_nmissing == 0) {
   1156 		KASSERT(pp->pr_nidle > 0);
   1157 		pp->pr_nidle--;
   1158 
   1159 		/*
   1160 		 * This page was previously empty.  Move it to the list of
   1161 		 * partially-full pages.  This page is already curpage.
   1162 		 */
   1163 		LIST_REMOVE(ph, ph_pagelist);
   1164 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1165 	}
   1166 	ph->ph_nmissing++;
   1167 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1168 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1169 			LIST_EMPTY(&ph->ph_itemlist)),
   1170 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1171 			pp->pr_wchan, ph->ph_nmissing);
   1172 		/*
   1173 		 * This page is now full.  Move it to the full list
   1174 		 * and select a new current page.
   1175 		 */
   1176 		LIST_REMOVE(ph, ph_pagelist);
   1177 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1178 		pool_update_curpage(pp);
   1179 	}
   1180 
   1181 	pp->pr_nget++;
   1182 
   1183 	/*
   1184 	 * If we have a low water mark and we are now below that low
   1185 	 * water mark, add more items to the pool.
   1186 	 */
   1187 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1188 		/*
   1189 		 * XXX: Should we log a warning?  Should we set up a timeout
   1190 		 * to try again in a second or so?  The latter could break
   1191 		 * a caller's assumptions about interrupt protection, etc.
   1192 		 */
   1193 	}
   1194 
   1195 	mutex_exit(&pp->pr_lock);
   1196 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1197 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1198 	pool_redzone_fill(pp, v);
   1199 	pool_get_kmsan(pp, v);
   1200 	if (flags & PR_ZERO)
   1201 		memset(v, 0, pp->pr_reqsize);
   1202 	return v;
   1203 }
   1204 
   1205 /*
   1206  * Internal version of pool_put().  Pool is already locked/entered.
   1207  */
   1208 static void
   1209 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1210 {
   1211 	struct pool_item_header *ph;
   1212 
   1213 	KASSERT(mutex_owned(&pp->pr_lock));
   1214 	pool_redzone_check(pp, v);
   1215 	pool_put_kmsan(pp, v);
   1216 	FREECHECK_IN(&pp->pr_freecheck, v);
   1217 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1218 
   1219 	KASSERTMSG((pp->pr_nout > 0),
   1220 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1221 
   1222 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1223 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1224 	}
   1225 
   1226 	/*
   1227 	 * Return to item list.
   1228 	 */
   1229 	if (pp->pr_roflags & PR_USEBMAP) {
   1230 		pr_item_bitmap_put(pp, ph, v);
   1231 	} else {
   1232 		pr_item_linkedlist_put(pp, ph, v);
   1233 	}
   1234 	KDASSERT(ph->ph_nmissing != 0);
   1235 	ph->ph_nmissing--;
   1236 	pp->pr_nput++;
   1237 	pp->pr_nitems++;
   1238 	pp->pr_nout--;
   1239 
   1240 	/* Cancel "pool empty" condition if it exists */
   1241 	if (pp->pr_curpage == NULL)
   1242 		pp->pr_curpage = ph;
   1243 
   1244 	if (pp->pr_flags & PR_WANTED) {
   1245 		pp->pr_flags &= ~PR_WANTED;
   1246 		cv_broadcast(&pp->pr_cv);
   1247 	}
   1248 
   1249 	/*
   1250 	 * If this page is now empty, do one of two things:
   1251 	 *
   1252 	 *	(1) If we have more pages than the page high water mark,
   1253 	 *	    free the page back to the system.  ONLY CONSIDER
   1254 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1255 	 *	    CLAIM.
   1256 	 *
   1257 	 *	(2) Otherwise, move the page to the empty page list.
   1258 	 *
   1259 	 * Either way, select a new current page (so we use a partially-full
   1260 	 * page if one is available).
   1261 	 */
   1262 	if (ph->ph_nmissing == 0) {
   1263 		pp->pr_nidle++;
   1264 		if (pp->pr_npages > pp->pr_minpages &&
   1265 		    pp->pr_npages > pp->pr_maxpages) {
   1266 			pr_rmpage(pp, ph, pq);
   1267 		} else {
   1268 			LIST_REMOVE(ph, ph_pagelist);
   1269 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1270 
   1271 			/*
   1272 			 * Update the timestamp on the page.  A page must
   1273 			 * be idle for some period of time before it can
   1274 			 * be reclaimed by the pagedaemon.  This minimizes
   1275 			 * ping-pong'ing for memory.
   1276 			 *
   1277 			 * note for 64-bit time_t: truncating to 32-bit is not
   1278 			 * a problem for our usage.
   1279 			 */
   1280 			ph->ph_time = time_uptime;
   1281 		}
   1282 		pool_update_curpage(pp);
   1283 	}
   1284 
   1285 	/*
   1286 	 * If the page was previously completely full, move it to the
   1287 	 * partially-full list and make it the current page.  The next
   1288 	 * allocation will get the item from this page, instead of
   1289 	 * further fragmenting the pool.
   1290 	 */
   1291 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1292 		LIST_REMOVE(ph, ph_pagelist);
   1293 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1294 		pp->pr_curpage = ph;
   1295 	}
   1296 }
   1297 
   1298 void
   1299 pool_put(struct pool *pp, void *v)
   1300 {
   1301 	struct pool_pagelist pq;
   1302 
   1303 	LIST_INIT(&pq);
   1304 
   1305 	mutex_enter(&pp->pr_lock);
   1306 	if (!pool_put_quarantine(pp, v, &pq)) {
   1307 		pool_do_put(pp, v, &pq);
   1308 	}
   1309 	mutex_exit(&pp->pr_lock);
   1310 
   1311 	pr_pagelist_free(pp, &pq);
   1312 }
   1313 
   1314 /*
   1315  * pool_grow: grow a pool by a page.
   1316  *
   1317  * => called with pool locked.
   1318  * => unlock and relock the pool.
   1319  * => return with pool locked.
   1320  */
   1321 
   1322 static int
   1323 pool_grow(struct pool *pp, int flags)
   1324 {
   1325 	struct pool_item_header *ph;
   1326 	char *storage;
   1327 
   1328 	/*
   1329 	 * If there's a pool_grow in progress, wait for it to complete
   1330 	 * and try again from the top.
   1331 	 */
   1332 	if (pp->pr_flags & PR_GROWING) {
   1333 		if (flags & PR_WAITOK) {
   1334 			do {
   1335 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1336 			} while (pp->pr_flags & PR_GROWING);
   1337 			return ERESTART;
   1338 		} else {
   1339 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1340 				/*
   1341 				 * This needs an unlock/relock dance so
   1342 				 * that the other caller has a chance to
   1343 				 * run and actually do the thing.  Note
   1344 				 * that this is effectively a busy-wait.
   1345 				 */
   1346 				mutex_exit(&pp->pr_lock);
   1347 				mutex_enter(&pp->pr_lock);
   1348 				return ERESTART;
   1349 			}
   1350 			return EWOULDBLOCK;
   1351 		}
   1352 	}
   1353 	pp->pr_flags |= PR_GROWING;
   1354 	if (flags & PR_WAITOK)
   1355 		mutex_exit(&pp->pr_lock);
   1356 	else
   1357 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1358 
   1359 	storage = pool_allocator_alloc(pp, flags);
   1360 	if (__predict_false(storage == NULL))
   1361 		goto out;
   1362 
   1363 	ph = pool_alloc_item_header(pp, storage, flags);
   1364 	if (__predict_false(ph == NULL)) {
   1365 		pool_allocator_free(pp, storage);
   1366 		goto out;
   1367 	}
   1368 
   1369 	if (flags & PR_WAITOK)
   1370 		mutex_enter(&pp->pr_lock);
   1371 	pool_prime_page(pp, storage, ph);
   1372 	pp->pr_npagealloc++;
   1373 	KASSERT(pp->pr_flags & PR_GROWING);
   1374 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1375 	/*
   1376 	 * If anyone was waiting for pool_grow, notify them that we
   1377 	 * may have just done it.
   1378 	 */
   1379 	cv_broadcast(&pp->pr_cv);
   1380 	return 0;
   1381 out:
   1382 	if (flags & PR_WAITOK)
   1383 		mutex_enter(&pp->pr_lock);
   1384 	KASSERT(pp->pr_flags & PR_GROWING);
   1385 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1386 	return ENOMEM;
   1387 }
   1388 
   1389 /*
   1390  * Add N items to the pool.
   1391  */
   1392 int
   1393 pool_prime(struct pool *pp, int n)
   1394 {
   1395 	int newpages;
   1396 	int error = 0;
   1397 
   1398 	mutex_enter(&pp->pr_lock);
   1399 
   1400 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1401 
   1402 	while (newpages > 0) {
   1403 		error = pool_grow(pp, PR_NOWAIT);
   1404 		if (error) {
   1405 			if (error == ERESTART)
   1406 				continue;
   1407 			break;
   1408 		}
   1409 		pp->pr_minpages++;
   1410 		newpages--;
   1411 	}
   1412 
   1413 	if (pp->pr_minpages >= pp->pr_maxpages)
   1414 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1415 
   1416 	mutex_exit(&pp->pr_lock);
   1417 	return error;
   1418 }
   1419 
   1420 /*
   1421  * Add a page worth of items to the pool.
   1422  *
   1423  * Note, we must be called with the pool descriptor LOCKED.
   1424  */
   1425 static void
   1426 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1427 {
   1428 	const unsigned int align = pp->pr_align;
   1429 	struct pool_item *pi;
   1430 	void *cp = storage;
   1431 	int n;
   1432 
   1433 	KASSERT(mutex_owned(&pp->pr_lock));
   1434 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1435 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1436 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1437 
   1438 	/*
   1439 	 * Insert page header.
   1440 	 */
   1441 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1442 	LIST_INIT(&ph->ph_itemlist);
   1443 	ph->ph_page = storage;
   1444 	ph->ph_nmissing = 0;
   1445 	ph->ph_time = time_uptime;
   1446 	if (pp->pr_roflags & PR_PHINPAGE)
   1447 		ph->ph_poolid = pp->pr_poolid;
   1448 	else
   1449 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1450 
   1451 	pp->pr_nidle++;
   1452 
   1453 	/*
   1454 	 * The item space starts after the on-page header, if any.
   1455 	 */
   1456 	ph->ph_off = pp->pr_itemoffset;
   1457 
   1458 	/*
   1459 	 * Color this page.
   1460 	 */
   1461 	ph->ph_off += pp->pr_curcolor;
   1462 	cp = (char *)cp + ph->ph_off;
   1463 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1464 		pp->pr_curcolor = 0;
   1465 
   1466 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1467 
   1468 	/*
   1469 	 * Insert remaining chunks on the bucket list.
   1470 	 */
   1471 	n = pp->pr_itemsperpage;
   1472 	pp->pr_nitems += n;
   1473 
   1474 	if (pp->pr_roflags & PR_USEBMAP) {
   1475 		pr_item_bitmap_init(pp, ph);
   1476 	} else {
   1477 		while (n--) {
   1478 			pi = (struct pool_item *)cp;
   1479 
   1480 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1481 
   1482 			/* Insert on page list */
   1483 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1484 #ifdef POOL_CHECK_MAGIC
   1485 			pi->pi_magic = PI_MAGIC;
   1486 #endif
   1487 			cp = (char *)cp + pp->pr_size;
   1488 
   1489 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1490 		}
   1491 	}
   1492 
   1493 	/*
   1494 	 * If the pool was depleted, point at the new page.
   1495 	 */
   1496 	if (pp->pr_curpage == NULL)
   1497 		pp->pr_curpage = ph;
   1498 
   1499 	if (++pp->pr_npages > pp->pr_hiwat)
   1500 		pp->pr_hiwat = pp->pr_npages;
   1501 }
   1502 
   1503 /*
   1504  * Used by pool_get() when nitems drops below the low water mark.  This
   1505  * is used to catch up pr_nitems with the low water mark.
   1506  *
   1507  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1508  *
   1509  * Note 2, we must be called with the pool already locked, and we return
   1510  * with it locked.
   1511  */
   1512 static int
   1513 pool_catchup(struct pool *pp)
   1514 {
   1515 	int error = 0;
   1516 
   1517 	while (POOL_NEEDS_CATCHUP(pp)) {
   1518 		error = pool_grow(pp, PR_NOWAIT);
   1519 		if (error) {
   1520 			if (error == ERESTART)
   1521 				continue;
   1522 			break;
   1523 		}
   1524 	}
   1525 	return error;
   1526 }
   1527 
   1528 static void
   1529 pool_update_curpage(struct pool *pp)
   1530 {
   1531 
   1532 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1533 	if (pp->pr_curpage == NULL) {
   1534 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1535 	}
   1536 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1537 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1538 }
   1539 
   1540 void
   1541 pool_setlowat(struct pool *pp, int n)
   1542 {
   1543 
   1544 	mutex_enter(&pp->pr_lock);
   1545 
   1546 	pp->pr_minitems = n;
   1547 	pp->pr_minpages = (n == 0)
   1548 		? 0
   1549 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1550 
   1551 	/* Make sure we're caught up with the newly-set low water mark. */
   1552 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1553 		/*
   1554 		 * XXX: Should we log a warning?  Should we set up a timeout
   1555 		 * to try again in a second or so?  The latter could break
   1556 		 * a caller's assumptions about interrupt protection, etc.
   1557 		 */
   1558 	}
   1559 
   1560 	mutex_exit(&pp->pr_lock);
   1561 }
   1562 
   1563 void
   1564 pool_sethiwat(struct pool *pp, int n)
   1565 {
   1566 
   1567 	mutex_enter(&pp->pr_lock);
   1568 
   1569 	pp->pr_maxpages = (n == 0)
   1570 		? 0
   1571 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1572 
   1573 	mutex_exit(&pp->pr_lock);
   1574 }
   1575 
   1576 void
   1577 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1578 {
   1579 
   1580 	mutex_enter(&pp->pr_lock);
   1581 
   1582 	pp->pr_hardlimit = n;
   1583 	pp->pr_hardlimit_warning = warnmess;
   1584 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1585 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1586 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1587 
   1588 	/*
   1589 	 * In-line version of pool_sethiwat(), because we don't want to
   1590 	 * release the lock.
   1591 	 */
   1592 	pp->pr_maxpages = (n == 0)
   1593 		? 0
   1594 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1595 
   1596 	mutex_exit(&pp->pr_lock);
   1597 }
   1598 
   1599 /*
   1600  * Release all complete pages that have not been used recently.
   1601  *
   1602  * Must not be called from interrupt context.
   1603  */
   1604 int
   1605 pool_reclaim(struct pool *pp)
   1606 {
   1607 	struct pool_item_header *ph, *phnext;
   1608 	struct pool_pagelist pq;
   1609 	uint32_t curtime;
   1610 	bool klock;
   1611 	int rv;
   1612 
   1613 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1614 
   1615 	if (pp->pr_drain_hook != NULL) {
   1616 		/*
   1617 		 * The drain hook must be called with the pool unlocked.
   1618 		 */
   1619 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1620 	}
   1621 
   1622 	/*
   1623 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1624 	 * to block.
   1625 	 */
   1626 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1627 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1628 		KERNEL_LOCK(1, NULL);
   1629 		klock = true;
   1630 	} else
   1631 		klock = false;
   1632 
   1633 	/* Reclaim items from the pool's cache (if any). */
   1634 	if (pp->pr_cache != NULL)
   1635 		pool_cache_invalidate(pp->pr_cache);
   1636 
   1637 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1638 		if (klock) {
   1639 			KERNEL_UNLOCK_ONE(NULL);
   1640 		}
   1641 		return 0;
   1642 	}
   1643 
   1644 	LIST_INIT(&pq);
   1645 
   1646 	curtime = time_uptime;
   1647 
   1648 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1649 		phnext = LIST_NEXT(ph, ph_pagelist);
   1650 
   1651 		/* Check our minimum page claim */
   1652 		if (pp->pr_npages <= pp->pr_minpages)
   1653 			break;
   1654 
   1655 		KASSERT(ph->ph_nmissing == 0);
   1656 		if (curtime - ph->ph_time < pool_inactive_time)
   1657 			continue;
   1658 
   1659 		/*
   1660 		 * If freeing this page would put us below
   1661 		 * the low water mark, stop now.
   1662 		 */
   1663 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1664 		    pp->pr_minitems)
   1665 			break;
   1666 
   1667 		pr_rmpage(pp, ph, &pq);
   1668 	}
   1669 
   1670 	mutex_exit(&pp->pr_lock);
   1671 
   1672 	if (LIST_EMPTY(&pq))
   1673 		rv = 0;
   1674 	else {
   1675 		pr_pagelist_free(pp, &pq);
   1676 		rv = 1;
   1677 	}
   1678 
   1679 	if (klock) {
   1680 		KERNEL_UNLOCK_ONE(NULL);
   1681 	}
   1682 
   1683 	return rv;
   1684 }
   1685 
   1686 /*
   1687  * Drain pools, one at a time. The drained pool is returned within ppp.
   1688  *
   1689  * Note, must never be called from interrupt context.
   1690  */
   1691 bool
   1692 pool_drain(struct pool **ppp)
   1693 {
   1694 	bool reclaimed;
   1695 	struct pool *pp;
   1696 
   1697 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1698 
   1699 	pp = NULL;
   1700 
   1701 	/* Find next pool to drain, and add a reference. */
   1702 	mutex_enter(&pool_head_lock);
   1703 	do {
   1704 		if (drainpp == NULL) {
   1705 			drainpp = TAILQ_FIRST(&pool_head);
   1706 		}
   1707 		if (drainpp != NULL) {
   1708 			pp = drainpp;
   1709 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1710 		}
   1711 		/*
   1712 		 * Skip completely idle pools.  We depend on at least
   1713 		 * one pool in the system being active.
   1714 		 */
   1715 	} while (pp == NULL || pp->pr_npages == 0);
   1716 	pp->pr_refcnt++;
   1717 	mutex_exit(&pool_head_lock);
   1718 
   1719 	/* Drain the cache (if any) and pool.. */
   1720 	reclaimed = pool_reclaim(pp);
   1721 
   1722 	/* Finally, unlock the pool. */
   1723 	mutex_enter(&pool_head_lock);
   1724 	pp->pr_refcnt--;
   1725 	cv_broadcast(&pool_busy);
   1726 	mutex_exit(&pool_head_lock);
   1727 
   1728 	if (ppp != NULL)
   1729 		*ppp = pp;
   1730 
   1731 	return reclaimed;
   1732 }
   1733 
   1734 /*
   1735  * Calculate the total number of pages consumed by pools.
   1736  */
   1737 int
   1738 pool_totalpages(void)
   1739 {
   1740 
   1741 	mutex_enter(&pool_head_lock);
   1742 	int pages = pool_totalpages_locked();
   1743 	mutex_exit(&pool_head_lock);
   1744 
   1745 	return pages;
   1746 }
   1747 
   1748 int
   1749 pool_totalpages_locked(void)
   1750 {
   1751 	struct pool *pp;
   1752 	uint64_t total = 0;
   1753 
   1754 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1755 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1756 
   1757 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1758 			bytes -= (pp->pr_nout * pp->pr_size);
   1759 		total += bytes;
   1760 	}
   1761 
   1762 	return atop(total);
   1763 }
   1764 
   1765 /*
   1766  * Diagnostic helpers.
   1767  */
   1768 
   1769 void
   1770 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1771 {
   1772 	struct pool *pp;
   1773 
   1774 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1775 		pool_printit(pp, modif, pr);
   1776 	}
   1777 }
   1778 
   1779 void
   1780 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1781 {
   1782 
   1783 	if (pp == NULL) {
   1784 		(*pr)("Must specify a pool to print.\n");
   1785 		return;
   1786 	}
   1787 
   1788 	pool_print1(pp, modif, pr);
   1789 }
   1790 
   1791 static void
   1792 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1793     void (*pr)(const char *, ...))
   1794 {
   1795 	struct pool_item_header *ph;
   1796 
   1797 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1798 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1799 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1800 #ifdef POOL_CHECK_MAGIC
   1801 		struct pool_item *pi;
   1802 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1803 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1804 				if (pi->pi_magic != PI_MAGIC) {
   1805 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1806 					    pi, pi->pi_magic);
   1807 				}
   1808 			}
   1809 		}
   1810 #endif
   1811 	}
   1812 }
   1813 
   1814 static void
   1815 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1816 {
   1817 	struct pool_item_header *ph;
   1818 	pool_cache_t pc;
   1819 	pcg_t *pcg;
   1820 	pool_cache_cpu_t *cc;
   1821 	uint64_t cpuhit, cpumiss;
   1822 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1823 	char c;
   1824 
   1825 	while ((c = *modif++) != '\0') {
   1826 		if (c == 'l')
   1827 			print_log = 1;
   1828 		if (c == 'p')
   1829 			print_pagelist = 1;
   1830 		if (c == 'c')
   1831 			print_cache = 1;
   1832 	}
   1833 
   1834 	if ((pc = pp->pr_cache) != NULL) {
   1835 		(*pr)("POOL CACHE");
   1836 	} else {
   1837 		(*pr)("POOL");
   1838 	}
   1839 
   1840 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1841 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1842 	    pp->pr_roflags);
   1843 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1844 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1845 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1846 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1847 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1848 
   1849 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1850 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1851 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1852 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1853 
   1854 	if (print_pagelist == 0)
   1855 		goto skip_pagelist;
   1856 
   1857 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1858 		(*pr)("\n\tempty page list:\n");
   1859 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1860 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1861 		(*pr)("\n\tfull page list:\n");
   1862 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1863 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1864 		(*pr)("\n\tpartial-page list:\n");
   1865 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1866 
   1867 	if (pp->pr_curpage == NULL)
   1868 		(*pr)("\tno current page\n");
   1869 	else
   1870 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1871 
   1872  skip_pagelist:
   1873 	if (print_log == 0)
   1874 		goto skip_log;
   1875 
   1876 	(*pr)("\n");
   1877 
   1878  skip_log:
   1879 
   1880 #define PR_GROUPLIST(pcg)						\
   1881 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1882 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1883 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1884 		    POOL_PADDR_INVALID) {				\
   1885 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1886 			    pcg->pcg_objects[i].pcgo_va,		\
   1887 			    (unsigned long long)			\
   1888 			    pcg->pcg_objects[i].pcgo_pa);		\
   1889 		} else {						\
   1890 			(*pr)("\t\t\t%p\n",				\
   1891 			    pcg->pcg_objects[i].pcgo_va);		\
   1892 		}							\
   1893 	}
   1894 
   1895 	if (pc != NULL) {
   1896 		cpuhit = 0;
   1897 		cpumiss = 0;
   1898 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1899 			if ((cc = pc->pc_cpus[i]) == NULL)
   1900 				continue;
   1901 			cpuhit += cc->cc_hits;
   1902 			cpumiss += cc->cc_misses;
   1903 		}
   1904 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1905 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1906 		    pc->pc_hits, pc->pc_misses);
   1907 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1908 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1909 		    pc->pc_contended);
   1910 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1911 		    pc->pc_nempty, pc->pc_nfull);
   1912 		if (print_cache) {
   1913 			(*pr)("\tfull cache groups:\n");
   1914 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1915 			    pcg = pcg->pcg_next) {
   1916 				PR_GROUPLIST(pcg);
   1917 			}
   1918 			(*pr)("\tempty cache groups:\n");
   1919 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1920 			    pcg = pcg->pcg_next) {
   1921 				PR_GROUPLIST(pcg);
   1922 			}
   1923 		}
   1924 	}
   1925 #undef PR_GROUPLIST
   1926 }
   1927 
   1928 static int
   1929 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1930 {
   1931 	struct pool_item *pi;
   1932 	void *page;
   1933 	int n;
   1934 
   1935 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1936 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1937 		if (page != ph->ph_page &&
   1938 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1939 			if (label != NULL)
   1940 				printf("%s: ", label);
   1941 			printf("pool(%p:%s): page inconsistency: page %p;"
   1942 			       " at page head addr %p (p %p)\n", pp,
   1943 				pp->pr_wchan, ph->ph_page,
   1944 				ph, page);
   1945 			return 1;
   1946 		}
   1947 	}
   1948 
   1949 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1950 		return 0;
   1951 
   1952 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1953 	     pi != NULL;
   1954 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1955 
   1956 #ifdef POOL_CHECK_MAGIC
   1957 		if (pi->pi_magic != PI_MAGIC) {
   1958 			if (label != NULL)
   1959 				printf("%s: ", label);
   1960 			printf("pool(%s): free list modified: magic=%x;"
   1961 			       " page %p; item ordinal %d; addr %p\n",
   1962 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1963 				n, pi);
   1964 			panic("pool");
   1965 		}
   1966 #endif
   1967 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1968 			continue;
   1969 		}
   1970 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1971 		if (page == ph->ph_page)
   1972 			continue;
   1973 
   1974 		if (label != NULL)
   1975 			printf("%s: ", label);
   1976 		printf("pool(%p:%s): page inconsistency: page %p;"
   1977 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1978 			pp->pr_wchan, ph->ph_page,
   1979 			n, pi, page);
   1980 		return 1;
   1981 	}
   1982 	return 0;
   1983 }
   1984 
   1985 
   1986 int
   1987 pool_chk(struct pool *pp, const char *label)
   1988 {
   1989 	struct pool_item_header *ph;
   1990 	int r = 0;
   1991 
   1992 	mutex_enter(&pp->pr_lock);
   1993 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1994 		r = pool_chk_page(pp, label, ph);
   1995 		if (r) {
   1996 			goto out;
   1997 		}
   1998 	}
   1999 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2000 		r = pool_chk_page(pp, label, ph);
   2001 		if (r) {
   2002 			goto out;
   2003 		}
   2004 	}
   2005 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2006 		r = pool_chk_page(pp, label, ph);
   2007 		if (r) {
   2008 			goto out;
   2009 		}
   2010 	}
   2011 
   2012 out:
   2013 	mutex_exit(&pp->pr_lock);
   2014 	return r;
   2015 }
   2016 
   2017 /*
   2018  * pool_cache_init:
   2019  *
   2020  *	Initialize a pool cache.
   2021  */
   2022 pool_cache_t
   2023 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2024     const char *wchan, struct pool_allocator *palloc, int ipl,
   2025     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2026 {
   2027 	pool_cache_t pc;
   2028 
   2029 	pc = pool_get(&cache_pool, PR_WAITOK);
   2030 	if (pc == NULL)
   2031 		return NULL;
   2032 
   2033 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2034 	   palloc, ipl, ctor, dtor, arg);
   2035 
   2036 	return pc;
   2037 }
   2038 
   2039 /*
   2040  * pool_cache_bootstrap:
   2041  *
   2042  *	Kernel-private version of pool_cache_init().  The caller
   2043  *	provides initial storage.
   2044  */
   2045 void
   2046 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2047     u_int align_offset, u_int flags, const char *wchan,
   2048     struct pool_allocator *palloc, int ipl,
   2049     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2050     void *arg)
   2051 {
   2052 	CPU_INFO_ITERATOR cii;
   2053 	pool_cache_t pc1;
   2054 	struct cpu_info *ci;
   2055 	struct pool *pp;
   2056 
   2057 	pp = &pc->pc_pool;
   2058 	if (palloc == NULL && ipl == IPL_NONE) {
   2059 		if (size > PAGE_SIZE) {
   2060 			int bigidx = pool_bigidx(size);
   2061 
   2062 			palloc = &pool_allocator_big[bigidx];
   2063 			flags |= PR_NOALIGN;
   2064 		} else
   2065 			palloc = &pool_allocator_nointr;
   2066 	}
   2067 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2068 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2069 
   2070 	if (ctor == NULL) {
   2071 		ctor = NO_CTOR;
   2072 	}
   2073 	if (dtor == NULL) {
   2074 		dtor = NO_DTOR;
   2075 	}
   2076 
   2077 	pc->pc_emptygroups = NULL;
   2078 	pc->pc_fullgroups = NULL;
   2079 	pc->pc_partgroups = NULL;
   2080 	pc->pc_ctor = ctor;
   2081 	pc->pc_dtor = dtor;
   2082 	pc->pc_arg  = arg;
   2083 	pc->pc_hits  = 0;
   2084 	pc->pc_misses = 0;
   2085 	pc->pc_nempty = 0;
   2086 	pc->pc_npart = 0;
   2087 	pc->pc_nfull = 0;
   2088 	pc->pc_contended = 0;
   2089 	pc->pc_refcnt = 0;
   2090 	pc->pc_freecheck = NULL;
   2091 
   2092 	if ((flags & PR_LARGECACHE) != 0) {
   2093 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2094 		pc->pc_pcgpool = &pcg_large_pool;
   2095 	} else {
   2096 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2097 		pc->pc_pcgpool = &pcg_normal_pool;
   2098 	}
   2099 
   2100 	/* Allocate per-CPU caches. */
   2101 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2102 	pc->pc_ncpu = 0;
   2103 	if (ncpu < 2) {
   2104 		/* XXX For sparc: boot CPU is not attached yet. */
   2105 		pool_cache_cpu_init1(curcpu(), pc);
   2106 	} else {
   2107 		for (CPU_INFO_FOREACH(cii, ci)) {
   2108 			pool_cache_cpu_init1(ci, pc);
   2109 		}
   2110 	}
   2111 
   2112 	/* Add to list of all pools. */
   2113 	if (__predict_true(!cold))
   2114 		mutex_enter(&pool_head_lock);
   2115 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2116 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2117 			break;
   2118 	}
   2119 	if (pc1 == NULL)
   2120 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2121 	else
   2122 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2123 	if (__predict_true(!cold))
   2124 		mutex_exit(&pool_head_lock);
   2125 
   2126 	membar_sync();
   2127 	pp->pr_cache = pc;
   2128 }
   2129 
   2130 /*
   2131  * pool_cache_destroy:
   2132  *
   2133  *	Destroy a pool cache.
   2134  */
   2135 void
   2136 pool_cache_destroy(pool_cache_t pc)
   2137 {
   2138 
   2139 	pool_cache_bootstrap_destroy(pc);
   2140 	pool_put(&cache_pool, pc);
   2141 }
   2142 
   2143 /*
   2144  * pool_cache_bootstrap_destroy:
   2145  *
   2146  *	Destroy a pool cache.
   2147  */
   2148 void
   2149 pool_cache_bootstrap_destroy(pool_cache_t pc)
   2150 {
   2151 	struct pool *pp = &pc->pc_pool;
   2152 	u_int i;
   2153 
   2154 	/* Remove it from the global list. */
   2155 	mutex_enter(&pool_head_lock);
   2156 	while (pc->pc_refcnt != 0)
   2157 		cv_wait(&pool_busy, &pool_head_lock);
   2158 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2159 	mutex_exit(&pool_head_lock);
   2160 
   2161 	/* First, invalidate the entire cache. */
   2162 	pool_cache_invalidate(pc);
   2163 
   2164 	/* Disassociate it from the pool. */
   2165 	mutex_enter(&pp->pr_lock);
   2166 	pp->pr_cache = NULL;
   2167 	mutex_exit(&pp->pr_lock);
   2168 
   2169 	/* Destroy per-CPU data */
   2170 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2171 		pool_cache_invalidate_cpu(pc, i);
   2172 
   2173 	/* Finally, destroy it. */
   2174 	mutex_destroy(&pc->pc_lock);
   2175 	pool_destroy(pp);
   2176 }
   2177 
   2178 /*
   2179  * pool_cache_cpu_init1:
   2180  *
   2181  *	Called for each pool_cache whenever a new CPU is attached.
   2182  */
   2183 static void
   2184 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2185 {
   2186 	pool_cache_cpu_t *cc;
   2187 	int index;
   2188 
   2189 	index = ci->ci_index;
   2190 
   2191 	KASSERT(index < __arraycount(pc->pc_cpus));
   2192 
   2193 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2194 		KASSERT(cc->cc_cpuindex == index);
   2195 		return;
   2196 	}
   2197 
   2198 	/*
   2199 	 * The first CPU is 'free'.  This needs to be the case for
   2200 	 * bootstrap - we may not be able to allocate yet.
   2201 	 */
   2202 	if (pc->pc_ncpu == 0) {
   2203 		cc = &pc->pc_cpu0;
   2204 		pc->pc_ncpu = 1;
   2205 	} else {
   2206 		mutex_enter(&pc->pc_lock);
   2207 		pc->pc_ncpu++;
   2208 		mutex_exit(&pc->pc_lock);
   2209 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2210 	}
   2211 
   2212 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2213 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2214 	cc->cc_cache = pc;
   2215 	cc->cc_cpuindex = index;
   2216 	cc->cc_hits = 0;
   2217 	cc->cc_misses = 0;
   2218 	cc->cc_current = __UNCONST(&pcg_dummy);
   2219 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2220 
   2221 	pc->pc_cpus[index] = cc;
   2222 }
   2223 
   2224 /*
   2225  * pool_cache_cpu_init:
   2226  *
   2227  *	Called whenever a new CPU is attached.
   2228  */
   2229 void
   2230 pool_cache_cpu_init(struct cpu_info *ci)
   2231 {
   2232 	pool_cache_t pc;
   2233 
   2234 	mutex_enter(&pool_head_lock);
   2235 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2236 		pc->pc_refcnt++;
   2237 		mutex_exit(&pool_head_lock);
   2238 
   2239 		pool_cache_cpu_init1(ci, pc);
   2240 
   2241 		mutex_enter(&pool_head_lock);
   2242 		pc->pc_refcnt--;
   2243 		cv_broadcast(&pool_busy);
   2244 	}
   2245 	mutex_exit(&pool_head_lock);
   2246 }
   2247 
   2248 /*
   2249  * pool_cache_reclaim:
   2250  *
   2251  *	Reclaim memory from a pool cache.
   2252  */
   2253 bool
   2254 pool_cache_reclaim(pool_cache_t pc)
   2255 {
   2256 
   2257 	return pool_reclaim(&pc->pc_pool);
   2258 }
   2259 
   2260 static void
   2261 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2262 {
   2263 	(*pc->pc_dtor)(pc->pc_arg, object);
   2264 	pool_put(&pc->pc_pool, object);
   2265 }
   2266 
   2267 /*
   2268  * pool_cache_destruct_object:
   2269  *
   2270  *	Force destruction of an object and its release back into
   2271  *	the pool.
   2272  */
   2273 void
   2274 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2275 {
   2276 
   2277 	FREECHECK_IN(&pc->pc_freecheck, object);
   2278 
   2279 	pool_cache_destruct_object1(pc, object);
   2280 }
   2281 
   2282 /*
   2283  * pool_cache_invalidate_groups:
   2284  *
   2285  *	Invalidate a chain of groups and destruct all objects.
   2286  */
   2287 static void
   2288 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2289 {
   2290 	void *object;
   2291 	pcg_t *next;
   2292 	int i;
   2293 
   2294 	for (; pcg != NULL; pcg = next) {
   2295 		next = pcg->pcg_next;
   2296 
   2297 		for (i = 0; i < pcg->pcg_avail; i++) {
   2298 			object = pcg->pcg_objects[i].pcgo_va;
   2299 			pool_cache_destruct_object1(pc, object);
   2300 		}
   2301 
   2302 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2303 			pool_put(&pcg_large_pool, pcg);
   2304 		} else {
   2305 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2306 			pool_put(&pcg_normal_pool, pcg);
   2307 		}
   2308 	}
   2309 }
   2310 
   2311 /*
   2312  * pool_cache_invalidate:
   2313  *
   2314  *	Invalidate a pool cache (destruct and release all of the
   2315  *	cached objects).  Does not reclaim objects from the pool.
   2316  *
   2317  *	Note: For pool caches that provide constructed objects, there
   2318  *	is an assumption that another level of synchronization is occurring
   2319  *	between the input to the constructor and the cache invalidation.
   2320  *
   2321  *	Invalidation is a costly process and should not be called from
   2322  *	interrupt context.
   2323  */
   2324 void
   2325 pool_cache_invalidate(pool_cache_t pc)
   2326 {
   2327 	uint64_t where;
   2328 	pcg_t *full, *empty, *part;
   2329 
   2330 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2331 
   2332 	if (ncpu < 2 || !mp_online) {
   2333 		/*
   2334 		 * We might be called early enough in the boot process
   2335 		 * for the CPU data structures to not be fully initialized.
   2336 		 * In this case, transfer the content of the local CPU's
   2337 		 * cache back into global cache as only this CPU is currently
   2338 		 * running.
   2339 		 */
   2340 		pool_cache_transfer(pc);
   2341 	} else {
   2342 		/*
   2343 		 * Signal all CPUs that they must transfer their local
   2344 		 * cache back to the global pool then wait for the xcall to
   2345 		 * complete.
   2346 		 */
   2347 		where = xc_broadcast(0,
   2348 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
   2349 		xc_wait(where);
   2350 	}
   2351 
   2352 	/* Empty pool caches, then invalidate objects */
   2353 	mutex_enter(&pc->pc_lock);
   2354 	full = pc->pc_fullgroups;
   2355 	empty = pc->pc_emptygroups;
   2356 	part = pc->pc_partgroups;
   2357 	pc->pc_fullgroups = NULL;
   2358 	pc->pc_emptygroups = NULL;
   2359 	pc->pc_partgroups = NULL;
   2360 	pc->pc_nfull = 0;
   2361 	pc->pc_nempty = 0;
   2362 	pc->pc_npart = 0;
   2363 	mutex_exit(&pc->pc_lock);
   2364 
   2365 	pool_cache_invalidate_groups(pc, full);
   2366 	pool_cache_invalidate_groups(pc, empty);
   2367 	pool_cache_invalidate_groups(pc, part);
   2368 }
   2369 
   2370 /*
   2371  * pool_cache_invalidate_cpu:
   2372  *
   2373  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2374  *	identified by its associated index.
   2375  *	It is caller's responsibility to ensure that no operation is
   2376  *	taking place on this pool cache while doing this invalidation.
   2377  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2378  *	pool cached objects from a CPU different from the one currently running
   2379  *	may result in an undefined behaviour.
   2380  */
   2381 static void
   2382 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2383 {
   2384 	pool_cache_cpu_t *cc;
   2385 	pcg_t *pcg;
   2386 
   2387 	if ((cc = pc->pc_cpus[index]) == NULL)
   2388 		return;
   2389 
   2390 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2391 		pcg->pcg_next = NULL;
   2392 		pool_cache_invalidate_groups(pc, pcg);
   2393 	}
   2394 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2395 		pcg->pcg_next = NULL;
   2396 		pool_cache_invalidate_groups(pc, pcg);
   2397 	}
   2398 	if (cc != &pc->pc_cpu0)
   2399 		pool_put(&cache_cpu_pool, cc);
   2400 
   2401 }
   2402 
   2403 void
   2404 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2405 {
   2406 
   2407 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2408 }
   2409 
   2410 void
   2411 pool_cache_setlowat(pool_cache_t pc, int n)
   2412 {
   2413 
   2414 	pool_setlowat(&pc->pc_pool, n);
   2415 }
   2416 
   2417 void
   2418 pool_cache_sethiwat(pool_cache_t pc, int n)
   2419 {
   2420 
   2421 	pool_sethiwat(&pc->pc_pool, n);
   2422 }
   2423 
   2424 void
   2425 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2426 {
   2427 
   2428 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2429 }
   2430 
   2431 static bool __noinline
   2432 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2433 		    paddr_t *pap, int flags)
   2434 {
   2435 	pcg_t *pcg, *cur;
   2436 	uint64_t ncsw;
   2437 	pool_cache_t pc;
   2438 	void *object;
   2439 
   2440 	KASSERT(cc->cc_current->pcg_avail == 0);
   2441 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2442 
   2443 	pc = cc->cc_cache;
   2444 	cc->cc_misses++;
   2445 
   2446 	/*
   2447 	 * Nothing was available locally.  Try and grab a group
   2448 	 * from the cache.
   2449 	 */
   2450 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2451 		ncsw = curlwp->l_ncsw;
   2452 		__insn_barrier();
   2453 		mutex_enter(&pc->pc_lock);
   2454 		pc->pc_contended++;
   2455 
   2456 		/*
   2457 		 * If we context switched while locking, then
   2458 		 * our view of the per-CPU data is invalid:
   2459 		 * retry.
   2460 		 */
   2461 		__insn_barrier();
   2462 		if (curlwp->l_ncsw != ncsw) {
   2463 			mutex_exit(&pc->pc_lock);
   2464 			return true;
   2465 		}
   2466 	}
   2467 
   2468 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2469 		/*
   2470 		 * If there's a full group, release our empty
   2471 		 * group back to the cache.  Install the full
   2472 		 * group as cc_current and return.
   2473 		 */
   2474 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2475 			KASSERT(cur->pcg_avail == 0);
   2476 			cur->pcg_next = pc->pc_emptygroups;
   2477 			pc->pc_emptygroups = cur;
   2478 			pc->pc_nempty++;
   2479 		}
   2480 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2481 		cc->cc_current = pcg;
   2482 		pc->pc_fullgroups = pcg->pcg_next;
   2483 		pc->pc_hits++;
   2484 		pc->pc_nfull--;
   2485 		mutex_exit(&pc->pc_lock);
   2486 		return true;
   2487 	}
   2488 
   2489 	/*
   2490 	 * Nothing available locally or in cache.  Take the slow
   2491 	 * path: fetch a new object from the pool and construct
   2492 	 * it.
   2493 	 */
   2494 	pc->pc_misses++;
   2495 	mutex_exit(&pc->pc_lock);
   2496 	splx(s);
   2497 
   2498 	object = pool_get(&pc->pc_pool, flags);
   2499 	*objectp = object;
   2500 	if (__predict_false(object == NULL)) {
   2501 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   2502 		return false;
   2503 	}
   2504 
   2505 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2506 		pool_put(&pc->pc_pool, object);
   2507 		*objectp = NULL;
   2508 		return false;
   2509 	}
   2510 
   2511 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2512 
   2513 	if (pap != NULL) {
   2514 #ifdef POOL_VTOPHYS
   2515 		*pap = POOL_VTOPHYS(object);
   2516 #else
   2517 		*pap = POOL_PADDR_INVALID;
   2518 #endif
   2519 	}
   2520 
   2521 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2522 	return false;
   2523 }
   2524 
   2525 /*
   2526  * pool_cache_get{,_paddr}:
   2527  *
   2528  *	Get an object from a pool cache (optionally returning
   2529  *	the physical address of the object).
   2530  */
   2531 void *
   2532 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2533 {
   2534 	pool_cache_cpu_t *cc;
   2535 	pcg_t *pcg;
   2536 	void *object;
   2537 	int s;
   2538 
   2539 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2540 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2541 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2542 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2543 	    __func__, pc->pc_pool.pr_wchan);
   2544 
   2545 	if (flags & PR_WAITOK) {
   2546 		ASSERT_SLEEPABLE();
   2547 	}
   2548 
   2549 	/* Lock out interrupts and disable preemption. */
   2550 	s = splvm();
   2551 	while (/* CONSTCOND */ true) {
   2552 		/* Try and allocate an object from the current group. */
   2553 		cc = pc->pc_cpus[curcpu()->ci_index];
   2554 		KASSERT(cc->cc_cache == pc);
   2555 	 	pcg = cc->cc_current;
   2556 		if (__predict_true(pcg->pcg_avail > 0)) {
   2557 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2558 			if (__predict_false(pap != NULL))
   2559 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2560 #if defined(DIAGNOSTIC)
   2561 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2562 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2563 			KASSERT(object != NULL);
   2564 #endif
   2565 			cc->cc_hits++;
   2566 			splx(s);
   2567 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2568 			pool_redzone_fill(&pc->pc_pool, object);
   2569 			pool_cache_get_kmsan(pc, object);
   2570 			return object;
   2571 		}
   2572 
   2573 		/*
   2574 		 * That failed.  If the previous group isn't empty, swap
   2575 		 * it with the current group and allocate from there.
   2576 		 */
   2577 		pcg = cc->cc_previous;
   2578 		if (__predict_true(pcg->pcg_avail > 0)) {
   2579 			cc->cc_previous = cc->cc_current;
   2580 			cc->cc_current = pcg;
   2581 			continue;
   2582 		}
   2583 
   2584 		/*
   2585 		 * Can't allocate from either group: try the slow path.
   2586 		 * If get_slow() allocated an object for us, or if
   2587 		 * no more objects are available, it will return false.
   2588 		 * Otherwise, we need to retry.
   2589 		 */
   2590 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2591 			break;
   2592 	}
   2593 
   2594 	/*
   2595 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2596 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2597 	 * constructor fails.
   2598 	 */
   2599 	return object;
   2600 }
   2601 
   2602 static bool __noinline
   2603 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2604 {
   2605 	struct lwp *l = curlwp;
   2606 	pcg_t *pcg, *cur;
   2607 	uint64_t ncsw;
   2608 	pool_cache_t pc;
   2609 
   2610 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2611 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2612 
   2613 	pc = cc->cc_cache;
   2614 	pcg = NULL;
   2615 	cc->cc_misses++;
   2616 	ncsw = l->l_ncsw;
   2617 	__insn_barrier();
   2618 
   2619 	/*
   2620 	 * If there are no empty groups in the cache then allocate one
   2621 	 * while still unlocked.
   2622 	 */
   2623 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2624 		if (__predict_true(!pool_cache_disable)) {
   2625 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2626 		}
   2627 		/*
   2628 		 * If pool_get() blocked, then our view of
   2629 		 * the per-CPU data is invalid: retry.
   2630 		 */
   2631 		__insn_barrier();
   2632 		if (__predict_false(l->l_ncsw != ncsw)) {
   2633 			if (pcg != NULL) {
   2634 				pool_put(pc->pc_pcgpool, pcg);
   2635 			}
   2636 			return true;
   2637 		}
   2638 		if (__predict_true(pcg != NULL)) {
   2639 			pcg->pcg_avail = 0;
   2640 			pcg->pcg_size = pc->pc_pcgsize;
   2641 		}
   2642 	}
   2643 
   2644 	/* Lock the cache. */
   2645 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2646 		mutex_enter(&pc->pc_lock);
   2647 		pc->pc_contended++;
   2648 
   2649 		/*
   2650 		 * If we context switched while locking, then our view of
   2651 		 * the per-CPU data is invalid: retry.
   2652 		 */
   2653 		__insn_barrier();
   2654 		if (__predict_false(l->l_ncsw != ncsw)) {
   2655 			mutex_exit(&pc->pc_lock);
   2656 			if (pcg != NULL) {
   2657 				pool_put(pc->pc_pcgpool, pcg);
   2658 			}
   2659 			return true;
   2660 		}
   2661 	}
   2662 
   2663 	/* If there are no empty groups in the cache then allocate one. */
   2664 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2665 		pcg = pc->pc_emptygroups;
   2666 		pc->pc_emptygroups = pcg->pcg_next;
   2667 		pc->pc_nempty--;
   2668 	}
   2669 
   2670 	/*
   2671 	 * If there's a empty group, release our full group back
   2672 	 * to the cache.  Install the empty group to the local CPU
   2673 	 * and return.
   2674 	 */
   2675 	if (pcg != NULL) {
   2676 		KASSERT(pcg->pcg_avail == 0);
   2677 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2678 			cc->cc_previous = pcg;
   2679 		} else {
   2680 			cur = cc->cc_current;
   2681 			if (__predict_true(cur != &pcg_dummy)) {
   2682 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2683 				cur->pcg_next = pc->pc_fullgroups;
   2684 				pc->pc_fullgroups = cur;
   2685 				pc->pc_nfull++;
   2686 			}
   2687 			cc->cc_current = pcg;
   2688 		}
   2689 		pc->pc_hits++;
   2690 		mutex_exit(&pc->pc_lock);
   2691 		return true;
   2692 	}
   2693 
   2694 	/*
   2695 	 * Nothing available locally or in cache, and we didn't
   2696 	 * allocate an empty group.  Take the slow path and destroy
   2697 	 * the object here and now.
   2698 	 */
   2699 	pc->pc_misses++;
   2700 	mutex_exit(&pc->pc_lock);
   2701 	splx(s);
   2702 	pool_cache_destruct_object(pc, object);
   2703 
   2704 	return false;
   2705 }
   2706 
   2707 /*
   2708  * pool_cache_put{,_paddr}:
   2709  *
   2710  *	Put an object back to the pool cache (optionally caching the
   2711  *	physical address of the object).
   2712  */
   2713 void
   2714 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2715 {
   2716 	pool_cache_cpu_t *cc;
   2717 	pcg_t *pcg;
   2718 	int s;
   2719 
   2720 	KASSERT(object != NULL);
   2721 	pool_cache_put_kmsan(pc, object);
   2722 	pool_cache_redzone_check(pc, object);
   2723 	FREECHECK_IN(&pc->pc_freecheck, object);
   2724 
   2725 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2726 		pc_phinpage_check(pc, object);
   2727 	}
   2728 
   2729 	if (pool_cache_put_quarantine(pc, object, pa)) {
   2730 		return;
   2731 	}
   2732 
   2733 	/* Lock out interrupts and disable preemption. */
   2734 	s = splvm();
   2735 	while (/* CONSTCOND */ true) {
   2736 		/* If the current group isn't full, release it there. */
   2737 		cc = pc->pc_cpus[curcpu()->ci_index];
   2738 		KASSERT(cc->cc_cache == pc);
   2739 	 	pcg = cc->cc_current;
   2740 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2741 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2742 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2743 			pcg->pcg_avail++;
   2744 			cc->cc_hits++;
   2745 			splx(s);
   2746 			return;
   2747 		}
   2748 
   2749 		/*
   2750 		 * That failed.  If the previous group isn't full, swap
   2751 		 * it with the current group and try again.
   2752 		 */
   2753 		pcg = cc->cc_previous;
   2754 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2755 			cc->cc_previous = cc->cc_current;
   2756 			cc->cc_current = pcg;
   2757 			continue;
   2758 		}
   2759 
   2760 		/*
   2761 		 * Can't free to either group: try the slow path.
   2762 		 * If put_slow() releases the object for us, it
   2763 		 * will return false.  Otherwise we need to retry.
   2764 		 */
   2765 		if (!pool_cache_put_slow(cc, s, object))
   2766 			break;
   2767 	}
   2768 }
   2769 
   2770 /*
   2771  * pool_cache_transfer:
   2772  *
   2773  *	Transfer objects from the per-CPU cache to the global cache.
   2774  *	Run within a cross-call thread.
   2775  */
   2776 static void
   2777 pool_cache_transfer(pool_cache_t pc)
   2778 {
   2779 	pool_cache_cpu_t *cc;
   2780 	pcg_t *prev, *cur, **list;
   2781 	int s;
   2782 
   2783 	s = splvm();
   2784 	mutex_enter(&pc->pc_lock);
   2785 	cc = pc->pc_cpus[curcpu()->ci_index];
   2786 	cur = cc->cc_current;
   2787 	cc->cc_current = __UNCONST(&pcg_dummy);
   2788 	prev = cc->cc_previous;
   2789 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2790 	if (cur != &pcg_dummy) {
   2791 		if (cur->pcg_avail == cur->pcg_size) {
   2792 			list = &pc->pc_fullgroups;
   2793 			pc->pc_nfull++;
   2794 		} else if (cur->pcg_avail == 0) {
   2795 			list = &pc->pc_emptygroups;
   2796 			pc->pc_nempty++;
   2797 		} else {
   2798 			list = &pc->pc_partgroups;
   2799 			pc->pc_npart++;
   2800 		}
   2801 		cur->pcg_next = *list;
   2802 		*list = cur;
   2803 	}
   2804 	if (prev != &pcg_dummy) {
   2805 		if (prev->pcg_avail == prev->pcg_size) {
   2806 			list = &pc->pc_fullgroups;
   2807 			pc->pc_nfull++;
   2808 		} else if (prev->pcg_avail == 0) {
   2809 			list = &pc->pc_emptygroups;
   2810 			pc->pc_nempty++;
   2811 		} else {
   2812 			list = &pc->pc_partgroups;
   2813 			pc->pc_npart++;
   2814 		}
   2815 		prev->pcg_next = *list;
   2816 		*list = prev;
   2817 	}
   2818 	mutex_exit(&pc->pc_lock);
   2819 	splx(s);
   2820 }
   2821 
   2822 static int
   2823 pool_bigidx(size_t size)
   2824 {
   2825 	int i;
   2826 
   2827 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2828 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2829 			return i;
   2830 	}
   2831 	panic("pool item size %zu too large, use a custom allocator", size);
   2832 }
   2833 
   2834 static void *
   2835 pool_allocator_alloc(struct pool *pp, int flags)
   2836 {
   2837 	struct pool_allocator *pa = pp->pr_alloc;
   2838 	void *res;
   2839 
   2840 	res = (*pa->pa_alloc)(pp, flags);
   2841 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2842 		/*
   2843 		 * We only run the drain hook here if PR_NOWAIT.
   2844 		 * In other cases, the hook will be run in
   2845 		 * pool_reclaim().
   2846 		 */
   2847 		if (pp->pr_drain_hook != NULL) {
   2848 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2849 			res = (*pa->pa_alloc)(pp, flags);
   2850 		}
   2851 	}
   2852 	return res;
   2853 }
   2854 
   2855 static void
   2856 pool_allocator_free(struct pool *pp, void *v)
   2857 {
   2858 	struct pool_allocator *pa = pp->pr_alloc;
   2859 
   2860 	if (pp->pr_redzone) {
   2861 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2862 	}
   2863 	(*pa->pa_free)(pp, v);
   2864 }
   2865 
   2866 void *
   2867 pool_page_alloc(struct pool *pp, int flags)
   2868 {
   2869 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2870 	vmem_addr_t va;
   2871 	int ret;
   2872 
   2873 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2874 	    vflags | VM_INSTANTFIT, &va);
   2875 
   2876 	return ret ? NULL : (void *)va;
   2877 }
   2878 
   2879 void
   2880 pool_page_free(struct pool *pp, void *v)
   2881 {
   2882 
   2883 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2884 }
   2885 
   2886 static void *
   2887 pool_page_alloc_meta(struct pool *pp, int flags)
   2888 {
   2889 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2890 	vmem_addr_t va;
   2891 	int ret;
   2892 
   2893 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2894 	    vflags | VM_INSTANTFIT, &va);
   2895 
   2896 	return ret ? NULL : (void *)va;
   2897 }
   2898 
   2899 static void
   2900 pool_page_free_meta(struct pool *pp, void *v)
   2901 {
   2902 
   2903 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2904 }
   2905 
   2906 #ifdef KMSAN
   2907 static inline void
   2908 pool_get_kmsan(struct pool *pp, void *p)
   2909 {
   2910 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
   2911 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
   2912 }
   2913 
   2914 static inline void
   2915 pool_put_kmsan(struct pool *pp, void *p)
   2916 {
   2917 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
   2918 }
   2919 
   2920 static inline void
   2921 pool_cache_get_kmsan(pool_cache_t pc, void *p)
   2922 {
   2923 	if (__predict_false(pc_has_ctor(pc))) {
   2924 		return;
   2925 	}
   2926 	pool_get_kmsan(&pc->pc_pool, p);
   2927 }
   2928 
   2929 static inline void
   2930 pool_cache_put_kmsan(pool_cache_t pc, void *p)
   2931 {
   2932 	pool_put_kmsan(&pc->pc_pool, p);
   2933 }
   2934 #endif
   2935 
   2936 #ifdef POOL_QUARANTINE
   2937 static void
   2938 pool_quarantine_init(struct pool *pp)
   2939 {
   2940 	pp->pr_quar.rotor = 0;
   2941 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2942 }
   2943 
   2944 static void
   2945 pool_quarantine_flush(struct pool *pp)
   2946 {
   2947 	pool_quar_t *quar = &pp->pr_quar;
   2948 	struct pool_pagelist pq;
   2949 	size_t i;
   2950 
   2951 	LIST_INIT(&pq);
   2952 
   2953 	mutex_enter(&pp->pr_lock);
   2954 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2955 		if (quar->list[i] == 0)
   2956 			continue;
   2957 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2958 	}
   2959 	mutex_exit(&pp->pr_lock);
   2960 
   2961 	pr_pagelist_free(pp, &pq);
   2962 }
   2963 
   2964 static bool
   2965 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2966 {
   2967 	pool_quar_t *quar = &pp->pr_quar;
   2968 	uintptr_t old;
   2969 
   2970 	if (pp->pr_roflags & PR_NOTOUCH) {
   2971 		return false;
   2972 	}
   2973 
   2974 	pool_redzone_check(pp, v);
   2975 
   2976 	old = quar->list[quar->rotor];
   2977 	quar->list[quar->rotor] = (uintptr_t)v;
   2978 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2979 	if (old != 0) {
   2980 		pool_do_put(pp, (void *)old, pq);
   2981 	}
   2982 
   2983 	return true;
   2984 }
   2985 
   2986 static bool
   2987 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
   2988 {
   2989 	pool_cache_destruct_object(pc, p);
   2990 	return true;
   2991 }
   2992 #endif
   2993 
   2994 #ifdef POOL_REDZONE
   2995 #if defined(_LP64)
   2996 # define PRIME 0x9e37fffffffc0000UL
   2997 #else /* defined(_LP64) */
   2998 # define PRIME 0x9e3779b1
   2999 #endif /* defined(_LP64) */
   3000 #define STATIC_BYTE	0xFE
   3001 CTASSERT(POOL_REDZONE_SIZE > 1);
   3002 
   3003 #ifndef KASAN
   3004 static inline uint8_t
   3005 pool_pattern_generate(const void *p)
   3006 {
   3007 	return (uint8_t)(((uintptr_t)p) * PRIME
   3008 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   3009 }
   3010 #endif
   3011 
   3012 static void
   3013 pool_redzone_init(struct pool *pp, size_t requested_size)
   3014 {
   3015 	size_t redzsz;
   3016 	size_t nsz;
   3017 
   3018 #ifdef KASAN
   3019 	redzsz = requested_size;
   3020 	kasan_add_redzone(&redzsz);
   3021 	redzsz -= requested_size;
   3022 #else
   3023 	redzsz = POOL_REDZONE_SIZE;
   3024 #endif
   3025 
   3026 	if (pp->pr_roflags & PR_NOTOUCH) {
   3027 		pp->pr_redzone = false;
   3028 		return;
   3029 	}
   3030 
   3031 	/*
   3032 	 * We may have extended the requested size earlier; check if
   3033 	 * there's naturally space in the padding for a red zone.
   3034 	 */
   3035 	if (pp->pr_size - requested_size >= redzsz) {
   3036 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3037 		pp->pr_redzone = true;
   3038 		return;
   3039 	}
   3040 
   3041 	/*
   3042 	 * No space in the natural padding; check if we can extend a
   3043 	 * bit the size of the pool.
   3044 	 */
   3045 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3046 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3047 		/* Ok, we can */
   3048 		pp->pr_size = nsz;
   3049 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3050 		pp->pr_redzone = true;
   3051 	} else {
   3052 		/* No space for a red zone... snif :'( */
   3053 		pp->pr_redzone = false;
   3054 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3055 	}
   3056 }
   3057 
   3058 static void
   3059 pool_redzone_fill(struct pool *pp, void *p)
   3060 {
   3061 	if (!pp->pr_redzone)
   3062 		return;
   3063 #ifdef KASAN
   3064 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3065 	    KASAN_POOL_REDZONE);
   3066 #else
   3067 	uint8_t *cp, pat;
   3068 	const uint8_t *ep;
   3069 
   3070 	cp = (uint8_t *)p + pp->pr_reqsize;
   3071 	ep = cp + POOL_REDZONE_SIZE;
   3072 
   3073 	/*
   3074 	 * We really don't want the first byte of the red zone to be '\0';
   3075 	 * an off-by-one in a string may not be properly detected.
   3076 	 */
   3077 	pat = pool_pattern_generate(cp);
   3078 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3079 	cp++;
   3080 
   3081 	while (cp < ep) {
   3082 		*cp = pool_pattern_generate(cp);
   3083 		cp++;
   3084 	}
   3085 #endif
   3086 }
   3087 
   3088 static void
   3089 pool_redzone_check(struct pool *pp, void *p)
   3090 {
   3091 	if (!pp->pr_redzone)
   3092 		return;
   3093 #ifdef KASAN
   3094 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3095 #else
   3096 	uint8_t *cp, pat, expected;
   3097 	const uint8_t *ep;
   3098 
   3099 	cp = (uint8_t *)p + pp->pr_reqsize;
   3100 	ep = cp + POOL_REDZONE_SIZE;
   3101 
   3102 	pat = pool_pattern_generate(cp);
   3103 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3104 	if (__predict_false(*cp != expected)) {
   3105 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3106 		    pp->pr_wchan, *cp, expected);
   3107 	}
   3108 	cp++;
   3109 
   3110 	while (cp < ep) {
   3111 		expected = pool_pattern_generate(cp);
   3112 		if (__predict_false(*cp != expected)) {
   3113 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3114 			    pp->pr_wchan, *cp, expected);
   3115 		}
   3116 		cp++;
   3117 	}
   3118 #endif
   3119 }
   3120 
   3121 static void
   3122 pool_cache_redzone_check(pool_cache_t pc, void *p)
   3123 {
   3124 #ifdef KASAN
   3125 	/* If there is a ctor/dtor, leave the data as valid. */
   3126 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3127 		return;
   3128 	}
   3129 #endif
   3130 	pool_redzone_check(&pc->pc_pool, p);
   3131 }
   3132 
   3133 #endif /* POOL_REDZONE */
   3134 
   3135 #if defined(DDB)
   3136 static bool
   3137 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3138 {
   3139 
   3140 	return (uintptr_t)ph->ph_page <= addr &&
   3141 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3142 }
   3143 
   3144 static bool
   3145 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3146 {
   3147 
   3148 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3149 }
   3150 
   3151 static bool
   3152 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3153 {
   3154 	int i;
   3155 
   3156 	if (pcg == NULL) {
   3157 		return false;
   3158 	}
   3159 	for (i = 0; i < pcg->pcg_avail; i++) {
   3160 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3161 			return true;
   3162 		}
   3163 	}
   3164 	return false;
   3165 }
   3166 
   3167 static bool
   3168 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3169 {
   3170 
   3171 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3172 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3173 		pool_item_bitmap_t *bitmap =
   3174 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3175 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3176 
   3177 		return (*bitmap & mask) == 0;
   3178 	} else {
   3179 		struct pool_item *pi;
   3180 
   3181 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3182 			if (pool_in_item(pp, pi, addr)) {
   3183 				return false;
   3184 			}
   3185 		}
   3186 		return true;
   3187 	}
   3188 }
   3189 
   3190 void
   3191 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3192 {
   3193 	struct pool *pp;
   3194 
   3195 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3196 		struct pool_item_header *ph;
   3197 		uintptr_t item;
   3198 		bool allocated = true;
   3199 		bool incache = false;
   3200 		bool incpucache = false;
   3201 		char cpucachestr[32];
   3202 
   3203 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3204 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3205 				if (pool_in_page(pp, ph, addr)) {
   3206 					goto found;
   3207 				}
   3208 			}
   3209 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3210 				if (pool_in_page(pp, ph, addr)) {
   3211 					allocated =
   3212 					    pool_allocated(pp, ph, addr);
   3213 					goto found;
   3214 				}
   3215 			}
   3216 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3217 				if (pool_in_page(pp, ph, addr)) {
   3218 					allocated = false;
   3219 					goto found;
   3220 				}
   3221 			}
   3222 			continue;
   3223 		} else {
   3224 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3225 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3226 				continue;
   3227 			}
   3228 			allocated = pool_allocated(pp, ph, addr);
   3229 		}
   3230 found:
   3231 		if (allocated && pp->pr_cache) {
   3232 			pool_cache_t pc = pp->pr_cache;
   3233 			struct pool_cache_group *pcg;
   3234 			int i;
   3235 
   3236 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3237 			    pcg = pcg->pcg_next) {
   3238 				if (pool_in_cg(pp, pcg, addr)) {
   3239 					incache = true;
   3240 					goto print;
   3241 				}
   3242 			}
   3243 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3244 				pool_cache_cpu_t *cc;
   3245 
   3246 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3247 					continue;
   3248 				}
   3249 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3250 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3251 					struct cpu_info *ci =
   3252 					    cpu_lookup(i);
   3253 
   3254 					incpucache = true;
   3255 					snprintf(cpucachestr,
   3256 					    sizeof(cpucachestr),
   3257 					    "cached by CPU %u",
   3258 					    ci->ci_index);
   3259 					goto print;
   3260 				}
   3261 			}
   3262 		}
   3263 print:
   3264 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3265 		item = item + rounddown(addr - item, pp->pr_size);
   3266 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3267 		    (void *)addr, item, (size_t)(addr - item),
   3268 		    pp->pr_wchan,
   3269 		    incpucache ? cpucachestr :
   3270 		    incache ? "cached" : allocated ? "allocated" : "free");
   3271 	}
   3272 }
   3273 #endif /* defined(DDB) */
   3274 
   3275 static int
   3276 pool_sysctl(SYSCTLFN_ARGS)
   3277 {
   3278 	struct pool_sysctl data;
   3279 	struct pool *pp;
   3280 	struct pool_cache *pc;
   3281 	pool_cache_cpu_t *cc;
   3282 	int error;
   3283 	size_t i, written;
   3284 
   3285 	if (oldp == NULL) {
   3286 		*oldlenp = 0;
   3287 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3288 			*oldlenp += sizeof(data);
   3289 		return 0;
   3290 	}
   3291 
   3292 	memset(&data, 0, sizeof(data));
   3293 	error = 0;
   3294 	written = 0;
   3295 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3296 		if (written + sizeof(data) > *oldlenp)
   3297 			break;
   3298 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3299 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3300 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3301 #define COPY(field) data.field = pp->field
   3302 		COPY(pr_size);
   3303 
   3304 		COPY(pr_itemsperpage);
   3305 		COPY(pr_nitems);
   3306 		COPY(pr_nout);
   3307 		COPY(pr_hardlimit);
   3308 		COPY(pr_npages);
   3309 		COPY(pr_minpages);
   3310 		COPY(pr_maxpages);
   3311 
   3312 		COPY(pr_nget);
   3313 		COPY(pr_nfail);
   3314 		COPY(pr_nput);
   3315 		COPY(pr_npagealloc);
   3316 		COPY(pr_npagefree);
   3317 		COPY(pr_hiwat);
   3318 		COPY(pr_nidle);
   3319 #undef COPY
   3320 
   3321 		data.pr_cache_nmiss_pcpu = 0;
   3322 		data.pr_cache_nhit_pcpu = 0;
   3323 		if (pp->pr_cache) {
   3324 			pc = pp->pr_cache;
   3325 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3326 			data.pr_cache_nfull = pc->pc_nfull;
   3327 			data.pr_cache_npartial = pc->pc_npart;
   3328 			data.pr_cache_nempty = pc->pc_nempty;
   3329 			data.pr_cache_ncontended = pc->pc_contended;
   3330 			data.pr_cache_nmiss_global = pc->pc_misses;
   3331 			data.pr_cache_nhit_global = pc->pc_hits;
   3332 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3333 				cc = pc->pc_cpus[i];
   3334 				if (cc == NULL)
   3335 					continue;
   3336 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3337 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3338 			}
   3339 		} else {
   3340 			data.pr_cache_meta_size = 0;
   3341 			data.pr_cache_nfull = 0;
   3342 			data.pr_cache_npartial = 0;
   3343 			data.pr_cache_nempty = 0;
   3344 			data.pr_cache_ncontended = 0;
   3345 			data.pr_cache_nmiss_global = 0;
   3346 			data.pr_cache_nhit_global = 0;
   3347 		}
   3348 
   3349 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3350 		if (error)
   3351 			break;
   3352 		written += sizeof(data);
   3353 		oldp = (char *)oldp + sizeof(data);
   3354 	}
   3355 
   3356 	*oldlenp = written;
   3357 	return error;
   3358 }
   3359 
   3360 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3361 {
   3362 	const struct sysctlnode *rnode = NULL;
   3363 
   3364 	sysctl_createv(clog, 0, NULL, &rnode,
   3365 		       CTLFLAG_PERMANENT,
   3366 		       CTLTYPE_STRUCT, "pool",
   3367 		       SYSCTL_DESCR("Get pool statistics"),
   3368 		       pool_sysctl, 0, NULL, 0,
   3369 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3370 }
   3371