subr_pool.c revision 1.294 1 /* $NetBSD: subr_pool.c,v 1.294 2025/05/16 11:13:16 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 * 2020, 2021 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.294 2025/05/16 11:13:16 bouyer Exp $");
37
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lock.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 #include <sys/msan.h>
62 #include <sys/fault.h>
63
64 #include <uvm/uvm_extern.h>
65
66 /*
67 * Pool resource management utility.
68 *
69 * Memory is allocated in pages which are split into pieces according to
70 * the pool item size. Each page is kept on one of three lists in the
71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 * for empty, full and partially-full pages respectively. The individual
73 * pool items are on a linked list headed by `ph_itemlist' in each page
74 * header. The memory for building the page list is either taken from
75 * the allocated pages themselves (for small pool items) or taken from
76 * an internal pool of page headers (`phpool').
77 */
78
79 /* List of all pools. Non static as needed by 'vmstat -m' */
80 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81
82 /* Private pool for page header structures */
83 #define PHPOOL_MAX 8
84 static struct pool phpool[PHPOOL_MAX];
85 #define PHPOOL_FREELIST_NELEM(idx) \
86 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87
88 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 #define POOL_REDZONE
90 #endif
91
92 #if defined(POOL_QUARANTINE)
93 #define POOL_NOCACHE
94 #endif
95
96 #ifdef POOL_REDZONE
97 # ifdef KASAN
98 # define POOL_REDZONE_SIZE 8
99 # else
100 # define POOL_REDZONE_SIZE 2
101 # endif
102 static void pool_redzone_init(struct pool *, size_t);
103 static void pool_redzone_fill(struct pool *, void *);
104 static void pool_redzone_check(struct pool *, void *);
105 static void pool_cache_redzone_check(pool_cache_t, void *);
106 #else
107 # define pool_redzone_init(pp, sz) __nothing
108 # define pool_redzone_fill(pp, ptr) __nothing
109 # define pool_redzone_check(pp, ptr) __nothing
110 # define pool_cache_redzone_check(pc, ptr) __nothing
111 #endif
112
113 #ifdef KMSAN
114 static inline void pool_get_kmsan(struct pool *, void *);
115 static inline void pool_put_kmsan(struct pool *, void *);
116 static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 #else
119 #define pool_get_kmsan(pp, ptr) __nothing
120 #define pool_put_kmsan(pp, ptr) __nothing
121 #define pool_cache_get_kmsan(pc, ptr) __nothing
122 #define pool_cache_put_kmsan(pc, ptr) __nothing
123 #endif
124
125 #ifdef POOL_QUARANTINE
126 static void pool_quarantine_init(struct pool *);
127 static void pool_quarantine_flush(struct pool *);
128 static bool pool_put_quarantine(struct pool *, void *,
129 struct pool_pagelist *);
130 #else
131 #define pool_quarantine_init(a) __nothing
132 #define pool_quarantine_flush(a) __nothing
133 #define pool_put_quarantine(a, b, c) false
134 #endif
135
136 #ifdef POOL_NOCACHE
137 static bool pool_cache_put_nocache(pool_cache_t, void *);
138 #else
139 #define pool_cache_put_nocache(a, b) false
140 #endif
141
142 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144
145 #define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
146 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
147 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
148
149 #define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)
150
151 #define pool_barrier() xc_barrier(0)
152
153 /*
154 * Pool backend allocators.
155 *
156 * Each pool has a backend allocator that handles allocation, deallocation,
157 * and any additional draining that might be needed.
158 *
159 * We provide two standard allocators:
160 *
161 * pool_allocator_kmem - the default when no allocator is specified
162 *
163 * pool_allocator_nointr - used for pools that will not be accessed
164 * in interrupt context.
165 */
166 void *pool_page_alloc(struct pool *, int);
167 void pool_page_free(struct pool *, void *);
168
169 static void *pool_page_alloc_meta(struct pool *, int);
170 static void pool_page_free_meta(struct pool *, void *);
171
172 struct pool_allocator pool_allocator_kmem = {
173 .pa_alloc = pool_page_alloc,
174 .pa_free = pool_page_free,
175 .pa_pagesz = 0
176 };
177
178 struct pool_allocator pool_allocator_nointr = {
179 .pa_alloc = pool_page_alloc,
180 .pa_free = pool_page_free,
181 .pa_pagesz = 0
182 };
183
184 struct pool_allocator pool_allocator_meta = {
185 .pa_alloc = pool_page_alloc_meta,
186 .pa_free = pool_page_free_meta,
187 .pa_pagesz = 0
188 };
189
190 #define POOL_ALLOCATOR_BIG_BASE 13
191 static struct pool_allocator pool_allocator_big[] = {
192 {
193 .pa_alloc = pool_page_alloc,
194 .pa_free = pool_page_free,
195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
196 },
197 {
198 .pa_alloc = pool_page_alloc,
199 .pa_free = pool_page_free,
200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
201 },
202 {
203 .pa_alloc = pool_page_alloc,
204 .pa_free = pool_page_free,
205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
206 },
207 {
208 .pa_alloc = pool_page_alloc,
209 .pa_free = pool_page_free,
210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
211 },
212 {
213 .pa_alloc = pool_page_alloc,
214 .pa_free = pool_page_free,
215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
216 },
217 {
218 .pa_alloc = pool_page_alloc,
219 .pa_free = pool_page_free,
220 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
221 },
222 {
223 .pa_alloc = pool_page_alloc,
224 .pa_free = pool_page_free,
225 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
226 },
227 {
228 .pa_alloc = pool_page_alloc,
229 .pa_free = pool_page_free,
230 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
231 },
232 {
233 .pa_alloc = pool_page_alloc,
234 .pa_free = pool_page_free,
235 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
236 },
237 {
238 .pa_alloc = pool_page_alloc,
239 .pa_free = pool_page_free,
240 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
241 },
242 {
243 .pa_alloc = pool_page_alloc,
244 .pa_free = pool_page_free,
245 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
246 },
247 {
248 .pa_alloc = pool_page_alloc,
249 .pa_free = pool_page_free,
250 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
251 }
252 };
253
254 static int pool_bigidx(size_t);
255
256 /* # of seconds to retain page after last use */
257 int pool_inactive_time = 10;
258
259 /* Next candidate for drainage (see pool_drain()) */
260 static struct pool *drainpp;
261
262 /* This lock protects both pool_head and drainpp. */
263 static kmutex_t pool_head_lock;
264 static kcondvar_t pool_busy;
265
266 /* This lock protects initialization of a potentially shared pool allocator */
267 static kmutex_t pool_allocator_lock;
268
269 static unsigned int poolid_counter = 0;
270
271 typedef uint32_t pool_item_bitmap_t;
272 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
273 #define BITMAP_MASK (BITMAP_SIZE - 1)
274 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
275
276 struct pool_item_header {
277 /* Page headers */
278 LIST_ENTRY(pool_item_header)
279 ph_pagelist; /* pool page list */
280 union {
281 /* !PR_PHINPAGE */
282 struct {
283 SPLAY_ENTRY(pool_item_header)
284 phu_node; /* off-page page headers */
285 } phu_offpage;
286 /* PR_PHINPAGE */
287 struct {
288 unsigned int phu_poolid;
289 } phu_onpage;
290 } ph_u1;
291 void * ph_page; /* this page's address */
292 uint32_t ph_time; /* last referenced */
293 uint16_t ph_nmissing; /* # of chunks in use */
294 uint16_t ph_off; /* start offset in page */
295 union {
296 /* !PR_USEBMAP */
297 struct {
298 LIST_HEAD(, pool_item)
299 phu_itemlist; /* chunk list for this page */
300 } phu_normal;
301 /* PR_USEBMAP */
302 struct {
303 pool_item_bitmap_t phu_bitmap[1];
304 } phu_notouch;
305 } ph_u2;
306 };
307 #define ph_node ph_u1.phu_offpage.phu_node
308 #define ph_poolid ph_u1.phu_onpage.phu_poolid
309 #define ph_itemlist ph_u2.phu_normal.phu_itemlist
310 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
311
312 #define PHSIZE ALIGN(sizeof(struct pool_item_header))
313
314 CTASSERT(offsetof(struct pool_item_header, ph_u2) +
315 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
316
317 #if defined(DIAGNOSTIC) && !defined(KASAN)
318 #define POOL_CHECK_MAGIC
319 #endif
320
321 struct pool_item {
322 #ifdef POOL_CHECK_MAGIC
323 u_int pi_magic;
324 #endif
325 #define PI_MAGIC 0xdeaddeadU
326 /* Other entries use only this list entry */
327 LIST_ENTRY(pool_item) pi_list;
328 };
329
330 #define POOL_NEEDS_CATCHUP(pp) \
331 ((pp)->pr_nitems < (pp)->pr_minitems || \
332 (pp)->pr_npages < (pp)->pr_minpages)
333 #define POOL_OBJ_TO_PAGE(pp, v) \
334 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
335
336 /*
337 * Pool cache management.
338 *
339 * Pool caches provide a way for constructed objects to be cached by the
340 * pool subsystem. This can lead to performance improvements by avoiding
341 * needless object construction/destruction; it is deferred until absolutely
342 * necessary.
343 *
344 * Caches are grouped into cache groups. Each cache group references up
345 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
346 * object from the pool, it calls the object's constructor and places it
347 * into a cache group. When a cache group frees an object back to the
348 * pool, it first calls the object's destructor. This allows the object
349 * to persist in constructed form while freed to the cache.
350 *
351 * The pool references each cache, so that when a pool is drained by the
352 * pagedaemon, it can drain each individual cache as well. Each time a
353 * cache is drained, the most idle cache group is freed to the pool in
354 * its entirety.
355 *
356 * Pool caches are laid on top of pools. By layering them, we can avoid
357 * the complexity of cache management for pools which would not benefit
358 * from it.
359 */
360
361 static struct pool pcg_normal_pool;
362 static struct pool pcg_large_pool;
363 static struct pool cache_pool;
364 static struct pool cache_cpu_pool;
365
366 static pcg_t *volatile pcg_large_cache __cacheline_aligned;
367 static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
368
369 /* List of all caches. */
370 TAILQ_HEAD(,pool_cache) pool_cache_head =
371 TAILQ_HEAD_INITIALIZER(pool_cache_head);
372
373 int pool_cache_disable; /* global disable for caching */
374 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
375
376 static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
377 void *);
378 static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
379 void **, paddr_t *, int);
380 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
381 static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
382 static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
383 static void pool_cache_transfer(pool_cache_t);
384 static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
385 static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
386 static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
387
388 static int pool_catchup(struct pool *);
389 static void pool_prime_page(struct pool *, void *,
390 struct pool_item_header *);
391 static void pool_update_curpage(struct pool *);
392
393 static int pool_grow(struct pool *, int);
394 static void *pool_allocator_alloc(struct pool *, int);
395 static void pool_allocator_free(struct pool *, void *);
396
397 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
398 void (*)(const char *, ...) __printflike(1, 2));
399 static void pool_print1(struct pool *, const char *,
400 void (*)(const char *, ...) __printflike(1, 2));
401
402 static int pool_chk_page(struct pool *, const char *,
403 struct pool_item_header *);
404
405 /* -------------------------------------------------------------------------- */
406
407 static inline unsigned int
408 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
409 const void *v)
410 {
411 const char *cp = v;
412 unsigned int idx;
413
414 KASSERT(pp->pr_roflags & PR_USEBMAP);
415 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
416
417 if (__predict_false(idx >= pp->pr_itemsperpage)) {
418 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
419 pp->pr_itemsperpage);
420 }
421
422 return idx;
423 }
424
425 static inline void
426 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
427 void *obj)
428 {
429 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
430 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
431 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
432
433 if (__predict_false((*bitmap & mask) != 0)) {
434 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
435 }
436
437 *bitmap |= mask;
438 }
439
440 static inline void *
441 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
442 {
443 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
444 unsigned int idx;
445 int i;
446
447 for (i = 0; ; i++) {
448 int bit;
449
450 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
451 bit = ffs32(bitmap[i]);
452 if (bit) {
453 pool_item_bitmap_t mask;
454
455 bit--;
456 idx = (i * BITMAP_SIZE) + bit;
457 mask = 1U << bit;
458 KASSERT((bitmap[i] & mask) != 0);
459 bitmap[i] &= ~mask;
460 break;
461 }
462 }
463 KASSERT(idx < pp->pr_itemsperpage);
464 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
465 }
466
467 static inline void
468 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
469 {
470 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
471 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
472 int i;
473
474 for (i = 0; i < n; i++) {
475 bitmap[i] = (pool_item_bitmap_t)-1;
476 }
477 }
478
479 /* -------------------------------------------------------------------------- */
480
481 static inline void
482 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
483 void *obj)
484 {
485 struct pool_item *pi = obj;
486
487 KASSERT(!pp_has_pser(pp));
488
489 #ifdef POOL_CHECK_MAGIC
490 pi->pi_magic = PI_MAGIC;
491 #endif
492
493 if (pp->pr_redzone) {
494 /*
495 * Mark the pool_item as valid. The rest is already
496 * invalid.
497 */
498 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
499 }
500
501 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
502 }
503
504 static inline void *
505 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
506 {
507 struct pool_item *pi;
508 void *v;
509
510 v = pi = LIST_FIRST(&ph->ph_itemlist);
511 if (__predict_false(v == NULL)) {
512 mutex_exit(&pp->pr_lock);
513 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
514 }
515 KASSERTMSG((pp->pr_nitems > 0),
516 "%s: [%s] nitems %u inconsistent on itemlist",
517 __func__, pp->pr_wchan, pp->pr_nitems);
518 #ifdef POOL_CHECK_MAGIC
519 KASSERTMSG((pi->pi_magic == PI_MAGIC),
520 "%s: [%s] free list modified: "
521 "magic=%x; page %p; item addr %p", __func__,
522 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
523 #endif
524
525 /*
526 * Remove from item list.
527 */
528 LIST_REMOVE(pi, pi_list);
529
530 return v;
531 }
532
533 /* -------------------------------------------------------------------------- */
534
535 static inline void
536 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
537 void *object)
538 {
539 if (__predict_false((void *)ph->ph_page != page)) {
540 panic("%s: [%s] item %p not part of pool", __func__,
541 pp->pr_wchan, object);
542 }
543 if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
544 panic("%s: [%s] item %p below item space", __func__,
545 pp->pr_wchan, object);
546 }
547 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
548 panic("%s: [%s] item %p poolid %u != %u", __func__,
549 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
550 }
551 }
552
553 static inline void
554 pc_phinpage_check(pool_cache_t pc, void *object)
555 {
556 struct pool_item_header *ph;
557 struct pool *pp;
558 void *page;
559
560 pp = &pc->pc_pool;
561 page = POOL_OBJ_TO_PAGE(pp, object);
562 ph = (struct pool_item_header *)page;
563
564 pr_phinpage_check(pp, ph, page, object);
565 }
566
567 /* -------------------------------------------------------------------------- */
568
569 static inline int
570 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
571 {
572
573 /*
574 * We consider pool_item_header with smaller ph_page bigger. This
575 * unnatural ordering is for the benefit of pr_find_pagehead.
576 */
577 if (a->ph_page < b->ph_page)
578 return 1;
579 else if (a->ph_page > b->ph_page)
580 return -1;
581 else
582 return 0;
583 }
584
585 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
586 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
587
588 static inline struct pool_item_header *
589 pr_find_pagehead_noalign(struct pool *pp, void *v)
590 {
591 struct pool_item_header *ph, tmp;
592
593 tmp.ph_page = (void *)(uintptr_t)v;
594 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
595 if (ph == NULL) {
596 ph = SPLAY_ROOT(&pp->pr_phtree);
597 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
598 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
599 }
600 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
601 }
602
603 return ph;
604 }
605
606 /*
607 * Return the pool page header based on item address.
608 */
609 static inline struct pool_item_header *
610 pr_find_pagehead(struct pool *pp, void *v)
611 {
612 struct pool_item_header *ph, tmp;
613
614 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
615 ph = pr_find_pagehead_noalign(pp, v);
616 } else {
617 void *page = POOL_OBJ_TO_PAGE(pp, v);
618 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
619 ph = (struct pool_item_header *)page;
620 pr_phinpage_check(pp, ph, page, v);
621 } else {
622 tmp.ph_page = page;
623 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
624 }
625 }
626
627 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
628 ((char *)ph->ph_page <= (char *)v &&
629 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
630 return ph;
631 }
632
633 static void
634 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
635 {
636 struct pool_item_header *ph;
637
638 while ((ph = LIST_FIRST(pq)) != NULL) {
639 LIST_REMOVE(ph, ph_pagelist);
640 pool_allocator_free(pp, ph->ph_page);
641 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
642 pool_put(pp->pr_phpool, ph);
643 }
644 }
645
646 /*
647 * Remove a page from the pool.
648 */
649 static inline void
650 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
651 struct pool_pagelist *pq)
652 {
653
654 KASSERT(mutex_owned(&pp->pr_lock));
655
656 /*
657 * If the page was idle, decrement the idle page count.
658 */
659 if (ph->ph_nmissing == 0) {
660 KASSERT(pp->pr_nidle != 0);
661 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
662 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
663 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
664 pp->pr_nidle--;
665 }
666
667 pp->pr_nitems -= pp->pr_itemsperpage;
668
669 /*
670 * Unlink the page from the pool and queue it for release.
671 */
672 LIST_REMOVE(ph, ph_pagelist);
673 if (pp->pr_roflags & PR_PHINPAGE) {
674 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
675 panic("%s: [%s] ph %p poolid %u != %u",
676 __func__, pp->pr_wchan, ph, ph->ph_poolid,
677 pp->pr_poolid);
678 }
679 } else {
680 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
681 }
682 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
683
684 pp->pr_npages--;
685 pp->pr_npagefree++;
686
687 pool_update_curpage(pp);
688 }
689
690 /*
691 * Initialize all the pools listed in the "pools" link set.
692 */
693 void
694 pool_subsystem_init(void)
695 {
696 size_t size;
697 int idx;
698
699 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
700 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
701 cv_init(&pool_busy, "poolbusy");
702
703 /*
704 * Initialize private page header pool and cache magazine pool if we
705 * haven't done so yet.
706 */
707 for (idx = 0; idx < PHPOOL_MAX; idx++) {
708 static char phpool_names[PHPOOL_MAX][6+1+6+1];
709 int nelem;
710 size_t sz;
711
712 nelem = PHPOOL_FREELIST_NELEM(idx);
713 KASSERT(nelem != 0);
714 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
715 "phpool-%d", nelem);
716 sz = offsetof(struct pool_item_header,
717 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
718 pool_init(&phpool[idx], sz, 0, 0, 0,
719 phpool_names[idx], &pool_allocator_meta, IPL_VM);
720 }
721
722 size = sizeof(pcg_t) +
723 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
724 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
725 "pcgnormal", &pool_allocator_meta, IPL_VM);
726
727 size = sizeof(pcg_t) +
728 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
729 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
730 "pcglarge", &pool_allocator_meta, IPL_VM);
731
732 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
733 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
734
735 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
736 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
737 }
738
739 static inline bool
740 pool_init_is_phinpage(const struct pool *pp)
741 {
742 size_t pagesize;
743
744 if (pp->pr_roflags & PR_PHINPAGE) {
745 return true;
746 }
747 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
748 return false;
749 }
750
751 pagesize = pp->pr_alloc->pa_pagesz;
752
753 /*
754 * Threshold: the item size is below 1/16 of a page size, and below
755 * 8 times the page header size. The latter ensures we go off-page
756 * if the page header would make us waste a rather big item.
757 */
758 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
759 return true;
760 }
761
762 /* Put the header into the page if it doesn't waste any items. */
763 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
764 return true;
765 }
766
767 return false;
768 }
769
770 static inline bool
771 pool_init_is_usebmap(const struct pool *pp)
772 {
773 size_t bmapsize;
774
775 if (pp->pr_roflags & PR_NOTOUCH) {
776 return true;
777 }
778
779 /*
780 * If we're off-page, go with a bitmap.
781 */
782 if (!(pp->pr_roflags & PR_PHINPAGE)) {
783 return true;
784 }
785
786 /*
787 * If we're on-page, and the page header can already contain a bitmap
788 * big enough to cover all the items of the page, go with a bitmap.
789 */
790 bmapsize = roundup(PHSIZE, pp->pr_align) -
791 offsetof(struct pool_item_header, ph_bitmap[0]);
792 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
793 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
794 return true;
795 }
796
797 return false;
798 }
799
800 /*
801 * Initialize the given pool resource structure.
802 *
803 * We export this routine to allow other kernel parts to declare
804 * static pools that must be initialized before kmem(9) is available.
805 */
806 void
807 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
808 const char *wchan, struct pool_allocator *palloc, int ipl)
809 {
810 struct pool *pp1;
811 size_t prsize;
812 int itemspace, slack;
813
814 /* XXX ioff will be removed. */
815 KASSERT(ioff == 0);
816
817 #ifdef DEBUG
818 if (__predict_true(!cold))
819 mutex_enter(&pool_head_lock);
820 /*
821 * Check that the pool hasn't already been initialised and
822 * added to the list of all pools.
823 */
824 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
825 if (pp == pp1)
826 panic("%s: [%s] already initialised", __func__,
827 wchan);
828 }
829 if (__predict_true(!cold))
830 mutex_exit(&pool_head_lock);
831 #endif
832
833 if (palloc == NULL) {
834 if (size > PAGE_SIZE) {
835 int bigidx = pool_bigidx(size);
836
837 palloc = &pool_allocator_big[bigidx];
838 flags |= PR_NOALIGN;
839 } else if (ipl == IPL_NONE) {
840 palloc = &pool_allocator_nointr;
841 } else {
842 palloc = &pool_allocator_kmem;
843 }
844 }
845
846 if (!cold)
847 mutex_enter(&pool_allocator_lock);
848 if (palloc->pa_refcnt++ == 0) {
849 if (palloc->pa_pagesz == 0)
850 palloc->pa_pagesz = PAGE_SIZE;
851
852 TAILQ_INIT(&palloc->pa_list);
853
854 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
855 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
856 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
857 }
858 if (!cold)
859 mutex_exit(&pool_allocator_lock);
860
861 /*
862 * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
863 * valid until the the backing page is returned to the system.
864 */
865 if (flags & PR_PSERIALIZE) {
866 flags |= PR_NOTOUCH;
867 }
868
869 if (align == 0)
870 align = ALIGN(1);
871
872 prsize = size;
873 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
874 prsize = sizeof(struct pool_item);
875
876 prsize = roundup(prsize, align);
877 KASSERTMSG((prsize <= palloc->pa_pagesz),
878 "%s: [%s] pool item size (%zu) larger than page size (%u)",
879 __func__, wchan, prsize, palloc->pa_pagesz);
880
881 /*
882 * Initialize the pool structure.
883 */
884 LIST_INIT(&pp->pr_emptypages);
885 LIST_INIT(&pp->pr_fullpages);
886 LIST_INIT(&pp->pr_partpages);
887 pp->pr_cache = NULL;
888 pp->pr_curpage = NULL;
889 pp->pr_npages = 0;
890 pp->pr_minitems = 0;
891 pp->pr_minpages = 0;
892 pp->pr_maxitems = UINT_MAX;
893 pp->pr_maxpages = UINT_MAX;
894 pp->pr_roflags = flags;
895 pp->pr_flags = 0;
896 pp->pr_size = prsize;
897 pp->pr_reqsize = size;
898 pp->pr_align = align;
899 pp->pr_wchan = wchan;
900 pp->pr_alloc = palloc;
901 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
902 pp->pr_nitems = 0;
903 pp->pr_nout = 0;
904 pp->pr_hardlimit = UINT_MAX;
905 pp->pr_hardlimit_warning = NULL;
906 pp->pr_hardlimit_ratecap.tv_sec = 0;
907 pp->pr_hardlimit_ratecap.tv_usec = 0;
908 pp->pr_hardlimit_warning_last.tv_sec = 0;
909 pp->pr_hardlimit_warning_last.tv_usec = 0;
910 pp->pr_drain_hook = NULL;
911 pp->pr_drain_hook_arg = NULL;
912 pp->pr_freecheck = NULL;
913 pp->pr_redzone = false;
914 pool_redzone_init(pp, size);
915 pool_quarantine_init(pp);
916
917 /*
918 * Decide whether to put the page header off-page to avoid wasting too
919 * large a part of the page or too big an item. Off-page page headers
920 * go on a hash table, so we can match a returned item with its header
921 * based on the page address.
922 */
923 if (pool_init_is_phinpage(pp)) {
924 /* Use the beginning of the page for the page header */
925 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
926 pp->pr_itemoffset = roundup(PHSIZE, align);
927 pp->pr_roflags |= PR_PHINPAGE;
928 } else {
929 /* The page header will be taken from our page header pool */
930 itemspace = palloc->pa_pagesz;
931 pp->pr_itemoffset = 0;
932 SPLAY_INIT(&pp->pr_phtree);
933 }
934
935 pp->pr_itemsperpage = itemspace / pp->pr_size;
936 KASSERT(pp->pr_itemsperpage != 0);
937
938 /*
939 * Decide whether to use a bitmap or a linked list to manage freed
940 * items.
941 */
942 if (pool_init_is_usebmap(pp)) {
943 pp->pr_roflags |= PR_USEBMAP;
944 }
945
946 /*
947 * If we're off-page, then we're using a bitmap; choose the appropriate
948 * pool to allocate page headers, whose size varies depending on the
949 * bitmap. If we're on-page, nothing to do.
950 */
951 if (!(pp->pr_roflags & PR_PHINPAGE)) {
952 int idx;
953
954 KASSERT(pp->pr_roflags & PR_USEBMAP);
955
956 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
957 idx++) {
958 /* nothing */
959 }
960 if (idx >= PHPOOL_MAX) {
961 /*
962 * if you see this panic, consider to tweak
963 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
964 */
965 panic("%s: [%s] too large itemsperpage(%d) for "
966 "PR_USEBMAP", __func__,
967 pp->pr_wchan, pp->pr_itemsperpage);
968 }
969 pp->pr_phpool = &phpool[idx];
970 } else {
971 pp->pr_phpool = NULL;
972 }
973
974 /*
975 * Use the slack between the chunks and the page header
976 * for "cache coloring".
977 */
978 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
979 pp->pr_maxcolor = rounddown(slack, align);
980 pp->pr_curcolor = 0;
981
982 pp->pr_nget = 0;
983 pp->pr_nfail = 0;
984 pp->pr_nput = 0;
985 pp->pr_npagealloc = 0;
986 pp->pr_npagefree = 0;
987 pp->pr_hiwat = 0;
988 pp->pr_nidle = 0;
989 pp->pr_refcnt = 0;
990
991 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
992 cv_init(&pp->pr_cv, wchan);
993 pp->pr_ipl = ipl;
994
995 /* Insert into the list of all pools. */
996 if (!cold)
997 mutex_enter(&pool_head_lock);
998 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
999 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
1000 break;
1001 }
1002 if (pp1 == NULL)
1003 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
1004 else
1005 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
1006 if (!cold)
1007 mutex_exit(&pool_head_lock);
1008
1009 /* Insert this into the list of pools using this allocator. */
1010 if (!cold)
1011 mutex_enter(&palloc->pa_lock);
1012 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
1013 if (!cold)
1014 mutex_exit(&palloc->pa_lock);
1015 }
1016
1017 /*
1018 * De-commission a pool resource.
1019 */
1020 void
1021 pool_destroy(struct pool *pp)
1022 {
1023 struct pool_pagelist pq;
1024 struct pool_item_header *ph;
1025
1026 pool_quarantine_flush(pp);
1027
1028 /* Remove from global pool list */
1029 mutex_enter(&pool_head_lock);
1030 while (pp->pr_refcnt != 0)
1031 cv_wait(&pool_busy, &pool_head_lock);
1032 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1033 if (drainpp == pp)
1034 drainpp = NULL;
1035 mutex_exit(&pool_head_lock);
1036
1037 /* Remove this pool from its allocator's list of pools. */
1038 mutex_enter(&pp->pr_alloc->pa_lock);
1039 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1040 mutex_exit(&pp->pr_alloc->pa_lock);
1041
1042 mutex_enter(&pool_allocator_lock);
1043 if (--pp->pr_alloc->pa_refcnt == 0)
1044 mutex_destroy(&pp->pr_alloc->pa_lock);
1045 mutex_exit(&pool_allocator_lock);
1046
1047 mutex_enter(&pp->pr_lock);
1048
1049 KASSERT(pp->pr_cache == NULL);
1050 KASSERTMSG((pp->pr_nout == 0),
1051 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1052 pp->pr_nout);
1053 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1054 KASSERT(LIST_EMPTY(&pp->pr_partpages));
1055
1056 /* Remove all pages */
1057 LIST_INIT(&pq);
1058 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1059 pr_rmpage(pp, ph, &pq);
1060
1061 mutex_exit(&pp->pr_lock);
1062
1063 pr_pagelist_free(pp, &pq);
1064 cv_destroy(&pp->pr_cv);
1065 mutex_destroy(&pp->pr_lock);
1066 }
1067
1068 void
1069 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1070 {
1071
1072 /* XXX no locking -- must be used just after pool_init() */
1073 KASSERTMSG((pp->pr_drain_hook == NULL),
1074 "%s: [%s] already set", __func__, pp->pr_wchan);
1075 pp->pr_drain_hook = fn;
1076 pp->pr_drain_hook_arg = arg;
1077 }
1078
1079 static struct pool_item_header *
1080 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1081 {
1082 struct pool_item_header *ph;
1083
1084 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1085 ph = storage;
1086 else
1087 ph = pool_get(pp->pr_phpool, flags);
1088
1089 return ph;
1090 }
1091
1092 /*
1093 * Grab an item from the pool.
1094 */
1095 void *
1096 pool_get(struct pool *pp, int flags)
1097 {
1098 struct pool_item_header *ph;
1099 void *v;
1100
1101 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1102 KASSERTMSG((pp->pr_itemsperpage != 0),
1103 "%s: [%s] pr_itemsperpage is zero, "
1104 "pool not initialized?", __func__, pp->pr_wchan);
1105 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1106 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1107 "%s: [%s] is IPL_NONE, but called from interrupt context",
1108 __func__, pp->pr_wchan);
1109 if (flags & PR_WAITOK) {
1110 ASSERT_SLEEPABLE();
1111 }
1112
1113 if (flags & PR_NOWAIT) {
1114 if (fault_inject())
1115 return NULL;
1116 }
1117
1118 mutex_enter(&pp->pr_lock);
1119 startover:
1120 /*
1121 * Check to see if we've reached the hard limit. If we have,
1122 * and we can wait, then wait until an item has been returned to
1123 * the pool.
1124 */
1125 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1126 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1127 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1128 if (pp->pr_drain_hook != NULL) {
1129 /*
1130 * Since the drain hook is going to free things
1131 * back to the pool, unlock, call the hook, re-lock,
1132 * and check the hardlimit condition again.
1133 */
1134 mutex_exit(&pp->pr_lock);
1135 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1136 mutex_enter(&pp->pr_lock);
1137 if (pp->pr_nout < pp->pr_hardlimit)
1138 goto startover;
1139 }
1140
1141 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1142 /*
1143 * XXX: A warning isn't logged in this case. Should
1144 * it be?
1145 */
1146 pp->pr_flags |= PR_WANTED;
1147 do {
1148 cv_wait(&pp->pr_cv, &pp->pr_lock);
1149 } while (pp->pr_flags & PR_WANTED);
1150 goto startover;
1151 }
1152
1153 /*
1154 * Log a message that the hard limit has been hit.
1155 */
1156 if (pp->pr_hardlimit_warning != NULL &&
1157 ratecheck(&pp->pr_hardlimit_warning_last,
1158 &pp->pr_hardlimit_ratecap))
1159 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1160
1161 pp->pr_nfail++;
1162
1163 mutex_exit(&pp->pr_lock);
1164 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1165 return NULL;
1166 }
1167
1168 /*
1169 * The convention we use is that if `curpage' is not NULL, then
1170 * it points at a non-empty bucket. In particular, `curpage'
1171 * never points at a page header which has PR_PHINPAGE set and
1172 * has no items in its bucket.
1173 */
1174 if ((ph = pp->pr_curpage) == NULL) {
1175 int error;
1176
1177 KASSERTMSG((pp->pr_nitems == 0),
1178 "%s: [%s] curpage NULL, inconsistent nitems %u",
1179 __func__, pp->pr_wchan, pp->pr_nitems);
1180
1181 /*
1182 * Call the back-end page allocator for more memory.
1183 * Release the pool lock, as the back-end page allocator
1184 * may block.
1185 */
1186 error = pool_grow(pp, flags);
1187 if (error != 0) {
1188 /*
1189 * pool_grow aborts when another thread
1190 * is allocating a new page. Retry if it
1191 * waited for it.
1192 */
1193 if (error == ERESTART)
1194 goto startover;
1195
1196 /*
1197 * We were unable to allocate a page or item
1198 * header, but we released the lock during
1199 * allocation, so perhaps items were freed
1200 * back to the pool. Check for this case.
1201 */
1202 if (pp->pr_curpage != NULL)
1203 goto startover;
1204
1205 pp->pr_nfail++;
1206 mutex_exit(&pp->pr_lock);
1207 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1208 return NULL;
1209 }
1210
1211 /* Start the allocation process over. */
1212 goto startover;
1213 }
1214 if (pp->pr_roflags & PR_USEBMAP) {
1215 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1216 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1217 v = pr_item_bitmap_get(pp, ph);
1218 } else {
1219 v = pr_item_linkedlist_get(pp, ph);
1220 }
1221 pp->pr_nitems--;
1222 pp->pr_nout++;
1223 if (ph->ph_nmissing == 0) {
1224 KASSERT(pp->pr_nidle > 0);
1225 pp->pr_nidle--;
1226
1227 /*
1228 * This page was previously empty. Move it to the list of
1229 * partially-full pages. This page is already curpage.
1230 */
1231 LIST_REMOVE(ph, ph_pagelist);
1232 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1233 }
1234 ph->ph_nmissing++;
1235 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1236 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1237 LIST_EMPTY(&ph->ph_itemlist)),
1238 "%s: [%s] nmissing (%u) inconsistent", __func__,
1239 pp->pr_wchan, ph->ph_nmissing);
1240 /*
1241 * This page is now full. Move it to the full list
1242 * and select a new current page.
1243 */
1244 LIST_REMOVE(ph, ph_pagelist);
1245 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1246 pool_update_curpage(pp);
1247 }
1248
1249 pp->pr_nget++;
1250
1251 /*
1252 * If we have a low water mark and we are now below that low
1253 * water mark, add more items to the pool.
1254 */
1255 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1256 /*
1257 * XXX: Should we log a warning? Should we set up a timeout
1258 * to try again in a second or so? The latter could break
1259 * a caller's assumptions about interrupt protection, etc.
1260 */
1261 }
1262
1263 mutex_exit(&pp->pr_lock);
1264 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1265 FREECHECK_OUT(&pp->pr_freecheck, v);
1266 pool_redzone_fill(pp, v);
1267 pool_get_kmsan(pp, v);
1268 if (flags & PR_ZERO)
1269 memset(v, 0, pp->pr_reqsize);
1270 return v;
1271 }
1272
1273 /*
1274 * Internal version of pool_put(). Pool is already locked/entered.
1275 */
1276 static void
1277 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1278 {
1279 struct pool_item_header *ph;
1280
1281 KASSERT(mutex_owned(&pp->pr_lock));
1282 pool_redzone_check(pp, v);
1283 pool_put_kmsan(pp, v);
1284 FREECHECK_IN(&pp->pr_freecheck, v);
1285 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1286
1287 KASSERTMSG((pp->pr_nout > 0),
1288 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1289
1290 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1291 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1292 }
1293
1294 /*
1295 * Return to item list.
1296 */
1297 if (pp->pr_roflags & PR_USEBMAP) {
1298 pr_item_bitmap_put(pp, ph, v);
1299 } else {
1300 pr_item_linkedlist_put(pp, ph, v);
1301 }
1302 KDASSERT(ph->ph_nmissing != 0);
1303 ph->ph_nmissing--;
1304 pp->pr_nput++;
1305 pp->pr_nitems++;
1306 pp->pr_nout--;
1307
1308 /* Cancel "pool empty" condition if it exists */
1309 if (pp->pr_curpage == NULL)
1310 pp->pr_curpage = ph;
1311
1312 if (pp->pr_flags & PR_WANTED) {
1313 pp->pr_flags &= ~PR_WANTED;
1314 cv_broadcast(&pp->pr_cv);
1315 }
1316
1317 /*
1318 * If this page is now empty, do one of two things:
1319 *
1320 * (1) If we have more pages than the page high water mark,
1321 * free the page back to the system. ONLY CONSIDER
1322 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1323 * CLAIM.
1324 *
1325 * (2) Otherwise, move the page to the empty page list.
1326 *
1327 * Either way, select a new current page (so we use a partially-full
1328 * page if one is available).
1329 */
1330 if (ph->ph_nmissing == 0) {
1331 pp->pr_nidle++;
1332 if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1333 pp->pr_npages > pp->pr_minpages &&
1334 (pp->pr_npages > pp->pr_maxpages ||
1335 pp->pr_nitems > pp->pr_maxitems)) {
1336 pr_rmpage(pp, ph, pq);
1337 } else {
1338 LIST_REMOVE(ph, ph_pagelist);
1339 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1340
1341 /*
1342 * Update the timestamp on the page. A page must
1343 * be idle for some period of time before it can
1344 * be reclaimed by the pagedaemon. This minimizes
1345 * ping-pong'ing for memory.
1346 *
1347 * note for 64-bit time_t: truncating to 32-bit is not
1348 * a problem for our usage.
1349 */
1350 ph->ph_time = time_uptime;
1351 }
1352 pool_update_curpage(pp);
1353 }
1354
1355 /*
1356 * If the page was previously completely full, move it to the
1357 * partially-full list and make it the current page. The next
1358 * allocation will get the item from this page, instead of
1359 * further fragmenting the pool.
1360 */
1361 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1362 LIST_REMOVE(ph, ph_pagelist);
1363 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1364 pp->pr_curpage = ph;
1365 }
1366 }
1367
1368 void
1369 pool_put(struct pool *pp, void *v)
1370 {
1371 struct pool_pagelist pq;
1372
1373 LIST_INIT(&pq);
1374
1375 mutex_enter(&pp->pr_lock);
1376 if (!pool_put_quarantine(pp, v, &pq)) {
1377 pool_do_put(pp, v, &pq);
1378 }
1379 mutex_exit(&pp->pr_lock);
1380
1381 pr_pagelist_free(pp, &pq);
1382 }
1383
1384 /*
1385 * pool_grow: grow a pool by a page.
1386 *
1387 * => called with pool locked.
1388 * => unlock and relock the pool.
1389 * => return with pool locked.
1390 */
1391
1392 static int
1393 pool_grow(struct pool *pp, int flags)
1394 {
1395 struct pool_item_header *ph;
1396 char *storage;
1397
1398 /*
1399 * If there's a pool_grow in progress, wait for it to complete
1400 * and try again from the top.
1401 */
1402 if (pp->pr_flags & PR_GROWING) {
1403 if (flags & PR_WAITOK) {
1404 do {
1405 cv_wait(&pp->pr_cv, &pp->pr_lock);
1406 } while (pp->pr_flags & PR_GROWING);
1407 return ERESTART;
1408 } else {
1409 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1410 /*
1411 * This needs an unlock/relock dance so
1412 * that the other caller has a chance to
1413 * run and actually do the thing. Note
1414 * that this is effectively a busy-wait.
1415 */
1416 mutex_exit(&pp->pr_lock);
1417 mutex_enter(&pp->pr_lock);
1418 return ERESTART;
1419 }
1420 return EWOULDBLOCK;
1421 }
1422 }
1423 pp->pr_flags |= PR_GROWING;
1424 if (flags & PR_WAITOK)
1425 mutex_exit(&pp->pr_lock);
1426 else
1427 pp->pr_flags |= PR_GROWINGNOWAIT;
1428
1429 storage = pool_allocator_alloc(pp, flags);
1430 if (__predict_false(storage == NULL))
1431 goto out;
1432
1433 ph = pool_alloc_item_header(pp, storage, flags);
1434 if (__predict_false(ph == NULL)) {
1435 pool_allocator_free(pp, storage);
1436 goto out;
1437 }
1438
1439 if (flags & PR_WAITOK)
1440 mutex_enter(&pp->pr_lock);
1441 pool_prime_page(pp, storage, ph);
1442 pp->pr_npagealloc++;
1443 KASSERT(pp->pr_flags & PR_GROWING);
1444 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1445 /*
1446 * If anyone was waiting for pool_grow, notify them that we
1447 * may have just done it.
1448 */
1449 cv_broadcast(&pp->pr_cv);
1450 return 0;
1451 out:
1452 if (flags & PR_WAITOK)
1453 mutex_enter(&pp->pr_lock);
1454 KASSERT(pp->pr_flags & PR_GROWING);
1455 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1456 return ENOMEM;
1457 }
1458
1459 void
1460 pool_prime(struct pool *pp, int n)
1461 {
1462
1463 mutex_enter(&pp->pr_lock);
1464 pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1465 if (pp->pr_maxpages <= pp->pr_minpages)
1466 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1467 while (pp->pr_npages < pp->pr_minpages)
1468 (void) pool_grow(pp, PR_WAITOK);
1469 mutex_exit(&pp->pr_lock);
1470 }
1471
1472 /*
1473 * Add a page worth of items to the pool.
1474 *
1475 * Note, we must be called with the pool descriptor LOCKED.
1476 */
1477 static void
1478 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1479 {
1480 const unsigned int align = pp->pr_align;
1481 struct pool_item *pi;
1482 void *cp = storage;
1483 int n;
1484
1485 KASSERT(mutex_owned(&pp->pr_lock));
1486 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1487 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1488 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1489
1490 /*
1491 * Insert page header.
1492 */
1493 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1494 LIST_INIT(&ph->ph_itemlist);
1495 ph->ph_page = storage;
1496 ph->ph_nmissing = 0;
1497 ph->ph_time = time_uptime;
1498 if (pp->pr_roflags & PR_PHINPAGE)
1499 ph->ph_poolid = pp->pr_poolid;
1500 else
1501 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1502
1503 pp->pr_nidle++;
1504
1505 /*
1506 * The item space starts after the on-page header, if any.
1507 */
1508 ph->ph_off = pp->pr_itemoffset;
1509
1510 /*
1511 * Color this page.
1512 */
1513 ph->ph_off += pp->pr_curcolor;
1514 cp = (char *)cp + ph->ph_off;
1515 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1516 pp->pr_curcolor = 0;
1517
1518 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1519
1520 /*
1521 * Insert remaining chunks on the bucket list.
1522 */
1523 n = pp->pr_itemsperpage;
1524 pp->pr_nitems += n;
1525
1526 if (pp->pr_roflags & PR_USEBMAP) {
1527 pr_item_bitmap_init(pp, ph);
1528 } else {
1529 while (n--) {
1530 pi = (struct pool_item *)cp;
1531
1532 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1533
1534 /* Insert on page list */
1535 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1536 #ifdef POOL_CHECK_MAGIC
1537 pi->pi_magic = PI_MAGIC;
1538 #endif
1539 cp = (char *)cp + pp->pr_size;
1540
1541 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1542 }
1543 }
1544
1545 /*
1546 * If the pool was depleted, point at the new page.
1547 */
1548 if (pp->pr_curpage == NULL)
1549 pp->pr_curpage = ph;
1550
1551 if (++pp->pr_npages > pp->pr_hiwat)
1552 pp->pr_hiwat = pp->pr_npages;
1553 }
1554
1555 /*
1556 * Used by pool_get() when nitems drops below the low water mark. This
1557 * is used to catch up pr_nitems with the low water mark.
1558 *
1559 * Note 1, we never wait for memory here, we let the caller decide what to do.
1560 *
1561 * Note 2, we must be called with the pool already locked, and we return
1562 * with it locked.
1563 */
1564 static int
1565 pool_catchup(struct pool *pp)
1566 {
1567 int error = 0;
1568
1569 while (POOL_NEEDS_CATCHUP(pp)) {
1570 error = pool_grow(pp, PR_NOWAIT);
1571 if (error) {
1572 if (error == ERESTART)
1573 continue;
1574 break;
1575 }
1576 }
1577 return error;
1578 }
1579
1580 static void
1581 pool_update_curpage(struct pool *pp)
1582 {
1583
1584 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1585 if (pp->pr_curpage == NULL) {
1586 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1587 }
1588 KASSERTMSG((pp->pr_curpage == NULL) == (pp->pr_nitems == 0),
1589 "pp=%p curpage=%p nitems=%u", pp, pp->pr_curpage, pp->pr_nitems);
1590 }
1591
1592 void
1593 pool_setlowat(struct pool *pp, int n)
1594 {
1595
1596 mutex_enter(&pp->pr_lock);
1597 pp->pr_minitems = n;
1598
1599 /* Make sure we're caught up with the newly-set low water mark. */
1600 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1601 /*
1602 * XXX: Should we log a warning? Should we set up a timeout
1603 * to try again in a second or so? The latter could break
1604 * a caller's assumptions about interrupt protection, etc.
1605 */
1606 }
1607
1608 mutex_exit(&pp->pr_lock);
1609 }
1610
1611 void
1612 pool_sethiwat(struct pool *pp, int n)
1613 {
1614
1615 mutex_enter(&pp->pr_lock);
1616
1617 pp->pr_maxitems = n;
1618
1619 mutex_exit(&pp->pr_lock);
1620 }
1621
1622 void
1623 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1624 {
1625
1626 mutex_enter(&pp->pr_lock);
1627
1628 pp->pr_hardlimit = n;
1629 pp->pr_hardlimit_warning = warnmess;
1630 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1631 pp->pr_hardlimit_warning_last.tv_sec = 0;
1632 pp->pr_hardlimit_warning_last.tv_usec = 0;
1633
1634 pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1635
1636 mutex_exit(&pp->pr_lock);
1637 }
1638
1639 unsigned int
1640 pool_nget(struct pool *pp)
1641 {
1642
1643 return pp->pr_nget;
1644 }
1645
1646 unsigned int
1647 pool_nput(struct pool *pp)
1648 {
1649
1650 return pp->pr_nput;
1651 }
1652
1653 /*
1654 * Release all complete pages that have not been used recently.
1655 *
1656 * Must not be called from interrupt context.
1657 */
1658 int
1659 pool_reclaim(struct pool *pp)
1660 {
1661 struct pool_item_header *ph, *phnext;
1662 struct pool_pagelist pq;
1663 struct pool_cache *pc;
1664 uint32_t curtime;
1665 bool klock;
1666 int rv;
1667
1668 KASSERT(!cpu_intr_p());
1669 KASSERT(!cpu_softintr_p());
1670
1671 if (pp->pr_drain_hook != NULL) {
1672 /*
1673 * The drain hook must be called with the pool unlocked.
1674 */
1675 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1676 }
1677
1678 /*
1679 * XXXSMP Because we do not want to cause non-MPSAFE code
1680 * to block.
1681 */
1682 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1683 pp->pr_ipl == IPL_SOFTSERIAL) {
1684 KERNEL_LOCK(1, NULL);
1685 klock = true;
1686 } else
1687 klock = false;
1688
1689 /* Reclaim items from the pool's cache (if any). */
1690 if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL)
1691 pool_cache_invalidate(pc);
1692
1693 if (mutex_tryenter(&pp->pr_lock) == 0) {
1694 if (klock) {
1695 KERNEL_UNLOCK_ONE(NULL);
1696 }
1697 return 0;
1698 }
1699
1700 LIST_INIT(&pq);
1701
1702 curtime = time_uptime;
1703
1704 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1705 phnext = LIST_NEXT(ph, ph_pagelist);
1706
1707 /* Check our minimum page claim */
1708 if (pp->pr_npages <= pp->pr_minpages)
1709 break;
1710
1711 KASSERT(ph->ph_nmissing == 0);
1712 if (curtime - ph->ph_time < pool_inactive_time)
1713 continue;
1714
1715 /*
1716 * If freeing this page would put us below the minimum free items
1717 * or the minimum pages, stop now.
1718 */
1719 if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1720 pp->pr_npages - 1 < pp->pr_minpages)
1721 break;
1722
1723 pr_rmpage(pp, ph, &pq);
1724 }
1725
1726 mutex_exit(&pp->pr_lock);
1727
1728 if (LIST_EMPTY(&pq))
1729 rv = 0;
1730 else {
1731 pr_pagelist_free(pp, &pq);
1732 rv = 1;
1733 }
1734
1735 if (klock) {
1736 KERNEL_UNLOCK_ONE(NULL);
1737 }
1738
1739 return rv;
1740 }
1741
1742 /*
1743 * Drain pools, one at a time. The drained pool is returned within ppp.
1744 *
1745 * Note, must never be called from interrupt context.
1746 */
1747 bool
1748 pool_drain(struct pool **ppp)
1749 {
1750 bool reclaimed;
1751 struct pool *pp;
1752
1753 KASSERT(!TAILQ_EMPTY(&pool_head));
1754
1755 pp = NULL;
1756
1757 /* Find next pool to drain, and add a reference. */
1758 mutex_enter(&pool_head_lock);
1759 do {
1760 if (drainpp == NULL) {
1761 drainpp = TAILQ_FIRST(&pool_head);
1762 }
1763 if (drainpp != NULL) {
1764 pp = drainpp;
1765 drainpp = TAILQ_NEXT(pp, pr_poollist);
1766 }
1767 /*
1768 * Skip completely idle pools. We depend on at least
1769 * one pool in the system being active.
1770 */
1771 } while (pp == NULL || pp->pr_npages == 0);
1772 pp->pr_refcnt++;
1773 mutex_exit(&pool_head_lock);
1774
1775 /* Drain the cache (if any) and pool.. */
1776 reclaimed = pool_reclaim(pp);
1777
1778 /* Finally, unlock the pool. */
1779 mutex_enter(&pool_head_lock);
1780 pp->pr_refcnt--;
1781 cv_broadcast(&pool_busy);
1782 mutex_exit(&pool_head_lock);
1783
1784 if (ppp != NULL)
1785 *ppp = pp;
1786
1787 return reclaimed;
1788 }
1789
1790 /*
1791 * Calculate the total number of pages consumed by pools.
1792 */
1793 int
1794 pool_totalpages(void)
1795 {
1796
1797 mutex_enter(&pool_head_lock);
1798 int pages = pool_totalpages_locked();
1799 mutex_exit(&pool_head_lock);
1800
1801 return pages;
1802 }
1803
1804 int
1805 pool_totalpages_locked(void)
1806 {
1807 struct pool *pp;
1808 uint64_t total = 0;
1809
1810 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1811 uint64_t bytes =
1812 (uint64_t)pp->pr_npages * pp->pr_alloc->pa_pagesz;
1813
1814 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1815 bytes -= ((uint64_t)pp->pr_nout * pp->pr_size);
1816 total += bytes;
1817 }
1818
1819 return atop(total);
1820 }
1821
1822 /*
1823 * Diagnostic helpers.
1824 */
1825
1826 void
1827 pool_printall(const char *modif, void (*pr)(const char *, ...))
1828 {
1829 struct pool *pp;
1830
1831 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1832 pool_printit(pp, modif, pr);
1833 }
1834 }
1835
1836 void
1837 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1838 {
1839
1840 if (pp == NULL) {
1841 (*pr)("Must specify a pool to print.\n");
1842 return;
1843 }
1844
1845 pool_print1(pp, modif, pr);
1846 }
1847
1848 static void
1849 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1850 void (*pr)(const char *, ...))
1851 {
1852 struct pool_item_header *ph;
1853
1854 LIST_FOREACH(ph, pl, ph_pagelist) {
1855 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1856 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1857 #ifdef POOL_CHECK_MAGIC
1858 struct pool_item *pi;
1859 if (!(pp->pr_roflags & PR_USEBMAP)) {
1860 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1861 if (pi->pi_magic != PI_MAGIC) {
1862 (*pr)("\t\t\titem %p, magic 0x%x\n",
1863 pi, pi->pi_magic);
1864 }
1865 }
1866 }
1867 #endif
1868 }
1869 }
1870
1871 static void
1872 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1873 {
1874 struct pool_item_header *ph;
1875 pool_cache_t pc;
1876 pcg_t *pcg;
1877 pool_cache_cpu_t *cc;
1878 uint64_t cpuhit, cpumiss, pchit, pcmiss;
1879 uint32_t nfull;
1880 int i;
1881 bool print_log = false, print_pagelist = false, print_cache = false;
1882 bool print_short = false, skip_empty = false;
1883 char c;
1884
1885 while ((c = *modif++) != '\0') {
1886 if (c == 'l')
1887 print_log = true;
1888 if (c == 'p')
1889 print_pagelist = true;
1890 if (c == 'c')
1891 print_cache = true;
1892 if (c == 's')
1893 print_short = true;
1894 if (c == 'S')
1895 skip_empty = true;
1896 }
1897
1898 if (skip_empty && pp->pr_nget == 0)
1899 return;
1900
1901 if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
1902 (*pr)("POOLCACHE");
1903 } else {
1904 (*pr)("POOL");
1905 }
1906
1907 /* Single line output. */
1908 if (print_short) {
1909 (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u:%zu\n",
1910 pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1911 pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1912 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle,
1913 (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz);
1914 return;
1915 }
1916
1917 (*pr)(" %s: itemsize %u, totalmem %zu align %u, ioff %u, roflags 0x%08x\n",
1918 pp->pr_wchan, pp->pr_size,
1919 (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz,
1920 pp->pr_align, pp->pr_itemoffset, pp->pr_roflags);
1921 (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1922 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1923 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1924 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1925 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1926
1927 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1928 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1929 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1930 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1931
1932 if (!print_pagelist)
1933 goto skip_pagelist;
1934
1935 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1936 (*pr)("\n\tempty page list:\n");
1937 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1938 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1939 (*pr)("\n\tfull page list:\n");
1940 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1941 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1942 (*pr)("\n\tpartial-page list:\n");
1943 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1944
1945 if (pp->pr_curpage == NULL)
1946 (*pr)("\tno current page\n");
1947 else
1948 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1949
1950 skip_pagelist:
1951 if (print_log)
1952 goto skip_log;
1953
1954 (*pr)("\n");
1955
1956 skip_log:
1957
1958 #define PR_GROUPLIST(pcg) \
1959 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1960 for (i = 0; i < pcg->pcg_size; i++) { \
1961 if (pcg->pcg_objects[i].pcgo_pa != \
1962 POOL_PADDR_INVALID) { \
1963 (*pr)("\t\t\t%p, 0x%llx\n", \
1964 pcg->pcg_objects[i].pcgo_va, \
1965 (unsigned long long) \
1966 pcg->pcg_objects[i].pcgo_pa); \
1967 } else { \
1968 (*pr)("\t\t\t%p\n", \
1969 pcg->pcg_objects[i].pcgo_va); \
1970 } \
1971 }
1972
1973 if (pc != NULL) {
1974 cpuhit = 0;
1975 cpumiss = 0;
1976 pcmiss = 0;
1977 nfull = 0;
1978 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1979 if ((cc = pc->pc_cpus[i]) == NULL)
1980 continue;
1981 cpuhit += cc->cc_hits;
1982 cpumiss += cc->cc_misses;
1983 pcmiss += cc->cc_pcmisses;
1984 nfull += cc->cc_nfull;
1985 }
1986 pchit = cpumiss - pcmiss;
1987 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1988 (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1989 (*pr)("\tcache layer full groups %u\n", nfull);
1990 if (print_cache) {
1991 (*pr)("\tfull cache groups:\n");
1992 for (pcg = pc->pc_fullgroups; pcg != NULL;
1993 pcg = pcg->pcg_next) {
1994 PR_GROUPLIST(pcg);
1995 }
1996 }
1997 }
1998 #undef PR_GROUPLIST
1999 }
2000
2001 static int
2002 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
2003 {
2004 struct pool_item *pi;
2005 void *page;
2006 int n;
2007
2008 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
2009 page = POOL_OBJ_TO_PAGE(pp, ph);
2010 if (page != ph->ph_page &&
2011 (pp->pr_roflags & PR_PHINPAGE) != 0) {
2012 if (label != NULL)
2013 printf("%s: ", label);
2014 printf("pool(%p:%s): page inconsistency: page %p;"
2015 " at page head addr %p (p %p)\n", pp,
2016 pp->pr_wchan, ph->ph_page,
2017 ph, page);
2018 return 1;
2019 }
2020 }
2021
2022 if ((pp->pr_roflags & PR_USEBMAP) != 0)
2023 return 0;
2024
2025 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
2026 pi != NULL;
2027 pi = LIST_NEXT(pi,pi_list), n++) {
2028
2029 #ifdef POOL_CHECK_MAGIC
2030 if (pi->pi_magic != PI_MAGIC) {
2031 if (label != NULL)
2032 printf("%s: ", label);
2033 printf("pool(%s): free list modified: magic=%x;"
2034 " page %p; item ordinal %d; addr %p\n",
2035 pp->pr_wchan, pi->pi_magic, ph->ph_page,
2036 n, pi);
2037 panic("pool");
2038 }
2039 #endif
2040 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2041 continue;
2042 }
2043 page = POOL_OBJ_TO_PAGE(pp, pi);
2044 if (page == ph->ph_page)
2045 continue;
2046
2047 if (label != NULL)
2048 printf("%s: ", label);
2049 printf("pool(%p:%s): page inconsistency: page %p;"
2050 " item ordinal %d; addr %p (p %p)\n", pp,
2051 pp->pr_wchan, ph->ph_page,
2052 n, pi, page);
2053 return 1;
2054 }
2055 return 0;
2056 }
2057
2058
2059 int
2060 pool_chk(struct pool *pp, const char *label)
2061 {
2062 struct pool_item_header *ph;
2063 int r = 0;
2064
2065 mutex_enter(&pp->pr_lock);
2066 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2067 r = pool_chk_page(pp, label, ph);
2068 if (r) {
2069 goto out;
2070 }
2071 }
2072 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2073 r = pool_chk_page(pp, label, ph);
2074 if (r) {
2075 goto out;
2076 }
2077 }
2078 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2079 r = pool_chk_page(pp, label, ph);
2080 if (r) {
2081 goto out;
2082 }
2083 }
2084
2085 out:
2086 mutex_exit(&pp->pr_lock);
2087 return r;
2088 }
2089
2090 /*
2091 * pool_cache_init:
2092 *
2093 * Initialize a pool cache.
2094 */
2095 pool_cache_t
2096 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2097 const char *wchan, struct pool_allocator *palloc, int ipl,
2098 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2099 {
2100 pool_cache_t pc;
2101
2102 pc = pool_get(&cache_pool, PR_WAITOK);
2103 if (pc == NULL)
2104 return NULL;
2105
2106 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2107 palloc, ipl, ctor, dtor, arg);
2108
2109 return pc;
2110 }
2111
2112 /*
2113 * pool_cache_bootstrap:
2114 *
2115 * Kernel-private version of pool_cache_init(). The caller
2116 * provides initial storage.
2117 */
2118 void
2119 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2120 u_int align_offset, u_int flags, const char *wchan,
2121 struct pool_allocator *palloc, int ipl,
2122 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2123 void *arg)
2124 {
2125 CPU_INFO_ITERATOR cii;
2126 pool_cache_t pc1;
2127 struct cpu_info *ci;
2128 struct pool *pp;
2129 unsigned int ppflags;
2130
2131 pp = &pc->pc_pool;
2132 ppflags = flags;
2133 if (ctor == NULL) {
2134 ctor = NO_CTOR;
2135 }
2136 if (dtor == NULL) {
2137 dtor = NO_DTOR;
2138 } else {
2139 /*
2140 * If we have a destructor, then the pool layer does not
2141 * need to worry about PR_PSERIALIZE.
2142 */
2143 ppflags &= ~PR_PSERIALIZE;
2144 }
2145
2146 pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);
2147
2148 pc->pc_fullgroups = NULL;
2149 pc->pc_partgroups = NULL;
2150 pc->pc_ctor = ctor;
2151 pc->pc_dtor = dtor;
2152 pc->pc_arg = arg;
2153 pc->pc_refcnt = 0;
2154 pc->pc_roflags = flags;
2155 pc->pc_freecheck = NULL;
2156
2157 if ((flags & PR_LARGECACHE) != 0) {
2158 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2159 pc->pc_pcgpool = &pcg_large_pool;
2160 pc->pc_pcgcache = &pcg_large_cache;
2161 } else {
2162 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2163 pc->pc_pcgpool = &pcg_normal_pool;
2164 pc->pc_pcgcache = &pcg_normal_cache;
2165 }
2166
2167 /* Allocate per-CPU caches. */
2168 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2169 pc->pc_ncpu = 0;
2170 if (ncpu < 2) {
2171 /* XXX For sparc: boot CPU is not attached yet. */
2172 pool_cache_cpu_init1(curcpu(), pc);
2173 } else {
2174 for (CPU_INFO_FOREACH(cii, ci)) {
2175 pool_cache_cpu_init1(ci, pc);
2176 }
2177 }
2178
2179 /* Add to list of all pools. */
2180 if (__predict_true(!cold))
2181 mutex_enter(&pool_head_lock);
2182 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2183 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2184 break;
2185 }
2186 if (pc1 == NULL)
2187 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2188 else
2189 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2190 if (__predict_true(!cold))
2191 mutex_exit(&pool_head_lock);
2192
2193 atomic_store_release(&pp->pr_cache, pc);
2194 }
2195
2196 /*
2197 * pool_cache_destroy:
2198 *
2199 * Destroy a pool cache.
2200 */
2201 void
2202 pool_cache_destroy(pool_cache_t pc)
2203 {
2204
2205 pool_cache_bootstrap_destroy(pc);
2206 pool_put(&cache_pool, pc);
2207 }
2208
2209 /*
2210 * pool_cache_bootstrap_destroy:
2211 *
2212 * Destroy a pool cache.
2213 */
2214 void
2215 pool_cache_bootstrap_destroy(pool_cache_t pc)
2216 {
2217 struct pool *pp = &pc->pc_pool;
2218 u_int i;
2219
2220 /* Remove it from the global list. */
2221 mutex_enter(&pool_head_lock);
2222 while (pc->pc_refcnt != 0)
2223 cv_wait(&pool_busy, &pool_head_lock);
2224 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2225 mutex_exit(&pool_head_lock);
2226
2227 /* First, invalidate the entire cache. */
2228 pool_cache_invalidate(pc);
2229
2230 /* Disassociate it from the pool. */
2231 mutex_enter(&pp->pr_lock);
2232 atomic_store_relaxed(&pp->pr_cache, NULL);
2233 mutex_exit(&pp->pr_lock);
2234
2235 /* Destroy per-CPU data */
2236 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2237 pool_cache_invalidate_cpu(pc, i);
2238
2239 /* Finally, destroy it. */
2240 pool_destroy(pp);
2241 }
2242
2243 /*
2244 * pool_cache_cpu_init1:
2245 *
2246 * Called for each pool_cache whenever a new CPU is attached.
2247 */
2248 static void
2249 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2250 {
2251 pool_cache_cpu_t *cc;
2252 int index;
2253
2254 index = ci->ci_index;
2255
2256 KASSERT(index < __arraycount(pc->pc_cpus));
2257
2258 if ((cc = pc->pc_cpus[index]) != NULL) {
2259 return;
2260 }
2261
2262 /*
2263 * The first CPU is 'free'. This needs to be the case for
2264 * bootstrap - we may not be able to allocate yet.
2265 */
2266 if (pc->pc_ncpu == 0) {
2267 cc = &pc->pc_cpu0;
2268 pc->pc_ncpu = 1;
2269 } else {
2270 pc->pc_ncpu++;
2271 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2272 }
2273
2274 cc->cc_current = __UNCONST(&pcg_dummy);
2275 cc->cc_previous = __UNCONST(&pcg_dummy);
2276 cc->cc_pcgcache = pc->pc_pcgcache;
2277 cc->cc_hits = 0;
2278 cc->cc_misses = 0;
2279 cc->cc_pcmisses = 0;
2280 cc->cc_contended = 0;
2281 cc->cc_nfull = 0;
2282 cc->cc_npart = 0;
2283
2284 pc->pc_cpus[index] = cc;
2285 }
2286
2287 /*
2288 * pool_cache_cpu_init:
2289 *
2290 * Called whenever a new CPU is attached.
2291 */
2292 void
2293 pool_cache_cpu_init(struct cpu_info *ci)
2294 {
2295 pool_cache_t pc;
2296
2297 mutex_enter(&pool_head_lock);
2298 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2299 pc->pc_refcnt++;
2300 mutex_exit(&pool_head_lock);
2301
2302 pool_cache_cpu_init1(ci, pc);
2303
2304 mutex_enter(&pool_head_lock);
2305 pc->pc_refcnt--;
2306 cv_broadcast(&pool_busy);
2307 }
2308 mutex_exit(&pool_head_lock);
2309 }
2310
2311 /*
2312 * pool_cache_reclaim:
2313 *
2314 * Reclaim memory from a pool cache.
2315 */
2316 bool
2317 pool_cache_reclaim(pool_cache_t pc)
2318 {
2319
2320 return pool_reclaim(&pc->pc_pool);
2321 }
2322
2323 static inline void
2324 pool_cache_pre_destruct(pool_cache_t pc)
2325 {
2326 /*
2327 * Perform a passive serialization barrier before destructing
2328 * a batch of one or more objects.
2329 */
2330 if (__predict_false(pc_has_pser(pc))) {
2331 pool_barrier();
2332 }
2333 }
2334
2335 static void
2336 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2337 {
2338 (*pc->pc_dtor)(pc->pc_arg, object);
2339 pool_put(&pc->pc_pool, object);
2340 }
2341
2342 /*
2343 * pool_cache_destruct_object:
2344 *
2345 * Force destruction of an object and its release back into
2346 * the pool.
2347 */
2348 void
2349 pool_cache_destruct_object(pool_cache_t pc, void *object)
2350 {
2351
2352 FREECHECK_IN(&pc->pc_freecheck, object);
2353
2354 pool_cache_pre_destruct(pc);
2355 pool_cache_destruct_object1(pc, object);
2356 }
2357
2358 /*
2359 * pool_cache_invalidate_groups:
2360 *
2361 * Invalidate a chain of groups and destruct all objects. Return the
2362 * number of groups that were invalidated.
2363 */
2364 static int
2365 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2366 {
2367 void *object;
2368 pcg_t *next;
2369 int i, n;
2370
2371 if (pcg == NULL) {
2372 return 0;
2373 }
2374
2375 pool_cache_pre_destruct(pc);
2376
2377 for (n = 0; pcg != NULL; pcg = next, n++) {
2378 next = pcg->pcg_next;
2379
2380 for (i = 0; i < pcg->pcg_avail; i++) {
2381 object = pcg->pcg_objects[i].pcgo_va;
2382 pool_cache_destruct_object1(pc, object);
2383 }
2384
2385 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2386 pool_put(&pcg_large_pool, pcg);
2387 } else {
2388 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2389 pool_put(&pcg_normal_pool, pcg);
2390 }
2391 }
2392 return n;
2393 }
2394
2395 /*
2396 * pool_cache_invalidate:
2397 *
2398 * Invalidate a pool cache (destruct and release all of the
2399 * cached objects). Does not reclaim objects from the pool.
2400 *
2401 * Note: For pool caches that provide constructed objects, there
2402 * is an assumption that another level of synchronization is occurring
2403 * between the input to the constructor and the cache invalidation.
2404 *
2405 * Invalidation is a costly process and should not be called from
2406 * interrupt context.
2407 */
2408 void
2409 pool_cache_invalidate(pool_cache_t pc)
2410 {
2411 uint64_t where;
2412 pcg_t *pcg;
2413 int n, s;
2414
2415 KASSERT(!cpu_intr_p());
2416 KASSERT(!cpu_softintr_p());
2417
2418 if (ncpu < 2 || !mp_online) {
2419 /*
2420 * We might be called early enough in the boot process
2421 * for the CPU data structures to not be fully initialized.
2422 * In this case, transfer the content of the local CPU's
2423 * cache back into global cache as only this CPU is currently
2424 * running.
2425 */
2426 pool_cache_transfer(pc);
2427 } else {
2428 /*
2429 * Signal all CPUs that they must transfer their local
2430 * cache back to the global pool then wait for the xcall to
2431 * complete.
2432 */
2433 where = xc_broadcast(0,
2434 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2435 xc_wait(where);
2436 }
2437
2438 /* Now dequeue and invalidate everything. */
2439 pcg = pool_pcg_trunc(&pcg_normal_cache);
2440 (void)pool_cache_invalidate_groups(pc, pcg);
2441
2442 pcg = pool_pcg_trunc(&pcg_large_cache);
2443 (void)pool_cache_invalidate_groups(pc, pcg);
2444
2445 pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2446 n = pool_cache_invalidate_groups(pc, pcg);
2447 s = splvm();
2448 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2449 splx(s);
2450
2451 pcg = pool_pcg_trunc(&pc->pc_partgroups);
2452 n = pool_cache_invalidate_groups(pc, pcg);
2453 s = splvm();
2454 ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2455 splx(s);
2456 }
2457
2458 /*
2459 * pool_cache_invalidate_cpu:
2460 *
2461 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2462 * identified by its associated index.
2463 * It is caller's responsibility to ensure that no operation is
2464 * taking place on this pool cache while doing this invalidation.
2465 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2466 * pool cached objects from a CPU different from the one currently running
2467 * may result in an undefined behaviour.
2468 */
2469 static void
2470 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2471 {
2472 pool_cache_cpu_t *cc;
2473 pcg_t *pcg;
2474
2475 if ((cc = pc->pc_cpus[index]) == NULL)
2476 return;
2477
2478 if ((pcg = cc->cc_current) != &pcg_dummy) {
2479 pcg->pcg_next = NULL;
2480 pool_cache_invalidate_groups(pc, pcg);
2481 }
2482 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2483 pcg->pcg_next = NULL;
2484 pool_cache_invalidate_groups(pc, pcg);
2485 }
2486 if (cc != &pc->pc_cpu0)
2487 pool_put(&cache_cpu_pool, cc);
2488
2489 }
2490
2491 void
2492 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2493 {
2494
2495 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2496 }
2497
2498 void
2499 pool_cache_setlowat(pool_cache_t pc, int n)
2500 {
2501
2502 pool_setlowat(&pc->pc_pool, n);
2503 }
2504
2505 void
2506 pool_cache_sethiwat(pool_cache_t pc, int n)
2507 {
2508
2509 pool_sethiwat(&pc->pc_pool, n);
2510 }
2511
2512 void
2513 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2514 {
2515
2516 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2517 }
2518
2519 void
2520 pool_cache_prime(pool_cache_t pc, int n)
2521 {
2522
2523 pool_prime(&pc->pc_pool, n);
2524 }
2525
2526 unsigned int
2527 pool_cache_nget(pool_cache_t pc)
2528 {
2529
2530 return pool_nget(&pc->pc_pool);
2531 }
2532
2533 unsigned int
2534 pool_cache_nput(pool_cache_t pc)
2535 {
2536
2537 return pool_nput(&pc->pc_pool);
2538 }
2539
2540 /*
2541 * pool_pcg_get:
2542 *
2543 * Get a cache group from the specified list. Return true if
2544 * contention was encountered. Must be called at IPL_VM because
2545 * of spin wait vs. kernel_lock.
2546 */
2547 static int
2548 pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2549 {
2550 int count = SPINLOCK_BACKOFF_MIN;
2551 pcg_t *o, *n;
2552
2553 for (o = atomic_load_relaxed(head);; o = n) {
2554 if (__predict_false(o == &pcg_dummy)) {
2555 /* Wait for concurrent get to complete. */
2556 SPINLOCK_BACKOFF(count);
2557 n = atomic_load_relaxed(head);
2558 continue;
2559 }
2560 if (__predict_false(o == NULL)) {
2561 break;
2562 }
2563 /* Lock out concurrent get/put. */
2564 n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2565 if (o == n) {
2566 /* Fetch pointer to next item and then unlock. */
2567 membar_datadep_consumer(); /* alpha */
2568 n = atomic_load_relaxed(&o->pcg_next);
2569 atomic_store_release(head, n);
2570 break;
2571 }
2572 }
2573 *pcgp = o;
2574 return count != SPINLOCK_BACKOFF_MIN;
2575 }
2576
2577 /*
2578 * pool_pcg_trunc:
2579 *
2580 * Chop out entire list of pool cache groups.
2581 */
2582 static pcg_t *
2583 pool_pcg_trunc(pcg_t *volatile *head)
2584 {
2585 int count = SPINLOCK_BACKOFF_MIN, s;
2586 pcg_t *o, *n;
2587
2588 s = splvm();
2589 for (o = atomic_load_relaxed(head);; o = n) {
2590 if (__predict_false(o == &pcg_dummy)) {
2591 /* Wait for concurrent get to complete. */
2592 SPINLOCK_BACKOFF(count);
2593 n = atomic_load_relaxed(head);
2594 continue;
2595 }
2596 n = atomic_cas_ptr(head, o, NULL);
2597 if (o == n) {
2598 splx(s);
2599 membar_datadep_consumer(); /* alpha */
2600 return o;
2601 }
2602 }
2603 }
2604
2605 /*
2606 * pool_pcg_put:
2607 *
2608 * Put a pool cache group to the specified list. Return true if
2609 * contention was encountered. Must be called at IPL_VM because of
2610 * spin wait vs. kernel_lock.
2611 */
2612 static int
2613 pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2614 {
2615 int count = SPINLOCK_BACKOFF_MIN;
2616 pcg_t *o, *n;
2617
2618 for (o = atomic_load_relaxed(head);; o = n) {
2619 if (__predict_false(o == &pcg_dummy)) {
2620 /* Wait for concurrent get to complete. */
2621 SPINLOCK_BACKOFF(count);
2622 n = atomic_load_relaxed(head);
2623 continue;
2624 }
2625 pcg->pcg_next = o;
2626 membar_release();
2627 n = atomic_cas_ptr(head, o, pcg);
2628 if (o == n) {
2629 return count != SPINLOCK_BACKOFF_MIN;
2630 }
2631 }
2632 }
2633
2634 static bool __noinline
2635 pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2636 void **objectp, paddr_t *pap, int flags)
2637 {
2638 pcg_t *pcg, *cur;
2639 void *object;
2640
2641 KASSERT(cc->cc_current->pcg_avail == 0);
2642 KASSERT(cc->cc_previous->pcg_avail == 0);
2643
2644 cc->cc_misses++;
2645
2646 /*
2647 * If there's a full group, release our empty group back to the
2648 * cache. Install the full group as cc_current and return.
2649 */
2650 cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2651 if (__predict_true(pcg != NULL)) {
2652 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2653 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2654 KASSERT(cur->pcg_avail == 0);
2655 (void)pool_pcg_put(cc->cc_pcgcache, cur);
2656 }
2657 cc->cc_nfull--;
2658 cc->cc_current = pcg;
2659 return true;
2660 }
2661
2662 /*
2663 * Nothing available locally or in cache. Take the slow
2664 * path: fetch a new object from the pool and construct
2665 * it.
2666 */
2667 cc->cc_pcmisses++;
2668 splx(s);
2669
2670 object = pool_get(&pc->pc_pool, flags);
2671 *objectp = object;
2672 if (__predict_false(object == NULL)) {
2673 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2674 return false;
2675 }
2676
2677 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2678 pool_put(&pc->pc_pool, object);
2679 *objectp = NULL;
2680 return false;
2681 }
2682
2683 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2684
2685 if (pap != NULL) {
2686 #ifdef POOL_VTOPHYS
2687 *pap = POOL_VTOPHYS(object);
2688 #else
2689 *pap = POOL_PADDR_INVALID;
2690 #endif
2691 }
2692
2693 FREECHECK_OUT(&pc->pc_freecheck, object);
2694 return false;
2695 }
2696
2697 /*
2698 * pool_cache_get{,_paddr}:
2699 *
2700 * Get an object from a pool cache (optionally returning
2701 * the physical address of the object).
2702 */
2703 void *
2704 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2705 {
2706 pool_cache_cpu_t *cc;
2707 pcg_t *pcg;
2708 void *object;
2709 int s;
2710
2711 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2712 if (pc->pc_pool.pr_ipl == IPL_NONE &&
2713 __predict_true(!cold) &&
2714 __predict_true(panicstr == NULL)) {
2715 KASSERTMSG(!cpu_intr_p(),
2716 "%s: [%s] is IPL_NONE, but called from interrupt context",
2717 __func__, pc->pc_pool.pr_wchan);
2718 KASSERTMSG(!cpu_softintr_p(),
2719 "%s: [%s] is IPL_NONE,"
2720 " but called from soft interrupt context",
2721 __func__, pc->pc_pool.pr_wchan);
2722 }
2723
2724 if (flags & PR_WAITOK) {
2725 ASSERT_SLEEPABLE();
2726 }
2727
2728 if (flags & PR_NOWAIT) {
2729 if (fault_inject())
2730 return NULL;
2731 }
2732
2733 /* Lock out interrupts and disable preemption. */
2734 s = splvm();
2735 while (/* CONSTCOND */ true) {
2736 /* Try and allocate an object from the current group. */
2737 cc = pc->pc_cpus[curcpu()->ci_index];
2738 pcg = cc->cc_current;
2739 if (__predict_true(pcg->pcg_avail > 0)) {
2740 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2741 if (__predict_false(pap != NULL))
2742 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2743 #if defined(DIAGNOSTIC)
2744 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2745 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2746 KASSERT(object != NULL);
2747 #endif
2748 cc->cc_hits++;
2749 splx(s);
2750 FREECHECK_OUT(&pc->pc_freecheck, object);
2751 pool_redzone_fill(&pc->pc_pool, object);
2752 pool_cache_get_kmsan(pc, object);
2753 return object;
2754 }
2755
2756 /*
2757 * That failed. If the previous group isn't empty, swap
2758 * it with the current group and allocate from there.
2759 */
2760 pcg = cc->cc_previous;
2761 if (__predict_true(pcg->pcg_avail > 0)) {
2762 cc->cc_previous = cc->cc_current;
2763 cc->cc_current = pcg;
2764 continue;
2765 }
2766
2767 /*
2768 * Can't allocate from either group: try the slow path.
2769 * If get_slow() allocated an object for us, or if
2770 * no more objects are available, it will return false.
2771 * Otherwise, we need to retry.
2772 */
2773 if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2774 if (object != NULL) {
2775 kmsan_orig(object, pc->pc_pool.pr_size,
2776 KMSAN_TYPE_POOL, __RET_ADDR);
2777 }
2778 break;
2779 }
2780 }
2781
2782 /*
2783 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2784 * pool_cache_get can fail even in the PR_WAITOK case, if the
2785 * constructor fails.
2786 */
2787 return object;
2788 }
2789
2790 static bool __noinline
2791 pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2792 {
2793 pcg_t *pcg, *cur;
2794
2795 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2796 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2797
2798 cc->cc_misses++;
2799
2800 /*
2801 * Try to get an empty group from the cache. If there are no empty
2802 * groups in the cache then allocate one.
2803 */
2804 (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2805 if (__predict_false(pcg == NULL)) {
2806 if (__predict_true(!pool_cache_disable)) {
2807 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2808 }
2809 if (__predict_true(pcg != NULL)) {
2810 pcg->pcg_avail = 0;
2811 pcg->pcg_size = pc->pc_pcgsize;
2812 }
2813 }
2814
2815 /*
2816 * If there's a empty group, release our full group back to the
2817 * cache. Install the empty group to the local CPU and return.
2818 */
2819 if (pcg != NULL) {
2820 KASSERT(pcg->pcg_avail == 0);
2821 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2822 cc->cc_previous = pcg;
2823 } else {
2824 cur = cc->cc_current;
2825 if (__predict_true(cur != &pcg_dummy)) {
2826 KASSERT(cur->pcg_avail == cur->pcg_size);
2827 cc->cc_contended +=
2828 pool_pcg_put(&pc->pc_fullgroups, cur);
2829 cc->cc_nfull++;
2830 }
2831 cc->cc_current = pcg;
2832 }
2833 return true;
2834 }
2835
2836 /*
2837 * Nothing available locally or in cache, and we didn't
2838 * allocate an empty group. Take the slow path and destroy
2839 * the object here and now.
2840 */
2841 cc->cc_pcmisses++;
2842 splx(s);
2843 pool_cache_destruct_object(pc, object);
2844
2845 return false;
2846 }
2847
2848 /*
2849 * pool_cache_put{,_paddr}:
2850 *
2851 * Put an object back to the pool cache (optionally caching the
2852 * physical address of the object).
2853 */
2854 void
2855 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2856 {
2857 pool_cache_cpu_t *cc;
2858 pcg_t *pcg;
2859 int s;
2860
2861 KASSERT(object != NULL);
2862 pool_cache_put_kmsan(pc, object);
2863 pool_cache_redzone_check(pc, object);
2864 FREECHECK_IN(&pc->pc_freecheck, object);
2865
2866 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2867 pc_phinpage_check(pc, object);
2868 }
2869
2870 if (pool_cache_put_nocache(pc, object)) {
2871 return;
2872 }
2873
2874 /* Lock out interrupts and disable preemption. */
2875 s = splvm();
2876 while (/* CONSTCOND */ true) {
2877 /* If the current group isn't full, release it there. */
2878 cc = pc->pc_cpus[curcpu()->ci_index];
2879 pcg = cc->cc_current;
2880 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2881 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2882 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2883 pcg->pcg_avail++;
2884 cc->cc_hits++;
2885 splx(s);
2886 return;
2887 }
2888
2889 /*
2890 * That failed. If the previous group isn't full, swap
2891 * it with the current group and try again.
2892 */
2893 pcg = cc->cc_previous;
2894 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2895 cc->cc_previous = cc->cc_current;
2896 cc->cc_current = pcg;
2897 continue;
2898 }
2899
2900 /*
2901 * Can't free to either group: try the slow path.
2902 * If put_slow() releases the object for us, it
2903 * will return false. Otherwise we need to retry.
2904 */
2905 if (!pool_cache_put_slow(pc, cc, s, object))
2906 break;
2907 }
2908 }
2909
2910 /*
2911 * pool_cache_transfer:
2912 *
2913 * Transfer objects from the per-CPU cache to the global cache.
2914 * Run within a cross-call thread.
2915 */
2916 static void
2917 pool_cache_transfer(pool_cache_t pc)
2918 {
2919 pool_cache_cpu_t *cc;
2920 pcg_t *prev, *cur;
2921 int s;
2922
2923 s = splvm();
2924 cc = pc->pc_cpus[curcpu()->ci_index];
2925 cur = cc->cc_current;
2926 cc->cc_current = __UNCONST(&pcg_dummy);
2927 prev = cc->cc_previous;
2928 cc->cc_previous = __UNCONST(&pcg_dummy);
2929 if (cur != &pcg_dummy) {
2930 if (cur->pcg_avail == cur->pcg_size) {
2931 (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2932 cc->cc_nfull++;
2933 } else if (cur->pcg_avail == 0) {
2934 (void)pool_pcg_put(pc->pc_pcgcache, cur);
2935 } else {
2936 (void)pool_pcg_put(&pc->pc_partgroups, cur);
2937 cc->cc_npart++;
2938 }
2939 }
2940 if (prev != &pcg_dummy) {
2941 if (prev->pcg_avail == prev->pcg_size) {
2942 (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2943 cc->cc_nfull++;
2944 } else if (prev->pcg_avail == 0) {
2945 (void)pool_pcg_put(pc->pc_pcgcache, prev);
2946 } else {
2947 (void)pool_pcg_put(&pc->pc_partgroups, prev);
2948 cc->cc_npart++;
2949 }
2950 }
2951 splx(s);
2952 }
2953
2954 static int
2955 pool_bigidx(size_t size)
2956 {
2957 int i;
2958
2959 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2960 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2961 return i;
2962 }
2963 panic("pool item size %zu too large, use a custom allocator", size);
2964 }
2965
2966 static void *
2967 pool_allocator_alloc(struct pool *pp, int flags)
2968 {
2969 struct pool_allocator *pa = pp->pr_alloc;
2970 void *res;
2971
2972 res = (*pa->pa_alloc)(pp, flags);
2973 if (res == NULL && (flags & PR_WAITOK) == 0) {
2974 /*
2975 * We only run the drain hook here if PR_NOWAIT.
2976 * In other cases, the hook will be run in
2977 * pool_reclaim().
2978 */
2979 if (pp->pr_drain_hook != NULL) {
2980 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2981 res = (*pa->pa_alloc)(pp, flags);
2982 }
2983 }
2984 return res;
2985 }
2986
2987 static void
2988 pool_allocator_free(struct pool *pp, void *v)
2989 {
2990 struct pool_allocator *pa = pp->pr_alloc;
2991
2992 if (pp->pr_redzone) {
2993 KASSERT(!pp_has_pser(pp));
2994 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2995 } else if (__predict_false(pp_has_pser(pp))) {
2996 /*
2997 * Perform a passive serialization barrier before freeing
2998 * the pool page back to the system.
2999 */
3000 pool_barrier();
3001 }
3002 (*pa->pa_free)(pp, v);
3003 }
3004
3005 void *
3006 pool_page_alloc(struct pool *pp, int flags)
3007 {
3008 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3009 vmem_addr_t va;
3010 int ret;
3011
3012 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
3013 vflags | VM_INSTANTFIT, &va);
3014
3015 return ret ? NULL : (void *)va;
3016 }
3017
3018 void
3019 pool_page_free(struct pool *pp, void *v)
3020 {
3021
3022 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
3023 }
3024
3025 static void *
3026 pool_page_alloc_meta(struct pool *pp, int flags)
3027 {
3028 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3029 vmem_addr_t va;
3030 int ret;
3031
3032 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
3033 vflags | VM_INSTANTFIT, &va);
3034
3035 return ret ? NULL : (void *)va;
3036 }
3037
3038 static void
3039 pool_page_free_meta(struct pool *pp, void *v)
3040 {
3041
3042 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
3043 }
3044
3045 #ifdef KMSAN
3046 static inline void
3047 pool_get_kmsan(struct pool *pp, void *p)
3048 {
3049 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
3050 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
3051 }
3052
3053 static inline void
3054 pool_put_kmsan(struct pool *pp, void *p)
3055 {
3056 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
3057 }
3058
3059 static inline void
3060 pool_cache_get_kmsan(pool_cache_t pc, void *p)
3061 {
3062 if (__predict_false(pc_has_ctor(pc))) {
3063 return;
3064 }
3065 pool_get_kmsan(&pc->pc_pool, p);
3066 }
3067
3068 static inline void
3069 pool_cache_put_kmsan(pool_cache_t pc, void *p)
3070 {
3071 pool_put_kmsan(&pc->pc_pool, p);
3072 }
3073 #endif
3074
3075 #ifdef POOL_QUARANTINE
3076 static void
3077 pool_quarantine_init(struct pool *pp)
3078 {
3079 pp->pr_quar.rotor = 0;
3080 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3081 }
3082
3083 static void
3084 pool_quarantine_flush(struct pool *pp)
3085 {
3086 pool_quar_t *quar = &pp->pr_quar;
3087 struct pool_pagelist pq;
3088 size_t i;
3089
3090 LIST_INIT(&pq);
3091
3092 mutex_enter(&pp->pr_lock);
3093 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3094 if (quar->list[i] == 0)
3095 continue;
3096 pool_do_put(pp, (void *)quar->list[i], &pq);
3097 }
3098 mutex_exit(&pp->pr_lock);
3099
3100 pr_pagelist_free(pp, &pq);
3101 }
3102
3103 static bool
3104 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3105 {
3106 pool_quar_t *quar = &pp->pr_quar;
3107 uintptr_t old;
3108
3109 if (pp->pr_roflags & PR_NOTOUCH) {
3110 return false;
3111 }
3112
3113 pool_redzone_check(pp, v);
3114
3115 old = quar->list[quar->rotor];
3116 quar->list[quar->rotor] = (uintptr_t)v;
3117 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3118 if (old != 0) {
3119 pool_do_put(pp, (void *)old, pq);
3120 }
3121
3122 return true;
3123 }
3124 #endif
3125
3126 #ifdef POOL_NOCACHE
3127 static bool
3128 pool_cache_put_nocache(pool_cache_t pc, void *p)
3129 {
3130 pool_cache_destruct_object(pc, p);
3131 return true;
3132 }
3133 #endif
3134
3135 #ifdef POOL_REDZONE
3136 #if defined(_LP64)
3137 # define PRIME 0x9e37fffffffc0000UL
3138 #else /* defined(_LP64) */
3139 # define PRIME 0x9e3779b1
3140 #endif /* defined(_LP64) */
3141 #define STATIC_BYTE 0xFE
3142 CTASSERT(POOL_REDZONE_SIZE > 1);
3143
3144 #ifndef KASAN
3145 static inline uint8_t
3146 pool_pattern_generate(const void *p)
3147 {
3148 return (uint8_t)(((uintptr_t)p) * PRIME
3149 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3150 }
3151 #endif
3152
3153 static void
3154 pool_redzone_init(struct pool *pp, size_t requested_size)
3155 {
3156 size_t redzsz;
3157 size_t nsz;
3158
3159 #ifdef KASAN
3160 redzsz = requested_size;
3161 kasan_add_redzone(&redzsz);
3162 redzsz -= requested_size;
3163 #else
3164 redzsz = POOL_REDZONE_SIZE;
3165 #endif
3166
3167 if (pp->pr_roflags & PR_NOTOUCH) {
3168 pp->pr_redzone = false;
3169 return;
3170 }
3171
3172 /*
3173 * We may have extended the requested size earlier; check if
3174 * there's naturally space in the padding for a red zone.
3175 */
3176 if (pp->pr_size - requested_size >= redzsz) {
3177 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3178 pp->pr_redzone = true;
3179 return;
3180 }
3181
3182 /*
3183 * No space in the natural padding; check if we can extend a
3184 * bit the size of the pool.
3185 *
3186 * Avoid using redzone for allocations half of a page or larger.
3187 * For pagesize items, we'd waste a whole new page (could be
3188 * unmapped?), and for half pagesize items, approximately half
3189 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3190 */
3191 nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3192 if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3193 /* Ok, we can */
3194 pp->pr_size = nsz;
3195 pp->pr_reqsize_with_redzone = requested_size + redzsz;
3196 pp->pr_redzone = true;
3197 } else {
3198 /* No space for a red zone... snif :'( */
3199 pp->pr_redzone = false;
3200 aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3201 }
3202 }
3203
3204 static void
3205 pool_redzone_fill(struct pool *pp, void *p)
3206 {
3207 if (!pp->pr_redzone)
3208 return;
3209 KASSERT(!pp_has_pser(pp));
3210 #ifdef KASAN
3211 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3212 KASAN_POOL_REDZONE);
3213 #else
3214 uint8_t *cp, pat;
3215 const uint8_t *ep;
3216
3217 cp = (uint8_t *)p + pp->pr_reqsize;
3218 ep = cp + POOL_REDZONE_SIZE;
3219
3220 /*
3221 * We really don't want the first byte of the red zone to be '\0';
3222 * an off-by-one in a string may not be properly detected.
3223 */
3224 pat = pool_pattern_generate(cp);
3225 *cp = (pat == '\0') ? STATIC_BYTE: pat;
3226 cp++;
3227
3228 while (cp < ep) {
3229 *cp = pool_pattern_generate(cp);
3230 cp++;
3231 }
3232 #endif
3233 }
3234
3235 static void
3236 pool_redzone_check(struct pool *pp, void *p)
3237 {
3238 if (!pp->pr_redzone)
3239 return;
3240 KASSERT(!pp_has_pser(pp));
3241 #ifdef KASAN
3242 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3243 #else
3244 uint8_t *cp, pat, expected;
3245 const uint8_t *ep;
3246
3247 cp = (uint8_t *)p + pp->pr_reqsize;
3248 ep = cp + POOL_REDZONE_SIZE;
3249
3250 pat = pool_pattern_generate(cp);
3251 expected = (pat == '\0') ? STATIC_BYTE: pat;
3252 if (__predict_false(*cp != expected)) {
3253 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3254 pp->pr_wchan, *cp, expected);
3255 }
3256 cp++;
3257
3258 while (cp < ep) {
3259 expected = pool_pattern_generate(cp);
3260 if (__predict_false(*cp != expected)) {
3261 panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3262 pp->pr_wchan, *cp, expected);
3263 }
3264 cp++;
3265 }
3266 #endif
3267 }
3268
3269 static void
3270 pool_cache_redzone_check(pool_cache_t pc, void *p)
3271 {
3272 #ifdef KASAN
3273 /*
3274 * If there is a ctor/dtor, or if the cache objects use
3275 * passive serialization, leave the data as valid.
3276 */
3277 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
3278 pc_has_pser(pc))) {
3279 return;
3280 }
3281 #endif
3282 pool_redzone_check(&pc->pc_pool, p);
3283 }
3284
3285 #endif /* POOL_REDZONE */
3286
3287 #if defined(DDB)
3288 static bool
3289 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3290 {
3291
3292 return (uintptr_t)ph->ph_page <= addr &&
3293 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3294 }
3295
3296 static bool
3297 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3298 {
3299
3300 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3301 }
3302
3303 static bool
3304 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3305 {
3306 int i;
3307
3308 if (pcg == NULL) {
3309 return false;
3310 }
3311 for (i = 0; i < pcg->pcg_avail; i++) {
3312 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3313 return true;
3314 }
3315 }
3316 return false;
3317 }
3318
3319 static bool
3320 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3321 {
3322
3323 if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3324 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3325 pool_item_bitmap_t *bitmap =
3326 ph->ph_bitmap + (idx / BITMAP_SIZE);
3327 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
3328
3329 return (*bitmap & mask) == 0;
3330 } else {
3331 struct pool_item *pi;
3332
3333 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3334 if (pool_in_item(pp, pi, addr)) {
3335 return false;
3336 }
3337 }
3338 return true;
3339 }
3340 }
3341
3342 void
3343 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3344 {
3345 struct pool *pp;
3346
3347 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3348 struct pool_item_header *ph;
3349 struct pool_cache *pc;
3350 uintptr_t item;
3351 bool allocated = true;
3352 bool incache = false;
3353 bool incpucache = false;
3354 char cpucachestr[32];
3355
3356 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3357 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3358 if (pool_in_page(pp, ph, addr)) {
3359 goto found;
3360 }
3361 }
3362 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3363 if (pool_in_page(pp, ph, addr)) {
3364 allocated =
3365 pool_allocated(pp, ph, addr);
3366 goto found;
3367 }
3368 }
3369 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3370 if (pool_in_page(pp, ph, addr)) {
3371 allocated = false;
3372 goto found;
3373 }
3374 }
3375 continue;
3376 } else {
3377 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3378 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3379 continue;
3380 }
3381 allocated = pool_allocated(pp, ph, addr);
3382 }
3383 found:
3384 if (allocated &&
3385 (pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3386 struct pool_cache_group *pcg;
3387 int i;
3388
3389 for (pcg = pc->pc_fullgroups; pcg != NULL;
3390 pcg = pcg->pcg_next) {
3391 if (pool_in_cg(pp, pcg, addr)) {
3392 incache = true;
3393 goto print;
3394 }
3395 }
3396 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3397 pool_cache_cpu_t *cc;
3398
3399 if ((cc = pc->pc_cpus[i]) == NULL) {
3400 continue;
3401 }
3402 if (pool_in_cg(pp, cc->cc_current, addr) ||
3403 pool_in_cg(pp, cc->cc_previous, addr)) {
3404 struct cpu_info *ci =
3405 cpu_lookup(i);
3406
3407 incpucache = true;
3408 snprintf(cpucachestr,
3409 sizeof(cpucachestr),
3410 "cached by CPU %u",
3411 ci->ci_index);
3412 goto print;
3413 }
3414 }
3415 }
3416 print:
3417 item = (uintptr_t)ph->ph_page + ph->ph_off;
3418 item = item + rounddown(addr - item, pp->pr_size);
3419 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3420 (void *)addr, item, (size_t)(addr - item),
3421 pp->pr_wchan,
3422 incpucache ? cpucachestr :
3423 incache ? "cached" : allocated ? "allocated" : "free");
3424 }
3425 }
3426 #endif /* defined(DDB) */
3427
3428 static int
3429 pool_sysctl(SYSCTLFN_ARGS)
3430 {
3431 struct pool_sysctl data;
3432 struct pool *pp;
3433 struct pool_cache *pc;
3434 pool_cache_cpu_t *cc;
3435 int error;
3436 size_t i, written;
3437
3438 if (oldp == NULL) {
3439 *oldlenp = 0;
3440 TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3441 *oldlenp += sizeof(data);
3442 return 0;
3443 }
3444
3445 memset(&data, 0, sizeof(data));
3446 error = 0;
3447 written = 0;
3448 mutex_enter(&pool_head_lock);
3449 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3450 if (written + sizeof(data) > *oldlenp)
3451 break;
3452 pp->pr_refcnt++;
3453 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3454 data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3455 data.pr_flags = pp->pr_roflags | pp->pr_flags;
3456 #define COPY(field) data.field = pp->field
3457 COPY(pr_size);
3458
3459 COPY(pr_itemsperpage);
3460 COPY(pr_nitems);
3461 COPY(pr_nout);
3462 COPY(pr_hardlimit);
3463 COPY(pr_npages);
3464 COPY(pr_minpages);
3465 COPY(pr_maxpages);
3466
3467 COPY(pr_nget);
3468 COPY(pr_nfail);
3469 COPY(pr_nput);
3470 COPY(pr_npagealloc);
3471 COPY(pr_npagefree);
3472 COPY(pr_hiwat);
3473 COPY(pr_nidle);
3474 #undef COPY
3475
3476 data.pr_cache_nmiss_pcpu = 0;
3477 data.pr_cache_nhit_pcpu = 0;
3478 data.pr_cache_nmiss_global = 0;
3479 data.pr_cache_nempty = 0;
3480 data.pr_cache_ncontended = 0;
3481 data.pr_cache_npartial = 0;
3482 if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3483 uint32_t nfull = 0;
3484 data.pr_cache_meta_size = pc->pc_pcgsize;
3485 for (i = 0; i < pc->pc_ncpu; ++i) {
3486 cc = pc->pc_cpus[i];
3487 if (cc == NULL)
3488 continue;
3489 data.pr_cache_ncontended += cc->cc_contended;
3490 data.pr_cache_nmiss_pcpu += cc->cc_misses;
3491 data.pr_cache_nhit_pcpu += cc->cc_hits;
3492 data.pr_cache_nmiss_global += cc->cc_pcmisses;
3493 nfull += cc->cc_nfull; /* 32-bit rollover! */
3494 data.pr_cache_npartial += cc->cc_npart;
3495 }
3496 data.pr_cache_nfull = nfull;
3497 } else {
3498 data.pr_cache_meta_size = 0;
3499 data.pr_cache_nfull = 0;
3500 }
3501 data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3502 data.pr_cache_nmiss_global;
3503
3504 if (pp->pr_refcnt == UINT_MAX) /* XXX possible? */
3505 continue;
3506 mutex_exit(&pool_head_lock);
3507 error = sysctl_copyout(l, &data, oldp, sizeof(data));
3508 mutex_enter(&pool_head_lock);
3509 if (--pp->pr_refcnt == 0)
3510 cv_broadcast(&pool_busy);
3511 if (error)
3512 break;
3513 written += sizeof(data);
3514 oldp = (char *)oldp + sizeof(data);
3515 }
3516 mutex_exit(&pool_head_lock);
3517
3518 *oldlenp = written;
3519 return error;
3520 }
3521
3522 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3523 {
3524 const struct sysctlnode *rnode = NULL;
3525
3526 sysctl_createv(clog, 0, NULL, &rnode,
3527 CTLFLAG_PERMANENT,
3528 CTLTYPE_STRUCT, "pool",
3529 SYSCTL_DESCR("Get pool statistics"),
3530 pool_sysctl, 0, NULL, 0,
3531 CTL_KERN, CTL_CREATE, CTL_EOL);
3532 }
3533