subr_pool.c revision 1.276.4.1 1 /* $NetBSD: subr_pool.c,v 1.276.4.1 2021/08/01 22:42:38 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 * 2020 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.276.4.1 2021/08/01 22:42:38 thorpej Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63
64 #include <uvm/uvm_extern.h>
65
66 /*
67 * Pool resource management utility.
68 *
69 * Memory is allocated in pages which are split into pieces according to
70 * the pool item size. Each page is kept on one of three lists in the
71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 * for empty, full and partially-full pages respectively. The individual
73 * pool items are on a linked list headed by `ph_itemlist' in each page
74 * header. The memory for building the page list is either taken from
75 * the allocated pages themselves (for small pool items) or taken from
76 * an internal pool of page headers (`phpool').
77 */
78
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81
82 /* Private pool for page header structures */
83 #define PHPOOL_MAX 8
84 static struct pool phpool[PHPOOL_MAX];
85 #define PHPOOL_FREELIST_NELEM(idx) \
86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 # define POOL_REDZONE_SIZE 8
99 # else
100 # define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz) __nothing
108 # define pool_redzone_fill(pp, ptr) __nothing
109 # define pool_redzone_check(pp, ptr) __nothing
110 # define pool_cache_redzone_check(pc, ptr) __nothing
111 #endif
112
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr) __nothing
120 #define pool_put_kmsan(pp, ptr) __nothing
121 #define pool_cache_get_kmsan(pc, ptr) __nothing
122 #define pool_cache_put_kmsan(pc, ptr) __nothing
123 #endif
124
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129 struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a) __nothing
132 #define pool_quarantine_flush(a) __nothing
133 #define pool_put_quarantine(a, b, c) false
134 #endif
135
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b) false
140 #endif
141
142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144
145 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
146 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
147
148 /*
149 * Pool backend allocators.
150 *
151 * Each pool has a backend allocator that handles allocation, deallocation,
152 * and any additional draining that might be needed.
153 *
154 * We provide two standard allocators:
155 *
156 * pool_allocator_kmem - the default when no allocator is specified
157 *
158 * pool_allocator_nointr - used for pools that will not be accessed
159 * in interrupt context.
160 */
161 void *pool_page_alloc(struct pool *, int);
162 void pool_page_free(struct pool *, void *);
163
164 static void *pool_page_alloc_meta(struct pool *, int);
165 static void pool_page_free_meta(struct pool *, void *);
166
167 struct pool_allocator pool_allocator_kmem = {
168 .pa_alloc = pool_page_alloc,
169 .pa_free = pool_page_free,
170 .pa_pagesz = 0
171 };
172
173 struct pool_allocator pool_allocator_nointr = {
174 .pa_alloc = pool_page_alloc,
175 .pa_free = pool_page_free,
176 .pa_pagesz = 0
177 };
178
179 struct pool_allocator pool_allocator_meta = {
180 .pa_alloc = pool_page_alloc_meta,
181 .pa_free = pool_page_free_meta,
182 .pa_pagesz = 0
183 };
184
185 #define POOL_ALLOCATOR_BIG_BASE 13
186 static struct pool_allocator pool_allocator_big[] = {
187 {
188 .pa_alloc = pool_page_alloc,
189 .pa_free = pool_page_free,
190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
191 },
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
211 },
212 {
213 .pa_alloc = pool_page_alloc,
214 .pa_free = pool_page_free,
215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
216 },
217 {
218 .pa_alloc = pool_page_alloc,
219 .pa_free = pool_page_free,
220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
221 },
222 {
223 .pa_alloc = pool_page_alloc,
224 .pa_free = pool_page_free,
225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
226 },
227 {
228 .pa_alloc = pool_page_alloc,
229 .pa_free = pool_page_free,
230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
231 },
232 {
233 .pa_alloc = pool_page_alloc,
234 .pa_free = pool_page_free,
235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
236 },
237 {
238 .pa_alloc = pool_page_alloc,
239 .pa_free = pool_page_free,
240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
241 },
242 {
243 .pa_alloc = pool_page_alloc,
244 .pa_free = pool_page_free,
245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
246 }
247 };
248
249 static int pool_bigidx(size_t);
250
251 /* # of seconds to retain page after last use */
252 int pool_inactive_time = 10;
253
254 /* Next candidate for drainage (see pool_drain()) */
255 static struct pool *drainpp;
256
257 /* This lock protects both pool_head and drainpp. */
258 static kmutex_t pool_head_lock;
259 static kcondvar_t pool_busy;
260
261 /* This lock protects initialization of a potentially shared pool allocator */
262 static kmutex_t pool_allocator_lock;
263
264 static unsigned int poolid_counter = 0;
265
266 typedef uint32_t pool_item_bitmap_t;
267 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
268 #define BITMAP_MASK (BITMAP_SIZE - 1)
269 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
270
271 struct pool_item_header {
272 /* Page headers */
273 LIST_ENTRY(pool_item_header)
274 ph_pagelist; /* pool page list */
275 union {
276 /* !PR_PHINPAGE */
277 struct {
278 SPLAY_ENTRY(pool_item_header)
279 phu_node; /* off-page page headers */
280 } phu_offpage;
281 /* PR_PHINPAGE */
282 struct {
283 unsigned int phu_poolid;
284 } phu_onpage;
285 } ph_u1;
286 void * ph_page; /* this page's address */
287 uint32_t ph_time; /* last referenced */
288 uint16_t ph_nmissing; /* # of chunks in use */
289 uint16_t ph_off; /* start offset in page */
290 union {
291 /* !PR_USEBMAP */
292 struct {
293 LIST_HEAD(, pool_item)
294 phu_itemlist; /* chunk list for this page */
295 } phu_normal;
296 /* PR_USEBMAP */
297 struct {
298 pool_item_bitmap_t phu_bitmap[1];
299 } phu_notouch;
300 } ph_u2;
301 };
302 #define ph_node ph_u1.phu_offpage.phu_node
303 #define ph_poolid ph_u1.phu_onpage.phu_poolid
304 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
305 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
306
307 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
308
309 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
310 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
311
312 #if defined(DIAGNOSTIC) && !defined(KASAN)
313 #define POOL_CHECK_MAGIC
314 #endif
315
316 struct pool_item {
317 #ifdef POOL_CHECK_MAGIC
318 u_int pi_magic;
319 #endif
320 #define PI_MAGIC 0xdeaddeadU
321 /* Other entries use only this list entry */
322 LIST_ENTRY(pool_item) pi_list;
323 };
324
325 #define POOL_NEEDS_CATCHUP(pp) \
326 ((pp)->pr_nitems < (pp)->pr_minitems || \
327 (pp)->pr_npages < (pp)->pr_minpages)
328 #define POOL_OBJ_TO_PAGE(pp, v) \
329 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
330
331 /*
332 * Pool cache management.
333 *
334 * Pool caches provide a way for constructed objects to be cached by the
335 * pool subsystem. This can lead to performance improvements by avoiding
336 * needless object construction/destruction; it is deferred until absolutely
337 * necessary.
338 *
339 * Caches are grouped into cache groups. Each cache group references up
340 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
341 * object from the pool, it calls the object's constructor and places it
342 * into a cache group. When a cache group frees an object back to the
343 * pool, it first calls the object's destructor. This allows the object
344 * to persist in constructed form while freed to the cache.
345 *
346 * The pool references each cache, so that when a pool is drained by the
347 * pagedaemon, it can drain each individual cache as well. Each time a
348 * cache is drained, the most idle cache group is freed to the pool in
349 * its entirety.
350 *
351 * Pool caches are layed on top of pools. By layering them, we can avoid
352 * the complexity of cache management for pools which would not benefit
353 * from it.
354 */
355
356 static struct pool pcg_normal_pool;
357 static struct pool pcg_large_pool;
358 static struct pool cache_pool;
359 static struct pool cache_cpu_pool;
360
361 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
362 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
363
364 /* List of all caches. */
365 TAILQ_HEAD(,pool_cache) pool_cache_head =
366 TAILQ_HEAD_INITIALIZER(pool_cache_head);
367
368 int pool_cache_disable; /* global disable for caching */
369 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
370
371 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
372 void *);
373 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
374 void **, paddr_t *, int);
375 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
376 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
377 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
378 static void pool_cache_transfer(pool_cache_t);
379 static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
380 static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
381 static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
382
383 static int pool_catchup(struct pool *);
384 static void pool_prime_page(struct pool *, void *,
385 struct pool_item_header *);
386 static void pool_update_curpage(struct pool *);
387
388 static int pool_grow(struct pool *, int);
389 static void *pool_allocator_alloc(struct pool *, int);
390 static void pool_allocator_free(struct pool *, void *);
391
392 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
393 void (*)(const char *, ...) __printflike(1, 2));
394 static void pool_print1(struct pool *, const char *,
395 void (*)(const char *, ...) __printflike(1, 2));
396
397 static int pool_chk_page(struct pool *, const char *,
398 struct pool_item_header *);
399
400 /* -------------------------------------------------------------------------- */
401
402 static inline unsigned int
403 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
404 const void *v)
405 {
406 const char *cp = v;
407 unsigned int idx;
408
409 KASSERT(pp->pr_roflags & PR_USEBMAP);
410 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
411
412 if (__predict_false(idx >= pp->pr_itemsperpage)) {
413 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
414 pp->pr_itemsperpage);
415 }
416
417 return idx;
418 }
419
420 static inline void
421 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
422 void *obj)
423 {
424 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
425 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
426 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
427
428 if (__predict_false((*bitmap & mask) != 0)) {
429 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
430 }
431
432 *bitmap |= mask;
433 }
434
435 static inline void *
436 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
437 {
438 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
439 unsigned int idx;
440 int i;
441
442 for (i = 0; ; i++) {
443 int bit;
444
445 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
446 bit = ffs32(bitmap[i]);
447 if (bit) {
448 pool_item_bitmap_t mask;
449
450 bit--;
451 idx = (i * BITMAP_SIZE) + bit;
452 mask = 1U << bit;
453 KASSERT((bitmap[i] & mask) != 0);
454 bitmap[i] &= ~mask;
455 break;
456 }
457 }
458 KASSERT(idx < pp->pr_itemsperpage);
459 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
460 }
461
462 static inline void
463 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
464 {
465 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
466 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
467 int i;
468
469 for (i = 0; i < n; i++) {
470 bitmap[i] = (pool_item_bitmap_t)-1;
471 }
472 }
473
474 /* -------------------------------------------------------------------------- */
475
476 static inline void
477 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
478 void *obj)
479 {
480 struct pool_item *pi = obj;
481
482 #ifdef POOL_CHECK_MAGIC
483 pi->pi_magic = PI_MAGIC;
484 #endif
485
486 if (pp->pr_redzone) {
487 /*
488 * Mark the pool_item as valid. The rest is already
489 * invalid.
490 */
491 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
492 }
493
494 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
495 }
496
497 static inline void *
498 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
499 {
500 struct pool_item *pi;
501 void *v;
502
503 v = pi = LIST_FIRST(&ph->ph_itemlist);
504 if (__predict_false(v == NULL)) {
505 mutex_exit(&pp->pr_lock);
506 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
507 }
508 KASSERTMSG((pp->pr_nitems > 0),
509 "%s: [%s] nitems %u inconsistent on itemlist",
510 __func__, pp->pr_wchan, pp->pr_nitems);
511 #ifdef POOL_CHECK_MAGIC
512 KASSERTMSG((pi->pi_magic == PI_MAGIC),
513 "%s: [%s] free list modified: "
514 "magic=%x; page %p; item addr %p", __func__,
515 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
516 #endif
517
518 /*
519 * Remove from item list.
520 */
521 LIST_REMOVE(pi, pi_list);
522
523 return v;
524 }
525
526 /* -------------------------------------------------------------------------- */
527
528 static inline void
529 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
530 void *object)
531 {
532 if (__predict_false((void *)ph->ph_page != page)) {
533 panic("%s: [%s] item %p not part of pool", __func__,
534 pp->pr_wchan, object);
535 }
536 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
537 panic("%s: [%s] item %p below item space", __func__,
538 pp->pr_wchan, object);
539 }
540 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
541 panic("%s: [%s] item %p poolid %u != %u", __func__,
542 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
543 }
544 }
545
546 static inline void
547 pc_phinpage_check(pool_cache_t pc, void *object)
548 {
549 struct pool_item_header *ph;
550 struct pool *pp;
551 void *page;
552
553 pp = &pc->pc_pool;
554 page = POOL_OBJ_TO_PAGE(pp, object);
555 ph = (struct pool_item_header *)page;
556
557 pr_phinpage_check(pp, ph, page, object);
558 }
559
560 /* -------------------------------------------------------------------------- */
561
562 static inline int
563 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
564 {
565
566 /*
567 * We consider pool_item_header with smaller ph_page bigger. This
568 * unnatural ordering is for the benefit of pr_find_pagehead.
569 */
570 if (a->ph_page < b->ph_page)
571 return 1;
572 else if (a->ph_page > b->ph_page)
573 return -1;
574 else
575 return 0;
576 }
577
578 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
579 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
580
581 static inline struct pool_item_header *
582 pr_find_pagehead_noalign(struct pool *pp, void *v)
583 {
584 struct pool_item_header *ph, tmp;
585
586 tmp.ph_page = (void *)(uintptr_t)v;
587 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
588 if (ph == NULL) {
589 ph = SPLAY_ROOT(&pp->pr_phtree);
590 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
591 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
592 }
593 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
594 }
595
596 return ph;
597 }
598
599 /*
600 * Return the pool page header based on item address.
601 */
602 static inline struct pool_item_header *
603 pr_find_pagehead(struct pool *pp, void *v)
604 {
605 struct pool_item_header *ph, tmp;
606
607 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
608 ph = pr_find_pagehead_noalign(pp, v);
609 } else {
610 void *page = POOL_OBJ_TO_PAGE(pp, v);
611 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
612 ph = (struct pool_item_header *)page;
613 pr_phinpage_check(pp, ph, page, v);
614 } else {
615 tmp.ph_page = page;
616 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
617 }
618 }
619
620 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
621 ((char *)ph->ph_page <= (char *)v &&
622 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
623 return ph;
624 }
625
626 static void
627 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
628 {
629 struct pool_item_header *ph;
630
631 while ((ph = LIST_FIRST(pq)) != NULL) {
632 LIST_REMOVE(ph, ph_pagelist);
633 pool_allocator_free(pp, ph->ph_page);
634 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
635 pool_put(pp->pr_phpool, ph);
636 }
637 }
638
639 /*
640 * Remove a page from the pool.
641 */
642 static inline void
643 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
644 struct pool_pagelist *pq)
645 {
646
647 KASSERT(mutex_owned(&pp->pr_lock));
648
649 /*
650 * If the page was idle, decrement the idle page count.
651 */
652 if (ph->ph_nmissing == 0) {
653 KASSERT(pp->pr_nidle != 0);
654 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
655 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
656 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
657 pp->pr_nidle--;
658 }
659
660 pp->pr_nitems -= pp->pr_itemsperpage;
661
662 /*
663 * Unlink the page from the pool and queue it for release.
664 */
665 LIST_REMOVE(ph, ph_pagelist);
666 if (pp->pr_roflags & PR_PHINPAGE) {
667 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
668 panic("%s: [%s] ph %p poolid %u != %u",
669 __func__, pp->pr_wchan, ph, ph->ph_poolid,
670 pp->pr_poolid);
671 }
672 } else {
673 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
674 }
675 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
676
677 pp->pr_npages--;
678 pp->pr_npagefree++;
679
680 pool_update_curpage(pp);
681 }
682
683 /*
684 * Initialize all the pools listed in the "pools" link set.
685 */
686 void
687 pool_subsystem_init(void)
688 {
689 size_t size;
690 int idx;
691
692 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
693 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
694 cv_init(&pool_busy, "poolbusy");
695
696 /*
697 * Initialize private page header pool and cache magazine pool if we
698 * haven't done so yet.
699 */
700 for (idx = 0; idx < PHPOOL_MAX; idx++) {
701 static char phpool_names[PHPOOL_MAX][6+1+6+1];
702 int nelem;
703 size_t sz;
704
705 nelem = PHPOOL_FREELIST_NELEM(idx);
706 KASSERT(nelem != 0);
707 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
708 "phpool-%d", nelem);
709 sz = offsetof(struct pool_item_header,
710 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
711 pool_init(&phpool[idx], sz, 0, 0, 0,
712 phpool_names[idx], &pool_allocator_meta, IPL_VM);
713 }
714
715 size = sizeof(pcg_t) +
716 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
717 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
718 "pcgnormal", &pool_allocator_meta, IPL_VM);
719
720 size = sizeof(pcg_t) +
721 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
722 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
723 "pcglarge", &pool_allocator_meta, IPL_VM);
724
725 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
726 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
727
728 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
729 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
730 }
731
732 static inline bool
733 pool_init_is_phinpage(const struct pool *pp)
734 {
735 size_t pagesize;
736
737 if (pp->pr_roflags & PR_PHINPAGE) {
738 return true;
739 }
740 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
741 return false;
742 }
743
744 pagesize = pp->pr_alloc->pa_pagesz;
745
746 /*
747 * Threshold: the item size is below 1/16 of a page size, and below
748 * 8 times the page header size. The latter ensures we go off-page
749 * if the page header would make us waste a rather big item.
750 */
751 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
752 return true;
753 }
754
755 /* Put the header into the page if it doesn't waste any items. */
756 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
757 return true;
758 }
759
760 return false;
761 }
762
763 static inline bool
764 pool_init_is_usebmap(const struct pool *pp)
765 {
766 size_t bmapsize;
767
768 if (pp->pr_roflags & PR_NOTOUCH) {
769 return true;
770 }
771
772 /*
773 * If we're off-page, go with a bitmap.
774 */
775 if (!(pp->pr_roflags & PR_PHINPAGE)) {
776 return true;
777 }
778
779 /*
780 * If we're on-page, and the page header can already contain a bitmap
781 * big enough to cover all the items of the page, go with a bitmap.
782 */
783 bmapsize = roundup(PHSIZE, pp->pr_align) -
784 offsetof(struct pool_item_header, ph_bitmap[0]);
785 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
786 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
787 return true;
788 }
789
790 return false;
791 }
792
793 /*
794 * Initialize the given pool resource structure.
795 *
796 * We export this routine to allow other kernel parts to declare
797 * static pools that must be initialized before kmem(9) is available.
798 */
799 void
800 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
801 const char *wchan, struct pool_allocator *palloc, int ipl)
802 {
803 struct pool *pp1;
804 size_t prsize;
805 int itemspace, slack;
806
807 /* XXX ioff will be removed. */
808 KASSERT(ioff == 0);
809
810 #ifdef DEBUG
811 if (__predict_true(!cold))
812 mutex_enter(&pool_head_lock);
813 /*
814 * Check that the pool hasn't already been initialised and
815 * added to the list of all pools.
816 */
817 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
818 if (pp == pp1)
819 panic("%s: [%s] already initialised", __func__,
820 wchan);
821 }
822 if (__predict_true(!cold))
823 mutex_exit(&pool_head_lock);
824 #endif
825
826 if (palloc == NULL)
827 palloc = &pool_allocator_kmem;
828
829 if (!cold)
830 mutex_enter(&pool_allocator_lock);
831 if (palloc->pa_refcnt++ == 0) {
832 if (palloc->pa_pagesz == 0)
833 palloc->pa_pagesz = PAGE_SIZE;
834
835 TAILQ_INIT(&palloc->pa_list);
836
837 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
838 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
839 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
840 }
841 if (!cold)
842 mutex_exit(&pool_allocator_lock);
843
844 if (align == 0)
845 align = ALIGN(1);
846
847 prsize = size;
848 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
849 prsize = sizeof(struct pool_item);
850
851 prsize = roundup(prsize, align);
852 KASSERTMSG((prsize <= palloc->pa_pagesz),
853 "%s: [%s] pool item size (%zu) larger than page size (%u)",
854 __func__, wchan, prsize, palloc->pa_pagesz);
855
856 /*
857 * Initialize the pool structure.
858 */
859 LIST_INIT(&pp->pr_emptypages);
860 LIST_INIT(&pp->pr_fullpages);
861 LIST_INIT(&pp->pr_partpages);
862 pp->pr_cache = NULL;
863 pp->pr_curpage = NULL;
864 pp->pr_npages = 0;
865 pp->pr_minitems = 0;
866 pp->pr_minpages = 0;
867 pp->pr_maxpages = UINT_MAX;
868 pp->pr_roflags = flags;
869 pp->pr_flags = 0;
870 pp->pr_size = prsize;
871 pp->pr_reqsize = size;
872 pp->pr_align = align;
873 pp->pr_wchan = wchan;
874 pp->pr_alloc = palloc;
875 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
876 pp->pr_nitems = 0;
877 pp->pr_nout = 0;
878 pp->pr_hardlimit = UINT_MAX;
879 pp->pr_hardlimit_warning = NULL;
880 pp->pr_hardlimit_ratecap.tv_sec = 0;
881 pp->pr_hardlimit_ratecap.tv_usec = 0;
882 pp->pr_hardlimit_warning_last.tv_sec = 0;
883 pp->pr_hardlimit_warning_last.tv_usec = 0;
884 pp->pr_drain_hook = NULL;
885 pp->pr_drain_hook_arg = NULL;
886 pp->pr_freecheck = NULL;
887 pp->pr_redzone = false;
888 pool_redzone_init(pp, size);
889 pool_quarantine_init(pp);
890
891 /*
892 * Decide whether to put the page header off-page to avoid wasting too
893 * large a part of the page or too big an item. Off-page page headers
894 * go on a hash table, so we can match a returned item with its header
895 * based on the page address.
896 */
897 if (pool_init_is_phinpage(pp)) {
898 /* Use the beginning of the page for the page header */
899 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
900 pp->pr_itemoffset = roundup(PHSIZE, align);
901 pp->pr_roflags |= PR_PHINPAGE;
902 } else {
903 /* The page header will be taken from our page header pool */
904 itemspace = palloc->pa_pagesz;
905 pp->pr_itemoffset = 0;
906 SPLAY_INIT(&pp->pr_phtree);
907 }
908
909 pp->pr_itemsperpage = itemspace / pp->pr_size;
910 KASSERT(pp->pr_itemsperpage != 0);
911
912 /*
913 * Decide whether to use a bitmap or a linked list to manage freed
914 * items.
915 */
916 if (pool_init_is_usebmap(pp)) {
917 pp->pr_roflags |= PR_USEBMAP;
918 }
919
920 /*
921 * If we're off-page, then we're using a bitmap; choose the appropriate
922 * pool to allocate page headers, whose size varies depending on the
923 * bitmap. If we're on-page, nothing to do.
924 */
925 if (!(pp->pr_roflags & PR_PHINPAGE)) {
926 int idx;
927
928 KASSERT(pp->pr_roflags & PR_USEBMAP);
929
930 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
931 idx++) {
932 /* nothing */
933 }
934 if (idx >= PHPOOL_MAX) {
935 /*
936 * if you see this panic, consider to tweak
937 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
938 */
939 panic("%s: [%s] too large itemsperpage(%d) for "
940 "PR_USEBMAP", __func__,
941 pp->pr_wchan, pp->pr_itemsperpage);
942 }
943 pp->pr_phpool = &phpool[idx];
944 } else {
945 pp->pr_phpool = NULL;
946 }
947
948 /*
949 * Use the slack between the chunks and the page header
950 * for "cache coloring".
951 */
952 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
953 pp->pr_maxcolor = rounddown(slack, align);
954 pp->pr_curcolor = 0;
955
956 pp->pr_nget = 0;
957 pp->pr_nfail = 0;
958 pp->pr_nput = 0;
959 pp->pr_npagealloc = 0;
960 pp->pr_npagefree = 0;
961 pp->pr_hiwat = 0;
962 pp->pr_nidle = 0;
963 pp->pr_refcnt = 0;
964
965 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
966 cv_init(&pp->pr_cv, wchan);
967 pp->pr_ipl = ipl;
968
969 /* Insert into the list of all pools. */
970 if (!cold)
971 mutex_enter(&pool_head_lock);
972 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
973 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
974 break;
975 }
976 if (pp1 == NULL)
977 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
978 else
979 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
980 if (!cold)
981 mutex_exit(&pool_head_lock);
982
983 /* Insert this into the list of pools using this allocator. */
984 if (!cold)
985 mutex_enter(&palloc->pa_lock);
986 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
987 if (!cold)
988 mutex_exit(&palloc->pa_lock);
989 }
990
991 /*
992 * De-commision a pool resource.
993 */
994 void
995 pool_destroy(struct pool *pp)
996 {
997 struct pool_pagelist pq;
998 struct pool_item_header *ph;
999
1000 pool_quarantine_flush(pp);
1001
1002 /* Remove from global pool list */
1003 mutex_enter(&pool_head_lock);
1004 while (pp->pr_refcnt != 0)
1005 cv_wait(&pool_busy, &pool_head_lock);
1006 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1007 if (drainpp == pp)
1008 drainpp = NULL;
1009 mutex_exit(&pool_head_lock);
1010
1011 /* Remove this pool from its allocator's list of pools. */
1012 mutex_enter(&pp->pr_alloc->pa_lock);
1013 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1014 mutex_exit(&pp->pr_alloc->pa_lock);
1015
1016 mutex_enter(&pool_allocator_lock);
1017 if (--pp->pr_alloc->pa_refcnt == 0)
1018 mutex_destroy(&pp->pr_alloc->pa_lock);
1019 mutex_exit(&pool_allocator_lock);
1020
1021 mutex_enter(&pp->pr_lock);
1022
1023 KASSERT(pp->pr_cache == NULL);
1024 KASSERTMSG((pp->pr_nout == 0),
1025 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1026 pp->pr_nout);
1027 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1028 KASSERT(LIST_EMPTY(&pp->pr_partpages));
1029
1030 /* Remove all pages */
1031 LIST_INIT(&pq);
1032 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1033 pr_rmpage(pp, ph, &pq);
1034
1035 mutex_exit(&pp->pr_lock);
1036
1037 pr_pagelist_free(pp, &pq);
1038 cv_destroy(&pp->pr_cv);
1039 mutex_destroy(&pp->pr_lock);
1040 }
1041
1042 void
1043 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1044 {
1045
1046 /* XXX no locking -- must be used just after pool_init() */
1047 KASSERTMSG((pp->pr_drain_hook == NULL),
1048 "%s: [%s] already set", __func__, pp->pr_wchan);
1049 pp->pr_drain_hook = fn;
1050 pp->pr_drain_hook_arg = arg;
1051 }
1052
1053 static struct pool_item_header *
1054 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1055 {
1056 struct pool_item_header *ph;
1057
1058 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1059 ph = storage;
1060 else
1061 ph = pool_get(pp->pr_phpool, flags);
1062
1063 return ph;
1064 }
1065
1066 /*
1067 * Grab an item from the pool.
1068 */
1069 void *
1070 pool_get(struct pool *pp, int flags)
1071 {
1072 struct pool_item_header *ph;
1073 void *v;
1074
1075 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1076 KASSERTMSG((pp->pr_itemsperpage != 0),
1077 "%s: [%s] pr_itemsperpage is zero, "
1078 "pool not initialized?", __func__, pp->pr_wchan);
1079 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1080 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1081 "%s: [%s] is IPL_NONE, but called from interrupt context",
1082 __func__, pp->pr_wchan);
1083 if (flags & PR_WAITOK) {
1084 ASSERT_SLEEPABLE();
1085 }
1086
1087 if (flags & PR_NOWAIT) {
1088 if (fault_inject())
1089 return NULL;
1090 }
1091
1092 mutex_enter(&pp->pr_lock);
1093 startover:
1094 /*
1095 * Check to see if we've reached the hard limit. If we have,
1096 * and we can wait, then wait until an item has been returned to
1097 * the pool.
1098 */
1099 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1100 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1101 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1102 if (pp->pr_drain_hook != NULL) {
1103 /*
1104 * Since the drain hook is going to free things
1105 * back to the pool, unlock, call the hook, re-lock,
1106 * and check the hardlimit condition again.
1107 */
1108 mutex_exit(&pp->pr_lock);
1109 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1110 mutex_enter(&pp->pr_lock);
1111 if (pp->pr_nout < pp->pr_hardlimit)
1112 goto startover;
1113 }
1114
1115 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1116 /*
1117 * XXX: A warning isn't logged in this case. Should
1118 * it be?
1119 */
1120 pp->pr_flags |= PR_WANTED;
1121 do {
1122 cv_wait(&pp->pr_cv, &pp->pr_lock);
1123 } while (pp->pr_flags & PR_WANTED);
1124 goto startover;
1125 }
1126
1127 /*
1128 * Log a message that the hard limit has been hit.
1129 */
1130 if (pp->pr_hardlimit_warning != NULL &&
1131 ratecheck(&pp->pr_hardlimit_warning_last,
1132 &pp->pr_hardlimit_ratecap))
1133 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1134
1135 pp->pr_nfail++;
1136
1137 mutex_exit(&pp->pr_lock);
1138 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1139 return NULL;
1140 }
1141
1142 /*
1143 * The convention we use is that if `curpage' is not NULL, then
1144 * it points at a non-empty bucket. In particular, `curpage'
1145 * never points at a page header which has PR_PHINPAGE set and
1146 * has no items in its bucket.
1147 */
1148 if ((ph = pp->pr_curpage) == NULL) {
1149 int error;
1150
1151 KASSERTMSG((pp->pr_nitems == 0),
1152 "%s: [%s] curpage NULL, inconsistent nitems %u",
1153 __func__, pp->pr_wchan, pp->pr_nitems);
1154
1155 /*
1156 * Call the back-end page allocator for more memory.
1157 * Release the pool lock, as the back-end page allocator
1158 * may block.
1159 */
1160 error = pool_grow(pp, flags);
1161 if (error != 0) {
1162 /*
1163 * pool_grow aborts when another thread
1164 * is allocating a new page. Retry if it
1165 * waited for it.
1166 */
1167 if (error == ERESTART)
1168 goto startover;
1169
1170 /*
1171 * We were unable to allocate a page or item
1172 * header, but we released the lock during
1173 * allocation, so perhaps items were freed
1174 * back to the pool. Check for this case.
1175 */
1176 if (pp->pr_curpage != NULL)
1177 goto startover;
1178
1179 pp->pr_nfail++;
1180 mutex_exit(&pp->pr_lock);
1181 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1182 return NULL;
1183 }
1184
1185 /* Start the allocation process over. */
1186 goto startover;
1187 }
1188 if (pp->pr_roflags & PR_USEBMAP) {
1189 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1190 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1191 v = pr_item_bitmap_get(pp, ph);
1192 } else {
1193 v = pr_item_linkedlist_get(pp, ph);
1194 }
1195 pp->pr_nitems--;
1196 pp->pr_nout++;
1197 if (ph->ph_nmissing == 0) {
1198 KASSERT(pp->pr_nidle > 0);
1199 pp->pr_nidle--;
1200
1201 /*
1202 * This page was previously empty. Move it to the list of
1203 * partially-full pages. This page is already curpage.
1204 */
1205 LIST_REMOVE(ph, ph_pagelist);
1206 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1207 }
1208 ph->ph_nmissing++;
1209 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1210 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1211 LIST_EMPTY(&ph->ph_itemlist)),
1212 "%s: [%s] nmissing (%u) inconsistent", __func__,
1213 pp->pr_wchan, ph->ph_nmissing);
1214 /*
1215 * This page is now full. Move it to the full list
1216 * and select a new current page.
1217 */
1218 LIST_REMOVE(ph, ph_pagelist);
1219 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1220 pool_update_curpage(pp);
1221 }
1222
1223 pp->pr_nget++;
1224
1225 /*
1226 * If we have a low water mark and we are now below that low
1227 * water mark, add more items to the pool.
1228 */
1229 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1230 /*
1231 * XXX: Should we log a warning? Should we set up a timeout
1232 * to try again in a second or so? The latter could break
1233 * a caller's assumptions about interrupt protection, etc.
1234 */
1235 }
1236
1237 mutex_exit(&pp->pr_lock);
1238 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1239 FREECHECK_OUT(&pp->pr_freecheck, v);
1240 pool_redzone_fill(pp, v);
1241 pool_get_kmsan(pp, v);
1242 if (flags & PR_ZERO)
1243 memset(v, 0, pp->pr_reqsize);
1244 return v;
1245 }
1246
1247 /*
1248 * Internal version of pool_put(). Pool is already locked/entered.
1249 */
1250 static void
1251 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1252 {
1253 struct pool_item_header *ph;
1254
1255 KASSERT(mutex_owned(&pp->pr_lock));
1256 pool_redzone_check(pp, v);
1257 pool_put_kmsan(pp, v);
1258 FREECHECK_IN(&pp->pr_freecheck, v);
1259 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1260
1261 KASSERTMSG((pp->pr_nout > 0),
1262 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1263
1264 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1265 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1266 }
1267
1268 /*
1269 * Return to item list.
1270 */
1271 if (pp->pr_roflags & PR_USEBMAP) {
1272 pr_item_bitmap_put(pp, ph, v);
1273 } else {
1274 pr_item_linkedlist_put(pp, ph, v);
1275 }
1276 KDASSERT(ph->ph_nmissing != 0);
1277 ph->ph_nmissing--;
1278 pp->pr_nput++;
1279 pp->pr_nitems++;
1280 pp->pr_nout--;
1281
1282 /* Cancel "pool empty" condition if it exists */
1283 if (pp->pr_curpage == NULL)
1284 pp->pr_curpage = ph;
1285
1286 if (pp->pr_flags & PR_WANTED) {
1287 pp->pr_flags &= ~PR_WANTED;
1288 cv_broadcast(&pp->pr_cv);
1289 }
1290
1291 /*
1292 * If this page is now empty, do one of two things:
1293 *
1294 * (1) If we have more pages than the page high water mark,
1295 * free the page back to the system. ONLY CONSIDER
1296 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1297 * CLAIM.
1298 *
1299 * (2) Otherwise, move the page to the empty page list.
1300 *
1301 * Either way, select a new current page (so we use a partially-full
1302 * page if one is available).
1303 */
1304 if (ph->ph_nmissing == 0) {
1305 pp->pr_nidle++;
1306 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1307 pp->pr_npages > pp->pr_minpages &&
1308 pp->pr_npages > pp->pr_maxpages) {
1309 pr_rmpage(pp, ph, pq);
1310 } else {
1311 LIST_REMOVE(ph, ph_pagelist);
1312 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1313
1314 /*
1315 * Update the timestamp on the page. A page must
1316 * be idle for some period of time before it can
1317 * be reclaimed by the pagedaemon. This minimizes
1318 * ping-pong'ing for memory.
1319 *
1320 * note for 64-bit time_t: truncating to 32-bit is not
1321 * a problem for our usage.
1322 */
1323 ph->ph_time = time_uptime;
1324 }
1325 pool_update_curpage(pp);
1326 }
1327
1328 /*
1329 * If the page was previously completely full, move it to the
1330 * partially-full list and make it the current page. The next
1331 * allocation will get the item from this page, instead of
1332 * further fragmenting the pool.
1333 */
1334 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1335 LIST_REMOVE(ph, ph_pagelist);
1336 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1337 pp->pr_curpage = ph;
1338 }
1339 }
1340
1341 void
1342 pool_put(struct pool *pp, void *v)
1343 {
1344 struct pool_pagelist pq;
1345
1346 LIST_INIT(&pq);
1347
1348 mutex_enter(&pp->pr_lock);
1349 if (!pool_put_quarantine(pp, v, &pq)) {
1350 pool_do_put(pp, v, &pq);
1351 }
1352 mutex_exit(&pp->pr_lock);
1353
1354 pr_pagelist_free(pp, &pq);
1355 }
1356
1357 /*
1358 * pool_grow: grow a pool by a page.
1359 *
1360 * => called with pool locked.
1361 * => unlock and relock the pool.
1362 * => return with pool locked.
1363 */
1364
1365 static int
1366 pool_grow(struct pool *pp, int flags)
1367 {
1368 struct pool_item_header *ph;
1369 char *storage;
1370
1371 /*
1372 * If there's a pool_grow in progress, wait for it to complete
1373 * and try again from the top.
1374 */
1375 if (pp->pr_flags & PR_GROWING) {
1376 if (flags & PR_WAITOK) {
1377 do {
1378 cv_wait(&pp->pr_cv, &pp->pr_lock);
1379 } while (pp->pr_flags & PR_GROWING);
1380 return ERESTART;
1381 } else {
1382 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1383 /*
1384 * This needs an unlock/relock dance so
1385 * that the other caller has a chance to
1386 * run and actually do the thing. Note
1387 * that this is effectively a busy-wait.
1388 */
1389 mutex_exit(&pp->pr_lock);
1390 mutex_enter(&pp->pr_lock);
1391 return ERESTART;
1392 }
1393 return EWOULDBLOCK;
1394 }
1395 }
1396 pp->pr_flags |= PR_GROWING;
1397 if (flags & PR_WAITOK)
1398 mutex_exit(&pp->pr_lock);
1399 else
1400 pp->pr_flags |= PR_GROWINGNOWAIT;
1401
1402 storage = pool_allocator_alloc(pp, flags);
1403 if (__predict_false(storage == NULL))
1404 goto out;
1405
1406 ph = pool_alloc_item_header(pp, storage, flags);
1407 if (__predict_false(ph == NULL)) {
1408 pool_allocator_free(pp, storage);
1409 goto out;
1410 }
1411
1412 if (flags & PR_WAITOK)
1413 mutex_enter(&pp->pr_lock);
1414 pool_prime_page(pp, storage, ph);
1415 pp->pr_npagealloc++;
1416 KASSERT(pp->pr_flags & PR_GROWING);
1417 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1418 /*
1419 * If anyone was waiting for pool_grow, notify them that we
1420 * may have just done it.
1421 */
1422 cv_broadcast(&pp->pr_cv);
1423 return 0;
1424 out:
1425 if (flags & PR_WAITOK)
1426 mutex_enter(&pp->pr_lock);
1427 KASSERT(pp->pr_flags & PR_GROWING);
1428 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1429 return ENOMEM;
1430 }
1431
1432 void
1433 pool_prime(struct pool *pp, int n)
1434 {
1435
1436 mutex_enter(&pp->pr_lock);
1437 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1438 if (pp->pr_maxpages <= pp->pr_minpages)
1439 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1440 while (pp->pr_npages < pp->pr_minpages)
1441 (void) pool_grow(pp, PR_WAITOK);
1442 mutex_exit(&pp->pr_lock);
1443 }
1444
1445 /*
1446 * Add a page worth of items to the pool.
1447 *
1448 * Note, we must be called with the pool descriptor LOCKED.
1449 */
1450 static void
1451 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1452 {
1453 const unsigned int align = pp->pr_align;
1454 struct pool_item *pi;
1455 void *cp = storage;
1456 int n;
1457
1458 KASSERT(mutex_owned(&pp->pr_lock));
1459 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1460 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1461 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1462
1463 /*
1464 * Insert page header.
1465 */
1466 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1467 LIST_INIT(&ph->ph_itemlist);
1468 ph->ph_page = storage;
1469 ph->ph_nmissing = 0;
1470 ph->ph_time = time_uptime;
1471 if (pp->pr_roflags & PR_PHINPAGE)
1472 ph->ph_poolid = pp->pr_poolid;
1473 else
1474 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1475
1476 pp->pr_nidle++;
1477
1478 /*
1479 * The item space starts after the on-page header, if any.
1480 */
1481 ph->ph_off = pp->pr_itemoffset;
1482
1483 /*
1484 * Color this page.
1485 */
1486 ph->ph_off += pp->pr_curcolor;
1487 cp = (char *)cp + ph->ph_off;
1488 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1489 pp->pr_curcolor = 0;
1490
1491 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1492
1493 /*
1494 * Insert remaining chunks on the bucket list.
1495 */
1496 n = pp->pr_itemsperpage;
1497 pp->pr_nitems += n;
1498
1499 if (pp->pr_roflags & PR_USEBMAP) {
1500 pr_item_bitmap_init(pp, ph);
1501 } else {
1502 while (n--) {
1503 pi = (struct pool_item *)cp;
1504
1505 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1506
1507 /* Insert on page list */
1508 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1509 #ifdef POOL_CHECK_MAGIC
1510 pi->pi_magic = PI_MAGIC;
1511 #endif
1512 cp = (char *)cp + pp->pr_size;
1513
1514 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1515 }
1516 }
1517
1518 /*
1519 * If the pool was depleted, point at the new page.
1520 */
1521 if (pp->pr_curpage == NULL)
1522 pp->pr_curpage = ph;
1523
1524 if (++pp->pr_npages > pp->pr_hiwat)
1525 pp->pr_hiwat = pp->pr_npages;
1526 }
1527
1528 /*
1529 * Used by pool_get() when nitems drops below the low water mark. This
1530 * is used to catch up pr_nitems with the low water mark.
1531 *
1532 * Note 1, we never wait for memory here, we let the caller decide what to do.
1533 *
1534 * Note 2, we must be called with the pool already locked, and we return
1535 * with it locked.
1536 */
1537 static int
1538 pool_catchup(struct pool *pp)
1539 {
1540 int error = 0;
1541
1542 while (POOL_NEEDS_CATCHUP(pp)) {
1543 error = pool_grow(pp, PR_NOWAIT);
1544 if (error) {
1545 if (error == ERESTART)
1546 continue;
1547 break;
1548 }
1549 }
1550 return error;
1551 }
1552
1553 static void
1554 pool_update_curpage(struct pool *pp)
1555 {
1556
1557 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1558 if (pp->pr_curpage == NULL) {
1559 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1560 }
1561 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1562 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1563 }
1564
1565 void
1566 pool_setlowat(struct pool *pp, int n)
1567 {
1568
1569 mutex_enter(&pp->pr_lock);
1570 pp->pr_minitems = n;
1571
1572 /* Make sure we're caught up with the newly-set low water mark. */
1573 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1574 /*
1575 * XXX: Should we log a warning? Should we set up a timeout
1576 * to try again in a second or so? The latter could break
1577 * a caller's assumptions about interrupt protection, etc.
1578 */
1579 }
1580
1581 mutex_exit(&pp->pr_lock);
1582 }
1583
1584 void
1585 pool_sethiwat(struct pool *pp, int n)
1586 {
1587
1588 mutex_enter(&pp->pr_lock);
1589
1590 pp->pr_maxitems = n;
1591
1592 mutex_exit(&pp->pr_lock);
1593 }
1594
1595 void
1596 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1597 {
1598
1599 mutex_enter(&pp->pr_lock);
1600
1601 pp->pr_hardlimit = n;
1602 pp->pr_hardlimit_warning = warnmess;
1603 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1604 pp->pr_hardlimit_warning_last.tv_sec = 0;
1605 pp->pr_hardlimit_warning_last.tv_usec = 0;
1606
1607 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1608
1609 mutex_exit(&pp->pr_lock);
1610 }
1611
1612 unsigned int
1613 pool_nget(struct pool *pp)
1614 {
1615
1616 return pp->pr_nget;
1617 }
1618
1619 unsigned int
1620 pool_nput(struct pool *pp)
1621 {
1622
1623 return pp->pr_nput;
1624 }
1625
1626 /*
1627 * Release all complete pages that have not been used recently.
1628 *
1629 * Must not be called from interrupt context.
1630 */
1631 int
1632 pool_reclaim(struct pool *pp)
1633 {
1634 struct pool_item_header *ph, *phnext;
1635 struct pool_pagelist pq;
1636 uint32_t curtime;
1637 bool klock;
1638 int rv;
1639
1640 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1641
1642 if (pp->pr_drain_hook != NULL) {
1643 /*
1644 * The drain hook must be called with the pool unlocked.
1645 */
1646 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1647 }
1648
1649 /*
1650 * XXXSMP Because we do not want to cause non-MPSAFE code
1651 * to block.
1652 */
1653 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1654 pp->pr_ipl == IPL_SOFTSERIAL) {
1655 KERNEL_LOCK(1, NULL);
1656 klock = true;
1657 } else
1658 klock = false;
1659
1660 /* Reclaim items from the pool's cache (if any). */
1661 if (pp->pr_cache != NULL)
1662 pool_cache_invalidate(pp->pr_cache);
1663
1664 if (mutex_tryenter(&pp->pr_lock) == 0) {
1665 if (klock) {
1666 KERNEL_UNLOCK_ONE(NULL);
1667 }
1668 return 0;
1669 }
1670
1671 LIST_INIT(&pq);
1672
1673 curtime = time_uptime;
1674
1675 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1676 phnext = LIST_NEXT(ph, ph_pagelist);
1677
1678 /* Check our minimum page claim */
1679 if (pp->pr_npages <= pp->pr_minpages)
1680 break;
1681
1682 KASSERT(ph->ph_nmissing == 0);
1683 if (curtime - ph->ph_time < pool_inactive_time)
1684 continue;
1685
1686 /*
1687 * If freeing this page would put us below the minimum free items
1688 * or the minimum pages, stop now.
1689 */
1690 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1691 pp->pr_npages - 1 < pp->pr_minpages)
1692 break;
1693
1694 pr_rmpage(pp, ph, &pq);
1695 }
1696
1697 mutex_exit(&pp->pr_lock);
1698
1699 if (LIST_EMPTY(&pq))
1700 rv = 0;
1701 else {
1702 pr_pagelist_free(pp, &pq);
1703 rv = 1;
1704 }
1705
1706 if (klock) {
1707 KERNEL_UNLOCK_ONE(NULL);
1708 }
1709
1710 return rv;
1711 }
1712
1713 /*
1714 * Drain pools, one at a time. The drained pool is returned within ppp.
1715 *
1716 * Note, must never be called from interrupt context.
1717 */
1718 bool
1719 pool_drain(struct pool **ppp)
1720 {
1721 bool reclaimed;
1722 struct pool *pp;
1723
1724 KASSERT(!TAILQ_EMPTY(&pool_head));
1725
1726 pp = NULL;
1727
1728 /* Find next pool to drain, and add a reference. */
1729 mutex_enter(&pool_head_lock);
1730 do {
1731 if (drainpp == NULL) {
1732 drainpp = TAILQ_FIRST(&pool_head);
1733 }
1734 if (drainpp != NULL) {
1735 pp = drainpp;
1736 drainpp = TAILQ_NEXT(pp, pr_poollist);
1737 }
1738 /*
1739 * Skip completely idle pools. We depend on at least
1740 * one pool in the system being active.
1741 */
1742 } while (pp == NULL || pp->pr_npages == 0);
1743 pp->pr_refcnt++;
1744 mutex_exit(&pool_head_lock);
1745
1746 /* Drain the cache (if any) and pool.. */
1747 reclaimed = pool_reclaim(pp);
1748
1749 /* Finally, unlock the pool. */
1750 mutex_enter(&pool_head_lock);
1751 pp->pr_refcnt--;
1752 cv_broadcast(&pool_busy);
1753 mutex_exit(&pool_head_lock);
1754
1755 if (ppp != NULL)
1756 *ppp = pp;
1757
1758 return reclaimed;
1759 }
1760
1761 /*
1762 * Calculate the total number of pages consumed by pools.
1763 */
1764 int
1765 pool_totalpages(void)
1766 {
1767
1768 mutex_enter(&pool_head_lock);
1769 int pages = pool_totalpages_locked();
1770 mutex_exit(&pool_head_lock);
1771
1772 return pages;
1773 }
1774
1775 int
1776 pool_totalpages_locked(void)
1777 {
1778 struct pool *pp;
1779 uint64_t total = 0;
1780
1781 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1782 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1783
1784 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1785 bytes -= (pp->pr_nout * pp->pr_size);
1786 total += bytes;
1787 }
1788
1789 return atop(total);
1790 }
1791
1792 /*
1793 * Diagnostic helpers.
1794 */
1795
1796 void
1797 pool_printall(const char *modif, void (*pr)(const char *, ...))
1798 {
1799 struct pool *pp;
1800
1801 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1802 pool_printit(pp, modif, pr);
1803 }
1804 }
1805
1806 void
1807 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1808 {
1809
1810 if (pp == NULL) {
1811 (*pr)("Must specify a pool to print.\n");
1812 return;
1813 }
1814
1815 pool_print1(pp, modif, pr);
1816 }
1817
1818 static void
1819 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1820 void (*pr)(const char *, ...))
1821 {
1822 struct pool_item_header *ph;
1823
1824 LIST_FOREACH(ph, pl, ph_pagelist) {
1825 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1826 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1827 #ifdef POOL_CHECK_MAGIC
1828 struct pool_item *pi;
1829 if (!(pp->pr_roflags & PR_USEBMAP)) {
1830 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1831 if (pi->pi_magic != PI_MAGIC) {
1832 (*pr)("\t\t\titem %p, magic 0x%x\n",
1833 pi, pi->pi_magic);
1834 }
1835 }
1836 }
1837 #endif
1838 }
1839 }
1840
1841 static void
1842 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1843 {
1844 struct pool_item_header *ph;
1845 pool_cache_t pc;
1846 pcg_t *pcg;
1847 pool_cache_cpu_t *cc;
1848 uint64_t cpuhit, cpumiss, pchit, pcmiss;
1849 uint32_t nfull;
1850 int i;
1851 bool print_log = false, print_pagelist = false, print_cache = false;
1852 bool print_short = false, skip_empty = false;
1853 char c;
1854
1855 while ((c = *modif++) != '\0') {
1856 if (c == 'l')
1857 print_log = true;
1858 if (c == 'p')
1859 print_pagelist = true;
1860 if (c == 'c')
1861 print_cache = true;
1862 if (c == 's')
1863 print_short = true;
1864 if (c == 'S')
1865 skip_empty = true;
1866 }
1867
1868 if (skip_empty && pp->pr_nget == 0)
1869 return;
1870
1871 if ((pc = pp->pr_cache) != NULL) {
1872 (*pr)("POOLCACHE");
1873 } else {
1874 (*pr)("POOL");
1875 }
1876
1877 /* Single line output. */
1878 if (print_short) {
1879 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n",
1880 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1881 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1882 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle);
1883
1884 return;
1885 }
1886
1887 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1888 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1889 pp->pr_roflags);
1890 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1891 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1892 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1893 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1894 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1895
1896 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1897 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1898 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1899 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1900
1901 if (!print_pagelist)
1902 goto skip_pagelist;
1903
1904 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1905 (*pr)("\n\tempty page list:\n");
1906 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1907 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1908 (*pr)("\n\tfull page list:\n");
1909 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1910 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1911 (*pr)("\n\tpartial-page list:\n");
1912 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1913
1914 if (pp->pr_curpage == NULL)
1915 (*pr)("\tno current page\n");
1916 else
1917 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1918
1919 skip_pagelist:
1920 if (print_log)
1921 goto skip_log;
1922
1923 (*pr)("\n");
1924
1925 skip_log:
1926
1927 #define PR_GROUPLIST(pcg) \
1928 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1929 for (i = 0; i < pcg->pcg_size; i++) { \
1930 if (pcg->pcg_objects[i].pcgo_pa != \
1931 POOL_PADDR_INVALID) { \
1932 (*pr)("\t\t\t%p, 0x%llx\n", \
1933 pcg->pcg_objects[i].pcgo_va, \
1934 (unsigned long long) \
1935 pcg->pcg_objects[i].pcgo_pa); \
1936 } else { \
1937 (*pr)("\t\t\t%p\n", \
1938 pcg->pcg_objects[i].pcgo_va); \
1939 } \
1940 }
1941
1942 if (pc != NULL) {
1943 cpuhit = 0;
1944 cpumiss = 0;
1945 pcmiss = 0;
1946 nfull = 0;
1947 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1948 if ((cc = pc->pc_cpus[i]) == NULL)
1949 continue;
1950 cpuhit += cc->cc_hits;
1951 cpumiss += cc->cc_misses;
1952 pcmiss += cc->cc_pcmisses;
1953 nfull += cc->cc_nfull;
1954 }
1955 pchit = cpumiss - pcmiss;
1956 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1957 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1958 (*pr)("\tcache layer full groups %u\n", nfull);
1959 if (print_cache) {
1960 (*pr)("\tfull cache groups:\n");
1961 for (pcg = pc->pc_fullgroups; pcg != NULL;
1962 pcg = pcg->pcg_next) {
1963 PR_GROUPLIST(pcg);
1964 }
1965 }
1966 }
1967 #undef PR_GROUPLIST
1968 }
1969
1970 static int
1971 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1972 {
1973 struct pool_item *pi;
1974 void *page;
1975 int n;
1976
1977 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1978 page = POOL_OBJ_TO_PAGE(pp, ph);
1979 if (page != ph->ph_page &&
1980 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1981 if (label != NULL)
1982 printf("%s: ", label);
1983 printf("pool(%p:%s): page inconsistency: page %p;"
1984 " at page head addr %p (p %p)\n", pp,
1985 pp->pr_wchan, ph->ph_page,
1986 ph, page);
1987 return 1;
1988 }
1989 }
1990
1991 if ((pp->pr_roflags & PR_USEBMAP) != 0)
1992 return 0;
1993
1994 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1995 pi != NULL;
1996 pi = LIST_NEXT(pi,pi_list), n++) {
1997
1998 #ifdef POOL_CHECK_MAGIC
1999 if (pi->pi_magic != PI_MAGIC) {
2000 if (label != NULL)
2001 printf("%s: ", label);
2002 printf("pool(%s): free list modified: magic=%x;"
2003 " page %p; item ordinal %d; addr %p\n",
2004 pp->pr_wchan, pi->pi_magic, ph->ph_page,
2005 n, pi);
2006 panic("pool");
2007 }
2008 #endif
2009 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2010 continue;
2011 }
2012 page = POOL_OBJ_TO_PAGE(pp, pi);
2013 if (page == ph->ph_page)
2014 continue;
2015
2016 if (label != NULL)
2017 printf("%s: ", label);
2018 printf("pool(%p:%s): page inconsistency: page %p;"
2019 " item ordinal %d; addr %p (p %p)\n", pp,
2020 pp->pr_wchan, ph->ph_page,
2021 n, pi, page);
2022 return 1;
2023 }
2024 return 0;
2025 }
2026
2027
2028 int
2029 pool_chk(struct pool *pp, const char *label)
2030 {
2031 struct pool_item_header *ph;
2032 int r = 0;
2033
2034 mutex_enter(&pp->pr_lock);
2035 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2036 r = pool_chk_page(pp, label, ph);
2037 if (r) {
2038 goto out;
2039 }
2040 }
2041 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2042 r = pool_chk_page(pp, label, ph);
2043 if (r) {
2044 goto out;
2045 }
2046 }
2047 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2048 r = pool_chk_page(pp, label, ph);
2049 if (r) {
2050 goto out;
2051 }
2052 }
2053
2054 out:
2055 mutex_exit(&pp->pr_lock);
2056 return r;
2057 }
2058
2059 /*
2060 * pool_cache_init:
2061 *
2062 * Initialize a pool cache.
2063 */
2064 pool_cache_t
2065 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2066 const char *wchan, struct pool_allocator *palloc, int ipl,
2067 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2068 {
2069 pool_cache_t pc;
2070
2071 pc = pool_get(&cache_pool, PR_WAITOK);
2072 if (pc == NULL)
2073 return NULL;
2074
2075 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2076 palloc, ipl, ctor, dtor, arg);
2077
2078 return pc;
2079 }
2080
2081 /*
2082 * pool_cache_bootstrap:
2083 *
2084 * Kernel-private version of pool_cache_init(). The caller
2085 * provides initial storage.
2086 */
2087 void
2088 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2089 u_int align_offset, u_int flags, const char *wchan,
2090 struct pool_allocator *palloc, int ipl,
2091 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2092 void *arg)
2093 {
2094 CPU_INFO_ITERATOR cii;
2095 pool_cache_t pc1;
2096 struct cpu_info *ci;
2097 struct pool *pp;
2098
2099 pp = &pc->pc_pool;
2100 if (palloc == NULL && ipl == IPL_NONE) {
2101 if (size > PAGE_SIZE) {
2102 int bigidx = pool_bigidx(size);
2103
2104 palloc = &pool_allocator_big[bigidx];
2105 flags |= PR_NOALIGN;
2106 } else
2107 palloc = &pool_allocator_nointr;
2108 }
2109 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2110
2111 if (ctor == NULL) {
2112 ctor = NO_CTOR;
2113 }
2114 if (dtor == NULL) {
2115 dtor = NO_DTOR;
2116 }
2117
2118 pc->pc_fullgroups = NULL;
2119 pc->pc_partgroups = NULL;
2120 pc->pc_ctor = ctor;
2121 pc->pc_dtor = dtor;
2122 pc->pc_arg = arg;
2123 pc->pc_refcnt = 0;
2124 pc->pc_freecheck = NULL;
2125
2126 if ((flags & PR_LARGECACHE) != 0) {
2127 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2128 pc->pc_pcgpool = &pcg_large_pool;
2129 pc->pc_pcgcache = &pcg_large_cache;
2130 } else {
2131 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2132 pc->pc_pcgpool = &pcg_normal_pool;
2133 pc->pc_pcgcache = &pcg_normal_cache;
2134 }
2135
2136 /* Allocate per-CPU caches. */
2137 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2138 pc->pc_ncpu = 0;
2139 if (ncpu < 2) {
2140 /* XXX For sparc: boot CPU is not attached yet. */
2141 pool_cache_cpu_init1(curcpu(), pc);
2142 } else {
2143 for (CPU_INFO_FOREACH(cii, ci)) {
2144 pool_cache_cpu_init1(ci, pc);
2145 }
2146 }
2147
2148 /* Add to list of all pools. */
2149 if (__predict_true(!cold))
2150 mutex_enter(&pool_head_lock);
2151 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2152 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2153 break;
2154 }
2155 if (pc1 == NULL)
2156 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2157 else
2158 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2159 if (__predict_true(!cold))
2160 mutex_exit(&pool_head_lock);
2161
2162 membar_sync();
2163 pp->pr_cache = pc;
2164 }
2165
2166 /*
2167 * pool_cache_destroy:
2168 *
2169 * Destroy a pool cache.
2170 */
2171 void
2172 pool_cache_destroy(pool_cache_t pc)
2173 {
2174
2175 pool_cache_bootstrap_destroy(pc);
2176 pool_put(&cache_pool, pc);
2177 }
2178
2179 /*
2180 * pool_cache_bootstrap_destroy:
2181 *
2182 * Destroy a pool cache.
2183 */
2184 void
2185 pool_cache_bootstrap_destroy(pool_cache_t pc)
2186 {
2187 struct pool *pp = &pc->pc_pool;
2188 u_int i;
2189
2190 /* Remove it from the global list. */
2191 mutex_enter(&pool_head_lock);
2192 while (pc->pc_refcnt != 0)
2193 cv_wait(&pool_busy, &pool_head_lock);
2194 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2195 mutex_exit(&pool_head_lock);
2196
2197 /* First, invalidate the entire cache. */
2198 pool_cache_invalidate(pc);
2199
2200 /* Disassociate it from the pool. */
2201 mutex_enter(&pp->pr_lock);
2202 pp->pr_cache = NULL;
2203 mutex_exit(&pp->pr_lock);
2204
2205 /* Destroy per-CPU data */
2206 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2207 pool_cache_invalidate_cpu(pc, i);
2208
2209 /* Finally, destroy it. */
2210 pool_destroy(pp);
2211 }
2212
2213 /*
2214 * pool_cache_cpu_init1:
2215 *
2216 * Called for each pool_cache whenever a new CPU is attached.
2217 */
2218 static void
2219 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2220 {
2221 pool_cache_cpu_t *cc;
2222 int index;
2223
2224 index = ci->ci_index;
2225
2226 KASSERT(index < __arraycount(pc->pc_cpus));
2227
2228 if ((cc = pc->pc_cpus[index]) != NULL) {
2229 return;
2230 }
2231
2232 /*
2233 * The first CPU is 'free'. This needs to be the case for
2234 * bootstrap - we may not be able to allocate yet.
2235 */
2236 if (pc->pc_ncpu == 0) {
2237 cc = &pc->pc_cpu0;
2238 pc->pc_ncpu = 1;
2239 } else {
2240 pc->pc_ncpu++;
2241 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2242 }
2243
2244 cc->cc_current = __UNCONST(&pcg_dummy);
2245 cc->cc_previous = __UNCONST(&pcg_dummy);
2246 cc->cc_pcgcache = pc->pc_pcgcache;
2247 cc->cc_hits = 0;
2248 cc->cc_misses = 0;
2249 cc->cc_pcmisses = 0;
2250 cc->cc_contended = 0;
2251 cc->cc_nfull = 0;
2252 cc->cc_npart = 0;
2253
2254 pc->pc_cpus[index] = cc;
2255 }
2256
2257 /*
2258 * pool_cache_cpu_init:
2259 *
2260 * Called whenever a new CPU is attached.
2261 */
2262 void
2263 pool_cache_cpu_init(struct cpu_info *ci)
2264 {
2265 pool_cache_t pc;
2266
2267 mutex_enter(&pool_head_lock);
2268 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2269 pc->pc_refcnt++;
2270 mutex_exit(&pool_head_lock);
2271
2272 pool_cache_cpu_init1(ci, pc);
2273
2274 mutex_enter(&pool_head_lock);
2275 pc->pc_refcnt--;
2276 cv_broadcast(&pool_busy);
2277 }
2278 mutex_exit(&pool_head_lock);
2279 }
2280
2281 /*
2282 * pool_cache_reclaim:
2283 *
2284 * Reclaim memory from a pool cache.
2285 */
2286 bool
2287 pool_cache_reclaim(pool_cache_t pc)
2288 {
2289
2290 return pool_reclaim(&pc->pc_pool);
2291 }
2292
2293 static void
2294 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2295 {
2296 (*pc->pc_dtor)(pc->pc_arg, object);
2297 pool_put(&pc->pc_pool, object);
2298 }
2299
2300 /*
2301 * pool_cache_destruct_object:
2302 *
2303 * Force destruction of an object and its release back into
2304 * the pool.
2305 */
2306 void
2307 pool_cache_destruct_object(pool_cache_t pc, void *object)
2308 {
2309
2310 FREECHECK_IN(&pc->pc_freecheck, object);
2311
2312 pool_cache_destruct_object1(pc, object);
2313 }
2314
2315 /*
2316 * pool_cache_invalidate_groups:
2317 *
2318 * Invalidate a chain of groups and destruct all objects. Return the
2319 * number of groups that were invalidated.
2320 */
2321 static int
2322 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2323 {
2324 void *object;
2325 pcg_t *next;
2326 int i, n;
2327
2328 for (n = 0; pcg != NULL; pcg = next, n++) {
2329 next = pcg->pcg_next;
2330
2331 for (i = 0; i < pcg->pcg_avail; i++) {
2332 object = pcg->pcg_objects[i].pcgo_va;
2333 pool_cache_destruct_object1(pc, object);
2334 }
2335
2336 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2337 pool_put(&pcg_large_pool, pcg);
2338 } else {
2339 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2340 pool_put(&pcg_normal_pool, pcg);
2341 }
2342 }
2343 return n;
2344 }
2345
2346 /*
2347 * pool_cache_invalidate:
2348 *
2349 * Invalidate a pool cache (destruct and release all of the
2350 * cached objects). Does not reclaim objects from the pool.
2351 *
2352 * Note: For pool caches that provide constructed objects, there
2353 * is an assumption that another level of synchronization is occurring
2354 * between the input to the constructor and the cache invalidation.
2355 *
2356 * Invalidation is a costly process and should not be called from
2357 * interrupt context.
2358 */
2359 void
2360 pool_cache_invalidate(pool_cache_t pc)
2361 {
2362 uint64_t where;
2363 pcg_t *pcg;
2364 int n, s;
2365
2366 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2367
2368 if (ncpu < 2 || !mp_online) {
2369 /*
2370 * We might be called early enough in the boot process
2371 * for the CPU data structures to not be fully initialized.
2372 * In this case, transfer the content of the local CPU's
2373 * cache back into global cache as only this CPU is currently
2374 * running.
2375 */
2376 pool_cache_transfer(pc);
2377 } else {
2378 /*
2379 * Signal all CPUs that they must transfer their local
2380 * cache back to the global pool then wait for the xcall to
2381 * complete.
2382 */
2383 where = xc_broadcast(0,
2384 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2385 xc_wait(where);
2386 }
2387
2388 /* Now dequeue and invalidate everything. */
2389 pcg = pool_pcg_trunc(&pcg_normal_cache);
2390 (void)pool_cache_invalidate_groups(pc, pcg);
2391
2392 pcg = pool_pcg_trunc(&pcg_large_cache);
2393 (void)pool_cache_invalidate_groups(pc, pcg);
2394
2395 pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2396 n = pool_cache_invalidate_groups(pc, pcg);
2397 s = splvm();
2398 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2399 splx(s);
2400
2401 pcg = pool_pcg_trunc(&pc->pc_partgroups);
2402 n = pool_cache_invalidate_groups(pc, pcg);
2403 s = splvm();
2404 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2405 splx(s);
2406 }
2407
2408 /*
2409 * pool_cache_invalidate_cpu:
2410 *
2411 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2412 * identified by its associated index.
2413 * It is caller's responsibility to ensure that no operation is
2414 * taking place on this pool cache while doing this invalidation.
2415 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2416 * pool cached objects from a CPU different from the one currently running
2417 * may result in an undefined behaviour.
2418 */
2419 static void
2420 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2421 {
2422 pool_cache_cpu_t *cc;
2423 pcg_t *pcg;
2424
2425 if ((cc = pc->pc_cpus[index]) == NULL)
2426 return;
2427
2428 if ((pcg = cc->cc_current) != &pcg_dummy) {
2429 pcg->pcg_next = NULL;
2430 pool_cache_invalidate_groups(pc, pcg);
2431 }
2432 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2433 pcg->pcg_next = NULL;
2434 pool_cache_invalidate_groups(pc, pcg);
2435 }
2436 if (cc != &pc->pc_cpu0)
2437 pool_put(&cache_cpu_pool, cc);
2438
2439 }
2440
2441 void
2442 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2443 {
2444
2445 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2446 }
2447
2448 void
2449 pool_cache_setlowat(pool_cache_t pc, int n)
2450 {
2451
2452 pool_setlowat(&pc->pc_pool, n);
2453 }
2454
2455 void
2456 pool_cache_sethiwat(pool_cache_t pc, int n)
2457 {
2458
2459 pool_sethiwat(&pc->pc_pool, n);
2460 }
2461
2462 void
2463 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2464 {
2465
2466 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2467 }
2468
2469 void
2470 pool_cache_prime(pool_cache_t pc, int n)
2471 {
2472
2473 pool_prime(&pc->pc_pool, n);
2474 }
2475
2476 unsigned int
2477 pool_cache_nget(pool_cache_t pc)
2478 {
2479
2480 return pool_nget(&pc->pc_pool);
2481 }
2482
2483 unsigned int
2484 pool_cache_nput(pool_cache_t pc)
2485 {
2486
2487 return pool_nput(&pc->pc_pool);
2488 }
2489
2490 /*
2491 * pool_pcg_get:
2492 *
2493 * Get a cache group from the specified list. Return true if
2494 * contention was encountered. Must be called at IPL_VM because
2495 * of spin wait vs. kernel_lock.
2496 */
2497 static int
2498 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2499 {
2500 int count = SPINLOCK_BACKOFF_MIN;
2501 pcg_t *o, *n;
2502
2503 for (o = atomic_load_relaxed(head);; o = n) {
2504 if (__predict_false(o == &pcg_dummy)) {
2505 /* Wait for concurrent get to complete. */
2506 SPINLOCK_BACKOFF(count);
2507 n = atomic_load_relaxed(head);
2508 continue;
2509 }
2510 if (__predict_false(o == NULL)) {
2511 break;
2512 }
2513 /* Lock out concurrent get/put. */
2514 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2515 if (o == n) {
2516 /* Fetch pointer to next item and then unlock. */
2517 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2518 membar_datadep_consumer(); /* alpha */
2519 #endif
2520 n = atomic_load_relaxed(&o->pcg_next);
2521 atomic_store_release(head, n);
2522 break;
2523 }
2524 }
2525 *pcgp = o;
2526 return count != SPINLOCK_BACKOFF_MIN;
2527 }
2528
2529 /*
2530 * pool_pcg_trunc:
2531 *
2532 * Chop out entire list of pool cache groups.
2533 */
2534 static pcg_t *
2535 pool_pcg_trunc(pcg_t *volatile *head)
2536 {
2537 int count = SPINLOCK_BACKOFF_MIN, s;
2538 pcg_t *o, *n;
2539
2540 s = splvm();
2541 for (o = atomic_load_relaxed(head);; o = n) {
2542 if (__predict_false(o == &pcg_dummy)) {
2543 /* Wait for concurrent get to complete. */
2544 SPINLOCK_BACKOFF(count);
2545 n = atomic_load_relaxed(head);
2546 continue;
2547 }
2548 n = atomic_cas_ptr(head, o, NULL);
2549 if (o == n) {
2550 splx(s);
2551 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2552 membar_datadep_consumer(); /* alpha */
2553 #endif
2554 return o;
2555 }
2556 }
2557 }
2558
2559 /*
2560 * pool_pcg_put:
2561 *
2562 * Put a pool cache group to the specified list. Return true if
2563 * contention was encountered. Must be called at IPL_VM because of
2564 * spin wait vs. kernel_lock.
2565 */
2566 static int
2567 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2568 {
2569 int count = SPINLOCK_BACKOFF_MIN;
2570 pcg_t *o, *n;
2571
2572 for (o = atomic_load_relaxed(head);; o = n) {
2573 if (__predict_false(o == &pcg_dummy)) {
2574 /* Wait for concurrent get to complete. */
2575 SPINLOCK_BACKOFF(count);
2576 n = atomic_load_relaxed(head);
2577 continue;
2578 }
2579 pcg->pcg_next = o;
2580 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2581 membar_exit();
2582 #endif
2583 n = atomic_cas_ptr(head, o, pcg);
2584 if (o == n) {
2585 return count != SPINLOCK_BACKOFF_MIN;
2586 }
2587 }
2588 }
2589
2590 static bool __noinline
2591 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2592 void **objectp, paddr_t *pap, int flags)
2593 {
2594 pcg_t *pcg, *cur;
2595 void *object;
2596
2597 KASSERT(cc->cc_current->pcg_avail == 0);
2598 KASSERT(cc->cc_previous->pcg_avail == 0);
2599
2600 cc->cc_misses++;
2601
2602 /*
2603 * If there's a full group, release our empty group back to the
2604 * cache. Install the full group as cc_current and return.
2605 */
2606 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2607 if (__predict_true(pcg != NULL)) {
2608 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2609 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2610 KASSERT(cur->pcg_avail == 0);
2611 (void)pool_pcg_put(cc->cc_pcgcache, cur);
2612 }
2613 cc->cc_nfull--;
2614 cc->cc_current = pcg;
2615 return true;
2616 }
2617
2618 /*
2619 * Nothing available locally or in cache. Take the slow
2620 * path: fetch a new object from the pool and construct
2621 * it.
2622 */
2623 cc->cc_pcmisses++;
2624 splx(s);
2625
2626 object = pool_get(&pc->pc_pool, flags);
2627 *objectp = object;
2628 if (__predict_false(object == NULL)) {
2629 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2630 return false;
2631 }
2632
2633 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2634 pool_put(&pc->pc_pool, object);
2635 *objectp = NULL;
2636 return false;
2637 }
2638
2639 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2640
2641 if (pap != NULL) {
2642 #ifdef POOL_VTOPHYS
2643 *pap = POOL_VTOPHYS(object);
2644 #else
2645 *pap = POOL_PADDR_INVALID;
2646 #endif
2647 }
2648
2649 FREECHECK_OUT(&pc->pc_freecheck, object);
2650 return false;
2651 }
2652
2653 /*
2654 * pool_cache_get{,_paddr}:
2655 *
2656 * Get an object from a pool cache (optionally returning
2657 * the physical address of the object).
2658 */
2659 void *
2660 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2661 {
2662 pool_cache_cpu_t *cc;
2663 pcg_t *pcg;
2664 void *object;
2665 int s;
2666
2667 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2668 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2669 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2670 "%s: [%s] is IPL_NONE, but called from interrupt context",
2671 __func__, pc->pc_pool.pr_wchan);
2672
2673 if (flags & PR_WAITOK) {
2674 ASSERT_SLEEPABLE();
2675 }
2676
2677 if (flags & PR_NOWAIT) {
2678 if (fault_inject())
2679 return NULL;
2680 }
2681
2682 /* Lock out interrupts and disable preemption. */
2683 s = splvm();
2684 while (/* CONSTCOND */ true) {
2685 /* Try and allocate an object from the current group. */
2686 cc = pc->pc_cpus[curcpu()->ci_index];
2687 pcg = cc->cc_current;
2688 if (__predict_true(pcg->pcg_avail > 0)) {
2689 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2690 if (__predict_false(pap != NULL))
2691 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2692 #if defined(DIAGNOSTIC)
2693 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2694 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2695 KASSERT(object != NULL);
2696 #endif
2697 cc->cc_hits++;
2698 splx(s);
2699 FREECHECK_OUT(&pc->pc_freecheck, object);
2700 pool_redzone_fill(&pc->pc_pool, object);
2701 pool_cache_get_kmsan(pc, object);
2702 return object;
2703 }
2704
2705 /*
2706 * That failed. If the previous group isn't empty, swap
2707 * it with the current group and allocate from there.
2708 */
2709 pcg = cc->cc_previous;
2710 if (__predict_true(pcg->pcg_avail > 0)) {
2711 cc->cc_previous = cc->cc_current;
2712 cc->cc_current = pcg;
2713 continue;
2714 }
2715
2716 /*
2717 * Can't allocate from either group: try the slow path.
2718 * If get_slow() allocated an object for us, or if
2719 * no more objects are available, it will return false.
2720 * Otherwise, we need to retry.
2721 */
2722 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2723 if (object != NULL) {
2724 kmsan_orig(object, pc->pc_pool.pr_size,
2725 KMSAN_TYPE_POOL, __RET_ADDR);
2726 }
2727 break;
2728 }
2729 }
2730
2731 /*
2732 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2733 * pool_cache_get can fail even in the PR_WAITOK case, if the
2734 * constructor fails.
2735 */
2736 return object;
2737 }
2738
2739 static bool __noinline
2740 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2741 {
2742 pcg_t *pcg, *cur;
2743
2744 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2745 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2746
2747 cc->cc_misses++;
2748
2749 /*
2750 * Try to get an empty group from the cache. If there are no empty
2751 * groups in the cache then allocate one.
2752 */
2753 (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2754 if (__predict_false(pcg == NULL)) {
2755 if (__predict_true(!pool_cache_disable)) {
2756 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2757 }
2758 if (__predict_true(pcg != NULL)) {
2759 pcg->pcg_avail = 0;
2760 pcg->pcg_size = pc->pc_pcgsize;
2761 }
2762 }
2763
2764 /*
2765 * If there's a empty group, release our full group back to the
2766 * cache. Install the empty group to the local CPU and return.
2767 */
2768 if (pcg != NULL) {
2769 KASSERT(pcg->pcg_avail == 0);
2770 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2771 cc->cc_previous = pcg;
2772 } else {
2773 cur = cc->cc_current;
2774 if (__predict_true(cur != &pcg_dummy)) {
2775 KASSERT(cur->pcg_avail == cur->pcg_size);
2776 cc->cc_contended +=
2777 pool_pcg_put(&pc->pc_fullgroups, cur);
2778 cc->cc_nfull++;
2779 }
2780 cc->cc_current = pcg;
2781 }
2782 return true;
2783 }
2784
2785 /*
2786 * Nothing available locally or in cache, and we didn't
2787 * allocate an empty group. Take the slow path and destroy
2788 * the object here and now.
2789 */
2790 cc->cc_pcmisses++;
2791 splx(s);
2792 pool_cache_destruct_object(pc, object);
2793
2794 return false;
2795 }
2796
2797 /*
2798 * pool_cache_put{,_paddr}:
2799 *
2800 * Put an object back to the pool cache (optionally caching the
2801 * physical address of the object).
2802 */
2803 void
2804 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2805 {
2806 pool_cache_cpu_t *cc;
2807 pcg_t *pcg;
2808 int s;
2809
2810 KASSERT(object != NULL);
2811 pool_cache_put_kmsan(pc, object);
2812 pool_cache_redzone_check(pc, object);
2813 FREECHECK_IN(&pc->pc_freecheck, object);
2814
2815 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2816 pc_phinpage_check(pc, object);
2817 }
2818
2819 if (pool_cache_put_nocache(pc, object)) {
2820 return;
2821 }
2822
2823 /* Lock out interrupts and disable preemption. */
2824 s = splvm();
2825 while (/* CONSTCOND */ true) {
2826 /* If the current group isn't full, release it there. */
2827 cc = pc->pc_cpus[curcpu()->ci_index];
2828 pcg = cc->cc_current;
2829 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2830 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2831 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2832 pcg->pcg_avail++;
2833 cc->cc_hits++;
2834 splx(s);
2835 return;
2836 }
2837
2838 /*
2839 * That failed. If the previous group isn't full, swap
2840 * it with the current group and try again.
2841 */
2842 pcg = cc->cc_previous;
2843 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2844 cc->cc_previous = cc->cc_current;
2845 cc->cc_current = pcg;
2846 continue;
2847 }
2848
2849 /*
2850 * Can't free to either group: try the slow path.
2851 * If put_slow() releases the object for us, it
2852 * will return false. Otherwise we need to retry.
2853 */
2854 if (!pool_cache_put_slow(pc, cc, s, object))
2855 break;
2856 }
2857 }
2858
2859 /*
2860 * pool_cache_transfer:
2861 *
2862 * Transfer objects from the per-CPU cache to the global cache.
2863 * Run within a cross-call thread.
2864 */
2865 static void
2866 pool_cache_transfer(pool_cache_t pc)
2867 {
2868 pool_cache_cpu_t *cc;
2869 pcg_t *prev, *cur;
2870 int s;
2871
2872 s = splvm();
2873 cc = pc->pc_cpus[curcpu()->ci_index];
2874 cur = cc->cc_current;
2875 cc->cc_current = __UNCONST(&pcg_dummy);
2876 prev = cc->cc_previous;
2877 cc->cc_previous = __UNCONST(&pcg_dummy);
2878 if (cur != &pcg_dummy) {
2879 if (cur->pcg_avail == cur->pcg_size) {
2880 (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2881 cc->cc_nfull++;
2882 } else if (cur->pcg_avail == 0) {
2883 (void)pool_pcg_put(pc->pc_pcgcache, cur);
2884 } else {
2885 (void)pool_pcg_put(&pc->pc_partgroups, cur);
2886 cc->cc_npart++;
2887 }
2888 }
2889 if (prev != &pcg_dummy) {
2890 if (prev->pcg_avail == prev->pcg_size) {
2891 (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2892 cc->cc_nfull++;
2893 } else if (prev->pcg_avail == 0) {
2894 (void)pool_pcg_put(pc->pc_pcgcache, prev);
2895 } else {
2896 (void)pool_pcg_put(&pc->pc_partgroups, prev);
2897 cc->cc_npart++;
2898 }
2899 }
2900 splx(s);
2901 }
2902
2903 static int
2904 pool_bigidx(size_t size)
2905 {
2906 int i;
2907
2908 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2909 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2910 return i;
2911 }
2912 panic("pool item size %zu too large, use a custom allocator", size);
2913 }
2914
2915 static void *
2916 pool_allocator_alloc(struct pool *pp, int flags)
2917 {
2918 struct pool_allocator *pa = pp->pr_alloc;
2919 void *res;
2920
2921 res = (*pa->pa_alloc)(pp, flags);
2922 if (res == NULL && (flags & PR_WAITOK) == 0) {
2923 /*
2924 * We only run the drain hook here if PR_NOWAIT.
2925 * In other cases, the hook will be run in
2926 * pool_reclaim().
2927 */
2928 if (pp->pr_drain_hook != NULL) {
2929 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2930 res = (*pa->pa_alloc)(pp, flags);
2931 }
2932 }
2933 return res;
2934 }
2935
2936 static void
2937 pool_allocator_free(struct pool *pp, void *v)
2938 {
2939 struct pool_allocator *pa = pp->pr_alloc;
2940
2941 if (pp->pr_redzone) {
2942 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2943 }
2944 (*pa->pa_free)(pp, v);
2945 }
2946
2947 void *
2948 pool_page_alloc(struct pool *pp, int flags)
2949 {
2950 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2951 vmem_addr_t va;
2952 int ret;
2953
2954 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2955 vflags | VM_INSTANTFIT, &va);
2956
2957 return ret ? NULL : (void *)va;
2958 }
2959
2960 void
2961 pool_page_free(struct pool *pp, void *v)
2962 {
2963
2964 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2965 }
2966
2967 static void *
2968 pool_page_alloc_meta(struct pool *pp, int flags)
2969 {
2970 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2971 vmem_addr_t va;
2972 int ret;
2973
2974 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2975 vflags | VM_INSTANTFIT, &va);
2976
2977 return ret ? NULL : (void *)va;
2978 }
2979
2980 static void
2981 pool_page_free_meta(struct pool *pp, void *v)
2982 {
2983
2984 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2985 }
2986
2987 #ifdef KMSAN
2988 static inline void
2989 pool_get_kmsan(struct pool *pp, void *p)
2990 {
2991 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2992 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2993 }
2994
2995 static inline void
2996 pool_put_kmsan(struct pool *pp, void *p)
2997 {
2998 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2999 }
3000
3001 static inline void
3002 pool_cache_get_kmsan(pool_cache_t pc, void *p)
3003 {
3004 if (__predict_false(pc_has_ctor(pc))) {
3005 return;
3006 }
3007 pool_get_kmsan(&pc->pc_pool, p);
3008 }
3009
3010 static inline void
3011 pool_cache_put_kmsan(pool_cache_t pc, void *p)
3012 {
3013 pool_put_kmsan(&pc->pc_pool, p);
3014 }
3015 #endif
3016
3017 #ifdef POOL_QUARANTINE
3018 static void
3019 pool_quarantine_init(struct pool *pp)
3020 {
3021 pp->pr_quar.rotor = 0;
3022 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3023 }
3024
3025 static void
3026 pool_quarantine_flush(struct pool *pp)
3027 {
3028 pool_quar_t *quar = &pp->pr_quar;
3029 struct pool_pagelist pq;
3030 size_t i;
3031
3032 LIST_INIT(&pq);
3033
3034 mutex_enter(&pp->pr_lock);
3035 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3036 if (quar->list[i] == 0)
3037 continue;
3038 pool_do_put(pp, (void *)quar->list[i], &pq);
3039 }
3040 mutex_exit(&pp->pr_lock);
3041
3042 pr_pagelist_free(pp, &pq);
3043 }
3044
3045 static bool
3046 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3047 {
3048 pool_quar_t *quar = &pp->pr_quar;
3049 uintptr_t old;
3050
3051 if (pp->pr_roflags & PR_NOTOUCH) {
3052 return false;
3053 }
3054
3055 pool_redzone_check(pp, v);
3056
3057 old = quar->list[quar->rotor];
3058 quar->list[quar->rotor] = (uintptr_t)v;
3059 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3060 if (old != 0) {
3061 pool_do_put(pp, (void *)old, pq);
3062 }
3063
3064 return true;
3065 }
3066 #endif
3067
3068 #ifdef POOL_NOCACHE
3069 static bool
3070 pool_cache_put_nocache(pool_cache_t pc, void *p)
3071 {
3072 pool_cache_destruct_object(pc, p);
3073 return true;
3074 }
3075 #endif
3076
3077 #ifdef POOL_REDZONE
3078 #if defined(_LP64)
3079 # define PRIME 0x9e37fffffffc0000UL
3080 #else /* defined(_LP64) */
3081 # define PRIME 0x9e3779b1
3082 #endif /* defined(_LP64) */
3083 #define STATIC_BYTE 0xFE
3084 CTASSERT(POOL_REDZONE_SIZE > 1);
3085
3086 #ifndef KASAN
3087 static inline uint8_t
3088 pool_pattern_generate(const void *p)
3089 {
3090 return (uint8_t)(((uintptr_t)p) * PRIME
3091 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3092 }
3093 #endif
3094
3095 static void
3096 pool_redzone_init(struct pool *pp, size_t requested_size)
3097 {
3098 size_t redzsz;
3099 size_t nsz;
3100
3101 #ifdef KASAN
3102 redzsz = requested_size;
3103 kasan_add_redzone(&redzsz);
3104 redzsz -= requested_size;
3105 #else
3106 redzsz = POOL_REDZONE_SIZE;
3107 #endif
3108
3109 if (pp->pr_roflags & PR_NOTOUCH) {
3110 pp->pr_redzone = false;
3111 return;
3112 }
3113
3114 /*
3115 * We may have extended the requested size earlier; check if
3116 * there's naturally space in the padding for a red zone.
3117 */
3118 if (pp->pr_size - requested_size >= redzsz) {
3119 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3120 pp->pr_redzone = true;
3121 return;
3122 }
3123
3124 /*
3125 * No space in the natural padding; check if we can extend a
3126 * bit the size of the pool.
3127 *
3128 * Avoid using redzone for allocations half of a page or larger.
3129 * For pagesize items, we'd waste a whole new page (could be
3130 * unmapped?), and for half pagesize items, approximately half
3131 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3132 */
3133 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3134 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3135 /* Ok, we can */
3136 pp->pr_size = nsz;
3137 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3138 pp->pr_redzone = true;
3139 } else {
3140 /* No space for a red zone... snif :'( */
3141 pp->pr_redzone = false;
3142 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3143 }
3144 }
3145
3146 static void
3147 pool_redzone_fill(struct pool *pp, void *p)
3148 {
3149 if (!pp->pr_redzone)
3150 return;
3151 #ifdef KASAN
3152 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3153 KASAN_POOL_REDZONE);
3154 #else
3155 uint8_t *cp, pat;
3156 const uint8_t *ep;
3157
3158 cp = (uint8_t *)p + pp->pr_reqsize;
3159 ep = cp + POOL_REDZONE_SIZE;
3160
3161 /*
3162 * We really don't want the first byte of the red zone to be '\0';
3163 * an off-by-one in a string may not be properly detected.
3164 */
3165 pat = pool_pattern_generate(cp);
3166 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3167 cp++;
3168
3169 while (cp < ep) {
3170 *cp = pool_pattern_generate(cp);
3171 cp++;
3172 }
3173 #endif
3174 }
3175
3176 static void
3177 pool_redzone_check(struct pool *pp, void *p)
3178 {
3179 if (!pp->pr_redzone)
3180 return;
3181 #ifdef KASAN
3182 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3183 #else
3184 uint8_t *cp, pat, expected;
3185 const uint8_t *ep;
3186
3187 cp = (uint8_t *)p + pp->pr_reqsize;
3188 ep = cp + POOL_REDZONE_SIZE;
3189
3190 pat = pool_pattern_generate(cp);
3191 expected = (pat == '\0') ? STATIC_BYTE: pat;
3192 if (__predict_false(*cp != expected)) {
3193 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3194 pp->pr_wchan, *cp, expected);
3195 }
3196 cp++;
3197
3198 while (cp < ep) {
3199 expected = pool_pattern_generate(cp);
3200 if (__predict_false(*cp != expected)) {
3201 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3202 pp->pr_wchan, *cp, expected);
3203 }
3204 cp++;
3205 }
3206 #endif
3207 }
3208
3209 static void
3210 pool_cache_redzone_check(pool_cache_t pc, void *p)
3211 {
3212 #ifdef KASAN
3213 /* If there is a ctor/dtor, leave the data as valid. */
3214 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3215 return;
3216 }
3217 #endif
3218 pool_redzone_check(&pc->pc_pool, p);
3219 }
3220
3221 #endif /* POOL_REDZONE */
3222
3223 #if defined(DDB)
3224 static bool
3225 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3226 {
3227
3228 return (uintptr_t)ph->ph_page <= addr &&
3229 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3230 }
3231
3232 static bool
3233 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3234 {
3235
3236 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3237 }
3238
3239 static bool
3240 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3241 {
3242 int i;
3243
3244 if (pcg == NULL) {
3245 return false;
3246 }
3247 for (i = 0; i < pcg->pcg_avail; i++) {
3248 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3249 return true;
3250 }
3251 }
3252 return false;
3253 }
3254
3255 static bool
3256 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3257 {
3258
3259 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3260 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3261 pool_item_bitmap_t *bitmap =
3262 ph->ph_bitmap + (idx / BITMAP_SIZE);
3263 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3264
3265 return (*bitmap & mask) == 0;
3266 } else {
3267 struct pool_item *pi;
3268
3269 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3270 if (pool_in_item(pp, pi, addr)) {
3271 return false;
3272 }
3273 }
3274 return true;
3275 }
3276 }
3277
3278 void
3279 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3280 {
3281 struct pool *pp;
3282
3283 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3284 struct pool_item_header *ph;
3285 uintptr_t item;
3286 bool allocated = true;
3287 bool incache = false;
3288 bool incpucache = false;
3289 char cpucachestr[32];
3290
3291 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3292 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3293 if (pool_in_page(pp, ph, addr)) {
3294 goto found;
3295 }
3296 }
3297 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3298 if (pool_in_page(pp, ph, addr)) {
3299 allocated =
3300 pool_allocated(pp, ph, addr);
3301 goto found;
3302 }
3303 }
3304 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3305 if (pool_in_page(pp, ph, addr)) {
3306 allocated = false;
3307 goto found;
3308 }
3309 }
3310 continue;
3311 } else {
3312 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3313 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3314 continue;
3315 }
3316 allocated = pool_allocated(pp, ph, addr);
3317 }
3318 found:
3319 if (allocated && pp->pr_cache) {
3320 pool_cache_t pc = pp->pr_cache;
3321 struct pool_cache_group *pcg;
3322 int i;
3323
3324 for (pcg = pc->pc_fullgroups; pcg != NULL;
3325 pcg = pcg->pcg_next) {
3326 if (pool_in_cg(pp, pcg, addr)) {
3327 incache = true;
3328 goto print;
3329 }
3330 }
3331 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3332 pool_cache_cpu_t *cc;
3333
3334 if ((cc = pc->pc_cpus[i]) == NULL) {
3335 continue;
3336 }
3337 if (pool_in_cg(pp, cc->cc_current, addr) ||
3338 pool_in_cg(pp, cc->cc_previous, addr)) {
3339 struct cpu_info *ci =
3340 cpu_lookup(i);
3341
3342 incpucache = true;
3343 snprintf(cpucachestr,
3344 sizeof(cpucachestr),
3345 "cached by CPU %u",
3346 ci->ci_index);
3347 goto print;
3348 }
3349 }
3350 }
3351 print:
3352 item = (uintptr_t)ph->ph_page + ph->ph_off;
3353 item = item + rounddown(addr - item, pp->pr_size);
3354 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3355 (void *)addr, item, (size_t)(addr - item),
3356 pp->pr_wchan,
3357 incpucache ? cpucachestr :
3358 incache ? "cached" : allocated ? "allocated" : "free");
3359 }
3360 }
3361 #endif /* defined(DDB) */
3362
3363 static int
3364 pool_sysctl(SYSCTLFN_ARGS)
3365 {
3366 struct pool_sysctl data;
3367 struct pool *pp;
3368 struct pool_cache *pc;
3369 pool_cache_cpu_t *cc;
3370 int error;
3371 size_t i, written;
3372
3373 if (oldp == NULL) {
3374 *oldlenp = 0;
3375 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3376 *oldlenp += sizeof(data);
3377 return 0;
3378 }
3379
3380 memset(&data, 0, sizeof(data));
3381 error = 0;
3382 written = 0;
3383 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3384 if (written + sizeof(data) > *oldlenp)
3385 break;
3386 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3387 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3388 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3389 #define COPY(field) data.field = pp->field
3390 COPY(pr_size);
3391
3392 COPY(pr_itemsperpage);
3393 COPY(pr_nitems);
3394 COPY(pr_nout);
3395 COPY(pr_hardlimit);
3396 COPY(pr_npages);
3397 COPY(pr_minpages);
3398 COPY(pr_maxpages);
3399
3400 COPY(pr_nget);
3401 COPY(pr_nfail);
3402 COPY(pr_nput);
3403 COPY(pr_npagealloc);
3404 COPY(pr_npagefree);
3405 COPY(pr_hiwat);
3406 COPY(pr_nidle);
3407 #undef COPY
3408
3409 data.pr_cache_nmiss_pcpu = 0;
3410 data.pr_cache_nhit_pcpu = 0;
3411 data.pr_cache_nmiss_global = 0;
3412 data.pr_cache_nempty = 0;
3413 data.pr_cache_ncontended = 0;
3414 data.pr_cache_npartial = 0;
3415 if (pp->pr_cache) {
3416 uint32_t nfull = 0;
3417 pc = pp->pr_cache;
3418 data.pr_cache_meta_size = pc->pc_pcgsize;
3419 for (i = 0; i < pc->pc_ncpu; ++i) {
3420 cc = pc->pc_cpus[i];
3421 if (cc == NULL)
3422 continue;
3423 data.pr_cache_ncontended += cc->cc_contended;
3424 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3425 data.pr_cache_nhit_pcpu += cc->cc_hits;
3426 data.pr_cache_nmiss_global += cc->cc_pcmisses;
3427 nfull += cc->cc_nfull; /* 32-bit rollover! */
3428 data.pr_cache_npartial += cc->cc_npart;
3429 }
3430 data.pr_cache_nfull = nfull;
3431 } else {
3432 data.pr_cache_meta_size = 0;
3433 data.pr_cache_nfull = 0;
3434 }
3435 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3436 data.pr_cache_nmiss_global;
3437
3438 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3439 if (error)
3440 break;
3441 written += sizeof(data);
3442 oldp = (char *)oldp + sizeof(data);
3443 }
3444
3445 *oldlenp = written;
3446 return error;
3447 }
3448
3449 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3450 {
3451 const struct sysctlnode *rnode = NULL;
3452
3453 sysctl_createv(clog, 0, NULL, &rnode,
3454 CTLFLAG_PERMANENT,
3455 CTLTYPE_STRUCT, "pool",
3456 SYSCTL_DESCR("Get pool statistics"),
3457 pool_sysctl, 0, NULL, 0,
3458 CTL_KERN, CTL_CREATE, CTL_EOL);
3459 }
3460