subr_pool.c revision 1.279 1 /* $NetBSD: subr_pool.c,v 1.279 2021/12/22 16:57:28 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 * 2020, 2021 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.279 2021/12/22 16:57:28 thorpej Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63
64 #include <uvm/uvm_extern.h>
65
66 /*
67 * Pool resource management utility.
68 *
69 * Memory is allocated in pages which are split into pieces according to
70 * the pool item size. Each page is kept on one of three lists in the
71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 * for empty, full and partially-full pages respectively. The individual
73 * pool items are on a linked list headed by `ph_itemlist' in each page
74 * header. The memory for building the page list is either taken from
75 * the allocated pages themselves (for small pool items) or taken from
76 * an internal pool of page headers (`phpool').
77 */
78
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81
82 /* Private pool for page header structures */
83 #define PHPOOL_MAX 8
84 static struct pool phpool[PHPOOL_MAX];
85 #define PHPOOL_FREELIST_NELEM(idx) \
86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 # define POOL_REDZONE_SIZE 8
99 # else
100 # define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz) __nothing
108 # define pool_redzone_fill(pp, ptr) __nothing
109 # define pool_redzone_check(pp, ptr) __nothing
110 # define pool_cache_redzone_check(pc, ptr) __nothing
111 #endif
112
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr) __nothing
120 #define pool_put_kmsan(pp, ptr) __nothing
121 #define pool_cache_get_kmsan(pc, ptr) __nothing
122 #define pool_cache_put_kmsan(pc, ptr) __nothing
123 #endif
124
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129 struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a) __nothing
132 #define pool_quarantine_flush(a) __nothing
133 #define pool_put_quarantine(a, b, c) false
134 #endif
135
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b) false
140 #endif
141
142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144
145 #define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
146 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
147 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
148
149 #define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)
150
151 #define pool_barrier() xc_barrier(0)
152
153 /*
154 * Pool backend allocators.
155 *
156 * Each pool has a backend allocator that handles allocation, deallocation,
157 * and any additional draining that might be needed.
158 *
159 * We provide two standard allocators:
160 *
161 * pool_allocator_kmem - the default when no allocator is specified
162 *
163 * pool_allocator_nointr - used for pools that will not be accessed
164 * in interrupt context.
165 */
166 void *pool_page_alloc(struct pool *, int);
167 void pool_page_free(struct pool *, void *);
168
169 static void *pool_page_alloc_meta(struct pool *, int);
170 static void pool_page_free_meta(struct pool *, void *);
171
172 struct pool_allocator pool_allocator_kmem = {
173 .pa_alloc = pool_page_alloc,
174 .pa_free = pool_page_free,
175 .pa_pagesz = 0
176 };
177
178 struct pool_allocator pool_allocator_nointr = {
179 .pa_alloc = pool_page_alloc,
180 .pa_free = pool_page_free,
181 .pa_pagesz = 0
182 };
183
184 struct pool_allocator pool_allocator_meta = {
185 .pa_alloc = pool_page_alloc_meta,
186 .pa_free = pool_page_free_meta,
187 .pa_pagesz = 0
188 };
189
190 #define POOL_ALLOCATOR_BIG_BASE 13
191 static struct pool_allocator pool_allocator_big[] = {
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
211 },
212 {
213 .pa_alloc = pool_page_alloc,
214 .pa_free = pool_page_free,
215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
216 },
217 {
218 .pa_alloc = pool_page_alloc,
219 .pa_free = pool_page_free,
220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
221 },
222 {
223 .pa_alloc = pool_page_alloc,
224 .pa_free = pool_page_free,
225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
226 },
227 {
228 .pa_alloc = pool_page_alloc,
229 .pa_free = pool_page_free,
230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
231 },
232 {
233 .pa_alloc = pool_page_alloc,
234 .pa_free = pool_page_free,
235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
236 },
237 {
238 .pa_alloc = pool_page_alloc,
239 .pa_free = pool_page_free,
240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
241 },
242 {
243 .pa_alloc = pool_page_alloc,
244 .pa_free = pool_page_free,
245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
246 },
247 {
248 .pa_alloc = pool_page_alloc,
249 .pa_free = pool_page_free,
250 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
251 }
252 };
253
254 static int pool_bigidx(size_t);
255
256 /* # of seconds to retain page after last use */
257 int pool_inactive_time = 10;
258
259 /* Next candidate for drainage (see pool_drain()) */
260 static struct pool *drainpp;
261
262 /* This lock protects both pool_head and drainpp. */
263 static kmutex_t pool_head_lock;
264 static kcondvar_t pool_busy;
265
266 /* This lock protects initialization of a potentially shared pool allocator */
267 static kmutex_t pool_allocator_lock;
268
269 static unsigned int poolid_counter = 0;
270
271 typedef uint32_t pool_item_bitmap_t;
272 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
273 #define BITMAP_MASK (BITMAP_SIZE - 1)
274 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
275
276 struct pool_item_header {
277 /* Page headers */
278 LIST_ENTRY(pool_item_header)
279 ph_pagelist; /* pool page list */
280 union {
281 /* !PR_PHINPAGE */
282 struct {
283 SPLAY_ENTRY(pool_item_header)
284 phu_node; /* off-page page headers */
285 } phu_offpage;
286 /* PR_PHINPAGE */
287 struct {
288 unsigned int phu_poolid;
289 } phu_onpage;
290 } ph_u1;
291 void * ph_page; /* this page's address */
292 uint32_t ph_time; /* last referenced */
293 uint16_t ph_nmissing; /* # of chunks in use */
294 uint16_t ph_off; /* start offset in page */
295 union {
296 /* !PR_USEBMAP */
297 struct {
298 LIST_HEAD(, pool_item)
299 phu_itemlist; /* chunk list for this page */
300 } phu_normal;
301 /* PR_USEBMAP */
302 struct {
303 pool_item_bitmap_t phu_bitmap[1];
304 } phu_notouch;
305 } ph_u2;
306 };
307 #define ph_node ph_u1.phu_offpage.phu_node
308 #define ph_poolid ph_u1.phu_onpage.phu_poolid
309 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
310 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
311
312 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
313
314 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
315 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
316
317 #if defined(DIAGNOSTIC) && !defined(KASAN)
318 #define POOL_CHECK_MAGIC
319 #endif
320
321 struct pool_item {
322 #ifdef POOL_CHECK_MAGIC
323 u_int pi_magic;
324 #endif
325 #define PI_MAGIC 0xdeaddeadU
326 /* Other entries use only this list entry */
327 LIST_ENTRY(pool_item) pi_list;
328 };
329
330 #define POOL_NEEDS_CATCHUP(pp) \
331 ((pp)->pr_nitems < (pp)->pr_minitems || \
332 (pp)->pr_npages < (pp)->pr_minpages)
333 #define POOL_OBJ_TO_PAGE(pp, v) \
334 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
335
336 /*
337 * Pool cache management.
338 *
339 * Pool caches provide a way for constructed objects to be cached by the
340 * pool subsystem. This can lead to performance improvements by avoiding
341 * needless object construction/destruction; it is deferred until absolutely
342 * necessary.
343 *
344 * Caches are grouped into cache groups. Each cache group references up
345 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
346 * object from the pool, it calls the object's constructor and places it
347 * into a cache group. When a cache group frees an object back to the
348 * pool, it first calls the object's destructor. This allows the object
349 * to persist in constructed form while freed to the cache.
350 *
351 * The pool references each cache, so that when a pool is drained by the
352 * pagedaemon, it can drain each individual cache as well. Each time a
353 * cache is drained, the most idle cache group is freed to the pool in
354 * its entirety.
355 *
356 * Pool caches are layed on top of pools. By layering them, we can avoid
357 * the complexity of cache management for pools which would not benefit
358 * from it.
359 */
360
361 static struct pool pcg_normal_pool;
362 static struct pool pcg_large_pool;
363 static struct pool cache_pool;
364 static struct pool cache_cpu_pool;
365
366 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
367 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
368
369 /* List of all caches. */
370 TAILQ_HEAD(,pool_cache) pool_cache_head =
371 TAILQ_HEAD_INITIALIZER(pool_cache_head);
372
373 int pool_cache_disable; /* global disable for caching */
374 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
375
376 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
377 void *);
378 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
379 void **, paddr_t *, int);
380 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
381 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
382 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
383 static void pool_cache_transfer(pool_cache_t);
384 static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
385 static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
386 static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
387
388 static int pool_catchup(struct pool *);
389 static void pool_prime_page(struct pool *, void *,
390 struct pool_item_header *);
391 static void pool_update_curpage(struct pool *);
392
393 static int pool_grow(struct pool *, int);
394 static void *pool_allocator_alloc(struct pool *, int);
395 static void pool_allocator_free(struct pool *, void *);
396
397 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
398 void (*)(const char *, ...) __printflike(1, 2));
399 static void pool_print1(struct pool *, const char *,
400 void (*)(const char *, ...) __printflike(1, 2));
401
402 static int pool_chk_page(struct pool *, const char *,
403 struct pool_item_header *);
404
405 /* -------------------------------------------------------------------------- */
406
407 static inline unsigned int
408 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
409 const void *v)
410 {
411 const char *cp = v;
412 unsigned int idx;
413
414 KASSERT(pp->pr_roflags & PR_USEBMAP);
415 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
416
417 if (__predict_false(idx >= pp->pr_itemsperpage)) {
418 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
419 pp->pr_itemsperpage);
420 }
421
422 return idx;
423 }
424
425 static inline void
426 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
427 void *obj)
428 {
429 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
430 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
431 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
432
433 if (__predict_false((*bitmap & mask) != 0)) {
434 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
435 }
436
437 *bitmap |= mask;
438 }
439
440 static inline void *
441 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
442 {
443 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
444 unsigned int idx;
445 int i;
446
447 for (i = 0; ; i++) {
448 int bit;
449
450 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
451 bit = ffs32(bitmap[i]);
452 if (bit) {
453 pool_item_bitmap_t mask;
454
455 bit--;
456 idx = (i * BITMAP_SIZE) + bit;
457 mask = 1U << bit;
458 KASSERT((bitmap[i] & mask) != 0);
459 bitmap[i] &= ~mask;
460 break;
461 }
462 }
463 KASSERT(idx < pp->pr_itemsperpage);
464 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
465 }
466
467 static inline void
468 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
469 {
470 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
471 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
472 int i;
473
474 for (i = 0; i < n; i++) {
475 bitmap[i] = (pool_item_bitmap_t)-1;
476 }
477 }
478
479 /* -------------------------------------------------------------------------- */
480
481 static inline void
482 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
483 void *obj)
484 {
485 struct pool_item *pi = obj;
486
487 KASSERT(!pp_has_pser(pp));
488
489 #ifdef POOL_CHECK_MAGIC
490 pi->pi_magic = PI_MAGIC;
491 #endif
492
493 if (pp->pr_redzone) {
494 /*
495 * Mark the pool_item as valid. The rest is already
496 * invalid.
497 */
498 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
499 }
500
501 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
502 }
503
504 static inline void *
505 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
506 {
507 struct pool_item *pi;
508 void *v;
509
510 v = pi = LIST_FIRST(&ph->ph_itemlist);
511 if (__predict_false(v == NULL)) {
512 mutex_exit(&pp->pr_lock);
513 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
514 }
515 KASSERTMSG((pp->pr_nitems > 0),
516 "%s: [%s] nitems %u inconsistent on itemlist",
517 __func__, pp->pr_wchan, pp->pr_nitems);
518 #ifdef POOL_CHECK_MAGIC
519 KASSERTMSG((pi->pi_magic == PI_MAGIC),
520 "%s: [%s] free list modified: "
521 "magic=%x; page %p; item addr %p", __func__,
522 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
523 #endif
524
525 /*
526 * Remove from item list.
527 */
528 LIST_REMOVE(pi, pi_list);
529
530 return v;
531 }
532
533 /* -------------------------------------------------------------------------- */
534
535 static inline void
536 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
537 void *object)
538 {
539 if (__predict_false((void *)ph->ph_page != page)) {
540 panic("%s: [%s] item %p not part of pool", __func__,
541 pp->pr_wchan, object);
542 }
543 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
544 panic("%s: [%s] item %p below item space", __func__,
545 pp->pr_wchan, object);
546 }
547 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
548 panic("%s: [%s] item %p poolid %u != %u", __func__,
549 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
550 }
551 }
552
553 static inline void
554 pc_phinpage_check(pool_cache_t pc, void *object)
555 {
556 struct pool_item_header *ph;
557 struct pool *pp;
558 void *page;
559
560 pp = &pc->pc_pool;
561 page = POOL_OBJ_TO_PAGE(pp, object);
562 ph = (struct pool_item_header *)page;
563
564 pr_phinpage_check(pp, ph, page, object);
565 }
566
567 /* -------------------------------------------------------------------------- */
568
569 static inline int
570 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
571 {
572
573 /*
574 * We consider pool_item_header with smaller ph_page bigger. This
575 * unnatural ordering is for the benefit of pr_find_pagehead.
576 */
577 if (a->ph_page < b->ph_page)
578 return 1;
579 else if (a->ph_page > b->ph_page)
580 return -1;
581 else
582 return 0;
583 }
584
585 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
586 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
587
588 static inline struct pool_item_header *
589 pr_find_pagehead_noalign(struct pool *pp, void *v)
590 {
591 struct pool_item_header *ph, tmp;
592
593 tmp.ph_page = (void *)(uintptr_t)v;
594 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
595 if (ph == NULL) {
596 ph = SPLAY_ROOT(&pp->pr_phtree);
597 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
598 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
599 }
600 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
601 }
602
603 return ph;
604 }
605
606 /*
607 * Return the pool page header based on item address.
608 */
609 static inline struct pool_item_header *
610 pr_find_pagehead(struct pool *pp, void *v)
611 {
612 struct pool_item_header *ph, tmp;
613
614 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
615 ph = pr_find_pagehead_noalign(pp, v);
616 } else {
617 void *page = POOL_OBJ_TO_PAGE(pp, v);
618 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
619 ph = (struct pool_item_header *)page;
620 pr_phinpage_check(pp, ph, page, v);
621 } else {
622 tmp.ph_page = page;
623 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
624 }
625 }
626
627 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
628 ((char *)ph->ph_page <= (char *)v &&
629 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
630 return ph;
631 }
632
633 static void
634 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
635 {
636 struct pool_item_header *ph;
637
638 while ((ph = LIST_FIRST(pq)) != NULL) {
639 LIST_REMOVE(ph, ph_pagelist);
640 pool_allocator_free(pp, ph->ph_page);
641 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
642 pool_put(pp->pr_phpool, ph);
643 }
644 }
645
646 /*
647 * Remove a page from the pool.
648 */
649 static inline void
650 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
651 struct pool_pagelist *pq)
652 {
653
654 KASSERT(mutex_owned(&pp->pr_lock));
655
656 /*
657 * If the page was idle, decrement the idle page count.
658 */
659 if (ph->ph_nmissing == 0) {
660 KASSERT(pp->pr_nidle != 0);
661 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
662 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
663 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
664 pp->pr_nidle--;
665 }
666
667 pp->pr_nitems -= pp->pr_itemsperpage;
668
669 /*
670 * Unlink the page from the pool and queue it for release.
671 */
672 LIST_REMOVE(ph, ph_pagelist);
673 if (pp->pr_roflags & PR_PHINPAGE) {
674 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
675 panic("%s: [%s] ph %p poolid %u != %u",
676 __func__, pp->pr_wchan, ph, ph->ph_poolid,
677 pp->pr_poolid);
678 }
679 } else {
680 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
681 }
682 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
683
684 pp->pr_npages--;
685 pp->pr_npagefree++;
686
687 pool_update_curpage(pp);
688 }
689
690 /*
691 * Initialize all the pools listed in the "pools" link set.
692 */
693 void
694 pool_subsystem_init(void)
695 {
696 size_t size;
697 int idx;
698
699 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
700 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
701 cv_init(&pool_busy, "poolbusy");
702
703 /*
704 * Initialize private page header pool and cache magazine pool if we
705 * haven't done so yet.
706 */
707 for (idx = 0; idx < PHPOOL_MAX; idx++) {
708 static char phpool_names[PHPOOL_MAX][6+1+6+1];
709 int nelem;
710 size_t sz;
711
712 nelem = PHPOOL_FREELIST_NELEM(idx);
713 KASSERT(nelem != 0);
714 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
715 "phpool-%d", nelem);
716 sz = offsetof(struct pool_item_header,
717 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
718 pool_init(&phpool[idx], sz, 0, 0, 0,
719 phpool_names[idx], &pool_allocator_meta, IPL_VM);
720 }
721
722 size = sizeof(pcg_t) +
723 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
724 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
725 "pcgnormal", &pool_allocator_meta, IPL_VM);
726
727 size = sizeof(pcg_t) +
728 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
729 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
730 "pcglarge", &pool_allocator_meta, IPL_VM);
731
732 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
733 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
734
735 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
736 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
737 }
738
739 static inline bool
740 pool_init_is_phinpage(const struct pool *pp)
741 {
742 size_t pagesize;
743
744 if (pp->pr_roflags & PR_PHINPAGE) {
745 return true;
746 }
747 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
748 return false;
749 }
750
751 pagesize = pp->pr_alloc->pa_pagesz;
752
753 /*
754 * Threshold: the item size is below 1/16 of a page size, and below
755 * 8 times the page header size. The latter ensures we go off-page
756 * if the page header would make us waste a rather big item.
757 */
758 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
759 return true;
760 }
761
762 /* Put the header into the page if it doesn't waste any items. */
763 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
764 return true;
765 }
766
767 return false;
768 }
769
770 static inline bool
771 pool_init_is_usebmap(const struct pool *pp)
772 {
773 size_t bmapsize;
774
775 if (pp->pr_roflags & PR_NOTOUCH) {
776 return true;
777 }
778
779 /*
780 * If we're off-page, go with a bitmap.
781 */
782 if (!(pp->pr_roflags & PR_PHINPAGE)) {
783 return true;
784 }
785
786 /*
787 * If we're on-page, and the page header can already contain a bitmap
788 * big enough to cover all the items of the page, go with a bitmap.
789 */
790 bmapsize = roundup(PHSIZE, pp->pr_align) -
791 offsetof(struct pool_item_header, ph_bitmap[0]);
792 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
793 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
794 return true;
795 }
796
797 return false;
798 }
799
800 /*
801 * Initialize the given pool resource structure.
802 *
803 * We export this routine to allow other kernel parts to declare
804 * static pools that must be initialized before kmem(9) is available.
805 */
806 void
807 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
808 const char *wchan, struct pool_allocator *palloc, int ipl)
809 {
810 struct pool *pp1;
811 size_t prsize;
812 int itemspace, slack;
813
814 /* XXX ioff will be removed. */
815 KASSERT(ioff == 0);
816
817 #ifdef DEBUG
818 if (__predict_true(!cold))
819 mutex_enter(&pool_head_lock);
820 /*
821 * Check that the pool hasn't already been initialised and
822 * added to the list of all pools.
823 */
824 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
825 if (pp == pp1)
826 panic("%s: [%s] already initialised", __func__,
827 wchan);
828 }
829 if (__predict_true(!cold))
830 mutex_exit(&pool_head_lock);
831 #endif
832
833 if (palloc == NULL)
834 palloc = &pool_allocator_kmem;
835
836 if (!cold)
837 mutex_enter(&pool_allocator_lock);
838 if (palloc->pa_refcnt++ == 0) {
839 if (palloc->pa_pagesz == 0)
840 palloc->pa_pagesz = PAGE_SIZE;
841
842 TAILQ_INIT(&palloc->pa_list);
843
844 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
845 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
846 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
847 }
848 if (!cold)
849 mutex_exit(&pool_allocator_lock);
850
851 /*
852 * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
853 * valid until the the backing page is returned to the system.
854 */
855 if (flags & PR_PSERIALIZE) {
856 flags |= PR_NOTOUCH;
857 }
858
859 if (align == 0)
860 align = ALIGN(1);
861
862 prsize = size;
863 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
864 prsize = sizeof(struct pool_item);
865
866 prsize = roundup(prsize, align);
867 KASSERTMSG((prsize <= palloc->pa_pagesz),
868 "%s: [%s] pool item size (%zu) larger than page size (%u)",
869 __func__, wchan, prsize, palloc->pa_pagesz);
870
871 /*
872 * Initialize the pool structure.
873 */
874 LIST_INIT(&pp->pr_emptypages);
875 LIST_INIT(&pp->pr_fullpages);
876 LIST_INIT(&pp->pr_partpages);
877 pp->pr_cache = NULL;
878 pp->pr_curpage = NULL;
879 pp->pr_npages = 0;
880 pp->pr_minitems = 0;
881 pp->pr_minpages = 0;
882 pp->pr_maxpages = UINT_MAX;
883 pp->pr_roflags = flags;
884 pp->pr_flags = 0;
885 pp->pr_size = prsize;
886 pp->pr_reqsize = size;
887 pp->pr_align = align;
888 pp->pr_wchan = wchan;
889 pp->pr_alloc = palloc;
890 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
891 pp->pr_nitems = 0;
892 pp->pr_nout = 0;
893 pp->pr_hardlimit = UINT_MAX;
894 pp->pr_hardlimit_warning = NULL;
895 pp->pr_hardlimit_ratecap.tv_sec = 0;
896 pp->pr_hardlimit_ratecap.tv_usec = 0;
897 pp->pr_hardlimit_warning_last.tv_sec = 0;
898 pp->pr_hardlimit_warning_last.tv_usec = 0;
899 pp->pr_drain_hook = NULL;
900 pp->pr_drain_hook_arg = NULL;
901 pp->pr_freecheck = NULL;
902 pp->pr_redzone = false;
903 pool_redzone_init(pp, size);
904 pool_quarantine_init(pp);
905
906 /*
907 * Decide whether to put the page header off-page to avoid wasting too
908 * large a part of the page or too big an item. Off-page page headers
909 * go on a hash table, so we can match a returned item with its header
910 * based on the page address.
911 */
912 if (pool_init_is_phinpage(pp)) {
913 /* Use the beginning of the page for the page header */
914 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
915 pp->pr_itemoffset = roundup(PHSIZE, align);
916 pp->pr_roflags |= PR_PHINPAGE;
917 } else {
918 /* The page header will be taken from our page header pool */
919 itemspace = palloc->pa_pagesz;
920 pp->pr_itemoffset = 0;
921 SPLAY_INIT(&pp->pr_phtree);
922 }
923
924 pp->pr_itemsperpage = itemspace / pp->pr_size;
925 KASSERT(pp->pr_itemsperpage != 0);
926
927 /*
928 * Decide whether to use a bitmap or a linked list to manage freed
929 * items.
930 */
931 if (pool_init_is_usebmap(pp)) {
932 pp->pr_roflags |= PR_USEBMAP;
933 }
934
935 /*
936 * If we're off-page, then we're using a bitmap; choose the appropriate
937 * pool to allocate page headers, whose size varies depending on the
938 * bitmap. If we're on-page, nothing to do.
939 */
940 if (!(pp->pr_roflags & PR_PHINPAGE)) {
941 int idx;
942
943 KASSERT(pp->pr_roflags & PR_USEBMAP);
944
945 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
946 idx++) {
947 /* nothing */
948 }
949 if (idx >= PHPOOL_MAX) {
950 /*
951 * if you see this panic, consider to tweak
952 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
953 */
954 panic("%s: [%s] too large itemsperpage(%d) for "
955 "PR_USEBMAP", __func__,
956 pp->pr_wchan, pp->pr_itemsperpage);
957 }
958 pp->pr_phpool = &phpool[idx];
959 } else {
960 pp->pr_phpool = NULL;
961 }
962
963 /*
964 * Use the slack between the chunks and the page header
965 * for "cache coloring".
966 */
967 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
968 pp->pr_maxcolor = rounddown(slack, align);
969 pp->pr_curcolor = 0;
970
971 pp->pr_nget = 0;
972 pp->pr_nfail = 0;
973 pp->pr_nput = 0;
974 pp->pr_npagealloc = 0;
975 pp->pr_npagefree = 0;
976 pp->pr_hiwat = 0;
977 pp->pr_nidle = 0;
978 pp->pr_refcnt = 0;
979
980 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
981 cv_init(&pp->pr_cv, wchan);
982 pp->pr_ipl = ipl;
983
984 /* Insert into the list of all pools. */
985 if (!cold)
986 mutex_enter(&pool_head_lock);
987 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
988 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
989 break;
990 }
991 if (pp1 == NULL)
992 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
993 else
994 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
995 if (!cold)
996 mutex_exit(&pool_head_lock);
997
998 /* Insert this into the list of pools using this allocator. */
999 if (!cold)
1000 mutex_enter(&palloc->pa_lock);
1001 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
1002 if (!cold)
1003 mutex_exit(&palloc->pa_lock);
1004 }
1005
1006 /*
1007 * De-commision a pool resource.
1008 */
1009 void
1010 pool_destroy(struct pool *pp)
1011 {
1012 struct pool_pagelist pq;
1013 struct pool_item_header *ph;
1014
1015 pool_quarantine_flush(pp);
1016
1017 /* Remove from global pool list */
1018 mutex_enter(&pool_head_lock);
1019 while (pp->pr_refcnt != 0)
1020 cv_wait(&pool_busy, &pool_head_lock);
1021 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1022 if (drainpp == pp)
1023 drainpp = NULL;
1024 mutex_exit(&pool_head_lock);
1025
1026 /* Remove this pool from its allocator's list of pools. */
1027 mutex_enter(&pp->pr_alloc->pa_lock);
1028 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1029 mutex_exit(&pp->pr_alloc->pa_lock);
1030
1031 mutex_enter(&pool_allocator_lock);
1032 if (--pp->pr_alloc->pa_refcnt == 0)
1033 mutex_destroy(&pp->pr_alloc->pa_lock);
1034 mutex_exit(&pool_allocator_lock);
1035
1036 mutex_enter(&pp->pr_lock);
1037
1038 KASSERT(pp->pr_cache == NULL);
1039 KASSERTMSG((pp->pr_nout == 0),
1040 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1041 pp->pr_nout);
1042 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1043 KASSERT(LIST_EMPTY(&pp->pr_partpages));
1044
1045 /* Remove all pages */
1046 LIST_INIT(&pq);
1047 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1048 pr_rmpage(pp, ph, &pq);
1049
1050 mutex_exit(&pp->pr_lock);
1051
1052 pr_pagelist_free(pp, &pq);
1053 cv_destroy(&pp->pr_cv);
1054 mutex_destroy(&pp->pr_lock);
1055 }
1056
1057 void
1058 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1059 {
1060
1061 /* XXX no locking -- must be used just after pool_init() */
1062 KASSERTMSG((pp->pr_drain_hook == NULL),
1063 "%s: [%s] already set", __func__, pp->pr_wchan);
1064 pp->pr_drain_hook = fn;
1065 pp->pr_drain_hook_arg = arg;
1066 }
1067
1068 static struct pool_item_header *
1069 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1070 {
1071 struct pool_item_header *ph;
1072
1073 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1074 ph = storage;
1075 else
1076 ph = pool_get(pp->pr_phpool, flags);
1077
1078 return ph;
1079 }
1080
1081 /*
1082 * Grab an item from the pool.
1083 */
1084 void *
1085 pool_get(struct pool *pp, int flags)
1086 {
1087 struct pool_item_header *ph;
1088 void *v;
1089
1090 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1091 KASSERTMSG((pp->pr_itemsperpage != 0),
1092 "%s: [%s] pr_itemsperpage is zero, "
1093 "pool not initialized?", __func__, pp->pr_wchan);
1094 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1095 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1096 "%s: [%s] is IPL_NONE, but called from interrupt context",
1097 __func__, pp->pr_wchan);
1098 if (flags & PR_WAITOK) {
1099 ASSERT_SLEEPABLE();
1100 }
1101
1102 if (flags & PR_NOWAIT) {
1103 if (fault_inject())
1104 return NULL;
1105 }
1106
1107 mutex_enter(&pp->pr_lock);
1108 startover:
1109 /*
1110 * Check to see if we've reached the hard limit. If we have,
1111 * and we can wait, then wait until an item has been returned to
1112 * the pool.
1113 */
1114 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1115 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1116 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1117 if (pp->pr_drain_hook != NULL) {
1118 /*
1119 * Since the drain hook is going to free things
1120 * back to the pool, unlock, call the hook, re-lock,
1121 * and check the hardlimit condition again.
1122 */
1123 mutex_exit(&pp->pr_lock);
1124 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1125 mutex_enter(&pp->pr_lock);
1126 if (pp->pr_nout < pp->pr_hardlimit)
1127 goto startover;
1128 }
1129
1130 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1131 /*
1132 * XXX: A warning isn't logged in this case. Should
1133 * it be?
1134 */
1135 pp->pr_flags |= PR_WANTED;
1136 do {
1137 cv_wait(&pp->pr_cv, &pp->pr_lock);
1138 } while (pp->pr_flags & PR_WANTED);
1139 goto startover;
1140 }
1141
1142 /*
1143 * Log a message that the hard limit has been hit.
1144 */
1145 if (pp->pr_hardlimit_warning != NULL &&
1146 ratecheck(&pp->pr_hardlimit_warning_last,
1147 &pp->pr_hardlimit_ratecap))
1148 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1149
1150 pp->pr_nfail++;
1151
1152 mutex_exit(&pp->pr_lock);
1153 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1154 return NULL;
1155 }
1156
1157 /*
1158 * The convention we use is that if `curpage' is not NULL, then
1159 * it points at a non-empty bucket. In particular, `curpage'
1160 * never points at a page header which has PR_PHINPAGE set and
1161 * has no items in its bucket.
1162 */
1163 if ((ph = pp->pr_curpage) == NULL) {
1164 int error;
1165
1166 KASSERTMSG((pp->pr_nitems == 0),
1167 "%s: [%s] curpage NULL, inconsistent nitems %u",
1168 __func__, pp->pr_wchan, pp->pr_nitems);
1169
1170 /*
1171 * Call the back-end page allocator for more memory.
1172 * Release the pool lock, as the back-end page allocator
1173 * may block.
1174 */
1175 error = pool_grow(pp, flags);
1176 if (error != 0) {
1177 /*
1178 * pool_grow aborts when another thread
1179 * is allocating a new page. Retry if it
1180 * waited for it.
1181 */
1182 if (error == ERESTART)
1183 goto startover;
1184
1185 /*
1186 * We were unable to allocate a page or item
1187 * header, but we released the lock during
1188 * allocation, so perhaps items were freed
1189 * back to the pool. Check for this case.
1190 */
1191 if (pp->pr_curpage != NULL)
1192 goto startover;
1193
1194 pp->pr_nfail++;
1195 mutex_exit(&pp->pr_lock);
1196 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1197 return NULL;
1198 }
1199
1200 /* Start the allocation process over. */
1201 goto startover;
1202 }
1203 if (pp->pr_roflags & PR_USEBMAP) {
1204 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1205 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1206 v = pr_item_bitmap_get(pp, ph);
1207 } else {
1208 v = pr_item_linkedlist_get(pp, ph);
1209 }
1210 pp->pr_nitems--;
1211 pp->pr_nout++;
1212 if (ph->ph_nmissing == 0) {
1213 KASSERT(pp->pr_nidle > 0);
1214 pp->pr_nidle--;
1215
1216 /*
1217 * This page was previously empty. Move it to the list of
1218 * partially-full pages. This page is already curpage.
1219 */
1220 LIST_REMOVE(ph, ph_pagelist);
1221 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1222 }
1223 ph->ph_nmissing++;
1224 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1225 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1226 LIST_EMPTY(&ph->ph_itemlist)),
1227 "%s: [%s] nmissing (%u) inconsistent", __func__,
1228 pp->pr_wchan, ph->ph_nmissing);
1229 /*
1230 * This page is now full. Move it to the full list
1231 * and select a new current page.
1232 */
1233 LIST_REMOVE(ph, ph_pagelist);
1234 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1235 pool_update_curpage(pp);
1236 }
1237
1238 pp->pr_nget++;
1239
1240 /*
1241 * If we have a low water mark and we are now below that low
1242 * water mark, add more items to the pool.
1243 */
1244 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1245 /*
1246 * XXX: Should we log a warning? Should we set up a timeout
1247 * to try again in a second or so? The latter could break
1248 * a caller's assumptions about interrupt protection, etc.
1249 */
1250 }
1251
1252 mutex_exit(&pp->pr_lock);
1253 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1254 FREECHECK_OUT(&pp->pr_freecheck, v);
1255 pool_redzone_fill(pp, v);
1256 pool_get_kmsan(pp, v);
1257 if (flags & PR_ZERO)
1258 memset(v, 0, pp->pr_reqsize);
1259 return v;
1260 }
1261
1262 /*
1263 * Internal version of pool_put(). Pool is already locked/entered.
1264 */
1265 static void
1266 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1267 {
1268 struct pool_item_header *ph;
1269
1270 KASSERT(mutex_owned(&pp->pr_lock));
1271 pool_redzone_check(pp, v);
1272 pool_put_kmsan(pp, v);
1273 FREECHECK_IN(&pp->pr_freecheck, v);
1274 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1275
1276 KASSERTMSG((pp->pr_nout > 0),
1277 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1278
1279 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1280 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1281 }
1282
1283 /*
1284 * Return to item list.
1285 */
1286 if (pp->pr_roflags & PR_USEBMAP) {
1287 pr_item_bitmap_put(pp, ph, v);
1288 } else {
1289 pr_item_linkedlist_put(pp, ph, v);
1290 }
1291 KDASSERT(ph->ph_nmissing != 0);
1292 ph->ph_nmissing--;
1293 pp->pr_nput++;
1294 pp->pr_nitems++;
1295 pp->pr_nout--;
1296
1297 /* Cancel "pool empty" condition if it exists */
1298 if (pp->pr_curpage == NULL)
1299 pp->pr_curpage = ph;
1300
1301 if (pp->pr_flags & PR_WANTED) {
1302 pp->pr_flags &= ~PR_WANTED;
1303 cv_broadcast(&pp->pr_cv);
1304 }
1305
1306 /*
1307 * If this page is now empty, do one of two things:
1308 *
1309 * (1) If we have more pages than the page high water mark,
1310 * free the page back to the system. ONLY CONSIDER
1311 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1312 * CLAIM.
1313 *
1314 * (2) Otherwise, move the page to the empty page list.
1315 *
1316 * Either way, select a new current page (so we use a partially-full
1317 * page if one is available).
1318 */
1319 if (ph->ph_nmissing == 0) {
1320 pp->pr_nidle++;
1321 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1322 pp->pr_npages > pp->pr_minpages &&
1323 pp->pr_npages > pp->pr_maxpages) {
1324 pr_rmpage(pp, ph, pq);
1325 } else {
1326 LIST_REMOVE(ph, ph_pagelist);
1327 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1328
1329 /*
1330 * Update the timestamp on the page. A page must
1331 * be idle for some period of time before it can
1332 * be reclaimed by the pagedaemon. This minimizes
1333 * ping-pong'ing for memory.
1334 *
1335 * note for 64-bit time_t: truncating to 32-bit is not
1336 * a problem for our usage.
1337 */
1338 ph->ph_time = time_uptime;
1339 }
1340 pool_update_curpage(pp);
1341 }
1342
1343 /*
1344 * If the page was previously completely full, move it to the
1345 * partially-full list and make it the current page. The next
1346 * allocation will get the item from this page, instead of
1347 * further fragmenting the pool.
1348 */
1349 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1350 LIST_REMOVE(ph, ph_pagelist);
1351 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1352 pp->pr_curpage = ph;
1353 }
1354 }
1355
1356 void
1357 pool_put(struct pool *pp, void *v)
1358 {
1359 struct pool_pagelist pq;
1360
1361 LIST_INIT(&pq);
1362
1363 mutex_enter(&pp->pr_lock);
1364 if (!pool_put_quarantine(pp, v, &pq)) {
1365 pool_do_put(pp, v, &pq);
1366 }
1367 mutex_exit(&pp->pr_lock);
1368
1369 pr_pagelist_free(pp, &pq);
1370 }
1371
1372 /*
1373 * pool_grow: grow a pool by a page.
1374 *
1375 * => called with pool locked.
1376 * => unlock and relock the pool.
1377 * => return with pool locked.
1378 */
1379
1380 static int
1381 pool_grow(struct pool *pp, int flags)
1382 {
1383 struct pool_item_header *ph;
1384 char *storage;
1385
1386 /*
1387 * If there's a pool_grow in progress, wait for it to complete
1388 * and try again from the top.
1389 */
1390 if (pp->pr_flags & PR_GROWING) {
1391 if (flags & PR_WAITOK) {
1392 do {
1393 cv_wait(&pp->pr_cv, &pp->pr_lock);
1394 } while (pp->pr_flags & PR_GROWING);
1395 return ERESTART;
1396 } else {
1397 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1398 /*
1399 * This needs an unlock/relock dance so
1400 * that the other caller has a chance to
1401 * run and actually do the thing. Note
1402 * that this is effectively a busy-wait.
1403 */
1404 mutex_exit(&pp->pr_lock);
1405 mutex_enter(&pp->pr_lock);
1406 return ERESTART;
1407 }
1408 return EWOULDBLOCK;
1409 }
1410 }
1411 pp->pr_flags |= PR_GROWING;
1412 if (flags & PR_WAITOK)
1413 mutex_exit(&pp->pr_lock);
1414 else
1415 pp->pr_flags |= PR_GROWINGNOWAIT;
1416
1417 storage = pool_allocator_alloc(pp, flags);
1418 if (__predict_false(storage == NULL))
1419 goto out;
1420
1421 ph = pool_alloc_item_header(pp, storage, flags);
1422 if (__predict_false(ph == NULL)) {
1423 pool_allocator_free(pp, storage);
1424 goto out;
1425 }
1426
1427 if (flags & PR_WAITOK)
1428 mutex_enter(&pp->pr_lock);
1429 pool_prime_page(pp, storage, ph);
1430 pp->pr_npagealloc++;
1431 KASSERT(pp->pr_flags & PR_GROWING);
1432 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1433 /*
1434 * If anyone was waiting for pool_grow, notify them that we
1435 * may have just done it.
1436 */
1437 cv_broadcast(&pp->pr_cv);
1438 return 0;
1439 out:
1440 if (flags & PR_WAITOK)
1441 mutex_enter(&pp->pr_lock);
1442 KASSERT(pp->pr_flags & PR_GROWING);
1443 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1444 return ENOMEM;
1445 }
1446
1447 void
1448 pool_prime(struct pool *pp, int n)
1449 {
1450
1451 mutex_enter(&pp->pr_lock);
1452 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1453 if (pp->pr_maxpages <= pp->pr_minpages)
1454 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1455 while (pp->pr_npages < pp->pr_minpages)
1456 (void) pool_grow(pp, PR_WAITOK);
1457 mutex_exit(&pp->pr_lock);
1458 }
1459
1460 /*
1461 * Add a page worth of items to the pool.
1462 *
1463 * Note, we must be called with the pool descriptor LOCKED.
1464 */
1465 static void
1466 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1467 {
1468 const unsigned int align = pp->pr_align;
1469 struct pool_item *pi;
1470 void *cp = storage;
1471 int n;
1472
1473 KASSERT(mutex_owned(&pp->pr_lock));
1474 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1475 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1476 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1477
1478 /*
1479 * Insert page header.
1480 */
1481 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1482 LIST_INIT(&ph->ph_itemlist);
1483 ph->ph_page = storage;
1484 ph->ph_nmissing = 0;
1485 ph->ph_time = time_uptime;
1486 if (pp->pr_roflags & PR_PHINPAGE)
1487 ph->ph_poolid = pp->pr_poolid;
1488 else
1489 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1490
1491 pp->pr_nidle++;
1492
1493 /*
1494 * The item space starts after the on-page header, if any.
1495 */
1496 ph->ph_off = pp->pr_itemoffset;
1497
1498 /*
1499 * Color this page.
1500 */
1501 ph->ph_off += pp->pr_curcolor;
1502 cp = (char *)cp + ph->ph_off;
1503 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1504 pp->pr_curcolor = 0;
1505
1506 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1507
1508 /*
1509 * Insert remaining chunks on the bucket list.
1510 */
1511 n = pp->pr_itemsperpage;
1512 pp->pr_nitems += n;
1513
1514 if (pp->pr_roflags & PR_USEBMAP) {
1515 pr_item_bitmap_init(pp, ph);
1516 } else {
1517 while (n--) {
1518 pi = (struct pool_item *)cp;
1519
1520 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1521
1522 /* Insert on page list */
1523 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1524 #ifdef POOL_CHECK_MAGIC
1525 pi->pi_magic = PI_MAGIC;
1526 #endif
1527 cp = (char *)cp + pp->pr_size;
1528
1529 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1530 }
1531 }
1532
1533 /*
1534 * If the pool was depleted, point at the new page.
1535 */
1536 if (pp->pr_curpage == NULL)
1537 pp->pr_curpage = ph;
1538
1539 if (++pp->pr_npages > pp->pr_hiwat)
1540 pp->pr_hiwat = pp->pr_npages;
1541 }
1542
1543 /*
1544 * Used by pool_get() when nitems drops below the low water mark. This
1545 * is used to catch up pr_nitems with the low water mark.
1546 *
1547 * Note 1, we never wait for memory here, we let the caller decide what to do.
1548 *
1549 * Note 2, we must be called with the pool already locked, and we return
1550 * with it locked.
1551 */
1552 static int
1553 pool_catchup(struct pool *pp)
1554 {
1555 int error = 0;
1556
1557 while (POOL_NEEDS_CATCHUP(pp)) {
1558 error = pool_grow(pp, PR_NOWAIT);
1559 if (error) {
1560 if (error == ERESTART)
1561 continue;
1562 break;
1563 }
1564 }
1565 return error;
1566 }
1567
1568 static void
1569 pool_update_curpage(struct pool *pp)
1570 {
1571
1572 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1573 if (pp->pr_curpage == NULL) {
1574 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1575 }
1576 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1577 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1578 }
1579
1580 void
1581 pool_setlowat(struct pool *pp, int n)
1582 {
1583
1584 mutex_enter(&pp->pr_lock);
1585 pp->pr_minitems = n;
1586
1587 /* Make sure we're caught up with the newly-set low water mark. */
1588 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1589 /*
1590 * XXX: Should we log a warning? Should we set up a timeout
1591 * to try again in a second or so? The latter could break
1592 * a caller's assumptions about interrupt protection, etc.
1593 */
1594 }
1595
1596 mutex_exit(&pp->pr_lock);
1597 }
1598
1599 void
1600 pool_sethiwat(struct pool *pp, int n)
1601 {
1602
1603 mutex_enter(&pp->pr_lock);
1604
1605 pp->pr_maxitems = n;
1606
1607 mutex_exit(&pp->pr_lock);
1608 }
1609
1610 void
1611 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1612 {
1613
1614 mutex_enter(&pp->pr_lock);
1615
1616 pp->pr_hardlimit = n;
1617 pp->pr_hardlimit_warning = warnmess;
1618 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1619 pp->pr_hardlimit_warning_last.tv_sec = 0;
1620 pp->pr_hardlimit_warning_last.tv_usec = 0;
1621
1622 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1623
1624 mutex_exit(&pp->pr_lock);
1625 }
1626
1627 unsigned int
1628 pool_nget(struct pool *pp)
1629 {
1630
1631 return pp->pr_nget;
1632 }
1633
1634 unsigned int
1635 pool_nput(struct pool *pp)
1636 {
1637
1638 return pp->pr_nput;
1639 }
1640
1641 /*
1642 * Release all complete pages that have not been used recently.
1643 *
1644 * Must not be called from interrupt context.
1645 */
1646 int
1647 pool_reclaim(struct pool *pp)
1648 {
1649 struct pool_item_header *ph, *phnext;
1650 struct pool_pagelist pq;
1651 uint32_t curtime;
1652 bool klock;
1653 int rv;
1654
1655 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1656
1657 if (pp->pr_drain_hook != NULL) {
1658 /*
1659 * The drain hook must be called with the pool unlocked.
1660 */
1661 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1662 }
1663
1664 /*
1665 * XXXSMP Because we do not want to cause non-MPSAFE code
1666 * to block.
1667 */
1668 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1669 pp->pr_ipl == IPL_SOFTSERIAL) {
1670 KERNEL_LOCK(1, NULL);
1671 klock = true;
1672 } else
1673 klock = false;
1674
1675 /* Reclaim items from the pool's cache (if any). */
1676 if (pp->pr_cache != NULL)
1677 pool_cache_invalidate(pp->pr_cache);
1678
1679 if (mutex_tryenter(&pp->pr_lock) == 0) {
1680 if (klock) {
1681 KERNEL_UNLOCK_ONE(NULL);
1682 }
1683 return 0;
1684 }
1685
1686 LIST_INIT(&pq);
1687
1688 curtime = time_uptime;
1689
1690 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1691 phnext = LIST_NEXT(ph, ph_pagelist);
1692
1693 /* Check our minimum page claim */
1694 if (pp->pr_npages <= pp->pr_minpages)
1695 break;
1696
1697 KASSERT(ph->ph_nmissing == 0);
1698 if (curtime - ph->ph_time < pool_inactive_time)
1699 continue;
1700
1701 /*
1702 * If freeing this page would put us below the minimum free items
1703 * or the minimum pages, stop now.
1704 */
1705 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1706 pp->pr_npages - 1 < pp->pr_minpages)
1707 break;
1708
1709 pr_rmpage(pp, ph, &pq);
1710 }
1711
1712 mutex_exit(&pp->pr_lock);
1713
1714 if (LIST_EMPTY(&pq))
1715 rv = 0;
1716 else {
1717 pr_pagelist_free(pp, &pq);
1718 rv = 1;
1719 }
1720
1721 if (klock) {
1722 KERNEL_UNLOCK_ONE(NULL);
1723 }
1724
1725 return rv;
1726 }
1727
1728 /*
1729 * Drain pools, one at a time. The drained pool is returned within ppp.
1730 *
1731 * Note, must never be called from interrupt context.
1732 */
1733 bool
1734 pool_drain(struct pool **ppp)
1735 {
1736 bool reclaimed;
1737 struct pool *pp;
1738
1739 KASSERT(!TAILQ_EMPTY(&pool_head));
1740
1741 pp = NULL;
1742
1743 /* Find next pool to drain, and add a reference. */
1744 mutex_enter(&pool_head_lock);
1745 do {
1746 if (drainpp == NULL) {
1747 drainpp = TAILQ_FIRST(&pool_head);
1748 }
1749 if (drainpp != NULL) {
1750 pp = drainpp;
1751 drainpp = TAILQ_NEXT(pp, pr_poollist);
1752 }
1753 /*
1754 * Skip completely idle pools. We depend on at least
1755 * one pool in the system being active.
1756 */
1757 } while (pp == NULL || pp->pr_npages == 0);
1758 pp->pr_refcnt++;
1759 mutex_exit(&pool_head_lock);
1760
1761 /* Drain the cache (if any) and pool.. */
1762 reclaimed = pool_reclaim(pp);
1763
1764 /* Finally, unlock the pool. */
1765 mutex_enter(&pool_head_lock);
1766 pp->pr_refcnt--;
1767 cv_broadcast(&pool_busy);
1768 mutex_exit(&pool_head_lock);
1769
1770 if (ppp != NULL)
1771 *ppp = pp;
1772
1773 return reclaimed;
1774 }
1775
1776 /*
1777 * Calculate the total number of pages consumed by pools.
1778 */
1779 int
1780 pool_totalpages(void)
1781 {
1782
1783 mutex_enter(&pool_head_lock);
1784 int pages = pool_totalpages_locked();
1785 mutex_exit(&pool_head_lock);
1786
1787 return pages;
1788 }
1789
1790 int
1791 pool_totalpages_locked(void)
1792 {
1793 struct pool *pp;
1794 uint64_t total = 0;
1795
1796 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1797 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1798
1799 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1800 bytes -= (pp->pr_nout * pp->pr_size);
1801 total += bytes;
1802 }
1803
1804 return atop(total);
1805 }
1806
1807 /*
1808 * Diagnostic helpers.
1809 */
1810
1811 void
1812 pool_printall(const char *modif, void (*pr)(const char *, ...))
1813 {
1814 struct pool *pp;
1815
1816 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1817 pool_printit(pp, modif, pr);
1818 }
1819 }
1820
1821 void
1822 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1823 {
1824
1825 if (pp == NULL) {
1826 (*pr)("Must specify a pool to print.\n");
1827 return;
1828 }
1829
1830 pool_print1(pp, modif, pr);
1831 }
1832
1833 static void
1834 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1835 void (*pr)(const char *, ...))
1836 {
1837 struct pool_item_header *ph;
1838
1839 LIST_FOREACH(ph, pl, ph_pagelist) {
1840 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1841 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1842 #ifdef POOL_CHECK_MAGIC
1843 struct pool_item *pi;
1844 if (!(pp->pr_roflags & PR_USEBMAP)) {
1845 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1846 if (pi->pi_magic != PI_MAGIC) {
1847 (*pr)("\t\t\titem %p, magic 0x%x\n",
1848 pi, pi->pi_magic);
1849 }
1850 }
1851 }
1852 #endif
1853 }
1854 }
1855
1856 static void
1857 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1858 {
1859 struct pool_item_header *ph;
1860 pool_cache_t pc;
1861 pcg_t *pcg;
1862 pool_cache_cpu_t *cc;
1863 uint64_t cpuhit, cpumiss, pchit, pcmiss;
1864 uint32_t nfull;
1865 int i;
1866 bool print_log = false, print_pagelist = false, print_cache = false;
1867 bool print_short = false, skip_empty = false;
1868 char c;
1869
1870 while ((c = *modif++) != '\0') {
1871 if (c == 'l')
1872 print_log = true;
1873 if (c == 'p')
1874 print_pagelist = true;
1875 if (c == 'c')
1876 print_cache = true;
1877 if (c == 's')
1878 print_short = true;
1879 if (c == 'S')
1880 skip_empty = true;
1881 }
1882
1883 if (skip_empty && pp->pr_nget == 0)
1884 return;
1885
1886 if ((pc = pp->pr_cache) != NULL) {
1887 (*pr)("POOLCACHE");
1888 } else {
1889 (*pr)("POOL");
1890 }
1891
1892 /* Single line output. */
1893 if (print_short) {
1894 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n",
1895 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1896 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1897 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle);
1898
1899 return;
1900 }
1901
1902 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1903 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1904 pp->pr_roflags);
1905 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1906 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1907 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1908 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1909 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1910
1911 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1912 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1913 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1914 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1915
1916 if (!print_pagelist)
1917 goto skip_pagelist;
1918
1919 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1920 (*pr)("\n\tempty page list:\n");
1921 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1922 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1923 (*pr)("\n\tfull page list:\n");
1924 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1925 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1926 (*pr)("\n\tpartial-page list:\n");
1927 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1928
1929 if (pp->pr_curpage == NULL)
1930 (*pr)("\tno current page\n");
1931 else
1932 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1933
1934 skip_pagelist:
1935 if (print_log)
1936 goto skip_log;
1937
1938 (*pr)("\n");
1939
1940 skip_log:
1941
1942 #define PR_GROUPLIST(pcg) \
1943 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1944 for (i = 0; i < pcg->pcg_size; i++) { \
1945 if (pcg->pcg_objects[i].pcgo_pa != \
1946 POOL_PADDR_INVALID) { \
1947 (*pr)("\t\t\t%p, 0x%llx\n", \
1948 pcg->pcg_objects[i].pcgo_va, \
1949 (unsigned long long) \
1950 pcg->pcg_objects[i].pcgo_pa); \
1951 } else { \
1952 (*pr)("\t\t\t%p\n", \
1953 pcg->pcg_objects[i].pcgo_va); \
1954 } \
1955 }
1956
1957 if (pc != NULL) {
1958 cpuhit = 0;
1959 cpumiss = 0;
1960 pcmiss = 0;
1961 nfull = 0;
1962 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1963 if ((cc = pc->pc_cpus[i]) == NULL)
1964 continue;
1965 cpuhit += cc->cc_hits;
1966 cpumiss += cc->cc_misses;
1967 pcmiss += cc->cc_pcmisses;
1968 nfull += cc->cc_nfull;
1969 }
1970 pchit = cpumiss - pcmiss;
1971 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1972 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1973 (*pr)("\tcache layer full groups %u\n", nfull);
1974 if (print_cache) {
1975 (*pr)("\tfull cache groups:\n");
1976 for (pcg = pc->pc_fullgroups; pcg != NULL;
1977 pcg = pcg->pcg_next) {
1978 PR_GROUPLIST(pcg);
1979 }
1980 }
1981 }
1982 #undef PR_GROUPLIST
1983 }
1984
1985 static int
1986 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1987 {
1988 struct pool_item *pi;
1989 void *page;
1990 int n;
1991
1992 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1993 page = POOL_OBJ_TO_PAGE(pp, ph);
1994 if (page != ph->ph_page &&
1995 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1996 if (label != NULL)
1997 printf("%s: ", label);
1998 printf("pool(%p:%s): page inconsistency: page %p;"
1999 " at page head addr %p (p %p)\n", pp,
2000 pp->pr_wchan, ph->ph_page,
2001 ph, page);
2002 return 1;
2003 }
2004 }
2005
2006 if ((pp->pr_roflags & PR_USEBMAP) != 0)
2007 return 0;
2008
2009 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
2010 pi != NULL;
2011 pi = LIST_NEXT(pi,pi_list), n++) {
2012
2013 #ifdef POOL_CHECK_MAGIC
2014 if (pi->pi_magic != PI_MAGIC) {
2015 if (label != NULL)
2016 printf("%s: ", label);
2017 printf("pool(%s): free list modified: magic=%x;"
2018 " page %p; item ordinal %d; addr %p\n",
2019 pp->pr_wchan, pi->pi_magic, ph->ph_page,
2020 n, pi);
2021 panic("pool");
2022 }
2023 #endif
2024 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2025 continue;
2026 }
2027 page = POOL_OBJ_TO_PAGE(pp, pi);
2028 if (page == ph->ph_page)
2029 continue;
2030
2031 if (label != NULL)
2032 printf("%s: ", label);
2033 printf("pool(%p:%s): page inconsistency: page %p;"
2034 " item ordinal %d; addr %p (p %p)\n", pp,
2035 pp->pr_wchan, ph->ph_page,
2036 n, pi, page);
2037 return 1;
2038 }
2039 return 0;
2040 }
2041
2042
2043 int
2044 pool_chk(struct pool *pp, const char *label)
2045 {
2046 struct pool_item_header *ph;
2047 int r = 0;
2048
2049 mutex_enter(&pp->pr_lock);
2050 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2051 r = pool_chk_page(pp, label, ph);
2052 if (r) {
2053 goto out;
2054 }
2055 }
2056 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2057 r = pool_chk_page(pp, label, ph);
2058 if (r) {
2059 goto out;
2060 }
2061 }
2062 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2063 r = pool_chk_page(pp, label, ph);
2064 if (r) {
2065 goto out;
2066 }
2067 }
2068
2069 out:
2070 mutex_exit(&pp->pr_lock);
2071 return r;
2072 }
2073
2074 /*
2075 * pool_cache_init:
2076 *
2077 * Initialize a pool cache.
2078 */
2079 pool_cache_t
2080 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2081 const char *wchan, struct pool_allocator *palloc, int ipl,
2082 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2083 {
2084 pool_cache_t pc;
2085
2086 pc = pool_get(&cache_pool, PR_WAITOK);
2087 if (pc == NULL)
2088 return NULL;
2089
2090 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2091 palloc, ipl, ctor, dtor, arg);
2092
2093 return pc;
2094 }
2095
2096 /*
2097 * pool_cache_bootstrap:
2098 *
2099 * Kernel-private version of pool_cache_init(). The caller
2100 * provides initial storage.
2101 */
2102 void
2103 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2104 u_int align_offset, u_int flags, const char *wchan,
2105 struct pool_allocator *palloc, int ipl,
2106 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2107 void *arg)
2108 {
2109 CPU_INFO_ITERATOR cii;
2110 pool_cache_t pc1;
2111 struct cpu_info *ci;
2112 struct pool *pp;
2113 unsigned int ppflags = flags;
2114
2115 pp = &pc->pc_pool;
2116 if (palloc == NULL && ipl == IPL_NONE) {
2117 if (size > PAGE_SIZE) {
2118 int bigidx = pool_bigidx(size);
2119
2120 palloc = &pool_allocator_big[bigidx];
2121 flags |= PR_NOALIGN;
2122 } else
2123 palloc = &pool_allocator_nointr;
2124 }
2125
2126 if (ctor == NULL) {
2127 ctor = NO_CTOR;
2128 }
2129 if (dtor == NULL) {
2130 dtor = NO_DTOR;
2131 } else {
2132 /*
2133 * If we have a destructor, then the pool layer does not
2134 * need to worry about PR_PSERIALIZE.
2135 */
2136 ppflags &= ~PR_PSERIALIZE;
2137 }
2138
2139 pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);
2140
2141 pc->pc_fullgroups = NULL;
2142 pc->pc_partgroups = NULL;
2143 pc->pc_ctor = ctor;
2144 pc->pc_dtor = dtor;
2145 pc->pc_arg = arg;
2146 pc->pc_refcnt = 0;
2147 pc->pc_roflags = flags;
2148 pc->pc_freecheck = NULL;
2149
2150 if ((flags & PR_LARGECACHE) != 0) {
2151 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2152 pc->pc_pcgpool = &pcg_large_pool;
2153 pc->pc_pcgcache = &pcg_large_cache;
2154 } else {
2155 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2156 pc->pc_pcgpool = &pcg_normal_pool;
2157 pc->pc_pcgcache = &pcg_normal_cache;
2158 }
2159
2160 /* Allocate per-CPU caches. */
2161 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2162 pc->pc_ncpu = 0;
2163 if (ncpu < 2) {
2164 /* XXX For sparc: boot CPU is not attached yet. */
2165 pool_cache_cpu_init1(curcpu(), pc);
2166 } else {
2167 for (CPU_INFO_FOREACH(cii, ci)) {
2168 pool_cache_cpu_init1(ci, pc);
2169 }
2170 }
2171
2172 /* Add to list of all pools. */
2173 if (__predict_true(!cold))
2174 mutex_enter(&pool_head_lock);
2175 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2176 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2177 break;
2178 }
2179 if (pc1 == NULL)
2180 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2181 else
2182 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2183 if (__predict_true(!cold))
2184 mutex_exit(&pool_head_lock);
2185
2186 membar_sync();
2187 pp->pr_cache = pc;
2188 }
2189
2190 /*
2191 * pool_cache_destroy:
2192 *
2193 * Destroy a pool cache.
2194 */
2195 void
2196 pool_cache_destroy(pool_cache_t pc)
2197 {
2198
2199 pool_cache_bootstrap_destroy(pc);
2200 pool_put(&cache_pool, pc);
2201 }
2202
2203 /*
2204 * pool_cache_bootstrap_destroy:
2205 *
2206 * Destroy a pool cache.
2207 */
2208 void
2209 pool_cache_bootstrap_destroy(pool_cache_t pc)
2210 {
2211 struct pool *pp = &pc->pc_pool;
2212 u_int i;
2213
2214 /* Remove it from the global list. */
2215 mutex_enter(&pool_head_lock);
2216 while (pc->pc_refcnt != 0)
2217 cv_wait(&pool_busy, &pool_head_lock);
2218 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2219 mutex_exit(&pool_head_lock);
2220
2221 /* First, invalidate the entire cache. */
2222 pool_cache_invalidate(pc);
2223
2224 /* Disassociate it from the pool. */
2225 mutex_enter(&pp->pr_lock);
2226 pp->pr_cache = NULL;
2227 mutex_exit(&pp->pr_lock);
2228
2229 /* Destroy per-CPU data */
2230 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2231 pool_cache_invalidate_cpu(pc, i);
2232
2233 /* Finally, destroy it. */
2234 pool_destroy(pp);
2235 }
2236
2237 /*
2238 * pool_cache_cpu_init1:
2239 *
2240 * Called for each pool_cache whenever a new CPU is attached.
2241 */
2242 static void
2243 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2244 {
2245 pool_cache_cpu_t *cc;
2246 int index;
2247
2248 index = ci->ci_index;
2249
2250 KASSERT(index < __arraycount(pc->pc_cpus));
2251
2252 if ((cc = pc->pc_cpus[index]) != NULL) {
2253 return;
2254 }
2255
2256 /*
2257 * The first CPU is 'free'. This needs to be the case for
2258 * bootstrap - we may not be able to allocate yet.
2259 */
2260 if (pc->pc_ncpu == 0) {
2261 cc = &pc->pc_cpu0;
2262 pc->pc_ncpu = 1;
2263 } else {
2264 pc->pc_ncpu++;
2265 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2266 }
2267
2268 cc->cc_current = __UNCONST(&pcg_dummy);
2269 cc->cc_previous = __UNCONST(&pcg_dummy);
2270 cc->cc_pcgcache = pc->pc_pcgcache;
2271 cc->cc_hits = 0;
2272 cc->cc_misses = 0;
2273 cc->cc_pcmisses = 0;
2274 cc->cc_contended = 0;
2275 cc->cc_nfull = 0;
2276 cc->cc_npart = 0;
2277
2278 pc->pc_cpus[index] = cc;
2279 }
2280
2281 /*
2282 * pool_cache_cpu_init:
2283 *
2284 * Called whenever a new CPU is attached.
2285 */
2286 void
2287 pool_cache_cpu_init(struct cpu_info *ci)
2288 {
2289 pool_cache_t pc;
2290
2291 mutex_enter(&pool_head_lock);
2292 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2293 pc->pc_refcnt++;
2294 mutex_exit(&pool_head_lock);
2295
2296 pool_cache_cpu_init1(ci, pc);
2297
2298 mutex_enter(&pool_head_lock);
2299 pc->pc_refcnt--;
2300 cv_broadcast(&pool_busy);
2301 }
2302 mutex_exit(&pool_head_lock);
2303 }
2304
2305 /*
2306 * pool_cache_reclaim:
2307 *
2308 * Reclaim memory from a pool cache.
2309 */
2310 bool
2311 pool_cache_reclaim(pool_cache_t pc)
2312 {
2313
2314 return pool_reclaim(&pc->pc_pool);
2315 }
2316
2317 static inline void
2318 pool_cache_pre_destruct(pool_cache_t pc)
2319 {
2320 /*
2321 * Perform a passive serialization barrier before destructing
2322 * a batch of one or more objects.
2323 */
2324 if (__predict_false(pc_has_pser(pc))) {
2325 pool_barrier();
2326 }
2327 }
2328
2329 static void
2330 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2331 {
2332 (*pc->pc_dtor)(pc->pc_arg, object);
2333 pool_put(&pc->pc_pool, object);
2334 }
2335
2336 /*
2337 * pool_cache_destruct_object:
2338 *
2339 * Force destruction of an object and its release back into
2340 * the pool.
2341 */
2342 void
2343 pool_cache_destruct_object(pool_cache_t pc, void *object)
2344 {
2345
2346 FREECHECK_IN(&pc->pc_freecheck, object);
2347
2348 pool_cache_pre_destruct(pc);
2349 pool_cache_destruct_object1(pc, object);
2350 }
2351
2352 /*
2353 * pool_cache_invalidate_groups:
2354 *
2355 * Invalidate a chain of groups and destruct all objects. Return the
2356 * number of groups that were invalidated.
2357 */
2358 static int
2359 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2360 {
2361 void *object;
2362 pcg_t *next;
2363 int i, n;
2364
2365 if (pcg == NULL) {
2366 return 0;
2367 }
2368
2369 pool_cache_pre_destruct(pc);
2370
2371 for (n = 0; pcg != NULL; pcg = next, n++) {
2372 next = pcg->pcg_next;
2373
2374 for (i = 0; i < pcg->pcg_avail; i++) {
2375 object = pcg->pcg_objects[i].pcgo_va;
2376 pool_cache_destruct_object1(pc, object);
2377 }
2378
2379 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2380 pool_put(&pcg_large_pool, pcg);
2381 } else {
2382 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2383 pool_put(&pcg_normal_pool, pcg);
2384 }
2385 }
2386 return n;
2387 }
2388
2389 /*
2390 * pool_cache_invalidate:
2391 *
2392 * Invalidate a pool cache (destruct and release all of the
2393 * cached objects). Does not reclaim objects from the pool.
2394 *
2395 * Note: For pool caches that provide constructed objects, there
2396 * is an assumption that another level of synchronization is occurring
2397 * between the input to the constructor and the cache invalidation.
2398 *
2399 * Invalidation is a costly process and should not be called from
2400 * interrupt context.
2401 */
2402 void
2403 pool_cache_invalidate(pool_cache_t pc)
2404 {
2405 uint64_t where;
2406 pcg_t *pcg;
2407 int n, s;
2408
2409 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2410
2411 if (ncpu < 2 || !mp_online) {
2412 /*
2413 * We might be called early enough in the boot process
2414 * for the CPU data structures to not be fully initialized.
2415 * In this case, transfer the content of the local CPU's
2416 * cache back into global cache as only this CPU is currently
2417 * running.
2418 */
2419 pool_cache_transfer(pc);
2420 } else {
2421 /*
2422 * Signal all CPUs that they must transfer their local
2423 * cache back to the global pool then wait for the xcall to
2424 * complete.
2425 */
2426 where = xc_broadcast(0,
2427 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2428 xc_wait(where);
2429 }
2430
2431 /* Now dequeue and invalidate everything. */
2432 pcg = pool_pcg_trunc(&pcg_normal_cache);
2433 (void)pool_cache_invalidate_groups(pc, pcg);
2434
2435 pcg = pool_pcg_trunc(&pcg_large_cache);
2436 (void)pool_cache_invalidate_groups(pc, pcg);
2437
2438 pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2439 n = pool_cache_invalidate_groups(pc, pcg);
2440 s = splvm();
2441 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2442 splx(s);
2443
2444 pcg = pool_pcg_trunc(&pc->pc_partgroups);
2445 n = pool_cache_invalidate_groups(pc, pcg);
2446 s = splvm();
2447 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2448 splx(s);
2449 }
2450
2451 /*
2452 * pool_cache_invalidate_cpu:
2453 *
2454 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2455 * identified by its associated index.
2456 * It is caller's responsibility to ensure that no operation is
2457 * taking place on this pool cache while doing this invalidation.
2458 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2459 * pool cached objects from a CPU different from the one currently running
2460 * may result in an undefined behaviour.
2461 */
2462 static void
2463 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2464 {
2465 pool_cache_cpu_t *cc;
2466 pcg_t *pcg;
2467
2468 if ((cc = pc->pc_cpus[index]) == NULL)
2469 return;
2470
2471 if ((pcg = cc->cc_current) != &pcg_dummy) {
2472 pcg->pcg_next = NULL;
2473 pool_cache_invalidate_groups(pc, pcg);
2474 }
2475 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2476 pcg->pcg_next = NULL;
2477 pool_cache_invalidate_groups(pc, pcg);
2478 }
2479 if (cc != &pc->pc_cpu0)
2480 pool_put(&cache_cpu_pool, cc);
2481
2482 }
2483
2484 void
2485 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2486 {
2487
2488 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2489 }
2490
2491 void
2492 pool_cache_setlowat(pool_cache_t pc, int n)
2493 {
2494
2495 pool_setlowat(&pc->pc_pool, n);
2496 }
2497
2498 void
2499 pool_cache_sethiwat(pool_cache_t pc, int n)
2500 {
2501
2502 pool_sethiwat(&pc->pc_pool, n);
2503 }
2504
2505 void
2506 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2507 {
2508
2509 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2510 }
2511
2512 void
2513 pool_cache_prime(pool_cache_t pc, int n)
2514 {
2515
2516 pool_prime(&pc->pc_pool, n);
2517 }
2518
2519 unsigned int
2520 pool_cache_nget(pool_cache_t pc)
2521 {
2522
2523 return pool_nget(&pc->pc_pool);
2524 }
2525
2526 unsigned int
2527 pool_cache_nput(pool_cache_t pc)
2528 {
2529
2530 return pool_nput(&pc->pc_pool);
2531 }
2532
2533 /*
2534 * pool_pcg_get:
2535 *
2536 * Get a cache group from the specified list. Return true if
2537 * contention was encountered. Must be called at IPL_VM because
2538 * of spin wait vs. kernel_lock.
2539 */
2540 static int
2541 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2542 {
2543 int count = SPINLOCK_BACKOFF_MIN;
2544 pcg_t *o, *n;
2545
2546 for (o = atomic_load_relaxed(head);; o = n) {
2547 if (__predict_false(o == &pcg_dummy)) {
2548 /* Wait for concurrent get to complete. */
2549 SPINLOCK_BACKOFF(count);
2550 n = atomic_load_relaxed(head);
2551 continue;
2552 }
2553 if (__predict_false(o == NULL)) {
2554 break;
2555 }
2556 /* Lock out concurrent get/put. */
2557 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2558 if (o == n) {
2559 /* Fetch pointer to next item and then unlock. */
2560 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2561 membar_datadep_consumer(); /* alpha */
2562 #endif
2563 n = atomic_load_relaxed(&o->pcg_next);
2564 atomic_store_release(head, n);
2565 break;
2566 }
2567 }
2568 *pcgp = o;
2569 return count != SPINLOCK_BACKOFF_MIN;
2570 }
2571
2572 /*
2573 * pool_pcg_trunc:
2574 *
2575 * Chop out entire list of pool cache groups.
2576 */
2577 static pcg_t *
2578 pool_pcg_trunc(pcg_t *volatile *head)
2579 {
2580 int count = SPINLOCK_BACKOFF_MIN, s;
2581 pcg_t *o, *n;
2582
2583 s = splvm();
2584 for (o = atomic_load_relaxed(head);; o = n) {
2585 if (__predict_false(o == &pcg_dummy)) {
2586 /* Wait for concurrent get to complete. */
2587 SPINLOCK_BACKOFF(count);
2588 n = atomic_load_relaxed(head);
2589 continue;
2590 }
2591 n = atomic_cas_ptr(head, o, NULL);
2592 if (o == n) {
2593 splx(s);
2594 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2595 membar_datadep_consumer(); /* alpha */
2596 #endif
2597 return o;
2598 }
2599 }
2600 }
2601
2602 /*
2603 * pool_pcg_put:
2604 *
2605 * Put a pool cache group to the specified list. Return true if
2606 * contention was encountered. Must be called at IPL_VM because of
2607 * spin wait vs. kernel_lock.
2608 */
2609 static int
2610 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2611 {
2612 int count = SPINLOCK_BACKOFF_MIN;
2613 pcg_t *o, *n;
2614
2615 for (o = atomic_load_relaxed(head);; o = n) {
2616 if (__predict_false(o == &pcg_dummy)) {
2617 /* Wait for concurrent get to complete. */
2618 SPINLOCK_BACKOFF(count);
2619 n = atomic_load_relaxed(head);
2620 continue;
2621 }
2622 pcg->pcg_next = o;
2623 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2624 membar_exit();
2625 #endif
2626 n = atomic_cas_ptr(head, o, pcg);
2627 if (o == n) {
2628 return count != SPINLOCK_BACKOFF_MIN;
2629 }
2630 }
2631 }
2632
2633 static bool __noinline
2634 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2635 void **objectp, paddr_t *pap, int flags)
2636 {
2637 pcg_t *pcg, *cur;
2638 void *object;
2639
2640 KASSERT(cc->cc_current->pcg_avail == 0);
2641 KASSERT(cc->cc_previous->pcg_avail == 0);
2642
2643 cc->cc_misses++;
2644
2645 /*
2646 * If there's a full group, release our empty group back to the
2647 * cache. Install the full group as cc_current and return.
2648 */
2649 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2650 if (__predict_true(pcg != NULL)) {
2651 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2652 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2653 KASSERT(cur->pcg_avail == 0);
2654 (void)pool_pcg_put(cc->cc_pcgcache, cur);
2655 }
2656 cc->cc_nfull--;
2657 cc->cc_current = pcg;
2658 return true;
2659 }
2660
2661 /*
2662 * Nothing available locally or in cache. Take the slow
2663 * path: fetch a new object from the pool and construct
2664 * it.
2665 */
2666 cc->cc_pcmisses++;
2667 splx(s);
2668
2669 object = pool_get(&pc->pc_pool, flags);
2670 *objectp = object;
2671 if (__predict_false(object == NULL)) {
2672 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2673 return false;
2674 }
2675
2676 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2677 pool_put(&pc->pc_pool, object);
2678 *objectp = NULL;
2679 return false;
2680 }
2681
2682 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2683
2684 if (pap != NULL) {
2685 #ifdef POOL_VTOPHYS
2686 *pap = POOL_VTOPHYS(object);
2687 #else
2688 *pap = POOL_PADDR_INVALID;
2689 #endif
2690 }
2691
2692 FREECHECK_OUT(&pc->pc_freecheck, object);
2693 return false;
2694 }
2695
2696 /*
2697 * pool_cache_get{,_paddr}:
2698 *
2699 * Get an object from a pool cache (optionally returning
2700 * the physical address of the object).
2701 */
2702 void *
2703 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2704 {
2705 pool_cache_cpu_t *cc;
2706 pcg_t *pcg;
2707 void *object;
2708 int s;
2709
2710 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2711 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2712 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2713 "%s: [%s] is IPL_NONE, but called from interrupt context",
2714 __func__, pc->pc_pool.pr_wchan);
2715
2716 if (flags & PR_WAITOK) {
2717 ASSERT_SLEEPABLE();
2718 }
2719
2720 if (flags & PR_NOWAIT) {
2721 if (fault_inject())
2722 return NULL;
2723 }
2724
2725 /* Lock out interrupts and disable preemption. */
2726 s = splvm();
2727 while (/* CONSTCOND */ true) {
2728 /* Try and allocate an object from the current group. */
2729 cc = pc->pc_cpus[curcpu()->ci_index];
2730 pcg = cc->cc_current;
2731 if (__predict_true(pcg->pcg_avail > 0)) {
2732 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2733 if (__predict_false(pap != NULL))
2734 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2735 #if defined(DIAGNOSTIC)
2736 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2737 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2738 KASSERT(object != NULL);
2739 #endif
2740 cc->cc_hits++;
2741 splx(s);
2742 FREECHECK_OUT(&pc->pc_freecheck, object);
2743 pool_redzone_fill(&pc->pc_pool, object);
2744 pool_cache_get_kmsan(pc, object);
2745 return object;
2746 }
2747
2748 /*
2749 * That failed. If the previous group isn't empty, swap
2750 * it with the current group and allocate from there.
2751 */
2752 pcg = cc->cc_previous;
2753 if (__predict_true(pcg->pcg_avail > 0)) {
2754 cc->cc_previous = cc->cc_current;
2755 cc->cc_current = pcg;
2756 continue;
2757 }
2758
2759 /*
2760 * Can't allocate from either group: try the slow path.
2761 * If get_slow() allocated an object for us, or if
2762 * no more objects are available, it will return false.
2763 * Otherwise, we need to retry.
2764 */
2765 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2766 if (object != NULL) {
2767 kmsan_orig(object, pc->pc_pool.pr_size,
2768 KMSAN_TYPE_POOL, __RET_ADDR);
2769 }
2770 break;
2771 }
2772 }
2773
2774 /*
2775 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2776 * pool_cache_get can fail even in the PR_WAITOK case, if the
2777 * constructor fails.
2778 */
2779 return object;
2780 }
2781
2782 static bool __noinline
2783 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2784 {
2785 pcg_t *pcg, *cur;
2786
2787 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2788 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2789
2790 cc->cc_misses++;
2791
2792 /*
2793 * Try to get an empty group from the cache. If there are no empty
2794 * groups in the cache then allocate one.
2795 */
2796 (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2797 if (__predict_false(pcg == NULL)) {
2798 if (__predict_true(!pool_cache_disable)) {
2799 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2800 }
2801 if (__predict_true(pcg != NULL)) {
2802 pcg->pcg_avail = 0;
2803 pcg->pcg_size = pc->pc_pcgsize;
2804 }
2805 }
2806
2807 /*
2808 * If there's a empty group, release our full group back to the
2809 * cache. Install the empty group to the local CPU and return.
2810 */
2811 if (pcg != NULL) {
2812 KASSERT(pcg->pcg_avail == 0);
2813 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2814 cc->cc_previous = pcg;
2815 } else {
2816 cur = cc->cc_current;
2817 if (__predict_true(cur != &pcg_dummy)) {
2818 KASSERT(cur->pcg_avail == cur->pcg_size);
2819 cc->cc_contended +=
2820 pool_pcg_put(&pc->pc_fullgroups, cur);
2821 cc->cc_nfull++;
2822 }
2823 cc->cc_current = pcg;
2824 }
2825 return true;
2826 }
2827
2828 /*
2829 * Nothing available locally or in cache, and we didn't
2830 * allocate an empty group. Take the slow path and destroy
2831 * the object here and now.
2832 */
2833 cc->cc_pcmisses++;
2834 splx(s);
2835 pool_cache_destruct_object(pc, object);
2836
2837 return false;
2838 }
2839
2840 /*
2841 * pool_cache_put{,_paddr}:
2842 *
2843 * Put an object back to the pool cache (optionally caching the
2844 * physical address of the object).
2845 */
2846 void
2847 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2848 {
2849 pool_cache_cpu_t *cc;
2850 pcg_t *pcg;
2851 int s;
2852
2853 KASSERT(object != NULL);
2854 pool_cache_put_kmsan(pc, object);
2855 pool_cache_redzone_check(pc, object);
2856 FREECHECK_IN(&pc->pc_freecheck, object);
2857
2858 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2859 pc_phinpage_check(pc, object);
2860 }
2861
2862 if (pool_cache_put_nocache(pc, object)) {
2863 return;
2864 }
2865
2866 /* Lock out interrupts and disable preemption. */
2867 s = splvm();
2868 while (/* CONSTCOND */ true) {
2869 /* If the current group isn't full, release it there. */
2870 cc = pc->pc_cpus[curcpu()->ci_index];
2871 pcg = cc->cc_current;
2872 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2873 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2874 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2875 pcg->pcg_avail++;
2876 cc->cc_hits++;
2877 splx(s);
2878 return;
2879 }
2880
2881 /*
2882 * That failed. If the previous group isn't full, swap
2883 * it with the current group and try again.
2884 */
2885 pcg = cc->cc_previous;
2886 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2887 cc->cc_previous = cc->cc_current;
2888 cc->cc_current = pcg;
2889 continue;
2890 }
2891
2892 /*
2893 * Can't free to either group: try the slow path.
2894 * If put_slow() releases the object for us, it
2895 * will return false. Otherwise we need to retry.
2896 */
2897 if (!pool_cache_put_slow(pc, cc, s, object))
2898 break;
2899 }
2900 }
2901
2902 /*
2903 * pool_cache_transfer:
2904 *
2905 * Transfer objects from the per-CPU cache to the global cache.
2906 * Run within a cross-call thread.
2907 */
2908 static void
2909 pool_cache_transfer(pool_cache_t pc)
2910 {
2911 pool_cache_cpu_t *cc;
2912 pcg_t *prev, *cur;
2913 int s;
2914
2915 s = splvm();
2916 cc = pc->pc_cpus[curcpu()->ci_index];
2917 cur = cc->cc_current;
2918 cc->cc_current = __UNCONST(&pcg_dummy);
2919 prev = cc->cc_previous;
2920 cc->cc_previous = __UNCONST(&pcg_dummy);
2921 if (cur != &pcg_dummy) {
2922 if (cur->pcg_avail == cur->pcg_size) {
2923 (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2924 cc->cc_nfull++;
2925 } else if (cur->pcg_avail == 0) {
2926 (void)pool_pcg_put(pc->pc_pcgcache, cur);
2927 } else {
2928 (void)pool_pcg_put(&pc->pc_partgroups, cur);
2929 cc->cc_npart++;
2930 }
2931 }
2932 if (prev != &pcg_dummy) {
2933 if (prev->pcg_avail == prev->pcg_size) {
2934 (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2935 cc->cc_nfull++;
2936 } else if (prev->pcg_avail == 0) {
2937 (void)pool_pcg_put(pc->pc_pcgcache, prev);
2938 } else {
2939 (void)pool_pcg_put(&pc->pc_partgroups, prev);
2940 cc->cc_npart++;
2941 }
2942 }
2943 splx(s);
2944 }
2945
2946 static int
2947 pool_bigidx(size_t size)
2948 {
2949 int i;
2950
2951 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2952 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2953 return i;
2954 }
2955 panic("pool item size %zu too large, use a custom allocator", size);
2956 }
2957
2958 static void *
2959 pool_allocator_alloc(struct pool *pp, int flags)
2960 {
2961 struct pool_allocator *pa = pp->pr_alloc;
2962 void *res;
2963
2964 res = (*pa->pa_alloc)(pp, flags);
2965 if (res == NULL && (flags & PR_WAITOK) == 0) {
2966 /*
2967 * We only run the drain hook here if PR_NOWAIT.
2968 * In other cases, the hook will be run in
2969 * pool_reclaim().
2970 */
2971 if (pp->pr_drain_hook != NULL) {
2972 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2973 res = (*pa->pa_alloc)(pp, flags);
2974 }
2975 }
2976 return res;
2977 }
2978
2979 static void
2980 pool_allocator_free(struct pool *pp, void *v)
2981 {
2982 struct pool_allocator *pa = pp->pr_alloc;
2983
2984 if (pp->pr_redzone) {
2985 KASSERT(!pp_has_pser(pp));
2986 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2987 } else if (__predict_false(pp_has_pser(pp))) {
2988 /*
2989 * Perform a passive serialization barrier before freeing
2990 * the pool page back to the system.
2991 */
2992 pool_barrier();
2993 }
2994 (*pa->pa_free)(pp, v);
2995 }
2996
2997 void *
2998 pool_page_alloc(struct pool *pp, int flags)
2999 {
3000 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3001 vmem_addr_t va;
3002 int ret;
3003
3004 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
3005 vflags | VM_INSTANTFIT, &va);
3006
3007 return ret ? NULL : (void *)va;
3008 }
3009
3010 void
3011 pool_page_free(struct pool *pp, void *v)
3012 {
3013
3014 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
3015 }
3016
3017 static void *
3018 pool_page_alloc_meta(struct pool *pp, int flags)
3019 {
3020 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3021 vmem_addr_t va;
3022 int ret;
3023
3024 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
3025 vflags | VM_INSTANTFIT, &va);
3026
3027 return ret ? NULL : (void *)va;
3028 }
3029
3030 static void
3031 pool_page_free_meta(struct pool *pp, void *v)
3032 {
3033
3034 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
3035 }
3036
3037 #ifdef KMSAN
3038 static inline void
3039 pool_get_kmsan(struct pool *pp, void *p)
3040 {
3041 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
3042 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
3043 }
3044
3045 static inline void
3046 pool_put_kmsan(struct pool *pp, void *p)
3047 {
3048 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
3049 }
3050
3051 static inline void
3052 pool_cache_get_kmsan(pool_cache_t pc, void *p)
3053 {
3054 if (__predict_false(pc_has_ctor(pc))) {
3055 return;
3056 }
3057 pool_get_kmsan(&pc->pc_pool, p);
3058 }
3059
3060 static inline void
3061 pool_cache_put_kmsan(pool_cache_t pc, void *p)
3062 {
3063 pool_put_kmsan(&pc->pc_pool, p);
3064 }
3065 #endif
3066
3067 #ifdef POOL_QUARANTINE
3068 static void
3069 pool_quarantine_init(struct pool *pp)
3070 {
3071 pp->pr_quar.rotor = 0;
3072 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3073 }
3074
3075 static void
3076 pool_quarantine_flush(struct pool *pp)
3077 {
3078 pool_quar_t *quar = &pp->pr_quar;
3079 struct pool_pagelist pq;
3080 size_t i;
3081
3082 LIST_INIT(&pq);
3083
3084 mutex_enter(&pp->pr_lock);
3085 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3086 if (quar->list[i] == 0)
3087 continue;
3088 pool_do_put(pp, (void *)quar->list[i], &pq);
3089 }
3090 mutex_exit(&pp->pr_lock);
3091
3092 pr_pagelist_free(pp, &pq);
3093 }
3094
3095 static bool
3096 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3097 {
3098 pool_quar_t *quar = &pp->pr_quar;
3099 uintptr_t old;
3100
3101 if (pp->pr_roflags & PR_NOTOUCH) {
3102 return false;
3103 }
3104
3105 pool_redzone_check(pp, v);
3106
3107 old = quar->list[quar->rotor];
3108 quar->list[quar->rotor] = (uintptr_t)v;
3109 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3110 if (old != 0) {
3111 pool_do_put(pp, (void *)old, pq);
3112 }
3113
3114 return true;
3115 }
3116 #endif
3117
3118 #ifdef POOL_NOCACHE
3119 static bool
3120 pool_cache_put_nocache(pool_cache_t pc, void *p)
3121 {
3122 pool_cache_destruct_object(pc, p);
3123 return true;
3124 }
3125 #endif
3126
3127 #ifdef POOL_REDZONE
3128 #if defined(_LP64)
3129 # define PRIME 0x9e37fffffffc0000UL
3130 #else /* defined(_LP64) */
3131 # define PRIME 0x9e3779b1
3132 #endif /* defined(_LP64) */
3133 #define STATIC_BYTE 0xFE
3134 CTASSERT(POOL_REDZONE_SIZE > 1);
3135
3136 #ifndef KASAN
3137 static inline uint8_t
3138 pool_pattern_generate(const void *p)
3139 {
3140 return (uint8_t)(((uintptr_t)p) * PRIME
3141 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3142 }
3143 #endif
3144
3145 static void
3146 pool_redzone_init(struct pool *pp, size_t requested_size)
3147 {
3148 size_t redzsz;
3149 size_t nsz;
3150
3151 #ifdef KASAN
3152 redzsz = requested_size;
3153 kasan_add_redzone(&redzsz);
3154 redzsz -= requested_size;
3155 #else
3156 redzsz = POOL_REDZONE_SIZE;
3157 #endif
3158
3159 if (pp->pr_roflags & PR_NOTOUCH) {
3160 pp->pr_redzone = false;
3161 return;
3162 }
3163
3164 /*
3165 * We may have extended the requested size earlier; check if
3166 * there's naturally space in the padding for a red zone.
3167 */
3168 if (pp->pr_size - requested_size >= redzsz) {
3169 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3170 pp->pr_redzone = true;
3171 return;
3172 }
3173
3174 /*
3175 * No space in the natural padding; check if we can extend a
3176 * bit the size of the pool.
3177 *
3178 * Avoid using redzone for allocations half of a page or larger.
3179 * For pagesize items, we'd waste a whole new page (could be
3180 * unmapped?), and for half pagesize items, approximately half
3181 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3182 */
3183 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3184 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3185 /* Ok, we can */
3186 pp->pr_size = nsz;
3187 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3188 pp->pr_redzone = true;
3189 } else {
3190 /* No space for a red zone... snif :'( */
3191 pp->pr_redzone = false;
3192 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3193 }
3194 }
3195
3196 static void
3197 pool_redzone_fill(struct pool *pp, void *p)
3198 {
3199 if (!pp->pr_redzone)
3200 return;
3201 KASSERT(!pp_has_pser(pp));
3202 #ifdef KASAN
3203 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3204 KASAN_POOL_REDZONE);
3205 #else
3206 uint8_t *cp, pat;
3207 const uint8_t *ep;
3208
3209 cp = (uint8_t *)p + pp->pr_reqsize;
3210 ep = cp + POOL_REDZONE_SIZE;
3211
3212 /*
3213 * We really don't want the first byte of the red zone to be '\0';
3214 * an off-by-one in a string may not be properly detected.
3215 */
3216 pat = pool_pattern_generate(cp);
3217 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3218 cp++;
3219
3220 while (cp < ep) {
3221 *cp = pool_pattern_generate(cp);
3222 cp++;
3223 }
3224 #endif
3225 }
3226
3227 static void
3228 pool_redzone_check(struct pool *pp, void *p)
3229 {
3230 if (!pp->pr_redzone)
3231 return;
3232 KASSERT(!pp_has_pser(pp));
3233 #ifdef KASAN
3234 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3235 #else
3236 uint8_t *cp, pat, expected;
3237 const uint8_t *ep;
3238
3239 cp = (uint8_t *)p + pp->pr_reqsize;
3240 ep = cp + POOL_REDZONE_SIZE;
3241
3242 pat = pool_pattern_generate(cp);
3243 expected = (pat == '\0') ? STATIC_BYTE: pat;
3244 if (__predict_false(*cp != expected)) {
3245 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3246 pp->pr_wchan, *cp, expected);
3247 }
3248 cp++;
3249
3250 while (cp < ep) {
3251 expected = pool_pattern_generate(cp);
3252 if (__predict_false(*cp != expected)) {
3253 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3254 pp->pr_wchan, *cp, expected);
3255 }
3256 cp++;
3257 }
3258 #endif
3259 }
3260
3261 static void
3262 pool_cache_redzone_check(pool_cache_t pc, void *p)
3263 {
3264 #ifdef KASAN
3265 /*
3266 * If there is a ctor/dtor, or if the cache objects use
3267 * passive serialization, leave the data as valid.
3268 */
3269 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
3270 pc_has_pser(pc))) {
3271 return;
3272 }
3273 #endif
3274 pool_redzone_check(&pc->pc_pool, p);
3275 }
3276
3277 #endif /* POOL_REDZONE */
3278
3279 #if defined(DDB)
3280 static bool
3281 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3282 {
3283
3284 return (uintptr_t)ph->ph_page <= addr &&
3285 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3286 }
3287
3288 static bool
3289 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3290 {
3291
3292 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3293 }
3294
3295 static bool
3296 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3297 {
3298 int i;
3299
3300 if (pcg == NULL) {
3301 return false;
3302 }
3303 for (i = 0; i < pcg->pcg_avail; i++) {
3304 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3305 return true;
3306 }
3307 }
3308 return false;
3309 }
3310
3311 static bool
3312 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3313 {
3314
3315 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3316 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3317 pool_item_bitmap_t *bitmap =
3318 ph->ph_bitmap + (idx / BITMAP_SIZE);
3319 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3320
3321 return (*bitmap & mask) == 0;
3322 } else {
3323 struct pool_item *pi;
3324
3325 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3326 if (pool_in_item(pp, pi, addr)) {
3327 return false;
3328 }
3329 }
3330 return true;
3331 }
3332 }
3333
3334 void
3335 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3336 {
3337 struct pool *pp;
3338
3339 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3340 struct pool_item_header *ph;
3341 uintptr_t item;
3342 bool allocated = true;
3343 bool incache = false;
3344 bool incpucache = false;
3345 char cpucachestr[32];
3346
3347 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3348 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3349 if (pool_in_page(pp, ph, addr)) {
3350 goto found;
3351 }
3352 }
3353 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3354 if (pool_in_page(pp, ph, addr)) {
3355 allocated =
3356 pool_allocated(pp, ph, addr);
3357 goto found;
3358 }
3359 }
3360 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3361 if (pool_in_page(pp, ph, addr)) {
3362 allocated = false;
3363 goto found;
3364 }
3365 }
3366 continue;
3367 } else {
3368 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3369 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3370 continue;
3371 }
3372 allocated = pool_allocated(pp, ph, addr);
3373 }
3374 found:
3375 if (allocated && pp->pr_cache) {
3376 pool_cache_t pc = pp->pr_cache;
3377 struct pool_cache_group *pcg;
3378 int i;
3379
3380 for (pcg = pc->pc_fullgroups; pcg != NULL;
3381 pcg = pcg->pcg_next) {
3382 if (pool_in_cg(pp, pcg, addr)) {
3383 incache = true;
3384 goto print;
3385 }
3386 }
3387 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3388 pool_cache_cpu_t *cc;
3389
3390 if ((cc = pc->pc_cpus[i]) == NULL) {
3391 continue;
3392 }
3393 if (pool_in_cg(pp, cc->cc_current, addr) ||
3394 pool_in_cg(pp, cc->cc_previous, addr)) {
3395 struct cpu_info *ci =
3396 cpu_lookup(i);
3397
3398 incpucache = true;
3399 snprintf(cpucachestr,
3400 sizeof(cpucachestr),
3401 "cached by CPU %u",
3402 ci->ci_index);
3403 goto print;
3404 }
3405 }
3406 }
3407 print:
3408 item = (uintptr_t)ph->ph_page + ph->ph_off;
3409 item = item + rounddown(addr - item, pp->pr_size);
3410 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3411 (void *)addr, item, (size_t)(addr - item),
3412 pp->pr_wchan,
3413 incpucache ? cpucachestr :
3414 incache ? "cached" : allocated ? "allocated" : "free");
3415 }
3416 }
3417 #endif /* defined(DDB) */
3418
3419 static int
3420 pool_sysctl(SYSCTLFN_ARGS)
3421 {
3422 struct pool_sysctl data;
3423 struct pool *pp;
3424 struct pool_cache *pc;
3425 pool_cache_cpu_t *cc;
3426 int error;
3427 size_t i, written;
3428
3429 if (oldp == NULL) {
3430 *oldlenp = 0;
3431 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3432 *oldlenp += sizeof(data);
3433 return 0;
3434 }
3435
3436 memset(&data, 0, sizeof(data));
3437 error = 0;
3438 written = 0;
3439 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3440 if (written + sizeof(data) > *oldlenp)
3441 break;
3442 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3443 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3444 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3445 #define COPY(field) data.field = pp->field
3446 COPY(pr_size);
3447
3448 COPY(pr_itemsperpage);
3449 COPY(pr_nitems);
3450 COPY(pr_nout);
3451 COPY(pr_hardlimit);
3452 COPY(pr_npages);
3453 COPY(pr_minpages);
3454 COPY(pr_maxpages);
3455
3456 COPY(pr_nget);
3457 COPY(pr_nfail);
3458 COPY(pr_nput);
3459 COPY(pr_npagealloc);
3460 COPY(pr_npagefree);
3461 COPY(pr_hiwat);
3462 COPY(pr_nidle);
3463 #undef COPY
3464
3465 data.pr_cache_nmiss_pcpu = 0;
3466 data.pr_cache_nhit_pcpu = 0;
3467 data.pr_cache_nmiss_global = 0;
3468 data.pr_cache_nempty = 0;
3469 data.pr_cache_ncontended = 0;
3470 data.pr_cache_npartial = 0;
3471 if (pp->pr_cache) {
3472 uint32_t nfull = 0;
3473 pc = pp->pr_cache;
3474 data.pr_cache_meta_size = pc->pc_pcgsize;
3475 for (i = 0; i < pc->pc_ncpu; ++i) {
3476 cc = pc->pc_cpus[i];
3477 if (cc == NULL)
3478 continue;
3479 data.pr_cache_ncontended += cc->cc_contended;
3480 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3481 data.pr_cache_nhit_pcpu += cc->cc_hits;
3482 data.pr_cache_nmiss_global += cc->cc_pcmisses;
3483 nfull += cc->cc_nfull; /* 32-bit rollover! */
3484 data.pr_cache_npartial += cc->cc_npart;
3485 }
3486 data.pr_cache_nfull = nfull;
3487 } else {
3488 data.pr_cache_meta_size = 0;
3489 data.pr_cache_nfull = 0;
3490 }
3491 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3492 data.pr_cache_nmiss_global;
3493
3494 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3495 if (error)
3496 break;
3497 written += sizeof(data);
3498 oldp = (char *)oldp + sizeof(data);
3499 }
3500
3501 *oldlenp = written;
3502 return error;
3503 }
3504
3505 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3506 {
3507 const struct sysctlnode *rnode = NULL;
3508
3509 sysctl_createv(clog, 0, NULL, &rnode,
3510 CTLFLAG_PERMANENT,
3511 CTLTYPE_STRUCT, "pool",
3512 SYSCTL_DESCR("Get pool statistics"),
3513 pool_sysctl, 0, NULL, 0,
3514 CTL_KERN, CTL_CREATE, CTL_EOL);
3515 }
3516