Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.270
      1 /*	$NetBSD: subr_pool.c,v 1.270 2020/06/07 09:45:19 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  * Maxime Villard.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.270 2020/06/07 09:45:19 maxv Exp $");
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_ddb.h"
     40 #include "opt_lockdebug.h"
     41 #include "opt_pool.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/sysctl.h>
     47 #include <sys/bitops.h>
     48 #include <sys/proc.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vmem.h>
     52 #include <sys/pool.h>
     53 #include <sys/syslog.h>
     54 #include <sys/debug.h>
     55 #include <sys/lockdebug.h>
     56 #include <sys/xcall.h>
     57 #include <sys/cpu.h>
     58 #include <sys/atomic.h>
     59 #include <sys/asan.h>
     60 #include <sys/msan.h>
     61 #include <sys/fault.h>
     62 
     63 #include <uvm/uvm_extern.h>
     64 
     65 /*
     66  * Pool resource management utility.
     67  *
     68  * Memory is allocated in pages which are split into pieces according to
     69  * the pool item size. Each page is kept on one of three lists in the
     70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71  * for empty, full and partially-full pages respectively. The individual
     72  * pool items are on a linked list headed by `ph_itemlist' in each page
     73  * header. The memory for building the page list is either taken from
     74  * the allocated pages themselves (for small pool items) or taken from
     75  * an internal pool of page headers (`phpool').
     76  */
     77 
     78 /* List of all pools. Non static as needed by 'vmstat -m' */
     79 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     80 
     81 /* Private pool for page header structures */
     82 #define	PHPOOL_MAX	8
     83 static struct pool phpool[PHPOOL_MAX];
     84 #define	PHPOOL_FREELIST_NELEM(idx) \
     85 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
     86 
     87 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
     88 #define POOL_REDZONE
     89 #endif
     90 
     91 #if defined(POOL_QUARANTINE)
     92 #define POOL_NOCACHE
     93 #endif
     94 
     95 #ifdef POOL_REDZONE
     96 # ifdef KASAN
     97 #  define POOL_REDZONE_SIZE 8
     98 # else
     99 #  define POOL_REDZONE_SIZE 2
    100 # endif
    101 static void pool_redzone_init(struct pool *, size_t);
    102 static void pool_redzone_fill(struct pool *, void *);
    103 static void pool_redzone_check(struct pool *, void *);
    104 static void pool_cache_redzone_check(pool_cache_t, void *);
    105 #else
    106 # define pool_redzone_init(pp, sz)		__nothing
    107 # define pool_redzone_fill(pp, ptr)		__nothing
    108 # define pool_redzone_check(pp, ptr)		__nothing
    109 # define pool_cache_redzone_check(pc, ptr)	__nothing
    110 #endif
    111 
    112 #ifdef KMSAN
    113 static inline void pool_get_kmsan(struct pool *, void *);
    114 static inline void pool_put_kmsan(struct pool *, void *);
    115 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
    116 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
    117 #else
    118 #define pool_get_kmsan(pp, ptr)		__nothing
    119 #define pool_put_kmsan(pp, ptr)		__nothing
    120 #define pool_cache_get_kmsan(pc, ptr)	__nothing
    121 #define pool_cache_put_kmsan(pc, ptr)	__nothing
    122 #endif
    123 
    124 #ifdef POOL_QUARANTINE
    125 static void pool_quarantine_init(struct pool *);
    126 static void pool_quarantine_flush(struct pool *);
    127 static bool pool_put_quarantine(struct pool *, void *,
    128     struct pool_pagelist *);
    129 #else
    130 #define pool_quarantine_init(a)			__nothing
    131 #define pool_quarantine_flush(a)		__nothing
    132 #define pool_put_quarantine(a, b, c)		false
    133 #endif
    134 
    135 #ifdef POOL_NOCACHE
    136 static bool pool_cache_put_nocache(pool_cache_t, void *);
    137 #else
    138 #define pool_cache_put_nocache(a, b)		false
    139 #endif
    140 
    141 #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
    142 #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
    143 
    144 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
    145 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
    146 
    147 /*
    148  * Pool backend allocators.
    149  *
    150  * Each pool has a backend allocator that handles allocation, deallocation,
    151  * and any additional draining that might be needed.
    152  *
    153  * We provide two standard allocators:
    154  *
    155  *	pool_allocator_kmem - the default when no allocator is specified
    156  *
    157  *	pool_allocator_nointr - used for pools that will not be accessed
    158  *	in interrupt context.
    159  */
    160 void *pool_page_alloc(struct pool *, int);
    161 void pool_page_free(struct pool *, void *);
    162 
    163 static void *pool_page_alloc_meta(struct pool *, int);
    164 static void pool_page_free_meta(struct pool *, void *);
    165 
    166 struct pool_allocator pool_allocator_kmem = {
    167 	.pa_alloc = pool_page_alloc,
    168 	.pa_free = pool_page_free,
    169 	.pa_pagesz = 0
    170 };
    171 
    172 struct pool_allocator pool_allocator_nointr = {
    173 	.pa_alloc = pool_page_alloc,
    174 	.pa_free = pool_page_free,
    175 	.pa_pagesz = 0
    176 };
    177 
    178 struct pool_allocator pool_allocator_meta = {
    179 	.pa_alloc = pool_page_alloc_meta,
    180 	.pa_free = pool_page_free_meta,
    181 	.pa_pagesz = 0
    182 };
    183 
    184 #define POOL_ALLOCATOR_BIG_BASE 13
    185 static struct pool_allocator pool_allocator_big[] = {
    186 	{
    187 		.pa_alloc = pool_page_alloc,
    188 		.pa_free = pool_page_free,
    189 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
    190 	},
    191 	{
    192 		.pa_alloc = pool_page_alloc,
    193 		.pa_free = pool_page_free,
    194 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
    195 	},
    196 	{
    197 		.pa_alloc = pool_page_alloc,
    198 		.pa_free = pool_page_free,
    199 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
    200 	},
    201 	{
    202 		.pa_alloc = pool_page_alloc,
    203 		.pa_free = pool_page_free,
    204 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
    205 	},
    206 	{
    207 		.pa_alloc = pool_page_alloc,
    208 		.pa_free = pool_page_free,
    209 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
    210 	},
    211 	{
    212 		.pa_alloc = pool_page_alloc,
    213 		.pa_free = pool_page_free,
    214 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
    215 	},
    216 	{
    217 		.pa_alloc = pool_page_alloc,
    218 		.pa_free = pool_page_free,
    219 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
    220 	},
    221 	{
    222 		.pa_alloc = pool_page_alloc,
    223 		.pa_free = pool_page_free,
    224 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
    225 	}
    226 };
    227 
    228 static int pool_bigidx(size_t);
    229 
    230 /* # of seconds to retain page after last use */
    231 int pool_inactive_time = 10;
    232 
    233 /* Next candidate for drainage (see pool_drain()) */
    234 static struct pool *drainpp;
    235 
    236 /* This lock protects both pool_head and drainpp. */
    237 static kmutex_t pool_head_lock;
    238 static kcondvar_t pool_busy;
    239 
    240 /* This lock protects initialization of a potentially shared pool allocator */
    241 static kmutex_t pool_allocator_lock;
    242 
    243 static unsigned int poolid_counter = 0;
    244 
    245 typedef uint32_t pool_item_bitmap_t;
    246 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    247 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    248 #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
    249 
    250 struct pool_item_header {
    251 	/* Page headers */
    252 	LIST_ENTRY(pool_item_header)
    253 				ph_pagelist;	/* pool page list */
    254 	union {
    255 		/* !PR_PHINPAGE */
    256 		struct {
    257 			SPLAY_ENTRY(pool_item_header)
    258 				phu_node;	/* off-page page headers */
    259 		} phu_offpage;
    260 		/* PR_PHINPAGE */
    261 		struct {
    262 			unsigned int phu_poolid;
    263 		} phu_onpage;
    264 	} ph_u1;
    265 	void *			ph_page;	/* this page's address */
    266 	uint32_t		ph_time;	/* last referenced */
    267 	uint16_t		ph_nmissing;	/* # of chunks in use */
    268 	uint16_t		ph_off;		/* start offset in page */
    269 	union {
    270 		/* !PR_USEBMAP */
    271 		struct {
    272 			LIST_HEAD(, pool_item)
    273 				phu_itemlist;	/* chunk list for this page */
    274 		} phu_normal;
    275 		/* PR_USEBMAP */
    276 		struct {
    277 			pool_item_bitmap_t phu_bitmap[1];
    278 		} phu_notouch;
    279 	} ph_u2;
    280 };
    281 #define ph_node		ph_u1.phu_offpage.phu_node
    282 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    283 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    284 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    285 
    286 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    287 
    288 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
    289     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
    290 
    291 #if defined(DIAGNOSTIC) && !defined(KASAN)
    292 #define POOL_CHECK_MAGIC
    293 #endif
    294 
    295 struct pool_item {
    296 #ifdef POOL_CHECK_MAGIC
    297 	u_int pi_magic;
    298 #endif
    299 #define	PI_MAGIC 0xdeaddeadU
    300 	/* Other entries use only this list entry */
    301 	LIST_ENTRY(pool_item)	pi_list;
    302 };
    303 
    304 #define	POOL_NEEDS_CATCHUP(pp)						\
    305 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
    306 	 (pp)->pr_npages < (pp)->pr_minpages)
    307 #define	POOL_OBJ_TO_PAGE(pp, v)						\
    308 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    309 
    310 /*
    311  * Pool cache management.
    312  *
    313  * Pool caches provide a way for constructed objects to be cached by the
    314  * pool subsystem.  This can lead to performance improvements by avoiding
    315  * needless object construction/destruction; it is deferred until absolutely
    316  * necessary.
    317  *
    318  * Caches are grouped into cache groups.  Each cache group references up
    319  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    320  * object from the pool, it calls the object's constructor and places it
    321  * into a cache group.  When a cache group frees an object back to the
    322  * pool, it first calls the object's destructor.  This allows the object
    323  * to persist in constructed form while freed to the cache.
    324  *
    325  * The pool references each cache, so that when a pool is drained by the
    326  * pagedaemon, it can drain each individual cache as well.  Each time a
    327  * cache is drained, the most idle cache group is freed to the pool in
    328  * its entirety.
    329  *
    330  * Pool caches are layed on top of pools.  By layering them, we can avoid
    331  * the complexity of cache management for pools which would not benefit
    332  * from it.
    333  */
    334 
    335 static struct pool pcg_normal_pool;
    336 static struct pool pcg_large_pool;
    337 static struct pool cache_pool;
    338 static struct pool cache_cpu_pool;
    339 
    340 /* List of all caches. */
    341 TAILQ_HEAD(,pool_cache) pool_cache_head =
    342     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    343 
    344 int pool_cache_disable;		/* global disable for caching */
    345 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    346 
    347 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    348 				    void *);
    349 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    350 				    void **, paddr_t *, int);
    351 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    352 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    353 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    354 static void	pool_cache_transfer(pool_cache_t);
    355 
    356 static int	pool_catchup(struct pool *);
    357 static void	pool_prime_page(struct pool *, void *,
    358 		    struct pool_item_header *);
    359 static void	pool_update_curpage(struct pool *);
    360 
    361 static int	pool_grow(struct pool *, int);
    362 static void	*pool_allocator_alloc(struct pool *, int);
    363 static void	pool_allocator_free(struct pool *, void *);
    364 
    365 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    366 	void (*)(const char *, ...) __printflike(1, 2));
    367 static void pool_print1(struct pool *, const char *,
    368 	void (*)(const char *, ...) __printflike(1, 2));
    369 
    370 static int pool_chk_page(struct pool *, const char *,
    371 			 struct pool_item_header *);
    372 
    373 /* -------------------------------------------------------------------------- */
    374 
    375 static inline unsigned int
    376 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    377     const void *v)
    378 {
    379 	const char *cp = v;
    380 	unsigned int idx;
    381 
    382 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    383 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    384 
    385 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    386 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    387 		    pp->pr_itemsperpage);
    388 	}
    389 
    390 	return idx;
    391 }
    392 
    393 static inline void
    394 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    395     void *obj)
    396 {
    397 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    398 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    399 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    400 
    401 	if (__predict_false((*bitmap & mask) != 0)) {
    402 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    403 	}
    404 
    405 	*bitmap |= mask;
    406 }
    407 
    408 static inline void *
    409 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    410 {
    411 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    412 	unsigned int idx;
    413 	int i;
    414 
    415 	for (i = 0; ; i++) {
    416 		int bit;
    417 
    418 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    419 		bit = ffs32(bitmap[i]);
    420 		if (bit) {
    421 			pool_item_bitmap_t mask;
    422 
    423 			bit--;
    424 			idx = (i * BITMAP_SIZE) + bit;
    425 			mask = 1U << bit;
    426 			KASSERT((bitmap[i] & mask) != 0);
    427 			bitmap[i] &= ~mask;
    428 			break;
    429 		}
    430 	}
    431 	KASSERT(idx < pp->pr_itemsperpage);
    432 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    433 }
    434 
    435 static inline void
    436 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    437 {
    438 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    439 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    440 	int i;
    441 
    442 	for (i = 0; i < n; i++) {
    443 		bitmap[i] = (pool_item_bitmap_t)-1;
    444 	}
    445 }
    446 
    447 /* -------------------------------------------------------------------------- */
    448 
    449 static inline void
    450 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    451     void *obj)
    452 {
    453 	struct pool_item *pi = obj;
    454 
    455 #ifdef POOL_CHECK_MAGIC
    456 	pi->pi_magic = PI_MAGIC;
    457 #endif
    458 
    459 	if (pp->pr_redzone) {
    460 		/*
    461 		 * Mark the pool_item as valid. The rest is already
    462 		 * invalid.
    463 		 */
    464 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    465 	}
    466 
    467 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    468 }
    469 
    470 static inline void *
    471 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    472 {
    473 	struct pool_item *pi;
    474 	void *v;
    475 
    476 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    477 	if (__predict_false(v == NULL)) {
    478 		mutex_exit(&pp->pr_lock);
    479 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    480 	}
    481 	KASSERTMSG((pp->pr_nitems > 0),
    482 	    "%s: [%s] nitems %u inconsistent on itemlist",
    483 	    __func__, pp->pr_wchan, pp->pr_nitems);
    484 #ifdef POOL_CHECK_MAGIC
    485 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    486 	    "%s: [%s] free list modified: "
    487 	    "magic=%x; page %p; item addr %p", __func__,
    488 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    489 #endif
    490 
    491 	/*
    492 	 * Remove from item list.
    493 	 */
    494 	LIST_REMOVE(pi, pi_list);
    495 
    496 	return v;
    497 }
    498 
    499 /* -------------------------------------------------------------------------- */
    500 
    501 static inline void
    502 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    503     void *object)
    504 {
    505 	if (__predict_false((void *)ph->ph_page != page)) {
    506 		panic("%s: [%s] item %p not part of pool", __func__,
    507 		    pp->pr_wchan, object);
    508 	}
    509 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    510 		panic("%s: [%s] item %p below item space", __func__,
    511 		    pp->pr_wchan, object);
    512 	}
    513 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    514 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    515 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    516 	}
    517 }
    518 
    519 static inline void
    520 pc_phinpage_check(pool_cache_t pc, void *object)
    521 {
    522 	struct pool_item_header *ph;
    523 	struct pool *pp;
    524 	void *page;
    525 
    526 	pp = &pc->pc_pool;
    527 	page = POOL_OBJ_TO_PAGE(pp, object);
    528 	ph = (struct pool_item_header *)page;
    529 
    530 	pr_phinpage_check(pp, ph, page, object);
    531 }
    532 
    533 /* -------------------------------------------------------------------------- */
    534 
    535 static inline int
    536 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    537 {
    538 
    539 	/*
    540 	 * We consider pool_item_header with smaller ph_page bigger. This
    541 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    542 	 */
    543 	if (a->ph_page < b->ph_page)
    544 		return 1;
    545 	else if (a->ph_page > b->ph_page)
    546 		return -1;
    547 	else
    548 		return 0;
    549 }
    550 
    551 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    552 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    553 
    554 static inline struct pool_item_header *
    555 pr_find_pagehead_noalign(struct pool *pp, void *v)
    556 {
    557 	struct pool_item_header *ph, tmp;
    558 
    559 	tmp.ph_page = (void *)(uintptr_t)v;
    560 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    561 	if (ph == NULL) {
    562 		ph = SPLAY_ROOT(&pp->pr_phtree);
    563 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    564 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    565 		}
    566 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    567 	}
    568 
    569 	return ph;
    570 }
    571 
    572 /*
    573  * Return the pool page header based on item address.
    574  */
    575 static inline struct pool_item_header *
    576 pr_find_pagehead(struct pool *pp, void *v)
    577 {
    578 	struct pool_item_header *ph, tmp;
    579 
    580 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    581 		ph = pr_find_pagehead_noalign(pp, v);
    582 	} else {
    583 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    584 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    585 			ph = (struct pool_item_header *)page;
    586 			pr_phinpage_check(pp, ph, page, v);
    587 		} else {
    588 			tmp.ph_page = page;
    589 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    590 		}
    591 	}
    592 
    593 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    594 	    ((char *)ph->ph_page <= (char *)v &&
    595 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    596 	return ph;
    597 }
    598 
    599 static void
    600 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    601 {
    602 	struct pool_item_header *ph;
    603 
    604 	while ((ph = LIST_FIRST(pq)) != NULL) {
    605 		LIST_REMOVE(ph, ph_pagelist);
    606 		pool_allocator_free(pp, ph->ph_page);
    607 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    608 			pool_put(pp->pr_phpool, ph);
    609 	}
    610 }
    611 
    612 /*
    613  * Remove a page from the pool.
    614  */
    615 static inline void
    616 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    617      struct pool_pagelist *pq)
    618 {
    619 
    620 	KASSERT(mutex_owned(&pp->pr_lock));
    621 
    622 	/*
    623 	 * If the page was idle, decrement the idle page count.
    624 	 */
    625 	if (ph->ph_nmissing == 0) {
    626 		KASSERT(pp->pr_nidle != 0);
    627 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    628 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    629 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    630 		pp->pr_nidle--;
    631 	}
    632 
    633 	pp->pr_nitems -= pp->pr_itemsperpage;
    634 
    635 	/*
    636 	 * Unlink the page from the pool and queue it for release.
    637 	 */
    638 	LIST_REMOVE(ph, ph_pagelist);
    639 	if (pp->pr_roflags & PR_PHINPAGE) {
    640 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    641 			panic("%s: [%s] ph %p poolid %u != %u",
    642 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    643 			    pp->pr_poolid);
    644 		}
    645 	} else {
    646 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    647 	}
    648 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    649 
    650 	pp->pr_npages--;
    651 	pp->pr_npagefree++;
    652 
    653 	pool_update_curpage(pp);
    654 }
    655 
    656 /*
    657  * Initialize all the pools listed in the "pools" link set.
    658  */
    659 void
    660 pool_subsystem_init(void)
    661 {
    662 	size_t size;
    663 	int idx;
    664 
    665 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    666 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    667 	cv_init(&pool_busy, "poolbusy");
    668 
    669 	/*
    670 	 * Initialize private page header pool and cache magazine pool if we
    671 	 * haven't done so yet.
    672 	 */
    673 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    674 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    675 		int nelem;
    676 		size_t sz;
    677 
    678 		nelem = PHPOOL_FREELIST_NELEM(idx);
    679 		KASSERT(nelem != 0);
    680 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    681 		    "phpool-%d", nelem);
    682 		sz = offsetof(struct pool_item_header,
    683 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    684 		pool_init(&phpool[idx], sz, 0, 0, 0,
    685 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    686 	}
    687 
    688 	size = sizeof(pcg_t) +
    689 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    690 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    691 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    692 
    693 	size = sizeof(pcg_t) +
    694 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    695 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    696 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    697 
    698 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    699 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    700 
    701 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    702 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    703 }
    704 
    705 static inline bool
    706 pool_init_is_phinpage(const struct pool *pp)
    707 {
    708 	size_t pagesize;
    709 
    710 	if (pp->pr_roflags & PR_PHINPAGE) {
    711 		return true;
    712 	}
    713 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    714 		return false;
    715 	}
    716 
    717 	pagesize = pp->pr_alloc->pa_pagesz;
    718 
    719 	/*
    720 	 * Threshold: the item size is below 1/16 of a page size, and below
    721 	 * 8 times the page header size. The latter ensures we go off-page
    722 	 * if the page header would make us waste a rather big item.
    723 	 */
    724 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    725 		return true;
    726 	}
    727 
    728 	/* Put the header into the page if it doesn't waste any items. */
    729 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    730 		return true;
    731 	}
    732 
    733 	return false;
    734 }
    735 
    736 static inline bool
    737 pool_init_is_usebmap(const struct pool *pp)
    738 {
    739 	size_t bmapsize;
    740 
    741 	if (pp->pr_roflags & PR_NOTOUCH) {
    742 		return true;
    743 	}
    744 
    745 	/*
    746 	 * If we're off-page, go with a bitmap.
    747 	 */
    748 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    749 		return true;
    750 	}
    751 
    752 	/*
    753 	 * If we're on-page, and the page header can already contain a bitmap
    754 	 * big enough to cover all the items of the page, go with a bitmap.
    755 	 */
    756 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    757 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    758 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    759 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    760 		return true;
    761 	}
    762 
    763 	return false;
    764 }
    765 
    766 /*
    767  * Initialize the given pool resource structure.
    768  *
    769  * We export this routine to allow other kernel parts to declare
    770  * static pools that must be initialized before kmem(9) is available.
    771  */
    772 void
    773 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    774     const char *wchan, struct pool_allocator *palloc, int ipl)
    775 {
    776 	struct pool *pp1;
    777 	size_t prsize;
    778 	int itemspace, slack;
    779 
    780 	/* XXX ioff will be removed. */
    781 	KASSERT(ioff == 0);
    782 
    783 #ifdef DEBUG
    784 	if (__predict_true(!cold))
    785 		mutex_enter(&pool_head_lock);
    786 	/*
    787 	 * Check that the pool hasn't already been initialised and
    788 	 * added to the list of all pools.
    789 	 */
    790 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    791 		if (pp == pp1)
    792 			panic("%s: [%s] already initialised", __func__,
    793 			    wchan);
    794 	}
    795 	if (__predict_true(!cold))
    796 		mutex_exit(&pool_head_lock);
    797 #endif
    798 
    799 	if (palloc == NULL)
    800 		palloc = &pool_allocator_kmem;
    801 
    802 	if (!cold)
    803 		mutex_enter(&pool_allocator_lock);
    804 	if (palloc->pa_refcnt++ == 0) {
    805 		if (palloc->pa_pagesz == 0)
    806 			palloc->pa_pagesz = PAGE_SIZE;
    807 
    808 		TAILQ_INIT(&palloc->pa_list);
    809 
    810 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    811 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    812 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    813 	}
    814 	if (!cold)
    815 		mutex_exit(&pool_allocator_lock);
    816 
    817 	if (align == 0)
    818 		align = ALIGN(1);
    819 
    820 	prsize = size;
    821 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    822 		prsize = sizeof(struct pool_item);
    823 
    824 	prsize = roundup(prsize, align);
    825 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    826 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    827 	    __func__, wchan, prsize, palloc->pa_pagesz);
    828 
    829 	/*
    830 	 * Initialize the pool structure.
    831 	 */
    832 	LIST_INIT(&pp->pr_emptypages);
    833 	LIST_INIT(&pp->pr_fullpages);
    834 	LIST_INIT(&pp->pr_partpages);
    835 	pp->pr_cache = NULL;
    836 	pp->pr_curpage = NULL;
    837 	pp->pr_npages = 0;
    838 	pp->pr_minitems = 0;
    839 	pp->pr_minpages = 0;
    840 	pp->pr_maxpages = UINT_MAX;
    841 	pp->pr_roflags = flags;
    842 	pp->pr_flags = 0;
    843 	pp->pr_size = prsize;
    844 	pp->pr_reqsize = size;
    845 	pp->pr_align = align;
    846 	pp->pr_wchan = wchan;
    847 	pp->pr_alloc = palloc;
    848 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    849 	pp->pr_nitems = 0;
    850 	pp->pr_nout = 0;
    851 	pp->pr_hardlimit = UINT_MAX;
    852 	pp->pr_hardlimit_warning = NULL;
    853 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    854 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    855 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    856 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    857 	pp->pr_drain_hook = NULL;
    858 	pp->pr_drain_hook_arg = NULL;
    859 	pp->pr_freecheck = NULL;
    860 	pp->pr_redzone = false;
    861 	pool_redzone_init(pp, size);
    862 	pool_quarantine_init(pp);
    863 
    864 	/*
    865 	 * Decide whether to put the page header off-page to avoid wasting too
    866 	 * large a part of the page or too big an item. Off-page page headers
    867 	 * go on a hash table, so we can match a returned item with its header
    868 	 * based on the page address.
    869 	 */
    870 	if (pool_init_is_phinpage(pp)) {
    871 		/* Use the beginning of the page for the page header */
    872 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    873 		pp->pr_itemoffset = roundup(PHSIZE, align);
    874 		pp->pr_roflags |= PR_PHINPAGE;
    875 	} else {
    876 		/* The page header will be taken from our page header pool */
    877 		itemspace = palloc->pa_pagesz;
    878 		pp->pr_itemoffset = 0;
    879 		SPLAY_INIT(&pp->pr_phtree);
    880 	}
    881 
    882 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    883 	KASSERT(pp->pr_itemsperpage != 0);
    884 
    885 	/*
    886 	 * Decide whether to use a bitmap or a linked list to manage freed
    887 	 * items.
    888 	 */
    889 	if (pool_init_is_usebmap(pp)) {
    890 		pp->pr_roflags |= PR_USEBMAP;
    891 	}
    892 
    893 	/*
    894 	 * If we're off-page, then we're using a bitmap; choose the appropriate
    895 	 * pool to allocate page headers, whose size varies depending on the
    896 	 * bitmap. If we're on-page, nothing to do.
    897 	 */
    898 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    899 		int idx;
    900 
    901 		KASSERT(pp->pr_roflags & PR_USEBMAP);
    902 
    903 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    904 		    idx++) {
    905 			/* nothing */
    906 		}
    907 		if (idx >= PHPOOL_MAX) {
    908 			/*
    909 			 * if you see this panic, consider to tweak
    910 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    911 			 */
    912 			panic("%s: [%s] too large itemsperpage(%d) for "
    913 			    "PR_USEBMAP", __func__,
    914 			    pp->pr_wchan, pp->pr_itemsperpage);
    915 		}
    916 		pp->pr_phpool = &phpool[idx];
    917 	} else {
    918 		pp->pr_phpool = NULL;
    919 	}
    920 
    921 	/*
    922 	 * Use the slack between the chunks and the page header
    923 	 * for "cache coloring".
    924 	 */
    925 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    926 	pp->pr_maxcolor = rounddown(slack, align);
    927 	pp->pr_curcolor = 0;
    928 
    929 	pp->pr_nget = 0;
    930 	pp->pr_nfail = 0;
    931 	pp->pr_nput = 0;
    932 	pp->pr_npagealloc = 0;
    933 	pp->pr_npagefree = 0;
    934 	pp->pr_hiwat = 0;
    935 	pp->pr_nidle = 0;
    936 	pp->pr_refcnt = 0;
    937 
    938 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    939 	cv_init(&pp->pr_cv, wchan);
    940 	pp->pr_ipl = ipl;
    941 
    942 	/* Insert into the list of all pools. */
    943 	if (!cold)
    944 		mutex_enter(&pool_head_lock);
    945 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    946 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    947 			break;
    948 	}
    949 	if (pp1 == NULL)
    950 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    951 	else
    952 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    953 	if (!cold)
    954 		mutex_exit(&pool_head_lock);
    955 
    956 	/* Insert this into the list of pools using this allocator. */
    957 	if (!cold)
    958 		mutex_enter(&palloc->pa_lock);
    959 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    960 	if (!cold)
    961 		mutex_exit(&palloc->pa_lock);
    962 }
    963 
    964 /*
    965  * De-commision a pool resource.
    966  */
    967 void
    968 pool_destroy(struct pool *pp)
    969 {
    970 	struct pool_pagelist pq;
    971 	struct pool_item_header *ph;
    972 
    973 	pool_quarantine_flush(pp);
    974 
    975 	/* Remove from global pool list */
    976 	mutex_enter(&pool_head_lock);
    977 	while (pp->pr_refcnt != 0)
    978 		cv_wait(&pool_busy, &pool_head_lock);
    979 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    980 	if (drainpp == pp)
    981 		drainpp = NULL;
    982 	mutex_exit(&pool_head_lock);
    983 
    984 	/* Remove this pool from its allocator's list of pools. */
    985 	mutex_enter(&pp->pr_alloc->pa_lock);
    986 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    987 	mutex_exit(&pp->pr_alloc->pa_lock);
    988 
    989 	mutex_enter(&pool_allocator_lock);
    990 	if (--pp->pr_alloc->pa_refcnt == 0)
    991 		mutex_destroy(&pp->pr_alloc->pa_lock);
    992 	mutex_exit(&pool_allocator_lock);
    993 
    994 	mutex_enter(&pp->pr_lock);
    995 
    996 	KASSERT(pp->pr_cache == NULL);
    997 	KASSERTMSG((pp->pr_nout == 0),
    998 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
    999 	    pp->pr_nout);
   1000 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
   1001 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
   1002 
   1003 	/* Remove all pages */
   1004 	LIST_INIT(&pq);
   1005 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1006 		pr_rmpage(pp, ph, &pq);
   1007 
   1008 	mutex_exit(&pp->pr_lock);
   1009 
   1010 	pr_pagelist_free(pp, &pq);
   1011 	cv_destroy(&pp->pr_cv);
   1012 	mutex_destroy(&pp->pr_lock);
   1013 }
   1014 
   1015 void
   1016 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
   1017 {
   1018 
   1019 	/* XXX no locking -- must be used just after pool_init() */
   1020 	KASSERTMSG((pp->pr_drain_hook == NULL),
   1021 	    "%s: [%s] already set", __func__, pp->pr_wchan);
   1022 	pp->pr_drain_hook = fn;
   1023 	pp->pr_drain_hook_arg = arg;
   1024 }
   1025 
   1026 static struct pool_item_header *
   1027 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
   1028 {
   1029 	struct pool_item_header *ph;
   1030 
   1031 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
   1032 		ph = storage;
   1033 	else
   1034 		ph = pool_get(pp->pr_phpool, flags);
   1035 
   1036 	return ph;
   1037 }
   1038 
   1039 /*
   1040  * Grab an item from the pool.
   1041  */
   1042 void *
   1043 pool_get(struct pool *pp, int flags)
   1044 {
   1045 	struct pool_item_header *ph;
   1046 	void *v;
   1047 
   1048 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   1049 	KASSERTMSG((pp->pr_itemsperpage != 0),
   1050 	    "%s: [%s] pr_itemsperpage is zero, "
   1051 	    "pool not initialized?", __func__, pp->pr_wchan);
   1052 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
   1053 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
   1054 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   1055 	    __func__, pp->pr_wchan);
   1056 	if (flags & PR_WAITOK) {
   1057 		ASSERT_SLEEPABLE();
   1058 	}
   1059 
   1060 	if (flags & PR_NOWAIT) {
   1061 		if (fault_inject())
   1062 			return NULL;
   1063 	}
   1064 
   1065 	mutex_enter(&pp->pr_lock);
   1066  startover:
   1067 	/*
   1068 	 * Check to see if we've reached the hard limit.  If we have,
   1069 	 * and we can wait, then wait until an item has been returned to
   1070 	 * the pool.
   1071 	 */
   1072 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
   1073 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
   1074 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1075 		if (pp->pr_drain_hook != NULL) {
   1076 			/*
   1077 			 * Since the drain hook is going to free things
   1078 			 * back to the pool, unlock, call the hook, re-lock,
   1079 			 * and check the hardlimit condition again.
   1080 			 */
   1081 			mutex_exit(&pp->pr_lock);
   1082 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1083 			mutex_enter(&pp->pr_lock);
   1084 			if (pp->pr_nout < pp->pr_hardlimit)
   1085 				goto startover;
   1086 		}
   1087 
   1088 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1089 			/*
   1090 			 * XXX: A warning isn't logged in this case.  Should
   1091 			 * it be?
   1092 			 */
   1093 			pp->pr_flags |= PR_WANTED;
   1094 			do {
   1095 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1096 			} while (pp->pr_flags & PR_WANTED);
   1097 			goto startover;
   1098 		}
   1099 
   1100 		/*
   1101 		 * Log a message that the hard limit has been hit.
   1102 		 */
   1103 		if (pp->pr_hardlimit_warning != NULL &&
   1104 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1105 			      &pp->pr_hardlimit_ratecap))
   1106 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1107 
   1108 		pp->pr_nfail++;
   1109 
   1110 		mutex_exit(&pp->pr_lock);
   1111 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1112 		return NULL;
   1113 	}
   1114 
   1115 	/*
   1116 	 * The convention we use is that if `curpage' is not NULL, then
   1117 	 * it points at a non-empty bucket. In particular, `curpage'
   1118 	 * never points at a page header which has PR_PHINPAGE set and
   1119 	 * has no items in its bucket.
   1120 	 */
   1121 	if ((ph = pp->pr_curpage) == NULL) {
   1122 		int error;
   1123 
   1124 		KASSERTMSG((pp->pr_nitems == 0),
   1125 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1126 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1127 
   1128 		/*
   1129 		 * Call the back-end page allocator for more memory.
   1130 		 * Release the pool lock, as the back-end page allocator
   1131 		 * may block.
   1132 		 */
   1133 		error = pool_grow(pp, flags);
   1134 		if (error != 0) {
   1135 			/*
   1136 			 * pool_grow aborts when another thread
   1137 			 * is allocating a new page. Retry if it
   1138 			 * waited for it.
   1139 			 */
   1140 			if (error == ERESTART)
   1141 				goto startover;
   1142 
   1143 			/*
   1144 			 * We were unable to allocate a page or item
   1145 			 * header, but we released the lock during
   1146 			 * allocation, so perhaps items were freed
   1147 			 * back to the pool.  Check for this case.
   1148 			 */
   1149 			if (pp->pr_curpage != NULL)
   1150 				goto startover;
   1151 
   1152 			pp->pr_nfail++;
   1153 			mutex_exit(&pp->pr_lock);
   1154 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1155 			return NULL;
   1156 		}
   1157 
   1158 		/* Start the allocation process over. */
   1159 		goto startover;
   1160 	}
   1161 	if (pp->pr_roflags & PR_USEBMAP) {
   1162 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1163 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1164 		v = pr_item_bitmap_get(pp, ph);
   1165 	} else {
   1166 		v = pr_item_linkedlist_get(pp, ph);
   1167 	}
   1168 	pp->pr_nitems--;
   1169 	pp->pr_nout++;
   1170 	if (ph->ph_nmissing == 0) {
   1171 		KASSERT(pp->pr_nidle > 0);
   1172 		pp->pr_nidle--;
   1173 
   1174 		/*
   1175 		 * This page was previously empty.  Move it to the list of
   1176 		 * partially-full pages.  This page is already curpage.
   1177 		 */
   1178 		LIST_REMOVE(ph, ph_pagelist);
   1179 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1180 	}
   1181 	ph->ph_nmissing++;
   1182 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1183 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1184 			LIST_EMPTY(&ph->ph_itemlist)),
   1185 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1186 			pp->pr_wchan, ph->ph_nmissing);
   1187 		/*
   1188 		 * This page is now full.  Move it to the full list
   1189 		 * and select a new current page.
   1190 		 */
   1191 		LIST_REMOVE(ph, ph_pagelist);
   1192 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1193 		pool_update_curpage(pp);
   1194 	}
   1195 
   1196 	pp->pr_nget++;
   1197 
   1198 	/*
   1199 	 * If we have a low water mark and we are now below that low
   1200 	 * water mark, add more items to the pool.
   1201 	 */
   1202 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1203 		/*
   1204 		 * XXX: Should we log a warning?  Should we set up a timeout
   1205 		 * to try again in a second or so?  The latter could break
   1206 		 * a caller's assumptions about interrupt protection, etc.
   1207 		 */
   1208 	}
   1209 
   1210 	mutex_exit(&pp->pr_lock);
   1211 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1212 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1213 	pool_redzone_fill(pp, v);
   1214 	pool_get_kmsan(pp, v);
   1215 	if (flags & PR_ZERO)
   1216 		memset(v, 0, pp->pr_reqsize);
   1217 	return v;
   1218 }
   1219 
   1220 /*
   1221  * Internal version of pool_put().  Pool is already locked/entered.
   1222  */
   1223 static void
   1224 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1225 {
   1226 	struct pool_item_header *ph;
   1227 
   1228 	KASSERT(mutex_owned(&pp->pr_lock));
   1229 	pool_redzone_check(pp, v);
   1230 	pool_put_kmsan(pp, v);
   1231 	FREECHECK_IN(&pp->pr_freecheck, v);
   1232 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1233 
   1234 	KASSERTMSG((pp->pr_nout > 0),
   1235 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1236 
   1237 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1238 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1239 	}
   1240 
   1241 	/*
   1242 	 * Return to item list.
   1243 	 */
   1244 	if (pp->pr_roflags & PR_USEBMAP) {
   1245 		pr_item_bitmap_put(pp, ph, v);
   1246 	} else {
   1247 		pr_item_linkedlist_put(pp, ph, v);
   1248 	}
   1249 	KDASSERT(ph->ph_nmissing != 0);
   1250 	ph->ph_nmissing--;
   1251 	pp->pr_nput++;
   1252 	pp->pr_nitems++;
   1253 	pp->pr_nout--;
   1254 
   1255 	/* Cancel "pool empty" condition if it exists */
   1256 	if (pp->pr_curpage == NULL)
   1257 		pp->pr_curpage = ph;
   1258 
   1259 	if (pp->pr_flags & PR_WANTED) {
   1260 		pp->pr_flags &= ~PR_WANTED;
   1261 		cv_broadcast(&pp->pr_cv);
   1262 	}
   1263 
   1264 	/*
   1265 	 * If this page is now empty, do one of two things:
   1266 	 *
   1267 	 *	(1) If we have more pages than the page high water mark,
   1268 	 *	    free the page back to the system.  ONLY CONSIDER
   1269 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1270 	 *	    CLAIM.
   1271 	 *
   1272 	 *	(2) Otherwise, move the page to the empty page list.
   1273 	 *
   1274 	 * Either way, select a new current page (so we use a partially-full
   1275 	 * page if one is available).
   1276 	 */
   1277 	if (ph->ph_nmissing == 0) {
   1278 		pp->pr_nidle++;
   1279 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
   1280 		    pp->pr_npages > pp->pr_minpages &&
   1281 		    pp->pr_npages > pp->pr_maxpages) {
   1282 			pr_rmpage(pp, ph, pq);
   1283 		} else {
   1284 			LIST_REMOVE(ph, ph_pagelist);
   1285 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1286 
   1287 			/*
   1288 			 * Update the timestamp on the page.  A page must
   1289 			 * be idle for some period of time before it can
   1290 			 * be reclaimed by the pagedaemon.  This minimizes
   1291 			 * ping-pong'ing for memory.
   1292 			 *
   1293 			 * note for 64-bit time_t: truncating to 32-bit is not
   1294 			 * a problem for our usage.
   1295 			 */
   1296 			ph->ph_time = time_uptime;
   1297 		}
   1298 		pool_update_curpage(pp);
   1299 	}
   1300 
   1301 	/*
   1302 	 * If the page was previously completely full, move it to the
   1303 	 * partially-full list and make it the current page.  The next
   1304 	 * allocation will get the item from this page, instead of
   1305 	 * further fragmenting the pool.
   1306 	 */
   1307 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1308 		LIST_REMOVE(ph, ph_pagelist);
   1309 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1310 		pp->pr_curpage = ph;
   1311 	}
   1312 }
   1313 
   1314 void
   1315 pool_put(struct pool *pp, void *v)
   1316 {
   1317 	struct pool_pagelist pq;
   1318 
   1319 	LIST_INIT(&pq);
   1320 
   1321 	mutex_enter(&pp->pr_lock);
   1322 	if (!pool_put_quarantine(pp, v, &pq)) {
   1323 		pool_do_put(pp, v, &pq);
   1324 	}
   1325 	mutex_exit(&pp->pr_lock);
   1326 
   1327 	pr_pagelist_free(pp, &pq);
   1328 }
   1329 
   1330 /*
   1331  * pool_grow: grow a pool by a page.
   1332  *
   1333  * => called with pool locked.
   1334  * => unlock and relock the pool.
   1335  * => return with pool locked.
   1336  */
   1337 
   1338 static int
   1339 pool_grow(struct pool *pp, int flags)
   1340 {
   1341 	struct pool_item_header *ph;
   1342 	char *storage;
   1343 
   1344 	/*
   1345 	 * If there's a pool_grow in progress, wait for it to complete
   1346 	 * and try again from the top.
   1347 	 */
   1348 	if (pp->pr_flags & PR_GROWING) {
   1349 		if (flags & PR_WAITOK) {
   1350 			do {
   1351 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1352 			} while (pp->pr_flags & PR_GROWING);
   1353 			return ERESTART;
   1354 		} else {
   1355 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1356 				/*
   1357 				 * This needs an unlock/relock dance so
   1358 				 * that the other caller has a chance to
   1359 				 * run and actually do the thing.  Note
   1360 				 * that this is effectively a busy-wait.
   1361 				 */
   1362 				mutex_exit(&pp->pr_lock);
   1363 				mutex_enter(&pp->pr_lock);
   1364 				return ERESTART;
   1365 			}
   1366 			return EWOULDBLOCK;
   1367 		}
   1368 	}
   1369 	pp->pr_flags |= PR_GROWING;
   1370 	if (flags & PR_WAITOK)
   1371 		mutex_exit(&pp->pr_lock);
   1372 	else
   1373 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1374 
   1375 	storage = pool_allocator_alloc(pp, flags);
   1376 	if (__predict_false(storage == NULL))
   1377 		goto out;
   1378 
   1379 	ph = pool_alloc_item_header(pp, storage, flags);
   1380 	if (__predict_false(ph == NULL)) {
   1381 		pool_allocator_free(pp, storage);
   1382 		goto out;
   1383 	}
   1384 
   1385 	if (flags & PR_WAITOK)
   1386 		mutex_enter(&pp->pr_lock);
   1387 	pool_prime_page(pp, storage, ph);
   1388 	pp->pr_npagealloc++;
   1389 	KASSERT(pp->pr_flags & PR_GROWING);
   1390 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1391 	/*
   1392 	 * If anyone was waiting for pool_grow, notify them that we
   1393 	 * may have just done it.
   1394 	 */
   1395 	cv_broadcast(&pp->pr_cv);
   1396 	return 0;
   1397 out:
   1398 	if (flags & PR_WAITOK)
   1399 		mutex_enter(&pp->pr_lock);
   1400 	KASSERT(pp->pr_flags & PR_GROWING);
   1401 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1402 	return ENOMEM;
   1403 }
   1404 
   1405 void
   1406 pool_prime(struct pool *pp, int n)
   1407 {
   1408 
   1409 	mutex_enter(&pp->pr_lock);
   1410 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1411 	if (pp->pr_maxpages <= pp->pr_minpages)
   1412 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1413 	while (pp->pr_npages < pp->pr_minpages)
   1414 		(void) pool_grow(pp, PR_WAITOK);
   1415 	mutex_exit(&pp->pr_lock);
   1416 }
   1417 
   1418 /*
   1419  * Add a page worth of items to the pool.
   1420  *
   1421  * Note, we must be called with the pool descriptor LOCKED.
   1422  */
   1423 static void
   1424 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1425 {
   1426 	const unsigned int align = pp->pr_align;
   1427 	struct pool_item *pi;
   1428 	void *cp = storage;
   1429 	int n;
   1430 
   1431 	KASSERT(mutex_owned(&pp->pr_lock));
   1432 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1433 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1434 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1435 
   1436 	/*
   1437 	 * Insert page header.
   1438 	 */
   1439 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1440 	LIST_INIT(&ph->ph_itemlist);
   1441 	ph->ph_page = storage;
   1442 	ph->ph_nmissing = 0;
   1443 	ph->ph_time = time_uptime;
   1444 	if (pp->pr_roflags & PR_PHINPAGE)
   1445 		ph->ph_poolid = pp->pr_poolid;
   1446 	else
   1447 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1448 
   1449 	pp->pr_nidle++;
   1450 
   1451 	/*
   1452 	 * The item space starts after the on-page header, if any.
   1453 	 */
   1454 	ph->ph_off = pp->pr_itemoffset;
   1455 
   1456 	/*
   1457 	 * Color this page.
   1458 	 */
   1459 	ph->ph_off += pp->pr_curcolor;
   1460 	cp = (char *)cp + ph->ph_off;
   1461 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1462 		pp->pr_curcolor = 0;
   1463 
   1464 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1465 
   1466 	/*
   1467 	 * Insert remaining chunks on the bucket list.
   1468 	 */
   1469 	n = pp->pr_itemsperpage;
   1470 	pp->pr_nitems += n;
   1471 
   1472 	if (pp->pr_roflags & PR_USEBMAP) {
   1473 		pr_item_bitmap_init(pp, ph);
   1474 	} else {
   1475 		while (n--) {
   1476 			pi = (struct pool_item *)cp;
   1477 
   1478 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1479 
   1480 			/* Insert on page list */
   1481 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1482 #ifdef POOL_CHECK_MAGIC
   1483 			pi->pi_magic = PI_MAGIC;
   1484 #endif
   1485 			cp = (char *)cp + pp->pr_size;
   1486 
   1487 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1488 		}
   1489 	}
   1490 
   1491 	/*
   1492 	 * If the pool was depleted, point at the new page.
   1493 	 */
   1494 	if (pp->pr_curpage == NULL)
   1495 		pp->pr_curpage = ph;
   1496 
   1497 	if (++pp->pr_npages > pp->pr_hiwat)
   1498 		pp->pr_hiwat = pp->pr_npages;
   1499 }
   1500 
   1501 /*
   1502  * Used by pool_get() when nitems drops below the low water mark.  This
   1503  * is used to catch up pr_nitems with the low water mark.
   1504  *
   1505  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1506  *
   1507  * Note 2, we must be called with the pool already locked, and we return
   1508  * with it locked.
   1509  */
   1510 static int
   1511 pool_catchup(struct pool *pp)
   1512 {
   1513 	int error = 0;
   1514 
   1515 	while (POOL_NEEDS_CATCHUP(pp)) {
   1516 		error = pool_grow(pp, PR_NOWAIT);
   1517 		if (error) {
   1518 			if (error == ERESTART)
   1519 				continue;
   1520 			break;
   1521 		}
   1522 	}
   1523 	return error;
   1524 }
   1525 
   1526 static void
   1527 pool_update_curpage(struct pool *pp)
   1528 {
   1529 
   1530 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1531 	if (pp->pr_curpage == NULL) {
   1532 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1533 	}
   1534 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1535 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1536 }
   1537 
   1538 void
   1539 pool_setlowat(struct pool *pp, int n)
   1540 {
   1541 
   1542 	mutex_enter(&pp->pr_lock);
   1543 	pp->pr_minitems = n;
   1544 
   1545 	/* Make sure we're caught up with the newly-set low water mark. */
   1546 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1547 		/*
   1548 		 * XXX: Should we log a warning?  Should we set up a timeout
   1549 		 * to try again in a second or so?  The latter could break
   1550 		 * a caller's assumptions about interrupt protection, etc.
   1551 		 */
   1552 	}
   1553 
   1554 	mutex_exit(&pp->pr_lock);
   1555 }
   1556 
   1557 void
   1558 pool_sethiwat(struct pool *pp, int n)
   1559 {
   1560 
   1561 	mutex_enter(&pp->pr_lock);
   1562 
   1563 	pp->pr_maxitems = n;
   1564 
   1565 	mutex_exit(&pp->pr_lock);
   1566 }
   1567 
   1568 void
   1569 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1570 {
   1571 
   1572 	mutex_enter(&pp->pr_lock);
   1573 
   1574 	pp->pr_hardlimit = n;
   1575 	pp->pr_hardlimit_warning = warnmess;
   1576 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1577 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1578 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1579 
   1580 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1581 
   1582 	mutex_exit(&pp->pr_lock);
   1583 }
   1584 
   1585 /*
   1586  * Release all complete pages that have not been used recently.
   1587  *
   1588  * Must not be called from interrupt context.
   1589  */
   1590 int
   1591 pool_reclaim(struct pool *pp)
   1592 {
   1593 	struct pool_item_header *ph, *phnext;
   1594 	struct pool_pagelist pq;
   1595 	uint32_t curtime;
   1596 	bool klock;
   1597 	int rv;
   1598 
   1599 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1600 
   1601 	if (pp->pr_drain_hook != NULL) {
   1602 		/*
   1603 		 * The drain hook must be called with the pool unlocked.
   1604 		 */
   1605 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1606 	}
   1607 
   1608 	/*
   1609 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1610 	 * to block.
   1611 	 */
   1612 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1613 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1614 		KERNEL_LOCK(1, NULL);
   1615 		klock = true;
   1616 	} else
   1617 		klock = false;
   1618 
   1619 	/* Reclaim items from the pool's cache (if any). */
   1620 	if (pp->pr_cache != NULL)
   1621 		pool_cache_invalidate(pp->pr_cache);
   1622 
   1623 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1624 		if (klock) {
   1625 			KERNEL_UNLOCK_ONE(NULL);
   1626 		}
   1627 		return 0;
   1628 	}
   1629 
   1630 	LIST_INIT(&pq);
   1631 
   1632 	curtime = time_uptime;
   1633 
   1634 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1635 		phnext = LIST_NEXT(ph, ph_pagelist);
   1636 
   1637 		/* Check our minimum page claim */
   1638 		if (pp->pr_npages <= pp->pr_minpages)
   1639 			break;
   1640 
   1641 		KASSERT(ph->ph_nmissing == 0);
   1642 		if (curtime - ph->ph_time < pool_inactive_time)
   1643 			continue;
   1644 
   1645 		/*
   1646 		 * If freeing this page would put us below the minimum free items
   1647 		 * or the minimum pages, stop now.
   1648 		 */
   1649 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
   1650 		    pp->pr_npages - 1 < pp->pr_minpages)
   1651 			break;
   1652 
   1653 		pr_rmpage(pp, ph, &pq);
   1654 	}
   1655 
   1656 	mutex_exit(&pp->pr_lock);
   1657 
   1658 	if (LIST_EMPTY(&pq))
   1659 		rv = 0;
   1660 	else {
   1661 		pr_pagelist_free(pp, &pq);
   1662 		rv = 1;
   1663 	}
   1664 
   1665 	if (klock) {
   1666 		KERNEL_UNLOCK_ONE(NULL);
   1667 	}
   1668 
   1669 	return rv;
   1670 }
   1671 
   1672 /*
   1673  * Drain pools, one at a time. The drained pool is returned within ppp.
   1674  *
   1675  * Note, must never be called from interrupt context.
   1676  */
   1677 bool
   1678 pool_drain(struct pool **ppp)
   1679 {
   1680 	bool reclaimed;
   1681 	struct pool *pp;
   1682 
   1683 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1684 
   1685 	pp = NULL;
   1686 
   1687 	/* Find next pool to drain, and add a reference. */
   1688 	mutex_enter(&pool_head_lock);
   1689 	do {
   1690 		if (drainpp == NULL) {
   1691 			drainpp = TAILQ_FIRST(&pool_head);
   1692 		}
   1693 		if (drainpp != NULL) {
   1694 			pp = drainpp;
   1695 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1696 		}
   1697 		/*
   1698 		 * Skip completely idle pools.  We depend on at least
   1699 		 * one pool in the system being active.
   1700 		 */
   1701 	} while (pp == NULL || pp->pr_npages == 0);
   1702 	pp->pr_refcnt++;
   1703 	mutex_exit(&pool_head_lock);
   1704 
   1705 	/* Drain the cache (if any) and pool.. */
   1706 	reclaimed = pool_reclaim(pp);
   1707 
   1708 	/* Finally, unlock the pool. */
   1709 	mutex_enter(&pool_head_lock);
   1710 	pp->pr_refcnt--;
   1711 	cv_broadcast(&pool_busy);
   1712 	mutex_exit(&pool_head_lock);
   1713 
   1714 	if (ppp != NULL)
   1715 		*ppp = pp;
   1716 
   1717 	return reclaimed;
   1718 }
   1719 
   1720 /*
   1721  * Calculate the total number of pages consumed by pools.
   1722  */
   1723 int
   1724 pool_totalpages(void)
   1725 {
   1726 
   1727 	mutex_enter(&pool_head_lock);
   1728 	int pages = pool_totalpages_locked();
   1729 	mutex_exit(&pool_head_lock);
   1730 
   1731 	return pages;
   1732 }
   1733 
   1734 int
   1735 pool_totalpages_locked(void)
   1736 {
   1737 	struct pool *pp;
   1738 	uint64_t total = 0;
   1739 
   1740 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1741 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1742 
   1743 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1744 			bytes -= (pp->pr_nout * pp->pr_size);
   1745 		total += bytes;
   1746 	}
   1747 
   1748 	return atop(total);
   1749 }
   1750 
   1751 /*
   1752  * Diagnostic helpers.
   1753  */
   1754 
   1755 void
   1756 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1757 {
   1758 	struct pool *pp;
   1759 
   1760 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1761 		pool_printit(pp, modif, pr);
   1762 	}
   1763 }
   1764 
   1765 void
   1766 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1767 {
   1768 
   1769 	if (pp == NULL) {
   1770 		(*pr)("Must specify a pool to print.\n");
   1771 		return;
   1772 	}
   1773 
   1774 	pool_print1(pp, modif, pr);
   1775 }
   1776 
   1777 static void
   1778 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1779     void (*pr)(const char *, ...))
   1780 {
   1781 	struct pool_item_header *ph;
   1782 
   1783 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1784 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1785 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1786 #ifdef POOL_CHECK_MAGIC
   1787 		struct pool_item *pi;
   1788 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1789 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1790 				if (pi->pi_magic != PI_MAGIC) {
   1791 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1792 					    pi, pi->pi_magic);
   1793 				}
   1794 			}
   1795 		}
   1796 #endif
   1797 	}
   1798 }
   1799 
   1800 static void
   1801 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1802 {
   1803 	struct pool_item_header *ph;
   1804 	pool_cache_t pc;
   1805 	pcg_t *pcg;
   1806 	pool_cache_cpu_t *cc;
   1807 	uint64_t cpuhit, cpumiss;
   1808 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1809 	char c;
   1810 
   1811 	while ((c = *modif++) != '\0') {
   1812 		if (c == 'l')
   1813 			print_log = 1;
   1814 		if (c == 'p')
   1815 			print_pagelist = 1;
   1816 		if (c == 'c')
   1817 			print_cache = 1;
   1818 	}
   1819 
   1820 	if ((pc = pp->pr_cache) != NULL) {
   1821 		(*pr)("POOL CACHE");
   1822 	} else {
   1823 		(*pr)("POOL");
   1824 	}
   1825 
   1826 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1827 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1828 	    pp->pr_roflags);
   1829 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1830 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1831 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1832 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1833 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1834 
   1835 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1836 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1837 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1838 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1839 
   1840 	if (print_pagelist == 0)
   1841 		goto skip_pagelist;
   1842 
   1843 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1844 		(*pr)("\n\tempty page list:\n");
   1845 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1846 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1847 		(*pr)("\n\tfull page list:\n");
   1848 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1849 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1850 		(*pr)("\n\tpartial-page list:\n");
   1851 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1852 
   1853 	if (pp->pr_curpage == NULL)
   1854 		(*pr)("\tno current page\n");
   1855 	else
   1856 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1857 
   1858  skip_pagelist:
   1859 	if (print_log == 0)
   1860 		goto skip_log;
   1861 
   1862 	(*pr)("\n");
   1863 
   1864  skip_log:
   1865 
   1866 #define PR_GROUPLIST(pcg)						\
   1867 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1868 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1869 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1870 		    POOL_PADDR_INVALID) {				\
   1871 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1872 			    pcg->pcg_objects[i].pcgo_va,		\
   1873 			    (unsigned long long)			\
   1874 			    pcg->pcg_objects[i].pcgo_pa);		\
   1875 		} else {						\
   1876 			(*pr)("\t\t\t%p\n",				\
   1877 			    pcg->pcg_objects[i].pcgo_va);		\
   1878 		}							\
   1879 	}
   1880 
   1881 	if (pc != NULL) {
   1882 		cpuhit = 0;
   1883 		cpumiss = 0;
   1884 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1885 			if ((cc = pc->pc_cpus[i]) == NULL)
   1886 				continue;
   1887 			cpuhit += cc->cc_hits;
   1888 			cpumiss += cc->cc_misses;
   1889 		}
   1890 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1891 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1892 		    pc->pc_hits, pc->pc_misses);
   1893 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1894 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1895 		    pc->pc_contended);
   1896 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1897 		    pc->pc_nempty, pc->pc_nfull);
   1898 		if (print_cache) {
   1899 			(*pr)("\tfull cache groups:\n");
   1900 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1901 			    pcg = pcg->pcg_next) {
   1902 				PR_GROUPLIST(pcg);
   1903 			}
   1904 			(*pr)("\tempty cache groups:\n");
   1905 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1906 			    pcg = pcg->pcg_next) {
   1907 				PR_GROUPLIST(pcg);
   1908 			}
   1909 		}
   1910 	}
   1911 #undef PR_GROUPLIST
   1912 }
   1913 
   1914 static int
   1915 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1916 {
   1917 	struct pool_item *pi;
   1918 	void *page;
   1919 	int n;
   1920 
   1921 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1922 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1923 		if (page != ph->ph_page &&
   1924 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1925 			if (label != NULL)
   1926 				printf("%s: ", label);
   1927 			printf("pool(%p:%s): page inconsistency: page %p;"
   1928 			       " at page head addr %p (p %p)\n", pp,
   1929 				pp->pr_wchan, ph->ph_page,
   1930 				ph, page);
   1931 			return 1;
   1932 		}
   1933 	}
   1934 
   1935 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1936 		return 0;
   1937 
   1938 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1939 	     pi != NULL;
   1940 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1941 
   1942 #ifdef POOL_CHECK_MAGIC
   1943 		if (pi->pi_magic != PI_MAGIC) {
   1944 			if (label != NULL)
   1945 				printf("%s: ", label);
   1946 			printf("pool(%s): free list modified: magic=%x;"
   1947 			       " page %p; item ordinal %d; addr %p\n",
   1948 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1949 				n, pi);
   1950 			panic("pool");
   1951 		}
   1952 #endif
   1953 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1954 			continue;
   1955 		}
   1956 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1957 		if (page == ph->ph_page)
   1958 			continue;
   1959 
   1960 		if (label != NULL)
   1961 			printf("%s: ", label);
   1962 		printf("pool(%p:%s): page inconsistency: page %p;"
   1963 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1964 			pp->pr_wchan, ph->ph_page,
   1965 			n, pi, page);
   1966 		return 1;
   1967 	}
   1968 	return 0;
   1969 }
   1970 
   1971 
   1972 int
   1973 pool_chk(struct pool *pp, const char *label)
   1974 {
   1975 	struct pool_item_header *ph;
   1976 	int r = 0;
   1977 
   1978 	mutex_enter(&pp->pr_lock);
   1979 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1980 		r = pool_chk_page(pp, label, ph);
   1981 		if (r) {
   1982 			goto out;
   1983 		}
   1984 	}
   1985 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1986 		r = pool_chk_page(pp, label, ph);
   1987 		if (r) {
   1988 			goto out;
   1989 		}
   1990 	}
   1991 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1992 		r = pool_chk_page(pp, label, ph);
   1993 		if (r) {
   1994 			goto out;
   1995 		}
   1996 	}
   1997 
   1998 out:
   1999 	mutex_exit(&pp->pr_lock);
   2000 	return r;
   2001 }
   2002 
   2003 /*
   2004  * pool_cache_init:
   2005  *
   2006  *	Initialize a pool cache.
   2007  */
   2008 pool_cache_t
   2009 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2010     const char *wchan, struct pool_allocator *palloc, int ipl,
   2011     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2012 {
   2013 	pool_cache_t pc;
   2014 
   2015 	pc = pool_get(&cache_pool, PR_WAITOK);
   2016 	if (pc == NULL)
   2017 		return NULL;
   2018 
   2019 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2020 	   palloc, ipl, ctor, dtor, arg);
   2021 
   2022 	return pc;
   2023 }
   2024 
   2025 /*
   2026  * pool_cache_bootstrap:
   2027  *
   2028  *	Kernel-private version of pool_cache_init().  The caller
   2029  *	provides initial storage.
   2030  */
   2031 void
   2032 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2033     u_int align_offset, u_int flags, const char *wchan,
   2034     struct pool_allocator *palloc, int ipl,
   2035     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2036     void *arg)
   2037 {
   2038 	CPU_INFO_ITERATOR cii;
   2039 	pool_cache_t pc1;
   2040 	struct cpu_info *ci;
   2041 	struct pool *pp;
   2042 
   2043 	pp = &pc->pc_pool;
   2044 	if (palloc == NULL && ipl == IPL_NONE) {
   2045 		if (size > PAGE_SIZE) {
   2046 			int bigidx = pool_bigidx(size);
   2047 
   2048 			palloc = &pool_allocator_big[bigidx];
   2049 			flags |= PR_NOALIGN;
   2050 		} else
   2051 			palloc = &pool_allocator_nointr;
   2052 	}
   2053 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2054 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2055 
   2056 	if (ctor == NULL) {
   2057 		ctor = NO_CTOR;
   2058 	}
   2059 	if (dtor == NULL) {
   2060 		dtor = NO_DTOR;
   2061 	}
   2062 
   2063 	pc->pc_emptygroups = NULL;
   2064 	pc->pc_fullgroups = NULL;
   2065 	pc->pc_partgroups = NULL;
   2066 	pc->pc_ctor = ctor;
   2067 	pc->pc_dtor = dtor;
   2068 	pc->pc_arg  = arg;
   2069 	pc->pc_hits  = 0;
   2070 	pc->pc_misses = 0;
   2071 	pc->pc_nempty = 0;
   2072 	pc->pc_npart = 0;
   2073 	pc->pc_nfull = 0;
   2074 	pc->pc_contended = 0;
   2075 	pc->pc_refcnt = 0;
   2076 	pc->pc_freecheck = NULL;
   2077 
   2078 	if ((flags & PR_LARGECACHE) != 0) {
   2079 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2080 		pc->pc_pcgpool = &pcg_large_pool;
   2081 	} else {
   2082 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2083 		pc->pc_pcgpool = &pcg_normal_pool;
   2084 	}
   2085 
   2086 	/* Allocate per-CPU caches. */
   2087 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2088 	pc->pc_ncpu = 0;
   2089 	if (ncpu < 2) {
   2090 		/* XXX For sparc: boot CPU is not attached yet. */
   2091 		pool_cache_cpu_init1(curcpu(), pc);
   2092 	} else {
   2093 		for (CPU_INFO_FOREACH(cii, ci)) {
   2094 			pool_cache_cpu_init1(ci, pc);
   2095 		}
   2096 	}
   2097 
   2098 	/* Add to list of all pools. */
   2099 	if (__predict_true(!cold))
   2100 		mutex_enter(&pool_head_lock);
   2101 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2102 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2103 			break;
   2104 	}
   2105 	if (pc1 == NULL)
   2106 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2107 	else
   2108 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2109 	if (__predict_true(!cold))
   2110 		mutex_exit(&pool_head_lock);
   2111 
   2112 	membar_sync();
   2113 	pp->pr_cache = pc;
   2114 }
   2115 
   2116 /*
   2117  * pool_cache_destroy:
   2118  *
   2119  *	Destroy a pool cache.
   2120  */
   2121 void
   2122 pool_cache_destroy(pool_cache_t pc)
   2123 {
   2124 
   2125 	pool_cache_bootstrap_destroy(pc);
   2126 	pool_put(&cache_pool, pc);
   2127 }
   2128 
   2129 /*
   2130  * pool_cache_bootstrap_destroy:
   2131  *
   2132  *	Destroy a pool cache.
   2133  */
   2134 void
   2135 pool_cache_bootstrap_destroy(pool_cache_t pc)
   2136 {
   2137 	struct pool *pp = &pc->pc_pool;
   2138 	u_int i;
   2139 
   2140 	/* Remove it from the global list. */
   2141 	mutex_enter(&pool_head_lock);
   2142 	while (pc->pc_refcnt != 0)
   2143 		cv_wait(&pool_busy, &pool_head_lock);
   2144 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2145 	mutex_exit(&pool_head_lock);
   2146 
   2147 	/* First, invalidate the entire cache. */
   2148 	pool_cache_invalidate(pc);
   2149 
   2150 	/* Disassociate it from the pool. */
   2151 	mutex_enter(&pp->pr_lock);
   2152 	pp->pr_cache = NULL;
   2153 	mutex_exit(&pp->pr_lock);
   2154 
   2155 	/* Destroy per-CPU data */
   2156 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2157 		pool_cache_invalidate_cpu(pc, i);
   2158 
   2159 	/* Finally, destroy it. */
   2160 	mutex_destroy(&pc->pc_lock);
   2161 	pool_destroy(pp);
   2162 }
   2163 
   2164 /*
   2165  * pool_cache_cpu_init1:
   2166  *
   2167  *	Called for each pool_cache whenever a new CPU is attached.
   2168  */
   2169 static void
   2170 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2171 {
   2172 	pool_cache_cpu_t *cc;
   2173 	int index;
   2174 
   2175 	index = ci->ci_index;
   2176 
   2177 	KASSERT(index < __arraycount(pc->pc_cpus));
   2178 
   2179 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2180 		KASSERT(cc->cc_cpuindex == index);
   2181 		return;
   2182 	}
   2183 
   2184 	/*
   2185 	 * The first CPU is 'free'.  This needs to be the case for
   2186 	 * bootstrap - we may not be able to allocate yet.
   2187 	 */
   2188 	if (pc->pc_ncpu == 0) {
   2189 		cc = &pc->pc_cpu0;
   2190 		pc->pc_ncpu = 1;
   2191 	} else {
   2192 		mutex_enter(&pc->pc_lock);
   2193 		pc->pc_ncpu++;
   2194 		mutex_exit(&pc->pc_lock);
   2195 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2196 	}
   2197 
   2198 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2199 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2200 	cc->cc_cache = pc;
   2201 	cc->cc_cpuindex = index;
   2202 	cc->cc_hits = 0;
   2203 	cc->cc_misses = 0;
   2204 	cc->cc_current = __UNCONST(&pcg_dummy);
   2205 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2206 
   2207 	pc->pc_cpus[index] = cc;
   2208 }
   2209 
   2210 /*
   2211  * pool_cache_cpu_init:
   2212  *
   2213  *	Called whenever a new CPU is attached.
   2214  */
   2215 void
   2216 pool_cache_cpu_init(struct cpu_info *ci)
   2217 {
   2218 	pool_cache_t pc;
   2219 
   2220 	mutex_enter(&pool_head_lock);
   2221 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2222 		pc->pc_refcnt++;
   2223 		mutex_exit(&pool_head_lock);
   2224 
   2225 		pool_cache_cpu_init1(ci, pc);
   2226 
   2227 		mutex_enter(&pool_head_lock);
   2228 		pc->pc_refcnt--;
   2229 		cv_broadcast(&pool_busy);
   2230 	}
   2231 	mutex_exit(&pool_head_lock);
   2232 }
   2233 
   2234 /*
   2235  * pool_cache_reclaim:
   2236  *
   2237  *	Reclaim memory from a pool cache.
   2238  */
   2239 bool
   2240 pool_cache_reclaim(pool_cache_t pc)
   2241 {
   2242 
   2243 	return pool_reclaim(&pc->pc_pool);
   2244 }
   2245 
   2246 static void
   2247 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2248 {
   2249 	(*pc->pc_dtor)(pc->pc_arg, object);
   2250 	pool_put(&pc->pc_pool, object);
   2251 }
   2252 
   2253 /*
   2254  * pool_cache_destruct_object:
   2255  *
   2256  *	Force destruction of an object and its release back into
   2257  *	the pool.
   2258  */
   2259 void
   2260 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2261 {
   2262 
   2263 	FREECHECK_IN(&pc->pc_freecheck, object);
   2264 
   2265 	pool_cache_destruct_object1(pc, object);
   2266 }
   2267 
   2268 /*
   2269  * pool_cache_invalidate_groups:
   2270  *
   2271  *	Invalidate a chain of groups and destruct all objects.
   2272  */
   2273 static void
   2274 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2275 {
   2276 	void *object;
   2277 	pcg_t *next;
   2278 	int i;
   2279 
   2280 	for (; pcg != NULL; pcg = next) {
   2281 		next = pcg->pcg_next;
   2282 
   2283 		for (i = 0; i < pcg->pcg_avail; i++) {
   2284 			object = pcg->pcg_objects[i].pcgo_va;
   2285 			pool_cache_destruct_object1(pc, object);
   2286 		}
   2287 
   2288 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2289 			pool_put(&pcg_large_pool, pcg);
   2290 		} else {
   2291 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2292 			pool_put(&pcg_normal_pool, pcg);
   2293 		}
   2294 	}
   2295 }
   2296 
   2297 /*
   2298  * pool_cache_invalidate:
   2299  *
   2300  *	Invalidate a pool cache (destruct and release all of the
   2301  *	cached objects).  Does not reclaim objects from the pool.
   2302  *
   2303  *	Note: For pool caches that provide constructed objects, there
   2304  *	is an assumption that another level of synchronization is occurring
   2305  *	between the input to the constructor and the cache invalidation.
   2306  *
   2307  *	Invalidation is a costly process and should not be called from
   2308  *	interrupt context.
   2309  */
   2310 void
   2311 pool_cache_invalidate(pool_cache_t pc)
   2312 {
   2313 	uint64_t where;
   2314 	pcg_t *full, *empty, *part;
   2315 
   2316 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2317 
   2318 	if (ncpu < 2 || !mp_online) {
   2319 		/*
   2320 		 * We might be called early enough in the boot process
   2321 		 * for the CPU data structures to not be fully initialized.
   2322 		 * In this case, transfer the content of the local CPU's
   2323 		 * cache back into global cache as only this CPU is currently
   2324 		 * running.
   2325 		 */
   2326 		pool_cache_transfer(pc);
   2327 	} else {
   2328 		/*
   2329 		 * Signal all CPUs that they must transfer their local
   2330 		 * cache back to the global pool then wait for the xcall to
   2331 		 * complete.
   2332 		 */
   2333 		where = xc_broadcast(0,
   2334 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
   2335 		xc_wait(where);
   2336 	}
   2337 
   2338 	/* Empty pool caches, then invalidate objects */
   2339 	mutex_enter(&pc->pc_lock);
   2340 	full = pc->pc_fullgroups;
   2341 	empty = pc->pc_emptygroups;
   2342 	part = pc->pc_partgroups;
   2343 	pc->pc_fullgroups = NULL;
   2344 	pc->pc_emptygroups = NULL;
   2345 	pc->pc_partgroups = NULL;
   2346 	pc->pc_nfull = 0;
   2347 	pc->pc_nempty = 0;
   2348 	pc->pc_npart = 0;
   2349 	mutex_exit(&pc->pc_lock);
   2350 
   2351 	pool_cache_invalidate_groups(pc, full);
   2352 	pool_cache_invalidate_groups(pc, empty);
   2353 	pool_cache_invalidate_groups(pc, part);
   2354 }
   2355 
   2356 /*
   2357  * pool_cache_invalidate_cpu:
   2358  *
   2359  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2360  *	identified by its associated index.
   2361  *	It is caller's responsibility to ensure that no operation is
   2362  *	taking place on this pool cache while doing this invalidation.
   2363  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2364  *	pool cached objects from a CPU different from the one currently running
   2365  *	may result in an undefined behaviour.
   2366  */
   2367 static void
   2368 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2369 {
   2370 	pool_cache_cpu_t *cc;
   2371 	pcg_t *pcg;
   2372 
   2373 	if ((cc = pc->pc_cpus[index]) == NULL)
   2374 		return;
   2375 
   2376 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2377 		pcg->pcg_next = NULL;
   2378 		pool_cache_invalidate_groups(pc, pcg);
   2379 	}
   2380 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2381 		pcg->pcg_next = NULL;
   2382 		pool_cache_invalidate_groups(pc, pcg);
   2383 	}
   2384 	if (cc != &pc->pc_cpu0)
   2385 		pool_put(&cache_cpu_pool, cc);
   2386 
   2387 }
   2388 
   2389 void
   2390 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2391 {
   2392 
   2393 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2394 }
   2395 
   2396 void
   2397 pool_cache_setlowat(pool_cache_t pc, int n)
   2398 {
   2399 
   2400 	pool_setlowat(&pc->pc_pool, n);
   2401 }
   2402 
   2403 void
   2404 pool_cache_sethiwat(pool_cache_t pc, int n)
   2405 {
   2406 
   2407 	pool_sethiwat(&pc->pc_pool, n);
   2408 }
   2409 
   2410 void
   2411 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2412 {
   2413 
   2414 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2415 }
   2416 
   2417 void
   2418 pool_cache_prime(pool_cache_t pc, int n)
   2419 {
   2420 
   2421 	pool_prime(&pc->pc_pool, n);
   2422 }
   2423 
   2424 static bool __noinline
   2425 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2426 		    paddr_t *pap, int flags)
   2427 {
   2428 	pcg_t *pcg, *cur;
   2429 	uint64_t ncsw;
   2430 	pool_cache_t pc;
   2431 	void *object;
   2432 
   2433 	KASSERT(cc->cc_current->pcg_avail == 0);
   2434 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2435 
   2436 	pc = cc->cc_cache;
   2437 	cc->cc_misses++;
   2438 
   2439 	/*
   2440 	 * Nothing was available locally.  Try and grab a group
   2441 	 * from the cache.
   2442 	 */
   2443 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2444 		ncsw = curlwp->l_ncsw;
   2445 		__insn_barrier();
   2446 		mutex_enter(&pc->pc_lock);
   2447 		pc->pc_contended++;
   2448 
   2449 		/*
   2450 		 * If we context switched while locking, then
   2451 		 * our view of the per-CPU data is invalid:
   2452 		 * retry.
   2453 		 */
   2454 		__insn_barrier();
   2455 		if (curlwp->l_ncsw != ncsw) {
   2456 			mutex_exit(&pc->pc_lock);
   2457 			return true;
   2458 		}
   2459 	}
   2460 
   2461 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2462 		/*
   2463 		 * If there's a full group, release our empty
   2464 		 * group back to the cache.  Install the full
   2465 		 * group as cc_current and return.
   2466 		 */
   2467 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2468 			KASSERT(cur->pcg_avail == 0);
   2469 			cur->pcg_next = pc->pc_emptygroups;
   2470 			pc->pc_emptygroups = cur;
   2471 			pc->pc_nempty++;
   2472 		}
   2473 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2474 		cc->cc_current = pcg;
   2475 		pc->pc_fullgroups = pcg->pcg_next;
   2476 		pc->pc_hits++;
   2477 		pc->pc_nfull--;
   2478 		mutex_exit(&pc->pc_lock);
   2479 		return true;
   2480 	}
   2481 
   2482 	/*
   2483 	 * Nothing available locally or in cache.  Take the slow
   2484 	 * path: fetch a new object from the pool and construct
   2485 	 * it.
   2486 	 */
   2487 	pc->pc_misses++;
   2488 	mutex_exit(&pc->pc_lock);
   2489 	splx(s);
   2490 
   2491 	object = pool_get(&pc->pc_pool, flags);
   2492 	*objectp = object;
   2493 	if (__predict_false(object == NULL)) {
   2494 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   2495 		return false;
   2496 	}
   2497 
   2498 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2499 		pool_put(&pc->pc_pool, object);
   2500 		*objectp = NULL;
   2501 		return false;
   2502 	}
   2503 
   2504 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2505 
   2506 	if (pap != NULL) {
   2507 #ifdef POOL_VTOPHYS
   2508 		*pap = POOL_VTOPHYS(object);
   2509 #else
   2510 		*pap = POOL_PADDR_INVALID;
   2511 #endif
   2512 	}
   2513 
   2514 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2515 	return false;
   2516 }
   2517 
   2518 /*
   2519  * pool_cache_get{,_paddr}:
   2520  *
   2521  *	Get an object from a pool cache (optionally returning
   2522  *	the physical address of the object).
   2523  */
   2524 void *
   2525 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2526 {
   2527 	pool_cache_cpu_t *cc;
   2528 	pcg_t *pcg;
   2529 	void *object;
   2530 	int s;
   2531 
   2532 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2533 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2534 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2535 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2536 	    __func__, pc->pc_pool.pr_wchan);
   2537 
   2538 	if (flags & PR_WAITOK) {
   2539 		ASSERT_SLEEPABLE();
   2540 	}
   2541 
   2542 	if (flags & PR_NOWAIT) {
   2543 		if (fault_inject())
   2544 			return NULL;
   2545 	}
   2546 
   2547 	/* Lock out interrupts and disable preemption. */
   2548 	s = splvm();
   2549 	while (/* CONSTCOND */ true) {
   2550 		/* Try and allocate an object from the current group. */
   2551 		cc = pc->pc_cpus[curcpu()->ci_index];
   2552 		KASSERT(cc->cc_cache == pc);
   2553 	 	pcg = cc->cc_current;
   2554 		if (__predict_true(pcg->pcg_avail > 0)) {
   2555 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2556 			if (__predict_false(pap != NULL))
   2557 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2558 #if defined(DIAGNOSTIC)
   2559 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2560 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2561 			KASSERT(object != NULL);
   2562 #endif
   2563 			cc->cc_hits++;
   2564 			splx(s);
   2565 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2566 			pool_redzone_fill(&pc->pc_pool, object);
   2567 			pool_cache_get_kmsan(pc, object);
   2568 			return object;
   2569 		}
   2570 
   2571 		/*
   2572 		 * That failed.  If the previous group isn't empty, swap
   2573 		 * it with the current group and allocate from there.
   2574 		 */
   2575 		pcg = cc->cc_previous;
   2576 		if (__predict_true(pcg->pcg_avail > 0)) {
   2577 			cc->cc_previous = cc->cc_current;
   2578 			cc->cc_current = pcg;
   2579 			continue;
   2580 		}
   2581 
   2582 		/*
   2583 		 * Can't allocate from either group: try the slow path.
   2584 		 * If get_slow() allocated an object for us, or if
   2585 		 * no more objects are available, it will return false.
   2586 		 * Otherwise, we need to retry.
   2587 		 */
   2588 		if (!pool_cache_get_slow(cc, s, &object, pap, flags)) {
   2589 			if (object != NULL) {
   2590 				kmsan_orig(object, pc->pc_pool.pr_size,
   2591 				    KMSAN_TYPE_POOL, __RET_ADDR);
   2592 			}
   2593 			break;
   2594 		}
   2595 	}
   2596 
   2597 	/*
   2598 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2599 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2600 	 * constructor fails.
   2601 	 */
   2602 	return object;
   2603 }
   2604 
   2605 static bool __noinline
   2606 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2607 {
   2608 	struct lwp *l = curlwp;
   2609 	pcg_t *pcg, *cur;
   2610 	uint64_t ncsw;
   2611 	pool_cache_t pc;
   2612 
   2613 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2614 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2615 
   2616 	pc = cc->cc_cache;
   2617 	pcg = NULL;
   2618 	cc->cc_misses++;
   2619 	ncsw = l->l_ncsw;
   2620 	__insn_barrier();
   2621 
   2622 	/*
   2623 	 * If there are no empty groups in the cache then allocate one
   2624 	 * while still unlocked.
   2625 	 */
   2626 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2627 		if (__predict_true(!pool_cache_disable)) {
   2628 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2629 		}
   2630 		/*
   2631 		 * If pool_get() blocked, then our view of
   2632 		 * the per-CPU data is invalid: retry.
   2633 		 */
   2634 		__insn_barrier();
   2635 		if (__predict_false(l->l_ncsw != ncsw)) {
   2636 			if (pcg != NULL) {
   2637 				pool_put(pc->pc_pcgpool, pcg);
   2638 			}
   2639 			return true;
   2640 		}
   2641 		if (__predict_true(pcg != NULL)) {
   2642 			pcg->pcg_avail = 0;
   2643 			pcg->pcg_size = pc->pc_pcgsize;
   2644 		}
   2645 	}
   2646 
   2647 	/* Lock the cache. */
   2648 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2649 		mutex_enter(&pc->pc_lock);
   2650 		pc->pc_contended++;
   2651 
   2652 		/*
   2653 		 * If we context switched while locking, then our view of
   2654 		 * the per-CPU data is invalid: retry.
   2655 		 */
   2656 		__insn_barrier();
   2657 		if (__predict_false(l->l_ncsw != ncsw)) {
   2658 			mutex_exit(&pc->pc_lock);
   2659 			if (pcg != NULL) {
   2660 				pool_put(pc->pc_pcgpool, pcg);
   2661 			}
   2662 			return true;
   2663 		}
   2664 	}
   2665 
   2666 	/* If there are no empty groups in the cache then allocate one. */
   2667 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2668 		pcg = pc->pc_emptygroups;
   2669 		pc->pc_emptygroups = pcg->pcg_next;
   2670 		pc->pc_nempty--;
   2671 	}
   2672 
   2673 	/*
   2674 	 * If there's a empty group, release our full group back
   2675 	 * to the cache.  Install the empty group to the local CPU
   2676 	 * and return.
   2677 	 */
   2678 	if (pcg != NULL) {
   2679 		KASSERT(pcg->pcg_avail == 0);
   2680 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2681 			cc->cc_previous = pcg;
   2682 		} else {
   2683 			cur = cc->cc_current;
   2684 			if (__predict_true(cur != &pcg_dummy)) {
   2685 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2686 				cur->pcg_next = pc->pc_fullgroups;
   2687 				pc->pc_fullgroups = cur;
   2688 				pc->pc_nfull++;
   2689 			}
   2690 			cc->cc_current = pcg;
   2691 		}
   2692 		pc->pc_hits++;
   2693 		mutex_exit(&pc->pc_lock);
   2694 		return true;
   2695 	}
   2696 
   2697 	/*
   2698 	 * Nothing available locally or in cache, and we didn't
   2699 	 * allocate an empty group.  Take the slow path and destroy
   2700 	 * the object here and now.
   2701 	 */
   2702 	pc->pc_misses++;
   2703 	mutex_exit(&pc->pc_lock);
   2704 	splx(s);
   2705 	pool_cache_destruct_object(pc, object);
   2706 
   2707 	return false;
   2708 }
   2709 
   2710 /*
   2711  * pool_cache_put{,_paddr}:
   2712  *
   2713  *	Put an object back to the pool cache (optionally caching the
   2714  *	physical address of the object).
   2715  */
   2716 void
   2717 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2718 {
   2719 	pool_cache_cpu_t *cc;
   2720 	pcg_t *pcg;
   2721 	int s;
   2722 
   2723 	KASSERT(object != NULL);
   2724 	pool_cache_put_kmsan(pc, object);
   2725 	pool_cache_redzone_check(pc, object);
   2726 	FREECHECK_IN(&pc->pc_freecheck, object);
   2727 
   2728 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2729 		pc_phinpage_check(pc, object);
   2730 	}
   2731 
   2732 	if (pool_cache_put_nocache(pc, object)) {
   2733 		return;
   2734 	}
   2735 
   2736 	/* Lock out interrupts and disable preemption. */
   2737 	s = splvm();
   2738 	while (/* CONSTCOND */ true) {
   2739 		/* If the current group isn't full, release it there. */
   2740 		cc = pc->pc_cpus[curcpu()->ci_index];
   2741 		KASSERT(cc->cc_cache == pc);
   2742 	 	pcg = cc->cc_current;
   2743 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2744 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2745 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2746 			pcg->pcg_avail++;
   2747 			cc->cc_hits++;
   2748 			splx(s);
   2749 			return;
   2750 		}
   2751 
   2752 		/*
   2753 		 * That failed.  If the previous group isn't full, swap
   2754 		 * it with the current group and try again.
   2755 		 */
   2756 		pcg = cc->cc_previous;
   2757 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2758 			cc->cc_previous = cc->cc_current;
   2759 			cc->cc_current = pcg;
   2760 			continue;
   2761 		}
   2762 
   2763 		/*
   2764 		 * Can't free to either group: try the slow path.
   2765 		 * If put_slow() releases the object for us, it
   2766 		 * will return false.  Otherwise we need to retry.
   2767 		 */
   2768 		if (!pool_cache_put_slow(cc, s, object))
   2769 			break;
   2770 	}
   2771 }
   2772 
   2773 /*
   2774  * pool_cache_transfer:
   2775  *
   2776  *	Transfer objects from the per-CPU cache to the global cache.
   2777  *	Run within a cross-call thread.
   2778  */
   2779 static void
   2780 pool_cache_transfer(pool_cache_t pc)
   2781 {
   2782 	pool_cache_cpu_t *cc;
   2783 	pcg_t *prev, *cur, **list;
   2784 	int s;
   2785 
   2786 	s = splvm();
   2787 	mutex_enter(&pc->pc_lock);
   2788 	cc = pc->pc_cpus[curcpu()->ci_index];
   2789 	cur = cc->cc_current;
   2790 	cc->cc_current = __UNCONST(&pcg_dummy);
   2791 	prev = cc->cc_previous;
   2792 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2793 	if (cur != &pcg_dummy) {
   2794 		if (cur->pcg_avail == cur->pcg_size) {
   2795 			list = &pc->pc_fullgroups;
   2796 			pc->pc_nfull++;
   2797 		} else if (cur->pcg_avail == 0) {
   2798 			list = &pc->pc_emptygroups;
   2799 			pc->pc_nempty++;
   2800 		} else {
   2801 			list = &pc->pc_partgroups;
   2802 			pc->pc_npart++;
   2803 		}
   2804 		cur->pcg_next = *list;
   2805 		*list = cur;
   2806 	}
   2807 	if (prev != &pcg_dummy) {
   2808 		if (prev->pcg_avail == prev->pcg_size) {
   2809 			list = &pc->pc_fullgroups;
   2810 			pc->pc_nfull++;
   2811 		} else if (prev->pcg_avail == 0) {
   2812 			list = &pc->pc_emptygroups;
   2813 			pc->pc_nempty++;
   2814 		} else {
   2815 			list = &pc->pc_partgroups;
   2816 			pc->pc_npart++;
   2817 		}
   2818 		prev->pcg_next = *list;
   2819 		*list = prev;
   2820 	}
   2821 	mutex_exit(&pc->pc_lock);
   2822 	splx(s);
   2823 }
   2824 
   2825 static int
   2826 pool_bigidx(size_t size)
   2827 {
   2828 	int i;
   2829 
   2830 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2831 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2832 			return i;
   2833 	}
   2834 	panic("pool item size %zu too large, use a custom allocator", size);
   2835 }
   2836 
   2837 static void *
   2838 pool_allocator_alloc(struct pool *pp, int flags)
   2839 {
   2840 	struct pool_allocator *pa = pp->pr_alloc;
   2841 	void *res;
   2842 
   2843 	res = (*pa->pa_alloc)(pp, flags);
   2844 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2845 		/*
   2846 		 * We only run the drain hook here if PR_NOWAIT.
   2847 		 * In other cases, the hook will be run in
   2848 		 * pool_reclaim().
   2849 		 */
   2850 		if (pp->pr_drain_hook != NULL) {
   2851 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2852 			res = (*pa->pa_alloc)(pp, flags);
   2853 		}
   2854 	}
   2855 	return res;
   2856 }
   2857 
   2858 static void
   2859 pool_allocator_free(struct pool *pp, void *v)
   2860 {
   2861 	struct pool_allocator *pa = pp->pr_alloc;
   2862 
   2863 	if (pp->pr_redzone) {
   2864 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2865 	}
   2866 	(*pa->pa_free)(pp, v);
   2867 }
   2868 
   2869 void *
   2870 pool_page_alloc(struct pool *pp, int flags)
   2871 {
   2872 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2873 	vmem_addr_t va;
   2874 	int ret;
   2875 
   2876 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2877 	    vflags | VM_INSTANTFIT, &va);
   2878 
   2879 	return ret ? NULL : (void *)va;
   2880 }
   2881 
   2882 void
   2883 pool_page_free(struct pool *pp, void *v)
   2884 {
   2885 
   2886 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2887 }
   2888 
   2889 static void *
   2890 pool_page_alloc_meta(struct pool *pp, int flags)
   2891 {
   2892 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2893 	vmem_addr_t va;
   2894 	int ret;
   2895 
   2896 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2897 	    vflags | VM_INSTANTFIT, &va);
   2898 
   2899 	return ret ? NULL : (void *)va;
   2900 }
   2901 
   2902 static void
   2903 pool_page_free_meta(struct pool *pp, void *v)
   2904 {
   2905 
   2906 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2907 }
   2908 
   2909 #ifdef KMSAN
   2910 static inline void
   2911 pool_get_kmsan(struct pool *pp, void *p)
   2912 {
   2913 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
   2914 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
   2915 }
   2916 
   2917 static inline void
   2918 pool_put_kmsan(struct pool *pp, void *p)
   2919 {
   2920 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
   2921 }
   2922 
   2923 static inline void
   2924 pool_cache_get_kmsan(pool_cache_t pc, void *p)
   2925 {
   2926 	if (__predict_false(pc_has_ctor(pc))) {
   2927 		return;
   2928 	}
   2929 	pool_get_kmsan(&pc->pc_pool, p);
   2930 }
   2931 
   2932 static inline void
   2933 pool_cache_put_kmsan(pool_cache_t pc, void *p)
   2934 {
   2935 	pool_put_kmsan(&pc->pc_pool, p);
   2936 }
   2937 #endif
   2938 
   2939 #ifdef POOL_QUARANTINE
   2940 static void
   2941 pool_quarantine_init(struct pool *pp)
   2942 {
   2943 	pp->pr_quar.rotor = 0;
   2944 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2945 }
   2946 
   2947 static void
   2948 pool_quarantine_flush(struct pool *pp)
   2949 {
   2950 	pool_quar_t *quar = &pp->pr_quar;
   2951 	struct pool_pagelist pq;
   2952 	size_t i;
   2953 
   2954 	LIST_INIT(&pq);
   2955 
   2956 	mutex_enter(&pp->pr_lock);
   2957 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2958 		if (quar->list[i] == 0)
   2959 			continue;
   2960 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2961 	}
   2962 	mutex_exit(&pp->pr_lock);
   2963 
   2964 	pr_pagelist_free(pp, &pq);
   2965 }
   2966 
   2967 static bool
   2968 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2969 {
   2970 	pool_quar_t *quar = &pp->pr_quar;
   2971 	uintptr_t old;
   2972 
   2973 	if (pp->pr_roflags & PR_NOTOUCH) {
   2974 		return false;
   2975 	}
   2976 
   2977 	pool_redzone_check(pp, v);
   2978 
   2979 	old = quar->list[quar->rotor];
   2980 	quar->list[quar->rotor] = (uintptr_t)v;
   2981 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2982 	if (old != 0) {
   2983 		pool_do_put(pp, (void *)old, pq);
   2984 	}
   2985 
   2986 	return true;
   2987 }
   2988 #endif
   2989 
   2990 #ifdef POOL_NOCACHE
   2991 static bool
   2992 pool_cache_put_nocache(pool_cache_t pc, void *p)
   2993 {
   2994 	pool_cache_destruct_object(pc, p);
   2995 	return true;
   2996 }
   2997 #endif
   2998 
   2999 #ifdef POOL_REDZONE
   3000 #if defined(_LP64)
   3001 # define PRIME 0x9e37fffffffc0000UL
   3002 #else /* defined(_LP64) */
   3003 # define PRIME 0x9e3779b1
   3004 #endif /* defined(_LP64) */
   3005 #define STATIC_BYTE	0xFE
   3006 CTASSERT(POOL_REDZONE_SIZE > 1);
   3007 
   3008 #ifndef KASAN
   3009 static inline uint8_t
   3010 pool_pattern_generate(const void *p)
   3011 {
   3012 	return (uint8_t)(((uintptr_t)p) * PRIME
   3013 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   3014 }
   3015 #endif
   3016 
   3017 static void
   3018 pool_redzone_init(struct pool *pp, size_t requested_size)
   3019 {
   3020 	size_t redzsz;
   3021 	size_t nsz;
   3022 
   3023 #ifdef KASAN
   3024 	redzsz = requested_size;
   3025 	kasan_add_redzone(&redzsz);
   3026 	redzsz -= requested_size;
   3027 #else
   3028 	redzsz = POOL_REDZONE_SIZE;
   3029 #endif
   3030 
   3031 	if (pp->pr_roflags & PR_NOTOUCH) {
   3032 		pp->pr_redzone = false;
   3033 		return;
   3034 	}
   3035 
   3036 	/*
   3037 	 * We may have extended the requested size earlier; check if
   3038 	 * there's naturally space in the padding for a red zone.
   3039 	 */
   3040 	if (pp->pr_size - requested_size >= redzsz) {
   3041 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3042 		pp->pr_redzone = true;
   3043 		return;
   3044 	}
   3045 
   3046 	/*
   3047 	 * No space in the natural padding; check if we can extend a
   3048 	 * bit the size of the pool.
   3049 	 */
   3050 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3051 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3052 		/* Ok, we can */
   3053 		pp->pr_size = nsz;
   3054 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3055 		pp->pr_redzone = true;
   3056 	} else {
   3057 		/* No space for a red zone... snif :'( */
   3058 		pp->pr_redzone = false;
   3059 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3060 	}
   3061 }
   3062 
   3063 static void
   3064 pool_redzone_fill(struct pool *pp, void *p)
   3065 {
   3066 	if (!pp->pr_redzone)
   3067 		return;
   3068 #ifdef KASAN
   3069 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3070 	    KASAN_POOL_REDZONE);
   3071 #else
   3072 	uint8_t *cp, pat;
   3073 	const uint8_t *ep;
   3074 
   3075 	cp = (uint8_t *)p + pp->pr_reqsize;
   3076 	ep = cp + POOL_REDZONE_SIZE;
   3077 
   3078 	/*
   3079 	 * We really don't want the first byte of the red zone to be '\0';
   3080 	 * an off-by-one in a string may not be properly detected.
   3081 	 */
   3082 	pat = pool_pattern_generate(cp);
   3083 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3084 	cp++;
   3085 
   3086 	while (cp < ep) {
   3087 		*cp = pool_pattern_generate(cp);
   3088 		cp++;
   3089 	}
   3090 #endif
   3091 }
   3092 
   3093 static void
   3094 pool_redzone_check(struct pool *pp, void *p)
   3095 {
   3096 	if (!pp->pr_redzone)
   3097 		return;
   3098 #ifdef KASAN
   3099 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3100 #else
   3101 	uint8_t *cp, pat, expected;
   3102 	const uint8_t *ep;
   3103 
   3104 	cp = (uint8_t *)p + pp->pr_reqsize;
   3105 	ep = cp + POOL_REDZONE_SIZE;
   3106 
   3107 	pat = pool_pattern_generate(cp);
   3108 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3109 	if (__predict_false(*cp != expected)) {
   3110 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3111 		    pp->pr_wchan, *cp, expected);
   3112 	}
   3113 	cp++;
   3114 
   3115 	while (cp < ep) {
   3116 		expected = pool_pattern_generate(cp);
   3117 		if (__predict_false(*cp != expected)) {
   3118 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3119 			    pp->pr_wchan, *cp, expected);
   3120 		}
   3121 		cp++;
   3122 	}
   3123 #endif
   3124 }
   3125 
   3126 static void
   3127 pool_cache_redzone_check(pool_cache_t pc, void *p)
   3128 {
   3129 #ifdef KASAN
   3130 	/* If there is a ctor/dtor, leave the data as valid. */
   3131 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3132 		return;
   3133 	}
   3134 #endif
   3135 	pool_redzone_check(&pc->pc_pool, p);
   3136 }
   3137 
   3138 #endif /* POOL_REDZONE */
   3139 
   3140 #if defined(DDB)
   3141 static bool
   3142 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3143 {
   3144 
   3145 	return (uintptr_t)ph->ph_page <= addr &&
   3146 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3147 }
   3148 
   3149 static bool
   3150 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3151 {
   3152 
   3153 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3154 }
   3155 
   3156 static bool
   3157 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3158 {
   3159 	int i;
   3160 
   3161 	if (pcg == NULL) {
   3162 		return false;
   3163 	}
   3164 	for (i = 0; i < pcg->pcg_avail; i++) {
   3165 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3166 			return true;
   3167 		}
   3168 	}
   3169 	return false;
   3170 }
   3171 
   3172 static bool
   3173 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3174 {
   3175 
   3176 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3177 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3178 		pool_item_bitmap_t *bitmap =
   3179 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3180 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3181 
   3182 		return (*bitmap & mask) == 0;
   3183 	} else {
   3184 		struct pool_item *pi;
   3185 
   3186 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3187 			if (pool_in_item(pp, pi, addr)) {
   3188 				return false;
   3189 			}
   3190 		}
   3191 		return true;
   3192 	}
   3193 }
   3194 
   3195 void
   3196 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3197 {
   3198 	struct pool *pp;
   3199 
   3200 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3201 		struct pool_item_header *ph;
   3202 		uintptr_t item;
   3203 		bool allocated = true;
   3204 		bool incache = false;
   3205 		bool incpucache = false;
   3206 		char cpucachestr[32];
   3207 
   3208 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3209 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3210 				if (pool_in_page(pp, ph, addr)) {
   3211 					goto found;
   3212 				}
   3213 			}
   3214 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3215 				if (pool_in_page(pp, ph, addr)) {
   3216 					allocated =
   3217 					    pool_allocated(pp, ph, addr);
   3218 					goto found;
   3219 				}
   3220 			}
   3221 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3222 				if (pool_in_page(pp, ph, addr)) {
   3223 					allocated = false;
   3224 					goto found;
   3225 				}
   3226 			}
   3227 			continue;
   3228 		} else {
   3229 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3230 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3231 				continue;
   3232 			}
   3233 			allocated = pool_allocated(pp, ph, addr);
   3234 		}
   3235 found:
   3236 		if (allocated && pp->pr_cache) {
   3237 			pool_cache_t pc = pp->pr_cache;
   3238 			struct pool_cache_group *pcg;
   3239 			int i;
   3240 
   3241 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3242 			    pcg = pcg->pcg_next) {
   3243 				if (pool_in_cg(pp, pcg, addr)) {
   3244 					incache = true;
   3245 					goto print;
   3246 				}
   3247 			}
   3248 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3249 				pool_cache_cpu_t *cc;
   3250 
   3251 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3252 					continue;
   3253 				}
   3254 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3255 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3256 					struct cpu_info *ci =
   3257 					    cpu_lookup(i);
   3258 
   3259 					incpucache = true;
   3260 					snprintf(cpucachestr,
   3261 					    sizeof(cpucachestr),
   3262 					    "cached by CPU %u",
   3263 					    ci->ci_index);
   3264 					goto print;
   3265 				}
   3266 			}
   3267 		}
   3268 print:
   3269 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3270 		item = item + rounddown(addr - item, pp->pr_size);
   3271 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3272 		    (void *)addr, item, (size_t)(addr - item),
   3273 		    pp->pr_wchan,
   3274 		    incpucache ? cpucachestr :
   3275 		    incache ? "cached" : allocated ? "allocated" : "free");
   3276 	}
   3277 }
   3278 #endif /* defined(DDB) */
   3279 
   3280 static int
   3281 pool_sysctl(SYSCTLFN_ARGS)
   3282 {
   3283 	struct pool_sysctl data;
   3284 	struct pool *pp;
   3285 	struct pool_cache *pc;
   3286 	pool_cache_cpu_t *cc;
   3287 	int error;
   3288 	size_t i, written;
   3289 
   3290 	if (oldp == NULL) {
   3291 		*oldlenp = 0;
   3292 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3293 			*oldlenp += sizeof(data);
   3294 		return 0;
   3295 	}
   3296 
   3297 	memset(&data, 0, sizeof(data));
   3298 	error = 0;
   3299 	written = 0;
   3300 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3301 		if (written + sizeof(data) > *oldlenp)
   3302 			break;
   3303 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3304 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3305 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3306 #define COPY(field) data.field = pp->field
   3307 		COPY(pr_size);
   3308 
   3309 		COPY(pr_itemsperpage);
   3310 		COPY(pr_nitems);
   3311 		COPY(pr_nout);
   3312 		COPY(pr_hardlimit);
   3313 		COPY(pr_npages);
   3314 		COPY(pr_minpages);
   3315 		COPY(pr_maxpages);
   3316 
   3317 		COPY(pr_nget);
   3318 		COPY(pr_nfail);
   3319 		COPY(pr_nput);
   3320 		COPY(pr_npagealloc);
   3321 		COPY(pr_npagefree);
   3322 		COPY(pr_hiwat);
   3323 		COPY(pr_nidle);
   3324 #undef COPY
   3325 
   3326 		data.pr_cache_nmiss_pcpu = 0;
   3327 		data.pr_cache_nhit_pcpu = 0;
   3328 		if (pp->pr_cache) {
   3329 			pc = pp->pr_cache;
   3330 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3331 			data.pr_cache_nfull = pc->pc_nfull;
   3332 			data.pr_cache_npartial = pc->pc_npart;
   3333 			data.pr_cache_nempty = pc->pc_nempty;
   3334 			data.pr_cache_ncontended = pc->pc_contended;
   3335 			data.pr_cache_nmiss_global = pc->pc_misses;
   3336 			data.pr_cache_nhit_global = pc->pc_hits;
   3337 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3338 				cc = pc->pc_cpus[i];
   3339 				if (cc == NULL)
   3340 					continue;
   3341 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3342 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3343 			}
   3344 		} else {
   3345 			data.pr_cache_meta_size = 0;
   3346 			data.pr_cache_nfull = 0;
   3347 			data.pr_cache_npartial = 0;
   3348 			data.pr_cache_nempty = 0;
   3349 			data.pr_cache_ncontended = 0;
   3350 			data.pr_cache_nmiss_global = 0;
   3351 			data.pr_cache_nhit_global = 0;
   3352 		}
   3353 
   3354 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3355 		if (error)
   3356 			break;
   3357 		written += sizeof(data);
   3358 		oldp = (char *)oldp + sizeof(data);
   3359 	}
   3360 
   3361 	*oldlenp = written;
   3362 	return error;
   3363 }
   3364 
   3365 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3366 {
   3367 	const struct sysctlnode *rnode = NULL;
   3368 
   3369 	sysctl_createv(clog, 0, NULL, &rnode,
   3370 		       CTLFLAG_PERMANENT,
   3371 		       CTLTYPE_STRUCT, "pool",
   3372 		       SYSCTL_DESCR("Get pool statistics"),
   3373 		       pool_sysctl, 0, NULL, 0,
   3374 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3375 }
   3376