subr_pool.c revision 1.285.4.2 1 /* $NetBSD: subr_pool.c,v 1.285.4.2 2024/12/15 14:58:45 martin Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 * 2020, 2021 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.285.4.2 2024/12/15 14:58:45 martin Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63
64 #include <uvm/uvm_extern.h>
65
66 /*
67 * Pool resource management utility.
68 *
69 * Memory is allocated in pages which are split into pieces according to
70 * the pool item size. Each page is kept on one of three lists in the
71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 * for empty, full and partially-full pages respectively. The individual
73 * pool items are on a linked list headed by `ph_itemlist' in each page
74 * header. The memory for building the page list is either taken from
75 * the allocated pages themselves (for small pool items) or taken from
76 * an internal pool of page headers (`phpool').
77 */
78
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81
82 /* Private pool for page header structures */
83 #define PHPOOL_MAX 8
84 static struct pool phpool[PHPOOL_MAX];
85 #define PHPOOL_FREELIST_NELEM(idx) \
86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 # define POOL_REDZONE_SIZE 8
99 # else
100 # define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz) __nothing
108 # define pool_redzone_fill(pp, ptr) __nothing
109 # define pool_redzone_check(pp, ptr) __nothing
110 # define pool_cache_redzone_check(pc, ptr) __nothing
111 #endif
112
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr) __nothing
120 #define pool_put_kmsan(pp, ptr) __nothing
121 #define pool_cache_get_kmsan(pc, ptr) __nothing
122 #define pool_cache_put_kmsan(pc, ptr) __nothing
123 #endif
124
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129 struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a) __nothing
132 #define pool_quarantine_flush(a) __nothing
133 #define pool_put_quarantine(a, b, c) false
134 #endif
135
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b) false
140 #endif
141
142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144
145 #define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
146 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
147 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
148
149 #define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)
150
151 #define pool_barrier() xc_barrier(0)
152
153 /*
154 * Pool backend allocators.
155 *
156 * Each pool has a backend allocator that handles allocation, deallocation,
157 * and any additional draining that might be needed.
158 *
159 * We provide two standard allocators:
160 *
161 * pool_allocator_kmem - the default when no allocator is specified
162 *
163 * pool_allocator_nointr - used for pools that will not be accessed
164 * in interrupt context.
165 */
166 void *pool_page_alloc(struct pool *, int);
167 void pool_page_free(struct pool *, void *);
168
169 static void *pool_page_alloc_meta(struct pool *, int);
170 static void pool_page_free_meta(struct pool *, void *);
171
172 struct pool_allocator pool_allocator_kmem = {
173 .pa_alloc = pool_page_alloc,
174 .pa_free = pool_page_free,
175 .pa_pagesz = 0
176 };
177
178 struct pool_allocator pool_allocator_nointr = {
179 .pa_alloc = pool_page_alloc,
180 .pa_free = pool_page_free,
181 .pa_pagesz = 0
182 };
183
184 struct pool_allocator pool_allocator_meta = {
185 .pa_alloc = pool_page_alloc_meta,
186 .pa_free = pool_page_free_meta,
187 .pa_pagesz = 0
188 };
189
190 #define POOL_ALLOCATOR_BIG_BASE 13
191 static struct pool_allocator pool_allocator_big[] = {
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
211 },
212 {
213 .pa_alloc = pool_page_alloc,
214 .pa_free = pool_page_free,
215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
216 },
217 {
218 .pa_alloc = pool_page_alloc,
219 .pa_free = pool_page_free,
220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
221 },
222 {
223 .pa_alloc = pool_page_alloc,
224 .pa_free = pool_page_free,
225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
226 },
227 {
228 .pa_alloc = pool_page_alloc,
229 .pa_free = pool_page_free,
230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
231 },
232 {
233 .pa_alloc = pool_page_alloc,
234 .pa_free = pool_page_free,
235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
236 },
237 {
238 .pa_alloc = pool_page_alloc,
239 .pa_free = pool_page_free,
240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
241 },
242 {
243 .pa_alloc = pool_page_alloc,
244 .pa_free = pool_page_free,
245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
246 },
247 {
248 .pa_alloc = pool_page_alloc,
249 .pa_free = pool_page_free,
250 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
251 }
252 };
253
254 static int pool_bigidx(size_t);
255
256 /* # of seconds to retain page after last use */
257 int pool_inactive_time = 10;
258
259 /* Next candidate for drainage (see pool_drain()) */
260 static struct pool *drainpp;
261
262 /* This lock protects both pool_head and drainpp. */
263 static kmutex_t pool_head_lock;
264 static kcondvar_t pool_busy;
265
266 /* This lock protects initialization of a potentially shared pool allocator */
267 static kmutex_t pool_allocator_lock;
268
269 static unsigned int poolid_counter = 0;
270
271 typedef uint32_t pool_item_bitmap_t;
272 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
273 #define BITMAP_MASK (BITMAP_SIZE - 1)
274 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
275
276 struct pool_item_header {
277 /* Page headers */
278 LIST_ENTRY(pool_item_header)
279 ph_pagelist; /* pool page list */
280 union {
281 /* !PR_PHINPAGE */
282 struct {
283 SPLAY_ENTRY(pool_item_header)
284 phu_node; /* off-page page headers */
285 } phu_offpage;
286 /* PR_PHINPAGE */
287 struct {
288 unsigned int phu_poolid;
289 } phu_onpage;
290 } ph_u1;
291 void * ph_page; /* this page's address */
292 uint32_t ph_time; /* last referenced */
293 uint16_t ph_nmissing; /* # of chunks in use */
294 uint16_t ph_off; /* start offset in page */
295 union {
296 /* !PR_USEBMAP */
297 struct {
298 LIST_HEAD(, pool_item)
299 phu_itemlist; /* chunk list for this page */
300 } phu_normal;
301 /* PR_USEBMAP */
302 struct {
303 pool_item_bitmap_t phu_bitmap[1];
304 } phu_notouch;
305 } ph_u2;
306 };
307 #define ph_node ph_u1.phu_offpage.phu_node
308 #define ph_poolid ph_u1.phu_onpage.phu_poolid
309 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
310 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
311
312 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
313
314 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
315 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
316
317 #if defined(DIAGNOSTIC) && !defined(KASAN)
318 #define POOL_CHECK_MAGIC
319 #endif
320
321 struct pool_item {
322 #ifdef POOL_CHECK_MAGIC
323 u_int pi_magic;
324 #endif
325 #define PI_MAGIC 0xdeaddeadU
326 /* Other entries use only this list entry */
327 LIST_ENTRY(pool_item) pi_list;
328 };
329
330 #define POOL_NEEDS_CATCHUP(pp) \
331 ((pp)->pr_nitems < (pp)->pr_minitems || \
332 (pp)->pr_npages < (pp)->pr_minpages)
333 #define POOL_OBJ_TO_PAGE(pp, v) \
334 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
335
336 /*
337 * Pool cache management.
338 *
339 * Pool caches provide a way for constructed objects to be cached by the
340 * pool subsystem. This can lead to performance improvements by avoiding
341 * needless object construction/destruction; it is deferred until absolutely
342 * necessary.
343 *
344 * Caches are grouped into cache groups. Each cache group references up
345 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
346 * object from the pool, it calls the object's constructor and places it
347 * into a cache group. When a cache group frees an object back to the
348 * pool, it first calls the object's destructor. This allows the object
349 * to persist in constructed form while freed to the cache.
350 *
351 * The pool references each cache, so that when a pool is drained by the
352 * pagedaemon, it can drain each individual cache as well. Each time a
353 * cache is drained, the most idle cache group is freed to the pool in
354 * its entirety.
355 *
356 * Pool caches are laid on top of pools. By layering them, we can avoid
357 * the complexity of cache management for pools which would not benefit
358 * from it.
359 */
360
361 static struct pool pcg_normal_pool;
362 static struct pool pcg_large_pool;
363 static struct pool cache_pool;
364 static struct pool cache_cpu_pool;
365
366 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
367 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
368
369 /* List of all caches. */
370 TAILQ_HEAD(,pool_cache) pool_cache_head =
371 TAILQ_HEAD_INITIALIZER(pool_cache_head);
372
373 int pool_cache_disable; /* global disable for caching */
374 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
375
376 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
377 void *);
378 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
379 void **, paddr_t *, int);
380 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
381 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
382 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
383 static void pool_cache_transfer(pool_cache_t);
384 static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
385 static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
386 static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
387
388 static int pool_catchup(struct pool *);
389 static void pool_prime_page(struct pool *, void *,
390 struct pool_item_header *);
391 static void pool_update_curpage(struct pool *);
392
393 static int pool_grow(struct pool *, int);
394 static void *pool_allocator_alloc(struct pool *, int);
395 static void pool_allocator_free(struct pool *, void *);
396
397 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
398 void (*)(const char *, ...) __printflike(1, 2));
399 static void pool_print1(struct pool *, const char *,
400 void (*)(const char *, ...) __printflike(1, 2));
401
402 static int pool_chk_page(struct pool *, const char *,
403 struct pool_item_header *);
404
405 /* -------------------------------------------------------------------------- */
406
407 static inline unsigned int
408 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
409 const void *v)
410 {
411 const char *cp = v;
412 unsigned int idx;
413
414 KASSERT(pp->pr_roflags & PR_USEBMAP);
415 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
416
417 if (__predict_false(idx >= pp->pr_itemsperpage)) {
418 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
419 pp->pr_itemsperpage);
420 }
421
422 return idx;
423 }
424
425 static inline void
426 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
427 void *obj)
428 {
429 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
430 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
431 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
432
433 if (__predict_false((*bitmap & mask) != 0)) {
434 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
435 }
436
437 *bitmap |= mask;
438 }
439
440 static inline void *
441 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
442 {
443 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
444 unsigned int idx;
445 int i;
446
447 for (i = 0; ; i++) {
448 int bit;
449
450 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
451 bit = ffs32(bitmap[i]);
452 if (bit) {
453 pool_item_bitmap_t mask;
454
455 bit--;
456 idx = (i * BITMAP_SIZE) + bit;
457 mask = 1U << bit;
458 KASSERT((bitmap[i] & mask) != 0);
459 bitmap[i] &= ~mask;
460 break;
461 }
462 }
463 KASSERT(idx < pp->pr_itemsperpage);
464 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
465 }
466
467 static inline void
468 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
469 {
470 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
471 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
472 int i;
473
474 for (i = 0; i < n; i++) {
475 bitmap[i] = (pool_item_bitmap_t)-1;
476 }
477 }
478
479 /* -------------------------------------------------------------------------- */
480
481 static inline void
482 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
483 void *obj)
484 {
485 struct pool_item *pi = obj;
486
487 KASSERT(!pp_has_pser(pp));
488
489 #ifdef POOL_CHECK_MAGIC
490 pi->pi_magic = PI_MAGIC;
491 #endif
492
493 if (pp->pr_redzone) {
494 /*
495 * Mark the pool_item as valid. The rest is already
496 * invalid.
497 */
498 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
499 }
500
501 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
502 }
503
504 static inline void *
505 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
506 {
507 struct pool_item *pi;
508 void *v;
509
510 v = pi = LIST_FIRST(&ph->ph_itemlist);
511 if (__predict_false(v == NULL)) {
512 mutex_exit(&pp->pr_lock);
513 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
514 }
515 KASSERTMSG((pp->pr_nitems > 0),
516 "%s: [%s] nitems %u inconsistent on itemlist",
517 __func__, pp->pr_wchan, pp->pr_nitems);
518 #ifdef POOL_CHECK_MAGIC
519 KASSERTMSG((pi->pi_magic == PI_MAGIC),
520 "%s: [%s] free list modified: "
521 "magic=%x; page %p; item addr %p", __func__,
522 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
523 #endif
524
525 /*
526 * Remove from item list.
527 */
528 LIST_REMOVE(pi, pi_list);
529
530 return v;
531 }
532
533 /* -------------------------------------------------------------------------- */
534
535 static inline void
536 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
537 void *object)
538 {
539 if (__predict_false((void *)ph->ph_page != page)) {
540 panic("%s: [%s] item %p not part of pool", __func__,
541 pp->pr_wchan, object);
542 }
543 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
544 panic("%s: [%s] item %p below item space", __func__,
545 pp->pr_wchan, object);
546 }
547 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
548 panic("%s: [%s] item %p poolid %u != %u", __func__,
549 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
550 }
551 }
552
553 static inline void
554 pc_phinpage_check(pool_cache_t pc, void *object)
555 {
556 struct pool_item_header *ph;
557 struct pool *pp;
558 void *page;
559
560 pp = &pc->pc_pool;
561 page = POOL_OBJ_TO_PAGE(pp, object);
562 ph = (struct pool_item_header *)page;
563
564 pr_phinpage_check(pp, ph, page, object);
565 }
566
567 /* -------------------------------------------------------------------------- */
568
569 static inline int
570 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
571 {
572
573 /*
574 * We consider pool_item_header with smaller ph_page bigger. This
575 * unnatural ordering is for the benefit of pr_find_pagehead.
576 */
577 if (a->ph_page < b->ph_page)
578 return 1;
579 else if (a->ph_page > b->ph_page)
580 return -1;
581 else
582 return 0;
583 }
584
585 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
586 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
587
588 static inline struct pool_item_header *
589 pr_find_pagehead_noalign(struct pool *pp, void *v)
590 {
591 struct pool_item_header *ph, tmp;
592
593 tmp.ph_page = (void *)(uintptr_t)v;
594 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
595 if (ph == NULL) {
596 ph = SPLAY_ROOT(&pp->pr_phtree);
597 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
598 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
599 }
600 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
601 }
602
603 return ph;
604 }
605
606 /*
607 * Return the pool page header based on item address.
608 */
609 static inline struct pool_item_header *
610 pr_find_pagehead(struct pool *pp, void *v)
611 {
612 struct pool_item_header *ph, tmp;
613
614 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
615 ph = pr_find_pagehead_noalign(pp, v);
616 } else {
617 void *page = POOL_OBJ_TO_PAGE(pp, v);
618 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
619 ph = (struct pool_item_header *)page;
620 pr_phinpage_check(pp, ph, page, v);
621 } else {
622 tmp.ph_page = page;
623 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
624 }
625 }
626
627 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
628 ((char *)ph->ph_page <= (char *)v &&
629 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
630 return ph;
631 }
632
633 static void
634 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
635 {
636 struct pool_item_header *ph;
637
638 while ((ph = LIST_FIRST(pq)) != NULL) {
639 LIST_REMOVE(ph, ph_pagelist);
640 pool_allocator_free(pp, ph->ph_page);
641 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
642 pool_put(pp->pr_phpool, ph);
643 }
644 }
645
646 /*
647 * Remove a page from the pool.
648 */
649 static inline void
650 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
651 struct pool_pagelist *pq)
652 {
653
654 KASSERT(mutex_owned(&pp->pr_lock));
655
656 /*
657 * If the page was idle, decrement the idle page count.
658 */
659 if (ph->ph_nmissing == 0) {
660 KASSERT(pp->pr_nidle != 0);
661 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
662 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
663 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
664 pp->pr_nidle--;
665 }
666
667 pp->pr_nitems -= pp->pr_itemsperpage;
668
669 /*
670 * Unlink the page from the pool and queue it for release.
671 */
672 LIST_REMOVE(ph, ph_pagelist);
673 if (pp->pr_roflags & PR_PHINPAGE) {
674 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
675 panic("%s: [%s] ph %p poolid %u != %u",
676 __func__, pp->pr_wchan, ph, ph->ph_poolid,
677 pp->pr_poolid);
678 }
679 } else {
680 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
681 }
682 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
683
684 pp->pr_npages--;
685 pp->pr_npagefree++;
686
687 pool_update_curpage(pp);
688 }
689
690 /*
691 * Initialize all the pools listed in the "pools" link set.
692 */
693 void
694 pool_subsystem_init(void)
695 {
696 size_t size;
697 int idx;
698
699 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
700 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
701 cv_init(&pool_busy, "poolbusy");
702
703 /*
704 * Initialize private page header pool and cache magazine pool if we
705 * haven't done so yet.
706 */
707 for (idx = 0; idx < PHPOOL_MAX; idx++) {
708 static char phpool_names[PHPOOL_MAX][6+1+6+1];
709 int nelem;
710 size_t sz;
711
712 nelem = PHPOOL_FREELIST_NELEM(idx);
713 KASSERT(nelem != 0);
714 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
715 "phpool-%d", nelem);
716 sz = offsetof(struct pool_item_header,
717 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
718 pool_init(&phpool[idx], sz, 0, 0, 0,
719 phpool_names[idx], &pool_allocator_meta, IPL_VM);
720 }
721
722 size = sizeof(pcg_t) +
723 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
724 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
725 "pcgnormal", &pool_allocator_meta, IPL_VM);
726
727 size = sizeof(pcg_t) +
728 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
729 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
730 "pcglarge", &pool_allocator_meta, IPL_VM);
731
732 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
733 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
734
735 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
736 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
737 }
738
739 static inline bool
740 pool_init_is_phinpage(const struct pool *pp)
741 {
742 size_t pagesize;
743
744 if (pp->pr_roflags & PR_PHINPAGE) {
745 return true;
746 }
747 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
748 return false;
749 }
750
751 pagesize = pp->pr_alloc->pa_pagesz;
752
753 /*
754 * Threshold: the item size is below 1/16 of a page size, and below
755 * 8 times the page header size. The latter ensures we go off-page
756 * if the page header would make us waste a rather big item.
757 */
758 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
759 return true;
760 }
761
762 /* Put the header into the page if it doesn't waste any items. */
763 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
764 return true;
765 }
766
767 return false;
768 }
769
770 static inline bool
771 pool_init_is_usebmap(const struct pool *pp)
772 {
773 size_t bmapsize;
774
775 if (pp->pr_roflags & PR_NOTOUCH) {
776 return true;
777 }
778
779 /*
780 * If we're off-page, go with a bitmap.
781 */
782 if (!(pp->pr_roflags & PR_PHINPAGE)) {
783 return true;
784 }
785
786 /*
787 * If we're on-page, and the page header can already contain a bitmap
788 * big enough to cover all the items of the page, go with a bitmap.
789 */
790 bmapsize = roundup(PHSIZE, pp->pr_align) -
791 offsetof(struct pool_item_header, ph_bitmap[0]);
792 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
793 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
794 return true;
795 }
796
797 return false;
798 }
799
800 /*
801 * Initialize the given pool resource structure.
802 *
803 * We export this routine to allow other kernel parts to declare
804 * static pools that must be initialized before kmem(9) is available.
805 */
806 void
807 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
808 const char *wchan, struct pool_allocator *palloc, int ipl)
809 {
810 struct pool *pp1;
811 size_t prsize;
812 int itemspace, slack;
813
814 /* XXX ioff will be removed. */
815 KASSERT(ioff == 0);
816
817 #ifdef DEBUG
818 if (__predict_true(!cold))
819 mutex_enter(&pool_head_lock);
820 /*
821 * Check that the pool hasn't already been initialised and
822 * added to the list of all pools.
823 */
824 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
825 if (pp == pp1)
826 panic("%s: [%s] already initialised", __func__,
827 wchan);
828 }
829 if (__predict_true(!cold))
830 mutex_exit(&pool_head_lock);
831 #endif
832
833 if (palloc == NULL)
834 palloc = &pool_allocator_kmem;
835
836 if (!cold)
837 mutex_enter(&pool_allocator_lock);
838 if (palloc->pa_refcnt++ == 0) {
839 if (palloc->pa_pagesz == 0)
840 palloc->pa_pagesz = PAGE_SIZE;
841
842 TAILQ_INIT(&palloc->pa_list);
843
844 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
845 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
846 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
847 }
848 if (!cold)
849 mutex_exit(&pool_allocator_lock);
850
851 /*
852 * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
853 * valid until the the backing page is returned to the system.
854 */
855 if (flags & PR_PSERIALIZE) {
856 flags |= PR_NOTOUCH;
857 }
858
859 if (align == 0)
860 align = ALIGN(1);
861
862 prsize = size;
863 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
864 prsize = sizeof(struct pool_item);
865
866 prsize = roundup(prsize, align);
867 KASSERTMSG((prsize <= palloc->pa_pagesz),
868 "%s: [%s] pool item size (%zu) larger than page size (%u)",
869 __func__, wchan, prsize, palloc->pa_pagesz);
870
871 /*
872 * Initialize the pool structure.
873 */
874 LIST_INIT(&pp->pr_emptypages);
875 LIST_INIT(&pp->pr_fullpages);
876 LIST_INIT(&pp->pr_partpages);
877 pp->pr_cache = NULL;
878 pp->pr_curpage = NULL;
879 pp->pr_npages = 0;
880 pp->pr_minitems = 0;
881 pp->pr_minpages = 0;
882 pp->pr_maxitems = UINT_MAX;
883 pp->pr_maxpages = UINT_MAX;
884 pp->pr_roflags = flags;
885 pp->pr_flags = 0;
886 pp->pr_size = prsize;
887 pp->pr_reqsize = size;
888 pp->pr_align = align;
889 pp->pr_wchan = wchan;
890 pp->pr_alloc = palloc;
891 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
892 pp->pr_nitems = 0;
893 pp->pr_nout = 0;
894 pp->pr_hardlimit = UINT_MAX;
895 pp->pr_hardlimit_warning = NULL;
896 pp->pr_hardlimit_ratecap.tv_sec = 0;
897 pp->pr_hardlimit_ratecap.tv_usec = 0;
898 pp->pr_hardlimit_warning_last.tv_sec = 0;
899 pp->pr_hardlimit_warning_last.tv_usec = 0;
900 pp->pr_drain_hook = NULL;
901 pp->pr_drain_hook_arg = NULL;
902 pp->pr_freecheck = NULL;
903 pp->pr_redzone = false;
904 pool_redzone_init(pp, size);
905 pool_quarantine_init(pp);
906
907 /*
908 * Decide whether to put the page header off-page to avoid wasting too
909 * large a part of the page or too big an item. Off-page page headers
910 * go on a hash table, so we can match a returned item with its header
911 * based on the page address.
912 */
913 if (pool_init_is_phinpage(pp)) {
914 /* Use the beginning of the page for the page header */
915 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
916 pp->pr_itemoffset = roundup(PHSIZE, align);
917 pp->pr_roflags |= PR_PHINPAGE;
918 } else {
919 /* The page header will be taken from our page header pool */
920 itemspace = palloc->pa_pagesz;
921 pp->pr_itemoffset = 0;
922 SPLAY_INIT(&pp->pr_phtree);
923 }
924
925 pp->pr_itemsperpage = itemspace / pp->pr_size;
926 KASSERT(pp->pr_itemsperpage != 0);
927
928 /*
929 * Decide whether to use a bitmap or a linked list to manage freed
930 * items.
931 */
932 if (pool_init_is_usebmap(pp)) {
933 pp->pr_roflags |= PR_USEBMAP;
934 }
935
936 /*
937 * If we're off-page, then we're using a bitmap; choose the appropriate
938 * pool to allocate page headers, whose size varies depending on the
939 * bitmap. If we're on-page, nothing to do.
940 */
941 if (!(pp->pr_roflags & PR_PHINPAGE)) {
942 int idx;
943
944 KASSERT(pp->pr_roflags & PR_USEBMAP);
945
946 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
947 idx++) {
948 /* nothing */
949 }
950 if (idx >= PHPOOL_MAX) {
951 /*
952 * if you see this panic, consider to tweak
953 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
954 */
955 panic("%s: [%s] too large itemsperpage(%d) for "
956 "PR_USEBMAP", __func__,
957 pp->pr_wchan, pp->pr_itemsperpage);
958 }
959 pp->pr_phpool = &phpool[idx];
960 } else {
961 pp->pr_phpool = NULL;
962 }
963
964 /*
965 * Use the slack between the chunks and the page header
966 * for "cache coloring".
967 */
968 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
969 pp->pr_maxcolor = rounddown(slack, align);
970 pp->pr_curcolor = 0;
971
972 pp->pr_nget = 0;
973 pp->pr_nfail = 0;
974 pp->pr_nput = 0;
975 pp->pr_npagealloc = 0;
976 pp->pr_npagefree = 0;
977 pp->pr_hiwat = 0;
978 pp->pr_nidle = 0;
979 pp->pr_refcnt = 0;
980
981 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
982 cv_init(&pp->pr_cv, wchan);
983 pp->pr_ipl = ipl;
984
985 /* Insert into the list of all pools. */
986 if (!cold)
987 mutex_enter(&pool_head_lock);
988 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
989 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
990 break;
991 }
992 if (pp1 == NULL)
993 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
994 else
995 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
996 if (!cold)
997 mutex_exit(&pool_head_lock);
998
999 /* Insert this into the list of pools using this allocator. */
1000 if (!cold)
1001 mutex_enter(&palloc->pa_lock);
1002 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
1003 if (!cold)
1004 mutex_exit(&palloc->pa_lock);
1005 }
1006
1007 /*
1008 * De-commission a pool resource.
1009 */
1010 void
1011 pool_destroy(struct pool *pp)
1012 {
1013 struct pool_pagelist pq;
1014 struct pool_item_header *ph;
1015
1016 pool_quarantine_flush(pp);
1017
1018 /* Remove from global pool list */
1019 mutex_enter(&pool_head_lock);
1020 while (pp->pr_refcnt != 0)
1021 cv_wait(&pool_busy, &pool_head_lock);
1022 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1023 if (drainpp == pp)
1024 drainpp = NULL;
1025 mutex_exit(&pool_head_lock);
1026
1027 /* Remove this pool from its allocator's list of pools. */
1028 mutex_enter(&pp->pr_alloc->pa_lock);
1029 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1030 mutex_exit(&pp->pr_alloc->pa_lock);
1031
1032 mutex_enter(&pool_allocator_lock);
1033 if (--pp->pr_alloc->pa_refcnt == 0)
1034 mutex_destroy(&pp->pr_alloc->pa_lock);
1035 mutex_exit(&pool_allocator_lock);
1036
1037 mutex_enter(&pp->pr_lock);
1038
1039 KASSERT(pp->pr_cache == NULL);
1040 KASSERTMSG((pp->pr_nout == 0),
1041 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1042 pp->pr_nout);
1043 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1044 KASSERT(LIST_EMPTY(&pp->pr_partpages));
1045
1046 /* Remove all pages */
1047 LIST_INIT(&pq);
1048 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1049 pr_rmpage(pp, ph, &pq);
1050
1051 mutex_exit(&pp->pr_lock);
1052
1053 pr_pagelist_free(pp, &pq);
1054 cv_destroy(&pp->pr_cv);
1055 mutex_destroy(&pp->pr_lock);
1056 }
1057
1058 void
1059 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1060 {
1061
1062 /* XXX no locking -- must be used just after pool_init() */
1063 KASSERTMSG((pp->pr_drain_hook == NULL),
1064 "%s: [%s] already set", __func__, pp->pr_wchan);
1065 pp->pr_drain_hook = fn;
1066 pp->pr_drain_hook_arg = arg;
1067 }
1068
1069 static struct pool_item_header *
1070 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1071 {
1072 struct pool_item_header *ph;
1073
1074 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1075 ph = storage;
1076 else
1077 ph = pool_get(pp->pr_phpool, flags);
1078
1079 return ph;
1080 }
1081
1082 /*
1083 * Grab an item from the pool.
1084 */
1085 void *
1086 pool_get(struct pool *pp, int flags)
1087 {
1088 struct pool_item_header *ph;
1089 void *v;
1090
1091 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1092 KASSERTMSG((pp->pr_itemsperpage != 0),
1093 "%s: [%s] pr_itemsperpage is zero, "
1094 "pool not initialized?", __func__, pp->pr_wchan);
1095 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1096 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1097 "%s: [%s] is IPL_NONE, but called from interrupt context",
1098 __func__, pp->pr_wchan);
1099 if (flags & PR_WAITOK) {
1100 ASSERT_SLEEPABLE();
1101 }
1102
1103 if (flags & PR_NOWAIT) {
1104 if (fault_inject())
1105 return NULL;
1106 }
1107
1108 mutex_enter(&pp->pr_lock);
1109 startover:
1110 /*
1111 * Check to see if we've reached the hard limit. If we have,
1112 * and we can wait, then wait until an item has been returned to
1113 * the pool.
1114 */
1115 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1116 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1117 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1118 if (pp->pr_drain_hook != NULL) {
1119 /*
1120 * Since the drain hook is going to free things
1121 * back to the pool, unlock, call the hook, re-lock,
1122 * and check the hardlimit condition again.
1123 */
1124 mutex_exit(&pp->pr_lock);
1125 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1126 mutex_enter(&pp->pr_lock);
1127 if (pp->pr_nout < pp->pr_hardlimit)
1128 goto startover;
1129 }
1130
1131 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1132 /*
1133 * XXX: A warning isn't logged in this case. Should
1134 * it be?
1135 */
1136 pp->pr_flags |= PR_WANTED;
1137 do {
1138 cv_wait(&pp->pr_cv, &pp->pr_lock);
1139 } while (pp->pr_flags & PR_WANTED);
1140 goto startover;
1141 }
1142
1143 /*
1144 * Log a message that the hard limit has been hit.
1145 */
1146 if (pp->pr_hardlimit_warning != NULL &&
1147 ratecheck(&pp->pr_hardlimit_warning_last,
1148 &pp->pr_hardlimit_ratecap))
1149 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1150
1151 pp->pr_nfail++;
1152
1153 mutex_exit(&pp->pr_lock);
1154 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1155 return NULL;
1156 }
1157
1158 /*
1159 * The convention we use is that if `curpage' is not NULL, then
1160 * it points at a non-empty bucket. In particular, `curpage'
1161 * never points at a page header which has PR_PHINPAGE set and
1162 * has no items in its bucket.
1163 */
1164 if ((ph = pp->pr_curpage) == NULL) {
1165 int error;
1166
1167 KASSERTMSG((pp->pr_nitems == 0),
1168 "%s: [%s] curpage NULL, inconsistent nitems %u",
1169 __func__, pp->pr_wchan, pp->pr_nitems);
1170
1171 /*
1172 * Call the back-end page allocator for more memory.
1173 * Release the pool lock, as the back-end page allocator
1174 * may block.
1175 */
1176 error = pool_grow(pp, flags);
1177 if (error != 0) {
1178 /*
1179 * pool_grow aborts when another thread
1180 * is allocating a new page. Retry if it
1181 * waited for it.
1182 */
1183 if (error == ERESTART)
1184 goto startover;
1185
1186 /*
1187 * We were unable to allocate a page or item
1188 * header, but we released the lock during
1189 * allocation, so perhaps items were freed
1190 * back to the pool. Check for this case.
1191 */
1192 if (pp->pr_curpage != NULL)
1193 goto startover;
1194
1195 pp->pr_nfail++;
1196 mutex_exit(&pp->pr_lock);
1197 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1198 return NULL;
1199 }
1200
1201 /* Start the allocation process over. */
1202 goto startover;
1203 }
1204 if (pp->pr_roflags & PR_USEBMAP) {
1205 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1206 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1207 v = pr_item_bitmap_get(pp, ph);
1208 } else {
1209 v = pr_item_linkedlist_get(pp, ph);
1210 }
1211 pp->pr_nitems--;
1212 pp->pr_nout++;
1213 if (ph->ph_nmissing == 0) {
1214 KASSERT(pp->pr_nidle > 0);
1215 pp->pr_nidle--;
1216
1217 /*
1218 * This page was previously empty. Move it to the list of
1219 * partially-full pages. This page is already curpage.
1220 */
1221 LIST_REMOVE(ph, ph_pagelist);
1222 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1223 }
1224 ph->ph_nmissing++;
1225 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1226 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1227 LIST_EMPTY(&ph->ph_itemlist)),
1228 "%s: [%s] nmissing (%u) inconsistent", __func__,
1229 pp->pr_wchan, ph->ph_nmissing);
1230 /*
1231 * This page is now full. Move it to the full list
1232 * and select a new current page.
1233 */
1234 LIST_REMOVE(ph, ph_pagelist);
1235 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1236 pool_update_curpage(pp);
1237 }
1238
1239 pp->pr_nget++;
1240
1241 /*
1242 * If we have a low water mark and we are now below that low
1243 * water mark, add more items to the pool.
1244 */
1245 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1246 /*
1247 * XXX: Should we log a warning? Should we set up a timeout
1248 * to try again in a second or so? The latter could break
1249 * a caller's assumptions about interrupt protection, etc.
1250 */
1251 }
1252
1253 mutex_exit(&pp->pr_lock);
1254 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1255 FREECHECK_OUT(&pp->pr_freecheck, v);
1256 pool_redzone_fill(pp, v);
1257 pool_get_kmsan(pp, v);
1258 if (flags & PR_ZERO)
1259 memset(v, 0, pp->pr_reqsize);
1260 return v;
1261 }
1262
1263 /*
1264 * Internal version of pool_put(). Pool is already locked/entered.
1265 */
1266 static void
1267 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1268 {
1269 struct pool_item_header *ph;
1270
1271 KASSERT(mutex_owned(&pp->pr_lock));
1272 pool_redzone_check(pp, v);
1273 pool_put_kmsan(pp, v);
1274 FREECHECK_IN(&pp->pr_freecheck, v);
1275 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1276
1277 KASSERTMSG((pp->pr_nout > 0),
1278 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1279
1280 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1281 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1282 }
1283
1284 /*
1285 * Return to item list.
1286 */
1287 if (pp->pr_roflags & PR_USEBMAP) {
1288 pr_item_bitmap_put(pp, ph, v);
1289 } else {
1290 pr_item_linkedlist_put(pp, ph, v);
1291 }
1292 KDASSERT(ph->ph_nmissing != 0);
1293 ph->ph_nmissing--;
1294 pp->pr_nput++;
1295 pp->pr_nitems++;
1296 pp->pr_nout--;
1297
1298 /* Cancel "pool empty" condition if it exists */
1299 if (pp->pr_curpage == NULL)
1300 pp->pr_curpage = ph;
1301
1302 if (pp->pr_flags & PR_WANTED) {
1303 pp->pr_flags &= ~PR_WANTED;
1304 cv_broadcast(&pp->pr_cv);
1305 }
1306
1307 /*
1308 * If this page is now empty, do one of two things:
1309 *
1310 * (1) If we have more pages than the page high water mark,
1311 * free the page back to the system. ONLY CONSIDER
1312 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1313 * CLAIM.
1314 *
1315 * (2) Otherwise, move the page to the empty page list.
1316 *
1317 * Either way, select a new current page (so we use a partially-full
1318 * page if one is available).
1319 */
1320 if (ph->ph_nmissing == 0) {
1321 pp->pr_nidle++;
1322 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1323 pp->pr_npages > pp->pr_minpages &&
1324 (pp->pr_npages > pp->pr_maxpages ||
1325 pp->pr_nitems > pp->pr_maxitems)) {
1326 pr_rmpage(pp, ph, pq);
1327 } else {
1328 LIST_REMOVE(ph, ph_pagelist);
1329 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1330
1331 /*
1332 * Update the timestamp on the page. A page must
1333 * be idle for some period of time before it can
1334 * be reclaimed by the pagedaemon. This minimizes
1335 * ping-pong'ing for memory.
1336 *
1337 * note for 64-bit time_t: truncating to 32-bit is not
1338 * a problem for our usage.
1339 */
1340 ph->ph_time = time_uptime;
1341 }
1342 pool_update_curpage(pp);
1343 }
1344
1345 /*
1346 * If the page was previously completely full, move it to the
1347 * partially-full list and make it the current page. The next
1348 * allocation will get the item from this page, instead of
1349 * further fragmenting the pool.
1350 */
1351 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1352 LIST_REMOVE(ph, ph_pagelist);
1353 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1354 pp->pr_curpage = ph;
1355 }
1356 }
1357
1358 void
1359 pool_put(struct pool *pp, void *v)
1360 {
1361 struct pool_pagelist pq;
1362
1363 LIST_INIT(&pq);
1364
1365 mutex_enter(&pp->pr_lock);
1366 if (!pool_put_quarantine(pp, v, &pq)) {
1367 pool_do_put(pp, v, &pq);
1368 }
1369 mutex_exit(&pp->pr_lock);
1370
1371 pr_pagelist_free(pp, &pq);
1372 }
1373
1374 /*
1375 * pool_grow: grow a pool by a page.
1376 *
1377 * => called with pool locked.
1378 * => unlock and relock the pool.
1379 * => return with pool locked.
1380 */
1381
1382 static int
1383 pool_grow(struct pool *pp, int flags)
1384 {
1385 struct pool_item_header *ph;
1386 char *storage;
1387
1388 /*
1389 * If there's a pool_grow in progress, wait for it to complete
1390 * and try again from the top.
1391 */
1392 if (pp->pr_flags & PR_GROWING) {
1393 if (flags & PR_WAITOK) {
1394 do {
1395 cv_wait(&pp->pr_cv, &pp->pr_lock);
1396 } while (pp->pr_flags & PR_GROWING);
1397 return ERESTART;
1398 } else {
1399 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1400 /*
1401 * This needs an unlock/relock dance so
1402 * that the other caller has a chance to
1403 * run and actually do the thing. Note
1404 * that this is effectively a busy-wait.
1405 */
1406 mutex_exit(&pp->pr_lock);
1407 mutex_enter(&pp->pr_lock);
1408 return ERESTART;
1409 }
1410 return EWOULDBLOCK;
1411 }
1412 }
1413 pp->pr_flags |= PR_GROWING;
1414 if (flags & PR_WAITOK)
1415 mutex_exit(&pp->pr_lock);
1416 else
1417 pp->pr_flags |= PR_GROWINGNOWAIT;
1418
1419 storage = pool_allocator_alloc(pp, flags);
1420 if (__predict_false(storage == NULL))
1421 goto out;
1422
1423 ph = pool_alloc_item_header(pp, storage, flags);
1424 if (__predict_false(ph == NULL)) {
1425 pool_allocator_free(pp, storage);
1426 goto out;
1427 }
1428
1429 if (flags & PR_WAITOK)
1430 mutex_enter(&pp->pr_lock);
1431 pool_prime_page(pp, storage, ph);
1432 pp->pr_npagealloc++;
1433 KASSERT(pp->pr_flags & PR_GROWING);
1434 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1435 /*
1436 * If anyone was waiting for pool_grow, notify them that we
1437 * may have just done it.
1438 */
1439 cv_broadcast(&pp->pr_cv);
1440 return 0;
1441 out:
1442 if (flags & PR_WAITOK)
1443 mutex_enter(&pp->pr_lock);
1444 KASSERT(pp->pr_flags & PR_GROWING);
1445 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1446 return ENOMEM;
1447 }
1448
1449 void
1450 pool_prime(struct pool *pp, int n)
1451 {
1452
1453 mutex_enter(&pp->pr_lock);
1454 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1455 if (pp->pr_maxpages <= pp->pr_minpages)
1456 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1457 while (pp->pr_npages < pp->pr_minpages)
1458 (void) pool_grow(pp, PR_WAITOK);
1459 mutex_exit(&pp->pr_lock);
1460 }
1461
1462 /*
1463 * Add a page worth of items to the pool.
1464 *
1465 * Note, we must be called with the pool descriptor LOCKED.
1466 */
1467 static void
1468 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1469 {
1470 const unsigned int align = pp->pr_align;
1471 struct pool_item *pi;
1472 void *cp = storage;
1473 int n;
1474
1475 KASSERT(mutex_owned(&pp->pr_lock));
1476 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1477 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1478 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1479
1480 /*
1481 * Insert page header.
1482 */
1483 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1484 LIST_INIT(&ph->ph_itemlist);
1485 ph->ph_page = storage;
1486 ph->ph_nmissing = 0;
1487 ph->ph_time = time_uptime;
1488 if (pp->pr_roflags & PR_PHINPAGE)
1489 ph->ph_poolid = pp->pr_poolid;
1490 else
1491 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1492
1493 pp->pr_nidle++;
1494
1495 /*
1496 * The item space starts after the on-page header, if any.
1497 */
1498 ph->ph_off = pp->pr_itemoffset;
1499
1500 /*
1501 * Color this page.
1502 */
1503 ph->ph_off += pp->pr_curcolor;
1504 cp = (char *)cp + ph->ph_off;
1505 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1506 pp->pr_curcolor = 0;
1507
1508 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1509
1510 /*
1511 * Insert remaining chunks on the bucket list.
1512 */
1513 n = pp->pr_itemsperpage;
1514 pp->pr_nitems += n;
1515
1516 if (pp->pr_roflags & PR_USEBMAP) {
1517 pr_item_bitmap_init(pp, ph);
1518 } else {
1519 while (n--) {
1520 pi = (struct pool_item *)cp;
1521
1522 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1523
1524 /* Insert on page list */
1525 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1526 #ifdef POOL_CHECK_MAGIC
1527 pi->pi_magic = PI_MAGIC;
1528 #endif
1529 cp = (char *)cp + pp->pr_size;
1530
1531 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1532 }
1533 }
1534
1535 /*
1536 * If the pool was depleted, point at the new page.
1537 */
1538 if (pp->pr_curpage == NULL)
1539 pp->pr_curpage = ph;
1540
1541 if (++pp->pr_npages > pp->pr_hiwat)
1542 pp->pr_hiwat = pp->pr_npages;
1543 }
1544
1545 /*
1546 * Used by pool_get() when nitems drops below the low water mark. This
1547 * is used to catch up pr_nitems with the low water mark.
1548 *
1549 * Note 1, we never wait for memory here, we let the caller decide what to do.
1550 *
1551 * Note 2, we must be called with the pool already locked, and we return
1552 * with it locked.
1553 */
1554 static int
1555 pool_catchup(struct pool *pp)
1556 {
1557 int error = 0;
1558
1559 while (POOL_NEEDS_CATCHUP(pp)) {
1560 error = pool_grow(pp, PR_NOWAIT);
1561 if (error) {
1562 if (error == ERESTART)
1563 continue;
1564 break;
1565 }
1566 }
1567 return error;
1568 }
1569
1570 static void
1571 pool_update_curpage(struct pool *pp)
1572 {
1573
1574 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1575 if (pp->pr_curpage == NULL) {
1576 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1577 }
1578 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1579 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1580 }
1581
1582 void
1583 pool_setlowat(struct pool *pp, int n)
1584 {
1585
1586 mutex_enter(&pp->pr_lock);
1587 pp->pr_minitems = n;
1588
1589 /* Make sure we're caught up with the newly-set low water mark. */
1590 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1591 /*
1592 * XXX: Should we log a warning? Should we set up a timeout
1593 * to try again in a second or so? The latter could break
1594 * a caller's assumptions about interrupt protection, etc.
1595 */
1596 }
1597
1598 mutex_exit(&pp->pr_lock);
1599 }
1600
1601 void
1602 pool_sethiwat(struct pool *pp, int n)
1603 {
1604
1605 mutex_enter(&pp->pr_lock);
1606
1607 pp->pr_maxitems = n;
1608
1609 mutex_exit(&pp->pr_lock);
1610 }
1611
1612 void
1613 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1614 {
1615
1616 mutex_enter(&pp->pr_lock);
1617
1618 pp->pr_hardlimit = n;
1619 pp->pr_hardlimit_warning = warnmess;
1620 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1621 pp->pr_hardlimit_warning_last.tv_sec = 0;
1622 pp->pr_hardlimit_warning_last.tv_usec = 0;
1623
1624 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1625
1626 mutex_exit(&pp->pr_lock);
1627 }
1628
1629 unsigned int
1630 pool_nget(struct pool *pp)
1631 {
1632
1633 return pp->pr_nget;
1634 }
1635
1636 unsigned int
1637 pool_nput(struct pool *pp)
1638 {
1639
1640 return pp->pr_nput;
1641 }
1642
1643 /*
1644 * Release all complete pages that have not been used recently.
1645 *
1646 * Must not be called from interrupt context.
1647 */
1648 int
1649 pool_reclaim(struct pool *pp)
1650 {
1651 struct pool_item_header *ph, *phnext;
1652 struct pool_pagelist pq;
1653 struct pool_cache *pc;
1654 uint32_t curtime;
1655 bool klock;
1656 int rv;
1657
1658 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1659
1660 if (pp->pr_drain_hook != NULL) {
1661 /*
1662 * The drain hook must be called with the pool unlocked.
1663 */
1664 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1665 }
1666
1667 /*
1668 * XXXSMP Because we do not want to cause non-MPSAFE code
1669 * to block.
1670 */
1671 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1672 pp->pr_ipl == IPL_SOFTSERIAL) {
1673 KERNEL_LOCK(1, NULL);
1674 klock = true;
1675 } else
1676 klock = false;
1677
1678 /* Reclaim items from the pool's cache (if any). */
1679 if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL)
1680 pool_cache_invalidate(pc);
1681
1682 if (mutex_tryenter(&pp->pr_lock) == 0) {
1683 if (klock) {
1684 KERNEL_UNLOCK_ONE(NULL);
1685 }
1686 return 0;
1687 }
1688
1689 LIST_INIT(&pq);
1690
1691 curtime = time_uptime;
1692
1693 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1694 phnext = LIST_NEXT(ph, ph_pagelist);
1695
1696 /* Check our minimum page claim */
1697 if (pp->pr_npages <= pp->pr_minpages)
1698 break;
1699
1700 KASSERT(ph->ph_nmissing == 0);
1701 if (curtime - ph->ph_time < pool_inactive_time)
1702 continue;
1703
1704 /*
1705 * If freeing this page would put us below the minimum free items
1706 * or the minimum pages, stop now.
1707 */
1708 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1709 pp->pr_npages - 1 < pp->pr_minpages)
1710 break;
1711
1712 pr_rmpage(pp, ph, &pq);
1713 }
1714
1715 mutex_exit(&pp->pr_lock);
1716
1717 if (LIST_EMPTY(&pq))
1718 rv = 0;
1719 else {
1720 pr_pagelist_free(pp, &pq);
1721 rv = 1;
1722 }
1723
1724 if (klock) {
1725 KERNEL_UNLOCK_ONE(NULL);
1726 }
1727
1728 return rv;
1729 }
1730
1731 /*
1732 * Drain pools, one at a time. The drained pool is returned within ppp.
1733 *
1734 * Note, must never be called from interrupt context.
1735 */
1736 bool
1737 pool_drain(struct pool **ppp)
1738 {
1739 bool reclaimed;
1740 struct pool *pp;
1741
1742 KASSERT(!TAILQ_EMPTY(&pool_head));
1743
1744 pp = NULL;
1745
1746 /* Find next pool to drain, and add a reference. */
1747 mutex_enter(&pool_head_lock);
1748 do {
1749 if (drainpp == NULL) {
1750 drainpp = TAILQ_FIRST(&pool_head);
1751 }
1752 if (drainpp != NULL) {
1753 pp = drainpp;
1754 drainpp = TAILQ_NEXT(pp, pr_poollist);
1755 }
1756 /*
1757 * Skip completely idle pools. We depend on at least
1758 * one pool in the system being active.
1759 */
1760 } while (pp == NULL || pp->pr_npages == 0);
1761 pp->pr_refcnt++;
1762 mutex_exit(&pool_head_lock);
1763
1764 /* Drain the cache (if any) and pool.. */
1765 reclaimed = pool_reclaim(pp);
1766
1767 /* Finally, unlock the pool. */
1768 mutex_enter(&pool_head_lock);
1769 pp->pr_refcnt--;
1770 cv_broadcast(&pool_busy);
1771 mutex_exit(&pool_head_lock);
1772
1773 if (ppp != NULL)
1774 *ppp = pp;
1775
1776 return reclaimed;
1777 }
1778
1779 /*
1780 * Calculate the total number of pages consumed by pools.
1781 */
1782 int
1783 pool_totalpages(void)
1784 {
1785
1786 mutex_enter(&pool_head_lock);
1787 int pages = pool_totalpages_locked();
1788 mutex_exit(&pool_head_lock);
1789
1790 return pages;
1791 }
1792
1793 int
1794 pool_totalpages_locked(void)
1795 {
1796 struct pool *pp;
1797 uint64_t total = 0;
1798
1799 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1800 uint64_t bytes =
1801 (uint64_t)pp->pr_npages * pp->pr_alloc->pa_pagesz;
1802
1803 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1804 bytes -= ((uint64_t)pp->pr_nout * pp->pr_size);
1805 total += bytes;
1806 }
1807
1808 return atop(total);
1809 }
1810
1811 /*
1812 * Diagnostic helpers.
1813 */
1814
1815 void
1816 pool_printall(const char *modif, void (*pr)(const char *, ...))
1817 {
1818 struct pool *pp;
1819
1820 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1821 pool_printit(pp, modif, pr);
1822 }
1823 }
1824
1825 void
1826 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1827 {
1828
1829 if (pp == NULL) {
1830 (*pr)("Must specify a pool to print.\n");
1831 return;
1832 }
1833
1834 pool_print1(pp, modif, pr);
1835 }
1836
1837 static void
1838 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1839 void (*pr)(const char *, ...))
1840 {
1841 struct pool_item_header *ph;
1842
1843 LIST_FOREACH(ph, pl, ph_pagelist) {
1844 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1845 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1846 #ifdef POOL_CHECK_MAGIC
1847 struct pool_item *pi;
1848 if (!(pp->pr_roflags & PR_USEBMAP)) {
1849 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1850 if (pi->pi_magic != PI_MAGIC) {
1851 (*pr)("\t\t\titem %p, magic 0x%x\n",
1852 pi, pi->pi_magic);
1853 }
1854 }
1855 }
1856 #endif
1857 }
1858 }
1859
1860 static void
1861 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1862 {
1863 struct pool_item_header *ph;
1864 pool_cache_t pc;
1865 pcg_t *pcg;
1866 pool_cache_cpu_t *cc;
1867 uint64_t cpuhit, cpumiss, pchit, pcmiss;
1868 uint32_t nfull;
1869 int i;
1870 bool print_log = false, print_pagelist = false, print_cache = false;
1871 bool print_short = false, skip_empty = false;
1872 char c;
1873
1874 while ((c = *modif++) != '\0') {
1875 if (c == 'l')
1876 print_log = true;
1877 if (c == 'p')
1878 print_pagelist = true;
1879 if (c == 'c')
1880 print_cache = true;
1881 if (c == 's')
1882 print_short = true;
1883 if (c == 'S')
1884 skip_empty = true;
1885 }
1886
1887 if (skip_empty && pp->pr_nget == 0)
1888 return;
1889
1890 if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
1891 (*pr)("POOLCACHE");
1892 } else {
1893 (*pr)("POOL");
1894 }
1895
1896 /* Single line output. */
1897 if (print_short) {
1898 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u:%zu\n",
1899 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1900 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1901 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle,
1902 (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz);
1903 return;
1904 }
1905
1906 (*pr)(" %s: itemsize %u, totalmem %zu align %u, ioff %u, roflags 0x%08x\n",
1907 pp->pr_wchan, pp->pr_size,
1908 (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz,
1909 pp->pr_align, pp->pr_itemoffset, pp->pr_roflags);
1910 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1911 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1912 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1913 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1914 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1915
1916 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1917 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1918 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1919 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1920
1921 if (!print_pagelist)
1922 goto skip_pagelist;
1923
1924 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1925 (*pr)("\n\tempty page list:\n");
1926 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1927 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1928 (*pr)("\n\tfull page list:\n");
1929 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1930 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1931 (*pr)("\n\tpartial-page list:\n");
1932 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1933
1934 if (pp->pr_curpage == NULL)
1935 (*pr)("\tno current page\n");
1936 else
1937 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1938
1939 skip_pagelist:
1940 if (print_log)
1941 goto skip_log;
1942
1943 (*pr)("\n");
1944
1945 skip_log:
1946
1947 #define PR_GROUPLIST(pcg) \
1948 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1949 for (i = 0; i < pcg->pcg_size; i++) { \
1950 if (pcg->pcg_objects[i].pcgo_pa != \
1951 POOL_PADDR_INVALID) { \
1952 (*pr)("\t\t\t%p, 0x%llx\n", \
1953 pcg->pcg_objects[i].pcgo_va, \
1954 (unsigned long long) \
1955 pcg->pcg_objects[i].pcgo_pa); \
1956 } else { \
1957 (*pr)("\t\t\t%p\n", \
1958 pcg->pcg_objects[i].pcgo_va); \
1959 } \
1960 }
1961
1962 if (pc != NULL) {
1963 cpuhit = 0;
1964 cpumiss = 0;
1965 pcmiss = 0;
1966 nfull = 0;
1967 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1968 if ((cc = pc->pc_cpus[i]) == NULL)
1969 continue;
1970 cpuhit += cc->cc_hits;
1971 cpumiss += cc->cc_misses;
1972 pcmiss += cc->cc_pcmisses;
1973 nfull += cc->cc_nfull;
1974 }
1975 pchit = cpumiss - pcmiss;
1976 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1977 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1978 (*pr)("\tcache layer full groups %u\n", nfull);
1979 if (print_cache) {
1980 (*pr)("\tfull cache groups:\n");
1981 for (pcg = pc->pc_fullgroups; pcg != NULL;
1982 pcg = pcg->pcg_next) {
1983 PR_GROUPLIST(pcg);
1984 }
1985 }
1986 }
1987 #undef PR_GROUPLIST
1988 }
1989
1990 static int
1991 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1992 {
1993 struct pool_item *pi;
1994 void *page;
1995 int n;
1996
1997 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1998 page = POOL_OBJ_TO_PAGE(pp, ph);
1999 if (page != ph->ph_page &&
2000 (pp->pr_roflags & PR_PHINPAGE) != 0) {
2001 if (label != NULL)
2002 printf("%s: ", label);
2003 printf("pool(%p:%s): page inconsistency: page %p;"
2004 " at page head addr %p (p %p)\n", pp,
2005 pp->pr_wchan, ph->ph_page,
2006 ph, page);
2007 return 1;
2008 }
2009 }
2010
2011 if ((pp->pr_roflags & PR_USEBMAP) != 0)
2012 return 0;
2013
2014 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
2015 pi != NULL;
2016 pi = LIST_NEXT(pi,pi_list), n++) {
2017
2018 #ifdef POOL_CHECK_MAGIC
2019 if (pi->pi_magic != PI_MAGIC) {
2020 if (label != NULL)
2021 printf("%s: ", label);
2022 printf("pool(%s): free list modified: magic=%x;"
2023 " page %p; item ordinal %d; addr %p\n",
2024 pp->pr_wchan, pi->pi_magic, ph->ph_page,
2025 n, pi);
2026 panic("pool");
2027 }
2028 #endif
2029 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2030 continue;
2031 }
2032 page = POOL_OBJ_TO_PAGE(pp, pi);
2033 if (page == ph->ph_page)
2034 continue;
2035
2036 if (label != NULL)
2037 printf("%s: ", label);
2038 printf("pool(%p:%s): page inconsistency: page %p;"
2039 " item ordinal %d; addr %p (p %p)\n", pp,
2040 pp->pr_wchan, ph->ph_page,
2041 n, pi, page);
2042 return 1;
2043 }
2044 return 0;
2045 }
2046
2047
2048 int
2049 pool_chk(struct pool *pp, const char *label)
2050 {
2051 struct pool_item_header *ph;
2052 int r = 0;
2053
2054 mutex_enter(&pp->pr_lock);
2055 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2056 r = pool_chk_page(pp, label, ph);
2057 if (r) {
2058 goto out;
2059 }
2060 }
2061 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2062 r = pool_chk_page(pp, label, ph);
2063 if (r) {
2064 goto out;
2065 }
2066 }
2067 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2068 r = pool_chk_page(pp, label, ph);
2069 if (r) {
2070 goto out;
2071 }
2072 }
2073
2074 out:
2075 mutex_exit(&pp->pr_lock);
2076 return r;
2077 }
2078
2079 /*
2080 * pool_cache_init:
2081 *
2082 * Initialize a pool cache.
2083 */
2084 pool_cache_t
2085 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2086 const char *wchan, struct pool_allocator *palloc, int ipl,
2087 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2088 {
2089 pool_cache_t pc;
2090
2091 pc = pool_get(&cache_pool, PR_WAITOK);
2092 if (pc == NULL)
2093 return NULL;
2094
2095 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2096 palloc, ipl, ctor, dtor, arg);
2097
2098 return pc;
2099 }
2100
2101 /*
2102 * pool_cache_bootstrap:
2103 *
2104 * Kernel-private version of pool_cache_init(). The caller
2105 * provides initial storage.
2106 */
2107 void
2108 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2109 u_int align_offset, u_int flags, const char *wchan,
2110 struct pool_allocator *palloc, int ipl,
2111 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2112 void *arg)
2113 {
2114 CPU_INFO_ITERATOR cii;
2115 pool_cache_t pc1;
2116 struct cpu_info *ci;
2117 struct pool *pp;
2118 unsigned int ppflags;
2119
2120 pp = &pc->pc_pool;
2121 if (palloc == NULL && ipl == IPL_NONE) {
2122 if (size > PAGE_SIZE) {
2123 int bigidx = pool_bigidx(size);
2124
2125 palloc = &pool_allocator_big[bigidx];
2126 flags |= PR_NOALIGN;
2127 } else
2128 palloc = &pool_allocator_nointr;
2129 }
2130
2131 ppflags = flags;
2132 if (ctor == NULL) {
2133 ctor = NO_CTOR;
2134 }
2135 if (dtor == NULL) {
2136 dtor = NO_DTOR;
2137 } else {
2138 /*
2139 * If we have a destructor, then the pool layer does not
2140 * need to worry about PR_PSERIALIZE.
2141 */
2142 ppflags &= ~PR_PSERIALIZE;
2143 }
2144
2145 pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);
2146
2147 pc->pc_fullgroups = NULL;
2148 pc->pc_partgroups = NULL;
2149 pc->pc_ctor = ctor;
2150 pc->pc_dtor = dtor;
2151 pc->pc_arg = arg;
2152 pc->pc_refcnt = 0;
2153 pc->pc_roflags = flags;
2154 pc->pc_freecheck = NULL;
2155
2156 if ((flags & PR_LARGECACHE) != 0) {
2157 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2158 pc->pc_pcgpool = &pcg_large_pool;
2159 pc->pc_pcgcache = &pcg_large_cache;
2160 } else {
2161 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2162 pc->pc_pcgpool = &pcg_normal_pool;
2163 pc->pc_pcgcache = &pcg_normal_cache;
2164 }
2165
2166 /* Allocate per-CPU caches. */
2167 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2168 pc->pc_ncpu = 0;
2169 if (ncpu < 2) {
2170 /* XXX For sparc: boot CPU is not attached yet. */
2171 pool_cache_cpu_init1(curcpu(), pc);
2172 } else {
2173 for (CPU_INFO_FOREACH(cii, ci)) {
2174 pool_cache_cpu_init1(ci, pc);
2175 }
2176 }
2177
2178 /* Add to list of all pools. */
2179 if (__predict_true(!cold))
2180 mutex_enter(&pool_head_lock);
2181 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2182 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2183 break;
2184 }
2185 if (pc1 == NULL)
2186 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2187 else
2188 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2189 if (__predict_true(!cold))
2190 mutex_exit(&pool_head_lock);
2191
2192 atomic_store_release(&pp->pr_cache, pc);
2193 }
2194
2195 /*
2196 * pool_cache_destroy:
2197 *
2198 * Destroy a pool cache.
2199 */
2200 void
2201 pool_cache_destroy(pool_cache_t pc)
2202 {
2203
2204 pool_cache_bootstrap_destroy(pc);
2205 pool_put(&cache_pool, pc);
2206 }
2207
2208 /*
2209 * pool_cache_bootstrap_destroy:
2210 *
2211 * Destroy a pool cache.
2212 */
2213 void
2214 pool_cache_bootstrap_destroy(pool_cache_t pc)
2215 {
2216 struct pool *pp = &pc->pc_pool;
2217 u_int i;
2218
2219 /* Remove it from the global list. */
2220 mutex_enter(&pool_head_lock);
2221 while (pc->pc_refcnt != 0)
2222 cv_wait(&pool_busy, &pool_head_lock);
2223 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2224 mutex_exit(&pool_head_lock);
2225
2226 /* First, invalidate the entire cache. */
2227 pool_cache_invalidate(pc);
2228
2229 /* Disassociate it from the pool. */
2230 mutex_enter(&pp->pr_lock);
2231 atomic_store_relaxed(&pp->pr_cache, NULL);
2232 mutex_exit(&pp->pr_lock);
2233
2234 /* Destroy per-CPU data */
2235 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2236 pool_cache_invalidate_cpu(pc, i);
2237
2238 /* Finally, destroy it. */
2239 pool_destroy(pp);
2240 }
2241
2242 /*
2243 * pool_cache_cpu_init1:
2244 *
2245 * Called for each pool_cache whenever a new CPU is attached.
2246 */
2247 static void
2248 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2249 {
2250 pool_cache_cpu_t *cc;
2251 int index;
2252
2253 index = ci->ci_index;
2254
2255 KASSERT(index < __arraycount(pc->pc_cpus));
2256
2257 if ((cc = pc->pc_cpus[index]) != NULL) {
2258 return;
2259 }
2260
2261 /*
2262 * The first CPU is 'free'. This needs to be the case for
2263 * bootstrap - we may not be able to allocate yet.
2264 */
2265 if (pc->pc_ncpu == 0) {
2266 cc = &pc->pc_cpu0;
2267 pc->pc_ncpu = 1;
2268 } else {
2269 pc->pc_ncpu++;
2270 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2271 }
2272
2273 cc->cc_current = __UNCONST(&pcg_dummy);
2274 cc->cc_previous = __UNCONST(&pcg_dummy);
2275 cc->cc_pcgcache = pc->pc_pcgcache;
2276 cc->cc_hits = 0;
2277 cc->cc_misses = 0;
2278 cc->cc_pcmisses = 0;
2279 cc->cc_contended = 0;
2280 cc->cc_nfull = 0;
2281 cc->cc_npart = 0;
2282
2283 pc->pc_cpus[index] = cc;
2284 }
2285
2286 /*
2287 * pool_cache_cpu_init:
2288 *
2289 * Called whenever a new CPU is attached.
2290 */
2291 void
2292 pool_cache_cpu_init(struct cpu_info *ci)
2293 {
2294 pool_cache_t pc;
2295
2296 mutex_enter(&pool_head_lock);
2297 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2298 pc->pc_refcnt++;
2299 mutex_exit(&pool_head_lock);
2300
2301 pool_cache_cpu_init1(ci, pc);
2302
2303 mutex_enter(&pool_head_lock);
2304 pc->pc_refcnt--;
2305 cv_broadcast(&pool_busy);
2306 }
2307 mutex_exit(&pool_head_lock);
2308 }
2309
2310 /*
2311 * pool_cache_reclaim:
2312 *
2313 * Reclaim memory from a pool cache.
2314 */
2315 bool
2316 pool_cache_reclaim(pool_cache_t pc)
2317 {
2318
2319 return pool_reclaim(&pc->pc_pool);
2320 }
2321
2322 static inline void
2323 pool_cache_pre_destruct(pool_cache_t pc)
2324 {
2325 /*
2326 * Perform a passive serialization barrier before destructing
2327 * a batch of one or more objects.
2328 */
2329 if (__predict_false(pc_has_pser(pc))) {
2330 pool_barrier();
2331 }
2332 }
2333
2334 static void
2335 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2336 {
2337 (*pc->pc_dtor)(pc->pc_arg, object);
2338 pool_put(&pc->pc_pool, object);
2339 }
2340
2341 /*
2342 * pool_cache_destruct_object:
2343 *
2344 * Force destruction of an object and its release back into
2345 * the pool.
2346 */
2347 void
2348 pool_cache_destruct_object(pool_cache_t pc, void *object)
2349 {
2350
2351 FREECHECK_IN(&pc->pc_freecheck, object);
2352
2353 pool_cache_pre_destruct(pc);
2354 pool_cache_destruct_object1(pc, object);
2355 }
2356
2357 /*
2358 * pool_cache_invalidate_groups:
2359 *
2360 * Invalidate a chain of groups and destruct all objects. Return the
2361 * number of groups that were invalidated.
2362 */
2363 static int
2364 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2365 {
2366 void *object;
2367 pcg_t *next;
2368 int i, n;
2369
2370 if (pcg == NULL) {
2371 return 0;
2372 }
2373
2374 pool_cache_pre_destruct(pc);
2375
2376 for (n = 0; pcg != NULL; pcg = next, n++) {
2377 next = pcg->pcg_next;
2378
2379 for (i = 0; i < pcg->pcg_avail; i++) {
2380 object = pcg->pcg_objects[i].pcgo_va;
2381 pool_cache_destruct_object1(pc, object);
2382 }
2383
2384 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2385 pool_put(&pcg_large_pool, pcg);
2386 } else {
2387 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2388 pool_put(&pcg_normal_pool, pcg);
2389 }
2390 }
2391 return n;
2392 }
2393
2394 /*
2395 * pool_cache_invalidate:
2396 *
2397 * Invalidate a pool cache (destruct and release all of the
2398 * cached objects). Does not reclaim objects from the pool.
2399 *
2400 * Note: For pool caches that provide constructed objects, there
2401 * is an assumption that another level of synchronization is occurring
2402 * between the input to the constructor and the cache invalidation.
2403 *
2404 * Invalidation is a costly process and should not be called from
2405 * interrupt context.
2406 */
2407 void
2408 pool_cache_invalidate(pool_cache_t pc)
2409 {
2410 uint64_t where;
2411 pcg_t *pcg;
2412 int n, s;
2413
2414 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2415
2416 if (ncpu < 2 || !mp_online) {
2417 /*
2418 * We might be called early enough in the boot process
2419 * for the CPU data structures to not be fully initialized.
2420 * In this case, transfer the content of the local CPU's
2421 * cache back into global cache as only this CPU is currently
2422 * running.
2423 */
2424 pool_cache_transfer(pc);
2425 } else {
2426 /*
2427 * Signal all CPUs that they must transfer their local
2428 * cache back to the global pool then wait for the xcall to
2429 * complete.
2430 */
2431 where = xc_broadcast(0,
2432 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2433 xc_wait(where);
2434 }
2435
2436 /* Now dequeue and invalidate everything. */
2437 pcg = pool_pcg_trunc(&pcg_normal_cache);
2438 (void)pool_cache_invalidate_groups(pc, pcg);
2439
2440 pcg = pool_pcg_trunc(&pcg_large_cache);
2441 (void)pool_cache_invalidate_groups(pc, pcg);
2442
2443 pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2444 n = pool_cache_invalidate_groups(pc, pcg);
2445 s = splvm();
2446 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2447 splx(s);
2448
2449 pcg = pool_pcg_trunc(&pc->pc_partgroups);
2450 n = pool_cache_invalidate_groups(pc, pcg);
2451 s = splvm();
2452 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2453 splx(s);
2454 }
2455
2456 /*
2457 * pool_cache_invalidate_cpu:
2458 *
2459 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2460 * identified by its associated index.
2461 * It is caller's responsibility to ensure that no operation is
2462 * taking place on this pool cache while doing this invalidation.
2463 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2464 * pool cached objects from a CPU different from the one currently running
2465 * may result in an undefined behaviour.
2466 */
2467 static void
2468 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2469 {
2470 pool_cache_cpu_t *cc;
2471 pcg_t *pcg;
2472
2473 if ((cc = pc->pc_cpus[index]) == NULL)
2474 return;
2475
2476 if ((pcg = cc->cc_current) != &pcg_dummy) {
2477 pcg->pcg_next = NULL;
2478 pool_cache_invalidate_groups(pc, pcg);
2479 }
2480 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2481 pcg->pcg_next = NULL;
2482 pool_cache_invalidate_groups(pc, pcg);
2483 }
2484 if (cc != &pc->pc_cpu0)
2485 pool_put(&cache_cpu_pool, cc);
2486
2487 }
2488
2489 void
2490 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2491 {
2492
2493 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2494 }
2495
2496 void
2497 pool_cache_setlowat(pool_cache_t pc, int n)
2498 {
2499
2500 pool_setlowat(&pc->pc_pool, n);
2501 }
2502
2503 void
2504 pool_cache_sethiwat(pool_cache_t pc, int n)
2505 {
2506
2507 pool_sethiwat(&pc->pc_pool, n);
2508 }
2509
2510 void
2511 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2512 {
2513
2514 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2515 }
2516
2517 void
2518 pool_cache_prime(pool_cache_t pc, int n)
2519 {
2520
2521 pool_prime(&pc->pc_pool, n);
2522 }
2523
2524 unsigned int
2525 pool_cache_nget(pool_cache_t pc)
2526 {
2527
2528 return pool_nget(&pc->pc_pool);
2529 }
2530
2531 unsigned int
2532 pool_cache_nput(pool_cache_t pc)
2533 {
2534
2535 return pool_nput(&pc->pc_pool);
2536 }
2537
2538 /*
2539 * pool_pcg_get:
2540 *
2541 * Get a cache group from the specified list. Return true if
2542 * contention was encountered. Must be called at IPL_VM because
2543 * of spin wait vs. kernel_lock.
2544 */
2545 static int
2546 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2547 {
2548 int count = SPINLOCK_BACKOFF_MIN;
2549 pcg_t *o, *n;
2550
2551 for (o = atomic_load_relaxed(head);; o = n) {
2552 if (__predict_false(o == &pcg_dummy)) {
2553 /* Wait for concurrent get to complete. */
2554 SPINLOCK_BACKOFF(count);
2555 n = atomic_load_relaxed(head);
2556 continue;
2557 }
2558 if (__predict_false(o == NULL)) {
2559 break;
2560 }
2561 /* Lock out concurrent get/put. */
2562 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2563 if (o == n) {
2564 /* Fetch pointer to next item and then unlock. */
2565 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2566 membar_datadep_consumer(); /* alpha */
2567 #endif
2568 n = atomic_load_relaxed(&o->pcg_next);
2569 atomic_store_release(head, n);
2570 break;
2571 }
2572 }
2573 *pcgp = o;
2574 return count != SPINLOCK_BACKOFF_MIN;
2575 }
2576
2577 /*
2578 * pool_pcg_trunc:
2579 *
2580 * Chop out entire list of pool cache groups.
2581 */
2582 static pcg_t *
2583 pool_pcg_trunc(pcg_t *volatile *head)
2584 {
2585 int count = SPINLOCK_BACKOFF_MIN, s;
2586 pcg_t *o, *n;
2587
2588 s = splvm();
2589 for (o = atomic_load_relaxed(head);; o = n) {
2590 if (__predict_false(o == &pcg_dummy)) {
2591 /* Wait for concurrent get to complete. */
2592 SPINLOCK_BACKOFF(count);
2593 n = atomic_load_relaxed(head);
2594 continue;
2595 }
2596 n = atomic_cas_ptr(head, o, NULL);
2597 if (o == n) {
2598 splx(s);
2599 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2600 membar_datadep_consumer(); /* alpha */
2601 #endif
2602 return o;
2603 }
2604 }
2605 }
2606
2607 /*
2608 * pool_pcg_put:
2609 *
2610 * Put a pool cache group to the specified list. Return true if
2611 * contention was encountered. Must be called at IPL_VM because of
2612 * spin wait vs. kernel_lock.
2613 */
2614 static int
2615 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2616 {
2617 int count = SPINLOCK_BACKOFF_MIN;
2618 pcg_t *o, *n;
2619
2620 for (o = atomic_load_relaxed(head);; o = n) {
2621 if (__predict_false(o == &pcg_dummy)) {
2622 /* Wait for concurrent get to complete. */
2623 SPINLOCK_BACKOFF(count);
2624 n = atomic_load_relaxed(head);
2625 continue;
2626 }
2627 pcg->pcg_next = o;
2628 #ifndef __HAVE_ATOMIC_AS_MEMBAR
2629 membar_release();
2630 #endif
2631 n = atomic_cas_ptr(head, o, pcg);
2632 if (o == n) {
2633 return count != SPINLOCK_BACKOFF_MIN;
2634 }
2635 }
2636 }
2637
2638 static bool __noinline
2639 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2640 void **objectp, paddr_t *pap, int flags)
2641 {
2642 pcg_t *pcg, *cur;
2643 void *object;
2644
2645 KASSERT(cc->cc_current->pcg_avail == 0);
2646 KASSERT(cc->cc_previous->pcg_avail == 0);
2647
2648 cc->cc_misses++;
2649
2650 /*
2651 * If there's a full group, release our empty group back to the
2652 * cache. Install the full group as cc_current and return.
2653 */
2654 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2655 if (__predict_true(pcg != NULL)) {
2656 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2657 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2658 KASSERT(cur->pcg_avail == 0);
2659 (void)pool_pcg_put(cc->cc_pcgcache, cur);
2660 }
2661 cc->cc_nfull--;
2662 cc->cc_current = pcg;
2663 return true;
2664 }
2665
2666 /*
2667 * Nothing available locally or in cache. Take the slow
2668 * path: fetch a new object from the pool and construct
2669 * it.
2670 */
2671 cc->cc_pcmisses++;
2672 splx(s);
2673
2674 object = pool_get(&pc->pc_pool, flags);
2675 *objectp = object;
2676 if (__predict_false(object == NULL)) {
2677 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2678 return false;
2679 }
2680
2681 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2682 pool_put(&pc->pc_pool, object);
2683 *objectp = NULL;
2684 return false;
2685 }
2686
2687 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2688
2689 if (pap != NULL) {
2690 #ifdef POOL_VTOPHYS
2691 *pap = POOL_VTOPHYS(object);
2692 #else
2693 *pap = POOL_PADDR_INVALID;
2694 #endif
2695 }
2696
2697 FREECHECK_OUT(&pc->pc_freecheck, object);
2698 return false;
2699 }
2700
2701 /*
2702 * pool_cache_get{,_paddr}:
2703 *
2704 * Get an object from a pool cache (optionally returning
2705 * the physical address of the object).
2706 */
2707 void *
2708 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2709 {
2710 pool_cache_cpu_t *cc;
2711 pcg_t *pcg;
2712 void *object;
2713 int s;
2714
2715 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2716 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2717 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2718 "%s: [%s] is IPL_NONE, but called from interrupt context",
2719 __func__, pc->pc_pool.pr_wchan);
2720
2721 if (flags & PR_WAITOK) {
2722 ASSERT_SLEEPABLE();
2723 }
2724
2725 if (flags & PR_NOWAIT) {
2726 if (fault_inject())
2727 return NULL;
2728 }
2729
2730 /* Lock out interrupts and disable preemption. */
2731 s = splvm();
2732 while (/* CONSTCOND */ true) {
2733 /* Try and allocate an object from the current group. */
2734 cc = pc->pc_cpus[curcpu()->ci_index];
2735 pcg = cc->cc_current;
2736 if (__predict_true(pcg->pcg_avail > 0)) {
2737 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2738 if (__predict_false(pap != NULL))
2739 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2740 #if defined(DIAGNOSTIC)
2741 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2742 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2743 KASSERT(object != NULL);
2744 #endif
2745 cc->cc_hits++;
2746 splx(s);
2747 FREECHECK_OUT(&pc->pc_freecheck, object);
2748 pool_redzone_fill(&pc->pc_pool, object);
2749 pool_cache_get_kmsan(pc, object);
2750 return object;
2751 }
2752
2753 /*
2754 * That failed. If the previous group isn't empty, swap
2755 * it with the current group and allocate from there.
2756 */
2757 pcg = cc->cc_previous;
2758 if (__predict_true(pcg->pcg_avail > 0)) {
2759 cc->cc_previous = cc->cc_current;
2760 cc->cc_current = pcg;
2761 continue;
2762 }
2763
2764 /*
2765 * Can't allocate from either group: try the slow path.
2766 * If get_slow() allocated an object for us, or if
2767 * no more objects are available, it will return false.
2768 * Otherwise, we need to retry.
2769 */
2770 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2771 if (object != NULL) {
2772 kmsan_orig(object, pc->pc_pool.pr_size,
2773 KMSAN_TYPE_POOL, __RET_ADDR);
2774 }
2775 break;
2776 }
2777 }
2778
2779 /*
2780 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2781 * pool_cache_get can fail even in the PR_WAITOK case, if the
2782 * constructor fails.
2783 */
2784 return object;
2785 }
2786
2787 static bool __noinline
2788 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2789 {
2790 pcg_t *pcg, *cur;
2791
2792 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2793 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2794
2795 cc->cc_misses++;
2796
2797 /*
2798 * Try to get an empty group from the cache. If there are no empty
2799 * groups in the cache then allocate one.
2800 */
2801 (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2802 if (__predict_false(pcg == NULL)) {
2803 if (__predict_true(!pool_cache_disable)) {
2804 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2805 }
2806 if (__predict_true(pcg != NULL)) {
2807 pcg->pcg_avail = 0;
2808 pcg->pcg_size = pc->pc_pcgsize;
2809 }
2810 }
2811
2812 /*
2813 * If there's a empty group, release our full group back to the
2814 * cache. Install the empty group to the local CPU and return.
2815 */
2816 if (pcg != NULL) {
2817 KASSERT(pcg->pcg_avail == 0);
2818 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2819 cc->cc_previous = pcg;
2820 } else {
2821 cur = cc->cc_current;
2822 if (__predict_true(cur != &pcg_dummy)) {
2823 KASSERT(cur->pcg_avail == cur->pcg_size);
2824 cc->cc_contended +=
2825 pool_pcg_put(&pc->pc_fullgroups, cur);
2826 cc->cc_nfull++;
2827 }
2828 cc->cc_current = pcg;
2829 }
2830 return true;
2831 }
2832
2833 /*
2834 * Nothing available locally or in cache, and we didn't
2835 * allocate an empty group. Take the slow path and destroy
2836 * the object here and now.
2837 */
2838 cc->cc_pcmisses++;
2839 splx(s);
2840 pool_cache_destruct_object(pc, object);
2841
2842 return false;
2843 }
2844
2845 /*
2846 * pool_cache_put{,_paddr}:
2847 *
2848 * Put an object back to the pool cache (optionally caching the
2849 * physical address of the object).
2850 */
2851 void
2852 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2853 {
2854 pool_cache_cpu_t *cc;
2855 pcg_t *pcg;
2856 int s;
2857
2858 KASSERT(object != NULL);
2859 pool_cache_put_kmsan(pc, object);
2860 pool_cache_redzone_check(pc, object);
2861 FREECHECK_IN(&pc->pc_freecheck, object);
2862
2863 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2864 pc_phinpage_check(pc, object);
2865 }
2866
2867 if (pool_cache_put_nocache(pc, object)) {
2868 return;
2869 }
2870
2871 /* Lock out interrupts and disable preemption. */
2872 s = splvm();
2873 while (/* CONSTCOND */ true) {
2874 /* If the current group isn't full, release it there. */
2875 cc = pc->pc_cpus[curcpu()->ci_index];
2876 pcg = cc->cc_current;
2877 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2878 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2879 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2880 pcg->pcg_avail++;
2881 cc->cc_hits++;
2882 splx(s);
2883 return;
2884 }
2885
2886 /*
2887 * That failed. If the previous group isn't full, swap
2888 * it with the current group and try again.
2889 */
2890 pcg = cc->cc_previous;
2891 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2892 cc->cc_previous = cc->cc_current;
2893 cc->cc_current = pcg;
2894 continue;
2895 }
2896
2897 /*
2898 * Can't free to either group: try the slow path.
2899 * If put_slow() releases the object for us, it
2900 * will return false. Otherwise we need to retry.
2901 */
2902 if (!pool_cache_put_slow(pc, cc, s, object))
2903 break;
2904 }
2905 }
2906
2907 /*
2908 * pool_cache_transfer:
2909 *
2910 * Transfer objects from the per-CPU cache to the global cache.
2911 * Run within a cross-call thread.
2912 */
2913 static void
2914 pool_cache_transfer(pool_cache_t pc)
2915 {
2916 pool_cache_cpu_t *cc;
2917 pcg_t *prev, *cur;
2918 int s;
2919
2920 s = splvm();
2921 cc = pc->pc_cpus[curcpu()->ci_index];
2922 cur = cc->cc_current;
2923 cc->cc_current = __UNCONST(&pcg_dummy);
2924 prev = cc->cc_previous;
2925 cc->cc_previous = __UNCONST(&pcg_dummy);
2926 if (cur != &pcg_dummy) {
2927 if (cur->pcg_avail == cur->pcg_size) {
2928 (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2929 cc->cc_nfull++;
2930 } else if (cur->pcg_avail == 0) {
2931 (void)pool_pcg_put(pc->pc_pcgcache, cur);
2932 } else {
2933 (void)pool_pcg_put(&pc->pc_partgroups, cur);
2934 cc->cc_npart++;
2935 }
2936 }
2937 if (prev != &pcg_dummy) {
2938 if (prev->pcg_avail == prev->pcg_size) {
2939 (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2940 cc->cc_nfull++;
2941 } else if (prev->pcg_avail == 0) {
2942 (void)pool_pcg_put(pc->pc_pcgcache, prev);
2943 } else {
2944 (void)pool_pcg_put(&pc->pc_partgroups, prev);
2945 cc->cc_npart++;
2946 }
2947 }
2948 splx(s);
2949 }
2950
2951 static int
2952 pool_bigidx(size_t size)
2953 {
2954 int i;
2955
2956 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2957 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2958 return i;
2959 }
2960 panic("pool item size %zu too large, use a custom allocator", size);
2961 }
2962
2963 static void *
2964 pool_allocator_alloc(struct pool *pp, int flags)
2965 {
2966 struct pool_allocator *pa = pp->pr_alloc;
2967 void *res;
2968
2969 res = (*pa->pa_alloc)(pp, flags);
2970 if (res == NULL && (flags & PR_WAITOK) == 0) {
2971 /*
2972 * We only run the drain hook here if PR_NOWAIT.
2973 * In other cases, the hook will be run in
2974 * pool_reclaim().
2975 */
2976 if (pp->pr_drain_hook != NULL) {
2977 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2978 res = (*pa->pa_alloc)(pp, flags);
2979 }
2980 }
2981 return res;
2982 }
2983
2984 static void
2985 pool_allocator_free(struct pool *pp, void *v)
2986 {
2987 struct pool_allocator *pa = pp->pr_alloc;
2988
2989 if (pp->pr_redzone) {
2990 KASSERT(!pp_has_pser(pp));
2991 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2992 } else if (__predict_false(pp_has_pser(pp))) {
2993 /*
2994 * Perform a passive serialization barrier before freeing
2995 * the pool page back to the system.
2996 */
2997 pool_barrier();
2998 }
2999 (*pa->pa_free)(pp, v);
3000 }
3001
3002 void *
3003 pool_page_alloc(struct pool *pp, int flags)
3004 {
3005 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3006 vmem_addr_t va;
3007 int ret;
3008
3009 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
3010 vflags | VM_INSTANTFIT, &va);
3011
3012 return ret ? NULL : (void *)va;
3013 }
3014
3015 void
3016 pool_page_free(struct pool *pp, void *v)
3017 {
3018
3019 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
3020 }
3021
3022 static void *
3023 pool_page_alloc_meta(struct pool *pp, int flags)
3024 {
3025 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3026 vmem_addr_t va;
3027 int ret;
3028
3029 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
3030 vflags | VM_INSTANTFIT, &va);
3031
3032 return ret ? NULL : (void *)va;
3033 }
3034
3035 static void
3036 pool_page_free_meta(struct pool *pp, void *v)
3037 {
3038
3039 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
3040 }
3041
3042 #ifdef KMSAN
3043 static inline void
3044 pool_get_kmsan(struct pool *pp, void *p)
3045 {
3046 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
3047 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
3048 }
3049
3050 static inline void
3051 pool_put_kmsan(struct pool *pp, void *p)
3052 {
3053 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
3054 }
3055
3056 static inline void
3057 pool_cache_get_kmsan(pool_cache_t pc, void *p)
3058 {
3059 if (__predict_false(pc_has_ctor(pc))) {
3060 return;
3061 }
3062 pool_get_kmsan(&pc->pc_pool, p);
3063 }
3064
3065 static inline void
3066 pool_cache_put_kmsan(pool_cache_t pc, void *p)
3067 {
3068 pool_put_kmsan(&pc->pc_pool, p);
3069 }
3070 #endif
3071
3072 #ifdef POOL_QUARANTINE
3073 static void
3074 pool_quarantine_init(struct pool *pp)
3075 {
3076 pp->pr_quar.rotor = 0;
3077 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3078 }
3079
3080 static void
3081 pool_quarantine_flush(struct pool *pp)
3082 {
3083 pool_quar_t *quar = &pp->pr_quar;
3084 struct pool_pagelist pq;
3085 size_t i;
3086
3087 LIST_INIT(&pq);
3088
3089 mutex_enter(&pp->pr_lock);
3090 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3091 if (quar->list[i] == 0)
3092 continue;
3093 pool_do_put(pp, (void *)quar->list[i], &pq);
3094 }
3095 mutex_exit(&pp->pr_lock);
3096
3097 pr_pagelist_free(pp, &pq);
3098 }
3099
3100 static bool
3101 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3102 {
3103 pool_quar_t *quar = &pp->pr_quar;
3104 uintptr_t old;
3105
3106 if (pp->pr_roflags & PR_NOTOUCH) {
3107 return false;
3108 }
3109
3110 pool_redzone_check(pp, v);
3111
3112 old = quar->list[quar->rotor];
3113 quar->list[quar->rotor] = (uintptr_t)v;
3114 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3115 if (old != 0) {
3116 pool_do_put(pp, (void *)old, pq);
3117 }
3118
3119 return true;
3120 }
3121 #endif
3122
3123 #ifdef POOL_NOCACHE
3124 static bool
3125 pool_cache_put_nocache(pool_cache_t pc, void *p)
3126 {
3127 pool_cache_destruct_object(pc, p);
3128 return true;
3129 }
3130 #endif
3131
3132 #ifdef POOL_REDZONE
3133 #if defined(_LP64)
3134 # define PRIME 0x9e37fffffffc0000UL
3135 #else /* defined(_LP64) */
3136 # define PRIME 0x9e3779b1
3137 #endif /* defined(_LP64) */
3138 #define STATIC_BYTE 0xFE
3139 CTASSERT(POOL_REDZONE_SIZE > 1);
3140
3141 #ifndef KASAN
3142 static inline uint8_t
3143 pool_pattern_generate(const void *p)
3144 {
3145 return (uint8_t)(((uintptr_t)p) * PRIME
3146 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3147 }
3148 #endif
3149
3150 static void
3151 pool_redzone_init(struct pool *pp, size_t requested_size)
3152 {
3153 size_t redzsz;
3154 size_t nsz;
3155
3156 #ifdef KASAN
3157 redzsz = requested_size;
3158 kasan_add_redzone(&redzsz);
3159 redzsz -= requested_size;
3160 #else
3161 redzsz = POOL_REDZONE_SIZE;
3162 #endif
3163
3164 if (pp->pr_roflags & PR_NOTOUCH) {
3165 pp->pr_redzone = false;
3166 return;
3167 }
3168
3169 /*
3170 * We may have extended the requested size earlier; check if
3171 * there's naturally space in the padding for a red zone.
3172 */
3173 if (pp->pr_size - requested_size >= redzsz) {
3174 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3175 pp->pr_redzone = true;
3176 return;
3177 }
3178
3179 /*
3180 * No space in the natural padding; check if we can extend a
3181 * bit the size of the pool.
3182 *
3183 * Avoid using redzone for allocations half of a page or larger.
3184 * For pagesize items, we'd waste a whole new page (could be
3185 * unmapped?), and for half pagesize items, approximately half
3186 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3187 */
3188 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3189 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3190 /* Ok, we can */
3191 pp->pr_size = nsz;
3192 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3193 pp->pr_redzone = true;
3194 } else {
3195 /* No space for a red zone... snif :'( */
3196 pp->pr_redzone = false;
3197 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3198 }
3199 }
3200
3201 static void
3202 pool_redzone_fill(struct pool *pp, void *p)
3203 {
3204 if (!pp->pr_redzone)
3205 return;
3206 KASSERT(!pp_has_pser(pp));
3207 #ifdef KASAN
3208 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3209 KASAN_POOL_REDZONE);
3210 #else
3211 uint8_t *cp, pat;
3212 const uint8_t *ep;
3213
3214 cp = (uint8_t *)p + pp->pr_reqsize;
3215 ep = cp + POOL_REDZONE_SIZE;
3216
3217 /*
3218 * We really don't want the first byte of the red zone to be '\0';
3219 * an off-by-one in a string may not be properly detected.
3220 */
3221 pat = pool_pattern_generate(cp);
3222 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3223 cp++;
3224
3225 while (cp < ep) {
3226 *cp = pool_pattern_generate(cp);
3227 cp++;
3228 }
3229 #endif
3230 }
3231
3232 static void
3233 pool_redzone_check(struct pool *pp, void *p)
3234 {
3235 if (!pp->pr_redzone)
3236 return;
3237 KASSERT(!pp_has_pser(pp));
3238 #ifdef KASAN
3239 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3240 #else
3241 uint8_t *cp, pat, expected;
3242 const uint8_t *ep;
3243
3244 cp = (uint8_t *)p + pp->pr_reqsize;
3245 ep = cp + POOL_REDZONE_SIZE;
3246
3247 pat = pool_pattern_generate(cp);
3248 expected = (pat == '\0') ? STATIC_BYTE: pat;
3249 if (__predict_false(*cp != expected)) {
3250 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3251 pp->pr_wchan, *cp, expected);
3252 }
3253 cp++;
3254
3255 while (cp < ep) {
3256 expected = pool_pattern_generate(cp);
3257 if (__predict_false(*cp != expected)) {
3258 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3259 pp->pr_wchan, *cp, expected);
3260 }
3261 cp++;
3262 }
3263 #endif
3264 }
3265
3266 static void
3267 pool_cache_redzone_check(pool_cache_t pc, void *p)
3268 {
3269 #ifdef KASAN
3270 /*
3271 * If there is a ctor/dtor, or if the cache objects use
3272 * passive serialization, leave the data as valid.
3273 */
3274 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
3275 pc_has_pser(pc))) {
3276 return;
3277 }
3278 #endif
3279 pool_redzone_check(&pc->pc_pool, p);
3280 }
3281
3282 #endif /* POOL_REDZONE */
3283
3284 #if defined(DDB)
3285 static bool
3286 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3287 {
3288
3289 return (uintptr_t)ph->ph_page <= addr &&
3290 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3291 }
3292
3293 static bool
3294 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3295 {
3296
3297 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3298 }
3299
3300 static bool
3301 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3302 {
3303 int i;
3304
3305 if (pcg == NULL) {
3306 return false;
3307 }
3308 for (i = 0; i < pcg->pcg_avail; i++) {
3309 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3310 return true;
3311 }
3312 }
3313 return false;
3314 }
3315
3316 static bool
3317 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3318 {
3319
3320 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3321 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3322 pool_item_bitmap_t *bitmap =
3323 ph->ph_bitmap + (idx / BITMAP_SIZE);
3324 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
3325
3326 return (*bitmap & mask) == 0;
3327 } else {
3328 struct pool_item *pi;
3329
3330 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3331 if (pool_in_item(pp, pi, addr)) {
3332 return false;
3333 }
3334 }
3335 return true;
3336 }
3337 }
3338
3339 void
3340 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3341 {
3342 struct pool *pp;
3343
3344 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3345 struct pool_item_header *ph;
3346 struct pool_cache *pc;
3347 uintptr_t item;
3348 bool allocated = true;
3349 bool incache = false;
3350 bool incpucache = false;
3351 char cpucachestr[32];
3352
3353 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3354 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3355 if (pool_in_page(pp, ph, addr)) {
3356 goto found;
3357 }
3358 }
3359 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3360 if (pool_in_page(pp, ph, addr)) {
3361 allocated =
3362 pool_allocated(pp, ph, addr);
3363 goto found;
3364 }
3365 }
3366 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3367 if (pool_in_page(pp, ph, addr)) {
3368 allocated = false;
3369 goto found;
3370 }
3371 }
3372 continue;
3373 } else {
3374 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3375 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3376 continue;
3377 }
3378 allocated = pool_allocated(pp, ph, addr);
3379 }
3380 found:
3381 if (allocated &&
3382 (pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3383 struct pool_cache_group *pcg;
3384 int i;
3385
3386 for (pcg = pc->pc_fullgroups; pcg != NULL;
3387 pcg = pcg->pcg_next) {
3388 if (pool_in_cg(pp, pcg, addr)) {
3389 incache = true;
3390 goto print;
3391 }
3392 }
3393 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3394 pool_cache_cpu_t *cc;
3395
3396 if ((cc = pc->pc_cpus[i]) == NULL) {
3397 continue;
3398 }
3399 if (pool_in_cg(pp, cc->cc_current, addr) ||
3400 pool_in_cg(pp, cc->cc_previous, addr)) {
3401 struct cpu_info *ci =
3402 cpu_lookup(i);
3403
3404 incpucache = true;
3405 snprintf(cpucachestr,
3406 sizeof(cpucachestr),
3407 "cached by CPU %u",
3408 ci->ci_index);
3409 goto print;
3410 }
3411 }
3412 }
3413 print:
3414 item = (uintptr_t)ph->ph_page + ph->ph_off;
3415 item = item + rounddown(addr - item, pp->pr_size);
3416 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3417 (void *)addr, item, (size_t)(addr - item),
3418 pp->pr_wchan,
3419 incpucache ? cpucachestr :
3420 incache ? "cached" : allocated ? "allocated" : "free");
3421 }
3422 }
3423 #endif /* defined(DDB) */
3424
3425 static int
3426 pool_sysctl(SYSCTLFN_ARGS)
3427 {
3428 struct pool_sysctl data;
3429 struct pool *pp;
3430 struct pool_cache *pc;
3431 pool_cache_cpu_t *cc;
3432 int error;
3433 size_t i, written;
3434
3435 if (oldp == NULL) {
3436 *oldlenp = 0;
3437 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3438 *oldlenp += sizeof(data);
3439 return 0;
3440 }
3441
3442 memset(&data, 0, sizeof(data));
3443 error = 0;
3444 written = 0;
3445 mutex_enter(&pool_head_lock);
3446 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3447 if (written + sizeof(data) > *oldlenp)
3448 break;
3449 pp->pr_refcnt++;
3450 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3451 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3452 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3453 #define COPY(field) data.field = pp->field
3454 COPY(pr_size);
3455
3456 COPY(pr_itemsperpage);
3457 COPY(pr_nitems);
3458 COPY(pr_nout);
3459 COPY(pr_hardlimit);
3460 COPY(pr_npages);
3461 COPY(pr_minpages);
3462 COPY(pr_maxpages);
3463
3464 COPY(pr_nget);
3465 COPY(pr_nfail);
3466 COPY(pr_nput);
3467 COPY(pr_npagealloc);
3468 COPY(pr_npagefree);
3469 COPY(pr_hiwat);
3470 COPY(pr_nidle);
3471 #undef COPY
3472
3473 data.pr_cache_nmiss_pcpu = 0;
3474 data.pr_cache_nhit_pcpu = 0;
3475 data.pr_cache_nmiss_global = 0;
3476 data.pr_cache_nempty = 0;
3477 data.pr_cache_ncontended = 0;
3478 data.pr_cache_npartial = 0;
3479 if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3480 uint32_t nfull = 0;
3481 data.pr_cache_meta_size = pc->pc_pcgsize;
3482 for (i = 0; i < pc->pc_ncpu; ++i) {
3483 cc = pc->pc_cpus[i];
3484 if (cc == NULL)
3485 continue;
3486 data.pr_cache_ncontended += cc->cc_contended;
3487 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3488 data.pr_cache_nhit_pcpu += cc->cc_hits;
3489 data.pr_cache_nmiss_global += cc->cc_pcmisses;
3490 nfull += cc->cc_nfull; /* 32-bit rollover! */
3491 data.pr_cache_npartial += cc->cc_npart;
3492 }
3493 data.pr_cache_nfull = nfull;
3494 } else {
3495 data.pr_cache_meta_size = 0;
3496 data.pr_cache_nfull = 0;
3497 }
3498 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3499 data.pr_cache_nmiss_global;
3500
3501 if (pp->pr_refcnt == UINT_MAX) /* XXX possible? */
3502 continue;
3503 mutex_exit(&pool_head_lock);
3504 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3505 mutex_enter(&pool_head_lock);
3506 if (--pp->pr_refcnt == 0)
3507 cv_broadcast(&pool_busy);
3508 if (error)
3509 break;
3510 written += sizeof(data);
3511 oldp = (char *)oldp + sizeof(data);
3512 }
3513 mutex_exit(&pool_head_lock);
3514
3515 *oldlenp = written;
3516 return error;
3517 }
3518
3519 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3520 {
3521 const struct sysctlnode *rnode = NULL;
3522
3523 sysctl_createv(clog, 0, NULL, &rnode,
3524 CTLFLAG_PERMANENT,
3525 CTLTYPE_STRUCT, "pool",
3526 SYSCTL_DESCR("Get pool statistics"),
3527 pool_sysctl, 0, NULL, 0,
3528 CTL_KERN, CTL_CREATE, CTL_EOL);
3529 }
3530