subr_pool.c revision 1.28 1 /* $NetBSD: subr_pool.c,v 1.28 1999/07/27 21:31:17 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_kern.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 /* # of seconds to retain page after last use */
77 int pool_inactive_time = 10;
78
79 /* Next candidate for drainage (see pool_drain()) */
80 static struct pool *drainpp;
81
82 /* This spin lock protects both pool_head and drainpp. */
83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
84
85 struct pool_item_header {
86 /* Page headers */
87 TAILQ_ENTRY(pool_item_header)
88 ph_pagelist; /* pool page list */
89 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
90 LIST_ENTRY(pool_item_header)
91 ph_hashlist; /* Off-page page headers */
92 int ph_nmissing; /* # of chunks in use */
93 caddr_t ph_page; /* this page's address */
94 struct timeval ph_time; /* last referenced */
95 };
96
97 struct pool_item {
98 #ifdef DIAGNOSTIC
99 int pi_magic;
100 #define PI_MAGIC 0xdeadbeef
101 #endif
102 /* Other entries use only this list entry */
103 TAILQ_ENTRY(pool_item) pi_list;
104 };
105
106
107 #define PR_HASH_INDEX(pp,addr) \
108 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
109
110
111
112 static struct pool_item_header
113 *pr_find_pagehead __P((struct pool *, caddr_t));
114 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
115 static int pool_catchup __P((struct pool *));
116 static void pool_prime_page __P((struct pool *, caddr_t));
117 static void *pool_page_alloc __P((unsigned long, int, int));
118 static void pool_page_free __P((void *, unsigned long, int));
119
120 static void pool_print1 __P((struct pool *, const char *,
121 void (*)(const char *, ...)));
122
123 /*
124 * Pool log entry. An array of these is allocated in pool_create().
125 */
126 struct pool_log {
127 const char *pl_file;
128 long pl_line;
129 int pl_action;
130 #define PRLOG_GET 1
131 #define PRLOG_PUT 2
132 void *pl_addr;
133 };
134
135 /* Number of entries in pool log buffers */
136 #ifndef POOL_LOGSIZE
137 #define POOL_LOGSIZE 10
138 #endif
139
140 int pool_logsize = POOL_LOGSIZE;
141
142 #ifdef DIAGNOSTIC
143 static void pr_log __P((struct pool *, void *, int, const char *, long));
144 static void pr_printlog __P((struct pool *, struct pool_item *,
145 void (*)(const char *, ...)));
146 static void pr_enter __P((struct pool *, const char *, long));
147 static void pr_leave __P((struct pool *));
148 static void pr_enter_check __P((struct pool *,
149 void (*)(const char *, ...)));
150
151 static __inline__ void
152 pr_log(pp, v, action, file, line)
153 struct pool *pp;
154 void *v;
155 int action;
156 const char *file;
157 long line;
158 {
159 int n = pp->pr_curlogentry;
160 struct pool_log *pl;
161
162 if ((pp->pr_roflags & PR_LOGGING) == 0)
163 return;
164
165 /*
166 * Fill in the current entry. Wrap around and overwrite
167 * the oldest entry if necessary.
168 */
169 pl = &pp->pr_log[n];
170 pl->pl_file = file;
171 pl->pl_line = line;
172 pl->pl_action = action;
173 pl->pl_addr = v;
174 if (++n >= pp->pr_logsize)
175 n = 0;
176 pp->pr_curlogentry = n;
177 }
178
179 static void
180 pr_printlog(pp, pi, pr)
181 struct pool *pp;
182 struct pool_item *pi;
183 void (*pr) __P((const char *, ...));
184 {
185 int i = pp->pr_logsize;
186 int n = pp->pr_curlogentry;
187
188 if ((pp->pr_roflags & PR_LOGGING) == 0)
189 return;
190
191 /*
192 * Print all entries in this pool's log.
193 */
194 while (i-- > 0) {
195 struct pool_log *pl = &pp->pr_log[n];
196 if (pl->pl_action != 0) {
197 if (pi == NULL || pi == pl->pl_addr) {
198 (*pr)("\tlog entry %d:\n", i);
199 (*pr)("\t\taction = %s, addr = %p\n",
200 pl->pl_action == PRLOG_GET ? "get" : "put",
201 pl->pl_addr);
202 (*pr)("\t\tfile: %s at line %lu\n",
203 pl->pl_file, pl->pl_line);
204 }
205 }
206 if (++n >= pp->pr_logsize)
207 n = 0;
208 }
209 }
210
211 static __inline__ void
212 pr_enter(pp, file, line)
213 struct pool *pp;
214 const char *file;
215 long line;
216 {
217
218 if (pp->pr_entered_file != NULL) {
219 printf("pool %s: reentrancy at file %s line %ld\n",
220 pp->pr_wchan, file, line);
221 printf(" previous entry at file %s line %ld\n",
222 pp->pr_entered_file, pp->pr_entered_line);
223 panic("pr_enter");
224 }
225
226 pp->pr_entered_file = file;
227 pp->pr_entered_line = line;
228 }
229
230 static __inline__ void
231 pr_leave(pp)
232 struct pool *pp;
233 {
234
235 if (pp->pr_entered_file == NULL) {
236 printf("pool %s not entered?\n", pp->pr_wchan);
237 panic("pr_leave");
238 }
239
240 pp->pr_entered_file = NULL;
241 pp->pr_entered_line = 0;
242 }
243
244 static __inline__ void
245 pr_enter_check(pp, pr)
246 struct pool *pp;
247 void (*pr) __P((const char *, ...));
248 {
249
250 if (pp->pr_entered_file != NULL)
251 (*pr)("\n\tcurrently entered from file %s line %ld\n",
252 pp->pr_entered_file, pp->pr_entered_line);
253 }
254 #else
255 #define pr_log(pp, v, action, file, line)
256 #define pr_printlog(pp, pi, pr)
257 #define pr_enter(pp, file, line)
258 #define pr_leave(pp)
259 #define pr_enter_check(pp, pr)
260 #endif /* DIAGNOSTIC */
261
262 /*
263 * Return the pool page header based on page address.
264 */
265 static __inline__ struct pool_item_header *
266 pr_find_pagehead(pp, page)
267 struct pool *pp;
268 caddr_t page;
269 {
270 struct pool_item_header *ph;
271
272 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
273 return ((struct pool_item_header *)(page + pp->pr_phoffset));
274
275 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
276 ph != NULL;
277 ph = LIST_NEXT(ph, ph_hashlist)) {
278 if (ph->ph_page == page)
279 return (ph);
280 }
281 return (NULL);
282 }
283
284 /*
285 * Remove a page from the pool.
286 */
287 static __inline__ void
288 pr_rmpage(pp, ph)
289 struct pool *pp;
290 struct pool_item_header *ph;
291 {
292
293 /*
294 * If the page was idle, decrement the idle page count.
295 */
296 if (ph->ph_nmissing == 0) {
297 #ifdef DIAGNOSTIC
298 if (pp->pr_nidle == 0)
299 panic("pr_rmpage: nidle inconsistent");
300 if (pp->pr_nitems < pp->pr_itemsperpage)
301 panic("pr_rmpage: nitems inconsistent");
302 #endif
303 pp->pr_nidle--;
304 }
305
306 pp->pr_nitems -= pp->pr_itemsperpage;
307
308 /*
309 * Unlink a page from the pool and release it.
310 */
311 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
312 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
313 pp->pr_npages--;
314 pp->pr_npagefree++;
315
316 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
317 int s;
318 LIST_REMOVE(ph, ph_hashlist);
319 s = splhigh();
320 pool_put(&phpool, ph);
321 splx(s);
322 }
323
324 if (pp->pr_curpage == ph) {
325 /*
326 * Find a new non-empty page header, if any.
327 * Start search from the page head, to increase the
328 * chance for "high water" pages to be freed.
329 */
330 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
331 ph = TAILQ_NEXT(ph, ph_pagelist))
332 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
333 break;
334
335 pp->pr_curpage = ph;
336 }
337 }
338
339 /*
340 * Allocate and initialize a pool.
341 */
342 struct pool *
343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
344 size_t size;
345 u_int align;
346 u_int ioff;
347 int nitems;
348 const char *wchan;
349 size_t pagesz;
350 void *(*alloc) __P((unsigned long, int, int));
351 void (*release) __P((void *, unsigned long, int));
352 int mtype;
353 {
354 struct pool *pp;
355 int flags;
356
357 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
358 if (pp == NULL)
359 return (NULL);
360
361 flags = PR_FREEHEADER;
362 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
363 alloc, release, mtype);
364
365 if (nitems != 0) {
366 if (pool_prime(pp, nitems, NULL) != 0) {
367 pool_destroy(pp);
368 return (NULL);
369 }
370 }
371
372 return (pp);
373 }
374
375 /*
376 * Initialize the given pool resource structure.
377 *
378 * We export this routine to allow other kernel parts to declare
379 * static pools that must be initialized before malloc() is available.
380 */
381 void
382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
383 struct pool *pp;
384 size_t size;
385 u_int align;
386 u_int ioff;
387 int flags;
388 const char *wchan;
389 size_t pagesz;
390 void *(*alloc) __P((unsigned long, int, int));
391 void (*release) __P((void *, unsigned long, int));
392 int mtype;
393 {
394 int off, slack, i;
395
396 #ifdef POOL_DIAGNOSTIC
397 /*
398 * Always log if POOL_DIAGNOSTIC is defined.
399 */
400 if (pool_logsize != 0)
401 flags |= PR_LOGGING;
402 #endif
403
404 /*
405 * Check arguments and construct default values.
406 */
407 if (!powerof2(pagesz) || pagesz > PAGE_SIZE)
408 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
409
410 if (alloc == NULL && release == NULL) {
411 alloc = pool_page_alloc;
412 release = pool_page_free;
413 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
414 } else if ((alloc != NULL && release != NULL) == 0) {
415 /* If you specifiy one, must specify both. */
416 panic("pool_init: must specify alloc and release together");
417 }
418
419 if (pagesz == 0)
420 pagesz = PAGE_SIZE;
421
422 if (align == 0)
423 align = ALIGN(1);
424
425 if (size < sizeof(struct pool_item))
426 size = sizeof(struct pool_item);
427
428 /*
429 * Initialize the pool structure.
430 */
431 TAILQ_INIT(&pp->pr_pagelist);
432 pp->pr_curpage = NULL;
433 pp->pr_npages = 0;
434 pp->pr_minitems = 0;
435 pp->pr_minpages = 0;
436 pp->pr_maxpages = UINT_MAX;
437 pp->pr_roflags = flags;
438 pp->pr_flags = 0;
439 pp->pr_size = ALIGN(size);
440 pp->pr_align = align;
441 pp->pr_wchan = wchan;
442 pp->pr_mtype = mtype;
443 pp->pr_alloc = alloc;
444 pp->pr_free = release;
445 pp->pr_pagesz = pagesz;
446 pp->pr_pagemask = ~(pagesz - 1);
447 pp->pr_pageshift = ffs(pagesz) - 1;
448 pp->pr_nitems = 0;
449 pp->pr_nout = 0;
450 pp->pr_hardlimit = UINT_MAX;
451 pp->pr_hardlimit_warning = NULL;
452 pp->pr_hardlimit_ratecap = 0;
453 memset(&pp->pr_hardlimit_warning_last, 0,
454 sizeof(pp->pr_hardlimit_warning_last));
455
456 /*
457 * Decide whether to put the page header off page to avoid
458 * wasting too large a part of the page. Off-page page headers
459 * go on a hash table, so we can match a returned item
460 * with its header based on the page address.
461 * We use 1/16 of the page size as the threshold (XXX: tune)
462 */
463 if (pp->pr_size < pagesz/16) {
464 /* Use the end of the page for the page header */
465 pp->pr_roflags |= PR_PHINPAGE;
466 pp->pr_phoffset = off =
467 pagesz - ALIGN(sizeof(struct pool_item_header));
468 } else {
469 /* The page header will be taken from our page header pool */
470 pp->pr_phoffset = 0;
471 off = pagesz;
472 for (i = 0; i < PR_HASHTABSIZE; i++) {
473 LIST_INIT(&pp->pr_hashtab[i]);
474 }
475 }
476
477 /*
478 * Alignment is to take place at `ioff' within the item. This means
479 * we must reserve up to `align - 1' bytes on the page to allow
480 * appropriate positioning of each item.
481 *
482 * Silently enforce `0 <= ioff < align'.
483 */
484 pp->pr_itemoffset = ioff = ioff % align;
485 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
486
487 /*
488 * Use the slack between the chunks and the page header
489 * for "cache coloring".
490 */
491 slack = off - pp->pr_itemsperpage * pp->pr_size;
492 pp->pr_maxcolor = (slack / align) * align;
493 pp->pr_curcolor = 0;
494
495 pp->pr_nget = 0;
496 pp->pr_nfail = 0;
497 pp->pr_nput = 0;
498 pp->pr_npagealloc = 0;
499 pp->pr_npagefree = 0;
500 pp->pr_hiwat = 0;
501 pp->pr_nidle = 0;
502
503 if (flags & PR_LOGGING) {
504 if (kmem_map == NULL ||
505 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
506 M_TEMP, M_NOWAIT)) == NULL)
507 pp->pr_roflags &= ~PR_LOGGING;
508 pp->pr_curlogentry = 0;
509 pp->pr_logsize = pool_logsize;
510 }
511
512 pp->pr_entered_file = NULL;
513 pp->pr_entered_line = 0;
514
515 simple_lock_init(&pp->pr_slock);
516
517 /*
518 * Initialize private page header pool if we haven't done so yet.
519 * XXX LOCKING.
520 */
521 if (phpool.pr_size == 0) {
522 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
523 0, "phpool", 0, 0, 0, 0);
524 }
525
526 /* Insert into the list of all pools. */
527 simple_lock(&pool_head_slock);
528 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
529 simple_unlock(&pool_head_slock);
530 }
531
532 /*
533 * De-commision a pool resource.
534 */
535 void
536 pool_destroy(pp)
537 struct pool *pp;
538 {
539 struct pool_item_header *ph;
540
541 #ifdef DIAGNOSTIC
542 if (pp->pr_nout != 0) {
543 pr_printlog(pp, NULL, printf);
544 panic("pool_destroy: pool busy: still out: %u\n",
545 pp->pr_nout);
546 }
547 #endif
548
549 /* Remove all pages */
550 if ((pp->pr_roflags & PR_STATIC) == 0)
551 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
552 pr_rmpage(pp, ph);
553
554 /* Remove from global pool list */
555 simple_lock(&pool_head_slock);
556 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
557 /* XXX Only clear this if we were drainpp? */
558 drainpp = NULL;
559 simple_unlock(&pool_head_slock);
560
561 if ((pp->pr_roflags & PR_LOGGING) != 0)
562 free(pp->pr_log, M_TEMP);
563
564 if (pp->pr_roflags & PR_FREEHEADER)
565 free(pp, M_POOL);
566 }
567
568
569 /*
570 * Grab an item from the pool; must be called at appropriate spl level
571 */
572 void *
573 _pool_get(pp, flags, file, line)
574 struct pool *pp;
575 int flags;
576 const char *file;
577 long line;
578 {
579 void *v;
580 struct pool_item *pi;
581 struct pool_item_header *ph;
582
583 #ifdef DIAGNOSTIC
584 if ((pp->pr_roflags & PR_STATIC) && (flags & PR_MALLOCOK)) {
585 pr_printlog(pp, NULL, printf);
586 panic("pool_get: static");
587 }
588 #endif
589
590 if (curproc == NULL && (flags & PR_WAITOK) != 0)
591 panic("pool_get: must have NOWAIT");
592
593 simple_lock(&pp->pr_slock);
594 pr_enter(pp, file, line);
595
596 startover:
597 /*
598 * Check to see if we've reached the hard limit. If we have,
599 * and we can wait, then wait until an item has been returned to
600 * the pool.
601 */
602 #ifdef DIAGNOSTIC
603 if (pp->pr_nout > pp->pr_hardlimit) {
604 pr_leave(pp);
605 simple_unlock(&pp->pr_slock);
606 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
607 }
608 #endif
609 if (pp->pr_nout == pp->pr_hardlimit) {
610 if (flags & PR_WAITOK) {
611 /*
612 * XXX: A warning isn't logged in this case. Should
613 * it be?
614 */
615 pp->pr_flags |= PR_WANTED;
616 pr_leave(pp);
617 simple_unlock(&pp->pr_slock);
618 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
619 simple_lock(&pp->pr_slock);
620 pr_enter(pp, file, line);
621 goto startover;
622 }
623 if (pp->pr_hardlimit_warning != NULL) {
624 /*
625 * Log a message that the hard limit has been hit.
626 */
627 struct timeval curtime, logdiff;
628 int s = splclock();
629 curtime = mono_time;
630 splx(s);
631 timersub(&curtime, &pp->pr_hardlimit_warning_last,
632 &logdiff);
633 if (logdiff.tv_sec >= pp->pr_hardlimit_ratecap) {
634 pp->pr_hardlimit_warning_last = curtime;
635 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
636 }
637 }
638
639 if (flags & PR_URGENT)
640 panic("pool_get: urgent");
641
642 pp->pr_nfail++;
643
644 pr_leave(pp);
645 simple_unlock(&pp->pr_slock);
646 return (NULL);
647 }
648
649 /*
650 * The convention we use is that if `curpage' is not NULL, then
651 * it points at a non-empty bucket. In particular, `curpage'
652 * never points at a page header which has PR_PHINPAGE set and
653 * has no items in its bucket.
654 */
655 if ((ph = pp->pr_curpage) == NULL) {
656 void *v;
657
658 #ifdef DIAGNOSTIC
659 if (pp->pr_nitems != 0) {
660 simple_unlock(&pp->pr_slock);
661 printf("pool_get: %s: curpage NULL, nitems %u\n",
662 pp->pr_wchan, pp->pr_nitems);
663 panic("pool_get: nitems inconsistent\n");
664 }
665 #endif
666
667 /*
668 * Call the back-end page allocator for more memory.
669 * Release the pool lock, as the back-end page allocator
670 * may block.
671 */
672 pr_leave(pp);
673 simple_unlock(&pp->pr_slock);
674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 simple_lock(&pp->pr_slock);
676 pr_enter(pp, file, line);
677
678 if (v == NULL) {
679 /*
680 * We were unable to allocate a page, but
681 * we released the lock during allocation,
682 * so perhaps items were freed back to the
683 * pool. Check for this case.
684 */
685 if (pp->pr_curpage != NULL)
686 goto startover;
687
688 if (flags & PR_URGENT)
689 panic("pool_get: urgent");
690
691 if ((flags & PR_WAITOK) == 0) {
692 pp->pr_nfail++;
693 pr_leave(pp);
694 simple_unlock(&pp->pr_slock);
695 return (NULL);
696 }
697
698 /*
699 * Wait for items to be returned to this pool.
700 *
701 * XXX: we actually want to wait just until
702 * the page allocator has memory again. Depending
703 * on this pool's usage, we might get stuck here
704 * for a long time.
705 *
706 * XXX: maybe we should wake up once a second and
707 * try again?
708 */
709 pp->pr_flags |= PR_WANTED;
710 pr_leave(pp);
711 simple_unlock(&pp->pr_slock);
712 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
713 simple_lock(&pp->pr_slock);
714 pr_enter(pp, file, line);
715 goto startover;
716 }
717
718 /* We have more memory; add it to the pool */
719 pp->pr_npagealloc++;
720 pool_prime_page(pp, v);
721
722 /* Start the allocation process over. */
723 goto startover;
724 }
725
726 if ((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL) {
727 pr_leave(pp);
728 simple_unlock(&pp->pr_slock);
729 panic("pool_get: %s: page empty", pp->pr_wchan);
730 }
731 #ifdef DIAGNOSTIC
732 if (pp->pr_nitems == 0) {
733 pr_leave(pp);
734 simple_unlock(&pp->pr_slock);
735 printf("pool_get: %s: items on itemlist, nitems %u\n",
736 pp->pr_wchan, pp->pr_nitems);
737 panic("pool_get: nitems inconsistent\n");
738 }
739 #endif
740 pr_log(pp, v, PRLOG_GET, file, line);
741
742 #ifdef DIAGNOSTIC
743 if (pi->pi_magic != PI_MAGIC) {
744 pr_printlog(pp, pi, printf);
745 panic("pool_get(%s): free list modified: magic=%x; page %p;"
746 " item addr %p\n",
747 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
748 }
749 #endif
750
751 /*
752 * Remove from item list.
753 */
754 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
755 pp->pr_nitems--;
756 pp->pr_nout++;
757 if (ph->ph_nmissing == 0) {
758 #ifdef DIAGNOSTIC
759 if (pp->pr_nidle == 0)
760 panic("pool_get: nidle inconsistent");
761 #endif
762 pp->pr_nidle--;
763 }
764 ph->ph_nmissing++;
765 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
766 #ifdef DIAGNOSTIC
767 if (ph->ph_nmissing != pp->pr_itemsperpage) {
768 pr_leave(pp);
769 simple_unlock(&pp->pr_slock);
770 panic("pool_get: %s: nmissing inconsistent",
771 pp->pr_wchan);
772 }
773 #endif
774 /*
775 * Find a new non-empty page header, if any.
776 * Start search from the page head, to increase
777 * the chance for "high water" pages to be freed.
778 *
779 * Migrate empty pages to the end of the list. This
780 * will speed the update of curpage as pages become
781 * idle. Empty pages intermingled with idle pages
782 * is no big deal. As soon as a page becomes un-empty,
783 * it will move back to the head of the list.
784 */
785 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
786 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
787 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
788 ph = TAILQ_NEXT(ph, ph_pagelist))
789 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
790 break;
791
792 pp->pr_curpage = ph;
793 }
794
795 pp->pr_nget++;
796
797 /*
798 * If we have a low water mark and we are now below that low
799 * water mark, add more items to the pool.
800 */
801 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
802 /*
803 * XXX: Should we log a warning? Should we set up a timeout
804 * to try again in a second or so? The latter could break
805 * a caller's assumptions about interrupt protection, etc.
806 */
807 }
808
809 pr_leave(pp);
810 simple_unlock(&pp->pr_slock);
811 return (v);
812 }
813
814 /*
815 * Return resource to the pool; must be called at appropriate spl level
816 */
817 void
818 _pool_put(pp, v, file, line)
819 struct pool *pp;
820 void *v;
821 const char *file;
822 long line;
823 {
824 struct pool_item *pi = v;
825 struct pool_item_header *ph;
826 caddr_t page;
827 int s;
828
829 page = (caddr_t)((u_long)v & pp->pr_pagemask);
830
831 simple_lock(&pp->pr_slock);
832 pr_enter(pp, file, line);
833
834 pr_log(pp, v, PRLOG_PUT, file, line);
835
836 if ((ph = pr_find_pagehead(pp, page)) == NULL) {
837 pr_printlog(pp, NULL, printf);
838 panic("pool_put: %s: page header missing", pp->pr_wchan);
839 }
840
841 #ifdef LOCKDEBUG
842 /*
843 * Check if we're freeing a locked simple lock.
844 */
845 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
846 #endif
847
848 /*
849 * Return to item list.
850 */
851 #ifdef DIAGNOSTIC
852 /* XXX Should fill the item. */
853 pi->pi_magic = PI_MAGIC;
854 #endif
855 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
856 ph->ph_nmissing--;
857 pp->pr_nput++;
858 pp->pr_nitems++;
859 pp->pr_nout--;
860
861 /* Cancel "pool empty" condition if it exists */
862 if (pp->pr_curpage == NULL)
863 pp->pr_curpage = ph;
864
865 if (pp->pr_flags & PR_WANTED) {
866 pp->pr_flags &= ~PR_WANTED;
867 if (ph->ph_nmissing == 0)
868 pp->pr_nidle++;
869 pr_leave(pp);
870 simple_unlock(&pp->pr_slock);
871 wakeup((caddr_t)pp);
872 return;
873 }
874
875 /*
876 * If this page is now complete, do one of two things:
877 *
878 * (1) If we have more pages than the page high water
879 * mark, free the page back to the system.
880 *
881 * (2) Move it to the end of the page list, so that
882 * we minimize our chances of fragmenting the
883 * pool. Idle pages migrate to the end (along with
884 * completely empty pages, so that we find un-empty
885 * pages more quickly when we update curpage) of the
886 * list so they can be more easily swept up by
887 * the pagedaemon when pages are scarce.
888 */
889 if (ph->ph_nmissing == 0) {
890 pp->pr_nidle++;
891 if (pp->pr_npages > pp->pr_maxpages) {
892 pr_rmpage(pp, ph);
893 } else {
894 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
895 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
896
897 /*
898 * Update the timestamp on the page. A page must
899 * be idle for some period of time before it can
900 * be reclaimed by the pagedaemon. This minimizes
901 * ping-pong'ing for memory.
902 */
903 s = splclock();
904 ph->ph_time = mono_time;
905 splx(s);
906
907 /*
908 * Update the current page pointer. Just look for
909 * the first page with any free items.
910 *
911 * XXX: Maybe we want an option to look for the
912 * page with the fewest available items, to minimize
913 * fragmentation?
914 */
915 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
916 ph = TAILQ_NEXT(ph, ph_pagelist))
917 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
918 break;
919
920 pp->pr_curpage = ph;
921 }
922 }
923 /*
924 * If the page has just become un-empty, move it to the head of
925 * the list, and make it the current page. The next allocation
926 * will get the item from this page, instead of further fragmenting
927 * the pool.
928 */
929 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
930 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
931 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
932 pp->pr_curpage = ph;
933 }
934
935 pr_leave(pp);
936 simple_unlock(&pp->pr_slock);
937
938 }
939
940 /*
941 * Add N items to the pool.
942 */
943 int
944 pool_prime(pp, n, storage)
945 struct pool *pp;
946 int n;
947 caddr_t storage;
948 {
949 caddr_t cp;
950 int newnitems, newpages;
951
952 #ifdef DIAGNOSTIC
953 if (storage && !(pp->pr_roflags & PR_STATIC))
954 panic("pool_prime: static");
955 /* !storage && static caught below */
956 #endif
957
958 simple_lock(&pp->pr_slock);
959
960 newnitems = pp->pr_minitems + n;
961 newpages =
962 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
963 - pp->pr_minpages;
964
965 while (newpages-- > 0) {
966 if (pp->pr_roflags & PR_STATIC) {
967 cp = storage;
968 storage += pp->pr_pagesz;
969 } else {
970 simple_unlock(&pp->pr_slock);
971 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
972 simple_lock(&pp->pr_slock);
973 }
974
975 if (cp == NULL) {
976 simple_unlock(&pp->pr_slock);
977 return (ENOMEM);
978 }
979
980 pp->pr_npagealloc++;
981 pool_prime_page(pp, cp);
982 pp->pr_minpages++;
983 }
984
985 pp->pr_minitems = newnitems;
986
987 if (pp->pr_minpages >= pp->pr_maxpages)
988 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
989
990 simple_unlock(&pp->pr_slock);
991 return (0);
992 }
993
994 /*
995 * Add a page worth of items to the pool.
996 *
997 * Note, we must be called with the pool descriptor LOCKED.
998 */
999 static void
1000 pool_prime_page(pp, storage)
1001 struct pool *pp;
1002 caddr_t storage;
1003 {
1004 struct pool_item *pi;
1005 struct pool_item_header *ph;
1006 caddr_t cp = storage;
1007 unsigned int align = pp->pr_align;
1008 unsigned int ioff = pp->pr_itemoffset;
1009 int s, n;
1010
1011 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1012 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1013 } else {
1014 s = splhigh();
1015 ph = pool_get(&phpool, PR_URGENT);
1016 splx(s);
1017 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1018 ph, ph_hashlist);
1019 }
1020
1021 /*
1022 * Insert page header.
1023 */
1024 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1025 TAILQ_INIT(&ph->ph_itemlist);
1026 ph->ph_page = storage;
1027 ph->ph_nmissing = 0;
1028 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1029
1030 pp->pr_nidle++;
1031
1032 /*
1033 * Color this page.
1034 */
1035 cp = (caddr_t)(cp + pp->pr_curcolor);
1036 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1037 pp->pr_curcolor = 0;
1038
1039 /*
1040 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1041 */
1042 if (ioff != 0)
1043 cp = (caddr_t)(cp + (align - ioff));
1044
1045 /*
1046 * Insert remaining chunks on the bucket list.
1047 */
1048 n = pp->pr_itemsperpage;
1049 pp->pr_nitems += n;
1050
1051 while (n--) {
1052 pi = (struct pool_item *)cp;
1053
1054 /* Insert on page list */
1055 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1056 #ifdef DIAGNOSTIC
1057 pi->pi_magic = PI_MAGIC;
1058 #endif
1059 cp = (caddr_t)(cp + pp->pr_size);
1060 }
1061
1062 /*
1063 * If the pool was depleted, point at the new page.
1064 */
1065 if (pp->pr_curpage == NULL)
1066 pp->pr_curpage = ph;
1067
1068 if (++pp->pr_npages > pp->pr_hiwat)
1069 pp->pr_hiwat = pp->pr_npages;
1070 }
1071
1072 /*
1073 * Like pool_prime(), except this is used by pool_get() when nitems
1074 * drops below the low water mark. This is used to catch up nitmes
1075 * with the low water mark.
1076 *
1077 * Note 1, we never wait for memory here, we let the caller decide what to do.
1078 *
1079 * Note 2, this doesn't work with static pools.
1080 *
1081 * Note 3, we must be called with the pool already locked, and we return
1082 * with it locked.
1083 */
1084 static int
1085 pool_catchup(pp)
1086 struct pool *pp;
1087 {
1088 caddr_t cp;
1089 int error = 0;
1090
1091 if (pp->pr_roflags & PR_STATIC) {
1092 /*
1093 * We dropped below the low water mark, and this is not a
1094 * good thing. Log a warning.
1095 *
1096 * XXX: rate-limit this?
1097 */
1098 printf("WARNING: static pool `%s' dropped below low water "
1099 "mark\n", pp->pr_wchan);
1100 return (0);
1101 }
1102
1103 while (pp->pr_nitems < pp->pr_minitems) {
1104 /*
1105 * Call the page back-end allocator for more memory.
1106 *
1107 * XXX: We never wait, so should we bother unlocking
1108 * the pool descriptor?
1109 */
1110 simple_unlock(&pp->pr_slock);
1111 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1112 simple_lock(&pp->pr_slock);
1113 if (cp == NULL) {
1114 error = ENOMEM;
1115 break;
1116 }
1117 pp->pr_npagealloc++;
1118 pool_prime_page(pp, cp);
1119 }
1120
1121 return (error);
1122 }
1123
1124 void
1125 pool_setlowat(pp, n)
1126 pool_handle_t pp;
1127 int n;
1128 {
1129 int error;
1130
1131 simple_lock(&pp->pr_slock);
1132
1133 pp->pr_minitems = n;
1134 pp->pr_minpages = (n == 0)
1135 ? 0
1136 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1137
1138 /* Make sure we're caught up with the newly-set low water mark. */
1139 if ((error = pool_catchup(pp)) != 0) {
1140 /*
1141 * XXX: Should we log a warning? Should we set up a timeout
1142 * to try again in a second or so? The latter could break
1143 * a caller's assumptions about interrupt protection, etc.
1144 */
1145 }
1146
1147 simple_unlock(&pp->pr_slock);
1148 }
1149
1150 void
1151 pool_sethiwat(pp, n)
1152 pool_handle_t pp;
1153 int n;
1154 {
1155
1156 simple_lock(&pp->pr_slock);
1157
1158 pp->pr_maxpages = (n == 0)
1159 ? 0
1160 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1161
1162 simple_unlock(&pp->pr_slock);
1163 }
1164
1165 void
1166 pool_sethardlimit(pp, n, warnmess, ratecap)
1167 pool_handle_t pp;
1168 int n;
1169 const char *warnmess;
1170 int ratecap;
1171 {
1172
1173 simple_lock(&pp->pr_slock);
1174
1175 pp->pr_hardlimit = n;
1176 pp->pr_hardlimit_warning = warnmess;
1177 pp->pr_hardlimit_ratecap = ratecap;
1178 memset(&pp->pr_hardlimit_warning_last, 0,
1179 sizeof(pp->pr_hardlimit_warning_last));
1180
1181 /*
1182 * In-line version of pool_sethiwat(), because we don't want to
1183 * release the lock.
1184 */
1185 pp->pr_maxpages = (n == 0)
1186 ? 0
1187 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1188
1189 simple_unlock(&pp->pr_slock);
1190 }
1191
1192 /*
1193 * Default page allocator.
1194 */
1195 static void *
1196 pool_page_alloc(sz, flags, mtype)
1197 unsigned long sz;
1198 int flags;
1199 int mtype;
1200 {
1201 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1202
1203 return ((void *)uvm_km_alloc_poolpage(waitok));
1204 }
1205
1206 static void
1207 pool_page_free(v, sz, mtype)
1208 void *v;
1209 unsigned long sz;
1210 int mtype;
1211 {
1212
1213 uvm_km_free_poolpage((vaddr_t)v);
1214 }
1215
1216 /*
1217 * Alternate pool page allocator for pools that know they will
1218 * never be accessed in interrupt context.
1219 */
1220 void *
1221 pool_page_alloc_nointr(sz, flags, mtype)
1222 unsigned long sz;
1223 int flags;
1224 int mtype;
1225 {
1226 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1227
1228 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1229 waitok));
1230 }
1231
1232 void
1233 pool_page_free_nointr(v, sz, mtype)
1234 void *v;
1235 unsigned long sz;
1236 int mtype;
1237 {
1238
1239 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1240 }
1241
1242
1243 /*
1244 * Release all complete pages that have not been used recently.
1245 */
1246 void
1247 _pool_reclaim(pp, file, line)
1248 pool_handle_t pp;
1249 const char *file;
1250 long line;
1251 {
1252 struct pool_item_header *ph, *phnext;
1253 struct timeval curtime;
1254 int s;
1255
1256 if (pp->pr_roflags & PR_STATIC)
1257 return;
1258
1259 if (simple_lock_try(&pp->pr_slock) == 0)
1260 return;
1261 pr_enter(pp, file, line);
1262
1263 s = splclock();
1264 curtime = mono_time;
1265 splx(s);
1266
1267 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1268 phnext = TAILQ_NEXT(ph, ph_pagelist);
1269
1270 /* Check our minimum page claim */
1271 if (pp->pr_npages <= pp->pr_minpages)
1272 break;
1273
1274 if (ph->ph_nmissing == 0) {
1275 struct timeval diff;
1276 timersub(&curtime, &ph->ph_time, &diff);
1277 if (diff.tv_sec < pool_inactive_time)
1278 continue;
1279
1280 /*
1281 * If freeing this page would put us below
1282 * the low water mark, stop now.
1283 */
1284 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1285 pp->pr_minitems)
1286 break;
1287
1288 pr_rmpage(pp, ph);
1289 }
1290 }
1291
1292 pr_leave(pp);
1293 simple_unlock(&pp->pr_slock);
1294 }
1295
1296
1297 /*
1298 * Drain pools, one at a time.
1299 *
1300 * Note, we must never be called from an interrupt context.
1301 */
1302 void
1303 pool_drain(arg)
1304 void *arg;
1305 {
1306 struct pool *pp;
1307 int s;
1308
1309 s = splimp();
1310 simple_lock(&pool_head_slock);
1311
1312 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1313 goto out;
1314
1315 pp = drainpp;
1316 drainpp = TAILQ_NEXT(pp, pr_poollist);
1317
1318 pool_reclaim(pp);
1319
1320 out:
1321 simple_unlock(&pool_head_slock);
1322 splx(s);
1323 }
1324
1325
1326 /*
1327 * Diagnostic helpers.
1328 */
1329 void
1330 pool_print(pp, modif)
1331 struct pool *pp;
1332 const char *modif;
1333 {
1334 int s;
1335
1336 s = splimp();
1337 if (simple_lock_try(&pp->pr_slock) == 0) {
1338 printf("pool %s is locked; try again later\n",
1339 pp->pr_wchan);
1340 splx(s);
1341 return;
1342 }
1343 pool_print1(pp, modif, printf);
1344 simple_unlock(&pp->pr_slock);
1345 splx(s);
1346 }
1347
1348 void
1349 pool_printit(pp, modif, pr)
1350 struct pool *pp;
1351 const char *modif;
1352 void (*pr) __P((const char *, ...));
1353 {
1354 int didlock = 0;
1355
1356 if (pp == NULL) {
1357 (*pr)("Must specify a pool to print.\n");
1358 return;
1359 }
1360
1361 /*
1362 * Called from DDB; interrupts should be blocked, and all
1363 * other processors should be paused. We can skip locking
1364 * the pool in this case.
1365 *
1366 * We do a simple_lock_try() just to print the lock
1367 * status, however.
1368 */
1369
1370 if (simple_lock_try(&pp->pr_slock) == 0)
1371 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1372 else
1373 didlock = 1;
1374
1375 pool_print1(pp, modif, pr);
1376
1377 if (didlock)
1378 simple_unlock(&pp->pr_slock);
1379 }
1380
1381 static void
1382 pool_print1(pp, modif, pr)
1383 struct pool *pp;
1384 const char *modif;
1385 void (*pr) __P((const char *, ...));
1386 {
1387 struct pool_item_header *ph;
1388 #ifdef DIAGNOSTIC
1389 struct pool_item *pi;
1390 #endif
1391 int print_log = 0, print_pagelist = 0;
1392 char c;
1393
1394 while ((c = *modif++) != '\0') {
1395 if (c == 'l')
1396 print_log = 1;
1397 if (c == 'p')
1398 print_pagelist = 1;
1399 modif++;
1400 }
1401
1402 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1403 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1404 pp->pr_roflags);
1405 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1406 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1407 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1408 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1409 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1410 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1411
1412 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1413 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1414 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1415 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1416
1417 if (print_pagelist == 0)
1418 goto skip_pagelist;
1419
1420 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1421 (*pr)("\n\tpage list:\n");
1422 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1423 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1424 ph->ph_page, ph->ph_nmissing,
1425 (u_long)ph->ph_time.tv_sec,
1426 (u_long)ph->ph_time.tv_usec);
1427 #ifdef DIAGNOSTIC
1428 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1429 pi = TAILQ_NEXT(pi, pi_list)) {
1430 if (pi->pi_magic != PI_MAGIC) {
1431 (*pr)("\t\t\titem %p, magic 0x%x\n",
1432 pi, pi->pi_magic);
1433 }
1434 }
1435 #endif
1436 }
1437 if (pp->pr_curpage == NULL)
1438 (*pr)("\tno current page\n");
1439 else
1440 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1441
1442 skip_pagelist:
1443
1444 if (print_log == 0)
1445 goto skip_log;
1446
1447 (*pr)("\n");
1448 if ((pp->pr_roflags & PR_LOGGING) == 0)
1449 (*pr)("\tno log\n");
1450 else
1451 pr_printlog(pp, NULL, pr);
1452
1453 skip_log:
1454
1455 pr_enter_check(pp, pr);
1456 }
1457
1458 int
1459 pool_chk(pp, label)
1460 struct pool *pp;
1461 char *label;
1462 {
1463 struct pool_item_header *ph;
1464 int r = 0;
1465
1466 simple_lock(&pp->pr_slock);
1467
1468 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1469 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1470
1471 struct pool_item *pi;
1472 int n;
1473 caddr_t page;
1474
1475 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1476 if (page != ph->ph_page &&
1477 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1478 if (label != NULL)
1479 printf("%s: ", label);
1480 printf("pool(%p:%s): page inconsistency: page %p;"
1481 " at page head addr %p (p %p)\n", pp,
1482 pp->pr_wchan, ph->ph_page,
1483 ph, page);
1484 r++;
1485 goto out;
1486 }
1487
1488 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1489 pi != NULL;
1490 pi = TAILQ_NEXT(pi,pi_list), n++) {
1491
1492 #ifdef DIAGNOSTIC
1493 if (pi->pi_magic != PI_MAGIC) {
1494 if (label != NULL)
1495 printf("%s: ", label);
1496 printf("pool(%s): free list modified: magic=%x;"
1497 " page %p; item ordinal %d;"
1498 " addr %p (p %p)\n",
1499 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1500 n, pi, page);
1501 panic("pool");
1502 }
1503 #endif
1504 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1505 if (page == ph->ph_page)
1506 continue;
1507
1508 if (label != NULL)
1509 printf("%s: ", label);
1510 printf("pool(%p:%s): page inconsistency: page %p;"
1511 " item ordinal %d; addr %p (p %p)\n", pp,
1512 pp->pr_wchan, ph->ph_page,
1513 n, pi, page);
1514 r++;
1515 goto out;
1516 }
1517 }
1518 out:
1519 simple_unlock(&pp->pr_slock);
1520 return (r);
1521 }
1522