subr_pool.c revision 1.272 1 /* $NetBSD: subr_pool.c,v 1.272 2020/06/14 23:17:01 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 * 2020 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.272 2020/06/14 23:17:01 ad Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63
64 #include <uvm/uvm_extern.h>
65
66 /*
67 * Pool resource management utility.
68 *
69 * Memory is allocated in pages which are split into pieces according to
70 * the pool item size. Each page is kept on one of three lists in the
71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 * for empty, full and partially-full pages respectively. The individual
73 * pool items are on a linked list headed by `ph_itemlist' in each page
74 * header. The memory for building the page list is either taken from
75 * the allocated pages themselves (for small pool items) or taken from
76 * an internal pool of page headers (`phpool').
77 */
78
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81
82 /* Private pool for page header structures */
83 #define PHPOOL_MAX 8
84 static struct pool phpool[PHPOOL_MAX];
85 #define PHPOOL_FREELIST_NELEM(idx) \
86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 # define POOL_REDZONE_SIZE 8
99 # else
100 # define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz) __nothing
108 # define pool_redzone_fill(pp, ptr) __nothing
109 # define pool_redzone_check(pp, ptr) __nothing
110 # define pool_cache_redzone_check(pc, ptr) __nothing
111 #endif
112
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr) __nothing
120 #define pool_put_kmsan(pp, ptr) __nothing
121 #define pool_cache_get_kmsan(pc, ptr) __nothing
122 #define pool_cache_put_kmsan(pc, ptr) __nothing
123 #endif
124
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129 struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a) __nothing
132 #define pool_quarantine_flush(a) __nothing
133 #define pool_put_quarantine(a, b, c) false
134 #endif
135
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b) false
140 #endif
141
142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144
145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
147
148 /*
149 * Pool backend allocators.
150 *
151 * Each pool has a backend allocator that handles allocation, deallocation,
152 * and any additional draining that might be needed.
153 *
154 * We provide two standard allocators:
155 *
156 * pool_allocator_kmem - the default when no allocator is specified
157 *
158 * pool_allocator_nointr - used for pools that will not be accessed
159 * in interrupt context.
160 */
161 void *pool_page_alloc(struct pool *, int);
162 void pool_page_free(struct pool *, void *);
163
164 static void *pool_page_alloc_meta(struct pool *, int);
165 static void pool_page_free_meta(struct pool *, void *);
166
167 struct pool_allocator pool_allocator_kmem = {
168 .pa_alloc = pool_page_alloc,
169 .pa_free = pool_page_free,
170 .pa_pagesz = 0
171 };
172
173 struct pool_allocator pool_allocator_nointr = {
174 .pa_alloc = pool_page_alloc,
175 .pa_free = pool_page_free,
176 .pa_pagesz = 0
177 };
178
179 struct pool_allocator pool_allocator_meta = {
180 .pa_alloc = pool_page_alloc_meta,
181 .pa_free = pool_page_free_meta,
182 .pa_pagesz = 0
183 };
184
185 #define POOL_ALLOCATOR_BIG_BASE 13
186 static struct pool_allocator pool_allocator_big[] = {
187 {
188 .pa_alloc = pool_page_alloc,
189 .pa_free = pool_page_free,
190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
191 },
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
211 },
212 {
213 .pa_alloc = pool_page_alloc,
214 .pa_free = pool_page_free,
215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
216 },
217 {
218 .pa_alloc = pool_page_alloc,
219 .pa_free = pool_page_free,
220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
221 },
222 {
223 .pa_alloc = pool_page_alloc,
224 .pa_free = pool_page_free,
225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
226 }
227 };
228
229 static int pool_bigidx(size_t);
230
231 /* # of seconds to retain page after last use */
232 int pool_inactive_time = 10;
233
234 /* Next candidate for drainage (see pool_drain()) */
235 static struct pool *drainpp;
236
237 /* This lock protects both pool_head and drainpp. */
238 static kmutex_t pool_head_lock;
239 static kcondvar_t pool_busy;
240
241 /* This lock protects initialization of a potentially shared pool allocator */
242 static kmutex_t pool_allocator_lock;
243
244 static unsigned int poolid_counter = 0;
245
246 typedef uint32_t pool_item_bitmap_t;
247 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
248 #define BITMAP_MASK (BITMAP_SIZE - 1)
249 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
250
251 struct pool_item_header {
252 /* Page headers */
253 LIST_ENTRY(pool_item_header)
254 ph_pagelist; /* pool page list */
255 union {
256 /* !PR_PHINPAGE */
257 struct {
258 SPLAY_ENTRY(pool_item_header)
259 phu_node; /* off-page page headers */
260 } phu_offpage;
261 /* PR_PHINPAGE */
262 struct {
263 unsigned int phu_poolid;
264 } phu_onpage;
265 } ph_u1;
266 void * ph_page; /* this page's address */
267 uint32_t ph_time; /* last referenced */
268 uint16_t ph_nmissing; /* # of chunks in use */
269 uint16_t ph_off; /* start offset in page */
270 union {
271 /* !PR_USEBMAP */
272 struct {
273 LIST_HEAD(, pool_item)
274 phu_itemlist; /* chunk list for this page */
275 } phu_normal;
276 /* PR_USEBMAP */
277 struct {
278 pool_item_bitmap_t phu_bitmap[1];
279 } phu_notouch;
280 } ph_u2;
281 };
282 #define ph_node ph_u1.phu_offpage.phu_node
283 #define ph_poolid ph_u1.phu_onpage.phu_poolid
284 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
285 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
286
287 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
288
289 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
290 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
291
292 #if defined(DIAGNOSTIC) && !defined(KASAN)
293 #define POOL_CHECK_MAGIC
294 #endif
295
296 struct pool_item {
297 #ifdef POOL_CHECK_MAGIC
298 u_int pi_magic;
299 #endif
300 #define PI_MAGIC 0xdeaddeadU
301 /* Other entries use only this list entry */
302 LIST_ENTRY(pool_item) pi_list;
303 };
304
305 #define POOL_NEEDS_CATCHUP(pp) \
306 ((pp)->pr_nitems < (pp)->pr_minitems || \
307 (pp)->pr_npages < (pp)->pr_minpages)
308 #define POOL_OBJ_TO_PAGE(pp, v) \
309 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
310
311 /*
312 * Pool cache management.
313 *
314 * Pool caches provide a way for constructed objects to be cached by the
315 * pool subsystem. This can lead to performance improvements by avoiding
316 * needless object construction/destruction; it is deferred until absolutely
317 * necessary.
318 *
319 * Caches are grouped into cache groups. Each cache group references up
320 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
321 * object from the pool, it calls the object's constructor and places it
322 * into a cache group. When a cache group frees an object back to the
323 * pool, it first calls the object's destructor. This allows the object
324 * to persist in constructed form while freed to the cache.
325 *
326 * The pool references each cache, so that when a pool is drained by the
327 * pagedaemon, it can drain each individual cache as well. Each time a
328 * cache is drained, the most idle cache group is freed to the pool in
329 * its entirety.
330 *
331 * Pool caches are layed on top of pools. By layering them, we can avoid
332 * the complexity of cache management for pools which would not benefit
333 * from it.
334 */
335
336 static struct pool pcg_normal_pool;
337 static struct pool pcg_large_pool;
338 static struct pool cache_pool;
339 static struct pool cache_cpu_pool;
340
341 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
342 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
343
344 /* List of all caches. */
345 TAILQ_HEAD(,pool_cache) pool_cache_head =
346 TAILQ_HEAD_INITIALIZER(pool_cache_head);
347
348 int pool_cache_disable; /* global disable for caching */
349 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
350
351 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
352 void *);
353 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
354 void **, paddr_t *, int);
355 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
356 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
357 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
358 static void pool_cache_transfer(pool_cache_t);
359 static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
360 static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
361 static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
362
363 static int pool_catchup(struct pool *);
364 static void pool_prime_page(struct pool *, void *,
365 struct pool_item_header *);
366 static void pool_update_curpage(struct pool *);
367
368 static int pool_grow(struct pool *, int);
369 static void *pool_allocator_alloc(struct pool *, int);
370 static void pool_allocator_free(struct pool *, void *);
371
372 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
373 void (*)(const char *, ...) __printflike(1, 2));
374 static void pool_print1(struct pool *, const char *,
375 void (*)(const char *, ...) __printflike(1, 2));
376
377 static int pool_chk_page(struct pool *, const char *,
378 struct pool_item_header *);
379
380 /* -------------------------------------------------------------------------- */
381
382 static inline unsigned int
383 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
384 const void *v)
385 {
386 const char *cp = v;
387 unsigned int idx;
388
389 KASSERT(pp->pr_roflags & PR_USEBMAP);
390 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
391
392 if (__predict_false(idx >= pp->pr_itemsperpage)) {
393 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
394 pp->pr_itemsperpage);
395 }
396
397 return idx;
398 }
399
400 static inline void
401 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
402 void *obj)
403 {
404 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
405 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
406 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
407
408 if (__predict_false((*bitmap & mask) != 0)) {
409 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
410 }
411
412 *bitmap |= mask;
413 }
414
415 static inline void *
416 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
417 {
418 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
419 unsigned int idx;
420 int i;
421
422 for (i = 0; ; i++) {
423 int bit;
424
425 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
426 bit = ffs32(bitmap[i]);
427 if (bit) {
428 pool_item_bitmap_t mask;
429
430 bit--;
431 idx = (i * BITMAP_SIZE) + bit;
432 mask = 1U << bit;
433 KASSERT((bitmap[i] & mask) != 0);
434 bitmap[i] &= ~mask;
435 break;
436 }
437 }
438 KASSERT(idx < pp->pr_itemsperpage);
439 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
440 }
441
442 static inline void
443 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
444 {
445 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
446 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
447 int i;
448
449 for (i = 0; i < n; i++) {
450 bitmap[i] = (pool_item_bitmap_t)-1;
451 }
452 }
453
454 /* -------------------------------------------------------------------------- */
455
456 static inline void
457 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
458 void *obj)
459 {
460 struct pool_item *pi = obj;
461
462 #ifdef POOL_CHECK_MAGIC
463 pi->pi_magic = PI_MAGIC;
464 #endif
465
466 if (pp->pr_redzone) {
467 /*
468 * Mark the pool_item as valid. The rest is already
469 * invalid.
470 */
471 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
472 }
473
474 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
475 }
476
477 static inline void *
478 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
479 {
480 struct pool_item *pi;
481 void *v;
482
483 v = pi = LIST_FIRST(&ph->ph_itemlist);
484 if (__predict_false(v == NULL)) {
485 mutex_exit(&pp->pr_lock);
486 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
487 }
488 KASSERTMSG((pp->pr_nitems > 0),
489 "%s: [%s] nitems %u inconsistent on itemlist",
490 __func__, pp->pr_wchan, pp->pr_nitems);
491 #ifdef POOL_CHECK_MAGIC
492 KASSERTMSG((pi->pi_magic == PI_MAGIC),
493 "%s: [%s] free list modified: "
494 "magic=%x; page %p; item addr %p", __func__,
495 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
496 #endif
497
498 /*
499 * Remove from item list.
500 */
501 LIST_REMOVE(pi, pi_list);
502
503 return v;
504 }
505
506 /* -------------------------------------------------------------------------- */
507
508 static inline void
509 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
510 void *object)
511 {
512 if (__predict_false((void *)ph->ph_page != page)) {
513 panic("%s: [%s] item %p not part of pool", __func__,
514 pp->pr_wchan, object);
515 }
516 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
517 panic("%s: [%s] item %p below item space", __func__,
518 pp->pr_wchan, object);
519 }
520 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
521 panic("%s: [%s] item %p poolid %u != %u", __func__,
522 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
523 }
524 }
525
526 static inline void
527 pc_phinpage_check(pool_cache_t pc, void *object)
528 {
529 struct pool_item_header *ph;
530 struct pool *pp;
531 void *page;
532
533 pp = &pc->pc_pool;
534 page = POOL_OBJ_TO_PAGE(pp, object);
535 ph = (struct pool_item_header *)page;
536
537 pr_phinpage_check(pp, ph, page, object);
538 }
539
540 /* -------------------------------------------------------------------------- */
541
542 static inline int
543 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
544 {
545
546 /*
547 * We consider pool_item_header with smaller ph_page bigger. This
548 * unnatural ordering is for the benefit of pr_find_pagehead.
549 */
550 if (a->ph_page < b->ph_page)
551 return 1;
552 else if (a->ph_page > b->ph_page)
553 return -1;
554 else
555 return 0;
556 }
557
558 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
559 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
560
561 static inline struct pool_item_header *
562 pr_find_pagehead_noalign(struct pool *pp, void *v)
563 {
564 struct pool_item_header *ph, tmp;
565
566 tmp.ph_page = (void *)(uintptr_t)v;
567 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
568 if (ph == NULL) {
569 ph = SPLAY_ROOT(&pp->pr_phtree);
570 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
571 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
572 }
573 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
574 }
575
576 return ph;
577 }
578
579 /*
580 * Return the pool page header based on item address.
581 */
582 static inline struct pool_item_header *
583 pr_find_pagehead(struct pool *pp, void *v)
584 {
585 struct pool_item_header *ph, tmp;
586
587 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
588 ph = pr_find_pagehead_noalign(pp, v);
589 } else {
590 void *page = POOL_OBJ_TO_PAGE(pp, v);
591 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
592 ph = (struct pool_item_header *)page;
593 pr_phinpage_check(pp, ph, page, v);
594 } else {
595 tmp.ph_page = page;
596 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
597 }
598 }
599
600 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
601 ((char *)ph->ph_page <= (char *)v &&
602 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
603 return ph;
604 }
605
606 static void
607 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
608 {
609 struct pool_item_header *ph;
610
611 while ((ph = LIST_FIRST(pq)) != NULL) {
612 LIST_REMOVE(ph, ph_pagelist);
613 pool_allocator_free(pp, ph->ph_page);
614 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
615 pool_put(pp->pr_phpool, ph);
616 }
617 }
618
619 /*
620 * Remove a page from the pool.
621 */
622 static inline void
623 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
624 struct pool_pagelist *pq)
625 {
626
627 KASSERT(mutex_owned(&pp->pr_lock));
628
629 /*
630 * If the page was idle, decrement the idle page count.
631 */
632 if (ph->ph_nmissing == 0) {
633 KASSERT(pp->pr_nidle != 0);
634 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
635 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
636 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
637 pp->pr_nidle--;
638 }
639
640 pp->pr_nitems -= pp->pr_itemsperpage;
641
642 /*
643 * Unlink the page from the pool and queue it for release.
644 */
645 LIST_REMOVE(ph, ph_pagelist);
646 if (pp->pr_roflags & PR_PHINPAGE) {
647 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
648 panic("%s: [%s] ph %p poolid %u != %u",
649 __func__, pp->pr_wchan, ph, ph->ph_poolid,
650 pp->pr_poolid);
651 }
652 } else {
653 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
654 }
655 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
656
657 pp->pr_npages--;
658 pp->pr_npagefree++;
659
660 pool_update_curpage(pp);
661 }
662
663 /*
664 * Initialize all the pools listed in the "pools" link set.
665 */
666 void
667 pool_subsystem_init(void)
668 {
669 size_t size;
670 int idx;
671
672 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
673 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
674 cv_init(&pool_busy, "poolbusy");
675
676 /*
677 * Initialize private page header pool and cache magazine pool if we
678 * haven't done so yet.
679 */
680 for (idx = 0; idx < PHPOOL_MAX; idx++) {
681 static char phpool_names[PHPOOL_MAX][6+1+6+1];
682 int nelem;
683 size_t sz;
684
685 nelem = PHPOOL_FREELIST_NELEM(idx);
686 KASSERT(nelem != 0);
687 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
688 "phpool-%d", nelem);
689 sz = offsetof(struct pool_item_header,
690 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
691 pool_init(&phpool[idx], sz, 0, 0, 0,
692 phpool_names[idx], &pool_allocator_meta, IPL_VM);
693 }
694
695 size = sizeof(pcg_t) +
696 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
697 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
698 "pcgnormal", &pool_allocator_meta, IPL_VM);
699
700 size = sizeof(pcg_t) +
701 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
702 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
703 "pcglarge", &pool_allocator_meta, IPL_VM);
704
705 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
706 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
707
708 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
709 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
710 }
711
712 static inline bool
713 pool_init_is_phinpage(const struct pool *pp)
714 {
715 size_t pagesize;
716
717 if (pp->pr_roflags & PR_PHINPAGE) {
718 return true;
719 }
720 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
721 return false;
722 }
723
724 pagesize = pp->pr_alloc->pa_pagesz;
725
726 /*
727 * Threshold: the item size is below 1/16 of a page size, and below
728 * 8 times the page header size. The latter ensures we go off-page
729 * if the page header would make us waste a rather big item.
730 */
731 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
732 return true;
733 }
734
735 /* Put the header into the page if it doesn't waste any items. */
736 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
737 return true;
738 }
739
740 return false;
741 }
742
743 static inline bool
744 pool_init_is_usebmap(const struct pool *pp)
745 {
746 size_t bmapsize;
747
748 if (pp->pr_roflags & PR_NOTOUCH) {
749 return true;
750 }
751
752 /*
753 * If we're off-page, go with a bitmap.
754 */
755 if (!(pp->pr_roflags & PR_PHINPAGE)) {
756 return true;
757 }
758
759 /*
760 * If we're on-page, and the page header can already contain a bitmap
761 * big enough to cover all the items of the page, go with a bitmap.
762 */
763 bmapsize = roundup(PHSIZE, pp->pr_align) -
764 offsetof(struct pool_item_header, ph_bitmap[0]);
765 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
766 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
767 return true;
768 }
769
770 return false;
771 }
772
773 /*
774 * Initialize the given pool resource structure.
775 *
776 * We export this routine to allow other kernel parts to declare
777 * static pools that must be initialized before kmem(9) is available.
778 */
779 void
780 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
781 const char *wchan, struct pool_allocator *palloc, int ipl)
782 {
783 struct pool *pp1;
784 size_t prsize;
785 int itemspace, slack;
786
787 /* XXX ioff will be removed. */
788 KASSERT(ioff == 0);
789
790 #ifdef DEBUG
791 if (__predict_true(!cold))
792 mutex_enter(&pool_head_lock);
793 /*
794 * Check that the pool hasn't already been initialised and
795 * added to the list of all pools.
796 */
797 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
798 if (pp == pp1)
799 panic("%s: [%s] already initialised", __func__,
800 wchan);
801 }
802 if (__predict_true(!cold))
803 mutex_exit(&pool_head_lock);
804 #endif
805
806 if (palloc == NULL)
807 palloc = &pool_allocator_kmem;
808
809 if (!cold)
810 mutex_enter(&pool_allocator_lock);
811 if (palloc->pa_refcnt++ == 0) {
812 if (palloc->pa_pagesz == 0)
813 palloc->pa_pagesz = PAGE_SIZE;
814
815 TAILQ_INIT(&palloc->pa_list);
816
817 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
818 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
819 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
820 }
821 if (!cold)
822 mutex_exit(&pool_allocator_lock);
823
824 if (align == 0)
825 align = ALIGN(1);
826
827 prsize = size;
828 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
829 prsize = sizeof(struct pool_item);
830
831 prsize = roundup(prsize, align);
832 KASSERTMSG((prsize <= palloc->pa_pagesz),
833 "%s: [%s] pool item size (%zu) larger than page size (%u)",
834 __func__, wchan, prsize, palloc->pa_pagesz);
835
836 /*
837 * Initialize the pool structure.
838 */
839 LIST_INIT(&pp->pr_emptypages);
840 LIST_INIT(&pp->pr_fullpages);
841 LIST_INIT(&pp->pr_partpages);
842 pp->pr_cache = NULL;
843 pp->pr_curpage = NULL;
844 pp->pr_npages = 0;
845 pp->pr_minitems = 0;
846 pp->pr_minpages = 0;
847 pp->pr_maxpages = UINT_MAX;
848 pp->pr_roflags = flags;
849 pp->pr_flags = 0;
850 pp->pr_size = prsize;
851 pp->pr_reqsize = size;
852 pp->pr_align = align;
853 pp->pr_wchan = wchan;
854 pp->pr_alloc = palloc;
855 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
856 pp->pr_nitems = 0;
857 pp->pr_nout = 0;
858 pp->pr_hardlimit = UINT_MAX;
859 pp->pr_hardlimit_warning = NULL;
860 pp->pr_hardlimit_ratecap.tv_sec = 0;
861 pp->pr_hardlimit_ratecap.tv_usec = 0;
862 pp->pr_hardlimit_warning_last.tv_sec = 0;
863 pp->pr_hardlimit_warning_last.tv_usec = 0;
864 pp->pr_drain_hook = NULL;
865 pp->pr_drain_hook_arg = NULL;
866 pp->pr_freecheck = NULL;
867 pp->pr_redzone = false;
868 pool_redzone_init(pp, size);
869 pool_quarantine_init(pp);
870
871 /*
872 * Decide whether to put the page header off-page to avoid wasting too
873 * large a part of the page or too big an item. Off-page page headers
874 * go on a hash table, so we can match a returned item with its header
875 * based on the page address.
876 */
877 if (pool_init_is_phinpage(pp)) {
878 /* Use the beginning of the page for the page header */
879 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
880 pp->pr_itemoffset = roundup(PHSIZE, align);
881 pp->pr_roflags |= PR_PHINPAGE;
882 } else {
883 /* The page header will be taken from our page header pool */
884 itemspace = palloc->pa_pagesz;
885 pp->pr_itemoffset = 0;
886 SPLAY_INIT(&pp->pr_phtree);
887 }
888
889 pp->pr_itemsperpage = itemspace / pp->pr_size;
890 KASSERT(pp->pr_itemsperpage != 0);
891
892 /*
893 * Decide whether to use a bitmap or a linked list to manage freed
894 * items.
895 */
896 if (pool_init_is_usebmap(pp)) {
897 pp->pr_roflags |= PR_USEBMAP;
898 }
899
900 /*
901 * If we're off-page, then we're using a bitmap; choose the appropriate
902 * pool to allocate page headers, whose size varies depending on the
903 * bitmap. If we're on-page, nothing to do.
904 */
905 if (!(pp->pr_roflags & PR_PHINPAGE)) {
906 int idx;
907
908 KASSERT(pp->pr_roflags & PR_USEBMAP);
909
910 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
911 idx++) {
912 /* nothing */
913 }
914 if (idx >= PHPOOL_MAX) {
915 /*
916 * if you see this panic, consider to tweak
917 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
918 */
919 panic("%s: [%s] too large itemsperpage(%d) for "
920 "PR_USEBMAP", __func__,
921 pp->pr_wchan, pp->pr_itemsperpage);
922 }
923 pp->pr_phpool = &phpool[idx];
924 } else {
925 pp->pr_phpool = NULL;
926 }
927
928 /*
929 * Use the slack between the chunks and the page header
930 * for "cache coloring".
931 */
932 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
933 pp->pr_maxcolor = rounddown(slack, align);
934 pp->pr_curcolor = 0;
935
936 pp->pr_nget = 0;
937 pp->pr_nfail = 0;
938 pp->pr_nput = 0;
939 pp->pr_npagealloc = 0;
940 pp->pr_npagefree = 0;
941 pp->pr_hiwat = 0;
942 pp->pr_nidle = 0;
943 pp->pr_refcnt = 0;
944
945 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
946 cv_init(&pp->pr_cv, wchan);
947 pp->pr_ipl = ipl;
948
949 /* Insert into the list of all pools. */
950 if (!cold)
951 mutex_enter(&pool_head_lock);
952 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
953 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
954 break;
955 }
956 if (pp1 == NULL)
957 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
958 else
959 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
960 if (!cold)
961 mutex_exit(&pool_head_lock);
962
963 /* Insert this into the list of pools using this allocator. */
964 if (!cold)
965 mutex_enter(&palloc->pa_lock);
966 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
967 if (!cold)
968 mutex_exit(&palloc->pa_lock);
969 }
970
971 /*
972 * De-commision a pool resource.
973 */
974 void
975 pool_destroy(struct pool *pp)
976 {
977 struct pool_pagelist pq;
978 struct pool_item_header *ph;
979
980 pool_quarantine_flush(pp);
981
982 /* Remove from global pool list */
983 mutex_enter(&pool_head_lock);
984 while (pp->pr_refcnt != 0)
985 cv_wait(&pool_busy, &pool_head_lock);
986 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
987 if (drainpp == pp)
988 drainpp = NULL;
989 mutex_exit(&pool_head_lock);
990
991 /* Remove this pool from its allocator's list of pools. */
992 mutex_enter(&pp->pr_alloc->pa_lock);
993 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
994 mutex_exit(&pp->pr_alloc->pa_lock);
995
996 mutex_enter(&pool_allocator_lock);
997 if (--pp->pr_alloc->pa_refcnt == 0)
998 mutex_destroy(&pp->pr_alloc->pa_lock);
999 mutex_exit(&pool_allocator_lock);
1000
1001 mutex_enter(&pp->pr_lock);
1002
1003 KASSERT(pp->pr_cache == NULL);
1004 KASSERTMSG((pp->pr_nout == 0),
1005 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1006 pp->pr_nout);
1007 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1008 KASSERT(LIST_EMPTY(&pp->pr_partpages));
1009
1010 /* Remove all pages */
1011 LIST_INIT(&pq);
1012 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1013 pr_rmpage(pp, ph, &pq);
1014
1015 mutex_exit(&pp->pr_lock);
1016
1017 pr_pagelist_free(pp, &pq);
1018 cv_destroy(&pp->pr_cv);
1019 mutex_destroy(&pp->pr_lock);
1020 }
1021
1022 void
1023 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1024 {
1025
1026 /* XXX no locking -- must be used just after pool_init() */
1027 KASSERTMSG((pp->pr_drain_hook == NULL),
1028 "%s: [%s] already set", __func__, pp->pr_wchan);
1029 pp->pr_drain_hook = fn;
1030 pp->pr_drain_hook_arg = arg;
1031 }
1032
1033 static struct pool_item_header *
1034 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1035 {
1036 struct pool_item_header *ph;
1037
1038 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1039 ph = storage;
1040 else
1041 ph = pool_get(pp->pr_phpool, flags);
1042
1043 return ph;
1044 }
1045
1046 /*
1047 * Grab an item from the pool.
1048 */
1049 void *
1050 pool_get(struct pool *pp, int flags)
1051 {
1052 struct pool_item_header *ph;
1053 void *v;
1054
1055 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1056 KASSERTMSG((pp->pr_itemsperpage != 0),
1057 "%s: [%s] pr_itemsperpage is zero, "
1058 "pool not initialized?", __func__, pp->pr_wchan);
1059 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1060 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1061 "%s: [%s] is IPL_NONE, but called from interrupt context",
1062 __func__, pp->pr_wchan);
1063 if (flags & PR_WAITOK) {
1064 ASSERT_SLEEPABLE();
1065 }
1066
1067 if (flags & PR_NOWAIT) {
1068 if (fault_inject())
1069 return NULL;
1070 }
1071
1072 mutex_enter(&pp->pr_lock);
1073 startover:
1074 /*
1075 * Check to see if we've reached the hard limit. If we have,
1076 * and we can wait, then wait until an item has been returned to
1077 * the pool.
1078 */
1079 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1080 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1081 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1082 if (pp->pr_drain_hook != NULL) {
1083 /*
1084 * Since the drain hook is going to free things
1085 * back to the pool, unlock, call the hook, re-lock,
1086 * and check the hardlimit condition again.
1087 */
1088 mutex_exit(&pp->pr_lock);
1089 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1090 mutex_enter(&pp->pr_lock);
1091 if (pp->pr_nout < pp->pr_hardlimit)
1092 goto startover;
1093 }
1094
1095 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1096 /*
1097 * XXX: A warning isn't logged in this case. Should
1098 * it be?
1099 */
1100 pp->pr_flags |= PR_WANTED;
1101 do {
1102 cv_wait(&pp->pr_cv, &pp->pr_lock);
1103 } while (pp->pr_flags & PR_WANTED);
1104 goto startover;
1105 }
1106
1107 /*
1108 * Log a message that the hard limit has been hit.
1109 */
1110 if (pp->pr_hardlimit_warning != NULL &&
1111 ratecheck(&pp->pr_hardlimit_warning_last,
1112 &pp->pr_hardlimit_ratecap))
1113 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1114
1115 pp->pr_nfail++;
1116
1117 mutex_exit(&pp->pr_lock);
1118 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1119 return NULL;
1120 }
1121
1122 /*
1123 * The convention we use is that if `curpage' is not NULL, then
1124 * it points at a non-empty bucket. In particular, `curpage'
1125 * never points at a page header which has PR_PHINPAGE set and
1126 * has no items in its bucket.
1127 */
1128 if ((ph = pp->pr_curpage) == NULL) {
1129 int error;
1130
1131 KASSERTMSG((pp->pr_nitems == 0),
1132 "%s: [%s] curpage NULL, inconsistent nitems %u",
1133 __func__, pp->pr_wchan, pp->pr_nitems);
1134
1135 /*
1136 * Call the back-end page allocator for more memory.
1137 * Release the pool lock, as the back-end page allocator
1138 * may block.
1139 */
1140 error = pool_grow(pp, flags);
1141 if (error != 0) {
1142 /*
1143 * pool_grow aborts when another thread
1144 * is allocating a new page. Retry if it
1145 * waited for it.
1146 */
1147 if (error == ERESTART)
1148 goto startover;
1149
1150 /*
1151 * We were unable to allocate a page or item
1152 * header, but we released the lock during
1153 * allocation, so perhaps items were freed
1154 * back to the pool. Check for this case.
1155 */
1156 if (pp->pr_curpage != NULL)
1157 goto startover;
1158
1159 pp->pr_nfail++;
1160 mutex_exit(&pp->pr_lock);
1161 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1162 return NULL;
1163 }
1164
1165 /* Start the allocation process over. */
1166 goto startover;
1167 }
1168 if (pp->pr_roflags & PR_USEBMAP) {
1169 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1170 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1171 v = pr_item_bitmap_get(pp, ph);
1172 } else {
1173 v = pr_item_linkedlist_get(pp, ph);
1174 }
1175 pp->pr_nitems--;
1176 pp->pr_nout++;
1177 if (ph->ph_nmissing == 0) {
1178 KASSERT(pp->pr_nidle > 0);
1179 pp->pr_nidle--;
1180
1181 /*
1182 * This page was previously empty. Move it to the list of
1183 * partially-full pages. This page is already curpage.
1184 */
1185 LIST_REMOVE(ph, ph_pagelist);
1186 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1187 }
1188 ph->ph_nmissing++;
1189 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1190 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1191 LIST_EMPTY(&ph->ph_itemlist)),
1192 "%s: [%s] nmissing (%u) inconsistent", __func__,
1193 pp->pr_wchan, ph->ph_nmissing);
1194 /*
1195 * This page is now full. Move it to the full list
1196 * and select a new current page.
1197 */
1198 LIST_REMOVE(ph, ph_pagelist);
1199 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1200 pool_update_curpage(pp);
1201 }
1202
1203 pp->pr_nget++;
1204
1205 /*
1206 * If we have a low water mark and we are now below that low
1207 * water mark, add more items to the pool.
1208 */
1209 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1210 /*
1211 * XXX: Should we log a warning? Should we set up a timeout
1212 * to try again in a second or so? The latter could break
1213 * a caller's assumptions about interrupt protection, etc.
1214 */
1215 }
1216
1217 mutex_exit(&pp->pr_lock);
1218 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1219 FREECHECK_OUT(&pp->pr_freecheck, v);
1220 pool_redzone_fill(pp, v);
1221 pool_get_kmsan(pp, v);
1222 if (flags & PR_ZERO)
1223 memset(v, 0, pp->pr_reqsize);
1224 return v;
1225 }
1226
1227 /*
1228 * Internal version of pool_put(). Pool is already locked/entered.
1229 */
1230 static void
1231 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1232 {
1233 struct pool_item_header *ph;
1234
1235 KASSERT(mutex_owned(&pp->pr_lock));
1236 pool_redzone_check(pp, v);
1237 pool_put_kmsan(pp, v);
1238 FREECHECK_IN(&pp->pr_freecheck, v);
1239 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1240
1241 KASSERTMSG((pp->pr_nout > 0),
1242 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1243
1244 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1245 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1246 }
1247
1248 /*
1249 * Return to item list.
1250 */
1251 if (pp->pr_roflags & PR_USEBMAP) {
1252 pr_item_bitmap_put(pp, ph, v);
1253 } else {
1254 pr_item_linkedlist_put(pp, ph, v);
1255 }
1256 KDASSERT(ph->ph_nmissing != 0);
1257 ph->ph_nmissing--;
1258 pp->pr_nput++;
1259 pp->pr_nitems++;
1260 pp->pr_nout--;
1261
1262 /* Cancel "pool empty" condition if it exists */
1263 if (pp->pr_curpage == NULL)
1264 pp->pr_curpage = ph;
1265
1266 if (pp->pr_flags & PR_WANTED) {
1267 pp->pr_flags &= ~PR_WANTED;
1268 cv_broadcast(&pp->pr_cv);
1269 }
1270
1271 /*
1272 * If this page is now empty, do one of two things:
1273 *
1274 * (1) If we have more pages than the page high water mark,
1275 * free the page back to the system. ONLY CONSIDER
1276 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1277 * CLAIM.
1278 *
1279 * (2) Otherwise, move the page to the empty page list.
1280 *
1281 * Either way, select a new current page (so we use a partially-full
1282 * page if one is available).
1283 */
1284 if (ph->ph_nmissing == 0) {
1285 pp->pr_nidle++;
1286 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1287 pp->pr_npages > pp->pr_minpages &&
1288 pp->pr_npages > pp->pr_maxpages) {
1289 pr_rmpage(pp, ph, pq);
1290 } else {
1291 LIST_REMOVE(ph, ph_pagelist);
1292 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1293
1294 /*
1295 * Update the timestamp on the page. A page must
1296 * be idle for some period of time before it can
1297 * be reclaimed by the pagedaemon. This minimizes
1298 * ping-pong'ing for memory.
1299 *
1300 * note for 64-bit time_t: truncating to 32-bit is not
1301 * a problem for our usage.
1302 */
1303 ph->ph_time = time_uptime;
1304 }
1305 pool_update_curpage(pp);
1306 }
1307
1308 /*
1309 * If the page was previously completely full, move it to the
1310 * partially-full list and make it the current page. The next
1311 * allocation will get the item from this page, instead of
1312 * further fragmenting the pool.
1313 */
1314 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1315 LIST_REMOVE(ph, ph_pagelist);
1316 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1317 pp->pr_curpage = ph;
1318 }
1319 }
1320
1321 void
1322 pool_put(struct pool *pp, void *v)
1323 {
1324 struct pool_pagelist pq;
1325
1326 LIST_INIT(&pq);
1327
1328 mutex_enter(&pp->pr_lock);
1329 if (!pool_put_quarantine(pp, v, &pq)) {
1330 pool_do_put(pp, v, &pq);
1331 }
1332 mutex_exit(&pp->pr_lock);
1333
1334 pr_pagelist_free(pp, &pq);
1335 }
1336
1337 /*
1338 * pool_grow: grow a pool by a page.
1339 *
1340 * => called with pool locked.
1341 * => unlock and relock the pool.
1342 * => return with pool locked.
1343 */
1344
1345 static int
1346 pool_grow(struct pool *pp, int flags)
1347 {
1348 struct pool_item_header *ph;
1349 char *storage;
1350
1351 /*
1352 * If there's a pool_grow in progress, wait for it to complete
1353 * and try again from the top.
1354 */
1355 if (pp->pr_flags & PR_GROWING) {
1356 if (flags & PR_WAITOK) {
1357 do {
1358 cv_wait(&pp->pr_cv, &pp->pr_lock);
1359 } while (pp->pr_flags & PR_GROWING);
1360 return ERESTART;
1361 } else {
1362 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1363 /*
1364 * This needs an unlock/relock dance so
1365 * that the other caller has a chance to
1366 * run and actually do the thing. Note
1367 * that this is effectively a busy-wait.
1368 */
1369 mutex_exit(&pp->pr_lock);
1370 mutex_enter(&pp->pr_lock);
1371 return ERESTART;
1372 }
1373 return EWOULDBLOCK;
1374 }
1375 }
1376 pp->pr_flags |= PR_GROWING;
1377 if (flags & PR_WAITOK)
1378 mutex_exit(&pp->pr_lock);
1379 else
1380 pp->pr_flags |= PR_GROWINGNOWAIT;
1381
1382 storage = pool_allocator_alloc(pp, flags);
1383 if (__predict_false(storage == NULL))
1384 goto out;
1385
1386 ph = pool_alloc_item_header(pp, storage, flags);
1387 if (__predict_false(ph == NULL)) {
1388 pool_allocator_free(pp, storage);
1389 goto out;
1390 }
1391
1392 if (flags & PR_WAITOK)
1393 mutex_enter(&pp->pr_lock);
1394 pool_prime_page(pp, storage, ph);
1395 pp->pr_npagealloc++;
1396 KASSERT(pp->pr_flags & PR_GROWING);
1397 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1398 /*
1399 * If anyone was waiting for pool_grow, notify them that we
1400 * may have just done it.
1401 */
1402 cv_broadcast(&pp->pr_cv);
1403 return 0;
1404 out:
1405 if (flags & PR_WAITOK)
1406 mutex_enter(&pp->pr_lock);
1407 KASSERT(pp->pr_flags & PR_GROWING);
1408 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1409 return ENOMEM;
1410 }
1411
1412 void
1413 pool_prime(struct pool *pp, int n)
1414 {
1415
1416 mutex_enter(&pp->pr_lock);
1417 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1418 if (pp->pr_maxpages <= pp->pr_minpages)
1419 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1420 while (pp->pr_npages < pp->pr_minpages)
1421 (void) pool_grow(pp, PR_WAITOK);
1422 mutex_exit(&pp->pr_lock);
1423 }
1424
1425 /*
1426 * Add a page worth of items to the pool.
1427 *
1428 * Note, we must be called with the pool descriptor LOCKED.
1429 */
1430 static void
1431 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1432 {
1433 const unsigned int align = pp->pr_align;
1434 struct pool_item *pi;
1435 void *cp = storage;
1436 int n;
1437
1438 KASSERT(mutex_owned(&pp->pr_lock));
1439 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1440 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1441 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1442
1443 /*
1444 * Insert page header.
1445 */
1446 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1447 LIST_INIT(&ph->ph_itemlist);
1448 ph->ph_page = storage;
1449 ph->ph_nmissing = 0;
1450 ph->ph_time = time_uptime;
1451 if (pp->pr_roflags & PR_PHINPAGE)
1452 ph->ph_poolid = pp->pr_poolid;
1453 else
1454 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1455
1456 pp->pr_nidle++;
1457
1458 /*
1459 * The item space starts after the on-page header, if any.
1460 */
1461 ph->ph_off = pp->pr_itemoffset;
1462
1463 /*
1464 * Color this page.
1465 */
1466 ph->ph_off += pp->pr_curcolor;
1467 cp = (char *)cp + ph->ph_off;
1468 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1469 pp->pr_curcolor = 0;
1470
1471 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1472
1473 /*
1474 * Insert remaining chunks on the bucket list.
1475 */
1476 n = pp->pr_itemsperpage;
1477 pp->pr_nitems += n;
1478
1479 if (pp->pr_roflags & PR_USEBMAP) {
1480 pr_item_bitmap_init(pp, ph);
1481 } else {
1482 while (n--) {
1483 pi = (struct pool_item *)cp;
1484
1485 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1486
1487 /* Insert on page list */
1488 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1489 #ifdef POOL_CHECK_MAGIC
1490 pi->pi_magic = PI_MAGIC;
1491 #endif
1492 cp = (char *)cp + pp->pr_size;
1493
1494 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1495 }
1496 }
1497
1498 /*
1499 * If the pool was depleted, point at the new page.
1500 */
1501 if (pp->pr_curpage == NULL)
1502 pp->pr_curpage = ph;
1503
1504 if (++pp->pr_npages > pp->pr_hiwat)
1505 pp->pr_hiwat = pp->pr_npages;
1506 }
1507
1508 /*
1509 * Used by pool_get() when nitems drops below the low water mark. This
1510 * is used to catch up pr_nitems with the low water mark.
1511 *
1512 * Note 1, we never wait for memory here, we let the caller decide what to do.
1513 *
1514 * Note 2, we must be called with the pool already locked, and we return
1515 * with it locked.
1516 */
1517 static int
1518 pool_catchup(struct pool *pp)
1519 {
1520 int error = 0;
1521
1522 while (POOL_NEEDS_CATCHUP(pp)) {
1523 error = pool_grow(pp, PR_NOWAIT);
1524 if (error) {
1525 if (error == ERESTART)
1526 continue;
1527 break;
1528 }
1529 }
1530 return error;
1531 }
1532
1533 static void
1534 pool_update_curpage(struct pool *pp)
1535 {
1536
1537 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1538 if (pp->pr_curpage == NULL) {
1539 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1540 }
1541 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1542 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1543 }
1544
1545 void
1546 pool_setlowat(struct pool *pp, int n)
1547 {
1548
1549 mutex_enter(&pp->pr_lock);
1550 pp->pr_minitems = n;
1551
1552 /* Make sure we're caught up with the newly-set low water mark. */
1553 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1554 /*
1555 * XXX: Should we log a warning? Should we set up a timeout
1556 * to try again in a second or so? The latter could break
1557 * a caller's assumptions about interrupt protection, etc.
1558 */
1559 }
1560
1561 mutex_exit(&pp->pr_lock);
1562 }
1563
1564 void
1565 pool_sethiwat(struct pool *pp, int n)
1566 {
1567
1568 mutex_enter(&pp->pr_lock);
1569
1570 pp->pr_maxitems = n;
1571
1572 mutex_exit(&pp->pr_lock);
1573 }
1574
1575 void
1576 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1577 {
1578
1579 mutex_enter(&pp->pr_lock);
1580
1581 pp->pr_hardlimit = n;
1582 pp->pr_hardlimit_warning = warnmess;
1583 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1584 pp->pr_hardlimit_warning_last.tv_sec = 0;
1585 pp->pr_hardlimit_warning_last.tv_usec = 0;
1586
1587 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1588
1589 mutex_exit(&pp->pr_lock);
1590 }
1591
1592 /*
1593 * Release all complete pages that have not been used recently.
1594 *
1595 * Must not be called from interrupt context.
1596 */
1597 int
1598 pool_reclaim(struct pool *pp)
1599 {
1600 struct pool_item_header *ph, *phnext;
1601 struct pool_pagelist pq;
1602 uint32_t curtime;
1603 bool klock;
1604 int rv;
1605
1606 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1607
1608 if (pp->pr_drain_hook != NULL) {
1609 /*
1610 * The drain hook must be called with the pool unlocked.
1611 */
1612 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1613 }
1614
1615 /*
1616 * XXXSMP Because we do not want to cause non-MPSAFE code
1617 * to block.
1618 */
1619 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1620 pp->pr_ipl == IPL_SOFTSERIAL) {
1621 KERNEL_LOCK(1, NULL);
1622 klock = true;
1623 } else
1624 klock = false;
1625
1626 /* Reclaim items from the pool's cache (if any). */
1627 if (pp->pr_cache != NULL)
1628 pool_cache_invalidate(pp->pr_cache);
1629
1630 if (mutex_tryenter(&pp->pr_lock) == 0) {
1631 if (klock) {
1632 KERNEL_UNLOCK_ONE(NULL);
1633 }
1634 return 0;
1635 }
1636
1637 LIST_INIT(&pq);
1638
1639 curtime = time_uptime;
1640
1641 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1642 phnext = LIST_NEXT(ph, ph_pagelist);
1643
1644 /* Check our minimum page claim */
1645 if (pp->pr_npages <= pp->pr_minpages)
1646 break;
1647
1648 KASSERT(ph->ph_nmissing == 0);
1649 if (curtime - ph->ph_time < pool_inactive_time)
1650 continue;
1651
1652 /*
1653 * If freeing this page would put us below the minimum free items
1654 * or the minimum pages, stop now.
1655 */
1656 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1657 pp->pr_npages - 1 < pp->pr_minpages)
1658 break;
1659
1660 pr_rmpage(pp, ph, &pq);
1661 }
1662
1663 mutex_exit(&pp->pr_lock);
1664
1665 if (LIST_EMPTY(&pq))
1666 rv = 0;
1667 else {
1668 pr_pagelist_free(pp, &pq);
1669 rv = 1;
1670 }
1671
1672 if (klock) {
1673 KERNEL_UNLOCK_ONE(NULL);
1674 }
1675
1676 return rv;
1677 }
1678
1679 /*
1680 * Drain pools, one at a time. The drained pool is returned within ppp.
1681 *
1682 * Note, must never be called from interrupt context.
1683 */
1684 bool
1685 pool_drain(struct pool **ppp)
1686 {
1687 bool reclaimed;
1688 struct pool *pp;
1689
1690 KASSERT(!TAILQ_EMPTY(&pool_head));
1691
1692 pp = NULL;
1693
1694 /* Find next pool to drain, and add a reference. */
1695 mutex_enter(&pool_head_lock);
1696 do {
1697 if (drainpp == NULL) {
1698 drainpp = TAILQ_FIRST(&pool_head);
1699 }
1700 if (drainpp != NULL) {
1701 pp = drainpp;
1702 drainpp = TAILQ_NEXT(pp, pr_poollist);
1703 }
1704 /*
1705 * Skip completely idle pools. We depend on at least
1706 * one pool in the system being active.
1707 */
1708 } while (pp == NULL || pp->pr_npages == 0);
1709 pp->pr_refcnt++;
1710 mutex_exit(&pool_head_lock);
1711
1712 /* Drain the cache (if any) and pool.. */
1713 reclaimed = pool_reclaim(pp);
1714
1715 /* Finally, unlock the pool. */
1716 mutex_enter(&pool_head_lock);
1717 pp->pr_refcnt--;
1718 cv_broadcast(&pool_busy);
1719 mutex_exit(&pool_head_lock);
1720
1721 if (ppp != NULL)
1722 *ppp = pp;
1723
1724 return reclaimed;
1725 }
1726
1727 /*
1728 * Calculate the total number of pages consumed by pools.
1729 */
1730 int
1731 pool_totalpages(void)
1732 {
1733
1734 mutex_enter(&pool_head_lock);
1735 int pages = pool_totalpages_locked();
1736 mutex_exit(&pool_head_lock);
1737
1738 return pages;
1739 }
1740
1741 int
1742 pool_totalpages_locked(void)
1743 {
1744 struct pool *pp;
1745 uint64_t total = 0;
1746
1747 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1748 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1749
1750 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1751 bytes -= (pp->pr_nout * pp->pr_size);
1752 total += bytes;
1753 }
1754
1755 return atop(total);
1756 }
1757
1758 /*
1759 * Diagnostic helpers.
1760 */
1761
1762 void
1763 pool_printall(const char *modif, void (*pr)(const char *, ...))
1764 {
1765 struct pool *pp;
1766
1767 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1768 pool_printit(pp, modif, pr);
1769 }
1770 }
1771
1772 void
1773 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1774 {
1775
1776 if (pp == NULL) {
1777 (*pr)("Must specify a pool to print.\n");
1778 return;
1779 }
1780
1781 pool_print1(pp, modif, pr);
1782 }
1783
1784 static void
1785 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1786 void (*pr)(const char *, ...))
1787 {
1788 struct pool_item_header *ph;
1789
1790 LIST_FOREACH(ph, pl, ph_pagelist) {
1791 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1792 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1793 #ifdef POOL_CHECK_MAGIC
1794 struct pool_item *pi;
1795 if (!(pp->pr_roflags & PR_USEBMAP)) {
1796 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1797 if (pi->pi_magic != PI_MAGIC) {
1798 (*pr)("\t\t\titem %p, magic 0x%x\n",
1799 pi, pi->pi_magic);
1800 }
1801 }
1802 }
1803 #endif
1804 }
1805 }
1806
1807 static void
1808 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1809 {
1810 struct pool_item_header *ph;
1811 pool_cache_t pc;
1812 pcg_t *pcg;
1813 pool_cache_cpu_t *cc;
1814 uint64_t cpuhit, cpumiss, pchit, pcmiss;
1815 uint32_t nfull;
1816 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1817 char c;
1818
1819 while ((c = *modif++) != '\0') {
1820 if (c == 'l')
1821 print_log = 1;
1822 if (c == 'p')
1823 print_pagelist = 1;
1824 if (c == 'c')
1825 print_cache = 1;
1826 }
1827
1828 if ((pc = pp->pr_cache) != NULL) {
1829 (*pr)("POOL CACHE");
1830 } else {
1831 (*pr)("POOL");
1832 }
1833
1834 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1835 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1836 pp->pr_roflags);
1837 (*pr)("\talloc %p\n", pp->pr_alloc);
1838 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1839 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1840 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1841 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1842
1843 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1844 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1845 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1846 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1847
1848 if (print_pagelist == 0)
1849 goto skip_pagelist;
1850
1851 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1852 (*pr)("\n\tempty page list:\n");
1853 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1854 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1855 (*pr)("\n\tfull page list:\n");
1856 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1857 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1858 (*pr)("\n\tpartial-page list:\n");
1859 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1860
1861 if (pp->pr_curpage == NULL)
1862 (*pr)("\tno current page\n");
1863 else
1864 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1865
1866 skip_pagelist:
1867 if (print_log == 0)
1868 goto skip_log;
1869
1870 (*pr)("\n");
1871
1872 skip_log:
1873
1874 #define PR_GROUPLIST(pcg) \
1875 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1876 for (i = 0; i < pcg->pcg_size; i++) { \
1877 if (pcg->pcg_objects[i].pcgo_pa != \
1878 POOL_PADDR_INVALID) { \
1879 (*pr)("\t\t\t%p, 0x%llx\n", \
1880 pcg->pcg_objects[i].pcgo_va, \
1881 (unsigned long long) \
1882 pcg->pcg_objects[i].pcgo_pa); \
1883 } else { \
1884 (*pr)("\t\t\t%p\n", \
1885 pcg->pcg_objects[i].pcgo_va); \
1886 } \
1887 }
1888
1889 if (pc != NULL) {
1890 cpuhit = 0;
1891 cpumiss = 0;
1892 pcmiss = 0;
1893 nfull = 0;
1894 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1895 if ((cc = pc->pc_cpus[i]) == NULL)
1896 continue;
1897 cpuhit += cc->cc_hits;
1898 cpumiss += cc->cc_misses;
1899 pcmiss += cc->cc_pcmisses;
1900 nfull += cc->cc_nfull;
1901 }
1902 pchit = cpumiss - pcmiss;
1903 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1904 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1905 (*pr)("\tcache layer full groups %u\n", nfull);
1906 if (print_cache) {
1907 (*pr)("\tfull cache groups:\n");
1908 for (pcg = pc->pc_fullgroups; pcg != NULL;
1909 pcg = pcg->pcg_next) {
1910 PR_GROUPLIST(pcg);
1911 }
1912 }
1913 }
1914 #undef PR_GROUPLIST
1915 }
1916
1917 static int
1918 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1919 {
1920 struct pool_item *pi;
1921 void *page;
1922 int n;
1923
1924 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1925 page = POOL_OBJ_TO_PAGE(pp, ph);
1926 if (page != ph->ph_page &&
1927 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1928 if (label != NULL)
1929 printf("%s: ", label);
1930 printf("pool(%p:%s): page inconsistency: page %p;"
1931 " at page head addr %p (p %p)\n", pp,
1932 pp->pr_wchan, ph->ph_page,
1933 ph, page);
1934 return 1;
1935 }
1936 }
1937
1938 if ((pp->pr_roflags & PR_USEBMAP) != 0)
1939 return 0;
1940
1941 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1942 pi != NULL;
1943 pi = LIST_NEXT(pi,pi_list), n++) {
1944
1945 #ifdef POOL_CHECK_MAGIC
1946 if (pi->pi_magic != PI_MAGIC) {
1947 if (label != NULL)
1948 printf("%s: ", label);
1949 printf("pool(%s): free list modified: magic=%x;"
1950 " page %p; item ordinal %d; addr %p\n",
1951 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1952 n, pi);
1953 panic("pool");
1954 }
1955 #endif
1956 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1957 continue;
1958 }
1959 page = POOL_OBJ_TO_PAGE(pp, pi);
1960 if (page == ph->ph_page)
1961 continue;
1962
1963 if (label != NULL)
1964 printf("%s: ", label);
1965 printf("pool(%p:%s): page inconsistency: page %p;"
1966 " item ordinal %d; addr %p (p %p)\n", pp,
1967 pp->pr_wchan, ph->ph_page,
1968 n, pi, page);
1969 return 1;
1970 }
1971 return 0;
1972 }
1973
1974
1975 int
1976 pool_chk(struct pool *pp, const char *label)
1977 {
1978 struct pool_item_header *ph;
1979 int r = 0;
1980
1981 mutex_enter(&pp->pr_lock);
1982 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1983 r = pool_chk_page(pp, label, ph);
1984 if (r) {
1985 goto out;
1986 }
1987 }
1988 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1989 r = pool_chk_page(pp, label, ph);
1990 if (r) {
1991 goto out;
1992 }
1993 }
1994 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1995 r = pool_chk_page(pp, label, ph);
1996 if (r) {
1997 goto out;
1998 }
1999 }
2000
2001 out:
2002 mutex_exit(&pp->pr_lock);
2003 return r;
2004 }
2005
2006 /*
2007 * pool_cache_init:
2008 *
2009 * Initialize a pool cache.
2010 */
2011 pool_cache_t
2012 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2013 const char *wchan, struct pool_allocator *palloc, int ipl,
2014 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2015 {
2016 pool_cache_t pc;
2017
2018 pc = pool_get(&cache_pool, PR_WAITOK);
2019 if (pc == NULL)
2020 return NULL;
2021
2022 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2023 palloc, ipl, ctor, dtor, arg);
2024
2025 return pc;
2026 }
2027
2028 /*
2029 * pool_cache_bootstrap:
2030 *
2031 * Kernel-private version of pool_cache_init(). The caller
2032 * provides initial storage.
2033 */
2034 void
2035 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2036 u_int align_offset, u_int flags, const char *wchan,
2037 struct pool_allocator *palloc, int ipl,
2038 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2039 void *arg)
2040 {
2041 CPU_INFO_ITERATOR cii;
2042 pool_cache_t pc1;
2043 struct cpu_info *ci;
2044 struct pool *pp;
2045
2046 pp = &pc->pc_pool;
2047 if (palloc == NULL && ipl == IPL_NONE) {
2048 if (size > PAGE_SIZE) {
2049 int bigidx = pool_bigidx(size);
2050
2051 palloc = &pool_allocator_big[bigidx];
2052 flags |= PR_NOALIGN;
2053 } else
2054 palloc = &pool_allocator_nointr;
2055 }
2056 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2057
2058 if (ctor == NULL) {
2059 ctor = NO_CTOR;
2060 }
2061 if (dtor == NULL) {
2062 dtor = NO_DTOR;
2063 }
2064
2065 pc->pc_fullgroups = NULL;
2066 pc->pc_partgroups = NULL;
2067 pc->pc_ctor = ctor;
2068 pc->pc_dtor = dtor;
2069 pc->pc_arg = arg;
2070 pc->pc_refcnt = 0;
2071 pc->pc_freecheck = NULL;
2072
2073 if ((flags & PR_LARGECACHE) != 0) {
2074 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2075 pc->pc_pcgpool = &pcg_large_pool;
2076 pc->pc_pcgcache = &pcg_large_cache;
2077 } else {
2078 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2079 pc->pc_pcgpool = &pcg_normal_pool;
2080 pc->pc_pcgcache = &pcg_normal_cache;
2081 }
2082
2083 /* Allocate per-CPU caches. */
2084 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2085 pc->pc_ncpu = 0;
2086 if (ncpu < 2) {
2087 /* XXX For sparc: boot CPU is not attached yet. */
2088 pool_cache_cpu_init1(curcpu(), pc);
2089 } else {
2090 for (CPU_INFO_FOREACH(cii, ci)) {
2091 pool_cache_cpu_init1(ci, pc);
2092 }
2093 }
2094
2095 /* Add to list of all pools. */
2096 if (__predict_true(!cold))
2097 mutex_enter(&pool_head_lock);
2098 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2099 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2100 break;
2101 }
2102 if (pc1 == NULL)
2103 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2104 else
2105 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2106 if (__predict_true(!cold))
2107 mutex_exit(&pool_head_lock);
2108
2109 membar_sync();
2110 pp->pr_cache = pc;
2111 }
2112
2113 /*
2114 * pool_cache_destroy:
2115 *
2116 * Destroy a pool cache.
2117 */
2118 void
2119 pool_cache_destroy(pool_cache_t pc)
2120 {
2121
2122 pool_cache_bootstrap_destroy(pc);
2123 pool_put(&cache_pool, pc);
2124 }
2125
2126 /*
2127 * pool_cache_bootstrap_destroy:
2128 *
2129 * Destroy a pool cache.
2130 */
2131 void
2132 pool_cache_bootstrap_destroy(pool_cache_t pc)
2133 {
2134 struct pool *pp = &pc->pc_pool;
2135 u_int i;
2136
2137 /* Remove it from the global list. */
2138 mutex_enter(&pool_head_lock);
2139 while (pc->pc_refcnt != 0)
2140 cv_wait(&pool_busy, &pool_head_lock);
2141 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2142 mutex_exit(&pool_head_lock);
2143
2144 /* First, invalidate the entire cache. */
2145 pool_cache_invalidate(pc);
2146
2147 /* Disassociate it from the pool. */
2148 mutex_enter(&pp->pr_lock);
2149 pp->pr_cache = NULL;
2150 mutex_exit(&pp->pr_lock);
2151
2152 /* Destroy per-CPU data */
2153 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2154 pool_cache_invalidate_cpu(pc, i);
2155
2156 /* Finally, destroy it. */
2157 pool_destroy(pp);
2158 }
2159
2160 /*
2161 * pool_cache_cpu_init1:
2162 *
2163 * Called for each pool_cache whenever a new CPU is attached.
2164 */
2165 static void
2166 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2167 {
2168 pool_cache_cpu_t *cc;
2169 int index;
2170
2171 index = ci->ci_index;
2172
2173 KASSERT(index < __arraycount(pc->pc_cpus));
2174
2175 if ((cc = pc->pc_cpus[index]) != NULL) {
2176 return;
2177 }
2178
2179 /*
2180 * The first CPU is 'free'. This needs to be the case for
2181 * bootstrap - we may not be able to allocate yet.
2182 */
2183 if (pc->pc_ncpu == 0) {
2184 cc = &pc->pc_cpu0;
2185 pc->pc_ncpu = 1;
2186 } else {
2187 pc->pc_ncpu++;
2188 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2189 }
2190
2191 cc->cc_current = __UNCONST(&pcg_dummy);
2192 cc->cc_previous = __UNCONST(&pcg_dummy);
2193 cc->cc_pcgcache = pc->pc_pcgcache;
2194 cc->cc_hits = 0;
2195 cc->cc_misses = 0;
2196 cc->cc_pcmisses = 0;
2197 cc->cc_contended = 0;
2198 cc->cc_nfull = 0;
2199 cc->cc_npart = 0;
2200
2201 pc->pc_cpus[index] = cc;
2202 }
2203
2204 /*
2205 * pool_cache_cpu_init:
2206 *
2207 * Called whenever a new CPU is attached.
2208 */
2209 void
2210 pool_cache_cpu_init(struct cpu_info *ci)
2211 {
2212 pool_cache_t pc;
2213
2214 mutex_enter(&pool_head_lock);
2215 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2216 pc->pc_refcnt++;
2217 mutex_exit(&pool_head_lock);
2218
2219 pool_cache_cpu_init1(ci, pc);
2220
2221 mutex_enter(&pool_head_lock);
2222 pc->pc_refcnt--;
2223 cv_broadcast(&pool_busy);
2224 }
2225 mutex_exit(&pool_head_lock);
2226 }
2227
2228 /*
2229 * pool_cache_reclaim:
2230 *
2231 * Reclaim memory from a pool cache.
2232 */
2233 bool
2234 pool_cache_reclaim(pool_cache_t pc)
2235 {
2236
2237 return pool_reclaim(&pc->pc_pool);
2238 }
2239
2240 static void
2241 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2242 {
2243 (*pc->pc_dtor)(pc->pc_arg, object);
2244 pool_put(&pc->pc_pool, object);
2245 }
2246
2247 /*
2248 * pool_cache_destruct_object:
2249 *
2250 * Force destruction of an object and its release back into
2251 * the pool.
2252 */
2253 void
2254 pool_cache_destruct_object(pool_cache_t pc, void *object)
2255 {
2256
2257 FREECHECK_IN(&pc->pc_freecheck, object);
2258
2259 pool_cache_destruct_object1(pc, object);
2260 }
2261
2262 /*
2263 * pool_cache_invalidate_groups:
2264 *
2265 * Invalidate a chain of groups and destruct all objects. Return the
2266 * number of groups that were invalidated.
2267 */
2268 static int
2269 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2270 {
2271 void *object;
2272 pcg_t *next;
2273 int i, n;
2274
2275 for (n = 0; pcg != NULL; pcg = next, n++) {
2276 next = pcg->pcg_next;
2277
2278 for (i = 0; i < pcg->pcg_avail; i++) {
2279 object = pcg->pcg_objects[i].pcgo_va;
2280 pool_cache_destruct_object1(pc, object);
2281 }
2282
2283 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2284 pool_put(&pcg_large_pool, pcg);
2285 } else {
2286 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2287 pool_put(&pcg_normal_pool, pcg);
2288 }
2289 }
2290 return n;
2291 }
2292
2293 /*
2294 * pool_cache_invalidate:
2295 *
2296 * Invalidate a pool cache (destruct and release all of the
2297 * cached objects). Does not reclaim objects from the pool.
2298 *
2299 * Note: For pool caches that provide constructed objects, there
2300 * is an assumption that another level of synchronization is occurring
2301 * between the input to the constructor and the cache invalidation.
2302 *
2303 * Invalidation is a costly process and should not be called from
2304 * interrupt context.
2305 */
2306 void
2307 pool_cache_invalidate(pool_cache_t pc)
2308 {
2309 uint64_t where;
2310 pcg_t *pcg;
2311 int n, s;
2312
2313 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2314
2315 if (ncpu < 2 || !mp_online) {
2316 /*
2317 * We might be called early enough in the boot process
2318 * for the CPU data structures to not be fully initialized.
2319 * In this case, transfer the content of the local CPU's
2320 * cache back into global cache as only this CPU is currently
2321 * running.
2322 */
2323 pool_cache_transfer(pc);
2324 } else {
2325 /*
2326 * Signal all CPUs that they must transfer their local
2327 * cache back to the global pool then wait for the xcall to
2328 * complete.
2329 */
2330 where = xc_broadcast(0,
2331 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2332 xc_wait(where);
2333 }
2334
2335 /* Now dequeue and invalidate everything. */
2336 pcg = pool_pcg_trunc(&pcg_normal_cache);
2337 (void)pool_cache_invalidate_groups(pc, pcg);
2338
2339 pcg = pool_pcg_trunc(&pcg_large_cache);
2340 (void)pool_cache_invalidate_groups(pc, pcg);
2341
2342 pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2343 n = pool_cache_invalidate_groups(pc, pcg);
2344 s = splvm();
2345 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2346 splx(s);
2347
2348 pcg = pool_pcg_trunc(&pc->pc_partgroups);
2349 n = pool_cache_invalidate_groups(pc, pcg);
2350 s = splvm();
2351 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2352 splx(s);
2353 }
2354
2355 /*
2356 * pool_cache_invalidate_cpu:
2357 *
2358 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2359 * identified by its associated index.
2360 * It is caller's responsibility to ensure that no operation is
2361 * taking place on this pool cache while doing this invalidation.
2362 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2363 * pool cached objects from a CPU different from the one currently running
2364 * may result in an undefined behaviour.
2365 */
2366 static void
2367 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2368 {
2369 pool_cache_cpu_t *cc;
2370 pcg_t *pcg;
2371
2372 if ((cc = pc->pc_cpus[index]) == NULL)
2373 return;
2374
2375 if ((pcg = cc->cc_current) != &pcg_dummy) {
2376 pcg->pcg_next = NULL;
2377 pool_cache_invalidate_groups(pc, pcg);
2378 }
2379 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2380 pcg->pcg_next = NULL;
2381 pool_cache_invalidate_groups(pc, pcg);
2382 }
2383 if (cc != &pc->pc_cpu0)
2384 pool_put(&cache_cpu_pool, cc);
2385
2386 }
2387
2388 void
2389 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2390 {
2391
2392 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2393 }
2394
2395 void
2396 pool_cache_setlowat(pool_cache_t pc, int n)
2397 {
2398
2399 pool_setlowat(&pc->pc_pool, n);
2400 }
2401
2402 void
2403 pool_cache_sethiwat(pool_cache_t pc, int n)
2404 {
2405
2406 pool_sethiwat(&pc->pc_pool, n);
2407 }
2408
2409 void
2410 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2411 {
2412
2413 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2414 }
2415
2416 void
2417 pool_cache_prime(pool_cache_t pc, int n)
2418 {
2419
2420 pool_prime(&pc->pc_pool, n);
2421 }
2422
2423 /*
2424 * pool_pcg_get:
2425 *
2426 * Get a cache group from the specified list. Return true if
2427 * contention was encountered. Must be called at IPL_VM because
2428 * of spin wait vs. kernel_lock.
2429 */
2430 static int
2431 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2432 {
2433 int count = SPINLOCK_BACKOFF_MIN;
2434 pcg_t *o, *n;
2435
2436 for (o = atomic_load_relaxed(head);; o = n) {
2437 if (__predict_false(o == &pcg_dummy)) {
2438 /* Wait for concurrent get to complete. */
2439 SPINLOCK_BACKOFF(count);
2440 n = atomic_load_relaxed(head);
2441 continue;
2442 }
2443 if (__predict_false(o == NULL)) {
2444 break;
2445 }
2446 /* Lock out concurrent get/put. */
2447 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2448 if (o == n) {
2449 /* Fetch pointer to next item and then unlock. */
2450 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2451 membar_datadep_consumer(); /* alpha */
2452 #endif
2453 n = atomic_load_relaxed(&o->pcg_next);
2454 atomic_store_release(head, n);
2455 break;
2456 }
2457 }
2458 *pcgp = o;
2459 return count != SPINLOCK_BACKOFF_MIN;
2460 }
2461
2462 /*
2463 * pool_pcg_trunc:
2464 *
2465 * Chop out entire list of pool cache groups.
2466 */
2467 static pcg_t *
2468 pool_pcg_trunc(pcg_t *volatile *head)
2469 {
2470 int count = SPINLOCK_BACKOFF_MIN, s;
2471 pcg_t *o, *n;
2472
2473 s = splvm();
2474 for (o = atomic_load_relaxed(head);; o = n) {
2475 if (__predict_false(o == &pcg_dummy)) {
2476 /* Wait for concurrent get to complete. */
2477 SPINLOCK_BACKOFF(count);
2478 n = atomic_load_relaxed(head);
2479 continue;
2480 }
2481 n = atomic_cas_ptr(head, o, NULL);
2482 if (o == n) {
2483 splx(s);
2484 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2485 membar_datadep_consumer(); /* alpha */
2486 #endif
2487 return o;
2488 }
2489 }
2490 }
2491
2492 /*
2493 * pool_pcg_put:
2494 *
2495 * Put a pool cache group to the specified list. Return true if
2496 * contention was encountered. Must be called at IPL_VM because of
2497 * spin wait vs. kernel_lock.
2498 */
2499 static int
2500 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2501 {
2502 int count = SPINLOCK_BACKOFF_MIN;
2503 pcg_t *o, *n;
2504
2505 for (o = atomic_load_relaxed(head);; o = n) {
2506 if (__predict_false(o == &pcg_dummy)) {
2507 /* Wait for concurrent get to complete. */
2508 SPINLOCK_BACKOFF(count);
2509 n = atomic_load_relaxed(head);
2510 continue;
2511 }
2512 pcg->pcg_next = o;
2513 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2514 membar_exit();
2515 #endif
2516 n = atomic_cas_ptr(head, o, pcg);
2517 if (o == n) {
2518 return count != SPINLOCK_BACKOFF_MIN;
2519 }
2520 }
2521 }
2522
2523 static bool __noinline
2524 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2525 void **objectp, paddr_t *pap, int flags)
2526 {
2527 pcg_t *pcg, *cur;
2528 void *object;
2529
2530 KASSERT(cc->cc_current->pcg_avail == 0);
2531 KASSERT(cc->cc_previous->pcg_avail == 0);
2532
2533 cc->cc_misses++;
2534
2535 /*
2536 * If there's a full group, release our empty group back to the
2537 * cache. Install the full group as cc_current and return.
2538 */
2539 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2540 if (__predict_true(pcg != NULL)) {
2541 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2542 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2543 KASSERT(cur->pcg_avail == 0);
2544 (void)pool_pcg_put(cc->cc_pcgcache, cur);
2545 }
2546 cc->cc_nfull--;
2547 cc->cc_current = pcg;
2548 return true;
2549 }
2550
2551 /*
2552 * Nothing available locally or in cache. Take the slow
2553 * path: fetch a new object from the pool and construct
2554 * it.
2555 */
2556 cc->cc_pcmisses++;
2557 splx(s);
2558
2559 object = pool_get(&pc->pc_pool, flags);
2560 *objectp = object;
2561 if (__predict_false(object == NULL)) {
2562 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2563 return false;
2564 }
2565
2566 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2567 pool_put(&pc->pc_pool, object);
2568 *objectp = NULL;
2569 return false;
2570 }
2571
2572 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2573
2574 if (pap != NULL) {
2575 #ifdef POOL_VTOPHYS
2576 *pap = POOL_VTOPHYS(object);
2577 #else
2578 *pap = POOL_PADDR_INVALID;
2579 #endif
2580 }
2581
2582 FREECHECK_OUT(&pc->pc_freecheck, object);
2583 return false;
2584 }
2585
2586 /*
2587 * pool_cache_get{,_paddr}:
2588 *
2589 * Get an object from a pool cache (optionally returning
2590 * the physical address of the object).
2591 */
2592 void *
2593 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2594 {
2595 pool_cache_cpu_t *cc;
2596 pcg_t *pcg;
2597 void *object;
2598 int s;
2599
2600 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2601 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2602 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2603 "%s: [%s] is IPL_NONE, but called from interrupt context",
2604 __func__, pc->pc_pool.pr_wchan);
2605
2606 if (flags & PR_WAITOK) {
2607 ASSERT_SLEEPABLE();
2608 }
2609
2610 if (flags & PR_NOWAIT) {
2611 if (fault_inject())
2612 return NULL;
2613 }
2614
2615 /* Lock out interrupts and disable preemption. */
2616 s = splvm();
2617 while (/* CONSTCOND */ true) {
2618 /* Try and allocate an object from the current group. */
2619 cc = pc->pc_cpus[curcpu()->ci_index];
2620 pcg = cc->cc_current;
2621 if (__predict_true(pcg->pcg_avail > 0)) {
2622 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2623 if (__predict_false(pap != NULL))
2624 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2625 #if defined(DIAGNOSTIC)
2626 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2627 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2628 KASSERT(object != NULL);
2629 #endif
2630 cc->cc_hits++;
2631 splx(s);
2632 FREECHECK_OUT(&pc->pc_freecheck, object);
2633 pool_redzone_fill(&pc->pc_pool, object);
2634 pool_cache_get_kmsan(pc, object);
2635 return object;
2636 }
2637
2638 /*
2639 * That failed. If the previous group isn't empty, swap
2640 * it with the current group and allocate from there.
2641 */
2642 pcg = cc->cc_previous;
2643 if (__predict_true(pcg->pcg_avail > 0)) {
2644 cc->cc_previous = cc->cc_current;
2645 cc->cc_current = pcg;
2646 continue;
2647 }
2648
2649 /*
2650 * Can't allocate from either group: try the slow path.
2651 * If get_slow() allocated an object for us, or if
2652 * no more objects are available, it will return false.
2653 * Otherwise, we need to retry.
2654 */
2655 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2656 if (object != NULL) {
2657 kmsan_orig(object, pc->pc_pool.pr_size,
2658 KMSAN_TYPE_POOL, __RET_ADDR);
2659 }
2660 break;
2661 }
2662 }
2663
2664 /*
2665 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2666 * pool_cache_get can fail even in the PR_WAITOK case, if the
2667 * constructor fails.
2668 */
2669 return object;
2670 }
2671
2672 static bool __noinline
2673 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2674 {
2675 pcg_t *pcg, *cur;
2676
2677 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2678 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2679
2680 cc->cc_misses++;
2681
2682 /*
2683 * Try to get an empty group from the cache. If there are no empty
2684 * groups in the cache then allocate one.
2685 */
2686 (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2687 if (__predict_false(pcg == NULL)) {
2688 if (__predict_true(!pool_cache_disable)) {
2689 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2690 }
2691 if (__predict_true(pcg != NULL)) {
2692 pcg->pcg_avail = 0;
2693 pcg->pcg_size = pc->pc_pcgsize;
2694 }
2695 }
2696
2697 /*
2698 * If there's a empty group, release our full group back to the
2699 * cache. Install the empty group to the local CPU and return.
2700 */
2701 if (pcg != NULL) {
2702 KASSERT(pcg->pcg_avail == 0);
2703 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2704 cc->cc_previous = pcg;
2705 } else {
2706 cur = cc->cc_current;
2707 if (__predict_true(cur != &pcg_dummy)) {
2708 KASSERT(cur->pcg_avail == cur->pcg_size);
2709 cc->cc_contended +=
2710 pool_pcg_put(&pc->pc_fullgroups, cur);
2711 cc->cc_nfull++;
2712 }
2713 cc->cc_current = pcg;
2714 }
2715 return true;
2716 }
2717
2718 /*
2719 * Nothing available locally or in cache, and we didn't
2720 * allocate an empty group. Take the slow path and destroy
2721 * the object here and now.
2722 */
2723 cc->cc_pcmisses++;
2724 splx(s);
2725 pool_cache_destruct_object(pc, object);
2726
2727 return false;
2728 }
2729
2730 /*
2731 * pool_cache_put{,_paddr}:
2732 *
2733 * Put an object back to the pool cache (optionally caching the
2734 * physical address of the object).
2735 */
2736 void
2737 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2738 {
2739 pool_cache_cpu_t *cc;
2740 pcg_t *pcg;
2741 int s;
2742
2743 KASSERT(object != NULL);
2744 pool_cache_put_kmsan(pc, object);
2745 pool_cache_redzone_check(pc, object);
2746 FREECHECK_IN(&pc->pc_freecheck, object);
2747
2748 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2749 pc_phinpage_check(pc, object);
2750 }
2751
2752 if (pool_cache_put_nocache(pc, object)) {
2753 return;
2754 }
2755
2756 /* Lock out interrupts and disable preemption. */
2757 s = splvm();
2758 while (/* CONSTCOND */ true) {
2759 /* If the current group isn't full, release it there. */
2760 cc = pc->pc_cpus[curcpu()->ci_index];
2761 pcg = cc->cc_current;
2762 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2763 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2764 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2765 pcg->pcg_avail++;
2766 cc->cc_hits++;
2767 splx(s);
2768 return;
2769 }
2770
2771 /*
2772 * That failed. If the previous group isn't full, swap
2773 * it with the current group and try again.
2774 */
2775 pcg = cc->cc_previous;
2776 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2777 cc->cc_previous = cc->cc_current;
2778 cc->cc_current = pcg;
2779 continue;
2780 }
2781
2782 /*
2783 * Can't free to either group: try the slow path.
2784 * If put_slow() releases the object for us, it
2785 * will return false. Otherwise we need to retry.
2786 */
2787 if (!pool_cache_put_slow(pc, cc, s, object))
2788 break;
2789 }
2790 }
2791
2792 /*
2793 * pool_cache_transfer:
2794 *
2795 * Transfer objects from the per-CPU cache to the global cache.
2796 * Run within a cross-call thread.
2797 */
2798 static void
2799 pool_cache_transfer(pool_cache_t pc)
2800 {
2801 pool_cache_cpu_t *cc;
2802 pcg_t *prev, *cur;
2803 int s;
2804
2805 s = splvm();
2806 cc = pc->pc_cpus[curcpu()->ci_index];
2807 cur = cc->cc_current;
2808 cc->cc_current = __UNCONST(&pcg_dummy);
2809 prev = cc->cc_previous;
2810 cc->cc_previous = __UNCONST(&pcg_dummy);
2811 if (cur != &pcg_dummy) {
2812 if (cur->pcg_avail == cur->pcg_size) {
2813 (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2814 cc->cc_nfull++;
2815 } else if (cur->pcg_avail == 0) {
2816 (void)pool_pcg_put(pc->pc_pcgcache, cur);
2817 } else {
2818 (void)pool_pcg_put(&pc->pc_partgroups, cur);
2819 cc->cc_npart++;
2820 }
2821 }
2822 if (prev != &pcg_dummy) {
2823 if (prev->pcg_avail == prev->pcg_size) {
2824 (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2825 cc->cc_nfull++;
2826 } else if (prev->pcg_avail == 0) {
2827 (void)pool_pcg_put(pc->pc_pcgcache, prev);
2828 } else {
2829 (void)pool_pcg_put(&pc->pc_partgroups, prev);
2830 cc->cc_npart++;
2831 }
2832 }
2833 splx(s);
2834 }
2835
2836 static int
2837 pool_bigidx(size_t size)
2838 {
2839 int i;
2840
2841 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2842 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2843 return i;
2844 }
2845 panic("pool item size %zu too large, use a custom allocator", size);
2846 }
2847
2848 static void *
2849 pool_allocator_alloc(struct pool *pp, int flags)
2850 {
2851 struct pool_allocator *pa = pp->pr_alloc;
2852 void *res;
2853
2854 res = (*pa->pa_alloc)(pp, flags);
2855 if (res == NULL && (flags & PR_WAITOK) == 0) {
2856 /*
2857 * We only run the drain hook here if PR_NOWAIT.
2858 * In other cases, the hook will be run in
2859 * pool_reclaim().
2860 */
2861 if (pp->pr_drain_hook != NULL) {
2862 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2863 res = (*pa->pa_alloc)(pp, flags);
2864 }
2865 }
2866 return res;
2867 }
2868
2869 static void
2870 pool_allocator_free(struct pool *pp, void *v)
2871 {
2872 struct pool_allocator *pa = pp->pr_alloc;
2873
2874 if (pp->pr_redzone) {
2875 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2876 }
2877 (*pa->pa_free)(pp, v);
2878 }
2879
2880 void *
2881 pool_page_alloc(struct pool *pp, int flags)
2882 {
2883 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2884 vmem_addr_t va;
2885 int ret;
2886
2887 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2888 vflags | VM_INSTANTFIT, &va);
2889
2890 return ret ? NULL : (void *)va;
2891 }
2892
2893 void
2894 pool_page_free(struct pool *pp, void *v)
2895 {
2896
2897 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2898 }
2899
2900 static void *
2901 pool_page_alloc_meta(struct pool *pp, int flags)
2902 {
2903 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2904 vmem_addr_t va;
2905 int ret;
2906
2907 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2908 vflags | VM_INSTANTFIT, &va);
2909
2910 return ret ? NULL : (void *)va;
2911 }
2912
2913 static void
2914 pool_page_free_meta(struct pool *pp, void *v)
2915 {
2916
2917 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2918 }
2919
2920 #ifdef KMSAN
2921 static inline void
2922 pool_get_kmsan(struct pool *pp, void *p)
2923 {
2924 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2925 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2926 }
2927
2928 static inline void
2929 pool_put_kmsan(struct pool *pp, void *p)
2930 {
2931 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2932 }
2933
2934 static inline void
2935 pool_cache_get_kmsan(pool_cache_t pc, void *p)
2936 {
2937 if (__predict_false(pc_has_ctor(pc))) {
2938 return;
2939 }
2940 pool_get_kmsan(&pc->pc_pool, p);
2941 }
2942
2943 static inline void
2944 pool_cache_put_kmsan(pool_cache_t pc, void *p)
2945 {
2946 pool_put_kmsan(&pc->pc_pool, p);
2947 }
2948 #endif
2949
2950 #ifdef POOL_QUARANTINE
2951 static void
2952 pool_quarantine_init(struct pool *pp)
2953 {
2954 pp->pr_quar.rotor = 0;
2955 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2956 }
2957
2958 static void
2959 pool_quarantine_flush(struct pool *pp)
2960 {
2961 pool_quar_t *quar = &pp->pr_quar;
2962 struct pool_pagelist pq;
2963 size_t i;
2964
2965 LIST_INIT(&pq);
2966
2967 mutex_enter(&pp->pr_lock);
2968 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2969 if (quar->list[i] == 0)
2970 continue;
2971 pool_do_put(pp, (void *)quar->list[i], &pq);
2972 }
2973 mutex_exit(&pp->pr_lock);
2974
2975 pr_pagelist_free(pp, &pq);
2976 }
2977
2978 static bool
2979 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2980 {
2981 pool_quar_t *quar = &pp->pr_quar;
2982 uintptr_t old;
2983
2984 if (pp->pr_roflags & PR_NOTOUCH) {
2985 return false;
2986 }
2987
2988 pool_redzone_check(pp, v);
2989
2990 old = quar->list[quar->rotor];
2991 quar->list[quar->rotor] = (uintptr_t)v;
2992 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2993 if (old != 0) {
2994 pool_do_put(pp, (void *)old, pq);
2995 }
2996
2997 return true;
2998 }
2999 #endif
3000
3001 #ifdef POOL_NOCACHE
3002 static bool
3003 pool_cache_put_nocache(pool_cache_t pc, void *p)
3004 {
3005 pool_cache_destruct_object(pc, p);
3006 return true;
3007 }
3008 #endif
3009
3010 #ifdef POOL_REDZONE
3011 #if defined(_LP64)
3012 # define PRIME 0x9e37fffffffc0000UL
3013 #else /* defined(_LP64) */
3014 # define PRIME 0x9e3779b1
3015 #endif /* defined(_LP64) */
3016 #define STATIC_BYTE 0xFE
3017 CTASSERT(POOL_REDZONE_SIZE > 1);
3018
3019 #ifndef KASAN
3020 static inline uint8_t
3021 pool_pattern_generate(const void *p)
3022 {
3023 return (uint8_t)(((uintptr_t)p) * PRIME
3024 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3025 }
3026 #endif
3027
3028 static void
3029 pool_redzone_init(struct pool *pp, size_t requested_size)
3030 {
3031 size_t redzsz;
3032 size_t nsz;
3033
3034 #ifdef KASAN
3035 redzsz = requested_size;
3036 kasan_add_redzone(&redzsz);
3037 redzsz -= requested_size;
3038 #else
3039 redzsz = POOL_REDZONE_SIZE;
3040 #endif
3041
3042 if (pp->pr_roflags & PR_NOTOUCH) {
3043 pp->pr_redzone = false;
3044 return;
3045 }
3046
3047 /*
3048 * We may have extended the requested size earlier; check if
3049 * there's naturally space in the padding for a red zone.
3050 */
3051 if (pp->pr_size - requested_size >= redzsz) {
3052 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3053 pp->pr_redzone = true;
3054 return;
3055 }
3056
3057 /*
3058 * No space in the natural padding; check if we can extend a
3059 * bit the size of the pool.
3060 */
3061 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3062 if (nsz <= pp->pr_alloc->pa_pagesz) {
3063 /* Ok, we can */
3064 pp->pr_size = nsz;
3065 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3066 pp->pr_redzone = true;
3067 } else {
3068 /* No space for a red zone... snif :'( */
3069 pp->pr_redzone = false;
3070 printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3071 }
3072 }
3073
3074 static void
3075 pool_redzone_fill(struct pool *pp, void *p)
3076 {
3077 if (!pp->pr_redzone)
3078 return;
3079 #ifdef KASAN
3080 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3081 KASAN_POOL_REDZONE);
3082 #else
3083 uint8_t *cp, pat;
3084 const uint8_t *ep;
3085
3086 cp = (uint8_t *)p + pp->pr_reqsize;
3087 ep = cp + POOL_REDZONE_SIZE;
3088
3089 /*
3090 * We really don't want the first byte of the red zone to be '\0';
3091 * an off-by-one in a string may not be properly detected.
3092 */
3093 pat = pool_pattern_generate(cp);
3094 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3095 cp++;
3096
3097 while (cp < ep) {
3098 *cp = pool_pattern_generate(cp);
3099 cp++;
3100 }
3101 #endif
3102 }
3103
3104 static void
3105 pool_redzone_check(struct pool *pp, void *p)
3106 {
3107 if (!pp->pr_redzone)
3108 return;
3109 #ifdef KASAN
3110 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3111 #else
3112 uint8_t *cp, pat, expected;
3113 const uint8_t *ep;
3114
3115 cp = (uint8_t *)p + pp->pr_reqsize;
3116 ep = cp + POOL_REDZONE_SIZE;
3117
3118 pat = pool_pattern_generate(cp);
3119 expected = (pat == '\0') ? STATIC_BYTE: pat;
3120 if (__predict_false(*cp != expected)) {
3121 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3122 pp->pr_wchan, *cp, expected);
3123 }
3124 cp++;
3125
3126 while (cp < ep) {
3127 expected = pool_pattern_generate(cp);
3128 if (__predict_false(*cp != expected)) {
3129 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3130 pp->pr_wchan, *cp, expected);
3131 }
3132 cp++;
3133 }
3134 #endif
3135 }
3136
3137 static void
3138 pool_cache_redzone_check(pool_cache_t pc, void *p)
3139 {
3140 #ifdef KASAN
3141 /* If there is a ctor/dtor, leave the data as valid. */
3142 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3143 return;
3144 }
3145 #endif
3146 pool_redzone_check(&pc->pc_pool, p);
3147 }
3148
3149 #endif /* POOL_REDZONE */
3150
3151 #if defined(DDB)
3152 static bool
3153 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3154 {
3155
3156 return (uintptr_t)ph->ph_page <= addr &&
3157 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3158 }
3159
3160 static bool
3161 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3162 {
3163
3164 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3165 }
3166
3167 static bool
3168 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3169 {
3170 int i;
3171
3172 if (pcg == NULL) {
3173 return false;
3174 }
3175 for (i = 0; i < pcg->pcg_avail; i++) {
3176 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3177 return true;
3178 }
3179 }
3180 return false;
3181 }
3182
3183 static bool
3184 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3185 {
3186
3187 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3188 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3189 pool_item_bitmap_t *bitmap =
3190 ph->ph_bitmap + (idx / BITMAP_SIZE);
3191 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3192
3193 return (*bitmap & mask) == 0;
3194 } else {
3195 struct pool_item *pi;
3196
3197 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3198 if (pool_in_item(pp, pi, addr)) {
3199 return false;
3200 }
3201 }
3202 return true;
3203 }
3204 }
3205
3206 void
3207 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3208 {
3209 struct pool *pp;
3210
3211 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3212 struct pool_item_header *ph;
3213 uintptr_t item;
3214 bool allocated = true;
3215 bool incache = false;
3216 bool incpucache = false;
3217 char cpucachestr[32];
3218
3219 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3220 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3221 if (pool_in_page(pp, ph, addr)) {
3222 goto found;
3223 }
3224 }
3225 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3226 if (pool_in_page(pp, ph, addr)) {
3227 allocated =
3228 pool_allocated(pp, ph, addr);
3229 goto found;
3230 }
3231 }
3232 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3233 if (pool_in_page(pp, ph, addr)) {
3234 allocated = false;
3235 goto found;
3236 }
3237 }
3238 continue;
3239 } else {
3240 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3241 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3242 continue;
3243 }
3244 allocated = pool_allocated(pp, ph, addr);
3245 }
3246 found:
3247 if (allocated && pp->pr_cache) {
3248 pool_cache_t pc = pp->pr_cache;
3249 struct pool_cache_group *pcg;
3250 int i;
3251
3252 for (pcg = pc->pc_fullgroups; pcg != NULL;
3253 pcg = pcg->pcg_next) {
3254 if (pool_in_cg(pp, pcg, addr)) {
3255 incache = true;
3256 goto print;
3257 }
3258 }
3259 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3260 pool_cache_cpu_t *cc;
3261
3262 if ((cc = pc->pc_cpus[i]) == NULL) {
3263 continue;
3264 }
3265 if (pool_in_cg(pp, cc->cc_current, addr) ||
3266 pool_in_cg(pp, cc->cc_previous, addr)) {
3267 struct cpu_info *ci =
3268 cpu_lookup(i);
3269
3270 incpucache = true;
3271 snprintf(cpucachestr,
3272 sizeof(cpucachestr),
3273 "cached by CPU %u",
3274 ci->ci_index);
3275 goto print;
3276 }
3277 }
3278 }
3279 print:
3280 item = (uintptr_t)ph->ph_page + ph->ph_off;
3281 item = item + rounddown(addr - item, pp->pr_size);
3282 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3283 (void *)addr, item, (size_t)(addr - item),
3284 pp->pr_wchan,
3285 incpucache ? cpucachestr :
3286 incache ? "cached" : allocated ? "allocated" : "free");
3287 }
3288 }
3289 #endif /* defined(DDB) */
3290
3291 static int
3292 pool_sysctl(SYSCTLFN_ARGS)
3293 {
3294 struct pool_sysctl data;
3295 struct pool *pp;
3296 struct pool_cache *pc;
3297 pool_cache_cpu_t *cc;
3298 int error;
3299 size_t i, written;
3300
3301 if (oldp == NULL) {
3302 *oldlenp = 0;
3303 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3304 *oldlenp += sizeof(data);
3305 return 0;
3306 }
3307
3308 memset(&data, 0, sizeof(data));
3309 error = 0;
3310 written = 0;
3311 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3312 if (written + sizeof(data) > *oldlenp)
3313 break;
3314 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3315 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3316 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3317 #define COPY(field) data.field = pp->field
3318 COPY(pr_size);
3319
3320 COPY(pr_itemsperpage);
3321 COPY(pr_nitems);
3322 COPY(pr_nout);
3323 COPY(pr_hardlimit);
3324 COPY(pr_npages);
3325 COPY(pr_minpages);
3326 COPY(pr_maxpages);
3327
3328 COPY(pr_nget);
3329 COPY(pr_nfail);
3330 COPY(pr_nput);
3331 COPY(pr_npagealloc);
3332 COPY(pr_npagefree);
3333 COPY(pr_hiwat);
3334 COPY(pr_nidle);
3335 #undef COPY
3336
3337 data.pr_cache_nmiss_pcpu = 0;
3338 data.pr_cache_nhit_pcpu = 0;
3339 data.pr_cache_nmiss_global = 0;
3340 data.pr_cache_nempty = 0;
3341 data.pr_cache_ncontended = 0;
3342 data.pr_cache_npartial = 0;
3343 if (pp->pr_cache) {
3344 uint32_t nfull = 0;
3345 pc = pp->pr_cache;
3346 data.pr_cache_meta_size = pc->pc_pcgsize;
3347 for (i = 0; i < pc->pc_ncpu; ++i) {
3348 cc = pc->pc_cpus[i];
3349 if (cc == NULL)
3350 continue;
3351 data.pr_cache_ncontended += cc->cc_contended;
3352 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3353 data.pr_cache_nhit_pcpu += cc->cc_hits;
3354 data.pr_cache_nmiss_global += cc->cc_pcmisses;
3355 nfull += cc->cc_nfull; /* 32-bit rollover! */
3356 data.pr_cache_npartial += cc->cc_npart;
3357 }
3358 data.pr_cache_nfull = nfull;
3359 } else {
3360 data.pr_cache_meta_size = 0;
3361 data.pr_cache_nfull = 0;
3362 }
3363 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3364 data.pr_cache_nmiss_global;
3365
3366 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3367 if (error)
3368 break;
3369 written += sizeof(data);
3370 oldp = (char *)oldp + sizeof(data);
3371 }
3372
3373 *oldlenp = written;
3374 return error;
3375 }
3376
3377 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3378 {
3379 const struct sysctlnode *rnode = NULL;
3380
3381 sysctl_createv(clog, 0, NULL, &rnode,
3382 CTLFLAG_PERMANENT,
3383 CTLTYPE_STRUCT, "pool",
3384 SYSCTL_DESCR("Get pool statistics"),
3385 pool_sysctl, 0, NULL, 0,
3386 CTL_KERN, CTL_CREATE, CTL_EOL);
3387 }
3388