subr_pool.c revision 1.274.2.2 1 /* $NetBSD: subr_pool.c,v 1.274.2.2 2021/04/03 22:29:00 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 * 2020 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.274.2.2 2021/04/03 22:29:00 thorpej Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63
64 #include <uvm/uvm_extern.h>
65
66 /*
67 * Pool resource management utility.
68 *
69 * Memory is allocated in pages which are split into pieces according to
70 * the pool item size. Each page is kept on one of three lists in the
71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 * for empty, full and partially-full pages respectively. The individual
73 * pool items are on a linked list headed by `ph_itemlist' in each page
74 * header. The memory for building the page list is either taken from
75 * the allocated pages themselves (for small pool items) or taken from
76 * an internal pool of page headers (`phpool').
77 */
78
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81
82 /* Private pool for page header structures */
83 #define PHPOOL_MAX 8
84 static struct pool phpool[PHPOOL_MAX];
85 #define PHPOOL_FREELIST_NELEM(idx) \
86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 # define POOL_REDZONE_SIZE 8
99 # else
100 # define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz) __nothing
108 # define pool_redzone_fill(pp, ptr) __nothing
109 # define pool_redzone_check(pp, ptr) __nothing
110 # define pool_cache_redzone_check(pc, ptr) __nothing
111 #endif
112
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr) __nothing
120 #define pool_put_kmsan(pp, ptr) __nothing
121 #define pool_cache_get_kmsan(pc, ptr) __nothing
122 #define pool_cache_put_kmsan(pc, ptr) __nothing
123 #endif
124
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129 struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a) __nothing
132 #define pool_quarantine_flush(a) __nothing
133 #define pool_put_quarantine(a, b, c) false
134 #endif
135
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b) false
140 #endif
141
142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144
145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
147
148 /*
149 * Pool backend allocators.
150 *
151 * Each pool has a backend allocator that handles allocation, deallocation,
152 * and any additional draining that might be needed.
153 *
154 * We provide two standard allocators:
155 *
156 * pool_allocator_kmem - the default when no allocator is specified
157 *
158 * pool_allocator_nointr - used for pools that will not be accessed
159 * in interrupt context.
160 */
161 void *pool_page_alloc(struct pool *, int);
162 void pool_page_free(struct pool *, void *);
163
164 static void *pool_page_alloc_meta(struct pool *, int);
165 static void pool_page_free_meta(struct pool *, void *);
166
167 struct pool_allocator pool_allocator_kmem = {
168 .pa_alloc = pool_page_alloc,
169 .pa_free = pool_page_free,
170 .pa_pagesz = 0
171 };
172
173 struct pool_allocator pool_allocator_nointr = {
174 .pa_alloc = pool_page_alloc,
175 .pa_free = pool_page_free,
176 .pa_pagesz = 0
177 };
178
179 struct pool_allocator pool_allocator_meta = {
180 .pa_alloc = pool_page_alloc_meta,
181 .pa_free = pool_page_free_meta,
182 .pa_pagesz = 0
183 };
184
185 #define POOL_ALLOCATOR_BIG_BASE 13
186 static struct pool_allocator pool_allocator_big[] = {
187 {
188 .pa_alloc = pool_page_alloc,
189 .pa_free = pool_page_free,
190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
191 },
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
211 },
212 {
213 .pa_alloc = pool_page_alloc,
214 .pa_free = pool_page_free,
215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
216 },
217 {
218 .pa_alloc = pool_page_alloc,
219 .pa_free = pool_page_free,
220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
221 },
222 {
223 .pa_alloc = pool_page_alloc,
224 .pa_free = pool_page_free,
225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
226 },
227 {
228 .pa_alloc = pool_page_alloc,
229 .pa_free = pool_page_free,
230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
231 },
232 {
233 .pa_alloc = pool_page_alloc,
234 .pa_free = pool_page_free,
235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
236 },
237 {
238 .pa_alloc = pool_page_alloc,
239 .pa_free = pool_page_free,
240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
241 },
242 {
243 .pa_alloc = pool_page_alloc,
244 .pa_free = pool_page_free,
245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
246 }
247 };
248
249 static int pool_bigidx(size_t);
250
251 /* # of seconds to retain page after last use */
252 int pool_inactive_time = 10;
253
254 /* Next candidate for drainage (see pool_drain()) */
255 static struct pool *drainpp;
256
257 /* This lock protects both pool_head and drainpp. */
258 static kmutex_t pool_head_lock;
259 static kcondvar_t pool_busy;
260
261 /* This lock protects initialization of a potentially shared pool allocator */
262 static kmutex_t pool_allocator_lock;
263
264 static unsigned int poolid_counter = 0;
265
266 typedef uint32_t pool_item_bitmap_t;
267 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
268 #define BITMAP_MASK (BITMAP_SIZE - 1)
269 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
270
271 struct pool_item_header {
272 /* Page headers */
273 LIST_ENTRY(pool_item_header)
274 ph_pagelist; /* pool page list */
275 union {
276 /* !PR_PHINPAGE */
277 struct {
278 SPLAY_ENTRY(pool_item_header)
279 phu_node; /* off-page page headers */
280 } phu_offpage;
281 /* PR_PHINPAGE */
282 struct {
283 unsigned int phu_poolid;
284 } phu_onpage;
285 } ph_u1;
286 void * ph_page; /* this page's address */
287 uint32_t ph_time; /* last referenced */
288 uint16_t ph_nmissing; /* # of chunks in use */
289 uint16_t ph_off; /* start offset in page */
290 union {
291 /* !PR_USEBMAP */
292 struct {
293 LIST_HEAD(, pool_item)
294 phu_itemlist; /* chunk list for this page */
295 } phu_normal;
296 /* PR_USEBMAP */
297 struct {
298 pool_item_bitmap_t phu_bitmap[1];
299 } phu_notouch;
300 } ph_u2;
301 };
302 #define ph_node ph_u1.phu_offpage.phu_node
303 #define ph_poolid ph_u1.phu_onpage.phu_poolid
304 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
305 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
306
307 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
308
309 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
310 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
311
312 #if defined(DIAGNOSTIC) && !defined(KASAN)
313 #define POOL_CHECK_MAGIC
314 #endif
315
316 struct pool_item {
317 #ifdef POOL_CHECK_MAGIC
318 u_int pi_magic;
319 #endif
320 #define PI_MAGIC 0xdeaddeadU
321 /* Other entries use only this list entry */
322 LIST_ENTRY(pool_item) pi_list;
323 };
324
325 #define POOL_NEEDS_CATCHUP(pp) \
326 ((pp)->pr_nitems < (pp)->pr_minitems || \
327 (pp)->pr_npages < (pp)->pr_minpages)
328 #define POOL_OBJ_TO_PAGE(pp, v) \
329 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
330
331 /*
332 * Pool cache management.
333 *
334 * Pool caches provide a way for constructed objects to be cached by the
335 * pool subsystem. This can lead to performance improvements by avoiding
336 * needless object construction/destruction; it is deferred until absolutely
337 * necessary.
338 *
339 * Caches are grouped into cache groups. Each cache group references up
340 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
341 * object from the pool, it calls the object's constructor and places it
342 * into a cache group. When a cache group frees an object back to the
343 * pool, it first calls the object's destructor. This allows the object
344 * to persist in constructed form while freed to the cache.
345 *
346 * The pool references each cache, so that when a pool is drained by the
347 * pagedaemon, it can drain each individual cache as well. Each time a
348 * cache is drained, the most idle cache group is freed to the pool in
349 * its entirety.
350 *
351 * Pool caches are layed on top of pools. By layering them, we can avoid
352 * the complexity of cache management for pools which would not benefit
353 * from it.
354 */
355
356 static struct pool pcg_normal_pool;
357 static struct pool pcg_large_pool;
358 static struct pool cache_pool;
359 static struct pool cache_cpu_pool;
360
361 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
362 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
363
364 /* List of all caches. */
365 TAILQ_HEAD(,pool_cache) pool_cache_head =
366 TAILQ_HEAD_INITIALIZER(pool_cache_head);
367
368 int pool_cache_disable; /* global disable for caching */
369 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
370
371 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
372 void *);
373 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
374 void **, paddr_t *, int);
375 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
376 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
377 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
378 static void pool_cache_transfer(pool_cache_t);
379 static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
380 static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
381 static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
382
383 static int pool_catchup(struct pool *);
384 static void pool_prime_page(struct pool *, void *,
385 struct pool_item_header *);
386 static void pool_update_curpage(struct pool *);
387
388 static int pool_grow(struct pool *, int);
389 static void *pool_allocator_alloc(struct pool *, int);
390 static void pool_allocator_free(struct pool *, void *);
391
392 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
393 void (*)(const char *, ...) __printflike(1, 2));
394 static void pool_print1(struct pool *, const char *,
395 void (*)(const char *, ...) __printflike(1, 2));
396
397 static int pool_chk_page(struct pool *, const char *,
398 struct pool_item_header *);
399
400 /* -------------------------------------------------------------------------- */
401
402 static inline unsigned int
403 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
404 const void *v)
405 {
406 const char *cp = v;
407 unsigned int idx;
408
409 KASSERT(pp->pr_roflags & PR_USEBMAP);
410 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
411
412 if (__predict_false(idx >= pp->pr_itemsperpage)) {
413 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
414 pp->pr_itemsperpage);
415 }
416
417 return idx;
418 }
419
420 static inline void
421 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
422 void *obj)
423 {
424 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
425 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
426 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
427
428 if (__predict_false((*bitmap & mask) != 0)) {
429 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
430 }
431
432 *bitmap |= mask;
433 }
434
435 static inline void *
436 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
437 {
438 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
439 unsigned int idx;
440 int i;
441
442 for (i = 0; ; i++) {
443 int bit;
444
445 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
446 bit = ffs32(bitmap[i]);
447 if (bit) {
448 pool_item_bitmap_t mask;
449
450 bit--;
451 idx = (i * BITMAP_SIZE) + bit;
452 mask = 1U << bit;
453 KASSERT((bitmap[i] & mask) != 0);
454 bitmap[i] &= ~mask;
455 break;
456 }
457 }
458 KASSERT(idx < pp->pr_itemsperpage);
459 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
460 }
461
462 static inline void
463 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
464 {
465 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
466 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
467 int i;
468
469 for (i = 0; i < n; i++) {
470 bitmap[i] = (pool_item_bitmap_t)-1;
471 }
472 }
473
474 /* -------------------------------------------------------------------------- */
475
476 static inline void
477 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
478 void *obj)
479 {
480 struct pool_item *pi = obj;
481
482 #ifdef POOL_CHECK_MAGIC
483 pi->pi_magic = PI_MAGIC;
484 #endif
485
486 if (pp->pr_redzone) {
487 /*
488 * Mark the pool_item as valid. The rest is already
489 * invalid.
490 */
491 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
492 }
493
494 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
495 }
496
497 static inline void *
498 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
499 {
500 struct pool_item *pi;
501 void *v;
502
503 v = pi = LIST_FIRST(&ph->ph_itemlist);
504 if (__predict_false(v == NULL)) {
505 mutex_exit(&pp->pr_lock);
506 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
507 }
508 KASSERTMSG((pp->pr_nitems > 0),
509 "%s: [%s] nitems %u inconsistent on itemlist",
510 __func__, pp->pr_wchan, pp->pr_nitems);
511 #ifdef POOL_CHECK_MAGIC
512 KASSERTMSG((pi->pi_magic == PI_MAGIC),
513 "%s: [%s] free list modified: "
514 "magic=%x; page %p; item addr %p", __func__,
515 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
516 #endif
517
518 /*
519 * Remove from item list.
520 */
521 LIST_REMOVE(pi, pi_list);
522
523 return v;
524 }
525
526 /* -------------------------------------------------------------------------- */
527
528 static inline void
529 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
530 void *object)
531 {
532 if (__predict_false((void *)ph->ph_page != page)) {
533 panic("%s: [%s] item %p not part of pool", __func__,
534 pp->pr_wchan, object);
535 }
536 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
537 panic("%s: [%s] item %p below item space", __func__,
538 pp->pr_wchan, object);
539 }
540 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
541 panic("%s: [%s] item %p poolid %u != %u", __func__,
542 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
543 }
544 }
545
546 static inline void
547 pc_phinpage_check(pool_cache_t pc, void *object)
548 {
549 struct pool_item_header *ph;
550 struct pool *pp;
551 void *page;
552
553 pp = &pc->pc_pool;
554 page = POOL_OBJ_TO_PAGE(pp, object);
555 ph = (struct pool_item_header *)page;
556
557 pr_phinpage_check(pp, ph, page, object);
558 }
559
560 /* -------------------------------------------------------------------------- */
561
562 static inline int
563 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
564 {
565
566 /*
567 * We consider pool_item_header with smaller ph_page bigger. This
568 * unnatural ordering is for the benefit of pr_find_pagehead.
569 */
570 if (a->ph_page < b->ph_page)
571 return 1;
572 else if (a->ph_page > b->ph_page)
573 return -1;
574 else
575 return 0;
576 }
577
578 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
579 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
580
581 static inline struct pool_item_header *
582 pr_find_pagehead_noalign(struct pool *pp, void *v)
583 {
584 struct pool_item_header *ph, tmp;
585
586 tmp.ph_page = (void *)(uintptr_t)v;
587 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
588 if (ph == NULL) {
589 ph = SPLAY_ROOT(&pp->pr_phtree);
590 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
591 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
592 }
593 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
594 }
595
596 return ph;
597 }
598
599 /*
600 * Return the pool page header based on item address.
601 */
602 static inline struct pool_item_header *
603 pr_find_pagehead(struct pool *pp, void *v)
604 {
605 struct pool_item_header *ph, tmp;
606
607 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
608 ph = pr_find_pagehead_noalign(pp, v);
609 } else {
610 void *page = POOL_OBJ_TO_PAGE(pp, v);
611 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
612 ph = (struct pool_item_header *)page;
613 pr_phinpage_check(pp, ph, page, v);
614 } else {
615 tmp.ph_page = page;
616 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
617 }
618 }
619
620 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
621 ((char *)ph->ph_page <= (char *)v &&
622 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
623 return ph;
624 }
625
626 static void
627 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
628 {
629 struct pool_item_header *ph;
630
631 while ((ph = LIST_FIRST(pq)) != NULL) {
632 LIST_REMOVE(ph, ph_pagelist);
633 pool_allocator_free(pp, ph->ph_page);
634 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
635 pool_put(pp->pr_phpool, ph);
636 }
637 }
638
639 /*
640 * Remove a page from the pool.
641 */
642 static inline void
643 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
644 struct pool_pagelist *pq)
645 {
646
647 KASSERT(mutex_owned(&pp->pr_lock));
648
649 /*
650 * If the page was idle, decrement the idle page count.
651 */
652 if (ph->ph_nmissing == 0) {
653 KASSERT(pp->pr_nidle != 0);
654 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
655 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
656 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
657 pp->pr_nidle--;
658 }
659
660 pp->pr_nitems -= pp->pr_itemsperpage;
661
662 /*
663 * Unlink the page from the pool and queue it for release.
664 */
665 LIST_REMOVE(ph, ph_pagelist);
666 if (pp->pr_roflags & PR_PHINPAGE) {
667 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
668 panic("%s: [%s] ph %p poolid %u != %u",
669 __func__, pp->pr_wchan, ph, ph->ph_poolid,
670 pp->pr_poolid);
671 }
672 } else {
673 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
674 }
675 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
676
677 pp->pr_npages--;
678 pp->pr_npagefree++;
679
680 pool_update_curpage(pp);
681 }
682
683 /*
684 * Initialize all the pools listed in the "pools" link set.
685 */
686 void
687 pool_subsystem_init(void)
688 {
689 size_t size;
690 int idx;
691
692 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
693 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
694 cv_init(&pool_busy, "poolbusy");
695
696 /*
697 * Initialize private page header pool and cache magazine pool if we
698 * haven't done so yet.
699 */
700 for (idx = 0; idx < PHPOOL_MAX; idx++) {
701 static char phpool_names[PHPOOL_MAX][6+1+6+1];
702 int nelem;
703 size_t sz;
704
705 nelem = PHPOOL_FREELIST_NELEM(idx);
706 KASSERT(nelem != 0);
707 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
708 "phpool-%d", nelem);
709 sz = offsetof(struct pool_item_header,
710 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
711 pool_init(&phpool[idx], sz, 0, 0, 0,
712 phpool_names[idx], &pool_allocator_meta, IPL_VM);
713 }
714
715 size = sizeof(pcg_t) +
716 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
717 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
718 "pcgnormal", &pool_allocator_meta, IPL_VM);
719
720 size = sizeof(pcg_t) +
721 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
722 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
723 "pcglarge", &pool_allocator_meta, IPL_VM);
724
725 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
726 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
727
728 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
729 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
730 }
731
732 static inline bool
733 pool_init_is_phinpage(const struct pool *pp)
734 {
735 size_t pagesize;
736
737 if (pp->pr_roflags & PR_PHINPAGE) {
738 return true;
739 }
740 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
741 return false;
742 }
743
744 pagesize = pp->pr_alloc->pa_pagesz;
745
746 /*
747 * Threshold: the item size is below 1/16 of a page size, and below
748 * 8 times the page header size. The latter ensures we go off-page
749 * if the page header would make us waste a rather big item.
750 */
751 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
752 return true;
753 }
754
755 /* Put the header into the page if it doesn't waste any items. */
756 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
757 return true;
758 }
759
760 return false;
761 }
762
763 static inline bool
764 pool_init_is_usebmap(const struct pool *pp)
765 {
766 size_t bmapsize;
767
768 if (pp->pr_roflags & PR_NOTOUCH) {
769 return true;
770 }
771
772 /*
773 * If we're off-page, go with a bitmap.
774 */
775 if (!(pp->pr_roflags & PR_PHINPAGE)) {
776 return true;
777 }
778
779 /*
780 * If we're on-page, and the page header can already contain a bitmap
781 * big enough to cover all the items of the page, go with a bitmap.
782 */
783 bmapsize = roundup(PHSIZE, pp->pr_align) -
784 offsetof(struct pool_item_header, ph_bitmap[0]);
785 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
786 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
787 return true;
788 }
789
790 return false;
791 }
792
793 /*
794 * Initialize the given pool resource structure.
795 *
796 * We export this routine to allow other kernel parts to declare
797 * static pools that must be initialized before kmem(9) is available.
798 */
799 void
800 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
801 const char *wchan, struct pool_allocator *palloc, int ipl)
802 {
803 struct pool *pp1;
804 size_t prsize;
805 int itemspace, slack;
806
807 /* XXX ioff will be removed. */
808 KASSERT(ioff == 0);
809
810 #ifdef DEBUG
811 if (__predict_true(!cold))
812 mutex_enter(&pool_head_lock);
813 /*
814 * Check that the pool hasn't already been initialised and
815 * added to the list of all pools.
816 */
817 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
818 if (pp == pp1)
819 panic("%s: [%s] already initialised", __func__,
820 wchan);
821 }
822 if (__predict_true(!cold))
823 mutex_exit(&pool_head_lock);
824 #endif
825
826 if (palloc == NULL)
827 palloc = &pool_allocator_kmem;
828
829 if (!cold)
830 mutex_enter(&pool_allocator_lock);
831 if (palloc->pa_refcnt++ == 0) {
832 if (palloc->pa_pagesz == 0)
833 palloc->pa_pagesz = PAGE_SIZE;
834
835 TAILQ_INIT(&palloc->pa_list);
836
837 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
838 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
839 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
840 }
841 if (!cold)
842 mutex_exit(&pool_allocator_lock);
843
844 if (align == 0)
845 align = ALIGN(1);
846
847 prsize = size;
848 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
849 prsize = sizeof(struct pool_item);
850
851 prsize = roundup(prsize, align);
852 KASSERTMSG((prsize <= palloc->pa_pagesz),
853 "%s: [%s] pool item size (%zu) larger than page size (%u)",
854 __func__, wchan, prsize, palloc->pa_pagesz);
855
856 /*
857 * Initialize the pool structure.
858 */
859 LIST_INIT(&pp->pr_emptypages);
860 LIST_INIT(&pp->pr_fullpages);
861 LIST_INIT(&pp->pr_partpages);
862 pp->pr_cache = NULL;
863 pp->pr_curpage = NULL;
864 pp->pr_npages = 0;
865 pp->pr_minitems = 0;
866 pp->pr_minpages = 0;
867 pp->pr_maxpages = UINT_MAX;
868 pp->pr_roflags = flags;
869 pp->pr_flags = 0;
870 pp->pr_size = prsize;
871 pp->pr_reqsize = size;
872 pp->pr_align = align;
873 pp->pr_wchan = wchan;
874 pp->pr_alloc = palloc;
875 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
876 pp->pr_nitems = 0;
877 pp->pr_nout = 0;
878 pp->pr_hardlimit = UINT_MAX;
879 pp->pr_hardlimit_warning = NULL;
880 pp->pr_hardlimit_ratecap.tv_sec = 0;
881 pp->pr_hardlimit_ratecap.tv_usec = 0;
882 pp->pr_hardlimit_warning_last.tv_sec = 0;
883 pp->pr_hardlimit_warning_last.tv_usec = 0;
884 pp->pr_drain_hook = NULL;
885 pp->pr_drain_hook_arg = NULL;
886 pp->pr_freecheck = NULL;
887 pp->pr_redzone = false;
888 pool_redzone_init(pp, size);
889 pool_quarantine_init(pp);
890
891 /*
892 * Decide whether to put the page header off-page to avoid wasting too
893 * large a part of the page or too big an item. Off-page page headers
894 * go on a hash table, so we can match a returned item with its header
895 * based on the page address.
896 */
897 if (pool_init_is_phinpage(pp)) {
898 /* Use the beginning of the page for the page header */
899 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
900 pp->pr_itemoffset = roundup(PHSIZE, align);
901 pp->pr_roflags |= PR_PHINPAGE;
902 } else {
903 /* The page header will be taken from our page header pool */
904 itemspace = palloc->pa_pagesz;
905 pp->pr_itemoffset = 0;
906 SPLAY_INIT(&pp->pr_phtree);
907 }
908
909 pp->pr_itemsperpage = itemspace / pp->pr_size;
910 KASSERT(pp->pr_itemsperpage != 0);
911
912 /*
913 * Decide whether to use a bitmap or a linked list to manage freed
914 * items.
915 */
916 if (pool_init_is_usebmap(pp)) {
917 pp->pr_roflags |= PR_USEBMAP;
918 }
919
920 /*
921 * If we're off-page, then we're using a bitmap; choose the appropriate
922 * pool to allocate page headers, whose size varies depending on the
923 * bitmap. If we're on-page, nothing to do.
924 */
925 if (!(pp->pr_roflags & PR_PHINPAGE)) {
926 int idx;
927
928 KASSERT(pp->pr_roflags & PR_USEBMAP);
929
930 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
931 idx++) {
932 /* nothing */
933 }
934 if (idx >= PHPOOL_MAX) {
935 /*
936 * if you see this panic, consider to tweak
937 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
938 */
939 panic("%s: [%s] too large itemsperpage(%d) for "
940 "PR_USEBMAP", __func__,
941 pp->pr_wchan, pp->pr_itemsperpage);
942 }
943 pp->pr_phpool = &phpool[idx];
944 } else {
945 pp->pr_phpool = NULL;
946 }
947
948 /*
949 * Use the slack between the chunks and the page header
950 * for "cache coloring".
951 */
952 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
953 pp->pr_maxcolor = rounddown(slack, align);
954 pp->pr_curcolor = 0;
955
956 pp->pr_nget = 0;
957 pp->pr_nfail = 0;
958 pp->pr_nput = 0;
959 pp->pr_npagealloc = 0;
960 pp->pr_npagefree = 0;
961 pp->pr_hiwat = 0;
962 pp->pr_nidle = 0;
963 pp->pr_refcnt = 0;
964
965 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
966 cv_init(&pp->pr_cv, wchan);
967 pp->pr_ipl = ipl;
968
969 /* Insert into the list of all pools. */
970 if (!cold)
971 mutex_enter(&pool_head_lock);
972 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
973 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
974 break;
975 }
976 if (pp1 == NULL)
977 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
978 else
979 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
980 if (!cold)
981 mutex_exit(&pool_head_lock);
982
983 /* Insert this into the list of pools using this allocator. */
984 if (!cold)
985 mutex_enter(&palloc->pa_lock);
986 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
987 if (!cold)
988 mutex_exit(&palloc->pa_lock);
989 }
990
991 /*
992 * De-commision a pool resource.
993 */
994 void
995 pool_destroy(struct pool *pp)
996 {
997 struct pool_pagelist pq;
998 struct pool_item_header *ph;
999
1000 pool_quarantine_flush(pp);
1001
1002 /* Remove from global pool list */
1003 mutex_enter(&pool_head_lock);
1004 while (pp->pr_refcnt != 0)
1005 cv_wait(&pool_busy, &pool_head_lock);
1006 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1007 if (drainpp == pp)
1008 drainpp = NULL;
1009 mutex_exit(&pool_head_lock);
1010
1011 /* Remove this pool from its allocator's list of pools. */
1012 mutex_enter(&pp->pr_alloc->pa_lock);
1013 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1014 mutex_exit(&pp->pr_alloc->pa_lock);
1015
1016 mutex_enter(&pool_allocator_lock);
1017 if (--pp->pr_alloc->pa_refcnt == 0)
1018 mutex_destroy(&pp->pr_alloc->pa_lock);
1019 mutex_exit(&pool_allocator_lock);
1020
1021 mutex_enter(&pp->pr_lock);
1022
1023 KASSERT(pp->pr_cache == NULL);
1024 KASSERTMSG((pp->pr_nout == 0),
1025 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1026 pp->pr_nout);
1027 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1028 KASSERT(LIST_EMPTY(&pp->pr_partpages));
1029
1030 /* Remove all pages */
1031 LIST_INIT(&pq);
1032 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1033 pr_rmpage(pp, ph, &pq);
1034
1035 mutex_exit(&pp->pr_lock);
1036
1037 pr_pagelist_free(pp, &pq);
1038 cv_destroy(&pp->pr_cv);
1039 mutex_destroy(&pp->pr_lock);
1040 }
1041
1042 void
1043 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1044 {
1045
1046 /* XXX no locking -- must be used just after pool_init() */
1047 KASSERTMSG((pp->pr_drain_hook == NULL),
1048 "%s: [%s] already set", __func__, pp->pr_wchan);
1049 pp->pr_drain_hook = fn;
1050 pp->pr_drain_hook_arg = arg;
1051 }
1052
1053 static struct pool_item_header *
1054 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1055 {
1056 struct pool_item_header *ph;
1057
1058 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1059 ph = storage;
1060 else
1061 ph = pool_get(pp->pr_phpool, flags);
1062
1063 return ph;
1064 }
1065
1066 /*
1067 * Grab an item from the pool.
1068 */
1069 void *
1070 pool_get(struct pool *pp, int flags)
1071 {
1072 struct pool_item_header *ph;
1073 void *v;
1074
1075 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1076 KASSERTMSG((pp->pr_itemsperpage != 0),
1077 "%s: [%s] pr_itemsperpage is zero, "
1078 "pool not initialized?", __func__, pp->pr_wchan);
1079 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1080 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1081 "%s: [%s] is IPL_NONE, but called from interrupt context",
1082 __func__, pp->pr_wchan);
1083 if (flags & PR_WAITOK) {
1084 ASSERT_SLEEPABLE();
1085 }
1086
1087 if (flags & PR_NOWAIT) {
1088 if (fault_inject())
1089 return NULL;
1090 }
1091
1092 mutex_enter(&pp->pr_lock);
1093 startover:
1094 /*
1095 * Check to see if we've reached the hard limit. If we have,
1096 * and we can wait, then wait until an item has been returned to
1097 * the pool.
1098 */
1099 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1100 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1101 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1102 if (pp->pr_drain_hook != NULL) {
1103 /*
1104 * Since the drain hook is going to free things
1105 * back to the pool, unlock, call the hook, re-lock,
1106 * and check the hardlimit condition again.
1107 */
1108 mutex_exit(&pp->pr_lock);
1109 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1110 mutex_enter(&pp->pr_lock);
1111 if (pp->pr_nout < pp->pr_hardlimit)
1112 goto startover;
1113 }
1114
1115 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1116 /*
1117 * XXX: A warning isn't logged in this case. Should
1118 * it be?
1119 */
1120 pp->pr_flags |= PR_WANTED;
1121 do {
1122 cv_wait(&pp->pr_cv, &pp->pr_lock);
1123 } while (pp->pr_flags & PR_WANTED);
1124 goto startover;
1125 }
1126
1127 /*
1128 * Log a message that the hard limit has been hit.
1129 */
1130 if (pp->pr_hardlimit_warning != NULL &&
1131 ratecheck(&pp->pr_hardlimit_warning_last,
1132 &pp->pr_hardlimit_ratecap))
1133 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1134
1135 pp->pr_nfail++;
1136
1137 mutex_exit(&pp->pr_lock);
1138 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1139 return NULL;
1140 }
1141
1142 /*
1143 * The convention we use is that if `curpage' is not NULL, then
1144 * it points at a non-empty bucket. In particular, `curpage'
1145 * never points at a page header which has PR_PHINPAGE set and
1146 * has no items in its bucket.
1147 */
1148 if ((ph = pp->pr_curpage) == NULL) {
1149 int error;
1150
1151 KASSERTMSG((pp->pr_nitems == 0),
1152 "%s: [%s] curpage NULL, inconsistent nitems %u",
1153 __func__, pp->pr_wchan, pp->pr_nitems);
1154
1155 /*
1156 * Call the back-end page allocator for more memory.
1157 * Release the pool lock, as the back-end page allocator
1158 * may block.
1159 */
1160 error = pool_grow(pp, flags);
1161 if (error != 0) {
1162 /*
1163 * pool_grow aborts when another thread
1164 * is allocating a new page. Retry if it
1165 * waited for it.
1166 */
1167 if (error == ERESTART)
1168 goto startover;
1169
1170 /*
1171 * We were unable to allocate a page or item
1172 * header, but we released the lock during
1173 * allocation, so perhaps items were freed
1174 * back to the pool. Check for this case.
1175 */
1176 if (pp->pr_curpage != NULL)
1177 goto startover;
1178
1179 pp->pr_nfail++;
1180 mutex_exit(&pp->pr_lock);
1181 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1182 return NULL;
1183 }
1184
1185 /* Start the allocation process over. */
1186 goto startover;
1187 }
1188 if (pp->pr_roflags & PR_USEBMAP) {
1189 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1190 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1191 v = pr_item_bitmap_get(pp, ph);
1192 } else {
1193 v = pr_item_linkedlist_get(pp, ph);
1194 }
1195 pp->pr_nitems--;
1196 pp->pr_nout++;
1197 if (ph->ph_nmissing == 0) {
1198 KASSERT(pp->pr_nidle > 0);
1199 pp->pr_nidle--;
1200
1201 /*
1202 * This page was previously empty. Move it to the list of
1203 * partially-full pages. This page is already curpage.
1204 */
1205 LIST_REMOVE(ph, ph_pagelist);
1206 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1207 }
1208 ph->ph_nmissing++;
1209 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1210 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1211 LIST_EMPTY(&ph->ph_itemlist)),
1212 "%s: [%s] nmissing (%u) inconsistent", __func__,
1213 pp->pr_wchan, ph->ph_nmissing);
1214 /*
1215 * This page is now full. Move it to the full list
1216 * and select a new current page.
1217 */
1218 LIST_REMOVE(ph, ph_pagelist);
1219 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1220 pool_update_curpage(pp);
1221 }
1222
1223 pp->pr_nget++;
1224
1225 /*
1226 * If we have a low water mark and we are now below that low
1227 * water mark, add more items to the pool.
1228 */
1229 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1230 /*
1231 * XXX: Should we log a warning? Should we set up a timeout
1232 * to try again in a second or so? The latter could break
1233 * a caller's assumptions about interrupt protection, etc.
1234 */
1235 }
1236
1237 mutex_exit(&pp->pr_lock);
1238 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1239 FREECHECK_OUT(&pp->pr_freecheck, v);
1240 pool_redzone_fill(pp, v);
1241 pool_get_kmsan(pp, v);
1242 if (flags & PR_ZERO)
1243 memset(v, 0, pp->pr_reqsize);
1244 return v;
1245 }
1246
1247 /*
1248 * Internal version of pool_put(). Pool is already locked/entered.
1249 */
1250 static void
1251 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1252 {
1253 struct pool_item_header *ph;
1254
1255 KASSERT(mutex_owned(&pp->pr_lock));
1256 pool_redzone_check(pp, v);
1257 pool_put_kmsan(pp, v);
1258 FREECHECK_IN(&pp->pr_freecheck, v);
1259 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1260
1261 KASSERTMSG((pp->pr_nout > 0),
1262 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1263
1264 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1265 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1266 }
1267
1268 /*
1269 * Return to item list.
1270 */
1271 if (pp->pr_roflags & PR_USEBMAP) {
1272 pr_item_bitmap_put(pp, ph, v);
1273 } else {
1274 pr_item_linkedlist_put(pp, ph, v);
1275 }
1276 KDASSERT(ph->ph_nmissing != 0);
1277 ph->ph_nmissing--;
1278 pp->pr_nput++;
1279 pp->pr_nitems++;
1280 pp->pr_nout--;
1281
1282 /* Cancel "pool empty" condition if it exists */
1283 if (pp->pr_curpage == NULL)
1284 pp->pr_curpage = ph;
1285
1286 if (pp->pr_flags & PR_WANTED) {
1287 pp->pr_flags &= ~PR_WANTED;
1288 cv_broadcast(&pp->pr_cv);
1289 }
1290
1291 /*
1292 * If this page is now empty, do one of two things:
1293 *
1294 * (1) If we have more pages than the page high water mark,
1295 * free the page back to the system. ONLY CONSIDER
1296 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1297 * CLAIM.
1298 *
1299 * (2) Otherwise, move the page to the empty page list.
1300 *
1301 * Either way, select a new current page (so we use a partially-full
1302 * page if one is available).
1303 */
1304 if (ph->ph_nmissing == 0) {
1305 pp->pr_nidle++;
1306 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1307 pp->pr_npages > pp->pr_minpages &&
1308 pp->pr_npages > pp->pr_maxpages) {
1309 pr_rmpage(pp, ph, pq);
1310 } else {
1311 LIST_REMOVE(ph, ph_pagelist);
1312 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1313
1314 /*
1315 * Update the timestamp on the page. A page must
1316 * be idle for some period of time before it can
1317 * be reclaimed by the pagedaemon. This minimizes
1318 * ping-pong'ing for memory.
1319 *
1320 * note for 64-bit time_t: truncating to 32-bit is not
1321 * a problem for our usage.
1322 */
1323 ph->ph_time = time_uptime;
1324 }
1325 pool_update_curpage(pp);
1326 }
1327
1328 /*
1329 * If the page was previously completely full, move it to the
1330 * partially-full list and make it the current page. The next
1331 * allocation will get the item from this page, instead of
1332 * further fragmenting the pool.
1333 */
1334 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1335 LIST_REMOVE(ph, ph_pagelist);
1336 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1337 pp->pr_curpage = ph;
1338 }
1339 }
1340
1341 void
1342 pool_put(struct pool *pp, void *v)
1343 {
1344 struct pool_pagelist pq;
1345
1346 LIST_INIT(&pq);
1347
1348 mutex_enter(&pp->pr_lock);
1349 if (!pool_put_quarantine(pp, v, &pq)) {
1350 pool_do_put(pp, v, &pq);
1351 }
1352 mutex_exit(&pp->pr_lock);
1353
1354 pr_pagelist_free(pp, &pq);
1355 }
1356
1357 /*
1358 * pool_grow: grow a pool by a page.
1359 *
1360 * => called with pool locked.
1361 * => unlock and relock the pool.
1362 * => return with pool locked.
1363 */
1364
1365 static int
1366 pool_grow(struct pool *pp, int flags)
1367 {
1368 struct pool_item_header *ph;
1369 char *storage;
1370
1371 /*
1372 * If there's a pool_grow in progress, wait for it to complete
1373 * and try again from the top.
1374 */
1375 if (pp->pr_flags & PR_GROWING) {
1376 if (flags & PR_WAITOK) {
1377 do {
1378 cv_wait(&pp->pr_cv, &pp->pr_lock);
1379 } while (pp->pr_flags & PR_GROWING);
1380 return ERESTART;
1381 } else {
1382 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1383 /*
1384 * This needs an unlock/relock dance so
1385 * that the other caller has a chance to
1386 * run and actually do the thing. Note
1387 * that this is effectively a busy-wait.
1388 */
1389 mutex_exit(&pp->pr_lock);
1390 mutex_enter(&pp->pr_lock);
1391 return ERESTART;
1392 }
1393 return EWOULDBLOCK;
1394 }
1395 }
1396 pp->pr_flags |= PR_GROWING;
1397 if (flags & PR_WAITOK)
1398 mutex_exit(&pp->pr_lock);
1399 else
1400 pp->pr_flags |= PR_GROWINGNOWAIT;
1401
1402 storage = pool_allocator_alloc(pp, flags);
1403 if (__predict_false(storage == NULL))
1404 goto out;
1405
1406 ph = pool_alloc_item_header(pp, storage, flags);
1407 if (__predict_false(ph == NULL)) {
1408 pool_allocator_free(pp, storage);
1409 goto out;
1410 }
1411
1412 if (flags & PR_WAITOK)
1413 mutex_enter(&pp->pr_lock);
1414 pool_prime_page(pp, storage, ph);
1415 pp->pr_npagealloc++;
1416 KASSERT(pp->pr_flags & PR_GROWING);
1417 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1418 /*
1419 * If anyone was waiting for pool_grow, notify them that we
1420 * may have just done it.
1421 */
1422 cv_broadcast(&pp->pr_cv);
1423 return 0;
1424 out:
1425 if (flags & PR_WAITOK)
1426 mutex_enter(&pp->pr_lock);
1427 KASSERT(pp->pr_flags & PR_GROWING);
1428 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1429 return ENOMEM;
1430 }
1431
1432 void
1433 pool_prime(struct pool *pp, int n)
1434 {
1435
1436 mutex_enter(&pp->pr_lock);
1437 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1438 if (pp->pr_maxpages <= pp->pr_minpages)
1439 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1440 while (pp->pr_npages < pp->pr_minpages)
1441 (void) pool_grow(pp, PR_WAITOK);
1442 mutex_exit(&pp->pr_lock);
1443 }
1444
1445 /*
1446 * Add a page worth of items to the pool.
1447 *
1448 * Note, we must be called with the pool descriptor LOCKED.
1449 */
1450 static void
1451 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1452 {
1453 const unsigned int align = pp->pr_align;
1454 struct pool_item *pi;
1455 void *cp = storage;
1456 int n;
1457
1458 KASSERT(mutex_owned(&pp->pr_lock));
1459 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1460 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1461 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1462
1463 /*
1464 * Insert page header.
1465 */
1466 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1467 LIST_INIT(&ph->ph_itemlist);
1468 ph->ph_page = storage;
1469 ph->ph_nmissing = 0;
1470 ph->ph_time = time_uptime;
1471 if (pp->pr_roflags & PR_PHINPAGE)
1472 ph->ph_poolid = pp->pr_poolid;
1473 else
1474 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1475
1476 pp->pr_nidle++;
1477
1478 /*
1479 * The item space starts after the on-page header, if any.
1480 */
1481 ph->ph_off = pp->pr_itemoffset;
1482
1483 /*
1484 * Color this page.
1485 */
1486 ph->ph_off += pp->pr_curcolor;
1487 cp = (char *)cp + ph->ph_off;
1488 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1489 pp->pr_curcolor = 0;
1490
1491 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1492
1493 /*
1494 * Insert remaining chunks on the bucket list.
1495 */
1496 n = pp->pr_itemsperpage;
1497 pp->pr_nitems += n;
1498
1499 if (pp->pr_roflags & PR_USEBMAP) {
1500 pr_item_bitmap_init(pp, ph);
1501 } else {
1502 while (n--) {
1503 pi = (struct pool_item *)cp;
1504
1505 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1506
1507 /* Insert on page list */
1508 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1509 #ifdef POOL_CHECK_MAGIC
1510 pi->pi_magic = PI_MAGIC;
1511 #endif
1512 cp = (char *)cp + pp->pr_size;
1513
1514 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1515 }
1516 }
1517
1518 /*
1519 * If the pool was depleted, point at the new page.
1520 */
1521 if (pp->pr_curpage == NULL)
1522 pp->pr_curpage = ph;
1523
1524 if (++pp->pr_npages > pp->pr_hiwat)
1525 pp->pr_hiwat = pp->pr_npages;
1526 }
1527
1528 /*
1529 * Used by pool_get() when nitems drops below the low water mark. This
1530 * is used to catch up pr_nitems with the low water mark.
1531 *
1532 * Note 1, we never wait for memory here, we let the caller decide what to do.
1533 *
1534 * Note 2, we must be called with the pool already locked, and we return
1535 * with it locked.
1536 */
1537 static int
1538 pool_catchup(struct pool *pp)
1539 {
1540 int error = 0;
1541
1542 while (POOL_NEEDS_CATCHUP(pp)) {
1543 error = pool_grow(pp, PR_NOWAIT);
1544 if (error) {
1545 if (error == ERESTART)
1546 continue;
1547 break;
1548 }
1549 }
1550 return error;
1551 }
1552
1553 static void
1554 pool_update_curpage(struct pool *pp)
1555 {
1556
1557 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1558 if (pp->pr_curpage == NULL) {
1559 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1560 }
1561 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1562 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1563 }
1564
1565 void
1566 pool_setlowat(struct pool *pp, int n)
1567 {
1568
1569 mutex_enter(&pp->pr_lock);
1570 pp->pr_minitems = n;
1571
1572 /* Make sure we're caught up with the newly-set low water mark. */
1573 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1574 /*
1575 * XXX: Should we log a warning? Should we set up a timeout
1576 * to try again in a second or so? The latter could break
1577 * a caller's assumptions about interrupt protection, etc.
1578 */
1579 }
1580
1581 mutex_exit(&pp->pr_lock);
1582 }
1583
1584 void
1585 pool_sethiwat(struct pool *pp, int n)
1586 {
1587
1588 mutex_enter(&pp->pr_lock);
1589
1590 pp->pr_maxitems = n;
1591
1592 mutex_exit(&pp->pr_lock);
1593 }
1594
1595 void
1596 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1597 {
1598
1599 mutex_enter(&pp->pr_lock);
1600
1601 pp->pr_hardlimit = n;
1602 pp->pr_hardlimit_warning = warnmess;
1603 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1604 pp->pr_hardlimit_warning_last.tv_sec = 0;
1605 pp->pr_hardlimit_warning_last.tv_usec = 0;
1606
1607 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1608
1609 mutex_exit(&pp->pr_lock);
1610 }
1611
1612 /*
1613 * Release all complete pages that have not been used recently.
1614 *
1615 * Must not be called from interrupt context.
1616 */
1617 int
1618 pool_reclaim(struct pool *pp)
1619 {
1620 struct pool_item_header *ph, *phnext;
1621 struct pool_pagelist pq;
1622 uint32_t curtime;
1623 bool klock;
1624 int rv;
1625
1626 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1627
1628 if (pp->pr_drain_hook != NULL) {
1629 /*
1630 * The drain hook must be called with the pool unlocked.
1631 */
1632 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1633 }
1634
1635 /*
1636 * XXXSMP Because we do not want to cause non-MPSAFE code
1637 * to block.
1638 */
1639 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1640 pp->pr_ipl == IPL_SOFTSERIAL) {
1641 KERNEL_LOCK(1, NULL);
1642 klock = true;
1643 } else
1644 klock = false;
1645
1646 /* Reclaim items from the pool's cache (if any). */
1647 if (pp->pr_cache != NULL)
1648 pool_cache_invalidate(pp->pr_cache);
1649
1650 if (mutex_tryenter(&pp->pr_lock) == 0) {
1651 if (klock) {
1652 KERNEL_UNLOCK_ONE(NULL);
1653 }
1654 return 0;
1655 }
1656
1657 LIST_INIT(&pq);
1658
1659 curtime = time_uptime;
1660
1661 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1662 phnext = LIST_NEXT(ph, ph_pagelist);
1663
1664 /* Check our minimum page claim */
1665 if (pp->pr_npages <= pp->pr_minpages)
1666 break;
1667
1668 KASSERT(ph->ph_nmissing == 0);
1669 if (curtime - ph->ph_time < pool_inactive_time)
1670 continue;
1671
1672 /*
1673 * If freeing this page would put us below the minimum free items
1674 * or the minimum pages, stop now.
1675 */
1676 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1677 pp->pr_npages - 1 < pp->pr_minpages)
1678 break;
1679
1680 pr_rmpage(pp, ph, &pq);
1681 }
1682
1683 mutex_exit(&pp->pr_lock);
1684
1685 if (LIST_EMPTY(&pq))
1686 rv = 0;
1687 else {
1688 pr_pagelist_free(pp, &pq);
1689 rv = 1;
1690 }
1691
1692 if (klock) {
1693 KERNEL_UNLOCK_ONE(NULL);
1694 }
1695
1696 return rv;
1697 }
1698
1699 /*
1700 * Drain pools, one at a time. The drained pool is returned within ppp.
1701 *
1702 * Note, must never be called from interrupt context.
1703 */
1704 bool
1705 pool_drain(struct pool **ppp)
1706 {
1707 bool reclaimed;
1708 struct pool *pp;
1709
1710 KASSERT(!TAILQ_EMPTY(&pool_head));
1711
1712 pp = NULL;
1713
1714 /* Find next pool to drain, and add a reference. */
1715 mutex_enter(&pool_head_lock);
1716 do {
1717 if (drainpp == NULL) {
1718 drainpp = TAILQ_FIRST(&pool_head);
1719 }
1720 if (drainpp != NULL) {
1721 pp = drainpp;
1722 drainpp = TAILQ_NEXT(pp, pr_poollist);
1723 }
1724 /*
1725 * Skip completely idle pools. We depend on at least
1726 * one pool in the system being active.
1727 */
1728 } while (pp == NULL || pp->pr_npages == 0);
1729 pp->pr_refcnt++;
1730 mutex_exit(&pool_head_lock);
1731
1732 /* Drain the cache (if any) and pool.. */
1733 reclaimed = pool_reclaim(pp);
1734
1735 /* Finally, unlock the pool. */
1736 mutex_enter(&pool_head_lock);
1737 pp->pr_refcnt--;
1738 cv_broadcast(&pool_busy);
1739 mutex_exit(&pool_head_lock);
1740
1741 if (ppp != NULL)
1742 *ppp = pp;
1743
1744 return reclaimed;
1745 }
1746
1747 /*
1748 * Calculate the total number of pages consumed by pools.
1749 */
1750 int
1751 pool_totalpages(void)
1752 {
1753
1754 mutex_enter(&pool_head_lock);
1755 int pages = pool_totalpages_locked();
1756 mutex_exit(&pool_head_lock);
1757
1758 return pages;
1759 }
1760
1761 int
1762 pool_totalpages_locked(void)
1763 {
1764 struct pool *pp;
1765 uint64_t total = 0;
1766
1767 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1768 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1769
1770 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1771 bytes -= (pp->pr_nout * pp->pr_size);
1772 total += bytes;
1773 }
1774
1775 return atop(total);
1776 }
1777
1778 /*
1779 * Diagnostic helpers.
1780 */
1781
1782 void
1783 pool_printall(const char *modif, void (*pr)(const char *, ...))
1784 {
1785 struct pool *pp;
1786
1787 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1788 pool_printit(pp, modif, pr);
1789 }
1790 }
1791
1792 void
1793 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1794 {
1795
1796 if (pp == NULL) {
1797 (*pr)("Must specify a pool to print.\n");
1798 return;
1799 }
1800
1801 pool_print1(pp, modif, pr);
1802 }
1803
1804 static void
1805 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1806 void (*pr)(const char *, ...))
1807 {
1808 struct pool_item_header *ph;
1809
1810 LIST_FOREACH(ph, pl, ph_pagelist) {
1811 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1812 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1813 #ifdef POOL_CHECK_MAGIC
1814 struct pool_item *pi;
1815 if (!(pp->pr_roflags & PR_USEBMAP)) {
1816 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1817 if (pi->pi_magic != PI_MAGIC) {
1818 (*pr)("\t\t\titem %p, magic 0x%x\n",
1819 pi, pi->pi_magic);
1820 }
1821 }
1822 }
1823 #endif
1824 }
1825 }
1826
1827 static void
1828 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1829 {
1830 struct pool_item_header *ph;
1831 pool_cache_t pc;
1832 pcg_t *pcg;
1833 pool_cache_cpu_t *cc;
1834 uint64_t cpuhit, cpumiss, pchit, pcmiss;
1835 uint32_t nfull;
1836 int i;
1837 bool print_log = false, print_pagelist = false, print_cache = false;
1838 bool print_short = false, skip_empty = false;
1839 char c;
1840
1841 while ((c = *modif++) != '\0') {
1842 if (c == 'l')
1843 print_log = true;
1844 if (c == 'p')
1845 print_pagelist = true;
1846 if (c == 'c')
1847 print_cache = true;
1848 if (c == 's')
1849 print_short = true;
1850 if (c == 'S')
1851 skip_empty = true;
1852 }
1853
1854 if (skip_empty && pp->pr_nget == 0)
1855 return;
1856
1857 if ((pc = pp->pr_cache) != NULL) {
1858 (*pr)("POOLCACHE");
1859 } else {
1860 (*pr)("POOL");
1861 }
1862
1863 /* Single line output. */
1864 if (print_short) {
1865 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n",
1866 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1867 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1868 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle);
1869
1870 return;
1871 }
1872
1873 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1874 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1875 pp->pr_roflags);
1876 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1877 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1878 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1879 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1880 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1881
1882 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1883 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1884 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1885 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1886
1887 if (!print_pagelist)
1888 goto skip_pagelist;
1889
1890 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1891 (*pr)("\n\tempty page list:\n");
1892 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1893 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1894 (*pr)("\n\tfull page list:\n");
1895 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1896 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1897 (*pr)("\n\tpartial-page list:\n");
1898 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1899
1900 if (pp->pr_curpage == NULL)
1901 (*pr)("\tno current page\n");
1902 else
1903 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1904
1905 skip_pagelist:
1906 if (print_log)
1907 goto skip_log;
1908
1909 (*pr)("\n");
1910
1911 skip_log:
1912
1913 #define PR_GROUPLIST(pcg) \
1914 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1915 for (i = 0; i < pcg->pcg_size; i++) { \
1916 if (pcg->pcg_objects[i].pcgo_pa != \
1917 POOL_PADDR_INVALID) { \
1918 (*pr)("\t\t\t%p, 0x%llx\n", \
1919 pcg->pcg_objects[i].pcgo_va, \
1920 (unsigned long long) \
1921 pcg->pcg_objects[i].pcgo_pa); \
1922 } else { \
1923 (*pr)("\t\t\t%p\n", \
1924 pcg->pcg_objects[i].pcgo_va); \
1925 } \
1926 }
1927
1928 if (pc != NULL) {
1929 cpuhit = 0;
1930 cpumiss = 0;
1931 pcmiss = 0;
1932 nfull = 0;
1933 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1934 if ((cc = pc->pc_cpus[i]) == NULL)
1935 continue;
1936 cpuhit += cc->cc_hits;
1937 cpumiss += cc->cc_misses;
1938 pcmiss += cc->cc_pcmisses;
1939 nfull += cc->cc_nfull;
1940 }
1941 pchit = cpumiss - pcmiss;
1942 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1943 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1944 (*pr)("\tcache layer full groups %u\n", nfull);
1945 if (print_cache) {
1946 (*pr)("\tfull cache groups:\n");
1947 for (pcg = pc->pc_fullgroups; pcg != NULL;
1948 pcg = pcg->pcg_next) {
1949 PR_GROUPLIST(pcg);
1950 }
1951 }
1952 }
1953 #undef PR_GROUPLIST
1954 }
1955
1956 static int
1957 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1958 {
1959 struct pool_item *pi;
1960 void *page;
1961 int n;
1962
1963 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1964 page = POOL_OBJ_TO_PAGE(pp, ph);
1965 if (page != ph->ph_page &&
1966 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1967 if (label != NULL)
1968 printf("%s: ", label);
1969 printf("pool(%p:%s): page inconsistency: page %p;"
1970 " at page head addr %p (p %p)\n", pp,
1971 pp->pr_wchan, ph->ph_page,
1972 ph, page);
1973 return 1;
1974 }
1975 }
1976
1977 if ((pp->pr_roflags & PR_USEBMAP) != 0)
1978 return 0;
1979
1980 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1981 pi != NULL;
1982 pi = LIST_NEXT(pi,pi_list), n++) {
1983
1984 #ifdef POOL_CHECK_MAGIC
1985 if (pi->pi_magic != PI_MAGIC) {
1986 if (label != NULL)
1987 printf("%s: ", label);
1988 printf("pool(%s): free list modified: magic=%x;"
1989 " page %p; item ordinal %d; addr %p\n",
1990 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1991 n, pi);
1992 panic("pool");
1993 }
1994 #endif
1995 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1996 continue;
1997 }
1998 page = POOL_OBJ_TO_PAGE(pp, pi);
1999 if (page == ph->ph_page)
2000 continue;
2001
2002 if (label != NULL)
2003 printf("%s: ", label);
2004 printf("pool(%p:%s): page inconsistency: page %p;"
2005 " item ordinal %d; addr %p (p %p)\n", pp,
2006 pp->pr_wchan, ph->ph_page,
2007 n, pi, page);
2008 return 1;
2009 }
2010 return 0;
2011 }
2012
2013
2014 int
2015 pool_chk(struct pool *pp, const char *label)
2016 {
2017 struct pool_item_header *ph;
2018 int r = 0;
2019
2020 mutex_enter(&pp->pr_lock);
2021 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2022 r = pool_chk_page(pp, label, ph);
2023 if (r) {
2024 goto out;
2025 }
2026 }
2027 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2028 r = pool_chk_page(pp, label, ph);
2029 if (r) {
2030 goto out;
2031 }
2032 }
2033 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2034 r = pool_chk_page(pp, label, ph);
2035 if (r) {
2036 goto out;
2037 }
2038 }
2039
2040 out:
2041 mutex_exit(&pp->pr_lock);
2042 return r;
2043 }
2044
2045 /*
2046 * pool_cache_init:
2047 *
2048 * Initialize a pool cache.
2049 */
2050 pool_cache_t
2051 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2052 const char *wchan, struct pool_allocator *palloc, int ipl,
2053 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2054 {
2055 pool_cache_t pc;
2056
2057 pc = pool_get(&cache_pool, PR_WAITOK);
2058 if (pc == NULL)
2059 return NULL;
2060
2061 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2062 palloc, ipl, ctor, dtor, arg);
2063
2064 return pc;
2065 }
2066
2067 /*
2068 * pool_cache_bootstrap:
2069 *
2070 * Kernel-private version of pool_cache_init(). The caller
2071 * provides initial storage.
2072 */
2073 void
2074 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2075 u_int align_offset, u_int flags, const char *wchan,
2076 struct pool_allocator *palloc, int ipl,
2077 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2078 void *arg)
2079 {
2080 CPU_INFO_ITERATOR cii;
2081 pool_cache_t pc1;
2082 struct cpu_info *ci;
2083 struct pool *pp;
2084
2085 pp = &pc->pc_pool;
2086 if (palloc == NULL && ipl == IPL_NONE) {
2087 if (size > PAGE_SIZE) {
2088 int bigidx = pool_bigidx(size);
2089
2090 palloc = &pool_allocator_big[bigidx];
2091 flags |= PR_NOALIGN;
2092 } else
2093 palloc = &pool_allocator_nointr;
2094 }
2095 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2096
2097 if (ctor == NULL) {
2098 ctor = NO_CTOR;
2099 }
2100 if (dtor == NULL) {
2101 dtor = NO_DTOR;
2102 }
2103
2104 pc->pc_fullgroups = NULL;
2105 pc->pc_partgroups = NULL;
2106 pc->pc_ctor = ctor;
2107 pc->pc_dtor = dtor;
2108 pc->pc_arg = arg;
2109 pc->pc_refcnt = 0;
2110 pc->pc_freecheck = NULL;
2111
2112 if ((flags & PR_LARGECACHE) != 0) {
2113 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2114 pc->pc_pcgpool = &pcg_large_pool;
2115 pc->pc_pcgcache = &pcg_large_cache;
2116 } else {
2117 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2118 pc->pc_pcgpool = &pcg_normal_pool;
2119 pc->pc_pcgcache = &pcg_normal_cache;
2120 }
2121
2122 /* Allocate per-CPU caches. */
2123 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2124 pc->pc_ncpu = 0;
2125 if (ncpu < 2) {
2126 /* XXX For sparc: boot CPU is not attached yet. */
2127 pool_cache_cpu_init1(curcpu(), pc);
2128 } else {
2129 for (CPU_INFO_FOREACH(cii, ci)) {
2130 pool_cache_cpu_init1(ci, pc);
2131 }
2132 }
2133
2134 /* Add to list of all pools. */
2135 if (__predict_true(!cold))
2136 mutex_enter(&pool_head_lock);
2137 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2138 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2139 break;
2140 }
2141 if (pc1 == NULL)
2142 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2143 else
2144 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2145 if (__predict_true(!cold))
2146 mutex_exit(&pool_head_lock);
2147
2148 membar_sync();
2149 pp->pr_cache = pc;
2150 }
2151
2152 /*
2153 * pool_cache_destroy:
2154 *
2155 * Destroy a pool cache.
2156 */
2157 void
2158 pool_cache_destroy(pool_cache_t pc)
2159 {
2160
2161 pool_cache_bootstrap_destroy(pc);
2162 pool_put(&cache_pool, pc);
2163 }
2164
2165 /*
2166 * pool_cache_bootstrap_destroy:
2167 *
2168 * Destroy a pool cache.
2169 */
2170 void
2171 pool_cache_bootstrap_destroy(pool_cache_t pc)
2172 {
2173 struct pool *pp = &pc->pc_pool;
2174 u_int i;
2175
2176 /* Remove it from the global list. */
2177 mutex_enter(&pool_head_lock);
2178 while (pc->pc_refcnt != 0)
2179 cv_wait(&pool_busy, &pool_head_lock);
2180 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2181 mutex_exit(&pool_head_lock);
2182
2183 /* First, invalidate the entire cache. */
2184 pool_cache_invalidate(pc);
2185
2186 /* Disassociate it from the pool. */
2187 mutex_enter(&pp->pr_lock);
2188 pp->pr_cache = NULL;
2189 mutex_exit(&pp->pr_lock);
2190
2191 /* Destroy per-CPU data */
2192 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2193 pool_cache_invalidate_cpu(pc, i);
2194
2195 /* Finally, destroy it. */
2196 pool_destroy(pp);
2197 }
2198
2199 /*
2200 * pool_cache_cpu_init1:
2201 *
2202 * Called for each pool_cache whenever a new CPU is attached.
2203 */
2204 static void
2205 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2206 {
2207 pool_cache_cpu_t *cc;
2208 int index;
2209
2210 index = ci->ci_index;
2211
2212 KASSERT(index < __arraycount(pc->pc_cpus));
2213
2214 if ((cc = pc->pc_cpus[index]) != NULL) {
2215 return;
2216 }
2217
2218 /*
2219 * The first CPU is 'free'. This needs to be the case for
2220 * bootstrap - we may not be able to allocate yet.
2221 */
2222 if (pc->pc_ncpu == 0) {
2223 cc = &pc->pc_cpu0;
2224 pc->pc_ncpu = 1;
2225 } else {
2226 pc->pc_ncpu++;
2227 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2228 }
2229
2230 cc->cc_current = __UNCONST(&pcg_dummy);
2231 cc->cc_previous = __UNCONST(&pcg_dummy);
2232 cc->cc_pcgcache = pc->pc_pcgcache;
2233 cc->cc_hits = 0;
2234 cc->cc_misses = 0;
2235 cc->cc_pcmisses = 0;
2236 cc->cc_contended = 0;
2237 cc->cc_nfull = 0;
2238 cc->cc_npart = 0;
2239
2240 pc->pc_cpus[index] = cc;
2241 }
2242
2243 /*
2244 * pool_cache_cpu_init:
2245 *
2246 * Called whenever a new CPU is attached.
2247 */
2248 void
2249 pool_cache_cpu_init(struct cpu_info *ci)
2250 {
2251 pool_cache_t pc;
2252
2253 mutex_enter(&pool_head_lock);
2254 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2255 pc->pc_refcnt++;
2256 mutex_exit(&pool_head_lock);
2257
2258 pool_cache_cpu_init1(ci, pc);
2259
2260 mutex_enter(&pool_head_lock);
2261 pc->pc_refcnt--;
2262 cv_broadcast(&pool_busy);
2263 }
2264 mutex_exit(&pool_head_lock);
2265 }
2266
2267 /*
2268 * pool_cache_reclaim:
2269 *
2270 * Reclaim memory from a pool cache.
2271 */
2272 bool
2273 pool_cache_reclaim(pool_cache_t pc)
2274 {
2275
2276 return pool_reclaim(&pc->pc_pool);
2277 }
2278
2279 static void
2280 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2281 {
2282 (*pc->pc_dtor)(pc->pc_arg, object);
2283 pool_put(&pc->pc_pool, object);
2284 }
2285
2286 /*
2287 * pool_cache_destruct_object:
2288 *
2289 * Force destruction of an object and its release back into
2290 * the pool.
2291 */
2292 void
2293 pool_cache_destruct_object(pool_cache_t pc, void *object)
2294 {
2295
2296 FREECHECK_IN(&pc->pc_freecheck, object);
2297
2298 pool_cache_destruct_object1(pc, object);
2299 }
2300
2301 /*
2302 * pool_cache_invalidate_groups:
2303 *
2304 * Invalidate a chain of groups and destruct all objects. Return the
2305 * number of groups that were invalidated.
2306 */
2307 static int
2308 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2309 {
2310 void *object;
2311 pcg_t *next;
2312 int i, n;
2313
2314 for (n = 0; pcg != NULL; pcg = next, n++) {
2315 next = pcg->pcg_next;
2316
2317 for (i = 0; i < pcg->pcg_avail; i++) {
2318 object = pcg->pcg_objects[i].pcgo_va;
2319 pool_cache_destruct_object1(pc, object);
2320 }
2321
2322 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2323 pool_put(&pcg_large_pool, pcg);
2324 } else {
2325 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2326 pool_put(&pcg_normal_pool, pcg);
2327 }
2328 }
2329 return n;
2330 }
2331
2332 /*
2333 * pool_cache_invalidate:
2334 *
2335 * Invalidate a pool cache (destruct and release all of the
2336 * cached objects). Does not reclaim objects from the pool.
2337 *
2338 * Note: For pool caches that provide constructed objects, there
2339 * is an assumption that another level of synchronization is occurring
2340 * between the input to the constructor and the cache invalidation.
2341 *
2342 * Invalidation is a costly process and should not be called from
2343 * interrupt context.
2344 */
2345 void
2346 pool_cache_invalidate(pool_cache_t pc)
2347 {
2348 uint64_t where;
2349 pcg_t *pcg;
2350 int n, s;
2351
2352 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2353
2354 if (ncpu < 2 || !mp_online) {
2355 /*
2356 * We might be called early enough in the boot process
2357 * for the CPU data structures to not be fully initialized.
2358 * In this case, transfer the content of the local CPU's
2359 * cache back into global cache as only this CPU is currently
2360 * running.
2361 */
2362 pool_cache_transfer(pc);
2363 } else {
2364 /*
2365 * Signal all CPUs that they must transfer their local
2366 * cache back to the global pool then wait for the xcall to
2367 * complete.
2368 */
2369 where = xc_broadcast(0,
2370 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2371 xc_wait(where);
2372 }
2373
2374 /* Now dequeue and invalidate everything. */
2375 pcg = pool_pcg_trunc(&pcg_normal_cache);
2376 (void)pool_cache_invalidate_groups(pc, pcg);
2377
2378 pcg = pool_pcg_trunc(&pcg_large_cache);
2379 (void)pool_cache_invalidate_groups(pc, pcg);
2380
2381 pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2382 n = pool_cache_invalidate_groups(pc, pcg);
2383 s = splvm();
2384 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2385 splx(s);
2386
2387 pcg = pool_pcg_trunc(&pc->pc_partgroups);
2388 n = pool_cache_invalidate_groups(pc, pcg);
2389 s = splvm();
2390 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2391 splx(s);
2392 }
2393
2394 /*
2395 * pool_cache_invalidate_cpu:
2396 *
2397 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2398 * identified by its associated index.
2399 * It is caller's responsibility to ensure that no operation is
2400 * taking place on this pool cache while doing this invalidation.
2401 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2402 * pool cached objects from a CPU different from the one currently running
2403 * may result in an undefined behaviour.
2404 */
2405 static void
2406 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2407 {
2408 pool_cache_cpu_t *cc;
2409 pcg_t *pcg;
2410
2411 if ((cc = pc->pc_cpus[index]) == NULL)
2412 return;
2413
2414 if ((pcg = cc->cc_current) != &pcg_dummy) {
2415 pcg->pcg_next = NULL;
2416 pool_cache_invalidate_groups(pc, pcg);
2417 }
2418 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2419 pcg->pcg_next = NULL;
2420 pool_cache_invalidate_groups(pc, pcg);
2421 }
2422 if (cc != &pc->pc_cpu0)
2423 pool_put(&cache_cpu_pool, cc);
2424
2425 }
2426
2427 void
2428 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2429 {
2430
2431 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2432 }
2433
2434 void
2435 pool_cache_setlowat(pool_cache_t pc, int n)
2436 {
2437
2438 pool_setlowat(&pc->pc_pool, n);
2439 }
2440
2441 void
2442 pool_cache_sethiwat(pool_cache_t pc, int n)
2443 {
2444
2445 pool_sethiwat(&pc->pc_pool, n);
2446 }
2447
2448 void
2449 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2450 {
2451
2452 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2453 }
2454
2455 void
2456 pool_cache_prime(pool_cache_t pc, int n)
2457 {
2458
2459 pool_prime(&pc->pc_pool, n);
2460 }
2461
2462 /*
2463 * pool_pcg_get:
2464 *
2465 * Get a cache group from the specified list. Return true if
2466 * contention was encountered. Must be called at IPL_VM because
2467 * of spin wait vs. kernel_lock.
2468 */
2469 static int
2470 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2471 {
2472 int count = SPINLOCK_BACKOFF_MIN;
2473 pcg_t *o, *n;
2474
2475 for (o = atomic_load_relaxed(head);; o = n) {
2476 if (__predict_false(o == &pcg_dummy)) {
2477 /* Wait for concurrent get to complete. */
2478 SPINLOCK_BACKOFF(count);
2479 n = atomic_load_relaxed(head);
2480 continue;
2481 }
2482 if (__predict_false(o == NULL)) {
2483 break;
2484 }
2485 /* Lock out concurrent get/put. */
2486 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2487 if (o == n) {
2488 /* Fetch pointer to next item and then unlock. */
2489 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2490 membar_datadep_consumer(); /* alpha */
2491 #endif
2492 n = atomic_load_relaxed(&o->pcg_next);
2493 atomic_store_release(head, n);
2494 break;
2495 }
2496 }
2497 *pcgp = o;
2498 return count != SPINLOCK_BACKOFF_MIN;
2499 }
2500
2501 /*
2502 * pool_pcg_trunc:
2503 *
2504 * Chop out entire list of pool cache groups.
2505 */
2506 static pcg_t *
2507 pool_pcg_trunc(pcg_t *volatile *head)
2508 {
2509 int count = SPINLOCK_BACKOFF_MIN, s;
2510 pcg_t *o, *n;
2511
2512 s = splvm();
2513 for (o = atomic_load_relaxed(head);; o = n) {
2514 if (__predict_false(o == &pcg_dummy)) {
2515 /* Wait for concurrent get to complete. */
2516 SPINLOCK_BACKOFF(count);
2517 n = atomic_load_relaxed(head);
2518 continue;
2519 }
2520 n = atomic_cas_ptr(head, o, NULL);
2521 if (o == n) {
2522 splx(s);
2523 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2524 membar_datadep_consumer(); /* alpha */
2525 #endif
2526 return o;
2527 }
2528 }
2529 }
2530
2531 /*
2532 * pool_pcg_put:
2533 *
2534 * Put a pool cache group to the specified list. Return true if
2535 * contention was encountered. Must be called at IPL_VM because of
2536 * spin wait vs. kernel_lock.
2537 */
2538 static int
2539 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2540 {
2541 int count = SPINLOCK_BACKOFF_MIN;
2542 pcg_t *o, *n;
2543
2544 for (o = atomic_load_relaxed(head);; o = n) {
2545 if (__predict_false(o == &pcg_dummy)) {
2546 /* Wait for concurrent get to complete. */
2547 SPINLOCK_BACKOFF(count);
2548 n = atomic_load_relaxed(head);
2549 continue;
2550 }
2551 pcg->pcg_next = o;
2552 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2553 membar_exit();
2554 #endif
2555 n = atomic_cas_ptr(head, o, pcg);
2556 if (o == n) {
2557 return count != SPINLOCK_BACKOFF_MIN;
2558 }
2559 }
2560 }
2561
2562 static bool __noinline
2563 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2564 void **objectp, paddr_t *pap, int flags)
2565 {
2566 pcg_t *pcg, *cur;
2567 void *object;
2568
2569 KASSERT(cc->cc_current->pcg_avail == 0);
2570 KASSERT(cc->cc_previous->pcg_avail == 0);
2571
2572 cc->cc_misses++;
2573
2574 /*
2575 * If there's a full group, release our empty group back to the
2576 * cache. Install the full group as cc_current and return.
2577 */
2578 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2579 if (__predict_true(pcg != NULL)) {
2580 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2581 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2582 KASSERT(cur->pcg_avail == 0);
2583 (void)pool_pcg_put(cc->cc_pcgcache, cur);
2584 }
2585 cc->cc_nfull--;
2586 cc->cc_current = pcg;
2587 return true;
2588 }
2589
2590 /*
2591 * Nothing available locally or in cache. Take the slow
2592 * path: fetch a new object from the pool and construct
2593 * it.
2594 */
2595 cc->cc_pcmisses++;
2596 splx(s);
2597
2598 object = pool_get(&pc->pc_pool, flags);
2599 *objectp = object;
2600 if (__predict_false(object == NULL)) {
2601 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2602 return false;
2603 }
2604
2605 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2606 pool_put(&pc->pc_pool, object);
2607 *objectp = NULL;
2608 return false;
2609 }
2610
2611 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2612
2613 if (pap != NULL) {
2614 #ifdef POOL_VTOPHYS
2615 *pap = POOL_VTOPHYS(object);
2616 #else
2617 *pap = POOL_PADDR_INVALID;
2618 #endif
2619 }
2620
2621 FREECHECK_OUT(&pc->pc_freecheck, object);
2622 return false;
2623 }
2624
2625 /*
2626 * pool_cache_get{,_paddr}:
2627 *
2628 * Get an object from a pool cache (optionally returning
2629 * the physical address of the object).
2630 */
2631 void *
2632 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2633 {
2634 pool_cache_cpu_t *cc;
2635 pcg_t *pcg;
2636 void *object;
2637 int s;
2638
2639 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2640 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2641 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2642 "%s: [%s] is IPL_NONE, but called from interrupt context",
2643 __func__, pc->pc_pool.pr_wchan);
2644
2645 if (flags & PR_WAITOK) {
2646 ASSERT_SLEEPABLE();
2647 }
2648
2649 if (flags & PR_NOWAIT) {
2650 if (fault_inject())
2651 return NULL;
2652 }
2653
2654 /* Lock out interrupts and disable preemption. */
2655 s = splvm();
2656 while (/* CONSTCOND */ true) {
2657 /* Try and allocate an object from the current group. */
2658 cc = pc->pc_cpus[curcpu()->ci_index];
2659 pcg = cc->cc_current;
2660 if (__predict_true(pcg->pcg_avail > 0)) {
2661 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2662 if (__predict_false(pap != NULL))
2663 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2664 #if defined(DIAGNOSTIC)
2665 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2666 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2667 KASSERT(object != NULL);
2668 #endif
2669 cc->cc_hits++;
2670 splx(s);
2671 FREECHECK_OUT(&pc->pc_freecheck, object);
2672 pool_redzone_fill(&pc->pc_pool, object);
2673 pool_cache_get_kmsan(pc, object);
2674 return object;
2675 }
2676
2677 /*
2678 * That failed. If the previous group isn't empty, swap
2679 * it with the current group and allocate from there.
2680 */
2681 pcg = cc->cc_previous;
2682 if (__predict_true(pcg->pcg_avail > 0)) {
2683 cc->cc_previous = cc->cc_current;
2684 cc->cc_current = pcg;
2685 continue;
2686 }
2687
2688 /*
2689 * Can't allocate from either group: try the slow path.
2690 * If get_slow() allocated an object for us, or if
2691 * no more objects are available, it will return false.
2692 * Otherwise, we need to retry.
2693 */
2694 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2695 if (object != NULL) {
2696 kmsan_orig(object, pc->pc_pool.pr_size,
2697 KMSAN_TYPE_POOL, __RET_ADDR);
2698 }
2699 break;
2700 }
2701 }
2702
2703 /*
2704 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2705 * pool_cache_get can fail even in the PR_WAITOK case, if the
2706 * constructor fails.
2707 */
2708 return object;
2709 }
2710
2711 static bool __noinline
2712 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2713 {
2714 pcg_t *pcg, *cur;
2715
2716 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2717 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2718
2719 cc->cc_misses++;
2720
2721 /*
2722 * Try to get an empty group from the cache. If there are no empty
2723 * groups in the cache then allocate one.
2724 */
2725 (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2726 if (__predict_false(pcg == NULL)) {
2727 if (__predict_true(!pool_cache_disable)) {
2728 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2729 }
2730 if (__predict_true(pcg != NULL)) {
2731 pcg->pcg_avail = 0;
2732 pcg->pcg_size = pc->pc_pcgsize;
2733 }
2734 }
2735
2736 /*
2737 * If there's a empty group, release our full group back to the
2738 * cache. Install the empty group to the local CPU and return.
2739 */
2740 if (pcg != NULL) {
2741 KASSERT(pcg->pcg_avail == 0);
2742 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2743 cc->cc_previous = pcg;
2744 } else {
2745 cur = cc->cc_current;
2746 if (__predict_true(cur != &pcg_dummy)) {
2747 KASSERT(cur->pcg_avail == cur->pcg_size);
2748 cc->cc_contended +=
2749 pool_pcg_put(&pc->pc_fullgroups, cur);
2750 cc->cc_nfull++;
2751 }
2752 cc->cc_current = pcg;
2753 }
2754 return true;
2755 }
2756
2757 /*
2758 * Nothing available locally or in cache, and we didn't
2759 * allocate an empty group. Take the slow path and destroy
2760 * the object here and now.
2761 */
2762 cc->cc_pcmisses++;
2763 splx(s);
2764 pool_cache_destruct_object(pc, object);
2765
2766 return false;
2767 }
2768
2769 /*
2770 * pool_cache_put{,_paddr}:
2771 *
2772 * Put an object back to the pool cache (optionally caching the
2773 * physical address of the object).
2774 */
2775 void
2776 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2777 {
2778 pool_cache_cpu_t *cc;
2779 pcg_t *pcg;
2780 int s;
2781
2782 KASSERT(object != NULL);
2783 pool_cache_put_kmsan(pc, object);
2784 pool_cache_redzone_check(pc, object);
2785 FREECHECK_IN(&pc->pc_freecheck, object);
2786
2787 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2788 pc_phinpage_check(pc, object);
2789 }
2790
2791 if (pool_cache_put_nocache(pc, object)) {
2792 return;
2793 }
2794
2795 /* Lock out interrupts and disable preemption. */
2796 s = splvm();
2797 while (/* CONSTCOND */ true) {
2798 /* If the current group isn't full, release it there. */
2799 cc = pc->pc_cpus[curcpu()->ci_index];
2800 pcg = cc->cc_current;
2801 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2802 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2803 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2804 pcg->pcg_avail++;
2805 cc->cc_hits++;
2806 splx(s);
2807 return;
2808 }
2809
2810 /*
2811 * That failed. If the previous group isn't full, swap
2812 * it with the current group and try again.
2813 */
2814 pcg = cc->cc_previous;
2815 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2816 cc->cc_previous = cc->cc_current;
2817 cc->cc_current = pcg;
2818 continue;
2819 }
2820
2821 /*
2822 * Can't free to either group: try the slow path.
2823 * If put_slow() releases the object for us, it
2824 * will return false. Otherwise we need to retry.
2825 */
2826 if (!pool_cache_put_slow(pc, cc, s, object))
2827 break;
2828 }
2829 }
2830
2831 /*
2832 * pool_cache_transfer:
2833 *
2834 * Transfer objects from the per-CPU cache to the global cache.
2835 * Run within a cross-call thread.
2836 */
2837 static void
2838 pool_cache_transfer(pool_cache_t pc)
2839 {
2840 pool_cache_cpu_t *cc;
2841 pcg_t *prev, *cur;
2842 int s;
2843
2844 s = splvm();
2845 cc = pc->pc_cpus[curcpu()->ci_index];
2846 cur = cc->cc_current;
2847 cc->cc_current = __UNCONST(&pcg_dummy);
2848 prev = cc->cc_previous;
2849 cc->cc_previous = __UNCONST(&pcg_dummy);
2850 if (cur != &pcg_dummy) {
2851 if (cur->pcg_avail == cur->pcg_size) {
2852 (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2853 cc->cc_nfull++;
2854 } else if (cur->pcg_avail == 0) {
2855 (void)pool_pcg_put(pc->pc_pcgcache, cur);
2856 } else {
2857 (void)pool_pcg_put(&pc->pc_partgroups, cur);
2858 cc->cc_npart++;
2859 }
2860 }
2861 if (prev != &pcg_dummy) {
2862 if (prev->pcg_avail == prev->pcg_size) {
2863 (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2864 cc->cc_nfull++;
2865 } else if (prev->pcg_avail == 0) {
2866 (void)pool_pcg_put(pc->pc_pcgcache, prev);
2867 } else {
2868 (void)pool_pcg_put(&pc->pc_partgroups, prev);
2869 cc->cc_npart++;
2870 }
2871 }
2872 splx(s);
2873 }
2874
2875 static int
2876 pool_bigidx(size_t size)
2877 {
2878 int i;
2879
2880 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2881 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2882 return i;
2883 }
2884 panic("pool item size %zu too large, use a custom allocator", size);
2885 }
2886
2887 static void *
2888 pool_allocator_alloc(struct pool *pp, int flags)
2889 {
2890 struct pool_allocator *pa = pp->pr_alloc;
2891 void *res;
2892
2893 res = (*pa->pa_alloc)(pp, flags);
2894 if (res == NULL && (flags & PR_WAITOK) == 0) {
2895 /*
2896 * We only run the drain hook here if PR_NOWAIT.
2897 * In other cases, the hook will be run in
2898 * pool_reclaim().
2899 */
2900 if (pp->pr_drain_hook != NULL) {
2901 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2902 res = (*pa->pa_alloc)(pp, flags);
2903 }
2904 }
2905 return res;
2906 }
2907
2908 static void
2909 pool_allocator_free(struct pool *pp, void *v)
2910 {
2911 struct pool_allocator *pa = pp->pr_alloc;
2912
2913 if (pp->pr_redzone) {
2914 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2915 }
2916 (*pa->pa_free)(pp, v);
2917 }
2918
2919 void *
2920 pool_page_alloc(struct pool *pp, int flags)
2921 {
2922 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2923 vmem_addr_t va;
2924 int ret;
2925
2926 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2927 vflags | VM_INSTANTFIT, &va);
2928
2929 return ret ? NULL : (void *)va;
2930 }
2931
2932 void
2933 pool_page_free(struct pool *pp, void *v)
2934 {
2935
2936 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2937 }
2938
2939 static void *
2940 pool_page_alloc_meta(struct pool *pp, int flags)
2941 {
2942 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2943 vmem_addr_t va;
2944 int ret;
2945
2946 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2947 vflags | VM_INSTANTFIT, &va);
2948
2949 return ret ? NULL : (void *)va;
2950 }
2951
2952 static void
2953 pool_page_free_meta(struct pool *pp, void *v)
2954 {
2955
2956 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2957 }
2958
2959 #ifdef KMSAN
2960 static inline void
2961 pool_get_kmsan(struct pool *pp, void *p)
2962 {
2963 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2964 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2965 }
2966
2967 static inline void
2968 pool_put_kmsan(struct pool *pp, void *p)
2969 {
2970 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2971 }
2972
2973 static inline void
2974 pool_cache_get_kmsan(pool_cache_t pc, void *p)
2975 {
2976 if (__predict_false(pc_has_ctor(pc))) {
2977 return;
2978 }
2979 pool_get_kmsan(&pc->pc_pool, p);
2980 }
2981
2982 static inline void
2983 pool_cache_put_kmsan(pool_cache_t pc, void *p)
2984 {
2985 pool_put_kmsan(&pc->pc_pool, p);
2986 }
2987 #endif
2988
2989 #ifdef POOL_QUARANTINE
2990 static void
2991 pool_quarantine_init(struct pool *pp)
2992 {
2993 pp->pr_quar.rotor = 0;
2994 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2995 }
2996
2997 static void
2998 pool_quarantine_flush(struct pool *pp)
2999 {
3000 pool_quar_t *quar = &pp->pr_quar;
3001 struct pool_pagelist pq;
3002 size_t i;
3003
3004 LIST_INIT(&pq);
3005
3006 mutex_enter(&pp->pr_lock);
3007 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3008 if (quar->list[i] == 0)
3009 continue;
3010 pool_do_put(pp, (void *)quar->list[i], &pq);
3011 }
3012 mutex_exit(&pp->pr_lock);
3013
3014 pr_pagelist_free(pp, &pq);
3015 }
3016
3017 static bool
3018 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3019 {
3020 pool_quar_t *quar = &pp->pr_quar;
3021 uintptr_t old;
3022
3023 if (pp->pr_roflags & PR_NOTOUCH) {
3024 return false;
3025 }
3026
3027 pool_redzone_check(pp, v);
3028
3029 old = quar->list[quar->rotor];
3030 quar->list[quar->rotor] = (uintptr_t)v;
3031 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3032 if (old != 0) {
3033 pool_do_put(pp, (void *)old, pq);
3034 }
3035
3036 return true;
3037 }
3038 #endif
3039
3040 #ifdef POOL_NOCACHE
3041 static bool
3042 pool_cache_put_nocache(pool_cache_t pc, void *p)
3043 {
3044 pool_cache_destruct_object(pc, p);
3045 return true;
3046 }
3047 #endif
3048
3049 #ifdef POOL_REDZONE
3050 #if defined(_LP64)
3051 # define PRIME 0x9e37fffffffc0000UL
3052 #else /* defined(_LP64) */
3053 # define PRIME 0x9e3779b1
3054 #endif /* defined(_LP64) */
3055 #define STATIC_BYTE 0xFE
3056 CTASSERT(POOL_REDZONE_SIZE > 1);
3057
3058 #ifndef KASAN
3059 static inline uint8_t
3060 pool_pattern_generate(const void *p)
3061 {
3062 return (uint8_t)(((uintptr_t)p) * PRIME
3063 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3064 }
3065 #endif
3066
3067 static void
3068 pool_redzone_init(struct pool *pp, size_t requested_size)
3069 {
3070 size_t redzsz;
3071 size_t nsz;
3072
3073 #ifdef KASAN
3074 redzsz = requested_size;
3075 kasan_add_redzone(&redzsz);
3076 redzsz -= requested_size;
3077 #else
3078 redzsz = POOL_REDZONE_SIZE;
3079 #endif
3080
3081 if (pp->pr_roflags & PR_NOTOUCH) {
3082 pp->pr_redzone = false;
3083 return;
3084 }
3085
3086 /*
3087 * We may have extended the requested size earlier; check if
3088 * there's naturally space in the padding for a red zone.
3089 */
3090 if (pp->pr_size - requested_size >= redzsz) {
3091 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3092 pp->pr_redzone = true;
3093 return;
3094 }
3095
3096 /*
3097 * No space in the natural padding; check if we can extend a
3098 * bit the size of the pool.
3099 *
3100 * Avoid using redzone for allocations half of a page or larger.
3101 * For pagesize items, we'd waste a whole new page (could be
3102 * unmapped?), and for half pagesize items, approximately half
3103 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3104 */
3105 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3106 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3107 /* Ok, we can */
3108 pp->pr_size = nsz;
3109 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3110 pp->pr_redzone = true;
3111 } else {
3112 /* No space for a red zone... snif :'( */
3113 pp->pr_redzone = false;
3114 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3115 }
3116 }
3117
3118 static void
3119 pool_redzone_fill(struct pool *pp, void *p)
3120 {
3121 if (!pp->pr_redzone)
3122 return;
3123 #ifdef KASAN
3124 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3125 KASAN_POOL_REDZONE);
3126 #else
3127 uint8_t *cp, pat;
3128 const uint8_t *ep;
3129
3130 cp = (uint8_t *)p + pp->pr_reqsize;
3131 ep = cp + POOL_REDZONE_SIZE;
3132
3133 /*
3134 * We really don't want the first byte of the red zone to be '\0';
3135 * an off-by-one in a string may not be properly detected.
3136 */
3137 pat = pool_pattern_generate(cp);
3138 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3139 cp++;
3140
3141 while (cp < ep) {
3142 *cp = pool_pattern_generate(cp);
3143 cp++;
3144 }
3145 #endif
3146 }
3147
3148 static void
3149 pool_redzone_check(struct pool *pp, void *p)
3150 {
3151 if (!pp->pr_redzone)
3152 return;
3153 #ifdef KASAN
3154 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3155 #else
3156 uint8_t *cp, pat, expected;
3157 const uint8_t *ep;
3158
3159 cp = (uint8_t *)p + pp->pr_reqsize;
3160 ep = cp + POOL_REDZONE_SIZE;
3161
3162 pat = pool_pattern_generate(cp);
3163 expected = (pat == '\0') ? STATIC_BYTE: pat;
3164 if (__predict_false(*cp != expected)) {
3165 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3166 pp->pr_wchan, *cp, expected);
3167 }
3168 cp++;
3169
3170 while (cp < ep) {
3171 expected = pool_pattern_generate(cp);
3172 if (__predict_false(*cp != expected)) {
3173 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3174 pp->pr_wchan, *cp, expected);
3175 }
3176 cp++;
3177 }
3178 #endif
3179 }
3180
3181 static void
3182 pool_cache_redzone_check(pool_cache_t pc, void *p)
3183 {
3184 #ifdef KASAN
3185 /* If there is a ctor/dtor, leave the data as valid. */
3186 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3187 return;
3188 }
3189 #endif
3190 pool_redzone_check(&pc->pc_pool, p);
3191 }
3192
3193 #endif /* POOL_REDZONE */
3194
3195 #if defined(DDB)
3196 static bool
3197 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3198 {
3199
3200 return (uintptr_t)ph->ph_page <= addr &&
3201 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3202 }
3203
3204 static bool
3205 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3206 {
3207
3208 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3209 }
3210
3211 static bool
3212 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3213 {
3214 int i;
3215
3216 if (pcg == NULL) {
3217 return false;
3218 }
3219 for (i = 0; i < pcg->pcg_avail; i++) {
3220 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3221 return true;
3222 }
3223 }
3224 return false;
3225 }
3226
3227 static bool
3228 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3229 {
3230
3231 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3232 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3233 pool_item_bitmap_t *bitmap =
3234 ph->ph_bitmap + (idx / BITMAP_SIZE);
3235 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3236
3237 return (*bitmap & mask) == 0;
3238 } else {
3239 struct pool_item *pi;
3240
3241 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3242 if (pool_in_item(pp, pi, addr)) {
3243 return false;
3244 }
3245 }
3246 return true;
3247 }
3248 }
3249
3250 void
3251 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3252 {
3253 struct pool *pp;
3254
3255 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3256 struct pool_item_header *ph;
3257 uintptr_t item;
3258 bool allocated = true;
3259 bool incache = false;
3260 bool incpucache = false;
3261 char cpucachestr[32];
3262
3263 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3264 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3265 if (pool_in_page(pp, ph, addr)) {
3266 goto found;
3267 }
3268 }
3269 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3270 if (pool_in_page(pp, ph, addr)) {
3271 allocated =
3272 pool_allocated(pp, ph, addr);
3273 goto found;
3274 }
3275 }
3276 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3277 if (pool_in_page(pp, ph, addr)) {
3278 allocated = false;
3279 goto found;
3280 }
3281 }
3282 continue;
3283 } else {
3284 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3285 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3286 continue;
3287 }
3288 allocated = pool_allocated(pp, ph, addr);
3289 }
3290 found:
3291 if (allocated && pp->pr_cache) {
3292 pool_cache_t pc = pp->pr_cache;
3293 struct pool_cache_group *pcg;
3294 int i;
3295
3296 for (pcg = pc->pc_fullgroups; pcg != NULL;
3297 pcg = pcg->pcg_next) {
3298 if (pool_in_cg(pp, pcg, addr)) {
3299 incache = true;
3300 goto print;
3301 }
3302 }
3303 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3304 pool_cache_cpu_t *cc;
3305
3306 if ((cc = pc->pc_cpus[i]) == NULL) {
3307 continue;
3308 }
3309 if (pool_in_cg(pp, cc->cc_current, addr) ||
3310 pool_in_cg(pp, cc->cc_previous, addr)) {
3311 struct cpu_info *ci =
3312 cpu_lookup(i);
3313
3314 incpucache = true;
3315 snprintf(cpucachestr,
3316 sizeof(cpucachestr),
3317 "cached by CPU %u",
3318 ci->ci_index);
3319 goto print;
3320 }
3321 }
3322 }
3323 print:
3324 item = (uintptr_t)ph->ph_page + ph->ph_off;
3325 item = item + rounddown(addr - item, pp->pr_size);
3326 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3327 (void *)addr, item, (size_t)(addr - item),
3328 pp->pr_wchan,
3329 incpucache ? cpucachestr :
3330 incache ? "cached" : allocated ? "allocated" : "free");
3331 }
3332 }
3333 #endif /* defined(DDB) */
3334
3335 static int
3336 pool_sysctl(SYSCTLFN_ARGS)
3337 {
3338 struct pool_sysctl data;
3339 struct pool *pp;
3340 struct pool_cache *pc;
3341 pool_cache_cpu_t *cc;
3342 int error;
3343 size_t i, written;
3344
3345 if (oldp == NULL) {
3346 *oldlenp = 0;
3347 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3348 *oldlenp += sizeof(data);
3349 return 0;
3350 }
3351
3352 memset(&data, 0, sizeof(data));
3353 error = 0;
3354 written = 0;
3355 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3356 if (written + sizeof(data) > *oldlenp)
3357 break;
3358 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3359 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3360 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3361 #define COPY(field) data.field = pp->field
3362 COPY(pr_size);
3363
3364 COPY(pr_itemsperpage);
3365 COPY(pr_nitems);
3366 COPY(pr_nout);
3367 COPY(pr_hardlimit);
3368 COPY(pr_npages);
3369 COPY(pr_minpages);
3370 COPY(pr_maxpages);
3371
3372 COPY(pr_nget);
3373 COPY(pr_nfail);
3374 COPY(pr_nput);
3375 COPY(pr_npagealloc);
3376 COPY(pr_npagefree);
3377 COPY(pr_hiwat);
3378 COPY(pr_nidle);
3379 #undef COPY
3380
3381 data.pr_cache_nmiss_pcpu = 0;
3382 data.pr_cache_nhit_pcpu = 0;
3383 data.pr_cache_nmiss_global = 0;
3384 data.pr_cache_nempty = 0;
3385 data.pr_cache_ncontended = 0;
3386 data.pr_cache_npartial = 0;
3387 if (pp->pr_cache) {
3388 uint32_t nfull = 0;
3389 pc = pp->pr_cache;
3390 data.pr_cache_meta_size = pc->pc_pcgsize;
3391 for (i = 0; i < pc->pc_ncpu; ++i) {
3392 cc = pc->pc_cpus[i];
3393 if (cc == NULL)
3394 continue;
3395 data.pr_cache_ncontended += cc->cc_contended;
3396 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3397 data.pr_cache_nhit_pcpu += cc->cc_hits;
3398 data.pr_cache_nmiss_global += cc->cc_pcmisses;
3399 nfull += cc->cc_nfull; /* 32-bit rollover! */
3400 data.pr_cache_npartial += cc->cc_npart;
3401 }
3402 data.pr_cache_nfull = nfull;
3403 } else {
3404 data.pr_cache_meta_size = 0;
3405 data.pr_cache_nfull = 0;
3406 }
3407 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3408 data.pr_cache_nmiss_global;
3409
3410 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3411 if (error)
3412 break;
3413 written += sizeof(data);
3414 oldp = (char *)oldp + sizeof(data);
3415 }
3416
3417 *oldlenp = written;
3418 return error;
3419 }
3420
3421 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3422 {
3423 const struct sysctlnode *rnode = NULL;
3424
3425 sysctl_createv(clog, 0, NULL, &rnode,
3426 CTLFLAG_PERMANENT,
3427 CTLTYPE_STRUCT, "pool",
3428 SYSCTL_DESCR("Get pool statistics"),
3429 pool_sysctl, 0, NULL, 0,
3430 CTL_KERN, CTL_CREATE, CTL_EOL);
3431 }
3432