subr_pool.c revision 1.267 1 /* $NetBSD: subr_pool.c,v 1.267 2020/04/13 00:27:17 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.267 2020/04/13 00:27:17 chs Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60 #include <sys/msan.h>
61
62 #include <uvm/uvm_extern.h>
63
64 /*
65 * Pool resource management utility.
66 *
67 * Memory is allocated in pages which are split into pieces according to
68 * the pool item size. Each page is kept on one of three lists in the
69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 * for empty, full and partially-full pages respectively. The individual
71 * pool items are on a linked list headed by `ph_itemlist' in each page
72 * header. The memory for building the page list is either taken from
73 * the allocated pages themselves (for small pool items) or taken from
74 * an internal pool of page headers (`phpool').
75 */
76
77 /* List of all pools. Non static as needed by 'vmstat -m' */
78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
79
80 /* Private pool for page header structures */
81 #define PHPOOL_MAX 8
82 static struct pool phpool[PHPOOL_MAX];
83 #define PHPOOL_FREELIST_NELEM(idx) \
84 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
85
86 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
87 #define POOL_REDZONE
88 #endif
89
90 #ifdef POOL_REDZONE
91 # ifdef KASAN
92 # define POOL_REDZONE_SIZE 8
93 # else
94 # define POOL_REDZONE_SIZE 2
95 # endif
96 static void pool_redzone_init(struct pool *, size_t);
97 static void pool_redzone_fill(struct pool *, void *);
98 static void pool_redzone_check(struct pool *, void *);
99 static void pool_cache_redzone_check(pool_cache_t, void *);
100 #else
101 # define pool_redzone_init(pp, sz) __nothing
102 # define pool_redzone_fill(pp, ptr) __nothing
103 # define pool_redzone_check(pp, ptr) __nothing
104 # define pool_cache_redzone_check(pc, ptr) __nothing
105 #endif
106
107 #ifdef KMSAN
108 static inline void pool_get_kmsan(struct pool *, void *);
109 static inline void pool_put_kmsan(struct pool *, void *);
110 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
111 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
112 #else
113 #define pool_get_kmsan(pp, ptr) __nothing
114 #define pool_put_kmsan(pp, ptr) __nothing
115 #define pool_cache_get_kmsan(pc, ptr) __nothing
116 #define pool_cache_put_kmsan(pc, ptr) __nothing
117 #endif
118
119 #ifdef POOL_QUARANTINE
120 static void pool_quarantine_init(struct pool *);
121 static void pool_quarantine_flush(struct pool *);
122 static bool pool_put_quarantine(struct pool *, void *,
123 struct pool_pagelist *);
124 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
125 #else
126 #define pool_quarantine_init(a) __nothing
127 #define pool_quarantine_flush(a) __nothing
128 #define pool_put_quarantine(a, b, c) false
129 #define pool_cache_put_quarantine(a, b, c) false
130 #endif
131
132 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
133 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
134
135 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
136 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
137
138 /*
139 * Pool backend allocators.
140 *
141 * Each pool has a backend allocator that handles allocation, deallocation,
142 * and any additional draining that might be needed.
143 *
144 * We provide two standard allocators:
145 *
146 * pool_allocator_kmem - the default when no allocator is specified
147 *
148 * pool_allocator_nointr - used for pools that will not be accessed
149 * in interrupt context.
150 */
151 void *pool_page_alloc(struct pool *, int);
152 void pool_page_free(struct pool *, void *);
153
154 static void *pool_page_alloc_meta(struct pool *, int);
155 static void pool_page_free_meta(struct pool *, void *);
156
157 struct pool_allocator pool_allocator_kmem = {
158 .pa_alloc = pool_page_alloc,
159 .pa_free = pool_page_free,
160 .pa_pagesz = 0
161 };
162
163 struct pool_allocator pool_allocator_nointr = {
164 .pa_alloc = pool_page_alloc,
165 .pa_free = pool_page_free,
166 .pa_pagesz = 0
167 };
168
169 struct pool_allocator pool_allocator_meta = {
170 .pa_alloc = pool_page_alloc_meta,
171 .pa_free = pool_page_free_meta,
172 .pa_pagesz = 0
173 };
174
175 #define POOL_ALLOCATOR_BIG_BASE 13
176 static struct pool_allocator pool_allocator_big[] = {
177 {
178 .pa_alloc = pool_page_alloc,
179 .pa_free = pool_page_free,
180 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
181 },
182 {
183 .pa_alloc = pool_page_alloc,
184 .pa_free = pool_page_free,
185 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
186 },
187 {
188 .pa_alloc = pool_page_alloc,
189 .pa_free = pool_page_free,
190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
191 },
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
211 },
212 {
213 .pa_alloc = pool_page_alloc,
214 .pa_free = pool_page_free,
215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
216 }
217 };
218
219 static int pool_bigidx(size_t);
220
221 /* # of seconds to retain page after last use */
222 int pool_inactive_time = 10;
223
224 /* Next candidate for drainage (see pool_drain()) */
225 static struct pool *drainpp;
226
227 /* This lock protects both pool_head and drainpp. */
228 static kmutex_t pool_head_lock;
229 static kcondvar_t pool_busy;
230
231 /* This lock protects initialization of a potentially shared pool allocator */
232 static kmutex_t pool_allocator_lock;
233
234 static unsigned int poolid_counter = 0;
235
236 typedef uint32_t pool_item_bitmap_t;
237 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
238 #define BITMAP_MASK (BITMAP_SIZE - 1)
239 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
240
241 struct pool_item_header {
242 /* Page headers */
243 LIST_ENTRY(pool_item_header)
244 ph_pagelist; /* pool page list */
245 union {
246 /* !PR_PHINPAGE */
247 struct {
248 SPLAY_ENTRY(pool_item_header)
249 phu_node; /* off-page page headers */
250 } phu_offpage;
251 /* PR_PHINPAGE */
252 struct {
253 unsigned int phu_poolid;
254 } phu_onpage;
255 } ph_u1;
256 void * ph_page; /* this page's address */
257 uint32_t ph_time; /* last referenced */
258 uint16_t ph_nmissing; /* # of chunks in use */
259 uint16_t ph_off; /* start offset in page */
260 union {
261 /* !PR_USEBMAP */
262 struct {
263 LIST_HEAD(, pool_item)
264 phu_itemlist; /* chunk list for this page */
265 } phu_normal;
266 /* PR_USEBMAP */
267 struct {
268 pool_item_bitmap_t phu_bitmap[1];
269 } phu_notouch;
270 } ph_u2;
271 };
272 #define ph_node ph_u1.phu_offpage.phu_node
273 #define ph_poolid ph_u1.phu_onpage.phu_poolid
274 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
275 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
276
277 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
278
279 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
280 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
281
282 #if defined(DIAGNOSTIC) && !defined(KASAN)
283 #define POOL_CHECK_MAGIC
284 #endif
285
286 struct pool_item {
287 #ifdef POOL_CHECK_MAGIC
288 u_int pi_magic;
289 #endif
290 #define PI_MAGIC 0xdeaddeadU
291 /* Other entries use only this list entry */
292 LIST_ENTRY(pool_item) pi_list;
293 };
294
295 #define POOL_NEEDS_CATCHUP(pp) \
296 ((pp)->pr_nitems < (pp)->pr_minitems || \
297 (pp)->pr_npages < (pp)->pr_minpages)
298 #define POOL_OBJ_TO_PAGE(pp, v) \
299 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
300
301 /*
302 * Pool cache management.
303 *
304 * Pool caches provide a way for constructed objects to be cached by the
305 * pool subsystem. This can lead to performance improvements by avoiding
306 * needless object construction/destruction; it is deferred until absolutely
307 * necessary.
308 *
309 * Caches are grouped into cache groups. Each cache group references up
310 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
311 * object from the pool, it calls the object's constructor and places it
312 * into a cache group. When a cache group frees an object back to the
313 * pool, it first calls the object's destructor. This allows the object
314 * to persist in constructed form while freed to the cache.
315 *
316 * The pool references each cache, so that when a pool is drained by the
317 * pagedaemon, it can drain each individual cache as well. Each time a
318 * cache is drained, the most idle cache group is freed to the pool in
319 * its entirety.
320 *
321 * Pool caches are layed on top of pools. By layering them, we can avoid
322 * the complexity of cache management for pools which would not benefit
323 * from it.
324 */
325
326 static struct pool pcg_normal_pool;
327 static struct pool pcg_large_pool;
328 static struct pool cache_pool;
329 static struct pool cache_cpu_pool;
330
331 /* List of all caches. */
332 TAILQ_HEAD(,pool_cache) pool_cache_head =
333 TAILQ_HEAD_INITIALIZER(pool_cache_head);
334
335 int pool_cache_disable; /* global disable for caching */
336 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
337
338 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
339 void *);
340 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
341 void **, paddr_t *, int);
342 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
343 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
344 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
345 static void pool_cache_transfer(pool_cache_t);
346
347 static int pool_catchup(struct pool *);
348 static void pool_prime_page(struct pool *, void *,
349 struct pool_item_header *);
350 static void pool_update_curpage(struct pool *);
351
352 static int pool_grow(struct pool *, int);
353 static void *pool_allocator_alloc(struct pool *, int);
354 static void pool_allocator_free(struct pool *, void *);
355
356 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
357 void (*)(const char *, ...) __printflike(1, 2));
358 static void pool_print1(struct pool *, const char *,
359 void (*)(const char *, ...) __printflike(1, 2));
360
361 static int pool_chk_page(struct pool *, const char *,
362 struct pool_item_header *);
363
364 /* -------------------------------------------------------------------------- */
365
366 static inline unsigned int
367 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
368 const void *v)
369 {
370 const char *cp = v;
371 unsigned int idx;
372
373 KASSERT(pp->pr_roflags & PR_USEBMAP);
374 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
375
376 if (__predict_false(idx >= pp->pr_itemsperpage)) {
377 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
378 pp->pr_itemsperpage);
379 }
380
381 return idx;
382 }
383
384 static inline void
385 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
386 void *obj)
387 {
388 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
389 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
390 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
391
392 if (__predict_false((*bitmap & mask) != 0)) {
393 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
394 }
395
396 *bitmap |= mask;
397 }
398
399 static inline void *
400 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
401 {
402 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
403 unsigned int idx;
404 int i;
405
406 for (i = 0; ; i++) {
407 int bit;
408
409 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
410 bit = ffs32(bitmap[i]);
411 if (bit) {
412 pool_item_bitmap_t mask;
413
414 bit--;
415 idx = (i * BITMAP_SIZE) + bit;
416 mask = 1U << bit;
417 KASSERT((bitmap[i] & mask) != 0);
418 bitmap[i] &= ~mask;
419 break;
420 }
421 }
422 KASSERT(idx < pp->pr_itemsperpage);
423 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
424 }
425
426 static inline void
427 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
428 {
429 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
430 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
431 int i;
432
433 for (i = 0; i < n; i++) {
434 bitmap[i] = (pool_item_bitmap_t)-1;
435 }
436 }
437
438 /* -------------------------------------------------------------------------- */
439
440 static inline void
441 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
442 void *obj)
443 {
444 struct pool_item *pi = obj;
445
446 #ifdef POOL_CHECK_MAGIC
447 pi->pi_magic = PI_MAGIC;
448 #endif
449
450 if (pp->pr_redzone) {
451 /*
452 * Mark the pool_item as valid. The rest is already
453 * invalid.
454 */
455 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
456 }
457
458 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
459 }
460
461 static inline void *
462 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
463 {
464 struct pool_item *pi;
465 void *v;
466
467 v = pi = LIST_FIRST(&ph->ph_itemlist);
468 if (__predict_false(v == NULL)) {
469 mutex_exit(&pp->pr_lock);
470 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
471 }
472 KASSERTMSG((pp->pr_nitems > 0),
473 "%s: [%s] nitems %u inconsistent on itemlist",
474 __func__, pp->pr_wchan, pp->pr_nitems);
475 #ifdef POOL_CHECK_MAGIC
476 KASSERTMSG((pi->pi_magic == PI_MAGIC),
477 "%s: [%s] free list modified: "
478 "magic=%x; page %p; item addr %p", __func__,
479 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
480 #endif
481
482 /*
483 * Remove from item list.
484 */
485 LIST_REMOVE(pi, pi_list);
486
487 return v;
488 }
489
490 /* -------------------------------------------------------------------------- */
491
492 static inline void
493 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
494 void *object)
495 {
496 if (__predict_false((void *)ph->ph_page != page)) {
497 panic("%s: [%s] item %p not part of pool", __func__,
498 pp->pr_wchan, object);
499 }
500 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
501 panic("%s: [%s] item %p below item space", __func__,
502 pp->pr_wchan, object);
503 }
504 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
505 panic("%s: [%s] item %p poolid %u != %u", __func__,
506 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
507 }
508 }
509
510 static inline void
511 pc_phinpage_check(pool_cache_t pc, void *object)
512 {
513 struct pool_item_header *ph;
514 struct pool *pp;
515 void *page;
516
517 pp = &pc->pc_pool;
518 page = POOL_OBJ_TO_PAGE(pp, object);
519 ph = (struct pool_item_header *)page;
520
521 pr_phinpage_check(pp, ph, page, object);
522 }
523
524 /* -------------------------------------------------------------------------- */
525
526 static inline int
527 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
528 {
529
530 /*
531 * We consider pool_item_header with smaller ph_page bigger. This
532 * unnatural ordering is for the benefit of pr_find_pagehead.
533 */
534 if (a->ph_page < b->ph_page)
535 return 1;
536 else if (a->ph_page > b->ph_page)
537 return -1;
538 else
539 return 0;
540 }
541
542 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
543 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
544
545 static inline struct pool_item_header *
546 pr_find_pagehead_noalign(struct pool *pp, void *v)
547 {
548 struct pool_item_header *ph, tmp;
549
550 tmp.ph_page = (void *)(uintptr_t)v;
551 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
552 if (ph == NULL) {
553 ph = SPLAY_ROOT(&pp->pr_phtree);
554 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
555 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
556 }
557 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
558 }
559
560 return ph;
561 }
562
563 /*
564 * Return the pool page header based on item address.
565 */
566 static inline struct pool_item_header *
567 pr_find_pagehead(struct pool *pp, void *v)
568 {
569 struct pool_item_header *ph, tmp;
570
571 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
572 ph = pr_find_pagehead_noalign(pp, v);
573 } else {
574 void *page = POOL_OBJ_TO_PAGE(pp, v);
575 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
576 ph = (struct pool_item_header *)page;
577 pr_phinpage_check(pp, ph, page, v);
578 } else {
579 tmp.ph_page = page;
580 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
581 }
582 }
583
584 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
585 ((char *)ph->ph_page <= (char *)v &&
586 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
587 return ph;
588 }
589
590 static void
591 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
592 {
593 struct pool_item_header *ph;
594
595 while ((ph = LIST_FIRST(pq)) != NULL) {
596 LIST_REMOVE(ph, ph_pagelist);
597 pool_allocator_free(pp, ph->ph_page);
598 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
599 pool_put(pp->pr_phpool, ph);
600 }
601 }
602
603 /*
604 * Remove a page from the pool.
605 */
606 static inline void
607 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
608 struct pool_pagelist *pq)
609 {
610
611 KASSERT(mutex_owned(&pp->pr_lock));
612
613 /*
614 * If the page was idle, decrement the idle page count.
615 */
616 if (ph->ph_nmissing == 0) {
617 KASSERT(pp->pr_nidle != 0);
618 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
619 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
620 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
621 pp->pr_nidle--;
622 }
623
624 pp->pr_nitems -= pp->pr_itemsperpage;
625
626 /*
627 * Unlink the page from the pool and queue it for release.
628 */
629 LIST_REMOVE(ph, ph_pagelist);
630 if (pp->pr_roflags & PR_PHINPAGE) {
631 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
632 panic("%s: [%s] ph %p poolid %u != %u",
633 __func__, pp->pr_wchan, ph, ph->ph_poolid,
634 pp->pr_poolid);
635 }
636 } else {
637 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
638 }
639 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
640
641 pp->pr_npages--;
642 pp->pr_npagefree++;
643
644 pool_update_curpage(pp);
645 }
646
647 /*
648 * Initialize all the pools listed in the "pools" link set.
649 */
650 void
651 pool_subsystem_init(void)
652 {
653 size_t size;
654 int idx;
655
656 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
657 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
658 cv_init(&pool_busy, "poolbusy");
659
660 /*
661 * Initialize private page header pool and cache magazine pool if we
662 * haven't done so yet.
663 */
664 for (idx = 0; idx < PHPOOL_MAX; idx++) {
665 static char phpool_names[PHPOOL_MAX][6+1+6+1];
666 int nelem;
667 size_t sz;
668
669 nelem = PHPOOL_FREELIST_NELEM(idx);
670 KASSERT(nelem != 0);
671 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
672 "phpool-%d", nelem);
673 sz = offsetof(struct pool_item_header,
674 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
675 pool_init(&phpool[idx], sz, 0, 0, 0,
676 phpool_names[idx], &pool_allocator_meta, IPL_VM);
677 }
678
679 size = sizeof(pcg_t) +
680 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
681 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
682 "pcgnormal", &pool_allocator_meta, IPL_VM);
683
684 size = sizeof(pcg_t) +
685 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
686 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
687 "pcglarge", &pool_allocator_meta, IPL_VM);
688
689 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
690 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
691
692 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
693 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
694 }
695
696 static inline bool
697 pool_init_is_phinpage(const struct pool *pp)
698 {
699 size_t pagesize;
700
701 if (pp->pr_roflags & PR_PHINPAGE) {
702 return true;
703 }
704 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
705 return false;
706 }
707
708 pagesize = pp->pr_alloc->pa_pagesz;
709
710 /*
711 * Threshold: the item size is below 1/16 of a page size, and below
712 * 8 times the page header size. The latter ensures we go off-page
713 * if the page header would make us waste a rather big item.
714 */
715 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
716 return true;
717 }
718
719 /* Put the header into the page if it doesn't waste any items. */
720 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
721 return true;
722 }
723
724 return false;
725 }
726
727 static inline bool
728 pool_init_is_usebmap(const struct pool *pp)
729 {
730 size_t bmapsize;
731
732 if (pp->pr_roflags & PR_NOTOUCH) {
733 return true;
734 }
735
736 /*
737 * If we're off-page, go with a bitmap.
738 */
739 if (!(pp->pr_roflags & PR_PHINPAGE)) {
740 return true;
741 }
742
743 /*
744 * If we're on-page, and the page header can already contain a bitmap
745 * big enough to cover all the items of the page, go with a bitmap.
746 */
747 bmapsize = roundup(PHSIZE, pp->pr_align) -
748 offsetof(struct pool_item_header, ph_bitmap[0]);
749 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
750 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
751 return true;
752 }
753
754 return false;
755 }
756
757 /*
758 * Initialize the given pool resource structure.
759 *
760 * We export this routine to allow other kernel parts to declare
761 * static pools that must be initialized before kmem(9) is available.
762 */
763 void
764 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
765 const char *wchan, struct pool_allocator *palloc, int ipl)
766 {
767 struct pool *pp1;
768 size_t prsize;
769 int itemspace, slack;
770
771 /* XXX ioff will be removed. */
772 KASSERT(ioff == 0);
773
774 #ifdef DEBUG
775 if (__predict_true(!cold))
776 mutex_enter(&pool_head_lock);
777 /*
778 * Check that the pool hasn't already been initialised and
779 * added to the list of all pools.
780 */
781 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
782 if (pp == pp1)
783 panic("%s: [%s] already initialised", __func__,
784 wchan);
785 }
786 if (__predict_true(!cold))
787 mutex_exit(&pool_head_lock);
788 #endif
789
790 if (palloc == NULL)
791 palloc = &pool_allocator_kmem;
792
793 if (!cold)
794 mutex_enter(&pool_allocator_lock);
795 if (palloc->pa_refcnt++ == 0) {
796 if (palloc->pa_pagesz == 0)
797 palloc->pa_pagesz = PAGE_SIZE;
798
799 TAILQ_INIT(&palloc->pa_list);
800
801 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
802 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
803 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
804 }
805 if (!cold)
806 mutex_exit(&pool_allocator_lock);
807
808 if (align == 0)
809 align = ALIGN(1);
810
811 prsize = size;
812 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
813 prsize = sizeof(struct pool_item);
814
815 prsize = roundup(prsize, align);
816 KASSERTMSG((prsize <= palloc->pa_pagesz),
817 "%s: [%s] pool item size (%zu) larger than page size (%u)",
818 __func__, wchan, prsize, palloc->pa_pagesz);
819
820 /*
821 * Initialize the pool structure.
822 */
823 LIST_INIT(&pp->pr_emptypages);
824 LIST_INIT(&pp->pr_fullpages);
825 LIST_INIT(&pp->pr_partpages);
826 pp->pr_cache = NULL;
827 pp->pr_curpage = NULL;
828 pp->pr_npages = 0;
829 pp->pr_minitems = 0;
830 pp->pr_minpages = 0;
831 pp->pr_maxpages = UINT_MAX;
832 pp->pr_roflags = flags;
833 pp->pr_flags = 0;
834 pp->pr_size = prsize;
835 pp->pr_reqsize = size;
836 pp->pr_align = align;
837 pp->pr_wchan = wchan;
838 pp->pr_alloc = palloc;
839 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
840 pp->pr_nitems = 0;
841 pp->pr_nout = 0;
842 pp->pr_hardlimit = UINT_MAX;
843 pp->pr_hardlimit_warning = NULL;
844 pp->pr_hardlimit_ratecap.tv_sec = 0;
845 pp->pr_hardlimit_ratecap.tv_usec = 0;
846 pp->pr_hardlimit_warning_last.tv_sec = 0;
847 pp->pr_hardlimit_warning_last.tv_usec = 0;
848 pp->pr_drain_hook = NULL;
849 pp->pr_drain_hook_arg = NULL;
850 pp->pr_freecheck = NULL;
851 pp->pr_redzone = false;
852 pool_redzone_init(pp, size);
853 pool_quarantine_init(pp);
854
855 /*
856 * Decide whether to put the page header off-page to avoid wasting too
857 * large a part of the page or too big an item. Off-page page headers
858 * go on a hash table, so we can match a returned item with its header
859 * based on the page address.
860 */
861 if (pool_init_is_phinpage(pp)) {
862 /* Use the beginning of the page for the page header */
863 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
864 pp->pr_itemoffset = roundup(PHSIZE, align);
865 pp->pr_roflags |= PR_PHINPAGE;
866 } else {
867 /* The page header will be taken from our page header pool */
868 itemspace = palloc->pa_pagesz;
869 pp->pr_itemoffset = 0;
870 SPLAY_INIT(&pp->pr_phtree);
871 }
872
873 pp->pr_itemsperpage = itemspace / pp->pr_size;
874 KASSERT(pp->pr_itemsperpage != 0);
875
876 /*
877 * Decide whether to use a bitmap or a linked list to manage freed
878 * items.
879 */
880 if (pool_init_is_usebmap(pp)) {
881 pp->pr_roflags |= PR_USEBMAP;
882 }
883
884 /*
885 * If we're off-page, then we're using a bitmap; choose the appropriate
886 * pool to allocate page headers, whose size varies depending on the
887 * bitmap. If we're on-page, nothing to do.
888 */
889 if (!(pp->pr_roflags & PR_PHINPAGE)) {
890 int idx;
891
892 KASSERT(pp->pr_roflags & PR_USEBMAP);
893
894 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
895 idx++) {
896 /* nothing */
897 }
898 if (idx >= PHPOOL_MAX) {
899 /*
900 * if you see this panic, consider to tweak
901 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
902 */
903 panic("%s: [%s] too large itemsperpage(%d) for "
904 "PR_USEBMAP", __func__,
905 pp->pr_wchan, pp->pr_itemsperpage);
906 }
907 pp->pr_phpool = &phpool[idx];
908 } else {
909 pp->pr_phpool = NULL;
910 }
911
912 /*
913 * Use the slack between the chunks and the page header
914 * for "cache coloring".
915 */
916 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
917 pp->pr_maxcolor = rounddown(slack, align);
918 pp->pr_curcolor = 0;
919
920 pp->pr_nget = 0;
921 pp->pr_nfail = 0;
922 pp->pr_nput = 0;
923 pp->pr_npagealloc = 0;
924 pp->pr_npagefree = 0;
925 pp->pr_hiwat = 0;
926 pp->pr_nidle = 0;
927 pp->pr_refcnt = 0;
928
929 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
930 cv_init(&pp->pr_cv, wchan);
931 pp->pr_ipl = ipl;
932
933 /* Insert into the list of all pools. */
934 if (!cold)
935 mutex_enter(&pool_head_lock);
936 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
937 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
938 break;
939 }
940 if (pp1 == NULL)
941 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
942 else
943 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
944 if (!cold)
945 mutex_exit(&pool_head_lock);
946
947 /* Insert this into the list of pools using this allocator. */
948 if (!cold)
949 mutex_enter(&palloc->pa_lock);
950 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
951 if (!cold)
952 mutex_exit(&palloc->pa_lock);
953 }
954
955 /*
956 * De-commision a pool resource.
957 */
958 void
959 pool_destroy(struct pool *pp)
960 {
961 struct pool_pagelist pq;
962 struct pool_item_header *ph;
963
964 pool_quarantine_flush(pp);
965
966 /* Remove from global pool list */
967 mutex_enter(&pool_head_lock);
968 while (pp->pr_refcnt != 0)
969 cv_wait(&pool_busy, &pool_head_lock);
970 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
971 if (drainpp == pp)
972 drainpp = NULL;
973 mutex_exit(&pool_head_lock);
974
975 /* Remove this pool from its allocator's list of pools. */
976 mutex_enter(&pp->pr_alloc->pa_lock);
977 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
978 mutex_exit(&pp->pr_alloc->pa_lock);
979
980 mutex_enter(&pool_allocator_lock);
981 if (--pp->pr_alloc->pa_refcnt == 0)
982 mutex_destroy(&pp->pr_alloc->pa_lock);
983 mutex_exit(&pool_allocator_lock);
984
985 mutex_enter(&pp->pr_lock);
986
987 KASSERT(pp->pr_cache == NULL);
988 KASSERTMSG((pp->pr_nout == 0),
989 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
990 pp->pr_nout);
991 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
992 KASSERT(LIST_EMPTY(&pp->pr_partpages));
993
994 /* Remove all pages */
995 LIST_INIT(&pq);
996 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
997 pr_rmpage(pp, ph, &pq);
998
999 mutex_exit(&pp->pr_lock);
1000
1001 pr_pagelist_free(pp, &pq);
1002 cv_destroy(&pp->pr_cv);
1003 mutex_destroy(&pp->pr_lock);
1004 }
1005
1006 void
1007 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1008 {
1009
1010 /* XXX no locking -- must be used just after pool_init() */
1011 KASSERTMSG((pp->pr_drain_hook == NULL),
1012 "%s: [%s] already set", __func__, pp->pr_wchan);
1013 pp->pr_drain_hook = fn;
1014 pp->pr_drain_hook_arg = arg;
1015 }
1016
1017 static struct pool_item_header *
1018 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1019 {
1020 struct pool_item_header *ph;
1021
1022 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1023 ph = storage;
1024 else
1025 ph = pool_get(pp->pr_phpool, flags);
1026
1027 return ph;
1028 }
1029
1030 /*
1031 * Grab an item from the pool.
1032 */
1033 void *
1034 pool_get(struct pool *pp, int flags)
1035 {
1036 struct pool_item_header *ph;
1037 void *v;
1038
1039 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1040 KASSERTMSG((pp->pr_itemsperpage != 0),
1041 "%s: [%s] pr_itemsperpage is zero, "
1042 "pool not initialized?", __func__, pp->pr_wchan);
1043 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1044 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1045 "%s: [%s] is IPL_NONE, but called from interrupt context",
1046 __func__, pp->pr_wchan);
1047 if (flags & PR_WAITOK) {
1048 ASSERT_SLEEPABLE();
1049 }
1050
1051 mutex_enter(&pp->pr_lock);
1052 startover:
1053 /*
1054 * Check to see if we've reached the hard limit. If we have,
1055 * and we can wait, then wait until an item has been returned to
1056 * the pool.
1057 */
1058 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1059 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1060 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1061 if (pp->pr_drain_hook != NULL) {
1062 /*
1063 * Since the drain hook is going to free things
1064 * back to the pool, unlock, call the hook, re-lock,
1065 * and check the hardlimit condition again.
1066 */
1067 mutex_exit(&pp->pr_lock);
1068 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1069 mutex_enter(&pp->pr_lock);
1070 if (pp->pr_nout < pp->pr_hardlimit)
1071 goto startover;
1072 }
1073
1074 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1075 /*
1076 * XXX: A warning isn't logged in this case. Should
1077 * it be?
1078 */
1079 pp->pr_flags |= PR_WANTED;
1080 do {
1081 cv_wait(&pp->pr_cv, &pp->pr_lock);
1082 } while (pp->pr_flags & PR_WANTED);
1083 goto startover;
1084 }
1085
1086 /*
1087 * Log a message that the hard limit has been hit.
1088 */
1089 if (pp->pr_hardlimit_warning != NULL &&
1090 ratecheck(&pp->pr_hardlimit_warning_last,
1091 &pp->pr_hardlimit_ratecap))
1092 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1093
1094 pp->pr_nfail++;
1095
1096 mutex_exit(&pp->pr_lock);
1097 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1098 return NULL;
1099 }
1100
1101 /*
1102 * The convention we use is that if `curpage' is not NULL, then
1103 * it points at a non-empty bucket. In particular, `curpage'
1104 * never points at a page header which has PR_PHINPAGE set and
1105 * has no items in its bucket.
1106 */
1107 if ((ph = pp->pr_curpage) == NULL) {
1108 int error;
1109
1110 KASSERTMSG((pp->pr_nitems == 0),
1111 "%s: [%s] curpage NULL, inconsistent nitems %u",
1112 __func__, pp->pr_wchan, pp->pr_nitems);
1113
1114 /*
1115 * Call the back-end page allocator for more memory.
1116 * Release the pool lock, as the back-end page allocator
1117 * may block.
1118 */
1119 error = pool_grow(pp, flags);
1120 if (error != 0) {
1121 /*
1122 * pool_grow aborts when another thread
1123 * is allocating a new page. Retry if it
1124 * waited for it.
1125 */
1126 if (error == ERESTART)
1127 goto startover;
1128
1129 /*
1130 * We were unable to allocate a page or item
1131 * header, but we released the lock during
1132 * allocation, so perhaps items were freed
1133 * back to the pool. Check for this case.
1134 */
1135 if (pp->pr_curpage != NULL)
1136 goto startover;
1137
1138 pp->pr_nfail++;
1139 mutex_exit(&pp->pr_lock);
1140 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1141 return NULL;
1142 }
1143
1144 /* Start the allocation process over. */
1145 goto startover;
1146 }
1147 if (pp->pr_roflags & PR_USEBMAP) {
1148 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1149 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1150 v = pr_item_bitmap_get(pp, ph);
1151 } else {
1152 v = pr_item_linkedlist_get(pp, ph);
1153 }
1154 pp->pr_nitems--;
1155 pp->pr_nout++;
1156 if (ph->ph_nmissing == 0) {
1157 KASSERT(pp->pr_nidle > 0);
1158 pp->pr_nidle--;
1159
1160 /*
1161 * This page was previously empty. Move it to the list of
1162 * partially-full pages. This page is already curpage.
1163 */
1164 LIST_REMOVE(ph, ph_pagelist);
1165 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1166 }
1167 ph->ph_nmissing++;
1168 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1169 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1170 LIST_EMPTY(&ph->ph_itemlist)),
1171 "%s: [%s] nmissing (%u) inconsistent", __func__,
1172 pp->pr_wchan, ph->ph_nmissing);
1173 /*
1174 * This page is now full. Move it to the full list
1175 * and select a new current page.
1176 */
1177 LIST_REMOVE(ph, ph_pagelist);
1178 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1179 pool_update_curpage(pp);
1180 }
1181
1182 pp->pr_nget++;
1183
1184 /*
1185 * If we have a low water mark and we are now below that low
1186 * water mark, add more items to the pool.
1187 */
1188 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1189 /*
1190 * XXX: Should we log a warning? Should we set up a timeout
1191 * to try again in a second or so? The latter could break
1192 * a caller's assumptions about interrupt protection, etc.
1193 */
1194 }
1195
1196 mutex_exit(&pp->pr_lock);
1197 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1198 FREECHECK_OUT(&pp->pr_freecheck, v);
1199 pool_redzone_fill(pp, v);
1200 pool_get_kmsan(pp, v);
1201 if (flags & PR_ZERO)
1202 memset(v, 0, pp->pr_reqsize);
1203 return v;
1204 }
1205
1206 /*
1207 * Internal version of pool_put(). Pool is already locked/entered.
1208 */
1209 static void
1210 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1211 {
1212 struct pool_item_header *ph;
1213
1214 KASSERT(mutex_owned(&pp->pr_lock));
1215 pool_redzone_check(pp, v);
1216 pool_put_kmsan(pp, v);
1217 FREECHECK_IN(&pp->pr_freecheck, v);
1218 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1219
1220 KASSERTMSG((pp->pr_nout > 0),
1221 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1222
1223 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1224 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1225 }
1226
1227 /*
1228 * Return to item list.
1229 */
1230 if (pp->pr_roflags & PR_USEBMAP) {
1231 pr_item_bitmap_put(pp, ph, v);
1232 } else {
1233 pr_item_linkedlist_put(pp, ph, v);
1234 }
1235 KDASSERT(ph->ph_nmissing != 0);
1236 ph->ph_nmissing--;
1237 pp->pr_nput++;
1238 pp->pr_nitems++;
1239 pp->pr_nout--;
1240
1241 /* Cancel "pool empty" condition if it exists */
1242 if (pp->pr_curpage == NULL)
1243 pp->pr_curpage = ph;
1244
1245 if (pp->pr_flags & PR_WANTED) {
1246 pp->pr_flags &= ~PR_WANTED;
1247 cv_broadcast(&pp->pr_cv);
1248 }
1249
1250 /*
1251 * If this page is now empty, do one of two things:
1252 *
1253 * (1) If we have more pages than the page high water mark,
1254 * free the page back to the system. ONLY CONSIDER
1255 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1256 * CLAIM.
1257 *
1258 * (2) Otherwise, move the page to the empty page list.
1259 *
1260 * Either way, select a new current page (so we use a partially-full
1261 * page if one is available).
1262 */
1263 if (ph->ph_nmissing == 0) {
1264 pp->pr_nidle++;
1265 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1266 pp->pr_npages > pp->pr_minpages &&
1267 pp->pr_npages > pp->pr_maxpages) {
1268 pr_rmpage(pp, ph, pq);
1269 } else {
1270 LIST_REMOVE(ph, ph_pagelist);
1271 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1272
1273 /*
1274 * Update the timestamp on the page. A page must
1275 * be idle for some period of time before it can
1276 * be reclaimed by the pagedaemon. This minimizes
1277 * ping-pong'ing for memory.
1278 *
1279 * note for 64-bit time_t: truncating to 32-bit is not
1280 * a problem for our usage.
1281 */
1282 ph->ph_time = time_uptime;
1283 }
1284 pool_update_curpage(pp);
1285 }
1286
1287 /*
1288 * If the page was previously completely full, move it to the
1289 * partially-full list and make it the current page. The next
1290 * allocation will get the item from this page, instead of
1291 * further fragmenting the pool.
1292 */
1293 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1294 LIST_REMOVE(ph, ph_pagelist);
1295 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1296 pp->pr_curpage = ph;
1297 }
1298 }
1299
1300 void
1301 pool_put(struct pool *pp, void *v)
1302 {
1303 struct pool_pagelist pq;
1304
1305 LIST_INIT(&pq);
1306
1307 mutex_enter(&pp->pr_lock);
1308 if (!pool_put_quarantine(pp, v, &pq)) {
1309 pool_do_put(pp, v, &pq);
1310 }
1311 mutex_exit(&pp->pr_lock);
1312
1313 pr_pagelist_free(pp, &pq);
1314 }
1315
1316 /*
1317 * pool_grow: grow a pool by a page.
1318 *
1319 * => called with pool locked.
1320 * => unlock and relock the pool.
1321 * => return with pool locked.
1322 */
1323
1324 static int
1325 pool_grow(struct pool *pp, int flags)
1326 {
1327 struct pool_item_header *ph;
1328 char *storage;
1329
1330 /*
1331 * If there's a pool_grow in progress, wait for it to complete
1332 * and try again from the top.
1333 */
1334 if (pp->pr_flags & PR_GROWING) {
1335 if (flags & PR_WAITOK) {
1336 do {
1337 cv_wait(&pp->pr_cv, &pp->pr_lock);
1338 } while (pp->pr_flags & PR_GROWING);
1339 return ERESTART;
1340 } else {
1341 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1342 /*
1343 * This needs an unlock/relock dance so
1344 * that the other caller has a chance to
1345 * run and actually do the thing. Note
1346 * that this is effectively a busy-wait.
1347 */
1348 mutex_exit(&pp->pr_lock);
1349 mutex_enter(&pp->pr_lock);
1350 return ERESTART;
1351 }
1352 return EWOULDBLOCK;
1353 }
1354 }
1355 pp->pr_flags |= PR_GROWING;
1356 if (flags & PR_WAITOK)
1357 mutex_exit(&pp->pr_lock);
1358 else
1359 pp->pr_flags |= PR_GROWINGNOWAIT;
1360
1361 storage = pool_allocator_alloc(pp, flags);
1362 if (__predict_false(storage == NULL))
1363 goto out;
1364
1365 ph = pool_alloc_item_header(pp, storage, flags);
1366 if (__predict_false(ph == NULL)) {
1367 pool_allocator_free(pp, storage);
1368 goto out;
1369 }
1370
1371 if (flags & PR_WAITOK)
1372 mutex_enter(&pp->pr_lock);
1373 pool_prime_page(pp, storage, ph);
1374 pp->pr_npagealloc++;
1375 KASSERT(pp->pr_flags & PR_GROWING);
1376 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1377 /*
1378 * If anyone was waiting for pool_grow, notify them that we
1379 * may have just done it.
1380 */
1381 cv_broadcast(&pp->pr_cv);
1382 return 0;
1383 out:
1384 if (flags & PR_WAITOK)
1385 mutex_enter(&pp->pr_lock);
1386 KASSERT(pp->pr_flags & PR_GROWING);
1387 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1388 return ENOMEM;
1389 }
1390
1391 void
1392 pool_prime(struct pool *pp, int n)
1393 {
1394
1395 mutex_enter(&pp->pr_lock);
1396 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1397 if (pp->pr_maxpages <= pp->pr_minpages)
1398 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1399 while (pp->pr_npages < pp->pr_minpages)
1400 (void) pool_grow(pp, PR_WAITOK);
1401 mutex_exit(&pp->pr_lock);
1402 }
1403
1404 /*
1405 * Add a page worth of items to the pool.
1406 *
1407 * Note, we must be called with the pool descriptor LOCKED.
1408 */
1409 static void
1410 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1411 {
1412 const unsigned int align = pp->pr_align;
1413 struct pool_item *pi;
1414 void *cp = storage;
1415 int n;
1416
1417 KASSERT(mutex_owned(&pp->pr_lock));
1418 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1419 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1420 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1421
1422 /*
1423 * Insert page header.
1424 */
1425 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1426 LIST_INIT(&ph->ph_itemlist);
1427 ph->ph_page = storage;
1428 ph->ph_nmissing = 0;
1429 ph->ph_time = time_uptime;
1430 if (pp->pr_roflags & PR_PHINPAGE)
1431 ph->ph_poolid = pp->pr_poolid;
1432 else
1433 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1434
1435 pp->pr_nidle++;
1436
1437 /*
1438 * The item space starts after the on-page header, if any.
1439 */
1440 ph->ph_off = pp->pr_itemoffset;
1441
1442 /*
1443 * Color this page.
1444 */
1445 ph->ph_off += pp->pr_curcolor;
1446 cp = (char *)cp + ph->ph_off;
1447 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1448 pp->pr_curcolor = 0;
1449
1450 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1451
1452 /*
1453 * Insert remaining chunks on the bucket list.
1454 */
1455 n = pp->pr_itemsperpage;
1456 pp->pr_nitems += n;
1457
1458 if (pp->pr_roflags & PR_USEBMAP) {
1459 pr_item_bitmap_init(pp, ph);
1460 } else {
1461 while (n--) {
1462 pi = (struct pool_item *)cp;
1463
1464 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1465
1466 /* Insert on page list */
1467 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1468 #ifdef POOL_CHECK_MAGIC
1469 pi->pi_magic = PI_MAGIC;
1470 #endif
1471 cp = (char *)cp + pp->pr_size;
1472
1473 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1474 }
1475 }
1476
1477 /*
1478 * If the pool was depleted, point at the new page.
1479 */
1480 if (pp->pr_curpage == NULL)
1481 pp->pr_curpage = ph;
1482
1483 if (++pp->pr_npages > pp->pr_hiwat)
1484 pp->pr_hiwat = pp->pr_npages;
1485 }
1486
1487 /*
1488 * Used by pool_get() when nitems drops below the low water mark. This
1489 * is used to catch up pr_nitems with the low water mark.
1490 *
1491 * Note 1, we never wait for memory here, we let the caller decide what to do.
1492 *
1493 * Note 2, we must be called with the pool already locked, and we return
1494 * with it locked.
1495 */
1496 static int
1497 pool_catchup(struct pool *pp)
1498 {
1499 int error = 0;
1500
1501 while (POOL_NEEDS_CATCHUP(pp)) {
1502 error = pool_grow(pp, PR_NOWAIT);
1503 if (error) {
1504 if (error == ERESTART)
1505 continue;
1506 break;
1507 }
1508 }
1509 return error;
1510 }
1511
1512 static void
1513 pool_update_curpage(struct pool *pp)
1514 {
1515
1516 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1517 if (pp->pr_curpage == NULL) {
1518 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1519 }
1520 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1521 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1522 }
1523
1524 void
1525 pool_setlowat(struct pool *pp, int n)
1526 {
1527
1528 mutex_enter(&pp->pr_lock);
1529 pp->pr_minitems = n;
1530
1531 /* Make sure we're caught up with the newly-set low water mark. */
1532 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1533 /*
1534 * XXX: Should we log a warning? Should we set up a timeout
1535 * to try again in a second or so? The latter could break
1536 * a caller's assumptions about interrupt protection, etc.
1537 */
1538 }
1539
1540 mutex_exit(&pp->pr_lock);
1541 }
1542
1543 void
1544 pool_sethiwat(struct pool *pp, int n)
1545 {
1546
1547 mutex_enter(&pp->pr_lock);
1548
1549 pp->pr_maxitems = n;
1550
1551 mutex_exit(&pp->pr_lock);
1552 }
1553
1554 void
1555 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1556 {
1557
1558 mutex_enter(&pp->pr_lock);
1559
1560 pp->pr_hardlimit = n;
1561 pp->pr_hardlimit_warning = warnmess;
1562 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1563 pp->pr_hardlimit_warning_last.tv_sec = 0;
1564 pp->pr_hardlimit_warning_last.tv_usec = 0;
1565
1566 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1567
1568 mutex_exit(&pp->pr_lock);
1569 }
1570
1571 /*
1572 * Release all complete pages that have not been used recently.
1573 *
1574 * Must not be called from interrupt context.
1575 */
1576 int
1577 pool_reclaim(struct pool *pp)
1578 {
1579 struct pool_item_header *ph, *phnext;
1580 struct pool_pagelist pq;
1581 uint32_t curtime;
1582 bool klock;
1583 int rv;
1584
1585 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1586
1587 if (pp->pr_drain_hook != NULL) {
1588 /*
1589 * The drain hook must be called with the pool unlocked.
1590 */
1591 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1592 }
1593
1594 /*
1595 * XXXSMP Because we do not want to cause non-MPSAFE code
1596 * to block.
1597 */
1598 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1599 pp->pr_ipl == IPL_SOFTSERIAL) {
1600 KERNEL_LOCK(1, NULL);
1601 klock = true;
1602 } else
1603 klock = false;
1604
1605 /* Reclaim items from the pool's cache (if any). */
1606 if (pp->pr_cache != NULL)
1607 pool_cache_invalidate(pp->pr_cache);
1608
1609 if (mutex_tryenter(&pp->pr_lock) == 0) {
1610 if (klock) {
1611 KERNEL_UNLOCK_ONE(NULL);
1612 }
1613 return 0;
1614 }
1615
1616 LIST_INIT(&pq);
1617
1618 curtime = time_uptime;
1619
1620 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1621 phnext = LIST_NEXT(ph, ph_pagelist);
1622
1623 /* Check our minimum page claim */
1624 if (pp->pr_npages <= pp->pr_minpages)
1625 break;
1626
1627 KASSERT(ph->ph_nmissing == 0);
1628 if (curtime - ph->ph_time < pool_inactive_time)
1629 continue;
1630
1631 /*
1632 * If freeing this page would put us below the minimum free items
1633 * or the minimum pages, stop now.
1634 */
1635 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1636 pp->pr_npages - 1 < pp->pr_minpages)
1637 break;
1638
1639 pr_rmpage(pp, ph, &pq);
1640 }
1641
1642 mutex_exit(&pp->pr_lock);
1643
1644 if (LIST_EMPTY(&pq))
1645 rv = 0;
1646 else {
1647 pr_pagelist_free(pp, &pq);
1648 rv = 1;
1649 }
1650
1651 if (klock) {
1652 KERNEL_UNLOCK_ONE(NULL);
1653 }
1654
1655 return rv;
1656 }
1657
1658 /*
1659 * Drain pools, one at a time. The drained pool is returned within ppp.
1660 *
1661 * Note, must never be called from interrupt context.
1662 */
1663 bool
1664 pool_drain(struct pool **ppp)
1665 {
1666 bool reclaimed;
1667 struct pool *pp;
1668
1669 KASSERT(!TAILQ_EMPTY(&pool_head));
1670
1671 pp = NULL;
1672
1673 /* Find next pool to drain, and add a reference. */
1674 mutex_enter(&pool_head_lock);
1675 do {
1676 if (drainpp == NULL) {
1677 drainpp = TAILQ_FIRST(&pool_head);
1678 }
1679 if (drainpp != NULL) {
1680 pp = drainpp;
1681 drainpp = TAILQ_NEXT(pp, pr_poollist);
1682 }
1683 /*
1684 * Skip completely idle pools. We depend on at least
1685 * one pool in the system being active.
1686 */
1687 } while (pp == NULL || pp->pr_npages == 0);
1688 pp->pr_refcnt++;
1689 mutex_exit(&pool_head_lock);
1690
1691 /* Drain the cache (if any) and pool.. */
1692 reclaimed = pool_reclaim(pp);
1693
1694 /* Finally, unlock the pool. */
1695 mutex_enter(&pool_head_lock);
1696 pp->pr_refcnt--;
1697 cv_broadcast(&pool_busy);
1698 mutex_exit(&pool_head_lock);
1699
1700 if (ppp != NULL)
1701 *ppp = pp;
1702
1703 return reclaimed;
1704 }
1705
1706 /*
1707 * Calculate the total number of pages consumed by pools.
1708 */
1709 int
1710 pool_totalpages(void)
1711 {
1712
1713 mutex_enter(&pool_head_lock);
1714 int pages = pool_totalpages_locked();
1715 mutex_exit(&pool_head_lock);
1716
1717 return pages;
1718 }
1719
1720 int
1721 pool_totalpages_locked(void)
1722 {
1723 struct pool *pp;
1724 uint64_t total = 0;
1725
1726 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1727 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1728
1729 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1730 bytes -= (pp->pr_nout * pp->pr_size);
1731 total += bytes;
1732 }
1733
1734 return atop(total);
1735 }
1736
1737 /*
1738 * Diagnostic helpers.
1739 */
1740
1741 void
1742 pool_printall(const char *modif, void (*pr)(const char *, ...))
1743 {
1744 struct pool *pp;
1745
1746 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1747 pool_printit(pp, modif, pr);
1748 }
1749 }
1750
1751 void
1752 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1753 {
1754
1755 if (pp == NULL) {
1756 (*pr)("Must specify a pool to print.\n");
1757 return;
1758 }
1759
1760 pool_print1(pp, modif, pr);
1761 }
1762
1763 static void
1764 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1765 void (*pr)(const char *, ...))
1766 {
1767 struct pool_item_header *ph;
1768
1769 LIST_FOREACH(ph, pl, ph_pagelist) {
1770 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1771 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1772 #ifdef POOL_CHECK_MAGIC
1773 struct pool_item *pi;
1774 if (!(pp->pr_roflags & PR_USEBMAP)) {
1775 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1776 if (pi->pi_magic != PI_MAGIC) {
1777 (*pr)("\t\t\titem %p, magic 0x%x\n",
1778 pi, pi->pi_magic);
1779 }
1780 }
1781 }
1782 #endif
1783 }
1784 }
1785
1786 static void
1787 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1788 {
1789 struct pool_item_header *ph;
1790 pool_cache_t pc;
1791 pcg_t *pcg;
1792 pool_cache_cpu_t *cc;
1793 uint64_t cpuhit, cpumiss;
1794 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1795 char c;
1796
1797 while ((c = *modif++) != '\0') {
1798 if (c == 'l')
1799 print_log = 1;
1800 if (c == 'p')
1801 print_pagelist = 1;
1802 if (c == 'c')
1803 print_cache = 1;
1804 }
1805
1806 if ((pc = pp->pr_cache) != NULL) {
1807 (*pr)("POOL CACHE");
1808 } else {
1809 (*pr)("POOL");
1810 }
1811
1812 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1813 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1814 pp->pr_roflags);
1815 (*pr)("\talloc %p\n", pp->pr_alloc);
1816 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1817 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1818 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1819 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1820
1821 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1822 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1823 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1824 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1825
1826 if (print_pagelist == 0)
1827 goto skip_pagelist;
1828
1829 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1830 (*pr)("\n\tempty page list:\n");
1831 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1832 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1833 (*pr)("\n\tfull page list:\n");
1834 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1835 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1836 (*pr)("\n\tpartial-page list:\n");
1837 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1838
1839 if (pp->pr_curpage == NULL)
1840 (*pr)("\tno current page\n");
1841 else
1842 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1843
1844 skip_pagelist:
1845 if (print_log == 0)
1846 goto skip_log;
1847
1848 (*pr)("\n");
1849
1850 skip_log:
1851
1852 #define PR_GROUPLIST(pcg) \
1853 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1854 for (i = 0; i < pcg->pcg_size; i++) { \
1855 if (pcg->pcg_objects[i].pcgo_pa != \
1856 POOL_PADDR_INVALID) { \
1857 (*pr)("\t\t\t%p, 0x%llx\n", \
1858 pcg->pcg_objects[i].pcgo_va, \
1859 (unsigned long long) \
1860 pcg->pcg_objects[i].pcgo_pa); \
1861 } else { \
1862 (*pr)("\t\t\t%p\n", \
1863 pcg->pcg_objects[i].pcgo_va); \
1864 } \
1865 }
1866
1867 if (pc != NULL) {
1868 cpuhit = 0;
1869 cpumiss = 0;
1870 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1871 if ((cc = pc->pc_cpus[i]) == NULL)
1872 continue;
1873 cpuhit += cc->cc_hits;
1874 cpumiss += cc->cc_misses;
1875 }
1876 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1877 (*pr)("\tcache layer hits %llu misses %llu\n",
1878 pc->pc_hits, pc->pc_misses);
1879 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1880 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1881 pc->pc_contended);
1882 (*pr)("\tcache layer empty groups %u full groups %u\n",
1883 pc->pc_nempty, pc->pc_nfull);
1884 if (print_cache) {
1885 (*pr)("\tfull cache groups:\n");
1886 for (pcg = pc->pc_fullgroups; pcg != NULL;
1887 pcg = pcg->pcg_next) {
1888 PR_GROUPLIST(pcg);
1889 }
1890 (*pr)("\tempty cache groups:\n");
1891 for (pcg = pc->pc_emptygroups; pcg != NULL;
1892 pcg = pcg->pcg_next) {
1893 PR_GROUPLIST(pcg);
1894 }
1895 }
1896 }
1897 #undef PR_GROUPLIST
1898 }
1899
1900 static int
1901 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1902 {
1903 struct pool_item *pi;
1904 void *page;
1905 int n;
1906
1907 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1908 page = POOL_OBJ_TO_PAGE(pp, ph);
1909 if (page != ph->ph_page &&
1910 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1911 if (label != NULL)
1912 printf("%s: ", label);
1913 printf("pool(%p:%s): page inconsistency: page %p;"
1914 " at page head addr %p (p %p)\n", pp,
1915 pp->pr_wchan, ph->ph_page,
1916 ph, page);
1917 return 1;
1918 }
1919 }
1920
1921 if ((pp->pr_roflags & PR_USEBMAP) != 0)
1922 return 0;
1923
1924 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1925 pi != NULL;
1926 pi = LIST_NEXT(pi,pi_list), n++) {
1927
1928 #ifdef POOL_CHECK_MAGIC
1929 if (pi->pi_magic != PI_MAGIC) {
1930 if (label != NULL)
1931 printf("%s: ", label);
1932 printf("pool(%s): free list modified: magic=%x;"
1933 " page %p; item ordinal %d; addr %p\n",
1934 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1935 n, pi);
1936 panic("pool");
1937 }
1938 #endif
1939 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1940 continue;
1941 }
1942 page = POOL_OBJ_TO_PAGE(pp, pi);
1943 if (page == ph->ph_page)
1944 continue;
1945
1946 if (label != NULL)
1947 printf("%s: ", label);
1948 printf("pool(%p:%s): page inconsistency: page %p;"
1949 " item ordinal %d; addr %p (p %p)\n", pp,
1950 pp->pr_wchan, ph->ph_page,
1951 n, pi, page);
1952 return 1;
1953 }
1954 return 0;
1955 }
1956
1957
1958 int
1959 pool_chk(struct pool *pp, const char *label)
1960 {
1961 struct pool_item_header *ph;
1962 int r = 0;
1963
1964 mutex_enter(&pp->pr_lock);
1965 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1966 r = pool_chk_page(pp, label, ph);
1967 if (r) {
1968 goto out;
1969 }
1970 }
1971 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1972 r = pool_chk_page(pp, label, ph);
1973 if (r) {
1974 goto out;
1975 }
1976 }
1977 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1978 r = pool_chk_page(pp, label, ph);
1979 if (r) {
1980 goto out;
1981 }
1982 }
1983
1984 out:
1985 mutex_exit(&pp->pr_lock);
1986 return r;
1987 }
1988
1989 /*
1990 * pool_cache_init:
1991 *
1992 * Initialize a pool cache.
1993 */
1994 pool_cache_t
1995 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1996 const char *wchan, struct pool_allocator *palloc, int ipl,
1997 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1998 {
1999 pool_cache_t pc;
2000
2001 pc = pool_get(&cache_pool, PR_WAITOK);
2002 if (pc == NULL)
2003 return NULL;
2004
2005 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2006 palloc, ipl, ctor, dtor, arg);
2007
2008 return pc;
2009 }
2010
2011 /*
2012 * pool_cache_bootstrap:
2013 *
2014 * Kernel-private version of pool_cache_init(). The caller
2015 * provides initial storage.
2016 */
2017 void
2018 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2019 u_int align_offset, u_int flags, const char *wchan,
2020 struct pool_allocator *palloc, int ipl,
2021 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2022 void *arg)
2023 {
2024 CPU_INFO_ITERATOR cii;
2025 pool_cache_t pc1;
2026 struct cpu_info *ci;
2027 struct pool *pp;
2028
2029 pp = &pc->pc_pool;
2030 if (palloc == NULL && ipl == IPL_NONE) {
2031 if (size > PAGE_SIZE) {
2032 int bigidx = pool_bigidx(size);
2033
2034 palloc = &pool_allocator_big[bigidx];
2035 flags |= PR_NOALIGN;
2036 } else
2037 palloc = &pool_allocator_nointr;
2038 }
2039 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2040 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2041
2042 if (ctor == NULL) {
2043 ctor = NO_CTOR;
2044 }
2045 if (dtor == NULL) {
2046 dtor = NO_DTOR;
2047 }
2048
2049 pc->pc_emptygroups = NULL;
2050 pc->pc_fullgroups = NULL;
2051 pc->pc_partgroups = NULL;
2052 pc->pc_ctor = ctor;
2053 pc->pc_dtor = dtor;
2054 pc->pc_arg = arg;
2055 pc->pc_hits = 0;
2056 pc->pc_misses = 0;
2057 pc->pc_nempty = 0;
2058 pc->pc_npart = 0;
2059 pc->pc_nfull = 0;
2060 pc->pc_contended = 0;
2061 pc->pc_refcnt = 0;
2062 pc->pc_freecheck = NULL;
2063
2064 if ((flags & PR_LARGECACHE) != 0) {
2065 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2066 pc->pc_pcgpool = &pcg_large_pool;
2067 } else {
2068 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2069 pc->pc_pcgpool = &pcg_normal_pool;
2070 }
2071
2072 /* Allocate per-CPU caches. */
2073 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2074 pc->pc_ncpu = 0;
2075 if (ncpu < 2) {
2076 /* XXX For sparc: boot CPU is not attached yet. */
2077 pool_cache_cpu_init1(curcpu(), pc);
2078 } else {
2079 for (CPU_INFO_FOREACH(cii, ci)) {
2080 pool_cache_cpu_init1(ci, pc);
2081 }
2082 }
2083
2084 /* Add to list of all pools. */
2085 if (__predict_true(!cold))
2086 mutex_enter(&pool_head_lock);
2087 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2088 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2089 break;
2090 }
2091 if (pc1 == NULL)
2092 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2093 else
2094 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2095 if (__predict_true(!cold))
2096 mutex_exit(&pool_head_lock);
2097
2098 membar_sync();
2099 pp->pr_cache = pc;
2100 }
2101
2102 /*
2103 * pool_cache_destroy:
2104 *
2105 * Destroy a pool cache.
2106 */
2107 void
2108 pool_cache_destroy(pool_cache_t pc)
2109 {
2110
2111 pool_cache_bootstrap_destroy(pc);
2112 pool_put(&cache_pool, pc);
2113 }
2114
2115 /*
2116 * pool_cache_bootstrap_destroy:
2117 *
2118 * Destroy a pool cache.
2119 */
2120 void
2121 pool_cache_bootstrap_destroy(pool_cache_t pc)
2122 {
2123 struct pool *pp = &pc->pc_pool;
2124 u_int i;
2125
2126 /* Remove it from the global list. */
2127 mutex_enter(&pool_head_lock);
2128 while (pc->pc_refcnt != 0)
2129 cv_wait(&pool_busy, &pool_head_lock);
2130 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2131 mutex_exit(&pool_head_lock);
2132
2133 /* First, invalidate the entire cache. */
2134 pool_cache_invalidate(pc);
2135
2136 /* Disassociate it from the pool. */
2137 mutex_enter(&pp->pr_lock);
2138 pp->pr_cache = NULL;
2139 mutex_exit(&pp->pr_lock);
2140
2141 /* Destroy per-CPU data */
2142 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2143 pool_cache_invalidate_cpu(pc, i);
2144
2145 /* Finally, destroy it. */
2146 mutex_destroy(&pc->pc_lock);
2147 pool_destroy(pp);
2148 }
2149
2150 /*
2151 * pool_cache_cpu_init1:
2152 *
2153 * Called for each pool_cache whenever a new CPU is attached.
2154 */
2155 static void
2156 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2157 {
2158 pool_cache_cpu_t *cc;
2159 int index;
2160
2161 index = ci->ci_index;
2162
2163 KASSERT(index < __arraycount(pc->pc_cpus));
2164
2165 if ((cc = pc->pc_cpus[index]) != NULL) {
2166 KASSERT(cc->cc_cpuindex == index);
2167 return;
2168 }
2169
2170 /*
2171 * The first CPU is 'free'. This needs to be the case for
2172 * bootstrap - we may not be able to allocate yet.
2173 */
2174 if (pc->pc_ncpu == 0) {
2175 cc = &pc->pc_cpu0;
2176 pc->pc_ncpu = 1;
2177 } else {
2178 mutex_enter(&pc->pc_lock);
2179 pc->pc_ncpu++;
2180 mutex_exit(&pc->pc_lock);
2181 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2182 }
2183
2184 cc->cc_ipl = pc->pc_pool.pr_ipl;
2185 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2186 cc->cc_cache = pc;
2187 cc->cc_cpuindex = index;
2188 cc->cc_hits = 0;
2189 cc->cc_misses = 0;
2190 cc->cc_current = __UNCONST(&pcg_dummy);
2191 cc->cc_previous = __UNCONST(&pcg_dummy);
2192
2193 pc->pc_cpus[index] = cc;
2194 }
2195
2196 /*
2197 * pool_cache_cpu_init:
2198 *
2199 * Called whenever a new CPU is attached.
2200 */
2201 void
2202 pool_cache_cpu_init(struct cpu_info *ci)
2203 {
2204 pool_cache_t pc;
2205
2206 mutex_enter(&pool_head_lock);
2207 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2208 pc->pc_refcnt++;
2209 mutex_exit(&pool_head_lock);
2210
2211 pool_cache_cpu_init1(ci, pc);
2212
2213 mutex_enter(&pool_head_lock);
2214 pc->pc_refcnt--;
2215 cv_broadcast(&pool_busy);
2216 }
2217 mutex_exit(&pool_head_lock);
2218 }
2219
2220 /*
2221 * pool_cache_reclaim:
2222 *
2223 * Reclaim memory from a pool cache.
2224 */
2225 bool
2226 pool_cache_reclaim(pool_cache_t pc)
2227 {
2228
2229 return pool_reclaim(&pc->pc_pool);
2230 }
2231
2232 static void
2233 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2234 {
2235 (*pc->pc_dtor)(pc->pc_arg, object);
2236 pool_put(&pc->pc_pool, object);
2237 }
2238
2239 /*
2240 * pool_cache_destruct_object:
2241 *
2242 * Force destruction of an object and its release back into
2243 * the pool.
2244 */
2245 void
2246 pool_cache_destruct_object(pool_cache_t pc, void *object)
2247 {
2248
2249 FREECHECK_IN(&pc->pc_freecheck, object);
2250
2251 pool_cache_destruct_object1(pc, object);
2252 }
2253
2254 /*
2255 * pool_cache_invalidate_groups:
2256 *
2257 * Invalidate a chain of groups and destruct all objects.
2258 */
2259 static void
2260 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2261 {
2262 void *object;
2263 pcg_t *next;
2264 int i;
2265
2266 for (; pcg != NULL; pcg = next) {
2267 next = pcg->pcg_next;
2268
2269 for (i = 0; i < pcg->pcg_avail; i++) {
2270 object = pcg->pcg_objects[i].pcgo_va;
2271 pool_cache_destruct_object1(pc, object);
2272 }
2273
2274 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2275 pool_put(&pcg_large_pool, pcg);
2276 } else {
2277 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2278 pool_put(&pcg_normal_pool, pcg);
2279 }
2280 }
2281 }
2282
2283 /*
2284 * pool_cache_invalidate:
2285 *
2286 * Invalidate a pool cache (destruct and release all of the
2287 * cached objects). Does not reclaim objects from the pool.
2288 *
2289 * Note: For pool caches that provide constructed objects, there
2290 * is an assumption that another level of synchronization is occurring
2291 * between the input to the constructor and the cache invalidation.
2292 *
2293 * Invalidation is a costly process and should not be called from
2294 * interrupt context.
2295 */
2296 void
2297 pool_cache_invalidate(pool_cache_t pc)
2298 {
2299 uint64_t where;
2300 pcg_t *full, *empty, *part;
2301
2302 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2303
2304 if (ncpu < 2 || !mp_online) {
2305 /*
2306 * We might be called early enough in the boot process
2307 * for the CPU data structures to not be fully initialized.
2308 * In this case, transfer the content of the local CPU's
2309 * cache back into global cache as only this CPU is currently
2310 * running.
2311 */
2312 pool_cache_transfer(pc);
2313 } else {
2314 /*
2315 * Signal all CPUs that they must transfer their local
2316 * cache back to the global pool then wait for the xcall to
2317 * complete.
2318 */
2319 where = xc_broadcast(0,
2320 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2321 xc_wait(where);
2322 }
2323
2324 /* Empty pool caches, then invalidate objects */
2325 mutex_enter(&pc->pc_lock);
2326 full = pc->pc_fullgroups;
2327 empty = pc->pc_emptygroups;
2328 part = pc->pc_partgroups;
2329 pc->pc_fullgroups = NULL;
2330 pc->pc_emptygroups = NULL;
2331 pc->pc_partgroups = NULL;
2332 pc->pc_nfull = 0;
2333 pc->pc_nempty = 0;
2334 pc->pc_npart = 0;
2335 mutex_exit(&pc->pc_lock);
2336
2337 pool_cache_invalidate_groups(pc, full);
2338 pool_cache_invalidate_groups(pc, empty);
2339 pool_cache_invalidate_groups(pc, part);
2340 }
2341
2342 /*
2343 * pool_cache_invalidate_cpu:
2344 *
2345 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2346 * identified by its associated index.
2347 * It is caller's responsibility to ensure that no operation is
2348 * taking place on this pool cache while doing this invalidation.
2349 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2350 * pool cached objects from a CPU different from the one currently running
2351 * may result in an undefined behaviour.
2352 */
2353 static void
2354 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2355 {
2356 pool_cache_cpu_t *cc;
2357 pcg_t *pcg;
2358
2359 if ((cc = pc->pc_cpus[index]) == NULL)
2360 return;
2361
2362 if ((pcg = cc->cc_current) != &pcg_dummy) {
2363 pcg->pcg_next = NULL;
2364 pool_cache_invalidate_groups(pc, pcg);
2365 }
2366 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2367 pcg->pcg_next = NULL;
2368 pool_cache_invalidate_groups(pc, pcg);
2369 }
2370 if (cc != &pc->pc_cpu0)
2371 pool_put(&cache_cpu_pool, cc);
2372
2373 }
2374
2375 void
2376 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2377 {
2378
2379 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2380 }
2381
2382 void
2383 pool_cache_setlowat(pool_cache_t pc, int n)
2384 {
2385
2386 pool_setlowat(&pc->pc_pool, n);
2387 }
2388
2389 void
2390 pool_cache_sethiwat(pool_cache_t pc, int n)
2391 {
2392
2393 pool_sethiwat(&pc->pc_pool, n);
2394 }
2395
2396 void
2397 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2398 {
2399
2400 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2401 }
2402
2403 void
2404 pool_cache_prime(pool_cache_t pc, int n)
2405 {
2406
2407 pool_prime(&pc->pc_pool, n);
2408 }
2409
2410 static bool __noinline
2411 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2412 paddr_t *pap, int flags)
2413 {
2414 pcg_t *pcg, *cur;
2415 uint64_t ncsw;
2416 pool_cache_t pc;
2417 void *object;
2418
2419 KASSERT(cc->cc_current->pcg_avail == 0);
2420 KASSERT(cc->cc_previous->pcg_avail == 0);
2421
2422 pc = cc->cc_cache;
2423 cc->cc_misses++;
2424
2425 /*
2426 * Nothing was available locally. Try and grab a group
2427 * from the cache.
2428 */
2429 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2430 ncsw = curlwp->l_ncsw;
2431 __insn_barrier();
2432 mutex_enter(&pc->pc_lock);
2433 pc->pc_contended++;
2434
2435 /*
2436 * If we context switched while locking, then
2437 * our view of the per-CPU data is invalid:
2438 * retry.
2439 */
2440 __insn_barrier();
2441 if (curlwp->l_ncsw != ncsw) {
2442 mutex_exit(&pc->pc_lock);
2443 return true;
2444 }
2445 }
2446
2447 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2448 /*
2449 * If there's a full group, release our empty
2450 * group back to the cache. Install the full
2451 * group as cc_current and return.
2452 */
2453 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2454 KASSERT(cur->pcg_avail == 0);
2455 cur->pcg_next = pc->pc_emptygroups;
2456 pc->pc_emptygroups = cur;
2457 pc->pc_nempty++;
2458 }
2459 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2460 cc->cc_current = pcg;
2461 pc->pc_fullgroups = pcg->pcg_next;
2462 pc->pc_hits++;
2463 pc->pc_nfull--;
2464 mutex_exit(&pc->pc_lock);
2465 return true;
2466 }
2467
2468 /*
2469 * Nothing available locally or in cache. Take the slow
2470 * path: fetch a new object from the pool and construct
2471 * it.
2472 */
2473 pc->pc_misses++;
2474 mutex_exit(&pc->pc_lock);
2475 splx(s);
2476
2477 object = pool_get(&pc->pc_pool, flags);
2478 *objectp = object;
2479 if (__predict_false(object == NULL)) {
2480 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2481 return false;
2482 }
2483
2484 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2485 pool_put(&pc->pc_pool, object);
2486 *objectp = NULL;
2487 return false;
2488 }
2489
2490 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2491
2492 if (pap != NULL) {
2493 #ifdef POOL_VTOPHYS
2494 *pap = POOL_VTOPHYS(object);
2495 #else
2496 *pap = POOL_PADDR_INVALID;
2497 #endif
2498 }
2499
2500 FREECHECK_OUT(&pc->pc_freecheck, object);
2501 return false;
2502 }
2503
2504 /*
2505 * pool_cache_get{,_paddr}:
2506 *
2507 * Get an object from a pool cache (optionally returning
2508 * the physical address of the object).
2509 */
2510 void *
2511 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2512 {
2513 pool_cache_cpu_t *cc;
2514 pcg_t *pcg;
2515 void *object;
2516 int s;
2517
2518 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2519 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2520 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2521 "%s: [%s] is IPL_NONE, but called from interrupt context",
2522 __func__, pc->pc_pool.pr_wchan);
2523
2524 if (flags & PR_WAITOK) {
2525 ASSERT_SLEEPABLE();
2526 }
2527
2528 /* Lock out interrupts and disable preemption. */
2529 s = splvm();
2530 while (/* CONSTCOND */ true) {
2531 /* Try and allocate an object from the current group. */
2532 cc = pc->pc_cpus[curcpu()->ci_index];
2533 KASSERT(cc->cc_cache == pc);
2534 pcg = cc->cc_current;
2535 if (__predict_true(pcg->pcg_avail > 0)) {
2536 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2537 if (__predict_false(pap != NULL))
2538 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2539 #if defined(DIAGNOSTIC)
2540 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2541 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2542 KASSERT(object != NULL);
2543 #endif
2544 cc->cc_hits++;
2545 splx(s);
2546 FREECHECK_OUT(&pc->pc_freecheck, object);
2547 pool_redzone_fill(&pc->pc_pool, object);
2548 pool_cache_get_kmsan(pc, object);
2549 return object;
2550 }
2551
2552 /*
2553 * That failed. If the previous group isn't empty, swap
2554 * it with the current group and allocate from there.
2555 */
2556 pcg = cc->cc_previous;
2557 if (__predict_true(pcg->pcg_avail > 0)) {
2558 cc->cc_previous = cc->cc_current;
2559 cc->cc_current = pcg;
2560 continue;
2561 }
2562
2563 /*
2564 * Can't allocate from either group: try the slow path.
2565 * If get_slow() allocated an object for us, or if
2566 * no more objects are available, it will return false.
2567 * Otherwise, we need to retry.
2568 */
2569 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2570 break;
2571 }
2572
2573 /*
2574 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2575 * pool_cache_get can fail even in the PR_WAITOK case, if the
2576 * constructor fails.
2577 */
2578 return object;
2579 }
2580
2581 static bool __noinline
2582 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2583 {
2584 struct lwp *l = curlwp;
2585 pcg_t *pcg, *cur;
2586 uint64_t ncsw;
2587 pool_cache_t pc;
2588
2589 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2590 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2591
2592 pc = cc->cc_cache;
2593 pcg = NULL;
2594 cc->cc_misses++;
2595 ncsw = l->l_ncsw;
2596 __insn_barrier();
2597
2598 /*
2599 * If there are no empty groups in the cache then allocate one
2600 * while still unlocked.
2601 */
2602 if (__predict_false(pc->pc_emptygroups == NULL)) {
2603 if (__predict_true(!pool_cache_disable)) {
2604 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2605 }
2606 /*
2607 * If pool_get() blocked, then our view of
2608 * the per-CPU data is invalid: retry.
2609 */
2610 __insn_barrier();
2611 if (__predict_false(l->l_ncsw != ncsw)) {
2612 if (pcg != NULL) {
2613 pool_put(pc->pc_pcgpool, pcg);
2614 }
2615 return true;
2616 }
2617 if (__predict_true(pcg != NULL)) {
2618 pcg->pcg_avail = 0;
2619 pcg->pcg_size = pc->pc_pcgsize;
2620 }
2621 }
2622
2623 /* Lock the cache. */
2624 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2625 mutex_enter(&pc->pc_lock);
2626 pc->pc_contended++;
2627
2628 /*
2629 * If we context switched while locking, then our view of
2630 * the per-CPU data is invalid: retry.
2631 */
2632 __insn_barrier();
2633 if (__predict_false(l->l_ncsw != ncsw)) {
2634 mutex_exit(&pc->pc_lock);
2635 if (pcg != NULL) {
2636 pool_put(pc->pc_pcgpool, pcg);
2637 }
2638 return true;
2639 }
2640 }
2641
2642 /* If there are no empty groups in the cache then allocate one. */
2643 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2644 pcg = pc->pc_emptygroups;
2645 pc->pc_emptygroups = pcg->pcg_next;
2646 pc->pc_nempty--;
2647 }
2648
2649 /*
2650 * If there's a empty group, release our full group back
2651 * to the cache. Install the empty group to the local CPU
2652 * and return.
2653 */
2654 if (pcg != NULL) {
2655 KASSERT(pcg->pcg_avail == 0);
2656 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2657 cc->cc_previous = pcg;
2658 } else {
2659 cur = cc->cc_current;
2660 if (__predict_true(cur != &pcg_dummy)) {
2661 KASSERT(cur->pcg_avail == cur->pcg_size);
2662 cur->pcg_next = pc->pc_fullgroups;
2663 pc->pc_fullgroups = cur;
2664 pc->pc_nfull++;
2665 }
2666 cc->cc_current = pcg;
2667 }
2668 pc->pc_hits++;
2669 mutex_exit(&pc->pc_lock);
2670 return true;
2671 }
2672
2673 /*
2674 * Nothing available locally or in cache, and we didn't
2675 * allocate an empty group. Take the slow path and destroy
2676 * the object here and now.
2677 */
2678 pc->pc_misses++;
2679 mutex_exit(&pc->pc_lock);
2680 splx(s);
2681 pool_cache_destruct_object(pc, object);
2682
2683 return false;
2684 }
2685
2686 /*
2687 * pool_cache_put{,_paddr}:
2688 *
2689 * Put an object back to the pool cache (optionally caching the
2690 * physical address of the object).
2691 */
2692 void
2693 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2694 {
2695 pool_cache_cpu_t *cc;
2696 pcg_t *pcg;
2697 int s;
2698
2699 KASSERT(object != NULL);
2700 pool_cache_put_kmsan(pc, object);
2701 pool_cache_redzone_check(pc, object);
2702 FREECHECK_IN(&pc->pc_freecheck, object);
2703
2704 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2705 pc_phinpage_check(pc, object);
2706 }
2707
2708 if (pool_cache_put_quarantine(pc, object, pa)) {
2709 return;
2710 }
2711
2712 /* Lock out interrupts and disable preemption. */
2713 s = splvm();
2714 while (/* CONSTCOND */ true) {
2715 /* If the current group isn't full, release it there. */
2716 cc = pc->pc_cpus[curcpu()->ci_index];
2717 KASSERT(cc->cc_cache == pc);
2718 pcg = cc->cc_current;
2719 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2720 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2721 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2722 pcg->pcg_avail++;
2723 cc->cc_hits++;
2724 splx(s);
2725 return;
2726 }
2727
2728 /*
2729 * That failed. If the previous group isn't full, swap
2730 * it with the current group and try again.
2731 */
2732 pcg = cc->cc_previous;
2733 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2734 cc->cc_previous = cc->cc_current;
2735 cc->cc_current = pcg;
2736 continue;
2737 }
2738
2739 /*
2740 * Can't free to either group: try the slow path.
2741 * If put_slow() releases the object for us, it
2742 * will return false. Otherwise we need to retry.
2743 */
2744 if (!pool_cache_put_slow(cc, s, object))
2745 break;
2746 }
2747 }
2748
2749 /*
2750 * pool_cache_transfer:
2751 *
2752 * Transfer objects from the per-CPU cache to the global cache.
2753 * Run within a cross-call thread.
2754 */
2755 static void
2756 pool_cache_transfer(pool_cache_t pc)
2757 {
2758 pool_cache_cpu_t *cc;
2759 pcg_t *prev, *cur, **list;
2760 int s;
2761
2762 s = splvm();
2763 mutex_enter(&pc->pc_lock);
2764 cc = pc->pc_cpus[curcpu()->ci_index];
2765 cur = cc->cc_current;
2766 cc->cc_current = __UNCONST(&pcg_dummy);
2767 prev = cc->cc_previous;
2768 cc->cc_previous = __UNCONST(&pcg_dummy);
2769 if (cur != &pcg_dummy) {
2770 if (cur->pcg_avail == cur->pcg_size) {
2771 list = &pc->pc_fullgroups;
2772 pc->pc_nfull++;
2773 } else if (cur->pcg_avail == 0) {
2774 list = &pc->pc_emptygroups;
2775 pc->pc_nempty++;
2776 } else {
2777 list = &pc->pc_partgroups;
2778 pc->pc_npart++;
2779 }
2780 cur->pcg_next = *list;
2781 *list = cur;
2782 }
2783 if (prev != &pcg_dummy) {
2784 if (prev->pcg_avail == prev->pcg_size) {
2785 list = &pc->pc_fullgroups;
2786 pc->pc_nfull++;
2787 } else if (prev->pcg_avail == 0) {
2788 list = &pc->pc_emptygroups;
2789 pc->pc_nempty++;
2790 } else {
2791 list = &pc->pc_partgroups;
2792 pc->pc_npart++;
2793 }
2794 prev->pcg_next = *list;
2795 *list = prev;
2796 }
2797 mutex_exit(&pc->pc_lock);
2798 splx(s);
2799 }
2800
2801 static int
2802 pool_bigidx(size_t size)
2803 {
2804 int i;
2805
2806 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2807 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2808 return i;
2809 }
2810 panic("pool item size %zu too large, use a custom allocator", size);
2811 }
2812
2813 static void *
2814 pool_allocator_alloc(struct pool *pp, int flags)
2815 {
2816 struct pool_allocator *pa = pp->pr_alloc;
2817 void *res;
2818
2819 res = (*pa->pa_alloc)(pp, flags);
2820 if (res == NULL && (flags & PR_WAITOK) == 0) {
2821 /*
2822 * We only run the drain hook here if PR_NOWAIT.
2823 * In other cases, the hook will be run in
2824 * pool_reclaim().
2825 */
2826 if (pp->pr_drain_hook != NULL) {
2827 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2828 res = (*pa->pa_alloc)(pp, flags);
2829 }
2830 }
2831 return res;
2832 }
2833
2834 static void
2835 pool_allocator_free(struct pool *pp, void *v)
2836 {
2837 struct pool_allocator *pa = pp->pr_alloc;
2838
2839 if (pp->pr_redzone) {
2840 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2841 }
2842 (*pa->pa_free)(pp, v);
2843 }
2844
2845 void *
2846 pool_page_alloc(struct pool *pp, int flags)
2847 {
2848 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2849 vmem_addr_t va;
2850 int ret;
2851
2852 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2853 vflags | VM_INSTANTFIT, &va);
2854
2855 return ret ? NULL : (void *)va;
2856 }
2857
2858 void
2859 pool_page_free(struct pool *pp, void *v)
2860 {
2861
2862 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2863 }
2864
2865 static void *
2866 pool_page_alloc_meta(struct pool *pp, int flags)
2867 {
2868 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2869 vmem_addr_t va;
2870 int ret;
2871
2872 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2873 vflags | VM_INSTANTFIT, &va);
2874
2875 return ret ? NULL : (void *)va;
2876 }
2877
2878 static void
2879 pool_page_free_meta(struct pool *pp, void *v)
2880 {
2881
2882 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2883 }
2884
2885 #ifdef KMSAN
2886 static inline void
2887 pool_get_kmsan(struct pool *pp, void *p)
2888 {
2889 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2890 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2891 }
2892
2893 static inline void
2894 pool_put_kmsan(struct pool *pp, void *p)
2895 {
2896 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2897 }
2898
2899 static inline void
2900 pool_cache_get_kmsan(pool_cache_t pc, void *p)
2901 {
2902 if (__predict_false(pc_has_ctor(pc))) {
2903 return;
2904 }
2905 pool_get_kmsan(&pc->pc_pool, p);
2906 }
2907
2908 static inline void
2909 pool_cache_put_kmsan(pool_cache_t pc, void *p)
2910 {
2911 pool_put_kmsan(&pc->pc_pool, p);
2912 }
2913 #endif
2914
2915 #ifdef POOL_QUARANTINE
2916 static void
2917 pool_quarantine_init(struct pool *pp)
2918 {
2919 pp->pr_quar.rotor = 0;
2920 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2921 }
2922
2923 static void
2924 pool_quarantine_flush(struct pool *pp)
2925 {
2926 pool_quar_t *quar = &pp->pr_quar;
2927 struct pool_pagelist pq;
2928 size_t i;
2929
2930 LIST_INIT(&pq);
2931
2932 mutex_enter(&pp->pr_lock);
2933 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2934 if (quar->list[i] == 0)
2935 continue;
2936 pool_do_put(pp, (void *)quar->list[i], &pq);
2937 }
2938 mutex_exit(&pp->pr_lock);
2939
2940 pr_pagelist_free(pp, &pq);
2941 }
2942
2943 static bool
2944 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2945 {
2946 pool_quar_t *quar = &pp->pr_quar;
2947 uintptr_t old;
2948
2949 if (pp->pr_roflags & PR_NOTOUCH) {
2950 return false;
2951 }
2952
2953 pool_redzone_check(pp, v);
2954
2955 old = quar->list[quar->rotor];
2956 quar->list[quar->rotor] = (uintptr_t)v;
2957 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2958 if (old != 0) {
2959 pool_do_put(pp, (void *)old, pq);
2960 }
2961
2962 return true;
2963 }
2964
2965 static bool
2966 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
2967 {
2968 pool_cache_destruct_object(pc, p);
2969 return true;
2970 }
2971 #endif
2972
2973 #ifdef POOL_REDZONE
2974 #if defined(_LP64)
2975 # define PRIME 0x9e37fffffffc0000UL
2976 #else /* defined(_LP64) */
2977 # define PRIME 0x9e3779b1
2978 #endif /* defined(_LP64) */
2979 #define STATIC_BYTE 0xFE
2980 CTASSERT(POOL_REDZONE_SIZE > 1);
2981
2982 #ifndef KASAN
2983 static inline uint8_t
2984 pool_pattern_generate(const void *p)
2985 {
2986 return (uint8_t)(((uintptr_t)p) * PRIME
2987 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2988 }
2989 #endif
2990
2991 static void
2992 pool_redzone_init(struct pool *pp, size_t requested_size)
2993 {
2994 size_t redzsz;
2995 size_t nsz;
2996
2997 #ifdef KASAN
2998 redzsz = requested_size;
2999 kasan_add_redzone(&redzsz);
3000 redzsz -= requested_size;
3001 #else
3002 redzsz = POOL_REDZONE_SIZE;
3003 #endif
3004
3005 if (pp->pr_roflags & PR_NOTOUCH) {
3006 pp->pr_redzone = false;
3007 return;
3008 }
3009
3010 /*
3011 * We may have extended the requested size earlier; check if
3012 * there's naturally space in the padding for a red zone.
3013 */
3014 if (pp->pr_size - requested_size >= redzsz) {
3015 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3016 pp->pr_redzone = true;
3017 return;
3018 }
3019
3020 /*
3021 * No space in the natural padding; check if we can extend a
3022 * bit the size of the pool.
3023 */
3024 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3025 if (nsz <= pp->pr_alloc->pa_pagesz) {
3026 /* Ok, we can */
3027 pp->pr_size = nsz;
3028 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3029 pp->pr_redzone = true;
3030 } else {
3031 /* No space for a red zone... snif :'( */
3032 pp->pr_redzone = false;
3033 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3034 }
3035 }
3036
3037 static void
3038 pool_redzone_fill(struct pool *pp, void *p)
3039 {
3040 if (!pp->pr_redzone)
3041 return;
3042 #ifdef KASAN
3043 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3044 KASAN_POOL_REDZONE);
3045 #else
3046 uint8_t *cp, pat;
3047 const uint8_t *ep;
3048
3049 cp = (uint8_t *)p + pp->pr_reqsize;
3050 ep = cp + POOL_REDZONE_SIZE;
3051
3052 /*
3053 * We really don't want the first byte of the red zone to be '\0';
3054 * an off-by-one in a string may not be properly detected.
3055 */
3056 pat = pool_pattern_generate(cp);
3057 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3058 cp++;
3059
3060 while (cp < ep) {
3061 *cp = pool_pattern_generate(cp);
3062 cp++;
3063 }
3064 #endif
3065 }
3066
3067 static void
3068 pool_redzone_check(struct pool *pp, void *p)
3069 {
3070 if (!pp->pr_redzone)
3071 return;
3072 #ifdef KASAN
3073 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3074 #else
3075 uint8_t *cp, pat, expected;
3076 const uint8_t *ep;
3077
3078 cp = (uint8_t *)p + pp->pr_reqsize;
3079 ep = cp + POOL_REDZONE_SIZE;
3080
3081 pat = pool_pattern_generate(cp);
3082 expected = (pat == '\0') ? STATIC_BYTE: pat;
3083 if (__predict_false(*cp != expected)) {
3084 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3085 pp->pr_wchan, *cp, expected);
3086 }
3087 cp++;
3088
3089 while (cp < ep) {
3090 expected = pool_pattern_generate(cp);
3091 if (__predict_false(*cp != expected)) {
3092 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3093 pp->pr_wchan, *cp, expected);
3094 }
3095 cp++;
3096 }
3097 #endif
3098 }
3099
3100 static void
3101 pool_cache_redzone_check(pool_cache_t pc, void *p)
3102 {
3103 #ifdef KASAN
3104 /* If there is a ctor/dtor, leave the data as valid. */
3105 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3106 return;
3107 }
3108 #endif
3109 pool_redzone_check(&pc->pc_pool, p);
3110 }
3111
3112 #endif /* POOL_REDZONE */
3113
3114 #if defined(DDB)
3115 static bool
3116 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3117 {
3118
3119 return (uintptr_t)ph->ph_page <= addr &&
3120 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3121 }
3122
3123 static bool
3124 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3125 {
3126
3127 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3128 }
3129
3130 static bool
3131 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3132 {
3133 int i;
3134
3135 if (pcg == NULL) {
3136 return false;
3137 }
3138 for (i = 0; i < pcg->pcg_avail; i++) {
3139 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3140 return true;
3141 }
3142 }
3143 return false;
3144 }
3145
3146 static bool
3147 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3148 {
3149
3150 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3151 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3152 pool_item_bitmap_t *bitmap =
3153 ph->ph_bitmap + (idx / BITMAP_SIZE);
3154 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3155
3156 return (*bitmap & mask) == 0;
3157 } else {
3158 struct pool_item *pi;
3159
3160 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3161 if (pool_in_item(pp, pi, addr)) {
3162 return false;
3163 }
3164 }
3165 return true;
3166 }
3167 }
3168
3169 void
3170 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3171 {
3172 struct pool *pp;
3173
3174 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3175 struct pool_item_header *ph;
3176 uintptr_t item;
3177 bool allocated = true;
3178 bool incache = false;
3179 bool incpucache = false;
3180 char cpucachestr[32];
3181
3182 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3183 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3184 if (pool_in_page(pp, ph, addr)) {
3185 goto found;
3186 }
3187 }
3188 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3189 if (pool_in_page(pp, ph, addr)) {
3190 allocated =
3191 pool_allocated(pp, ph, addr);
3192 goto found;
3193 }
3194 }
3195 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3196 if (pool_in_page(pp, ph, addr)) {
3197 allocated = false;
3198 goto found;
3199 }
3200 }
3201 continue;
3202 } else {
3203 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3204 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3205 continue;
3206 }
3207 allocated = pool_allocated(pp, ph, addr);
3208 }
3209 found:
3210 if (allocated && pp->pr_cache) {
3211 pool_cache_t pc = pp->pr_cache;
3212 struct pool_cache_group *pcg;
3213 int i;
3214
3215 for (pcg = pc->pc_fullgroups; pcg != NULL;
3216 pcg = pcg->pcg_next) {
3217 if (pool_in_cg(pp, pcg, addr)) {
3218 incache = true;
3219 goto print;
3220 }
3221 }
3222 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3223 pool_cache_cpu_t *cc;
3224
3225 if ((cc = pc->pc_cpus[i]) == NULL) {
3226 continue;
3227 }
3228 if (pool_in_cg(pp, cc->cc_current, addr) ||
3229 pool_in_cg(pp, cc->cc_previous, addr)) {
3230 struct cpu_info *ci =
3231 cpu_lookup(i);
3232
3233 incpucache = true;
3234 snprintf(cpucachestr,
3235 sizeof(cpucachestr),
3236 "cached by CPU %u",
3237 ci->ci_index);
3238 goto print;
3239 }
3240 }
3241 }
3242 print:
3243 item = (uintptr_t)ph->ph_page + ph->ph_off;
3244 item = item + rounddown(addr - item, pp->pr_size);
3245 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3246 (void *)addr, item, (size_t)(addr - item),
3247 pp->pr_wchan,
3248 incpucache ? cpucachestr :
3249 incache ? "cached" : allocated ? "allocated" : "free");
3250 }
3251 }
3252 #endif /* defined(DDB) */
3253
3254 static int
3255 pool_sysctl(SYSCTLFN_ARGS)
3256 {
3257 struct pool_sysctl data;
3258 struct pool *pp;
3259 struct pool_cache *pc;
3260 pool_cache_cpu_t *cc;
3261 int error;
3262 size_t i, written;
3263
3264 if (oldp == NULL) {
3265 *oldlenp = 0;
3266 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3267 *oldlenp += sizeof(data);
3268 return 0;
3269 }
3270
3271 memset(&data, 0, sizeof(data));
3272 error = 0;
3273 written = 0;
3274 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3275 if (written + sizeof(data) > *oldlenp)
3276 break;
3277 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3278 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3279 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3280 #define COPY(field) data.field = pp->field
3281 COPY(pr_size);
3282
3283 COPY(pr_itemsperpage);
3284 COPY(pr_nitems);
3285 COPY(pr_nout);
3286 COPY(pr_hardlimit);
3287 COPY(pr_npages);
3288 COPY(pr_minpages);
3289 COPY(pr_maxpages);
3290
3291 COPY(pr_nget);
3292 COPY(pr_nfail);
3293 COPY(pr_nput);
3294 COPY(pr_npagealloc);
3295 COPY(pr_npagefree);
3296 COPY(pr_hiwat);
3297 COPY(pr_nidle);
3298 #undef COPY
3299
3300 data.pr_cache_nmiss_pcpu = 0;
3301 data.pr_cache_nhit_pcpu = 0;
3302 if (pp->pr_cache) {
3303 pc = pp->pr_cache;
3304 data.pr_cache_meta_size = pc->pc_pcgsize;
3305 data.pr_cache_nfull = pc->pc_nfull;
3306 data.pr_cache_npartial = pc->pc_npart;
3307 data.pr_cache_nempty = pc->pc_nempty;
3308 data.pr_cache_ncontended = pc->pc_contended;
3309 data.pr_cache_nmiss_global = pc->pc_misses;
3310 data.pr_cache_nhit_global = pc->pc_hits;
3311 for (i = 0; i < pc->pc_ncpu; ++i) {
3312 cc = pc->pc_cpus[i];
3313 if (cc == NULL)
3314 continue;
3315 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3316 data.pr_cache_nhit_pcpu += cc->cc_hits;
3317 }
3318 } else {
3319 data.pr_cache_meta_size = 0;
3320 data.pr_cache_nfull = 0;
3321 data.pr_cache_npartial = 0;
3322 data.pr_cache_nempty = 0;
3323 data.pr_cache_ncontended = 0;
3324 data.pr_cache_nmiss_global = 0;
3325 data.pr_cache_nhit_global = 0;
3326 }
3327
3328 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3329 if (error)
3330 break;
3331 written += sizeof(data);
3332 oldp = (char *)oldp + sizeof(data);
3333 }
3334
3335 *oldlenp = written;
3336 return error;
3337 }
3338
3339 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3340 {
3341 const struct sysctlnode *rnode = NULL;
3342
3343 sysctl_createv(clog, 0, NULL, &rnode,
3344 CTLFLAG_PERMANENT,
3345 CTLTYPE_STRUCT, "pool",
3346 SYSCTL_DESCR("Get pool statistics"),
3347 pool_sysctl, 0, NULL, 0,
3348 CTL_KERN, CTL_CREATE, CTL_EOL);
3349 }
3350