subr_pool.c revision 1.268 1 /* $NetBSD: subr_pool.c,v 1.268 2020/04/15 17:16:22 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.268 2020/04/15 17:16:22 maxv Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60 #include <sys/msan.h>
61
62 #include <uvm/uvm_extern.h>
63
64 /*
65 * Pool resource management utility.
66 *
67 * Memory is allocated in pages which are split into pieces according to
68 * the pool item size. Each page is kept on one of three lists in the
69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 * for empty, full and partially-full pages respectively. The individual
71 * pool items are on a linked list headed by `ph_itemlist' in each page
72 * header. The memory for building the page list is either taken from
73 * the allocated pages themselves (for small pool items) or taken from
74 * an internal pool of page headers (`phpool').
75 */
76
77 /* List of all pools. Non static as needed by 'vmstat -m' */
78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
79
80 /* Private pool for page header structures */
81 #define PHPOOL_MAX 8
82 static struct pool phpool[PHPOOL_MAX];
83 #define PHPOOL_FREELIST_NELEM(idx) \
84 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
85
86 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
87 #define POOL_REDZONE
88 #endif
89
90 #if defined(POOL_QUARANTINE)
91 #define POOL_NOCACHE
92 #endif
93
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 # define POOL_REDZONE_SIZE 8
97 # else
98 # define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 static void pool_cache_redzone_check(pool_cache_t, void *);
104 #else
105 # define pool_redzone_init(pp, sz) __nothing
106 # define pool_redzone_fill(pp, ptr) __nothing
107 # define pool_redzone_check(pp, ptr) __nothing
108 # define pool_cache_redzone_check(pc, ptr) __nothing
109 #endif
110
111 #ifdef KMSAN
112 static inline void pool_get_kmsan(struct pool *, void *);
113 static inline void pool_put_kmsan(struct pool *, void *);
114 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
115 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
116 #else
117 #define pool_get_kmsan(pp, ptr) __nothing
118 #define pool_put_kmsan(pp, ptr) __nothing
119 #define pool_cache_get_kmsan(pc, ptr) __nothing
120 #define pool_cache_put_kmsan(pc, ptr) __nothing
121 #endif
122
123 #ifdef POOL_QUARANTINE
124 static void pool_quarantine_init(struct pool *);
125 static void pool_quarantine_flush(struct pool *);
126 static bool pool_put_quarantine(struct pool *, void *,
127 struct pool_pagelist *);
128 #else
129 #define pool_quarantine_init(a) __nothing
130 #define pool_quarantine_flush(a) __nothing
131 #define pool_put_quarantine(a, b, c) false
132 #endif
133
134 #ifdef POOL_NOCACHE
135 static bool pool_cache_put_nocache(pool_cache_t, void *);
136 #else
137 #define pool_cache_put_nocache(a, b) false
138 #endif
139
140 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
141 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
142
143 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
144 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
145
146 /*
147 * Pool backend allocators.
148 *
149 * Each pool has a backend allocator that handles allocation, deallocation,
150 * and any additional draining that might be needed.
151 *
152 * We provide two standard allocators:
153 *
154 * pool_allocator_kmem - the default when no allocator is specified
155 *
156 * pool_allocator_nointr - used for pools that will not be accessed
157 * in interrupt context.
158 */
159 void *pool_page_alloc(struct pool *, int);
160 void pool_page_free(struct pool *, void *);
161
162 static void *pool_page_alloc_meta(struct pool *, int);
163 static void pool_page_free_meta(struct pool *, void *);
164
165 struct pool_allocator pool_allocator_kmem = {
166 .pa_alloc = pool_page_alloc,
167 .pa_free = pool_page_free,
168 .pa_pagesz = 0
169 };
170
171 struct pool_allocator pool_allocator_nointr = {
172 .pa_alloc = pool_page_alloc,
173 .pa_free = pool_page_free,
174 .pa_pagesz = 0
175 };
176
177 struct pool_allocator pool_allocator_meta = {
178 .pa_alloc = pool_page_alloc_meta,
179 .pa_free = pool_page_free_meta,
180 .pa_pagesz = 0
181 };
182
183 #define POOL_ALLOCATOR_BIG_BASE 13
184 static struct pool_allocator pool_allocator_big[] = {
185 {
186 .pa_alloc = pool_page_alloc,
187 .pa_free = pool_page_free,
188 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
189 },
190 {
191 .pa_alloc = pool_page_alloc,
192 .pa_free = pool_page_free,
193 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
194 },
195 {
196 .pa_alloc = pool_page_alloc,
197 .pa_free = pool_page_free,
198 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
199 },
200 {
201 .pa_alloc = pool_page_alloc,
202 .pa_free = pool_page_free,
203 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
204 },
205 {
206 .pa_alloc = pool_page_alloc,
207 .pa_free = pool_page_free,
208 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
209 },
210 {
211 .pa_alloc = pool_page_alloc,
212 .pa_free = pool_page_free,
213 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
214 },
215 {
216 .pa_alloc = pool_page_alloc,
217 .pa_free = pool_page_free,
218 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
219 },
220 {
221 .pa_alloc = pool_page_alloc,
222 .pa_free = pool_page_free,
223 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
224 }
225 };
226
227 static int pool_bigidx(size_t);
228
229 /* # of seconds to retain page after last use */
230 int pool_inactive_time = 10;
231
232 /* Next candidate for drainage (see pool_drain()) */
233 static struct pool *drainpp;
234
235 /* This lock protects both pool_head and drainpp. */
236 static kmutex_t pool_head_lock;
237 static kcondvar_t pool_busy;
238
239 /* This lock protects initialization of a potentially shared pool allocator */
240 static kmutex_t pool_allocator_lock;
241
242 static unsigned int poolid_counter = 0;
243
244 typedef uint32_t pool_item_bitmap_t;
245 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
246 #define BITMAP_MASK (BITMAP_SIZE - 1)
247 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
248
249 struct pool_item_header {
250 /* Page headers */
251 LIST_ENTRY(pool_item_header)
252 ph_pagelist; /* pool page list */
253 union {
254 /* !PR_PHINPAGE */
255 struct {
256 SPLAY_ENTRY(pool_item_header)
257 phu_node; /* off-page page headers */
258 } phu_offpage;
259 /* PR_PHINPAGE */
260 struct {
261 unsigned int phu_poolid;
262 } phu_onpage;
263 } ph_u1;
264 void * ph_page; /* this page's address */
265 uint32_t ph_time; /* last referenced */
266 uint16_t ph_nmissing; /* # of chunks in use */
267 uint16_t ph_off; /* start offset in page */
268 union {
269 /* !PR_USEBMAP */
270 struct {
271 LIST_HEAD(, pool_item)
272 phu_itemlist; /* chunk list for this page */
273 } phu_normal;
274 /* PR_USEBMAP */
275 struct {
276 pool_item_bitmap_t phu_bitmap[1];
277 } phu_notouch;
278 } ph_u2;
279 };
280 #define ph_node ph_u1.phu_offpage.phu_node
281 #define ph_poolid ph_u1.phu_onpage.phu_poolid
282 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
283 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
284
285 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
286
287 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
288 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
289
290 #if defined(DIAGNOSTIC) && !defined(KASAN)
291 #define POOL_CHECK_MAGIC
292 #endif
293
294 struct pool_item {
295 #ifdef POOL_CHECK_MAGIC
296 u_int pi_magic;
297 #endif
298 #define PI_MAGIC 0xdeaddeadU
299 /* Other entries use only this list entry */
300 LIST_ENTRY(pool_item) pi_list;
301 };
302
303 #define POOL_NEEDS_CATCHUP(pp) \
304 ((pp)->pr_nitems < (pp)->pr_minitems || \
305 (pp)->pr_npages < (pp)->pr_minpages)
306 #define POOL_OBJ_TO_PAGE(pp, v) \
307 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
308
309 /*
310 * Pool cache management.
311 *
312 * Pool caches provide a way for constructed objects to be cached by the
313 * pool subsystem. This can lead to performance improvements by avoiding
314 * needless object construction/destruction; it is deferred until absolutely
315 * necessary.
316 *
317 * Caches are grouped into cache groups. Each cache group references up
318 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
319 * object from the pool, it calls the object's constructor and places it
320 * into a cache group. When a cache group frees an object back to the
321 * pool, it first calls the object's destructor. This allows the object
322 * to persist in constructed form while freed to the cache.
323 *
324 * The pool references each cache, so that when a pool is drained by the
325 * pagedaemon, it can drain each individual cache as well. Each time a
326 * cache is drained, the most idle cache group is freed to the pool in
327 * its entirety.
328 *
329 * Pool caches are layed on top of pools. By layering them, we can avoid
330 * the complexity of cache management for pools which would not benefit
331 * from it.
332 */
333
334 static struct pool pcg_normal_pool;
335 static struct pool pcg_large_pool;
336 static struct pool cache_pool;
337 static struct pool cache_cpu_pool;
338
339 /* List of all caches. */
340 TAILQ_HEAD(,pool_cache) pool_cache_head =
341 TAILQ_HEAD_INITIALIZER(pool_cache_head);
342
343 int pool_cache_disable; /* global disable for caching */
344 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
345
346 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
347 void *);
348 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
349 void **, paddr_t *, int);
350 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
351 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
352 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
353 static void pool_cache_transfer(pool_cache_t);
354
355 static int pool_catchup(struct pool *);
356 static void pool_prime_page(struct pool *, void *,
357 struct pool_item_header *);
358 static void pool_update_curpage(struct pool *);
359
360 static int pool_grow(struct pool *, int);
361 static void *pool_allocator_alloc(struct pool *, int);
362 static void pool_allocator_free(struct pool *, void *);
363
364 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
365 void (*)(const char *, ...) __printflike(1, 2));
366 static void pool_print1(struct pool *, const char *,
367 void (*)(const char *, ...) __printflike(1, 2));
368
369 static int pool_chk_page(struct pool *, const char *,
370 struct pool_item_header *);
371
372 /* -------------------------------------------------------------------------- */
373
374 static inline unsigned int
375 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
376 const void *v)
377 {
378 const char *cp = v;
379 unsigned int idx;
380
381 KASSERT(pp->pr_roflags & PR_USEBMAP);
382 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
383
384 if (__predict_false(idx >= pp->pr_itemsperpage)) {
385 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
386 pp->pr_itemsperpage);
387 }
388
389 return idx;
390 }
391
392 static inline void
393 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
394 void *obj)
395 {
396 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
397 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
398 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
399
400 if (__predict_false((*bitmap & mask) != 0)) {
401 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
402 }
403
404 *bitmap |= mask;
405 }
406
407 static inline void *
408 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
409 {
410 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
411 unsigned int idx;
412 int i;
413
414 for (i = 0; ; i++) {
415 int bit;
416
417 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
418 bit = ffs32(bitmap[i]);
419 if (bit) {
420 pool_item_bitmap_t mask;
421
422 bit--;
423 idx = (i * BITMAP_SIZE) + bit;
424 mask = 1U << bit;
425 KASSERT((bitmap[i] & mask) != 0);
426 bitmap[i] &= ~mask;
427 break;
428 }
429 }
430 KASSERT(idx < pp->pr_itemsperpage);
431 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
432 }
433
434 static inline void
435 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
436 {
437 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
438 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
439 int i;
440
441 for (i = 0; i < n; i++) {
442 bitmap[i] = (pool_item_bitmap_t)-1;
443 }
444 }
445
446 /* -------------------------------------------------------------------------- */
447
448 static inline void
449 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
450 void *obj)
451 {
452 struct pool_item *pi = obj;
453
454 #ifdef POOL_CHECK_MAGIC
455 pi->pi_magic = PI_MAGIC;
456 #endif
457
458 if (pp->pr_redzone) {
459 /*
460 * Mark the pool_item as valid. The rest is already
461 * invalid.
462 */
463 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
464 }
465
466 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
467 }
468
469 static inline void *
470 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
471 {
472 struct pool_item *pi;
473 void *v;
474
475 v = pi = LIST_FIRST(&ph->ph_itemlist);
476 if (__predict_false(v == NULL)) {
477 mutex_exit(&pp->pr_lock);
478 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
479 }
480 KASSERTMSG((pp->pr_nitems > 0),
481 "%s: [%s] nitems %u inconsistent on itemlist",
482 __func__, pp->pr_wchan, pp->pr_nitems);
483 #ifdef POOL_CHECK_MAGIC
484 KASSERTMSG((pi->pi_magic == PI_MAGIC),
485 "%s: [%s] free list modified: "
486 "magic=%x; page %p; item addr %p", __func__,
487 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
488 #endif
489
490 /*
491 * Remove from item list.
492 */
493 LIST_REMOVE(pi, pi_list);
494
495 return v;
496 }
497
498 /* -------------------------------------------------------------------------- */
499
500 static inline void
501 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
502 void *object)
503 {
504 if (__predict_false((void *)ph->ph_page != page)) {
505 panic("%s: [%s] item %p not part of pool", __func__,
506 pp->pr_wchan, object);
507 }
508 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
509 panic("%s: [%s] item %p below item space", __func__,
510 pp->pr_wchan, object);
511 }
512 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
513 panic("%s: [%s] item %p poolid %u != %u", __func__,
514 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
515 }
516 }
517
518 static inline void
519 pc_phinpage_check(pool_cache_t pc, void *object)
520 {
521 struct pool_item_header *ph;
522 struct pool *pp;
523 void *page;
524
525 pp = &pc->pc_pool;
526 page = POOL_OBJ_TO_PAGE(pp, object);
527 ph = (struct pool_item_header *)page;
528
529 pr_phinpage_check(pp, ph, page, object);
530 }
531
532 /* -------------------------------------------------------------------------- */
533
534 static inline int
535 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
536 {
537
538 /*
539 * We consider pool_item_header with smaller ph_page bigger. This
540 * unnatural ordering is for the benefit of pr_find_pagehead.
541 */
542 if (a->ph_page < b->ph_page)
543 return 1;
544 else if (a->ph_page > b->ph_page)
545 return -1;
546 else
547 return 0;
548 }
549
550 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
551 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
552
553 static inline struct pool_item_header *
554 pr_find_pagehead_noalign(struct pool *pp, void *v)
555 {
556 struct pool_item_header *ph, tmp;
557
558 tmp.ph_page = (void *)(uintptr_t)v;
559 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
560 if (ph == NULL) {
561 ph = SPLAY_ROOT(&pp->pr_phtree);
562 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
563 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
564 }
565 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
566 }
567
568 return ph;
569 }
570
571 /*
572 * Return the pool page header based on item address.
573 */
574 static inline struct pool_item_header *
575 pr_find_pagehead(struct pool *pp, void *v)
576 {
577 struct pool_item_header *ph, tmp;
578
579 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
580 ph = pr_find_pagehead_noalign(pp, v);
581 } else {
582 void *page = POOL_OBJ_TO_PAGE(pp, v);
583 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
584 ph = (struct pool_item_header *)page;
585 pr_phinpage_check(pp, ph, page, v);
586 } else {
587 tmp.ph_page = page;
588 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
589 }
590 }
591
592 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
593 ((char *)ph->ph_page <= (char *)v &&
594 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
595 return ph;
596 }
597
598 static void
599 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
600 {
601 struct pool_item_header *ph;
602
603 while ((ph = LIST_FIRST(pq)) != NULL) {
604 LIST_REMOVE(ph, ph_pagelist);
605 pool_allocator_free(pp, ph->ph_page);
606 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
607 pool_put(pp->pr_phpool, ph);
608 }
609 }
610
611 /*
612 * Remove a page from the pool.
613 */
614 static inline void
615 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
616 struct pool_pagelist *pq)
617 {
618
619 KASSERT(mutex_owned(&pp->pr_lock));
620
621 /*
622 * If the page was idle, decrement the idle page count.
623 */
624 if (ph->ph_nmissing == 0) {
625 KASSERT(pp->pr_nidle != 0);
626 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
627 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
628 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
629 pp->pr_nidle--;
630 }
631
632 pp->pr_nitems -= pp->pr_itemsperpage;
633
634 /*
635 * Unlink the page from the pool and queue it for release.
636 */
637 LIST_REMOVE(ph, ph_pagelist);
638 if (pp->pr_roflags & PR_PHINPAGE) {
639 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
640 panic("%s: [%s] ph %p poolid %u != %u",
641 __func__, pp->pr_wchan, ph, ph->ph_poolid,
642 pp->pr_poolid);
643 }
644 } else {
645 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
646 }
647 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
648
649 pp->pr_npages--;
650 pp->pr_npagefree++;
651
652 pool_update_curpage(pp);
653 }
654
655 /*
656 * Initialize all the pools listed in the "pools" link set.
657 */
658 void
659 pool_subsystem_init(void)
660 {
661 size_t size;
662 int idx;
663
664 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
665 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
666 cv_init(&pool_busy, "poolbusy");
667
668 /*
669 * Initialize private page header pool and cache magazine pool if we
670 * haven't done so yet.
671 */
672 for (idx = 0; idx < PHPOOL_MAX; idx++) {
673 static char phpool_names[PHPOOL_MAX][6+1+6+1];
674 int nelem;
675 size_t sz;
676
677 nelem = PHPOOL_FREELIST_NELEM(idx);
678 KASSERT(nelem != 0);
679 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
680 "phpool-%d", nelem);
681 sz = offsetof(struct pool_item_header,
682 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
683 pool_init(&phpool[idx], sz, 0, 0, 0,
684 phpool_names[idx], &pool_allocator_meta, IPL_VM);
685 }
686
687 size = sizeof(pcg_t) +
688 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
689 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
690 "pcgnormal", &pool_allocator_meta, IPL_VM);
691
692 size = sizeof(pcg_t) +
693 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
694 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
695 "pcglarge", &pool_allocator_meta, IPL_VM);
696
697 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
698 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
699
700 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
701 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
702 }
703
704 static inline bool
705 pool_init_is_phinpage(const struct pool *pp)
706 {
707 size_t pagesize;
708
709 if (pp->pr_roflags & PR_PHINPAGE) {
710 return true;
711 }
712 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
713 return false;
714 }
715
716 pagesize = pp->pr_alloc->pa_pagesz;
717
718 /*
719 * Threshold: the item size is below 1/16 of a page size, and below
720 * 8 times the page header size. The latter ensures we go off-page
721 * if the page header would make us waste a rather big item.
722 */
723 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
724 return true;
725 }
726
727 /* Put the header into the page if it doesn't waste any items. */
728 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
729 return true;
730 }
731
732 return false;
733 }
734
735 static inline bool
736 pool_init_is_usebmap(const struct pool *pp)
737 {
738 size_t bmapsize;
739
740 if (pp->pr_roflags & PR_NOTOUCH) {
741 return true;
742 }
743
744 /*
745 * If we're off-page, go with a bitmap.
746 */
747 if (!(pp->pr_roflags & PR_PHINPAGE)) {
748 return true;
749 }
750
751 /*
752 * If we're on-page, and the page header can already contain a bitmap
753 * big enough to cover all the items of the page, go with a bitmap.
754 */
755 bmapsize = roundup(PHSIZE, pp->pr_align) -
756 offsetof(struct pool_item_header, ph_bitmap[0]);
757 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
758 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
759 return true;
760 }
761
762 return false;
763 }
764
765 /*
766 * Initialize the given pool resource structure.
767 *
768 * We export this routine to allow other kernel parts to declare
769 * static pools that must be initialized before kmem(9) is available.
770 */
771 void
772 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
773 const char *wchan, struct pool_allocator *palloc, int ipl)
774 {
775 struct pool *pp1;
776 size_t prsize;
777 int itemspace, slack;
778
779 /* XXX ioff will be removed. */
780 KASSERT(ioff == 0);
781
782 #ifdef DEBUG
783 if (__predict_true(!cold))
784 mutex_enter(&pool_head_lock);
785 /*
786 * Check that the pool hasn't already been initialised and
787 * added to the list of all pools.
788 */
789 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
790 if (pp == pp1)
791 panic("%s: [%s] already initialised", __func__,
792 wchan);
793 }
794 if (__predict_true(!cold))
795 mutex_exit(&pool_head_lock);
796 #endif
797
798 if (palloc == NULL)
799 palloc = &pool_allocator_kmem;
800
801 if (!cold)
802 mutex_enter(&pool_allocator_lock);
803 if (palloc->pa_refcnt++ == 0) {
804 if (palloc->pa_pagesz == 0)
805 palloc->pa_pagesz = PAGE_SIZE;
806
807 TAILQ_INIT(&palloc->pa_list);
808
809 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
810 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
811 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
812 }
813 if (!cold)
814 mutex_exit(&pool_allocator_lock);
815
816 if (align == 0)
817 align = ALIGN(1);
818
819 prsize = size;
820 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
821 prsize = sizeof(struct pool_item);
822
823 prsize = roundup(prsize, align);
824 KASSERTMSG((prsize <= palloc->pa_pagesz),
825 "%s: [%s] pool item size (%zu) larger than page size (%u)",
826 __func__, wchan, prsize, palloc->pa_pagesz);
827
828 /*
829 * Initialize the pool structure.
830 */
831 LIST_INIT(&pp->pr_emptypages);
832 LIST_INIT(&pp->pr_fullpages);
833 LIST_INIT(&pp->pr_partpages);
834 pp->pr_cache = NULL;
835 pp->pr_curpage = NULL;
836 pp->pr_npages = 0;
837 pp->pr_minitems = 0;
838 pp->pr_minpages = 0;
839 pp->pr_maxpages = UINT_MAX;
840 pp->pr_roflags = flags;
841 pp->pr_flags = 0;
842 pp->pr_size = prsize;
843 pp->pr_reqsize = size;
844 pp->pr_align = align;
845 pp->pr_wchan = wchan;
846 pp->pr_alloc = palloc;
847 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
848 pp->pr_nitems = 0;
849 pp->pr_nout = 0;
850 pp->pr_hardlimit = UINT_MAX;
851 pp->pr_hardlimit_warning = NULL;
852 pp->pr_hardlimit_ratecap.tv_sec = 0;
853 pp->pr_hardlimit_ratecap.tv_usec = 0;
854 pp->pr_hardlimit_warning_last.tv_sec = 0;
855 pp->pr_hardlimit_warning_last.tv_usec = 0;
856 pp->pr_drain_hook = NULL;
857 pp->pr_drain_hook_arg = NULL;
858 pp->pr_freecheck = NULL;
859 pp->pr_redzone = false;
860 pool_redzone_init(pp, size);
861 pool_quarantine_init(pp);
862
863 /*
864 * Decide whether to put the page header off-page to avoid wasting too
865 * large a part of the page or too big an item. Off-page page headers
866 * go on a hash table, so we can match a returned item with its header
867 * based on the page address.
868 */
869 if (pool_init_is_phinpage(pp)) {
870 /* Use the beginning of the page for the page header */
871 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
872 pp->pr_itemoffset = roundup(PHSIZE, align);
873 pp->pr_roflags |= PR_PHINPAGE;
874 } else {
875 /* The page header will be taken from our page header pool */
876 itemspace = palloc->pa_pagesz;
877 pp->pr_itemoffset = 0;
878 SPLAY_INIT(&pp->pr_phtree);
879 }
880
881 pp->pr_itemsperpage = itemspace / pp->pr_size;
882 KASSERT(pp->pr_itemsperpage != 0);
883
884 /*
885 * Decide whether to use a bitmap or a linked list to manage freed
886 * items.
887 */
888 if (pool_init_is_usebmap(pp)) {
889 pp->pr_roflags |= PR_USEBMAP;
890 }
891
892 /*
893 * If we're off-page, then we're using a bitmap; choose the appropriate
894 * pool to allocate page headers, whose size varies depending on the
895 * bitmap. If we're on-page, nothing to do.
896 */
897 if (!(pp->pr_roflags & PR_PHINPAGE)) {
898 int idx;
899
900 KASSERT(pp->pr_roflags & PR_USEBMAP);
901
902 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
903 idx++) {
904 /* nothing */
905 }
906 if (idx >= PHPOOL_MAX) {
907 /*
908 * if you see this panic, consider to tweak
909 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
910 */
911 panic("%s: [%s] too large itemsperpage(%d) for "
912 "PR_USEBMAP", __func__,
913 pp->pr_wchan, pp->pr_itemsperpage);
914 }
915 pp->pr_phpool = &phpool[idx];
916 } else {
917 pp->pr_phpool = NULL;
918 }
919
920 /*
921 * Use the slack between the chunks and the page header
922 * for "cache coloring".
923 */
924 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
925 pp->pr_maxcolor = rounddown(slack, align);
926 pp->pr_curcolor = 0;
927
928 pp->pr_nget = 0;
929 pp->pr_nfail = 0;
930 pp->pr_nput = 0;
931 pp->pr_npagealloc = 0;
932 pp->pr_npagefree = 0;
933 pp->pr_hiwat = 0;
934 pp->pr_nidle = 0;
935 pp->pr_refcnt = 0;
936
937 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
938 cv_init(&pp->pr_cv, wchan);
939 pp->pr_ipl = ipl;
940
941 /* Insert into the list of all pools. */
942 if (!cold)
943 mutex_enter(&pool_head_lock);
944 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
945 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
946 break;
947 }
948 if (pp1 == NULL)
949 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
950 else
951 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
952 if (!cold)
953 mutex_exit(&pool_head_lock);
954
955 /* Insert this into the list of pools using this allocator. */
956 if (!cold)
957 mutex_enter(&palloc->pa_lock);
958 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
959 if (!cold)
960 mutex_exit(&palloc->pa_lock);
961 }
962
963 /*
964 * De-commision a pool resource.
965 */
966 void
967 pool_destroy(struct pool *pp)
968 {
969 struct pool_pagelist pq;
970 struct pool_item_header *ph;
971
972 pool_quarantine_flush(pp);
973
974 /* Remove from global pool list */
975 mutex_enter(&pool_head_lock);
976 while (pp->pr_refcnt != 0)
977 cv_wait(&pool_busy, &pool_head_lock);
978 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
979 if (drainpp == pp)
980 drainpp = NULL;
981 mutex_exit(&pool_head_lock);
982
983 /* Remove this pool from its allocator's list of pools. */
984 mutex_enter(&pp->pr_alloc->pa_lock);
985 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
986 mutex_exit(&pp->pr_alloc->pa_lock);
987
988 mutex_enter(&pool_allocator_lock);
989 if (--pp->pr_alloc->pa_refcnt == 0)
990 mutex_destroy(&pp->pr_alloc->pa_lock);
991 mutex_exit(&pool_allocator_lock);
992
993 mutex_enter(&pp->pr_lock);
994
995 KASSERT(pp->pr_cache == NULL);
996 KASSERTMSG((pp->pr_nout == 0),
997 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
998 pp->pr_nout);
999 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1000 KASSERT(LIST_EMPTY(&pp->pr_partpages));
1001
1002 /* Remove all pages */
1003 LIST_INIT(&pq);
1004 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1005 pr_rmpage(pp, ph, &pq);
1006
1007 mutex_exit(&pp->pr_lock);
1008
1009 pr_pagelist_free(pp, &pq);
1010 cv_destroy(&pp->pr_cv);
1011 mutex_destroy(&pp->pr_lock);
1012 }
1013
1014 void
1015 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1016 {
1017
1018 /* XXX no locking -- must be used just after pool_init() */
1019 KASSERTMSG((pp->pr_drain_hook == NULL),
1020 "%s: [%s] already set", __func__, pp->pr_wchan);
1021 pp->pr_drain_hook = fn;
1022 pp->pr_drain_hook_arg = arg;
1023 }
1024
1025 static struct pool_item_header *
1026 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1027 {
1028 struct pool_item_header *ph;
1029
1030 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1031 ph = storage;
1032 else
1033 ph = pool_get(pp->pr_phpool, flags);
1034
1035 return ph;
1036 }
1037
1038 /*
1039 * Grab an item from the pool.
1040 */
1041 void *
1042 pool_get(struct pool *pp, int flags)
1043 {
1044 struct pool_item_header *ph;
1045 void *v;
1046
1047 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1048 KASSERTMSG((pp->pr_itemsperpage != 0),
1049 "%s: [%s] pr_itemsperpage is zero, "
1050 "pool not initialized?", __func__, pp->pr_wchan);
1051 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1052 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1053 "%s: [%s] is IPL_NONE, but called from interrupt context",
1054 __func__, pp->pr_wchan);
1055 if (flags & PR_WAITOK) {
1056 ASSERT_SLEEPABLE();
1057 }
1058
1059 mutex_enter(&pp->pr_lock);
1060 startover:
1061 /*
1062 * Check to see if we've reached the hard limit. If we have,
1063 * and we can wait, then wait until an item has been returned to
1064 * the pool.
1065 */
1066 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1067 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1068 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1069 if (pp->pr_drain_hook != NULL) {
1070 /*
1071 * Since the drain hook is going to free things
1072 * back to the pool, unlock, call the hook, re-lock,
1073 * and check the hardlimit condition again.
1074 */
1075 mutex_exit(&pp->pr_lock);
1076 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1077 mutex_enter(&pp->pr_lock);
1078 if (pp->pr_nout < pp->pr_hardlimit)
1079 goto startover;
1080 }
1081
1082 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1083 /*
1084 * XXX: A warning isn't logged in this case. Should
1085 * it be?
1086 */
1087 pp->pr_flags |= PR_WANTED;
1088 do {
1089 cv_wait(&pp->pr_cv, &pp->pr_lock);
1090 } while (pp->pr_flags & PR_WANTED);
1091 goto startover;
1092 }
1093
1094 /*
1095 * Log a message that the hard limit has been hit.
1096 */
1097 if (pp->pr_hardlimit_warning != NULL &&
1098 ratecheck(&pp->pr_hardlimit_warning_last,
1099 &pp->pr_hardlimit_ratecap))
1100 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1101
1102 pp->pr_nfail++;
1103
1104 mutex_exit(&pp->pr_lock);
1105 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1106 return NULL;
1107 }
1108
1109 /*
1110 * The convention we use is that if `curpage' is not NULL, then
1111 * it points at a non-empty bucket. In particular, `curpage'
1112 * never points at a page header which has PR_PHINPAGE set and
1113 * has no items in its bucket.
1114 */
1115 if ((ph = pp->pr_curpage) == NULL) {
1116 int error;
1117
1118 KASSERTMSG((pp->pr_nitems == 0),
1119 "%s: [%s] curpage NULL, inconsistent nitems %u",
1120 __func__, pp->pr_wchan, pp->pr_nitems);
1121
1122 /*
1123 * Call the back-end page allocator for more memory.
1124 * Release the pool lock, as the back-end page allocator
1125 * may block.
1126 */
1127 error = pool_grow(pp, flags);
1128 if (error != 0) {
1129 /*
1130 * pool_grow aborts when another thread
1131 * is allocating a new page. Retry if it
1132 * waited for it.
1133 */
1134 if (error == ERESTART)
1135 goto startover;
1136
1137 /*
1138 * We were unable to allocate a page or item
1139 * header, but we released the lock during
1140 * allocation, so perhaps items were freed
1141 * back to the pool. Check for this case.
1142 */
1143 if (pp->pr_curpage != NULL)
1144 goto startover;
1145
1146 pp->pr_nfail++;
1147 mutex_exit(&pp->pr_lock);
1148 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1149 return NULL;
1150 }
1151
1152 /* Start the allocation process over. */
1153 goto startover;
1154 }
1155 if (pp->pr_roflags & PR_USEBMAP) {
1156 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1157 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1158 v = pr_item_bitmap_get(pp, ph);
1159 } else {
1160 v = pr_item_linkedlist_get(pp, ph);
1161 }
1162 pp->pr_nitems--;
1163 pp->pr_nout++;
1164 if (ph->ph_nmissing == 0) {
1165 KASSERT(pp->pr_nidle > 0);
1166 pp->pr_nidle--;
1167
1168 /*
1169 * This page was previously empty. Move it to the list of
1170 * partially-full pages. This page is already curpage.
1171 */
1172 LIST_REMOVE(ph, ph_pagelist);
1173 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1174 }
1175 ph->ph_nmissing++;
1176 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1177 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1178 LIST_EMPTY(&ph->ph_itemlist)),
1179 "%s: [%s] nmissing (%u) inconsistent", __func__,
1180 pp->pr_wchan, ph->ph_nmissing);
1181 /*
1182 * This page is now full. Move it to the full list
1183 * and select a new current page.
1184 */
1185 LIST_REMOVE(ph, ph_pagelist);
1186 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1187 pool_update_curpage(pp);
1188 }
1189
1190 pp->pr_nget++;
1191
1192 /*
1193 * If we have a low water mark and we are now below that low
1194 * water mark, add more items to the pool.
1195 */
1196 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1197 /*
1198 * XXX: Should we log a warning? Should we set up a timeout
1199 * to try again in a second or so? The latter could break
1200 * a caller's assumptions about interrupt protection, etc.
1201 */
1202 }
1203
1204 mutex_exit(&pp->pr_lock);
1205 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1206 FREECHECK_OUT(&pp->pr_freecheck, v);
1207 pool_redzone_fill(pp, v);
1208 pool_get_kmsan(pp, v);
1209 if (flags & PR_ZERO)
1210 memset(v, 0, pp->pr_reqsize);
1211 return v;
1212 }
1213
1214 /*
1215 * Internal version of pool_put(). Pool is already locked/entered.
1216 */
1217 static void
1218 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1219 {
1220 struct pool_item_header *ph;
1221
1222 KASSERT(mutex_owned(&pp->pr_lock));
1223 pool_redzone_check(pp, v);
1224 pool_put_kmsan(pp, v);
1225 FREECHECK_IN(&pp->pr_freecheck, v);
1226 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1227
1228 KASSERTMSG((pp->pr_nout > 0),
1229 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1230
1231 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1232 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1233 }
1234
1235 /*
1236 * Return to item list.
1237 */
1238 if (pp->pr_roflags & PR_USEBMAP) {
1239 pr_item_bitmap_put(pp, ph, v);
1240 } else {
1241 pr_item_linkedlist_put(pp, ph, v);
1242 }
1243 KDASSERT(ph->ph_nmissing != 0);
1244 ph->ph_nmissing--;
1245 pp->pr_nput++;
1246 pp->pr_nitems++;
1247 pp->pr_nout--;
1248
1249 /* Cancel "pool empty" condition if it exists */
1250 if (pp->pr_curpage == NULL)
1251 pp->pr_curpage = ph;
1252
1253 if (pp->pr_flags & PR_WANTED) {
1254 pp->pr_flags &= ~PR_WANTED;
1255 cv_broadcast(&pp->pr_cv);
1256 }
1257
1258 /*
1259 * If this page is now empty, do one of two things:
1260 *
1261 * (1) If we have more pages than the page high water mark,
1262 * free the page back to the system. ONLY CONSIDER
1263 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1264 * CLAIM.
1265 *
1266 * (2) Otherwise, move the page to the empty page list.
1267 *
1268 * Either way, select a new current page (so we use a partially-full
1269 * page if one is available).
1270 */
1271 if (ph->ph_nmissing == 0) {
1272 pp->pr_nidle++;
1273 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1274 pp->pr_npages > pp->pr_minpages &&
1275 pp->pr_npages > pp->pr_maxpages) {
1276 pr_rmpage(pp, ph, pq);
1277 } else {
1278 LIST_REMOVE(ph, ph_pagelist);
1279 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1280
1281 /*
1282 * Update the timestamp on the page. A page must
1283 * be idle for some period of time before it can
1284 * be reclaimed by the pagedaemon. This minimizes
1285 * ping-pong'ing for memory.
1286 *
1287 * note for 64-bit time_t: truncating to 32-bit is not
1288 * a problem for our usage.
1289 */
1290 ph->ph_time = time_uptime;
1291 }
1292 pool_update_curpage(pp);
1293 }
1294
1295 /*
1296 * If the page was previously completely full, move it to the
1297 * partially-full list and make it the current page. The next
1298 * allocation will get the item from this page, instead of
1299 * further fragmenting the pool.
1300 */
1301 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1302 LIST_REMOVE(ph, ph_pagelist);
1303 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1304 pp->pr_curpage = ph;
1305 }
1306 }
1307
1308 void
1309 pool_put(struct pool *pp, void *v)
1310 {
1311 struct pool_pagelist pq;
1312
1313 LIST_INIT(&pq);
1314
1315 mutex_enter(&pp->pr_lock);
1316 if (!pool_put_quarantine(pp, v, &pq)) {
1317 pool_do_put(pp, v, &pq);
1318 }
1319 mutex_exit(&pp->pr_lock);
1320
1321 pr_pagelist_free(pp, &pq);
1322 }
1323
1324 /*
1325 * pool_grow: grow a pool by a page.
1326 *
1327 * => called with pool locked.
1328 * => unlock and relock the pool.
1329 * => return with pool locked.
1330 */
1331
1332 static int
1333 pool_grow(struct pool *pp, int flags)
1334 {
1335 struct pool_item_header *ph;
1336 char *storage;
1337
1338 /*
1339 * If there's a pool_grow in progress, wait for it to complete
1340 * and try again from the top.
1341 */
1342 if (pp->pr_flags & PR_GROWING) {
1343 if (flags & PR_WAITOK) {
1344 do {
1345 cv_wait(&pp->pr_cv, &pp->pr_lock);
1346 } while (pp->pr_flags & PR_GROWING);
1347 return ERESTART;
1348 } else {
1349 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1350 /*
1351 * This needs an unlock/relock dance so
1352 * that the other caller has a chance to
1353 * run and actually do the thing. Note
1354 * that this is effectively a busy-wait.
1355 */
1356 mutex_exit(&pp->pr_lock);
1357 mutex_enter(&pp->pr_lock);
1358 return ERESTART;
1359 }
1360 return EWOULDBLOCK;
1361 }
1362 }
1363 pp->pr_flags |= PR_GROWING;
1364 if (flags & PR_WAITOK)
1365 mutex_exit(&pp->pr_lock);
1366 else
1367 pp->pr_flags |= PR_GROWINGNOWAIT;
1368
1369 storage = pool_allocator_alloc(pp, flags);
1370 if (__predict_false(storage == NULL))
1371 goto out;
1372
1373 ph = pool_alloc_item_header(pp, storage, flags);
1374 if (__predict_false(ph == NULL)) {
1375 pool_allocator_free(pp, storage);
1376 goto out;
1377 }
1378
1379 if (flags & PR_WAITOK)
1380 mutex_enter(&pp->pr_lock);
1381 pool_prime_page(pp, storage, ph);
1382 pp->pr_npagealloc++;
1383 KASSERT(pp->pr_flags & PR_GROWING);
1384 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1385 /*
1386 * If anyone was waiting for pool_grow, notify them that we
1387 * may have just done it.
1388 */
1389 cv_broadcast(&pp->pr_cv);
1390 return 0;
1391 out:
1392 if (flags & PR_WAITOK)
1393 mutex_enter(&pp->pr_lock);
1394 KASSERT(pp->pr_flags & PR_GROWING);
1395 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1396 return ENOMEM;
1397 }
1398
1399 void
1400 pool_prime(struct pool *pp, int n)
1401 {
1402
1403 mutex_enter(&pp->pr_lock);
1404 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1405 if (pp->pr_maxpages <= pp->pr_minpages)
1406 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1407 while (pp->pr_npages < pp->pr_minpages)
1408 (void) pool_grow(pp, PR_WAITOK);
1409 mutex_exit(&pp->pr_lock);
1410 }
1411
1412 /*
1413 * Add a page worth of items to the pool.
1414 *
1415 * Note, we must be called with the pool descriptor LOCKED.
1416 */
1417 static void
1418 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1419 {
1420 const unsigned int align = pp->pr_align;
1421 struct pool_item *pi;
1422 void *cp = storage;
1423 int n;
1424
1425 KASSERT(mutex_owned(&pp->pr_lock));
1426 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1427 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1428 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1429
1430 /*
1431 * Insert page header.
1432 */
1433 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1434 LIST_INIT(&ph->ph_itemlist);
1435 ph->ph_page = storage;
1436 ph->ph_nmissing = 0;
1437 ph->ph_time = time_uptime;
1438 if (pp->pr_roflags & PR_PHINPAGE)
1439 ph->ph_poolid = pp->pr_poolid;
1440 else
1441 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1442
1443 pp->pr_nidle++;
1444
1445 /*
1446 * The item space starts after the on-page header, if any.
1447 */
1448 ph->ph_off = pp->pr_itemoffset;
1449
1450 /*
1451 * Color this page.
1452 */
1453 ph->ph_off += pp->pr_curcolor;
1454 cp = (char *)cp + ph->ph_off;
1455 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1456 pp->pr_curcolor = 0;
1457
1458 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1459
1460 /*
1461 * Insert remaining chunks on the bucket list.
1462 */
1463 n = pp->pr_itemsperpage;
1464 pp->pr_nitems += n;
1465
1466 if (pp->pr_roflags & PR_USEBMAP) {
1467 pr_item_bitmap_init(pp, ph);
1468 } else {
1469 while (n--) {
1470 pi = (struct pool_item *)cp;
1471
1472 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1473
1474 /* Insert on page list */
1475 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1476 #ifdef POOL_CHECK_MAGIC
1477 pi->pi_magic = PI_MAGIC;
1478 #endif
1479 cp = (char *)cp + pp->pr_size;
1480
1481 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1482 }
1483 }
1484
1485 /*
1486 * If the pool was depleted, point at the new page.
1487 */
1488 if (pp->pr_curpage == NULL)
1489 pp->pr_curpage = ph;
1490
1491 if (++pp->pr_npages > pp->pr_hiwat)
1492 pp->pr_hiwat = pp->pr_npages;
1493 }
1494
1495 /*
1496 * Used by pool_get() when nitems drops below the low water mark. This
1497 * is used to catch up pr_nitems with the low water mark.
1498 *
1499 * Note 1, we never wait for memory here, we let the caller decide what to do.
1500 *
1501 * Note 2, we must be called with the pool already locked, and we return
1502 * with it locked.
1503 */
1504 static int
1505 pool_catchup(struct pool *pp)
1506 {
1507 int error = 0;
1508
1509 while (POOL_NEEDS_CATCHUP(pp)) {
1510 error = pool_grow(pp, PR_NOWAIT);
1511 if (error) {
1512 if (error == ERESTART)
1513 continue;
1514 break;
1515 }
1516 }
1517 return error;
1518 }
1519
1520 static void
1521 pool_update_curpage(struct pool *pp)
1522 {
1523
1524 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1525 if (pp->pr_curpage == NULL) {
1526 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1527 }
1528 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1529 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1530 }
1531
1532 void
1533 pool_setlowat(struct pool *pp, int n)
1534 {
1535
1536 mutex_enter(&pp->pr_lock);
1537 pp->pr_minitems = n;
1538
1539 /* Make sure we're caught up with the newly-set low water mark. */
1540 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1541 /*
1542 * XXX: Should we log a warning? Should we set up a timeout
1543 * to try again in a second or so? The latter could break
1544 * a caller's assumptions about interrupt protection, etc.
1545 */
1546 }
1547
1548 mutex_exit(&pp->pr_lock);
1549 }
1550
1551 void
1552 pool_sethiwat(struct pool *pp, int n)
1553 {
1554
1555 mutex_enter(&pp->pr_lock);
1556
1557 pp->pr_maxitems = n;
1558
1559 mutex_exit(&pp->pr_lock);
1560 }
1561
1562 void
1563 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1564 {
1565
1566 mutex_enter(&pp->pr_lock);
1567
1568 pp->pr_hardlimit = n;
1569 pp->pr_hardlimit_warning = warnmess;
1570 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1571 pp->pr_hardlimit_warning_last.tv_sec = 0;
1572 pp->pr_hardlimit_warning_last.tv_usec = 0;
1573
1574 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1575
1576 mutex_exit(&pp->pr_lock);
1577 }
1578
1579 /*
1580 * Release all complete pages that have not been used recently.
1581 *
1582 * Must not be called from interrupt context.
1583 */
1584 int
1585 pool_reclaim(struct pool *pp)
1586 {
1587 struct pool_item_header *ph, *phnext;
1588 struct pool_pagelist pq;
1589 uint32_t curtime;
1590 bool klock;
1591 int rv;
1592
1593 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1594
1595 if (pp->pr_drain_hook != NULL) {
1596 /*
1597 * The drain hook must be called with the pool unlocked.
1598 */
1599 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1600 }
1601
1602 /*
1603 * XXXSMP Because we do not want to cause non-MPSAFE code
1604 * to block.
1605 */
1606 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1607 pp->pr_ipl == IPL_SOFTSERIAL) {
1608 KERNEL_LOCK(1, NULL);
1609 klock = true;
1610 } else
1611 klock = false;
1612
1613 /* Reclaim items from the pool's cache (if any). */
1614 if (pp->pr_cache != NULL)
1615 pool_cache_invalidate(pp->pr_cache);
1616
1617 if (mutex_tryenter(&pp->pr_lock) == 0) {
1618 if (klock) {
1619 KERNEL_UNLOCK_ONE(NULL);
1620 }
1621 return 0;
1622 }
1623
1624 LIST_INIT(&pq);
1625
1626 curtime = time_uptime;
1627
1628 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1629 phnext = LIST_NEXT(ph, ph_pagelist);
1630
1631 /* Check our minimum page claim */
1632 if (pp->pr_npages <= pp->pr_minpages)
1633 break;
1634
1635 KASSERT(ph->ph_nmissing == 0);
1636 if (curtime - ph->ph_time < pool_inactive_time)
1637 continue;
1638
1639 /*
1640 * If freeing this page would put us below the minimum free items
1641 * or the minimum pages, stop now.
1642 */
1643 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1644 pp->pr_npages - 1 < pp->pr_minpages)
1645 break;
1646
1647 pr_rmpage(pp, ph, &pq);
1648 }
1649
1650 mutex_exit(&pp->pr_lock);
1651
1652 if (LIST_EMPTY(&pq))
1653 rv = 0;
1654 else {
1655 pr_pagelist_free(pp, &pq);
1656 rv = 1;
1657 }
1658
1659 if (klock) {
1660 KERNEL_UNLOCK_ONE(NULL);
1661 }
1662
1663 return rv;
1664 }
1665
1666 /*
1667 * Drain pools, one at a time. The drained pool is returned within ppp.
1668 *
1669 * Note, must never be called from interrupt context.
1670 */
1671 bool
1672 pool_drain(struct pool **ppp)
1673 {
1674 bool reclaimed;
1675 struct pool *pp;
1676
1677 KASSERT(!TAILQ_EMPTY(&pool_head));
1678
1679 pp = NULL;
1680
1681 /* Find next pool to drain, and add a reference. */
1682 mutex_enter(&pool_head_lock);
1683 do {
1684 if (drainpp == NULL) {
1685 drainpp = TAILQ_FIRST(&pool_head);
1686 }
1687 if (drainpp != NULL) {
1688 pp = drainpp;
1689 drainpp = TAILQ_NEXT(pp, pr_poollist);
1690 }
1691 /*
1692 * Skip completely idle pools. We depend on at least
1693 * one pool in the system being active.
1694 */
1695 } while (pp == NULL || pp->pr_npages == 0);
1696 pp->pr_refcnt++;
1697 mutex_exit(&pool_head_lock);
1698
1699 /* Drain the cache (if any) and pool.. */
1700 reclaimed = pool_reclaim(pp);
1701
1702 /* Finally, unlock the pool. */
1703 mutex_enter(&pool_head_lock);
1704 pp->pr_refcnt--;
1705 cv_broadcast(&pool_busy);
1706 mutex_exit(&pool_head_lock);
1707
1708 if (ppp != NULL)
1709 *ppp = pp;
1710
1711 return reclaimed;
1712 }
1713
1714 /*
1715 * Calculate the total number of pages consumed by pools.
1716 */
1717 int
1718 pool_totalpages(void)
1719 {
1720
1721 mutex_enter(&pool_head_lock);
1722 int pages = pool_totalpages_locked();
1723 mutex_exit(&pool_head_lock);
1724
1725 return pages;
1726 }
1727
1728 int
1729 pool_totalpages_locked(void)
1730 {
1731 struct pool *pp;
1732 uint64_t total = 0;
1733
1734 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1735 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1736
1737 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1738 bytes -= (pp->pr_nout * pp->pr_size);
1739 total += bytes;
1740 }
1741
1742 return atop(total);
1743 }
1744
1745 /*
1746 * Diagnostic helpers.
1747 */
1748
1749 void
1750 pool_printall(const char *modif, void (*pr)(const char *, ...))
1751 {
1752 struct pool *pp;
1753
1754 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1755 pool_printit(pp, modif, pr);
1756 }
1757 }
1758
1759 void
1760 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1761 {
1762
1763 if (pp == NULL) {
1764 (*pr)("Must specify a pool to print.\n");
1765 return;
1766 }
1767
1768 pool_print1(pp, modif, pr);
1769 }
1770
1771 static void
1772 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1773 void (*pr)(const char *, ...))
1774 {
1775 struct pool_item_header *ph;
1776
1777 LIST_FOREACH(ph, pl, ph_pagelist) {
1778 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1779 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1780 #ifdef POOL_CHECK_MAGIC
1781 struct pool_item *pi;
1782 if (!(pp->pr_roflags & PR_USEBMAP)) {
1783 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1784 if (pi->pi_magic != PI_MAGIC) {
1785 (*pr)("\t\t\titem %p, magic 0x%x\n",
1786 pi, pi->pi_magic);
1787 }
1788 }
1789 }
1790 #endif
1791 }
1792 }
1793
1794 static void
1795 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1796 {
1797 struct pool_item_header *ph;
1798 pool_cache_t pc;
1799 pcg_t *pcg;
1800 pool_cache_cpu_t *cc;
1801 uint64_t cpuhit, cpumiss;
1802 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1803 char c;
1804
1805 while ((c = *modif++) != '\0') {
1806 if (c == 'l')
1807 print_log = 1;
1808 if (c == 'p')
1809 print_pagelist = 1;
1810 if (c == 'c')
1811 print_cache = 1;
1812 }
1813
1814 if ((pc = pp->pr_cache) != NULL) {
1815 (*pr)("POOL CACHE");
1816 } else {
1817 (*pr)("POOL");
1818 }
1819
1820 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1821 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1822 pp->pr_roflags);
1823 (*pr)("\talloc %p\n", pp->pr_alloc);
1824 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1825 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1826 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1827 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1828
1829 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1830 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1831 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1832 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1833
1834 if (print_pagelist == 0)
1835 goto skip_pagelist;
1836
1837 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1838 (*pr)("\n\tempty page list:\n");
1839 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1840 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1841 (*pr)("\n\tfull page list:\n");
1842 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1843 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1844 (*pr)("\n\tpartial-page list:\n");
1845 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1846
1847 if (pp->pr_curpage == NULL)
1848 (*pr)("\tno current page\n");
1849 else
1850 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1851
1852 skip_pagelist:
1853 if (print_log == 0)
1854 goto skip_log;
1855
1856 (*pr)("\n");
1857
1858 skip_log:
1859
1860 #define PR_GROUPLIST(pcg) \
1861 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1862 for (i = 0; i < pcg->pcg_size; i++) { \
1863 if (pcg->pcg_objects[i].pcgo_pa != \
1864 POOL_PADDR_INVALID) { \
1865 (*pr)("\t\t\t%p, 0x%llx\n", \
1866 pcg->pcg_objects[i].pcgo_va, \
1867 (unsigned long long) \
1868 pcg->pcg_objects[i].pcgo_pa); \
1869 } else { \
1870 (*pr)("\t\t\t%p\n", \
1871 pcg->pcg_objects[i].pcgo_va); \
1872 } \
1873 }
1874
1875 if (pc != NULL) {
1876 cpuhit = 0;
1877 cpumiss = 0;
1878 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1879 if ((cc = pc->pc_cpus[i]) == NULL)
1880 continue;
1881 cpuhit += cc->cc_hits;
1882 cpumiss += cc->cc_misses;
1883 }
1884 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1885 (*pr)("\tcache layer hits %llu misses %llu\n",
1886 pc->pc_hits, pc->pc_misses);
1887 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1888 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1889 pc->pc_contended);
1890 (*pr)("\tcache layer empty groups %u full groups %u\n",
1891 pc->pc_nempty, pc->pc_nfull);
1892 if (print_cache) {
1893 (*pr)("\tfull cache groups:\n");
1894 for (pcg = pc->pc_fullgroups; pcg != NULL;
1895 pcg = pcg->pcg_next) {
1896 PR_GROUPLIST(pcg);
1897 }
1898 (*pr)("\tempty cache groups:\n");
1899 for (pcg = pc->pc_emptygroups; pcg != NULL;
1900 pcg = pcg->pcg_next) {
1901 PR_GROUPLIST(pcg);
1902 }
1903 }
1904 }
1905 #undef PR_GROUPLIST
1906 }
1907
1908 static int
1909 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1910 {
1911 struct pool_item *pi;
1912 void *page;
1913 int n;
1914
1915 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1916 page = POOL_OBJ_TO_PAGE(pp, ph);
1917 if (page != ph->ph_page &&
1918 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1919 if (label != NULL)
1920 printf("%s: ", label);
1921 printf("pool(%p:%s): page inconsistency: page %p;"
1922 " at page head addr %p (p %p)\n", pp,
1923 pp->pr_wchan, ph->ph_page,
1924 ph, page);
1925 return 1;
1926 }
1927 }
1928
1929 if ((pp->pr_roflags & PR_USEBMAP) != 0)
1930 return 0;
1931
1932 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1933 pi != NULL;
1934 pi = LIST_NEXT(pi,pi_list), n++) {
1935
1936 #ifdef POOL_CHECK_MAGIC
1937 if (pi->pi_magic != PI_MAGIC) {
1938 if (label != NULL)
1939 printf("%s: ", label);
1940 printf("pool(%s): free list modified: magic=%x;"
1941 " page %p; item ordinal %d; addr %p\n",
1942 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1943 n, pi);
1944 panic("pool");
1945 }
1946 #endif
1947 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1948 continue;
1949 }
1950 page = POOL_OBJ_TO_PAGE(pp, pi);
1951 if (page == ph->ph_page)
1952 continue;
1953
1954 if (label != NULL)
1955 printf("%s: ", label);
1956 printf("pool(%p:%s): page inconsistency: page %p;"
1957 " item ordinal %d; addr %p (p %p)\n", pp,
1958 pp->pr_wchan, ph->ph_page,
1959 n, pi, page);
1960 return 1;
1961 }
1962 return 0;
1963 }
1964
1965
1966 int
1967 pool_chk(struct pool *pp, const char *label)
1968 {
1969 struct pool_item_header *ph;
1970 int r = 0;
1971
1972 mutex_enter(&pp->pr_lock);
1973 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1974 r = pool_chk_page(pp, label, ph);
1975 if (r) {
1976 goto out;
1977 }
1978 }
1979 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1980 r = pool_chk_page(pp, label, ph);
1981 if (r) {
1982 goto out;
1983 }
1984 }
1985 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1986 r = pool_chk_page(pp, label, ph);
1987 if (r) {
1988 goto out;
1989 }
1990 }
1991
1992 out:
1993 mutex_exit(&pp->pr_lock);
1994 return r;
1995 }
1996
1997 /*
1998 * pool_cache_init:
1999 *
2000 * Initialize a pool cache.
2001 */
2002 pool_cache_t
2003 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2004 const char *wchan, struct pool_allocator *palloc, int ipl,
2005 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2006 {
2007 pool_cache_t pc;
2008
2009 pc = pool_get(&cache_pool, PR_WAITOK);
2010 if (pc == NULL)
2011 return NULL;
2012
2013 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2014 palloc, ipl, ctor, dtor, arg);
2015
2016 return pc;
2017 }
2018
2019 /*
2020 * pool_cache_bootstrap:
2021 *
2022 * Kernel-private version of pool_cache_init(). The caller
2023 * provides initial storage.
2024 */
2025 void
2026 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2027 u_int align_offset, u_int flags, const char *wchan,
2028 struct pool_allocator *palloc, int ipl,
2029 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2030 void *arg)
2031 {
2032 CPU_INFO_ITERATOR cii;
2033 pool_cache_t pc1;
2034 struct cpu_info *ci;
2035 struct pool *pp;
2036
2037 pp = &pc->pc_pool;
2038 if (palloc == NULL && ipl == IPL_NONE) {
2039 if (size > PAGE_SIZE) {
2040 int bigidx = pool_bigidx(size);
2041
2042 palloc = &pool_allocator_big[bigidx];
2043 flags |= PR_NOALIGN;
2044 } else
2045 palloc = &pool_allocator_nointr;
2046 }
2047 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2048 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2049
2050 if (ctor == NULL) {
2051 ctor = NO_CTOR;
2052 }
2053 if (dtor == NULL) {
2054 dtor = NO_DTOR;
2055 }
2056
2057 pc->pc_emptygroups = NULL;
2058 pc->pc_fullgroups = NULL;
2059 pc->pc_partgroups = NULL;
2060 pc->pc_ctor = ctor;
2061 pc->pc_dtor = dtor;
2062 pc->pc_arg = arg;
2063 pc->pc_hits = 0;
2064 pc->pc_misses = 0;
2065 pc->pc_nempty = 0;
2066 pc->pc_npart = 0;
2067 pc->pc_nfull = 0;
2068 pc->pc_contended = 0;
2069 pc->pc_refcnt = 0;
2070 pc->pc_freecheck = NULL;
2071
2072 if ((flags & PR_LARGECACHE) != 0) {
2073 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2074 pc->pc_pcgpool = &pcg_large_pool;
2075 } else {
2076 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2077 pc->pc_pcgpool = &pcg_normal_pool;
2078 }
2079
2080 /* Allocate per-CPU caches. */
2081 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2082 pc->pc_ncpu = 0;
2083 if (ncpu < 2) {
2084 /* XXX For sparc: boot CPU is not attached yet. */
2085 pool_cache_cpu_init1(curcpu(), pc);
2086 } else {
2087 for (CPU_INFO_FOREACH(cii, ci)) {
2088 pool_cache_cpu_init1(ci, pc);
2089 }
2090 }
2091
2092 /* Add to list of all pools. */
2093 if (__predict_true(!cold))
2094 mutex_enter(&pool_head_lock);
2095 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2096 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2097 break;
2098 }
2099 if (pc1 == NULL)
2100 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2101 else
2102 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2103 if (__predict_true(!cold))
2104 mutex_exit(&pool_head_lock);
2105
2106 membar_sync();
2107 pp->pr_cache = pc;
2108 }
2109
2110 /*
2111 * pool_cache_destroy:
2112 *
2113 * Destroy a pool cache.
2114 */
2115 void
2116 pool_cache_destroy(pool_cache_t pc)
2117 {
2118
2119 pool_cache_bootstrap_destroy(pc);
2120 pool_put(&cache_pool, pc);
2121 }
2122
2123 /*
2124 * pool_cache_bootstrap_destroy:
2125 *
2126 * Destroy a pool cache.
2127 */
2128 void
2129 pool_cache_bootstrap_destroy(pool_cache_t pc)
2130 {
2131 struct pool *pp = &pc->pc_pool;
2132 u_int i;
2133
2134 /* Remove it from the global list. */
2135 mutex_enter(&pool_head_lock);
2136 while (pc->pc_refcnt != 0)
2137 cv_wait(&pool_busy, &pool_head_lock);
2138 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2139 mutex_exit(&pool_head_lock);
2140
2141 /* First, invalidate the entire cache. */
2142 pool_cache_invalidate(pc);
2143
2144 /* Disassociate it from the pool. */
2145 mutex_enter(&pp->pr_lock);
2146 pp->pr_cache = NULL;
2147 mutex_exit(&pp->pr_lock);
2148
2149 /* Destroy per-CPU data */
2150 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2151 pool_cache_invalidate_cpu(pc, i);
2152
2153 /* Finally, destroy it. */
2154 mutex_destroy(&pc->pc_lock);
2155 pool_destroy(pp);
2156 }
2157
2158 /*
2159 * pool_cache_cpu_init1:
2160 *
2161 * Called for each pool_cache whenever a new CPU is attached.
2162 */
2163 static void
2164 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2165 {
2166 pool_cache_cpu_t *cc;
2167 int index;
2168
2169 index = ci->ci_index;
2170
2171 KASSERT(index < __arraycount(pc->pc_cpus));
2172
2173 if ((cc = pc->pc_cpus[index]) != NULL) {
2174 KASSERT(cc->cc_cpuindex == index);
2175 return;
2176 }
2177
2178 /*
2179 * The first CPU is 'free'. This needs to be the case for
2180 * bootstrap - we may not be able to allocate yet.
2181 */
2182 if (pc->pc_ncpu == 0) {
2183 cc = &pc->pc_cpu0;
2184 pc->pc_ncpu = 1;
2185 } else {
2186 mutex_enter(&pc->pc_lock);
2187 pc->pc_ncpu++;
2188 mutex_exit(&pc->pc_lock);
2189 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2190 }
2191
2192 cc->cc_ipl = pc->pc_pool.pr_ipl;
2193 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2194 cc->cc_cache = pc;
2195 cc->cc_cpuindex = index;
2196 cc->cc_hits = 0;
2197 cc->cc_misses = 0;
2198 cc->cc_current = __UNCONST(&pcg_dummy);
2199 cc->cc_previous = __UNCONST(&pcg_dummy);
2200
2201 pc->pc_cpus[index] = cc;
2202 }
2203
2204 /*
2205 * pool_cache_cpu_init:
2206 *
2207 * Called whenever a new CPU is attached.
2208 */
2209 void
2210 pool_cache_cpu_init(struct cpu_info *ci)
2211 {
2212 pool_cache_t pc;
2213
2214 mutex_enter(&pool_head_lock);
2215 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2216 pc->pc_refcnt++;
2217 mutex_exit(&pool_head_lock);
2218
2219 pool_cache_cpu_init1(ci, pc);
2220
2221 mutex_enter(&pool_head_lock);
2222 pc->pc_refcnt--;
2223 cv_broadcast(&pool_busy);
2224 }
2225 mutex_exit(&pool_head_lock);
2226 }
2227
2228 /*
2229 * pool_cache_reclaim:
2230 *
2231 * Reclaim memory from a pool cache.
2232 */
2233 bool
2234 pool_cache_reclaim(pool_cache_t pc)
2235 {
2236
2237 return pool_reclaim(&pc->pc_pool);
2238 }
2239
2240 static void
2241 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2242 {
2243 (*pc->pc_dtor)(pc->pc_arg, object);
2244 pool_put(&pc->pc_pool, object);
2245 }
2246
2247 /*
2248 * pool_cache_destruct_object:
2249 *
2250 * Force destruction of an object and its release back into
2251 * the pool.
2252 */
2253 void
2254 pool_cache_destruct_object(pool_cache_t pc, void *object)
2255 {
2256
2257 FREECHECK_IN(&pc->pc_freecheck, object);
2258
2259 pool_cache_destruct_object1(pc, object);
2260 }
2261
2262 /*
2263 * pool_cache_invalidate_groups:
2264 *
2265 * Invalidate a chain of groups and destruct all objects.
2266 */
2267 static void
2268 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2269 {
2270 void *object;
2271 pcg_t *next;
2272 int i;
2273
2274 for (; pcg != NULL; pcg = next) {
2275 next = pcg->pcg_next;
2276
2277 for (i = 0; i < pcg->pcg_avail; i++) {
2278 object = pcg->pcg_objects[i].pcgo_va;
2279 pool_cache_destruct_object1(pc, object);
2280 }
2281
2282 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2283 pool_put(&pcg_large_pool, pcg);
2284 } else {
2285 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2286 pool_put(&pcg_normal_pool, pcg);
2287 }
2288 }
2289 }
2290
2291 /*
2292 * pool_cache_invalidate:
2293 *
2294 * Invalidate a pool cache (destruct and release all of the
2295 * cached objects). Does not reclaim objects from the pool.
2296 *
2297 * Note: For pool caches that provide constructed objects, there
2298 * is an assumption that another level of synchronization is occurring
2299 * between the input to the constructor and the cache invalidation.
2300 *
2301 * Invalidation is a costly process and should not be called from
2302 * interrupt context.
2303 */
2304 void
2305 pool_cache_invalidate(pool_cache_t pc)
2306 {
2307 uint64_t where;
2308 pcg_t *full, *empty, *part;
2309
2310 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2311
2312 if (ncpu < 2 || !mp_online) {
2313 /*
2314 * We might be called early enough in the boot process
2315 * for the CPU data structures to not be fully initialized.
2316 * In this case, transfer the content of the local CPU's
2317 * cache back into global cache as only this CPU is currently
2318 * running.
2319 */
2320 pool_cache_transfer(pc);
2321 } else {
2322 /*
2323 * Signal all CPUs that they must transfer their local
2324 * cache back to the global pool then wait for the xcall to
2325 * complete.
2326 */
2327 where = xc_broadcast(0,
2328 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2329 xc_wait(where);
2330 }
2331
2332 /* Empty pool caches, then invalidate objects */
2333 mutex_enter(&pc->pc_lock);
2334 full = pc->pc_fullgroups;
2335 empty = pc->pc_emptygroups;
2336 part = pc->pc_partgroups;
2337 pc->pc_fullgroups = NULL;
2338 pc->pc_emptygroups = NULL;
2339 pc->pc_partgroups = NULL;
2340 pc->pc_nfull = 0;
2341 pc->pc_nempty = 0;
2342 pc->pc_npart = 0;
2343 mutex_exit(&pc->pc_lock);
2344
2345 pool_cache_invalidate_groups(pc, full);
2346 pool_cache_invalidate_groups(pc, empty);
2347 pool_cache_invalidate_groups(pc, part);
2348 }
2349
2350 /*
2351 * pool_cache_invalidate_cpu:
2352 *
2353 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2354 * identified by its associated index.
2355 * It is caller's responsibility to ensure that no operation is
2356 * taking place on this pool cache while doing this invalidation.
2357 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2358 * pool cached objects from a CPU different from the one currently running
2359 * may result in an undefined behaviour.
2360 */
2361 static void
2362 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2363 {
2364 pool_cache_cpu_t *cc;
2365 pcg_t *pcg;
2366
2367 if ((cc = pc->pc_cpus[index]) == NULL)
2368 return;
2369
2370 if ((pcg = cc->cc_current) != &pcg_dummy) {
2371 pcg->pcg_next = NULL;
2372 pool_cache_invalidate_groups(pc, pcg);
2373 }
2374 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2375 pcg->pcg_next = NULL;
2376 pool_cache_invalidate_groups(pc, pcg);
2377 }
2378 if (cc != &pc->pc_cpu0)
2379 pool_put(&cache_cpu_pool, cc);
2380
2381 }
2382
2383 void
2384 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2385 {
2386
2387 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2388 }
2389
2390 void
2391 pool_cache_setlowat(pool_cache_t pc, int n)
2392 {
2393
2394 pool_setlowat(&pc->pc_pool, n);
2395 }
2396
2397 void
2398 pool_cache_sethiwat(pool_cache_t pc, int n)
2399 {
2400
2401 pool_sethiwat(&pc->pc_pool, n);
2402 }
2403
2404 void
2405 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2406 {
2407
2408 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2409 }
2410
2411 void
2412 pool_cache_prime(pool_cache_t pc, int n)
2413 {
2414
2415 pool_prime(&pc->pc_pool, n);
2416 }
2417
2418 static bool __noinline
2419 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2420 paddr_t *pap, int flags)
2421 {
2422 pcg_t *pcg, *cur;
2423 uint64_t ncsw;
2424 pool_cache_t pc;
2425 void *object;
2426
2427 KASSERT(cc->cc_current->pcg_avail == 0);
2428 KASSERT(cc->cc_previous->pcg_avail == 0);
2429
2430 pc = cc->cc_cache;
2431 cc->cc_misses++;
2432
2433 /*
2434 * Nothing was available locally. Try and grab a group
2435 * from the cache.
2436 */
2437 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2438 ncsw = curlwp->l_ncsw;
2439 __insn_barrier();
2440 mutex_enter(&pc->pc_lock);
2441 pc->pc_contended++;
2442
2443 /*
2444 * If we context switched while locking, then
2445 * our view of the per-CPU data is invalid:
2446 * retry.
2447 */
2448 __insn_barrier();
2449 if (curlwp->l_ncsw != ncsw) {
2450 mutex_exit(&pc->pc_lock);
2451 return true;
2452 }
2453 }
2454
2455 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2456 /*
2457 * If there's a full group, release our empty
2458 * group back to the cache. Install the full
2459 * group as cc_current and return.
2460 */
2461 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2462 KASSERT(cur->pcg_avail == 0);
2463 cur->pcg_next = pc->pc_emptygroups;
2464 pc->pc_emptygroups = cur;
2465 pc->pc_nempty++;
2466 }
2467 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2468 cc->cc_current = pcg;
2469 pc->pc_fullgroups = pcg->pcg_next;
2470 pc->pc_hits++;
2471 pc->pc_nfull--;
2472 mutex_exit(&pc->pc_lock);
2473 return true;
2474 }
2475
2476 /*
2477 * Nothing available locally or in cache. Take the slow
2478 * path: fetch a new object from the pool and construct
2479 * it.
2480 */
2481 pc->pc_misses++;
2482 mutex_exit(&pc->pc_lock);
2483 splx(s);
2484
2485 object = pool_get(&pc->pc_pool, flags);
2486 *objectp = object;
2487 if (__predict_false(object == NULL)) {
2488 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2489 return false;
2490 }
2491
2492 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2493 pool_put(&pc->pc_pool, object);
2494 *objectp = NULL;
2495 return false;
2496 }
2497
2498 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2499
2500 if (pap != NULL) {
2501 #ifdef POOL_VTOPHYS
2502 *pap = POOL_VTOPHYS(object);
2503 #else
2504 *pap = POOL_PADDR_INVALID;
2505 #endif
2506 }
2507
2508 FREECHECK_OUT(&pc->pc_freecheck, object);
2509 return false;
2510 }
2511
2512 /*
2513 * pool_cache_get{,_paddr}:
2514 *
2515 * Get an object from a pool cache (optionally returning
2516 * the physical address of the object).
2517 */
2518 void *
2519 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2520 {
2521 pool_cache_cpu_t *cc;
2522 pcg_t *pcg;
2523 void *object;
2524 int s;
2525
2526 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2527 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2528 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2529 "%s: [%s] is IPL_NONE, but called from interrupt context",
2530 __func__, pc->pc_pool.pr_wchan);
2531
2532 if (flags & PR_WAITOK) {
2533 ASSERT_SLEEPABLE();
2534 }
2535
2536 /* Lock out interrupts and disable preemption. */
2537 s = splvm();
2538 while (/* CONSTCOND */ true) {
2539 /* Try and allocate an object from the current group. */
2540 cc = pc->pc_cpus[curcpu()->ci_index];
2541 KASSERT(cc->cc_cache == pc);
2542 pcg = cc->cc_current;
2543 if (__predict_true(pcg->pcg_avail > 0)) {
2544 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2545 if (__predict_false(pap != NULL))
2546 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2547 #if defined(DIAGNOSTIC)
2548 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2549 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2550 KASSERT(object != NULL);
2551 #endif
2552 cc->cc_hits++;
2553 splx(s);
2554 FREECHECK_OUT(&pc->pc_freecheck, object);
2555 pool_redzone_fill(&pc->pc_pool, object);
2556 pool_cache_get_kmsan(pc, object);
2557 return object;
2558 }
2559
2560 /*
2561 * That failed. If the previous group isn't empty, swap
2562 * it with the current group and allocate from there.
2563 */
2564 pcg = cc->cc_previous;
2565 if (__predict_true(pcg->pcg_avail > 0)) {
2566 cc->cc_previous = cc->cc_current;
2567 cc->cc_current = pcg;
2568 continue;
2569 }
2570
2571 /*
2572 * Can't allocate from either group: try the slow path.
2573 * If get_slow() allocated an object for us, or if
2574 * no more objects are available, it will return false.
2575 * Otherwise, we need to retry.
2576 */
2577 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2578 break;
2579 }
2580
2581 /*
2582 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2583 * pool_cache_get can fail even in the PR_WAITOK case, if the
2584 * constructor fails.
2585 */
2586 return object;
2587 }
2588
2589 static bool __noinline
2590 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2591 {
2592 struct lwp *l = curlwp;
2593 pcg_t *pcg, *cur;
2594 uint64_t ncsw;
2595 pool_cache_t pc;
2596
2597 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2598 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2599
2600 pc = cc->cc_cache;
2601 pcg = NULL;
2602 cc->cc_misses++;
2603 ncsw = l->l_ncsw;
2604 __insn_barrier();
2605
2606 /*
2607 * If there are no empty groups in the cache then allocate one
2608 * while still unlocked.
2609 */
2610 if (__predict_false(pc->pc_emptygroups == NULL)) {
2611 if (__predict_true(!pool_cache_disable)) {
2612 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2613 }
2614 /*
2615 * If pool_get() blocked, then our view of
2616 * the per-CPU data is invalid: retry.
2617 */
2618 __insn_barrier();
2619 if (__predict_false(l->l_ncsw != ncsw)) {
2620 if (pcg != NULL) {
2621 pool_put(pc->pc_pcgpool, pcg);
2622 }
2623 return true;
2624 }
2625 if (__predict_true(pcg != NULL)) {
2626 pcg->pcg_avail = 0;
2627 pcg->pcg_size = pc->pc_pcgsize;
2628 }
2629 }
2630
2631 /* Lock the cache. */
2632 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2633 mutex_enter(&pc->pc_lock);
2634 pc->pc_contended++;
2635
2636 /*
2637 * If we context switched while locking, then our view of
2638 * the per-CPU data is invalid: retry.
2639 */
2640 __insn_barrier();
2641 if (__predict_false(l->l_ncsw != ncsw)) {
2642 mutex_exit(&pc->pc_lock);
2643 if (pcg != NULL) {
2644 pool_put(pc->pc_pcgpool, pcg);
2645 }
2646 return true;
2647 }
2648 }
2649
2650 /* If there are no empty groups in the cache then allocate one. */
2651 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2652 pcg = pc->pc_emptygroups;
2653 pc->pc_emptygroups = pcg->pcg_next;
2654 pc->pc_nempty--;
2655 }
2656
2657 /*
2658 * If there's a empty group, release our full group back
2659 * to the cache. Install the empty group to the local CPU
2660 * and return.
2661 */
2662 if (pcg != NULL) {
2663 KASSERT(pcg->pcg_avail == 0);
2664 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2665 cc->cc_previous = pcg;
2666 } else {
2667 cur = cc->cc_current;
2668 if (__predict_true(cur != &pcg_dummy)) {
2669 KASSERT(cur->pcg_avail == cur->pcg_size);
2670 cur->pcg_next = pc->pc_fullgroups;
2671 pc->pc_fullgroups = cur;
2672 pc->pc_nfull++;
2673 }
2674 cc->cc_current = pcg;
2675 }
2676 pc->pc_hits++;
2677 mutex_exit(&pc->pc_lock);
2678 return true;
2679 }
2680
2681 /*
2682 * Nothing available locally or in cache, and we didn't
2683 * allocate an empty group. Take the slow path and destroy
2684 * the object here and now.
2685 */
2686 pc->pc_misses++;
2687 mutex_exit(&pc->pc_lock);
2688 splx(s);
2689 pool_cache_destruct_object(pc, object);
2690
2691 return false;
2692 }
2693
2694 /*
2695 * pool_cache_put{,_paddr}:
2696 *
2697 * Put an object back to the pool cache (optionally caching the
2698 * physical address of the object).
2699 */
2700 void
2701 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2702 {
2703 pool_cache_cpu_t *cc;
2704 pcg_t *pcg;
2705 int s;
2706
2707 KASSERT(object != NULL);
2708 pool_cache_put_kmsan(pc, object);
2709 pool_cache_redzone_check(pc, object);
2710 FREECHECK_IN(&pc->pc_freecheck, object);
2711
2712 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2713 pc_phinpage_check(pc, object);
2714 }
2715
2716 if (pool_cache_put_nocache(pc, object)) {
2717 return;
2718 }
2719
2720 /* Lock out interrupts and disable preemption. */
2721 s = splvm();
2722 while (/* CONSTCOND */ true) {
2723 /* If the current group isn't full, release it there. */
2724 cc = pc->pc_cpus[curcpu()->ci_index];
2725 KASSERT(cc->cc_cache == pc);
2726 pcg = cc->cc_current;
2727 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2728 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2729 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2730 pcg->pcg_avail++;
2731 cc->cc_hits++;
2732 splx(s);
2733 return;
2734 }
2735
2736 /*
2737 * That failed. If the previous group isn't full, swap
2738 * it with the current group and try again.
2739 */
2740 pcg = cc->cc_previous;
2741 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2742 cc->cc_previous = cc->cc_current;
2743 cc->cc_current = pcg;
2744 continue;
2745 }
2746
2747 /*
2748 * Can't free to either group: try the slow path.
2749 * If put_slow() releases the object for us, it
2750 * will return false. Otherwise we need to retry.
2751 */
2752 if (!pool_cache_put_slow(cc, s, object))
2753 break;
2754 }
2755 }
2756
2757 /*
2758 * pool_cache_transfer:
2759 *
2760 * Transfer objects from the per-CPU cache to the global cache.
2761 * Run within a cross-call thread.
2762 */
2763 static void
2764 pool_cache_transfer(pool_cache_t pc)
2765 {
2766 pool_cache_cpu_t *cc;
2767 pcg_t *prev, *cur, **list;
2768 int s;
2769
2770 s = splvm();
2771 mutex_enter(&pc->pc_lock);
2772 cc = pc->pc_cpus[curcpu()->ci_index];
2773 cur = cc->cc_current;
2774 cc->cc_current = __UNCONST(&pcg_dummy);
2775 prev = cc->cc_previous;
2776 cc->cc_previous = __UNCONST(&pcg_dummy);
2777 if (cur != &pcg_dummy) {
2778 if (cur->pcg_avail == cur->pcg_size) {
2779 list = &pc->pc_fullgroups;
2780 pc->pc_nfull++;
2781 } else if (cur->pcg_avail == 0) {
2782 list = &pc->pc_emptygroups;
2783 pc->pc_nempty++;
2784 } else {
2785 list = &pc->pc_partgroups;
2786 pc->pc_npart++;
2787 }
2788 cur->pcg_next = *list;
2789 *list = cur;
2790 }
2791 if (prev != &pcg_dummy) {
2792 if (prev->pcg_avail == prev->pcg_size) {
2793 list = &pc->pc_fullgroups;
2794 pc->pc_nfull++;
2795 } else if (prev->pcg_avail == 0) {
2796 list = &pc->pc_emptygroups;
2797 pc->pc_nempty++;
2798 } else {
2799 list = &pc->pc_partgroups;
2800 pc->pc_npart++;
2801 }
2802 prev->pcg_next = *list;
2803 *list = prev;
2804 }
2805 mutex_exit(&pc->pc_lock);
2806 splx(s);
2807 }
2808
2809 static int
2810 pool_bigidx(size_t size)
2811 {
2812 int i;
2813
2814 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2815 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2816 return i;
2817 }
2818 panic("pool item size %zu too large, use a custom allocator", size);
2819 }
2820
2821 static void *
2822 pool_allocator_alloc(struct pool *pp, int flags)
2823 {
2824 struct pool_allocator *pa = pp->pr_alloc;
2825 void *res;
2826
2827 res = (*pa->pa_alloc)(pp, flags);
2828 if (res == NULL && (flags & PR_WAITOK) == 0) {
2829 /*
2830 * We only run the drain hook here if PR_NOWAIT.
2831 * In other cases, the hook will be run in
2832 * pool_reclaim().
2833 */
2834 if (pp->pr_drain_hook != NULL) {
2835 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2836 res = (*pa->pa_alloc)(pp, flags);
2837 }
2838 }
2839 return res;
2840 }
2841
2842 static void
2843 pool_allocator_free(struct pool *pp, void *v)
2844 {
2845 struct pool_allocator *pa = pp->pr_alloc;
2846
2847 if (pp->pr_redzone) {
2848 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2849 }
2850 (*pa->pa_free)(pp, v);
2851 }
2852
2853 void *
2854 pool_page_alloc(struct pool *pp, int flags)
2855 {
2856 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2857 vmem_addr_t va;
2858 int ret;
2859
2860 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2861 vflags | VM_INSTANTFIT, &va);
2862
2863 return ret ? NULL : (void *)va;
2864 }
2865
2866 void
2867 pool_page_free(struct pool *pp, void *v)
2868 {
2869
2870 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2871 }
2872
2873 static void *
2874 pool_page_alloc_meta(struct pool *pp, int flags)
2875 {
2876 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2877 vmem_addr_t va;
2878 int ret;
2879
2880 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2881 vflags | VM_INSTANTFIT, &va);
2882
2883 return ret ? NULL : (void *)va;
2884 }
2885
2886 static void
2887 pool_page_free_meta(struct pool *pp, void *v)
2888 {
2889
2890 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2891 }
2892
2893 #ifdef KMSAN
2894 static inline void
2895 pool_get_kmsan(struct pool *pp, void *p)
2896 {
2897 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2898 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2899 }
2900
2901 static inline void
2902 pool_put_kmsan(struct pool *pp, void *p)
2903 {
2904 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2905 }
2906
2907 static inline void
2908 pool_cache_get_kmsan(pool_cache_t pc, void *p)
2909 {
2910 if (__predict_false(pc_has_ctor(pc))) {
2911 return;
2912 }
2913 pool_get_kmsan(&pc->pc_pool, p);
2914 }
2915
2916 static inline void
2917 pool_cache_put_kmsan(pool_cache_t pc, void *p)
2918 {
2919 pool_put_kmsan(&pc->pc_pool, p);
2920 }
2921 #endif
2922
2923 #ifdef POOL_QUARANTINE
2924 static void
2925 pool_quarantine_init(struct pool *pp)
2926 {
2927 pp->pr_quar.rotor = 0;
2928 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2929 }
2930
2931 static void
2932 pool_quarantine_flush(struct pool *pp)
2933 {
2934 pool_quar_t *quar = &pp->pr_quar;
2935 struct pool_pagelist pq;
2936 size_t i;
2937
2938 LIST_INIT(&pq);
2939
2940 mutex_enter(&pp->pr_lock);
2941 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2942 if (quar->list[i] == 0)
2943 continue;
2944 pool_do_put(pp, (void *)quar->list[i], &pq);
2945 }
2946 mutex_exit(&pp->pr_lock);
2947
2948 pr_pagelist_free(pp, &pq);
2949 }
2950
2951 static bool
2952 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2953 {
2954 pool_quar_t *quar = &pp->pr_quar;
2955 uintptr_t old;
2956
2957 if (pp->pr_roflags & PR_NOTOUCH) {
2958 return false;
2959 }
2960
2961 pool_redzone_check(pp, v);
2962
2963 old = quar->list[quar->rotor];
2964 quar->list[quar->rotor] = (uintptr_t)v;
2965 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2966 if (old != 0) {
2967 pool_do_put(pp, (void *)old, pq);
2968 }
2969
2970 return true;
2971 }
2972 #endif
2973
2974 #ifdef POOL_NOCACHE
2975 static bool
2976 pool_cache_put_nocache(pool_cache_t pc, void *p)
2977 {
2978 pool_cache_destruct_object(pc, p);
2979 return true;
2980 }
2981 #endif
2982
2983 #ifdef POOL_REDZONE
2984 #if defined(_LP64)
2985 # define PRIME 0x9e37fffffffc0000UL
2986 #else /* defined(_LP64) */
2987 # define PRIME 0x9e3779b1
2988 #endif /* defined(_LP64) */
2989 #define STATIC_BYTE 0xFE
2990 CTASSERT(POOL_REDZONE_SIZE > 1);
2991
2992 #ifndef KASAN
2993 static inline uint8_t
2994 pool_pattern_generate(const void *p)
2995 {
2996 return (uint8_t)(((uintptr_t)p) * PRIME
2997 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2998 }
2999 #endif
3000
3001 static void
3002 pool_redzone_init(struct pool *pp, size_t requested_size)
3003 {
3004 size_t redzsz;
3005 size_t nsz;
3006
3007 #ifdef KASAN
3008 redzsz = requested_size;
3009 kasan_add_redzone(&redzsz);
3010 redzsz -= requested_size;
3011 #else
3012 redzsz = POOL_REDZONE_SIZE;
3013 #endif
3014
3015 if (pp->pr_roflags & PR_NOTOUCH) {
3016 pp->pr_redzone = false;
3017 return;
3018 }
3019
3020 /*
3021 * We may have extended the requested size earlier; check if
3022 * there's naturally space in the padding for a red zone.
3023 */
3024 if (pp->pr_size - requested_size >= redzsz) {
3025 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3026 pp->pr_redzone = true;
3027 return;
3028 }
3029
3030 /*
3031 * No space in the natural padding; check if we can extend a
3032 * bit the size of the pool.
3033 */
3034 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3035 if (nsz <= pp->pr_alloc->pa_pagesz) {
3036 /* Ok, we can */
3037 pp->pr_size = nsz;
3038 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3039 pp->pr_redzone = true;
3040 } else {
3041 /* No space for a red zone... snif :'( */
3042 pp->pr_redzone = false;
3043 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3044 }
3045 }
3046
3047 static void
3048 pool_redzone_fill(struct pool *pp, void *p)
3049 {
3050 if (!pp->pr_redzone)
3051 return;
3052 #ifdef KASAN
3053 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3054 KASAN_POOL_REDZONE);
3055 #else
3056 uint8_t *cp, pat;
3057 const uint8_t *ep;
3058
3059 cp = (uint8_t *)p + pp->pr_reqsize;
3060 ep = cp + POOL_REDZONE_SIZE;
3061
3062 /*
3063 * We really don't want the first byte of the red zone to be '\0';
3064 * an off-by-one in a string may not be properly detected.
3065 */
3066 pat = pool_pattern_generate(cp);
3067 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3068 cp++;
3069
3070 while (cp < ep) {
3071 *cp = pool_pattern_generate(cp);
3072 cp++;
3073 }
3074 #endif
3075 }
3076
3077 static void
3078 pool_redzone_check(struct pool *pp, void *p)
3079 {
3080 if (!pp->pr_redzone)
3081 return;
3082 #ifdef KASAN
3083 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3084 #else
3085 uint8_t *cp, pat, expected;
3086 const uint8_t *ep;
3087
3088 cp = (uint8_t *)p + pp->pr_reqsize;
3089 ep = cp + POOL_REDZONE_SIZE;
3090
3091 pat = pool_pattern_generate(cp);
3092 expected = (pat == '\0') ? STATIC_BYTE: pat;
3093 if (__predict_false(*cp != expected)) {
3094 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3095 pp->pr_wchan, *cp, expected);
3096 }
3097 cp++;
3098
3099 while (cp < ep) {
3100 expected = pool_pattern_generate(cp);
3101 if (__predict_false(*cp != expected)) {
3102 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3103 pp->pr_wchan, *cp, expected);
3104 }
3105 cp++;
3106 }
3107 #endif
3108 }
3109
3110 static void
3111 pool_cache_redzone_check(pool_cache_t pc, void *p)
3112 {
3113 #ifdef KASAN
3114 /* If there is a ctor/dtor, leave the data as valid. */
3115 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3116 return;
3117 }
3118 #endif
3119 pool_redzone_check(&pc->pc_pool, p);
3120 }
3121
3122 #endif /* POOL_REDZONE */
3123
3124 #if defined(DDB)
3125 static bool
3126 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3127 {
3128
3129 return (uintptr_t)ph->ph_page <= addr &&
3130 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3131 }
3132
3133 static bool
3134 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3135 {
3136
3137 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3138 }
3139
3140 static bool
3141 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3142 {
3143 int i;
3144
3145 if (pcg == NULL) {
3146 return false;
3147 }
3148 for (i = 0; i < pcg->pcg_avail; i++) {
3149 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3150 return true;
3151 }
3152 }
3153 return false;
3154 }
3155
3156 static bool
3157 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3158 {
3159
3160 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3161 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3162 pool_item_bitmap_t *bitmap =
3163 ph->ph_bitmap + (idx / BITMAP_SIZE);
3164 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3165
3166 return (*bitmap & mask) == 0;
3167 } else {
3168 struct pool_item *pi;
3169
3170 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3171 if (pool_in_item(pp, pi, addr)) {
3172 return false;
3173 }
3174 }
3175 return true;
3176 }
3177 }
3178
3179 void
3180 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3181 {
3182 struct pool *pp;
3183
3184 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3185 struct pool_item_header *ph;
3186 uintptr_t item;
3187 bool allocated = true;
3188 bool incache = false;
3189 bool incpucache = false;
3190 char cpucachestr[32];
3191
3192 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3193 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3194 if (pool_in_page(pp, ph, addr)) {
3195 goto found;
3196 }
3197 }
3198 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3199 if (pool_in_page(pp, ph, addr)) {
3200 allocated =
3201 pool_allocated(pp, ph, addr);
3202 goto found;
3203 }
3204 }
3205 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3206 if (pool_in_page(pp, ph, addr)) {
3207 allocated = false;
3208 goto found;
3209 }
3210 }
3211 continue;
3212 } else {
3213 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3214 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3215 continue;
3216 }
3217 allocated = pool_allocated(pp, ph, addr);
3218 }
3219 found:
3220 if (allocated && pp->pr_cache) {
3221 pool_cache_t pc = pp->pr_cache;
3222 struct pool_cache_group *pcg;
3223 int i;
3224
3225 for (pcg = pc->pc_fullgroups; pcg != NULL;
3226 pcg = pcg->pcg_next) {
3227 if (pool_in_cg(pp, pcg, addr)) {
3228 incache = true;
3229 goto print;
3230 }
3231 }
3232 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3233 pool_cache_cpu_t *cc;
3234
3235 if ((cc = pc->pc_cpus[i]) == NULL) {
3236 continue;
3237 }
3238 if (pool_in_cg(pp, cc->cc_current, addr) ||
3239 pool_in_cg(pp, cc->cc_previous, addr)) {
3240 struct cpu_info *ci =
3241 cpu_lookup(i);
3242
3243 incpucache = true;
3244 snprintf(cpucachestr,
3245 sizeof(cpucachestr),
3246 "cached by CPU %u",
3247 ci->ci_index);
3248 goto print;
3249 }
3250 }
3251 }
3252 print:
3253 item = (uintptr_t)ph->ph_page + ph->ph_off;
3254 item = item + rounddown(addr - item, pp->pr_size);
3255 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3256 (void *)addr, item, (size_t)(addr - item),
3257 pp->pr_wchan,
3258 incpucache ? cpucachestr :
3259 incache ? "cached" : allocated ? "allocated" : "free");
3260 }
3261 }
3262 #endif /* defined(DDB) */
3263
3264 static int
3265 pool_sysctl(SYSCTLFN_ARGS)
3266 {
3267 struct pool_sysctl data;
3268 struct pool *pp;
3269 struct pool_cache *pc;
3270 pool_cache_cpu_t *cc;
3271 int error;
3272 size_t i, written;
3273
3274 if (oldp == NULL) {
3275 *oldlenp = 0;
3276 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3277 *oldlenp += sizeof(data);
3278 return 0;
3279 }
3280
3281 memset(&data, 0, sizeof(data));
3282 error = 0;
3283 written = 0;
3284 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3285 if (written + sizeof(data) > *oldlenp)
3286 break;
3287 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3288 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3289 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3290 #define COPY(field) data.field = pp->field
3291 COPY(pr_size);
3292
3293 COPY(pr_itemsperpage);
3294 COPY(pr_nitems);
3295 COPY(pr_nout);
3296 COPY(pr_hardlimit);
3297 COPY(pr_npages);
3298 COPY(pr_minpages);
3299 COPY(pr_maxpages);
3300
3301 COPY(pr_nget);
3302 COPY(pr_nfail);
3303 COPY(pr_nput);
3304 COPY(pr_npagealloc);
3305 COPY(pr_npagefree);
3306 COPY(pr_hiwat);
3307 COPY(pr_nidle);
3308 #undef COPY
3309
3310 data.pr_cache_nmiss_pcpu = 0;
3311 data.pr_cache_nhit_pcpu = 0;
3312 if (pp->pr_cache) {
3313 pc = pp->pr_cache;
3314 data.pr_cache_meta_size = pc->pc_pcgsize;
3315 data.pr_cache_nfull = pc->pc_nfull;
3316 data.pr_cache_npartial = pc->pc_npart;
3317 data.pr_cache_nempty = pc->pc_nempty;
3318 data.pr_cache_ncontended = pc->pc_contended;
3319 data.pr_cache_nmiss_global = pc->pc_misses;
3320 data.pr_cache_nhit_global = pc->pc_hits;
3321 for (i = 0; i < pc->pc_ncpu; ++i) {
3322 cc = pc->pc_cpus[i];
3323 if (cc == NULL)
3324 continue;
3325 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3326 data.pr_cache_nhit_pcpu += cc->cc_hits;
3327 }
3328 } else {
3329 data.pr_cache_meta_size = 0;
3330 data.pr_cache_nfull = 0;
3331 data.pr_cache_npartial = 0;
3332 data.pr_cache_nempty = 0;
3333 data.pr_cache_ncontended = 0;
3334 data.pr_cache_nmiss_global = 0;
3335 data.pr_cache_nhit_global = 0;
3336 }
3337
3338 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3339 if (error)
3340 break;
3341 written += sizeof(data);
3342 oldp = (char *)oldp + sizeof(data);
3343 }
3344
3345 *oldlenp = written;
3346 return error;
3347 }
3348
3349 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3350 {
3351 const struct sysctlnode *rnode = NULL;
3352
3353 sysctl_createv(clog, 0, NULL, &rnode,
3354 CTLFLAG_PERMANENT,
3355 CTLTYPE_STRUCT, "pool",
3356 SYSCTL_DESCR("Get pool statistics"),
3357 pool_sysctl, 0, NULL, 0,
3358 CTL_KERN, CTL_CREATE, CTL_EOL);
3359 }
3360